Powered by Deep Web Technologies
Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hybrids for Batteries and Fuel Cells  

Science Conference Proceedings (OSTI)

Hybrid Organic: Inorganic Materials for Alternative Energy: Hybrids for Batteries and Fuel Cells Program Organizers: Andrei Jitianu, Lehman College, City ...

2

High Energy Batteries for Hybrid Buses  

DOE Green Energy (OSTI)

EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

Bruce Lu

2010-12-31T23:59:59.000Z

3

Ultracapacitors and Batteries in Hybrid Vehicles  

DOE Green Energy (OSTI)

Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

2005-08-01T23:59:59.000Z

4

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

5

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-02-10T23:59:59.000Z

6

Battery Technology for Hybrid Vehicles Marshall Miller  

E-Print Network (OSTI)

Battery Technology for Hybrid Vehicles Marshall Miller May 13, 2008 H2 #12;Energy Storage Lithium-ion Batteries Battery manufact. Electrode chemistry Voltage range Ah Resist. mOhm Wh/kg W/kg 95 hydride 7.2-5.4 6.5 11.4 46 208 1.04 1.8 #12;Comparisons of Lithium Battery Chemistries Technology type

California at Davis, University of

7

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network (OSTI)

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

8

Scientists Create Worlds Smallest Battery | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Stories of Discovery & Innovation Scientists Create World's Smallest Battery Enlarge Photo Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of the contemporary electronic age, powering everything from cell phones and laptop computers to hybrid electric vehicles. But while superior to many alternatives for electrical energy storage, Li-ion batteries are not optimal in every respect. Despite much progress over the years, their

9

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main… (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

10

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

11

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network (OSTI)

BATTERIES FOR USE IN HYBRID ELECTRIC VEHICLES R. Kostecki,ion batteries for hybrid electric vehicles. Nine 18650-sizebatteries for hybrid electric vehicle (HEV) applications.

2001-01-01T23:59:59.000Z

12

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

13

A fuel-cell-battery hybrid for portable embedded systems  

Science Conference Proceedings (OSTI)

This article presents our work on the development of a fuel cell (FC) and battery hybrid (FC-Bh) system for use in portable microelectronic systems. We describe the design and control of the hybrid system, as well as a dynamic power management (DPM)-based ... Keywords: DPM, Simulation, battery, fuel cell, hybrid systems, simulator

Kyungsoo Lee; Naehyuck Chang; Jianli Zhuo; Chaitali Chakrabarti; Sudheendra Kadri; Sarma Vrudhula

2008-01-01T23:59:59.000Z

14

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

15

An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance but are quite expensive. In spite of their lower… (more)

Stienecker, Adam W

2005-01-01T23:59:59.000Z

16

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density  

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density Note: The technology described above is an early stage opportunity. Licensing rights to this ...

17

Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs  

E-Print Network (OSTI)

with 85% ethanol EIA ­ Energy Information Administration EVSE ­ Electric vehicle supply equipment gPlug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size to get this thesis finished. #12;iv Intentionally blank #12;v Abstract Plug-in hybrid electric vehicles

18

Battery Life Prediction Method for Hybrid Power Applications: Preprint  

Science Conference Proceedings (OSTI)

Batteries in hybrid power applications that include intermittent generators, such as wind turbines, experience a very irregular pattern of charge and discharge cycles. Because battery life is dependent on both depth and rate of discharge (and other factors such as temperature, charging strategy, etc.), estimating battery life and optimally sizing batteries for hybrid systems is difficult. Typically, manufacturers give battery life data, if at all, as cycles to failure versus depth of discharge, where all discharge cycles are assumed to be under conditions of constant temperature, current, and depth of discharge. Use of such information directly can lead to gross errors in battery lifetime estimation under actual operating conditions, which may result in either a higher system cost than necessary or an undersized battery bank prone to early failure. Even so, most current battery life estimation algorithms consider only the effect of depth of discharge on cycle life. This paper will discuss a new battery life prediction method, developed to investigate the effects of two primary determinants of battery life in hybrid power applications, varying depths of discharge and varying rates of discharge. A significant feature of the model is that it bases its analysis on battery performance and cycle life data provided by the manufacturer, supplemented by a limited amount of empirical test data, eliminating the need for an electrochemical model of the battery. It performs the analysis for a user-prescribed discharge profile consisting of a series of discharge events of specified average current and duration. Sample analyses are presented to show how the method can be used to select the most economical battery type and size for a given hybrid power system application.

Drouilhet, S.; Johnson, B. L.

1997-01-01T23:59:59.000Z

19

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network (OSTI)

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh per day. The effect of varying the size of the pv array and the battery bank in such systems on both

20

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

supervises testing in the Hybrid Vehicle Propulsion SystemsChemistries for Plug-in Hybrid Vehicles Andrew Burke,batteries, plug-in hybrid vehicles, energy density, pulse

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High power battery test methods for hybrid vehicle applications  

DOE Green Energy (OSTI)

Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

1997-11-01T23:59:59.000Z

22

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Not Available

2008-03-01T23:59:59.000Z

23

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

24

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

25

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

26

Battery control strategy Diesel generator Fuel consumption Hybrid system  

E-Print Network (OSTI)

Standalone diesel generators (DGs) are widely utilized in remote areas in Indonesia. Some areas use microhydro (MH) systems with DGs backup. However, highly diesel fuel price makes such systems become uneconomical. This paper introduces hybrid photovoltaic (PV)/MH/DG/battery systems with a battery control strategy to minimize the diesel fuel consumption. The method is applied to control the state of charge (SOC) level of the battery based on its previous level and the demand load condition to optimize the DG operation. Simulation results show that operations of the hybrid PV/MH/DG/battery with the battery control strategy needs less fuel consumption than PV/MH/DG and MH/DG systems.

Ayong Hiendro; Yohannes M. Simanjuntak

2012-01-01T23:59:59.000Z

27

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

28

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

29

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

30

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

31

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

32

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

33

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

34

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

35

Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale  

DOE Green Energy (OSTI)

Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

2009-07-01T23:59:59.000Z

36

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

37

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

38

Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies  

E-Print Network (OSTI)

words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge amplitude, rate capability Abstract A detailed analysis of the capacity fade of a battery/supercapacitor

Popov, Branko N.

39

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

40

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

DOE Green Energy (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of advanced batteries for plug-in hybrid electric vehicle (Advanced Lithium-Ion Batteries for Plug- in Hybrid-Electric Vehicles,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

42

Hybrid energy storage systems and battery management for electric vehicles  

Science Conference Proceedings (OSTI)

Electric vehicles (EV) are considered as a strong alternative of internal combustion engine vehicles expecting lower carbon emission. However, their actual benefits are not yet clearly verified while the energy efficiency can be improved in many ways. ... Keywords: battery-supercapacitor hybrid, charging/discharging asymmetry, electric vehicle, regenerative braking

Sangyoung Park, Younghyun Kim, Naehyuck Chang

2013-05-01T23:59:59.000Z

43

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

44

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

32 B.1 Electrical power capacity: BatteryB.1 Electrical power capacity: Battery EDVs For the battery-and/or generation capacity of battery, hybrid and fuel cell

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

45

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumof a plug-in hybrid-electric vehicle is the selection of theHybrid and Fuel Cell Electric Vehicle Symposium negative)

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

46

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network (OSTI)

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

47

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

48

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Manuscript submitted May 15, 2000; revised manuscript received January 15, 2001. Lithium-ion batteries effort by the U.S. Department of Energy to aid the development of lithium-ion batteries for hybrid

49

HypoEnergy: Hybrid supercapacitor-battery power-supply optimization for Energy efficiency  

E-Print Network (OSTI)

HypoEnergy: Hybrid supercapacitor-battery power-supply optimization for Energy efficiency Azalia the hybrid battery-supercapacitor power supply life- time. HypoEnergy combines high energy density of recharge cycles of supercapacitors. The lifetime optimizations consider nonlinear battery characteristics

50

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions and torque ripples. Keywords- Electric Vehicle, Plug-in Hybrid Vehicle, On-board Battery Charger, H on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger

Paris-Sud XI, Université de

51

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

52

Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

Pesaran, A.

2007-02-13T23:59:59.000Z

53

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

portion of the battery’s total energy capacity is used—knownelectricity from a battery which—(i) has a capacity of notassumed battery mass. Second, energy capacity requirements

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

54

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

55

A New Hybrid Redox Flow Battery with Multiple Redox Couples  

Science Conference Proceedings (OSTI)

A redox flow battery using V{sup 4+}/V{sup 5+} vs. V{sup 2+}/V{sup 3+} and Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V hybrid redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.7 V demonstrated stable cycling over 100 cycles with energy efficiency {approx}80% and no capacity fading at room temperature. A 66% improvement in the energy density of the Fe/V hybrid cell was achieved compared with the previous reported Fe/V cell using only Fe{sup 2+}/Fe{sup 3+} vs. V{sup 2+}/V{sup 3+} redox couples.

Wang, Wei; Li, Liyu; Nie, Zimin; Chen, Baowei; Luo, Qingtao; Shao, Yuyan; Wei, Xiaoliang; Chen, Feng; Xia, Guanguang; Yang, Zhenguo

2012-05-19T23:59:59.000Z

56

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

57

Evaluation of Emerging Battery Technologies for Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

The performance, cycle life, and cost of available batteries are key issues in determining the marketability of plug-in hybrid-electric vehicles (PHEVs). The California Air Resources Board (CARB) initiated a project to evaluate emerging lithiumion battery technologies for PHEV applications. Work initially focused on the determination of the characteristics of one of the most interesting of the emerging lithium-ion batteries, the lithium titanate battery in commercial development by Altairnano, but other ...

2009-08-24T23:59:59.000Z

58

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

2 and 10 seconds Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

59

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

at higher SOC. Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

60

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

2 and 10 seconds Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Batteries for Electric-Drive Vehicles: A Technology and Cost-Effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

Availability of affordable advanced battery technology is a crucial challenge to the growth of the electric-drive vehicle (EDV) market. This study assesses the state of advanced battery technology for EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles (HEV 0s -- hybrids without electric driving range), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. The first part of this study presents assessments of current battery performance and cycle life ca...

2004-05-31T23:59:59.000Z

62

Scientists Create World's Smallest Battery | U.S. DOE Office of Science  

Office of Science (SC) Website

Scientists Create World's Smallest Battery Scientists Create World's Smallest Battery Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery performance. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image shows distortion of nanowire electrode during charging Image shows distortion of nanowire electrode during charging. Researchers were able to observe charging and discharging in real time at atomic-level resolution. Rechargeable lithium-ion (Li-ion) batteries have become the workhorse of

63

Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)  

DOE Green Energy (OSTI)

Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2011-11-01T23:59:59.000Z

64

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network (OSTI)

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

65

Do More Batteries Make A Plug-in Hybrid Better? Implications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Do More Batteries Make A Plug-in Hybrid Better? Implications from Optimal Vehicle Design and Allocation Speaker(s): Chin-Shin Shiau Date: June 18, 2010 - 2:00pm Location: 90-3122...

66

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications  

E-Print Network (OSTI)

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun layer capacitors, or simply supercapacitors, have extremely low internal resistance, and a battery-supercapacitor architecture comprising a simple parallel connection does not perform well when the supercapacitor capacity

Pedram, Massoud

67

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. (2008) ‘Emerging lithium-ion battery technologies forbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel-metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

68

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

M. (2008) ‘Emerging lithium-ion battery technologies forbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel-metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

69

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2008. Emerging lithium-ion battery technologies forbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel- metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

70

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

71

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

72

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and impacts of hybrid electric vehicle options for compactof plug-in hybrid electric vehicles, vol. 1: nationwideimpacts of hybrid electric vehicle options. Report #1000349,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

73

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

74

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

75

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

76

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

77

PNGV Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar and cycle life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle and calendar life modeling for hybrid electric vehicle batteries are presented.

Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Haskind, H. J.; Tartamella, T.; Sutula, R.

2002-06-01T23:59:59.000Z

78

Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)  

DOE Green Energy (OSTI)

Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

Pesaran, A.

2007-12-01T23:59:59.000Z

79

Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.  

SciTech Connect

In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

Nelson, P. A.; Henriksen, G. L.; Amine, K.

