National Library of Energy BETA

Sample records for world battery