2000-12-04T23:59:59.000Z

80

Testing and Evaluation of Batteries for a Fuel Cell Powered Hybrid Bus  

SciTech Connect

Argonne National Laboratory conducted performance characterization and life-cycle tests on various batteries to qualify them for use in a fuel cell/battery hybrid bus. On this bus, methanol-fueled, phosphoric acid fuel cells provide routine power needs, while batteries are used to store energy recovered during bus braking and to produce short-duration power during acceleration. Argonne carried out evaluation and endurance testing on several lead-acid and nickel/cadmium batteries selected by the bus developer as potential candidates for the bus application. Argonne conducted over 10,000 hours of testing, simulating more than 80,000 miles of fuel cell bus operation, for the nickel/cadmium battery, which was ultimately selected for use in the three hybrid buses built under the direction of H-Power Corp.

Miller, J.F.; Webster, C.E.; Tummillo, A.F.; DeLuca, W.H.

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

82

2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

83

2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

84

2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

85

MODELING BATTERY-ULTRACAPACITOR HYBRID SYSTEMS FOR SOLARAND WIND APPLICATIONS.  

E-Print Network (OSTI)

??The purpose of this study was to quantify the improvement in the performance of a battery withthe addition of an ultracapacitor as an auxillary energy… (more)

Tammineedi, Charith

2011-01-01T23:59:59.000Z

86

All-solid-state Hybrid Batteries with High Capacity - Programmaster ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High-performance thin film battery (TFB) has gained many attentions, as active RFID tags, and MEMS based electronic systems. Although the ...

87

ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS  

E-Print Network (OSTI)

ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS O. GERGAUD, G Abstract: Within the scope of full-scale energy modeling of a hybrid wind / photovoltaic system coupled / photovoltaic production system coupled to the network grid (with energy storage) ENERGY MODELING OF A LEAD

Paris-Sud XI, Université de

88

World Induced Technical Change Hybrid (WITCH) | Open Energy Information  

Open Energy Info (EERE)

World Induced Technical Change Hybrid (WITCH) World Induced Technical Change Hybrid (WITCH) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: World Induced Technical Change Hybrid (WITCH) Agency/Company /Organization: Fondazione Eni Enrico Mattei (FEEM) Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.witchmodel.org/ Cost: Free Related Tools Global Trade and Environmental Model (GTEM) General Equilibrium Modeling Package (GEMPACK) Energy Development Index (EDI) ... further results Designed to assist in the study of the socio-economic dimensions of climate change and to help policy makers understand the economic consequences of climate policies.

89

Method and apparatus for controlling battery charging in a hybrid electric vehicle  

DOE Green Energy (OSTI)

A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2003-06-24T23:59:59.000Z

90

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

91

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

92

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchfor plug- in hybrid electric vehicles: analysis and2007. Plug-in Hybrid Electric Vehicle R&D Plan: Working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

93

Battery testing at Argonne National Laboratory. Electric and hybrid propulsion systems, No. 1  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-12-31T23:59:59.000Z

94

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

95

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

96

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

type of battery for next Prius’, The Wall Street Journal,2008) simulations for Toyota Prius with US06 drive cycle—2008) simulations for Toyota Prius with US06 drive cycle—

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

97

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

type of battery for next Prius’, The Wall Street Journal,2008) simulations for Toyota Prius with US06 drive cycle—2008) simulations for Toyota Prius with US06 drive cycle—

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

98

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

type of battery for next Prius, The Wall Street Journal June2008) simulations for Toyota Prius with US06 drive cycle—2008) simulations for Toyota Prius with US06 drive cycle—

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

99

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

100

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

102

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

103

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

104

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

105

Battery technology for electric and hybrid vehicles: Expert views about prospects for advancement  

SciTech Connect

In this paper we present the results of an expert elicitation on the prospects for advances in battery technology for electric and hybrid vehicles. We find disagreement among the experts on a wide range of topics, including the need for government funding, the probability of getting batteries with Lithium Metal anodes to work, and the probability of building safe Lithium-ion batteries. Averaging across experts we find that U.S. government expenditures of $150 M/year lead to a 66% chance of achieving a battery that costs less than $200/kWh, and a 20% chance for a cost of $90/kWh or less. Reducing the cost of batteries from a baseline of $384 to $200 could lead to a savings in the cost of reducing greenhouse gases of about $100 billion in 2050.

Baker, Erin D.; Chon, Haewon; Keisler, Jeffrey M.

2010-09-01T23:59:59.000Z

106

Novel Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles. Tests include both characterization and cycle life and/or calendar life. Tests have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacitance, and the modeling of calendar and cycle life data. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries.

Motloch, Chester George; Batt, J. R.; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn

2001-06-01T23:59:59.000Z

107

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network (OSTI)

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona Vehicle Symposium & Exhibition (EVS27), Barcelona : Spain (2013)" #12;EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals

Recanati, Catherine

108

Environmental impact analysis of electric and hybrid vehicle batteries. Final report  

DOE Green Energy (OSTI)

This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

Not Available

1977-12-16T23:59:59.000Z

109

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

110

Design of a Control Strategy for a Fuel Cell/Battery Hybrid Power Supply  

E-Print Network (OSTI)

The purpose of this thesis is to design hardware and a control strategy for a fuel cell/battery hybrid power supply. Modern fuel cell/battery hybrid power supplies can have 2 DC/DC converters: one converter for the battery and one for the fuel cell. The hardware for the power supply proposed in this thesis consists of a single DC/DC buck converter at the output terminals of the fuel cell. The battery does not have a DC/DC converter, and it is therefore passive in the system. The use of one single converter is attractive, because it reduces the cost of this power supply. This thesis proposes a method of controlling the fuel cell's DC/DC buck converter to act as a current source instead of a voltage source. This thesis will explain why using the fuel cell's buck converter to act as a current source is most appropriate. The proposed design techniques for the buck converter are also based on stiff systems theory. Combining a fuel cell and a battery in one power supply allows exploitation of the advantages of both devices and undermines their disadvantages. The fuel cell has a slow dynamic response time, and the battery has a fast dynamic response time to fluctuations in a load. A fuel cell has high energy density, and a battery has high power density. And the performance of the hybrid power supply exploits these advantages of the fuel cell and the battery. The controller designed in this thesis allows the fuel cell to operate in its most efficient region: even under dynamic load conditions. The passive battery inherits all load dynamic behavior, and it is therefore used for peaking power delivery, while the fuel cell delivers base or average power. Simulations will be provided using MATLAB/Simulink based models. And the results conclude that one can successfully control a hybrid fuel cell/battery power supply that decouples fluctuations in a load from the fuel cell with extremely limited hardware. The results also show that one can successfully control the fuel cell to operate in its most efficient region.

Smith, Richard C.

2009-08-01T23:59:59.000Z

111

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementnot dominate the total battery cost. Note that in generalsuch as cycle life and battery cost and battery management

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

112

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

113

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

DOE Green Energy (OSTI)

This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

Mark, J

1992-11-01T23:59:59.000Z

114

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

Greer, Mark R

2012-01-01T23:59:59.000Z

115

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

2010). Plug-in hybrid electric vehicles as regulating powervalue of plug-in hybrid electric vehicles as grid resources.of using plug-in hybrid electric vehicle battery packs for

Greer, Mark R

2012-01-01T23:59:59.000Z

116

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

in and Batttery Electric Vehicles, The 5 th IEEE VehiclePlug-in and Battery Electric Vehicles, The 1 st IEEE EnergyE. Plug-in Hybrid-Electric Vehicle Powertrain Design and

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

117

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

Science Conference Proceedings (OSTI)

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

118

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues  

E-Print Network (OSTI)

The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL) involved two experiments which looked at a vehicle systems approach to analyze two such technical challenges: Battery life and low battery power at cold (-7 ?C) temperature. The first experiment, concerning battery life and its impact on gasoline savings due to a PHEV, evaluates different vehicle control strategies over a pre-defined vehicle drive cycle, in order to identify the control strategy which yields the maximum dollar savings (operating cost) over the life of the vehicle, when compared to a charge sustaining hybrid. Battery life degradation over the life of the vehicle, and fuel economy savings on every trip (daily) are taken into account when calculating the net present value of the gasoline dollars saved. The second experiment evaluates the impact of different vehicle control strategies in heating up the PHEV battery (due to internal ohmic losses) for cold ambient conditions. The impact of low battery power (available to the vehicle powertrain) due to low battery and ambient temperatures has been well documented in literature. The trade-off between the benefits of heating up the battery versus heating up the internal combustion engine are evaluated, using different control strategies, and the control strategy, which provided optimum temperature rise of each component, is identified.

Shidore, Neeraj Shripad

2012-05-01T23:59:59.000Z

119

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks

McGaughey, Alan

120

The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications .  

E-Print Network (OSTI)

??In this work, a hybrid power module comprising of a direct methanol fuel cell (DMFC) and a Li-ion battery has been proposed for low power… (more)

Prakash, Shruti

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

2013-04-01T23:59:59.000Z

122

Battery technology for electric and hybrid vehicles: Expert viewsabout prospects for advancement. Under Review at Technological Forecasting and Social Change  

E-Print Network (OSTI)

In this paper we present the results of an expert elicitation on the prospects for advances in battery technology for electric and hybrid vehicles. We find disagreement among the experts on a wide range of topics, including the need for government funding, the probability of getting batteries with Lithium Metal anodes to work, and the probability of building safe Lithium-ion batteries. Averaging across experts we find that U.S. government expenditures of $150M/yr lead to a 66 % chance of achieving a battery that costs less than $200/kWh, and a 20 % chance for a cost of $90/kWh or less. Reducing the cost of batteries from a baseline of $384 to $200 could lead to a savings in the cost of reducing greenhouse gases of about $100 Billion in 2050.

Erin Baker; Jeffrey Keisler

2009-01-01T23:59:59.000Z

123

Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles  

Science Conference Proceedings (OSTI)

State of health (SOH) determination becomes an increasingly important issue for a safe and reliable operation of lithium-ion batteries in hybrid electric vehicles (HEVs). Characteristic performance parameters as capacity and resistance change over lifetime ... Keywords: Extended Kalman filter, Hybrid electric vehicle, Internal resistance estimation, Lithium-ion batteries, State of health, Structured neural networks

D. Andre, A. Nuhic, T. Soczka-Guth, D. U. Sauer

2013-03-01T23:59:59.000Z

124

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

125

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

for vehicle applications. 2 Lithium-ion battery chemistriesThe lithium-ion battery technology used for consumerfrom EIG Figure 4: Lithium-ion battery modules for testing

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

126

Power management strategy based on adaptive neuro-fuzzy inference system for fuel cell-battery hybrid vehicle  

Science Conference Proceedings (OSTI)

A power management strategy based on an adaptive neuro-fuzzy inference system is proposed to enhance the fuel economy of fuel cell-battery hybrid vehicle and increase the mileage of continuation of journey. The model of hybrid vehicle for fuel cell-battery structure is developed by electric vehicle simulation software advisor. The simulation results demonstrate that the proposed strategy can satisfy the power requirement of four standard drive cycles and achieve the power distribution between fuel cell system and battery. The comprehensive comparisons with a power tracking control strategy which is widely adopted in advisor verify that the proposed strategy has better validity in terms of fuel economy in four standard drive cycles. Hence

Qi Li; Weirong Chen; Shukui Liu; Zhiyu You; Shiyong Tao; Yankun Li

2012-01-01T23:59:59.000Z

127

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network (OSTI)

, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu, modeling, electric vehicle 1 Introduction Car-sharing is defined as a system which allows to eachEVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger

Paris-Sud XI, Université de

128

Hybrid neural net and physics based model of a lithium ion battery.  

E-Print Network (OSTI)

??Lithium ion batteries have become one of the most popular types of battery in consumer electronics as well as aerospace and automotive applications. The efficient… (more)

Refai, Rehan

2011-01-01T23:59:59.000Z

129

Hybrid Electric Vehicles: How They Perform in the Real World | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicles: How They Perform in the Real World Hybrid Electric Vehicles: How They Perform in the Real World Hybrid Electric Vehicles: How They Perform in the Real World October 5, 2009 - 11:27am Addthis John Lippert One advantage of working on a U.S. Department of Energy (DOE) support team is that I'm exposed to the impressive work DOE is doing to develop and promote advanced energy technologies. I'm particularly impressed with the data DOE has gathered as part of the Advanced Vehicle Testing Activity (AVTA) on many of the makes and models of hybrid-electric vehicles (HEVs) commercially available in the United States. The AVTA works with government, commercial, and industry fleets to measure real-world vehicle performance of production and pre-production advanced technology vehicles and makes this information available to fleets and the general public.

130

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

131

Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability  

Science Conference Proceedings (OSTI)

Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

132

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

DOE Green Energy (OSTI)

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

133

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

134

National Clean Fleets Partners Get the Best of Both Worlds with Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Fleets Partners Get the Best of Both Worlds with Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles National Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles March 8, 2013 - 2:20pm Addthis FedEx, a National Clean Fleets partner, is expanding its advanced technology vehicle fleets in Kansas and Michigan with the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. FedEx, a National Clean Fleets partner, is expanding its advanced technology vehicle fleets in Kansas and Michigan with the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the different types of hybrid vehicles? Hybrid electric vehicles combine a combustion engine with an

135

National Clean Fleets Partners Get the Best of Both Worlds with Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Clean Fleets Partners Get the Best of Both Worlds with National Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles National Clean Fleets Partners Get the Best of Both Worlds with Hybrid Vehicles March 8, 2013 - 2:20pm Addthis FedEx, a National Clean Fleets partner, is expanding its advanced technology vehicle fleets in Kansas and Michigan with the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. FedEx, a National Clean Fleets partner, is expanding its advanced technology vehicle fleets in Kansas and Michigan with the support of Clean Cities projects in those states. | Photo courtesy of Jonathan Burton, NREL. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the different types of hybrid vehicles? Hybrid electric vehicles combine a combustion engine with an

136

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

137

Test Profile Development for the Evaluation of Battery Cycle Life for Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

EPRI and DaimlerChrysler have developed a plug-in hybrid electric vehicle (PHEV) concept for the DaimlerChrysler Sprinter Van in an effort to reduce the emissions, fuel consumption, and operating costs of the vehicle while maintaining equivalent or superior functionality and performance. This report describes the development of a test profile to evaluate the life cycle of the batteries for the PHEV vehicle.

2004-03-29T23:59:59.000Z

138

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

139

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

140

NETL: News Release - Department of Energy Announces World's First "Hybrid"  

NLE Websites -- All DOE Office Websites (Extended Search)

April 17, 2000 April 17, 2000 Department of Energy Announces World's First "Hybrid" Fuel Cell-Turbine Built in Pittsburgh, Super-Clean Technology to be Sited in California Secretary of Energy Bill Richardson today announced that a revolutionary new type of fuel cell power plant has been built and will begin a cross-country trip to its test installation in Irvine, Calif. Siemens Westinghouse 220-Kilowatt Fuel Cell-Turbine Hybrid - The Siemens Westinghouse 220-kilowatt power system is the first in the world to combine a solid oxide fuel cell and a microturbine in an innovative "hybrid" configuration. It is the latest innovation in the Department of Energy's fuel cell research program. The new power plant, the first in the world to combine a state-of-the-art fuel cell with a gas turbine, is one of the cleanest and

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

in a battery to the battery’s maximum capacity. Total Energyversion of the battery, with total energy capacity of (0.057Mass Battery “Goals” kW Peak Power kWh Energy Capacity years

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

142

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

143

Modeling, Simulation & Implementation of Li-ion Battery Powered Electric and Plug-in Hybrid Vehicles.  

E-Print Network (OSTI)

??The modeling, simulation and hardware implementation of a Li-ion battery powered electric vehicle are presented in this thesis. The results obtained from simulation and experiments… (more)

Mantravadi, Siva Rama Prasanna

2011-01-01T23:59:59.000Z

144

U.S. Department of Energy Hybrid Electric Vehicle Battery and...  

NLE Websites -- All DOE Office Websites (Extended Search)

and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles). Key Words...

145

Current Hybrid Electric Vehicle performance based on temporal data from the world`s largest HEV fleet  

SciTech Connect

The United States Department of Energy (DOE) procured new data collection equipment for the 42 vehicles registered to compete in the 1994 Hybrid Electric Vehicle (HEV) Challenge, increasing the amount of information gathered from the worlds largest fleet of HEVs. Data were collected through an on-board data storage device and then analyzed to determine effects of different hybrid control strategies on energy efficiency and driving performance. In this paper, the results of parallel hybrids versus series hybrids with respect to energy usage and acceleration performance are examined, and the efficiency and performance of the power-assist types are compared to that of the range-extender types. Because on-board and off-board electrical charging performance is critical to an efficient vehicle energy usage cycle, charging performance is presented and changes and improvements from the 1993 HEV Challenge are discussed. Peak power used during acceleration is presented and then compared to the electric motor manufacturer ratings. Improvements in data acquisition methods for the 1995 HEV Challenge are recommended.

Wipke, K.

1994-09-01T23:59:59.000Z

146

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

DOE Green Energy (OSTI)

This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

Hammel, C.J.

1992-09-01T23:59:59.000Z

147

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

technology is a lithium-ion battery using lithium titanateof lithium-ion batteries of various chemistries Batterylithium-ion batteries were 20-22 kg and in the zinc-air battery,

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

148

Control of fuel cell/battery/supercapacitor hybrid source for vehicle applications  

Science Conference Proceedings (OSTI)

This paper presents a control algorithm for utilizing a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices (batteries and supercapacitors) for dc distributed system, particularly for future FC vehicle applications. ...

Phatiphat Thounthong; Panarit Sethakul; Stephane Rael; Bernard Davat

2009-02-01T23:59:59.000Z

149

Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries  

DOE Green Energy (OSTI)

Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

Rowlette, J.J.

1981-01-15T23:59:59.000Z

150

High Energy Density Na-S/NiCl2 Hybrid Battery  

SciTech Connect

High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo (Gary) [Gary

2013-02-15T23:59:59.000Z

151

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

design. Simulations of Prius plug-in hybrids were performedpresented for a plug-in Prius-type vehicle using differentchemistries Simulations of Prius plug-in hybrids have been

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

152

Spinel LiMn(2)O(4)/Reduced Graphene Oxide Hybrid for High Rate Lithium Ion Batteries  

DOE Green Energy (OSTI)

A well-crystallized and nano-sized spinel LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid cathode material for high rate lithium-ion batteries has been successfully synthesized via a microwave-assisted hydrothermal method at 200 C for 30 min without any post heat-treatment. The nano-sized LiMn{sub 2}O{sub 4} particles were evenly dispersed on the reduced graphene oxide template without agglomeration, which allows the inherent high active surface area of individual LiMn{sub 2}O{sub 4} nanoparticles in the hybrid. These unique structural and morphological properties of LiMn{sub 2}O{sub 4} on the highly conductive reduced graphene oxide sheets in the hybrid enable achieving the high specific capacity, an excellent high rate capability and stable cycling performance. An analysis of the cyclic voltammogram data revealed that a large surface charge storage contribution of the LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid plays an important role in achieving faster charge/discharge.

Bak, S.M.; Nam, K.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X-Q.; Kim, K.-B.

2011-10-04T23:59:59.000Z

153

Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles  

DOE Green Energy (OSTI)

In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

2012-06-01T23:59:59.000Z

154

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

155

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

156

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

cost. Third, lithium-ion (Li-Ion) battery designs are betterclass of advanced battery using lithium-ion chemistry. LMS –Li-Ion battery technologies as follows: LCO: Lithium cobalt

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

157

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of “acceptability”. Targeted battery costs are $200-$300 persafety will increase battery cost. Table E-1: Comparing PHEVthis report. 3.5 Costs Battery cost is thought to be one of

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

158

Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

Barsukov, Igor V.

2002-12-10T23:59:59.000Z

159

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

SciTech Connect

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

160

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

Technology Power devices supercapacitor Activated 2320 11600Effectiveness of Battery-Supercapacitor Combination in

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

162

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

weight, volume, and the cost of the battery unit. It is alsoweight, volume, and the cost of the battery unit. It is alsoCost-Effective Combinations of Ultracapacitors and Batteries for Vehicle Applications, Proceedings of the Second International Advanced Battery

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

163

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 4, In-vehicle safety  

DOE Green Energy (OSTI)

This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

Mark, J.

1992-11-01T23:59:59.000Z

164

Battery construction. [miniaturized batteries  

SciTech Connect

A description is given of a battery having a battery cup and a battery cap which has a ridge portion to provide a battery chamber for accommodating a positive electrode, a negative electrode, and an electrolyte. The battery chamber has a contour at its outer periphery different from that of the sealing flanges of the battery cup and the battery cap. 11 figures.

Nishimura, H.; Nomura, Y.

1977-05-24T23:59:59.000Z

165

Lithium-Ion Batteries: Possible Materials Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, IL Abstract The transition to plug-in hybrid vehicles and possibly pure battery electric vehicles will depend on the successful development of lithium-ion batteries....

166

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

167

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

168

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

169

Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems  

DOE Green Energy (OSTI)

This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

1999-06-01T23:59:59.000Z

170

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries  

DOE Green Energy (OSTI)

This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

Hammel, C.J.

1992-09-01T23:59:59.000Z

171

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

172

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

173

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

vehicles was the Hybrid and Electric Vehicle Act of 1976.for Electric and Hybrid Electric Vehicle Applications,and Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

174

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

175

Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act, OAS-RA-L-12-05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Follow-up on the Department of Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act OAS-RA-L-12-05 July 2012 Department of Energy Washington, DC 20585 July 10, 2012 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act" BACKGROUND Under the American Recovery and Reinvestment Act of 2009, the Department of Energy's Advanced Batteries and Hybrid Components Program (Advanced Batteries Program) received

176

Argonne Software Licensing: Battery Life Estimation Software  

Battery Life Estimation. Rising gasoline and diesel fuel prices have resulted in a resurgence of interest in hybrid electric and plug-in hybrid ...

177

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

178

Use of a thermophotovoltaic generator in a hybrid electric vehicle  

Science Conference Proceedings (OSTI)

Viking 29 is the World’s first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration

Orion Morrison; Michael Seal; Edward West; William Connelly

1999-01-01T23:59:59.000Z

179

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

Targeted battery costs are $200-$300 per kWh. We note thatbattery cost is commonly measured in dollars per total kWh (

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

180

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

to approximately 40 kW. The hybrid vehicles are of interestat $0.84/therm). The hybrid vehicles in motor-generator modegas reformer, and the hybrid vehicle. However, the simple

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

Gelder E. Plug-in Hybrid-Electric Vehicle Powertrain DesignIntegration for Hybrid Electric Vehicles, IEEE Transactionsmodels [1-3] of hybrid-electric vehicles using Advisor have

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

182

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

than the vehicle’s battery capacity will allow. Previousowner selling vehicle battery capacity into the market forusing an EDV’s battery and electronics capacity in segments

Greer, Mark R

2012-01-01T23:59:59.000Z

183

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

184

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 3800 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

185

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 7249 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

186

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

187

Environmental Assessment of Li-CNT Battery Production  

Science Conference Proceedings (OSTI)

These batteries are expected to be widely used in hybrid-cars, satellites, and cellphones to extend battery lifetime, decrease power consumption, offer weight ...

188

Available Technologies: Lower Cost Lithium Ion Batteries from ...  

Lower Cost Lithium Ion Batteries from ... Although lithium ion batteries are the most promising candidates for plug-in hybrid electric vehicles, the u ...

189

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

190

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

5, Shirouzu, N. (2007). Toyota Puts Off New Type of Batteryof one battery, e.g. Toyota’s concerns about safety with itssuccess, typified by the Toyota Prius. Currently, interest

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

191

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

New Type of Battery for Next Prius, The Wall Street Journal,typified by the Toyota Prius. Currently, interest has turneda plug-in version of the Prius, General Motors is working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

192

Batteries and Energy Storage | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

193

The ANL electric vehicle battery R D program for DOE-EHP. [ANL (Argonne National Laboratory); EHP (Electric and Hybrid Propulsion Division)  

SciTech Connect

The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce air pollution and petroleum consumption due to the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, and project management on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of January 1, 1993 through March 31, 1993. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Project Management; 2.0 Sodium/Metal Chloride R D; 3.0 Microreference Electrodes for Lithium/Polymer Batteries.

1993-06-15T23:59:59.000Z

194

PNGV battery test manual  

DOE Green Energy (OSTI)

This manual defines a series of tests to characterize aspects of the performance or life cycle behavior of batteries for hybrid electric vehicle applications. Tests are defined based on the Partnership for New Generation Vehicles (PNGV) program goals, although it is anticipated these tests may be generally useful for testing energy storage devices for hybrid electric vehicles. Separate test regimes are defined for laboratory cells, battery modules or full size cells, and complete battery systems. Some tests are common to all three test regimes, while others are not normally applicable to some regimes. The test regimes are treated separately because their corresponding development goals are somewhat different.

NONE

1997-07-01T23:59:59.000Z

195

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

196

Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range.  

E-Print Network (OSTI)

??Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in… (more)

Lo, Joshua

2013-01-01T23:59:59.000Z

197

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

the battery depletion cost per kWh transferred could bethe battery depletion cost per kWh transferred from off-peakhigher battery depletion cost per kWh transferred under the

Greer, Mark R

2012-01-01T23:59:59.000Z

198

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

the significant battery depletion costs incurred from deep-Consequently, the battery depletion cost per kWh transferredTo estimate the battery depletion cost of peak shaving, we

Greer, Mark R

2012-01-01T23:59:59.000Z

199

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

200

Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles  

E-Print Network (OSTI)

incentives. The federal Qualified Plug-In Electric Drive Motor Vehicle Tax Credit is available for PEV. Advances in electric-drive technologies enabled commercializa- tion of hybrid electric vehicles (HEVs That Affect All-Electric and Hybrid Electric Vehicle Efficiency and Range section). The time required to fully

Michalek, Jeremy J.

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

202

Battery Maintenance  

Science Conference Proceedings (OSTI)

... Cranking batteries are not appropriate for extended use since disharging the battery deeply can rapidly destroy the thin plates. ...

203

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

204

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this

Doeff, Marca M

2010-07-12T23:59:59.000Z

205

Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

2005-03-01T23:59:59.000Z

206

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

207

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

The Berkeley Lab technology contributes to improved battery safety by circumventing lithium metal dendrite formation. Benefits. ... hybrid electric vehicles;

208

Multilayer Graphene-Silicon Structures for Lithium Ion Battery ...  

Automotive industry: electric vehicles, hybrid electric vehicles; High performance lithium ion battery manufacturers; Aerospace industry, for lightweight power storage;

209

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

210

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

211

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

212

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

213

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

214

Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

may prove to be a limitation for realizing technologies for very high gradient accelerators. In this article, we present a scheme that uses a hybrid dielectric and iris-loaded...

215

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

216

Electrothermal Battery Pack Modeling and Simulation.  

E-Print Network (OSTI)

??Much attention as been given to the study of Li-Ion batteries for their use in automotive applications such as Hybrid Electric Vehicles (HEV), Plug In… (more)

Yurkovich, Benjamin J.

2010-01-01T23:59:59.000Z

217

Surface Modification Agents for Lithium Batteries  

Increased safety and life of lithium-ion batteries, ... Electric and plug-in hybrid electric vehicles; Portable electronic devices; Medical devices; and

218

Microsoft Word - Vehicle Battery EA_BASF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lithium-ion battery industry and, more specifically, the electric drive vehicle (EDV) and hybrid-electric vehicle industry (HEV). If approved, DOE would provide approximately 50...

219

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

220

U.S. Hybrid and Lithium Technology Corporation GAIA Battery: Initial System Characterization for the Plug-In Hybrid Electric Vehicle Yard Tractor  

Science Conference Proceedings (OSTI)

Diesel-powered tractors, called yard tractors, are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal, or yard. A plug-in hybrid electric vehicle (PHEV) yard tractor design was proposed as a way to reduce operation emissions and diesel fuel use. The Electric Power Research Institute (EPRI) has designed and constructed a first-of-a-kind PHEV yard tractor. Southern California Edison's (SCE's) Electric Vehicle Technical Center performed PHEV yard tractor bat...

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Historical-Data-Based Method for Health Assessment of Li-Ion Battery.  

E-Print Network (OSTI)

??Nowadays, rechargeable Li-ion batteries have been widely used in laptops, cell phones and hybrid electric vehicles (HEV). The health information of battery is very important.… (more)

Dai, Wanchen

2012-01-01T23:59:59.000Z

222

DOE to Provide up to $14 Million to Develop Advanced Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions...

223

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

224

Preprint of: A.H. Nosrat, L.G. Swan, J.M. Pearce, Improved Performance of Hybrid Photovoltaic-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http://dx.doi.org/10.1016/j.energy.201  

E-Print Network (OSTI)

-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http://dx.doi.org/10.1016/j.energy.2012.11.005 Improved Performance of Hybrid Photovoltaic Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http

225

Low-temperature Sodium-Beta Battery  

Rechargeable metallic sodium batteries have application in large-scale energy storage applications such as electric power generation and distribution, in motive applications such as electric vehicles, hybrids, and plug-in hybrids, and for aerospace ...

226

Optimization of blended battery packs  

E-Print Network (OSTI)

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

227

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

228

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

229

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

230

Batteries - PHEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE has implemented a relatively new program to develop plug-in hybrid electric vehicle (PHEV) technologies, with the goal of achieving the equivalent of a 40-mile...

231

Application-level prediction of battery dissipation  

Science Conference Proceedings (OSTI)

Mobile, battery-powered devices such as personal digital assistants and web-enabled mobile phones have successfully emerged as new access points to the world's digital infrastructure. However, the growing gap between device capabilities and battery technology ... Keywords: application-level prediction, battery life estimation, resource-restricted devices

Chandra Krintz; Ye Wen; Rich Wolski

2004-08-01T23:59:59.000Z

232

Battery charger  

SciTech Connect

A battery charger can charge a battery from a primary power source having a peak voltage exceeding the maximum battery voltage independently producible by the battery. The charger has output terminals, a switch and a feedback circuit. The output terminals are adapted for connection to the battery. The switch can periodically couple the primary power source to the output terminals to raise their voltage above the maximum battery voltage. The feedback device is responsive to the charging occuring at the terminals for limiting the current thereto by varying the duty cycle of the switch.

Chernotsky, A.; Satz, R.

1984-10-09T23:59:59.000Z

233

A Hybrid PSO-Self Regulating VSC-SMC Controller for PV-FC-Diesel-Battery Renewable Energy Scheme for Buildings Electricity Utilization  

Science Conference Proceedings (OSTI)

The paper presents the dynamic modeling and coordinated control strategy for an integrated micro grid scheme using Photo Voltaic PV, Fuel Cell FC, and backup Diesel generation with additional battery backup system. The integrated scheme is fully stabilized ... Keywords: Diesel-driven generator, Photo Voltaic PV, Fuel Cell, Backup Battery, Dynamic Filter Compensator, Green Power Filter, Multi Objective Optimization MOO, Particle Swarm Optimization PSO

Adel M. Sharaf; Adel A. A. El-Gammal

2010-05-01T23:59:59.000Z

234

Trimode Power Converter optimizes PV, diesel and battery energy sources  

SciTech Connect

Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT`s with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

O`Sullivan, G. [Abacus Controls, Inc., Somerville, NJ (United States); Bonn, R.; Bower, W. [Sandia National Labs., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

235

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

236

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

237

Battery Only:  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Only: Acceleration 0-60 MPH Time: 57.8 seconds Acceleration 14 Mile Time: 27.7 seconds Acceleration 1 Mile Maximum Speed: 62.2 MPH Battery & Generator: Acceleration 0-60...

238

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

239

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

DOE Green Energy (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

240

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

242

The hydrogen hybrid option  

SciTech Connect

The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

Smith, J.R.

1993-10-15T23:59:59.000Z

243

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

244

Overview of electrochemical power sources for electric and hybrid-electric vehicles.  

DOE Green Energy (OSTI)

Electric and hybrid-electric vehicles are being developed and commercialized around the world at a rate never before seen. These efforts are driven by the prospect of vehicles with lower emissions and higher fuel efficiencies. The widespread adaptation of such vehicles promises a cleaner environment and a reduction in the rate of accumulation of greenhouse gases, Critical to the success of this technology is the use of electrochemical power sources such as batteries and fuel cells, which can convert chemical energy to electrical energy more efficiently and quietly than internal combustion engines. This overview will concentrate on the work being conducted in the US to develop advanced propulsion systems for the electric and hybrid vehicles, This work is spearheaded by the US Advanced Battery Consortium (USABC) for electric vehicles and the Partnership for a New Generation of Vehicle (PNGV) for hybrid-electric vehicles, both of which can be read about on the world wide web (www.uscar.tom). As is commonly known, electric vehicles rely strictly on batteries as their source of power. Hybrid-electric vehicles, however, have a dual source of power. An internal combustion engine or eventually a fuel cell supplies the vehicle with power at a relatively constant rate. A battery pack (much smaller than a typical electric-vehicle battery pack) provides the vehicle with its fast transient power requirements such as during acceleration. This hybrid arrangement maximizes vehicle fuel efficiency. Electric and hybrid-electric vehicles will also be able to convert the vehicle's change in momentum during braking into electrical energy and store it in its battery pack (instead of lose the energy as heat). This process, known as regenerative braking, will add to the vehicle's fuel efficiency in an urban environment.

Dees, D. W.

1999-02-12T23:59:59.000Z

245

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

of an experimental fuel cell/supercapacitor-powered hybridof fuel cell/battery/supercapacitor hybrid power source for

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

246

Polymer Electrolytes for Rechargeable Lithium/Sulfur Batteries.  

E-Print Network (OSTI)

??With the rapid development of portable electronics, hybrid-electric and electric cars, there is great interest in utilization of sulfur as cathodes for rechargeable lithium batteries.… (more)

Zhao, Yan

2013-01-01T23:59:59.000Z

247

Redox Shuttle Electrolyte Additive Could Help Make Batteries Safer ...  

Argonne National Laboratory has developed a way to make commercially viable lithium-ion (Li-ion) batteries for plug-in hybrid electric vehicles (PHEVs) and electric ...

248

Materials and Processing for Lithium-Ion Batteries (Originally  

Science Conference Proceedings (OSTI)

... safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of ...

249

Battery Choices for Different Plug-in HEV Configurations (Presentation)  

DOE Green Energy (OSTI)

Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

Pesaran, A.

2006-07-12T23:59:59.000Z

250

Microsoft Word - Highlander 6395 Battery Final Report_edited...  

NLE Websites -- All DOE Office Websites (Extended Search)

115 2006 Toyota Highlander-6395 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S....

251

Microsoft Word - Highlander 5681 Battery Final Report_edited...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S....

252

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

253

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

254

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and ...

255

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to… (more)

Serrano Guillén, Isabel

2013-01-01T23:59:59.000Z

256

Battery technology handbook  

SciTech Connect

This book is a comprehensive reference work on the types of battery available, their characteristics and applications. Topics considered include introduction, guidelines to battery selection, battery characteristics, battery theory and design, battery performance evaluation, battery applications, battery charging, and battery supplies.

Crompton, T.R.

1987-01-01T23:59:59.000Z

257

?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life  

SciTech Connect

Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

258

Full Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Low Speed button Cruising button Passing button Braking button Stopped button highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Battery (highlighted): The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery powers the vehicle at low speeds, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection.

259

Lithium Rechargeable Batteries  

DOE Green Energy (OSTI)

In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

Robert Filler, Zhong Shi and Braja Mandal

2004-10-21T23:59:59.000Z

260

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Chemistries for Plug-in Hybrid Vehicles, EVS-24, Stavanger,ion batteries in the Hybrid Vehicle Propulsion System Lab atIn the case of plug-in hybrid vehicles, there is much design

Burke, Andrew

2009-01-01T23:59:59.000Z

262

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

A. , et al. , Plug-In Hybrid Electric Vehicles: How Does Oneand in particular, hybrid electric vehicles. In addition to1.1 Motivation: Why Hybrid Electric Vehicles? 1 1.2 Battery

Wilcox, James D.

2010-01-01T23:59:59.000Z

263

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

264

Electro-Thermal Modeling to Improve Battery Design: Preprint  

DOE Green Energy (OSTI)

Operating temperature greatly affects the performance and life of batteries in electric and hybrid electric vehicles (HEVs). Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. This study describes an electro-thermal finite element approach that predicts the thermal performance of a battery cell or module with realistic geometry.

Bharathan, D.; Pesaran, A.; Kim, G.; Vlahinos, A.

2005-09-01T23:59:59.000Z

265

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

266

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Redox Flow Batteries for Grid-scale Energy Storage - Energy ...  

Though considered a promising large-scale energy storage device, the real-world deployment of redox flow batteries has been limited by their inability ...

268

A Comparison of Li-Ion Battery Recycling Options  

NLE Websites -- All DOE Office Websites (Extended Search)

1 A Comparison of Li-Ion Battery Recycling Options Linda Gaines and Jennifer Dunn Center for Transportation Research Argonne National Laboratory SAE World Congress April 2012 PAPER...

269

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

270

Bipolar battery  

SciTech Connect

A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

Kaun, Thomas D. (New Lenox, IL)

1992-01-01T23:59:59.000Z

271

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

272

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

273

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

Power Battery for Hybrid Vehicle Applications. ProceedingsAF. Electric and Hybrid Vehicle Design and Performance.A, Thornton M. Plug-in Hybrid Vehicle Analysis. NREL/MP-540-

Burke, Andy

2009-01-01T23:59:59.000Z

274

Advanced batteries for electric vehicles  

SciTech Connect

The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. (Argonne National Lab., IL (United States))

1994-11-01T23:59:59.000Z

275

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

276

TransForum v8n2 - EnerDel/Argonne Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact TTRDC TransForum Vol. 8, No. 2 R&D 100 Award: EnerDelArgonne High-Power Battery for Hybrid Electric Vehicles The EnerDelArgonne Lithium-Ion Battery Khalil Amine, a...

277

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

278

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition  

E-Print Network (OSTI)

significant amounts of the daily driving energy for the US light duty vehicle (cars, pickups, SUVs, and vans emission intensity (ton CO2/MWh), while in others regions with significant clean generation (hydro

279

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

280

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

282

Carbon-enhanced VRLA batteries.  

Science Conference Proceedings (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

283

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

284

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

285

Alkaline battery  

SciTech Connect

A zinc alkaline secondary battery is described having an excellent cycle characteristic, having a negative electrode which comprises a base layer of zinc active material incorporating cadmium metal and/or a cadmium compound and an outer layer made up of cadmium metal and/or a cadmium compound and applied to the surface of the base layer of zinc active material.

Furukawa, N.; Inoue, K.; Murakami, S.

1984-01-24T23:59:59.000Z

286

Hybrid: Starting  

NLE Websites -- All DOE Office Websites (Extended Search)

the gasoline engine to the electric motor to the battery. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the...

287

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

288

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

289

Battery testing at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

290

Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in  

E-Print Network (OSTI)

ABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need battery life depends on the design of thermal management used as well as the specific battery chemistry of an air cooled plug-in hybrid electric vehicle battery pack with cylindrical LiFePO4/graphite cell design

Michalek, Jeremy J.

291

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

DOE Green Energy (OSTI)

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

292

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

SciTech Connect

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

293

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

294

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

295

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

296

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

297

Battery charging system  

SciTech Connect

A highly efficient battery charging system is described in which the amperehour discharge of the battery is sensed for controlling the battery charging rate. The battery is charged at a relatively high charge rate during a first time period proportional to the extent of battery discharge and at a second lower rate thereafter.

Bilsky, H.W.; Callen, P.J.

1982-01-26T23:59:59.000Z

298

Hierarchically Structured Materials for Lithium Batteries  

SciTech Connect

Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

2013-09-25T23:59:59.000Z

299

Secondary battery  

SciTech Connect

Secondary batteries are described with aqueous acid solutions of lead salts as electrolytes and inert electrode base plates which also contain redox systems in solution. These systems have a standard potential of from -0.1 to + 1.4 V relative to a standard hydrogen reference electrode, do not form insoluble compounds with the electrolytes and are not oxidized or reduced irreversibly by the active compositions applied to the electrode base plates, within their range of operating potentials.

Wurmb, R.; Beck, F.; Boehlke, K.

1978-05-30T23:59:59.000Z

300

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Battery management system  

SciTech Connect

A battery management system is described, comprising: a main battery; main battery charging system means coupled to the main battery for charging the main battery during operation of the main battery charging system means; at least one auxiliary battery; primary switching means for coupling the auxiliary battery to a parallel configuration with the main battery charging system means and with the main battery, where upon both the main battery and the auxiliary battery are charged by the main battery charging system means, the primary switching means also being operable to decouple the auxiliary battery from the parallel configuration; and sensing means coupled to the primary switching means and operable to sense presence or absence of charging current from the main battery charging system means to the main battery, the sensing means being operable to activate the switching means for coupling the auxiliary battery into the parallel configuration during presence of the charging current, wherein the main battery charging system provides a charging signal to the main battery having an alternating current component, and wherein the sensing means includes transformer means coupled to the charging signal for inducing a voltage, the voltage being applied to a switching circuit of the switching means.

Albright, C.D.

1993-07-06T23:59:59.000Z

302

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

303

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

304

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

305

Improving Battery Design with Electro-Thermal Modeling  

DOE Green Energy (OSTI)

Temperature greatly affects the performance and life of batteries in electric and hybrid vehicles under real driving conditions, so increased attention is being paid to battery thermal management. Sophisticated electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry, material properties, loads, and boundary conditions.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Kim, G.-H.; Duong, T.

2005-08-01T23:59:59.000Z

306

Large-Format Lithium-Ion Battery Costs Analysis  

Science Conference Proceedings (OSTI)

The high cost of lithium ion batteries poses a serious problem for the competitiveness of Plug-In Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs). The problem is complicated by the fact that the lithium ion battery cost projections developed by a number of apparently credible organizations over the past 5 years or so differ so much that different conclusions regarding the economic competitiveness of PHEVs (and even more so BEVs) have been stated. This situation creates confusion and...

2010-12-15T23:59:59.000Z

307

Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

308

Hybrid: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

309

Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)  

DOE Green Energy (OSTI)

Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

Pesaran, A.; Smith, K.; Markel, T.

2009-06-01T23:59:59.000Z

310

Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells  

E-Print Network (OSTI)

The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

Campbell, John Earl, Jr

2012-01-01T23:59:59.000Z

311

Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles  

E-Print Network (OSTI)

In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

Fu, Haitao

2009-01-01T23:59:59.000Z

312

Optimization of a plug-in hybrid electric vehicle .  

E-Print Network (OSTI)

??A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery… (more)

Golbuff, Sam

2006-01-01T23:59:59.000Z

313

How Hybrids Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Hybrids Work How Hybrids Work Diagram of full hybrid vehicle components, including (1) an internal combustion engine, (2) an electric motor, (3) a generator, (4) a power split device, and (5) a high-capacity battery. Flash Animation: How Hybrids Work (Requires Flash 6.0 or higher) HTML Version: How Hybrids Work Hybrid-electric vehicles (HEVs) combine the benefits of gasoline engines and electric motors and can be configured to obtain different objectives, such as improved fuel economy, increased power, or additional auxiliary power for electronic devices and power tools. Some of the advanced technologies typically used by hybrids include Regenerative Braking. The electric motor applies resistance to the drivetrain causing the wheels to slow down. In return, the energy from the

314

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

Burke, Andrew

2009-01-01T23:59:59.000Z

315

Microsoft Word - Altima 7982 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

78 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department...

316

Microsoft Word - Camry 7129 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department of...

317

Microsoft Word - Lexus 2575 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

6 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department of...

318

Microsoft Word - Lexus 4807 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

7 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department of...

319

Microsoft Word - Altima 2351 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

81 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S. Department...

320

Microsoft Word - Camry 6330 Battery Final Report_edited - Jim...  

NLE Websites -- All DOE Office Websites (Extended Search)

09-15276 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results Tyler Gray Chester Motloch James Francfort January 2010 The Idaho National Laboratory is a U.S....

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nanotube Arrays for Advanced Lithium-ion Batteries - Energy ...  

The development of high-power, high-energy, long-life, and low-cost rechargeable batteries is critical for the next-generation electric and hybrid electric vehicles.

322

Experimental Study on the Environment Adapatability of LYP Battery  

Science Conference Proceedings (OSTI)

In this paper, the charge-discharge characteristics experiment of LYP (rare earth yttrium lithium power) battery under the specific temperature was researched, and 1/3C charge-discharge curves of voltage at six specific temperature among-40°C to ... Keywords: LYP battery, charge-discharge performance, high and low-temperature performance, hybrid vehicles

Shishun Zhu, Jianwei Cheng, Daowei Zhu, Shiliang Yan

2012-07-01T23:59:59.000Z

323

Research on separators for alkaline zinc batteries. Final report  

Science Conference Proceedings (OSTI)

This project is concerned with the research and development of a hybrid separator as an improved battery separator in alkaline zinc secondary batteries. Particular emphasis has been directed toward increasing the cycle life of zinc electrodes by controlling the permselectivity of the separator.

Yeo, R.S.

1985-12-01T23:59:59.000Z

324

Battery Standard Scenario  

Science Conference Proceedings (OSTI)

Scenario: Fast Tracking a Battery Standard. ... with developing a new standard specifying quality controls for the development of batteries used in ...

325

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

326

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

327

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND2006-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. Submitting Organization Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM...

328

Costs of lithium-ion batteries for vehicles  

DOE Green Energy (OSTI)

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

329

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

330

TransForum - Special Issue: Batteries - August 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Issue: Batteries-August 2010 Special Issue: Batteries-August 2010 RESEARCH REVIEWS 2 China's Minister of Science and Technology Visits Argonne 3 Testing the Tesla 4 Six Myths about Plug-in Hybrid Electric Vehicles 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 Argonne to Explore Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes 11 New Battery Facilities Will Help Accelerate Commercialization of Technologies 12 Argonne Charges Ahead with Smart Grid Research 14 Center for Electrical Energy Storage Promises Advances in Transportation Technologies 15 PHEVs Need Further Research for Acceptable Payback 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Lithium-ion Battery Research page 8 Minister of Science and

331

Piezonuclear battery  

DOE Patents (OSTI)

This invention, a piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material ({sup 252}Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluroethylene.

Bongianni, W.L.

1990-01-01T23:59:59.000Z

332

Piezonuclear battery  

SciTech Connect

A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

Bongianni, Wayne L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

333

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment  

NLE Websites -- All DOE Office Websites (Extended Search)

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment DOE-funded research, in collaboration with Allison Buses and General Motors Corporation has led to the commercialization of a dramatically different hybrid transmission system for heavy-duty and light-duty applications. The Dual-Mode or Two-Mode hybrid system is an infinitely variable speed hybrid transmission that works with the engine and battery system and automatically chooses to operate in a parallel or series hybrid path to maximize efficiency and minimize emissions, fuel consumption and noise. Parallel and Series hybrid configurations are found on most hybrid vehicles today, both with their own pluses and minuses. The Dual- Mode/Two-Mode systems uses the positive characteristics from both systems to maximize fuel

334

Development and Testing of an UltraBattery-Equipped Honda Civic  

DOE Green Energy (OSTI)

The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

Donald Karner

2012-04-01T23:59:59.000Z

335

An observer looks at the cell temperature in automotive battery packs  

E-Print Network (OSTI)

An observer looks at the cell temperature in automotive battery packs Maxime Deberta , Guillaume.bloch@univ-lorraine.fr Abstract The internal temperature of Li-ion batteries for electric or hybrid vehicles is an important measurement and a model. This paper presents the simplified modelling of heat transfers in a battery module

Paris-Sud XI, Université de

336

Market Feasibility for Nickel Metal Hyride and Other Advanced Electric Vehicle Batteries in Selected Stationary Applications  

Science Conference Proceedings (OSTI)

Governments in the United States and other countries, as well as the automotive, battery, and utility industries, have spent millions to demonstrate the viability of next generation of batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). An important question remains unanswered: "What value might these EV and HEV batteries add when employed in stationary and secondary use applications?"

2000-12-12T23:59:59.000Z

337

Switching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b  

E-Print Network (OSTI)

of automobiles. The propulsion solutions for EVs are based on hybrid or fully battery powered electric vehiclesSwitching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b 27 December 2012 Keywords: Electric Vehicles (EV) Switching algorithms Battery life Lithium ion

Kraus, Sarit

338

Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

2010-09-30T23:59:59.000Z

339

SLAC National Accelerator Laboratory - Egg-cellent World-record...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lodging & Housing Transportation News Feature Archive Egg-cellent World-record Battery Performance By Mike Ross January 8, 2013 SLAC and Stanford scientists have set a...

340

Hybrid Heterogeneous Energy Supply Networks Farinaz Koushanfar and Azalia Mirhoseini  

E-Print Network (OSTI)

-level system realization for a hybrid network of energy supply options [2]. Recently a hybrid battery-supercapacitor supercapacitor and solar energy generation system in optimizing system's efficiency and dynamic response time

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Battery cell soldering apparatus  

SciTech Connect

A battery cell soldering apparatus for coupling a plurality of battery cells within a battery casing comprises a support platform and a battery casing holder. The support platform operatively supports a soldering block including a plurality of soldering elements coupled to an electrical source together with a cooling means and control panel to control selectively the heating and cooling of the soldering block when the battery cells within the battery casing are held inverted in operative engagement with the plurality of soldering elements by the battery casing holder.

Alvarez, O.E.

1979-09-25T23:59:59.000Z

342

Battery life extender  

SciTech Connect

A battery life extender is described which comprises: (a) a housing disposed around the battery with terminals of the battery extending through top of the housing so that battery clamps can be attached thereto, the housing having an access opening in the top thereof; (b) means for stabilizing temperature of the battery within the housing during hot and cold weather conditions so as to extend operating life of the battery; and (c) a removable cover sized to fit over the access opening in the top of the housing so that the battery can be serviced without having to remove the housing or any part thereof.

Foti, M.; Embry, J.

1989-06-20T23:59:59.000Z

343

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

344

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Coda Battery Systems | Open Energy Information  

Open Energy Info (EERE)

Coda Battery Systems Coda Battery Systems Jump to: navigation, search Name Coda Battery Systems Place Enfield, Connecticut Sector Vehicles Product Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates 36.181032°, -77.662805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.181032,"lon":-77.662805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)  

SciTech Connect

NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

Neubauer, J.; Pesaran, A.; Howell, D.

2010-05-01T23:59:59.000Z

348

Hardware Architecture for Measurements for 50-V Battery Modules  

SciTech Connect

Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

2012-06-01T23:59:59.000Z

349

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

350

Battery Balancing at Xtreme Power.  

E-Print Network (OSTI)

??Battery pack imbalance is one of the most pressing issues for companies involved in Battery Energy Storage. The importance of Battery Balancing with respect to… (more)

Ganesan, Rahul

2012-01-01T23:59:59.000Z

351

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

352

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name Optima Batteries Place Milwaukee, WI Website http:www.optimabatteries.com References Optima Batteries1 Information About...

353

Batterytechnologyforenergystoragesolutions andelectricvehicletransportsystems The Institute for Superconducting and Electronic Materials (ISEM) is a world-class cooperative  

E-Print Network (OSTI)

's battery technology research program is focused on developing low cost, high power rechargeable battery and low cost Techniques ISEM's world-class industrial scale battery laboratory is equipped with facilities of electronic materials science. Setting the standard in battery research At the Australian Institute

Wollongong, University of

354

Hybrid electric vehicles TOPTEC  

SciTech Connect

This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

1994-06-21T23:59:59.000Z

355

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

356

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

358

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

359

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

360

Portable battery powered system  

SciTech Connect

In an exemplary embodiment, a battery monitoring system includes sensors for monitoring battery parameters and a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle, and by monitoring battery current thereafter during operation, a relatively accurate measure of remaining battery capacity becomes available. The battery monitoring system may include programmed processor circuitry and may be secured to the battery so as to receive operating power therefrom during storage and handling; thus, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S.E.

1984-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

362

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas, 2009­04­11). Plug-in vehicles, including plug-in hybrid electric vehicles (PHEVs) and battery electric

Michalek, Jeremy J.

363

ZAP Advanced Battery Technologies JV | Open Energy Information  

Open Energy Info (EERE)

ZAP Advanced Battery Technologies JV ZAP Advanced Battery Technologies JV Jump to: navigation, search Name ZAP & Advanced Battery Technologies JV Place Beijing, China Product JV between ZAP & Chinese battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Plug-in-hybrid electric vehicles park as virtual DVR  

E-Print Network (OSTI)

Plug-in-hybrid electric vehicles park as virtual DVR F.R. Islam and H.R. Pota Dynamic voltage in a real-life low voltage power system. Hybrid-electric power technologies and advances in batteries make electric vehicle (PHEV) batteries and their bidirectional charger in a charging station as virtual dynamic

Pota, Himanshu Roy

365

Rechargeable electric battery system  

SciTech Connect

A rechargable battery, system and method for controlling its operation and the recharging thereof in order to prolong the useful life of the battery and to optimize its operation is disclosed. In one form, an electronic microprocessor is provided within or attached to the battery for receiving and processing electrical signals generated by one or more sensors of battery operational variable and for generating output signals which may be employed to control the charge of the battery and to display one or more variables concerned with the battery operation.

Lemelson, J.H.

1981-09-15T23:59:59.000Z

366

Maxim> App Notes> Battery Management Power-Supply Circuits  

E-Print Network (OSTI)

APPLICATION NOTE 680 How to design battery charger applications that require external microcontrollers and related system-level issues Abstract: Notebook computers increasingly require complex battery charging algorithms and systems. This article provides information and background on lithium-ion (Li+), nickel-cadmium (NiCd), and nickel-metal-hydride (NiMH) batteries and related system-level switch-mode and linear battery chargers. These voltage regulators and current regulators are controlled by external microprocessors like the 8051 or Microchip PIC, and examples are provided with these controllers. An overview of requirements for charging common battery chemistries with Maxim battery charger ICs is provided, along with a discussion of system-level trade-offs and firmware design tips, and a list of World Wide Web engineering resources. The previous issue of Maxim's Engineering Journal (Vol. 27) discussed new developments in stand-alone battery chargers. This second article of a two-part series explores the system-level issues in applying battery-charger ICs. Over the past five years, market pressures on portable equipment have transformed the simple battery charger into a sophisticated switch-mode device capable of charging an advanced battery in 30 minutes. This development also marks a departure from the selfcontained, stand-alone charger ICs of only a few years ago. Some of those ICs included considerable intelligence: enough to handle the complex task of fast charging advanced batteries.

unknown authors

2002-01-01T23:59:59.000Z

367

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

368

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

369

Amp-hour counting control for PV hybrid power systems  

SciTech Connect

The performance of an amp-hour (Ah) counting battery charge control algorithm has been defined and tested using the Digital Solar Technologies MPR-9400 microprocessor based PV hybrid charge controller. This work included extensive field testing of the charge algorithm on flooded lead-antimony and valve regulated lead-acid (VRLA) batteries. The test results after one-year have demonstrated that PV charge utilization, battery charge control, and battery state of charge (SOC) has been significantly improved by providing maximum charge to the batteries while limiting battery overcharge to manufacturers specifications during variable solar resource and load periods.

Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, B. [Biri Systems, Ithaca, NY (United States)

1997-06-01T23:59:59.000Z

370

Progress and forecast in electric-vehicle batteries  

SciTech Connect

With impetus provided by US Public Law 94-413 (Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976), the Department of Energy (DOE) launched a major battery development program early in 1978 for near-term electric vehicles. The program's overall objective is to develop commercially viable batteries for commuter vehicles (with an urban driving range of 100 miles) and for vans and trucks (with a range of 50 miles) by the mid-1980's. Three near-term battery candidates are receiving major developmental emphasis - improved lead-acid, nickel/iron and nickel/zinc systems. Sharing the cost with the government, nine industrial firms (battery developers) are participating in the DOE battery project. They are Eltra Corp., Exide Management and Technology Co., and Globe-Union Inc., for the lead-acid battery; Eagle-Picher Industries, Inc., and Westinghouse Electric Corp. for the nickel/iron battery; and Energy Research Corp., Exide Management and Technology Co., and Gould Inc., for the nickel/zinc battery. Good progress has been made in improving the specific energy, specific power, and manufacturing processes of these three battery technologies. Current emphasis is directed toward reduction of manufacturing cost and enhancement of battery cycle life and reliability. Recently, the zinc-chloride battery was added as the fourth candidate to the near-term battery list. Testing of the zinc-chloride battery in a vehicle and evaluation of its operating characteristics are currently under way. This paper presents the development goals, the status, and the outlook for the near-term battery program.

Webster, W.H. Jr.; Yao, N.P.

1980-01-01T23:59:59.000Z

371

RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint  

DOE Green Energy (OSTI)

Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

Telias, G.; Day, K.; Dietrich, P.

2011-01-01T23:59:59.000Z

372

Hybrid automobile  

SciTech Connect

The invention discloses a parallel hybrid drive system for self propelled vehicles including a direct current motor-generator having a drive shaft in common with an internal combustion engine leading to a variable speed transmission and a final drive train. The motor-generator has a no-load speed, established by a separate field exciter, below which it drives the shaft as a motor and above which it is driven by the shaft as a generator. Storage batteries are operatively connected to the motor-generator to supply power to it below the no-load speed. The internal combustion engine operates over a small RPM range around its most efficient speed at a power level established by a fixed throttle setting. The transmission is operatively connected to an accelerator and direction selector switch to vary the speed and direction of the vehicle.

Lynch, T.E.; Eastman, D.P.; Price, R.P.

1979-08-28T23:59:59.000Z

373

Solar battery energizer  

SciTech Connect

A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

Thompson, M. E.

1985-09-03T23:59:59.000Z

374

Predictive energy management for hybrid electric vehicles -Prediction horizon and  

E-Print Network (OSTI)

Predictive energy management for hybrid electric vehicles - Prediction horizon and battery capacity of a combined hybrid electric vehicle. Keywords: Hybrid vehicles, Energy Management, Predictive control, Optimal on a sliding window in order to minimize the hybrid vehicle fuel consumption. For real time implementation

Paris-Sud XI, Université de

375

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

DOE Green Energy (OSTI)

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

376

DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Provide up to $14 Million to Develop Advanced Batteries for to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles April 5, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions to improving battery performance so vehicles can deliver up to 40 miles of electric range without recharging. This would include most roundtrip daily commutes. "President Bush is committed to developing alternative fuels and

377

Battery charger polarity circuit control  

SciTech Connect

A normally open polarity sensing circuit is interposed between the charging current output of a battery charger and battery terminal clamps connected with a rechargeable storage battery. Normally open reed switches, closed by battery positive terminal potential, gates silicon controlled recitifiers for battery charging current flow according to the polarity of the battery.

Santilli, R.R.

1982-11-30T23:59:59.000Z

378

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

379

Dual battery system  

Science Conference Proceedings (OSTI)

A dual battery system is described, comprising: a primary first battery having a first open circuit voltage, the first battery including a first positive electrode, a first negative electrode, and a first electrolyte; a second battery having a second open circuit voltage less than the first open circuit voltage, the second battery including a second positive electrode, a second negative electrode, and a second electrolyte stored separately and isolated from the first electrolyte; a pair of positive and negative terminals; and electrical connections connecting the first and second batteries in parallel to the terminals so that, as current is drawn from the batteries, the amount of current drawn from each respective battery at a constant voltage level varies with the magnitude of the current.

Wruck, W.J.

1993-06-29T23:59:59.000Z

380

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

382

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

383

BEST for batteries  

Science Conference Proceedings (OSTI)

The Battery Energy Storage Test (BEST) Facility, Hillsborough Township, New Jersey, will investigate advanced battery performance, reliability, and economy and will verify system characteristics and performance in an actual utility environment.

Lihach, N.

1981-05-01T23:59:59.000Z

384

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

385

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

promoted electric and hybrid vehicles to reduce urban airthe vehicle, and from hybrid vehicles, i.e. , adding batteryHaving researched hybrid vehicle and other pro-environmental

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

386

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

387

Anodes for Batteries  

SciTech Connect

The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

Windisch, Charles F.

2003-01-01T23:59:59.000Z

388

SLA battery separators  

SciTech Connect

Since they first appeared in the early 1970's, sealed lead acid (SLA) batteries have been a rapidly growing factor in the battery industry - in rechargeable, deep-cycle, and automotive storage systems. The key to these sealed batteries is the binderless, absorptive glass microfiber separator which permits the electrolyte to recombine after oxidation. The result is no free acid, no outgassing, and longer life. The batteries are described.

Fujita, Y.

1986-10-01T23:59:59.000Z

389

Nickel/zinc batteries  

SciTech Connect

A review of the design, components, electrochemistry, operation and performance of nickel-zinc batteries is presented. 173 references. (WHK)

McBreen, J.

1982-07-01T23:59:59.000Z

390

Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer  

E-Print Network (OSTI)

, but was lower at later cycles. The temperature that optimizes the active surface in a lithium-ion battery. Published February 14, 2011. Rechargeable lithium-ion batteries have been extensively used in mobile-discharge rate. The lithium-ion battery is also promising for electric (plug-in and hybrid) vehicles

Barton, Paul I.

391

battery, map parcel, med  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

392

Servant dictionary battery, map  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

393

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

394

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

395

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

396

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd | Open Energy  

Open Energy Info (EERE)

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Jump to: navigation, search Name Optimum Battery Co, Ltd (formerly L&K Battery Tech Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518118 Sector Services, Solar Product Shenzhen-based science and hi-tech company engaged in research development, manufacturing and sales of all types of batteries from cell to the finished product that services the power, telecommunications, electric appliance, UPS, and solar energy. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Primary and secondary ambient temperature lithium batteries  

Science Conference Proceedings (OSTI)

These proceedings collect papers on the subject of batteries. Topics include: lithium-oxygen batteries, lithium-sulphur batteries, metal-metal oxide batteries, metal-nonmetal batteries, spacecraft power supplies, electrochemistry, and battery containment materials.

Gabano, J.P.; Takehara, Z.; Bro, P.

1988-01-01T23:59:59.000Z

398

Monitored Performance Data from a Hybrid RAPS System and the Determination of Control Set Points for Simulation Studies Patel ISES 2001 Solar World Congress 1  

E-Print Network (OSTI)

located in the north-west region of Western Australia. The system under study comprises PV array, a diesel, diesel generator, and inverter models of the RAPSIM simulation package are derived. Two separate sets the simulation program are shown. 1. INTRODUCTION Reliable long-term monitored performance data for a hybrid

399

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect

BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

2010-07-01T23:59:59.000Z

400

Quadruple Adaptive Observer of the Core Temperature in Cylindrical Li-ion Batteries and their Health Monitoring  

E-Print Network (OSTI)

for hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV) and battery electric vehicles@umich.edu, siegeljb@umich.edu and annastef@umich.edu Y. Li and R. D. Anderson are with the Vehicle and Battery Controls De- partment, Research and Advanced Engineering, Ford Motor Company, Dear- born, MI 48121, USA. E

Stefanopoulou, Anna

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Battery condition indicator  

SciTech Connect

A battery condition indicator is described for indicating both the charge used and the life remaining in a rechargeable battery comprising: rate multiplying and counting means for indirectly measuring the charge useed by the battery between charges; means for supplying variable rate clock pulse to the rate multiplying and counting means, the rate of the clock pulses being a function of whether a high current consumption load is connected to the battery or not; timing means for measuring the total time in service of the battery; charge used display means responsive to the rate multiplying and counting means for providing an indication of the charge remaining in the battery; and age display means responsive to the timing means for providing an indication of the life or age of the battery.

Fernandez, E.A.

1987-01-20T23:59:59.000Z

402

One Million PHEVs by 2015: Challenges for Advanced Battery Technology  

DOE Green Energy (OSTI)

Lithium-ion batteries for hybrid electric vehicles (HEVs) have recently reached commercialization. R&D focus remains on cost reduction and improved abuse tolerance. DOE's battery R&D program has evolved to focus on high-energy plug-in hybrid electric vehicle (PHEV) systems. Li-ion represents the most promising chemistry for PHEVs because of its high energy density, high power capability and potential longer life & lower cost. Lack of domestic battery manufacturing remains a significant challenge. The 2009 Economic Recovery Act provides significant funding to address it. Long term success of PHEV & electric vehicle (EV) Li-ion batteries depends on further cost reduction and performance/life/safety improvements. Multi-physics CAE modeling is key enabler.

Smith, K.

2009-12-02T23:59:59.000Z

403

High-energy metal air batteries  

DOE Patents (OSTI)

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2013-07-09T23:59:59.000Z

404

PNGV Battery Performance Testing and Analyses  

SciTech Connect

In support of the Partnership for a New Generation of Vehicles (PNGV), the Idaho National Engineering and Environmental Laboratory (INEEL) has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles (HEV’s). Tests have been designed for both Power Assist and Dual Mode applications. They include both characterization and cycle life and/or calendar life. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. PNGV goals, test procedures, analytical methodologies, and representative results are presented.

Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Sutula, Raymond; Duong, T.Q.; Barnes, J.A.; Miller, Ted J.; Haskind, H. J.; Tartamella, T. J.

2002-03-01T23:59:59.000Z

405

Analysis of a diesel-electric hybrid urban bus system  

DOE Green Energy (OSTI)

A hybrid bus powered by a diesel engine and a battery pack has been analyzed over an idealized bus-driving cycle in Chicago. Three hybrid configurations, two parallel and one series, have been evaluated. The results indicate that the fuel economy of a hybrid bus, taking into account the regenerative braking, is comparable with that of a conventional diesel bus. Life-cycle costs are slightly higher because of the added weight and cost of the battery.

Marr, W.W.; Sekar, R.R. [Argonne National Lab., IL (United States); Ahlheim, M.C. [Regional Transportation Authority, Chicago, IL (United States)

1993-08-01T23:59:59.000Z

406

Full Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some driving conditions. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection.

407

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

408

Results of advanced battery technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-09-01T23:59:59.000Z

409

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program...

410

Modeling, Control and Prototyping of Alternative Energy Storage Systems for Hybrid Vehicles.  

E-Print Network (OSTI)

??Electrochemical batteries are typically considered for secondary energy storage device on hybrid vehicles. Still other forms of energy storage are receiving considerable interest today. In… (more)

Samuel Durair Raj, Kingsly Jebakumar

2012-01-01T23:59:59.000Z

411

System Modeling and Energy Management Strategy Development for Series Hybrid Vehicles .  

E-Print Network (OSTI)

??A series hybrid electric vehicle is a vehicle that is powered by both an engine and a battery pack. An electric motor provides all of… (more)

Cross, Patrick Wilson

2008-01-01T23:59:59.000Z

412

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

new feanlres of compressed natural gas. battery poweredgasoline, compressed natural gas, hybrid dectdc, two typesNatural gas vehicles (NGVs) were available with one two compressed

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

413

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

new features of compressed natural gas, battery poweredgasoline, compressed natural gas, hybrid electric, two typesNatural gas vehicles (NGVs) were available with one or two compressed

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

414

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

415

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

416

Collecting battery data with Open Battery Gareth L. Jones1  

E-Print Network (OSTI)

Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

Imperial College, London

417

Overview of PNGV Battery Development and Test Programs  

SciTech Connect

Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energy’s Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

2002-02-01T23:59:59.000Z

418

Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today’s technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia’s batteries exhibit world-record energy densities.

None

2010-01-01T23:59:59.000Z

419

Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President  

E-Print Network (OSTI)

reduction goals1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plugin hybrid electric electric vehicle; H2 ICE HEV = hydrogen internal combustion engine hybrid electric vehicle) C.E. Thomas Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H2Gen

420

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

422

Battery testing at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

423

Passive magnetic bearings for vehicular electromechanical batteries  

DOE Green Energy (OSTI)

This report describes the design of a passive magnetic bearing system to be used in electromechanical batteries (flywheel energy storage modules) suitable for vehicular use. One or two such EMB modules might, for example, be employed in a hybrid-electric automobile, providing efficient means for power peaking, i.e., for handling acceleration and regenerative braking power demands at high power levels. The bearing design described herein will be based on a ''dual-mode'' operating regime.

Post, R

1996-03-01T23:59:59.000Z

424

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

425

Battery utilizing ceramic membranes  

SciTech Connect

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

426

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

427

Energy Materials: Battery Technologies  

Science Conference Proceedings (OSTI)

... batteries of miniature electronic devices to large power source of electric vehicles. ... process developments on electrodes and separators and safety design.

428

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

429

Zinc-Nickel Battery  

The short lifetime of the conventional zinc-nickel oxide battery has been the primary factor limiting its commercial use, ... Higher voltage, lower co ...

430

Battery Photo Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Photo Archive The following images may be used freely as long as they are accompanied...

431

Hybrid: Braking  

NLE Websites -- All DOE Office Websites (Extended Search)

Button Stopped button highlighted subbanner graphic: gray bar Button Stopped button highlighted subbanner graphic: gray bar STOPPED When the vehicle is stopped, such as at a red light, the gasoline engine and electric motor shut off automatically so that energy is not wasted in idling. The battery continues to power auxillary systems, such as the air conditioning and dashboard displays. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery helps power the vehicle, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

432

Hybrid: Braking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Button Stopped button highlighted subbanner graphic: gray bar Button Stopped button highlighted subbanner graphic: gray bar STOPPED When the vehicle is stopped, such as at a red light, the gasoline engine and electric motor shut off automatically so that energy is not wasted in idling. The battery continues to power auxillary systems, such as the air conditioning and dashboard displays. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery helps power the vehicle, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

433

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle types, configurations, and use strategies - Accounting for the added utility, battery wear, and infrastructure costs of range-extension techniques (battery swap, fast...

434

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

435

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

436

2010 Plug-In Hybrid and Electric Vehicle Research  

E-Print Network (OSTI)

2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

437

An Update on Advanced Battery Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29 companies to build or retool 45 manufacturing facilities spread across 20 states to build advanced batteries, engines, drive trains and other key components for electric vehicles. More than 30 of these plants are already in operation, employing thousands of American workers, and our grants were matched dollar for

438

Steps to Commercialization: Nickel Metal Hydride Batteries | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries Steps to Commercialization: Nickel Metal Hydride Batteries October 17, 2011 - 10:42am Addthis Steps to Commercialization: Nickel Metal Hydride Batteries Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How does it work? Through licensing and collaborative work, Energy Department-sponsored research can yield great economic benefits and help bring important new products to market. The Energy Department funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of supernovae. But this research is not only about furthering our understanding of the world around

439

TransForum v7n1 - Lithium-ion Batteries Could Hold the Key to...  

NLE Websites -- All DOE Office Websites (Extended Search)

electric vehicles that let consumers recharge batteries by plugging into a wall outlet. Hybrid electric vehicles (HEVs) are no longer cars of the future. As the price of gasoline...

440

Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery  

Science Conference Proceedings (OSTI)

A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

2012-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References Prieto Battery1 LinkedIn Connections CrunchBase...

442

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

443

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Phylion Battery Jump to: navigation, search Name Phylion Battery Place Suzhou, Jiangsu Province,...

444

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

445

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

446

Argonne to Advise Battery Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC Argonne to advise battery alliance Lithium ion batteries are anticipated to replace gasoline as a major source...

447

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since ...

448

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

449

Stavanger, Norway, May 13-16, 2009 Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

for the charging of PHEV batteries. Keywords: Plug-in hybrid electric vehicles, lithium battery, battery cost by examining the main technical, cost and infrastructure issues faced by PHEVs, and shows that these issues are yielding to progress. The paper concludes that this progress, in combination with the rising costs

California at Davis, University of

450

10 Questions for a Batteries Expert: Daniel Abraham | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for a Batteries Expert: Daniel Abraham 10 Questions for a Batteries Expert: Daniel Abraham 10 Questions for a Batteries Expert: Daniel Abraham August 11, 2011 - 3:56pm Addthis Dan Abraham | Image Courtesy of Argonne National Laboratory Dan Abraham | Image Courtesy of Argonne National Laboratory Angela Hardin Media Specialist at Argonne National Laboratory "Almost every cell phone contains a lithium-ion battery; they are also in our cameras, camcorders, and computers. Our goal is to get the batteries into our cars - into the next generation of plug-in hybrid and electric vehicles." Dan Abraham, Batteries Expert Ed. note: This is a cross-post from Argonne National Laboratory. In the latest 10 Questions, Daniel Abraham, a leading scientist at Argonne National Laboratory, shares his work on lithium-ion batteries and why he

451

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid-Scale Energy Storage Demonstration Using Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) More Documents & Publications

452

Argonne TTRDC - TransForum v10n1 - New Molecule for Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

New Molecule Could Help Make Batteries Safer, Less Expensive New Molecule Could Help Make Batteries Safer, Less Expensive Charge transfer mechanism for Li-ion battery overcharge protection Charge Transfer Mechanism for Li-ion Battery Overcharge Protection. When the battery is overcharged, the redox shuttle (bottom molecule) will be oxidized by losing an electron to the positive electrode. The radical cation formed (top molecule) will then diffuse back to the negative electrode, causing the cation to obtain an electron and be reduced. The net reaction is to shuttle electrons from the positive electrode to the negative electrode without causing chemical damage to the battery. Safety, life and cost are three of the major barriers to making commercially-viable lithium-ion batteries for plug-in hybrid electric

453

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

454

Battery paste expander material  

SciTech Connect

Battery paste expander material for the negative plate of a lead--acid storage battery had the following composition: finely divided carbon; barium sulfate; lignosulfonic acid; sulfur; carbohydrates; and Ca/sup 2 +/, Na/sup +/, and NH/sub 4//sup +/ ions. (RWR)

Limbert, J.L.; Procter, H.G.; Poe, D.T.

1971-10-26T23:59:59.000Z

455

Hybrid Vehicle Program. Final report  

DOE Green Energy (OSTI)

This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

None

1984-06-01T23:59:59.000Z

456

Condition responsive battery charging circuit  

SciTech Connect

A battery charging circuit includes a ferroresonant transformer having a rectified output for providing a constant output voltage to be supplied to a battery to be charged. Battery temperature is sensed providing an input to a control circuit which operates a shunt regulator associated with the ferroresonant transformer to provide battery charge voltage as a function of battery temperature. In response to a high battery temperature the controller functions to lower the output voltage to the battery, and in response to a low battery temperature, operates to provide a higher output voltage, with suitable control for any battery temperature between minus 10* and plus 150* fahrenheit. As the battery approaches full charge and battery acceptance current falls below a predetermined level, a charge cycle termination control allows charging to continue for a period preset by the operator, at the end of which period, line voltage is removed from the charger thereby terminating the charge cycle.

Reidenbach, S.G.

1980-06-24T23:59:59.000Z

457

Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary, the electric motor acts as a generator, converting energy from the engine into electricity and storing it in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery. Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery helps power the vehicle, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery.

458

Hybrid: Braking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

2 2 If additional stopping power is needed, conventional friction brakes (e.g., disc brakes) are also applied automatically. Go back… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery helps power the vehicle, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

459

Battery capacity measurement and analysis using lithium coin cell battery  

Science Conference Proceedings (OSTI)

Keywords: DC/DC converter, battery, coin cell, data acquisition, embedded system, energy estimation, power estimation

Sung Park; Andreas Savvides; Mani Srivastava

2001-08-01T23:59:59.000Z

460

Food Battery Competition Sponsored by  

E-Print Network (OSTI)

Food Battery Competition Sponsored by: The University of Tennessee, Materials Research Society (MRS growing populations and energy needs forever. Batteries have evolved a great deal and when you compare the bulky, heavy, toxic car lead batteries to the novel and outstanding lithium-ion batteries, you can

Tennessee, University of

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Substation battery-maintenance procedures  

SciTech Connect

The frequency of substation battery failures is gratifyingly low. One trouble spot appears to be extraneous short circuits that drain an otherwise healthy battery. Use of the lead--calcium battery promises to reduce substantially the amount of maintenance that substation batteries need.

Timmerman, M.H.

1976-05-15T23:59:59.000Z

462

Microsoft Word - PLUG_IN_HYBRID_Manual Rev 2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-07-12536 U.S. Department of Energy Vehicle Technologies Program Battery Test Manual For Plug-In Hybrid Electric Vehicles REVISION 2 DECEMBER 2010 The Idaho National...

463

Path dependent receding horizon control policies for hybrid electric vehicles  

E-Print Network (OSTI)

Future hybrid electric vehicles (HEVs) may use path-dependent operating policies to improve fuel economy. In our previous work, we developed a dynamic programming (DP) algorithm for prescribing the battery state of charge ...

Kolmanovsky, Ilya V.

464

Optimally Controlling Hybrid Electric Vehicles using Path Forecasting  

E-Print Network (OSTI)

The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

Kolmanovsky, Ilya V.

465

Battery Technology Life Verification Test Manual Revision 1  

SciTech Connect

The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

Jon P. Christophersen

2012-12-01T23:59:59.000Z

466

Polymeric battery separators  

SciTech Connect

Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

Minchak, R. J.; Schenk, W. N.

1985-06-11T23:59:59.000Z

467

Battery utilizing ceramic membranes  

DOE Patents (OSTI)

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

468

Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open Energy  

Open Energy Info (EERE)

formerly Advanced Batteries Ltd ABL formerly Advanced Batteries Ltd ABL Jump to: navigation, search Name Axeon Power Limited (formerly Advanced Batteries Ltd (ABL)) Place Dundee, United Kingdom Zip DD2 4UH Product Lithium ion battery pack developer. Coordinates 45.27939°, -123.009669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.27939,"lon":-123.009669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Advanced Battery Technologies Inc ABAT | Open Energy Information  

Open Energy Info (EERE)

Battery Technologies Inc ABAT Battery Technologies Inc ABAT Jump to: navigation, search Name Advanced Battery Technologies Inc (ABAT) Place Shuangcheng, Heilongjiang Province, China Zip 150100 Product China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates 45.363708°, 126.314621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.363708,"lon":126.314621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Union Suppo Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Suppo Battery Co Ltd Suppo Battery Co Ltd Jump to: navigation, search Name Union Suppo Battery Co Ltd Place Shenyang, China Zip 110015 Product Liaoning-based manufacturer of rechargeable NiMH batteries. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

EaglePicher Horizon Batteries LLC | Open Energy Information  

Open Energy Info (EERE)

EaglePicher Horizon Batteries LLC EaglePicher Horizon Batteries LLC Jump to: navigation, search Name EaglePicher Horizon Batteries, LLC Place Dearborn, Michigan Zip MI 48126 Product Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery. Coordinates 39.520064°, -94.770486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.520064,"lon":-94.770486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Blue Spark Technologies formerly Thin Battery Technologies Inc | Open  

Open Energy Info (EERE)

Spark Technologies formerly Thin Battery Technologies Inc Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place Westlake, Ohio Zip 44130 Sector Carbon Product Developer and licensor of carbon-zinc battery technology. Coordinates 32.980007°, -97.168831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.980007,"lon":-97.168831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Materials and Processing for Lithium-Ion batteries  

Science Conference Proceedings (OSTI)

Lithium ion battery technology is projected to be the leapfrog technology for the electrification of the drivetrain and to provide stationary storage solutions to enable the effective use of renewable energy sources. The technology is already in use for low-power applications such as consumer electronics and power tools. Extensive research and development has enhanced the technology to a stage where it seems very likely that safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of the technology is still a concern, service life is not yet sufficient, and costs are too high. This paper summarizes the state of the art of lithium ion battery technology for nonexperts. It lists materials and processing for batteries and summarizes the costs associated with them. This paper should foster an overall understanding of materials and processing and the need to overcome the remaining barriers for a successful market introduction.

Daniel, Claus [ORNL

2008-01-01T23:59:59.000Z

474

Improving Battery Design with Electro-Thermal Modeling  

DOE Green Energy (OSTI)

Operating temperature greatly affects the performance and life of batteries in electric and hybrid vehicles. Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry. To illustrate the process, we simulated the thermal performance of two generations of Panasonic prismatic nickel-metal-hydride modules used in the Toyota Prius. The model showed why the new generation of Panasonic modules had better thermal performance. Thermal images from two battery modules under constant current discharge indicate that the model predicts the experimental trend reasonably well.

Bharathan, D.; Pesaran, A.; Vlahinos, A.; Kim, G.-H.

2005-01-01T23:59:59.000Z

475

Novel electrolyte chemistries for Mg-Ni rechargeable batteries.  

DOE Green Energy (OSTI)

Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

2010-10-01T23:59:59.000Z

476

Computer-Aided Engineering and Secondary Use of Automotive Batteries (Presentation)  

SciTech Connect

NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

Pesaran, A.; Kim, G. H.; Smith, K.; Newbauer, J.

2010-05-01T23:59:59.000Z

477

Assessment of battery technologies for electric vehicles  

SciTech Connect

This document, Part 2 of Volume 2, provides appendices to this report and includes the following technologies, zinc/air battery; lithium/molybdenum disulfide battery; sodium/sulfur battery; nickel/cadmium battery; nickel/iron battery; iron/oxygen battery and iron/air battery. (FI)

Ratner, E.Z. (Sheladia Associates, Inc., Rockville, MD (USA)); Henriksen, G.L. (ed.) (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-02-01T23:59:59.000Z

478

Trimode optimizes hybrid power plants. Final report: Phase 2  

DOE Green Energy (OSTI)

In the Phase 2 project, Abacus Controls Inc. did research and development of hybrid systems that combine the energy sources from photovoltaics, batteries, and diesel-generators and demonstrated that they are economically feasible for small power plants in many parts of the world. The Trimode Power Processor reduces the fuel consumption of the diesel-generator to its minimum by presenting itself as the perfect electrical load to the generator. A 30-kW three-phase unit was tested at Sandia National Laboratories to prove its worthiness in actual field conditions. The use of photovoltaics at remote locations where reliability of supply requires a diesel-generator will lower costs to operate by reducing the run time of the diesel generator. The numerous benefits include longer times between maintenance for the diesel engine and better power quality from the generator. 32 figs.

O`Sullivan, G.A.; O`Sullivan, J.A. [Abacus Controls, Inc., Somerville, NJ (United States)

1998-07-01T23:59:59.000Z

479

Implications of NiMH Hysteresis on HEV Battery Testing and Performance  

SciTech Connect

Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

2002-08-01T23:59:59.000Z

480

The structural design of electrode materials for high energy lithium batteries.  

Science Conference Proceedings (OSTI)

Lithium batteries are used to power a diverse range of applications from small compact devices, such as smart cards and cellular telephones to large heavy duty devices such as uninterrupted power supply units and electric- and hybrid-electric vehicles. This paper briefly reviews the approaches to design advanced materials to replace the lithiated graphite and LiCoO{sub 2} electrodes that dominate today's lithium-ion batteries in order to increase their energy and safety. The technological advantages of lithium batteries are placed in the context of water-based- and high-temperature battery systems.

Thackeray, M.; Chemical Sciences and Engineering Division

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "world battery hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hybrids Plus | Open Energy Information  

Open Energy Info (EERE)

Hybrids Plus Hybrids Plus Jump to: navigation, search Name Hybrids Plus Address 3245 Prarie Ave Place Boulder, Colorado Zip 80301 Sector Vehicles Product Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website http://www.eetrex.com/ Coordinates 40.022143°, -105.250981° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.022143,"lon":-105.250981,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

483

Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint  

SciTech Connect

Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2012-10-01T23:59:59.000Z

484

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

How Plug-in Hybrids Save Money How Plug-in Hybrids Save Money Plug-in hybrid recharging Plug-in hybrids reduce fuel costs by Using high-capacity batteries that allow them to operate on electricity from the outlet for significant distances-electricity typically costs less than half as much as gasoline Using a larger electric motor that typically allows the vehicle to use electricity at higher speeds than regular hybrids Using regenerative braking to recover energy typically wasted when you apply the brakes Plug-in hybrid designs differ, and your driving habits, especially the distance you drive between re-charging, can have a big effect on your fuel bill. My Plug-in Hybrid Calculator estimates gasoline and electricity costs for any available plug-in hybrid using your driving habits and fuel costs.

485

Batteries Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

models (trailers with engine or battery for long drives) "Out-of-the-Box" Ideas * High voltage packs> 600V Packs (getting rid of high current components) * Cars driven on...

486

Sodium sulfur battery seal  

DOE Patents (OSTI)

This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

Mikkor, Mati (Ann Arbor, MI)

1981-01-01T23:59:59.000Z

487

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

1984-08-07T23:59:59.000Z

488

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

489

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

490

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

491

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 1...

492

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research to someone by E-mail Share Vehicle Technologies Office: Applied Battery Research on Facebook Tweet about Vehicle Technologies Office: Applied Battery...

493

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name Aerospatiale Batteries (ASB) Place France Product Research, design and manufacture of Thermal Batteries. References...

494

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents...

495

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

get the new available battery capacity that can be assignedof expected lifetime of 1% battery capacity in minutes. Forof energy supply (battery capacity) and demand on cell

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

496

What's Next for Batteries? - Energy Innovation Portal  

What's Next for Batteries? July 30, 2013. What will batteries look like in the future? How will they work? Argonne National Laboratory battery research experts ...

497

Axion Battery Products Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Axion Battery Products Inc Place Woodbridge, Ontario, Canada Zip L4L 5Y9 Product Subsidiary of Axion Power International, which is to run three lead acid battery fabrication lines. Coordinates 38.660595°, -77.247875° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.660595,"lon":-77.247875,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Vanadium Redox Flow Batteries  

Science Conference Proceedings (OSTI)

The vanadium redox flow battery, sometimes abbreviated as VRB, is an energy storage technology with significant potential for application in a wide range of contexts. Vanadium redox batteries have already been used in a number of demonstrations in small-scale utility-scale applications, and it is believed that the technology is close to being viable for more widespread use. This report examines the vanadium redox technology, including technical performance and cost issues that drive its application today...

2007-03-30T23:59:59.000Z

499

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

DOE Green Energy (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

500

The Science of Electrode Materials for Lithium Batteries  

Science Conference Proceedings (OSTI)

Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

Fultz, Brent

2007-03-15T23:59:59.000Z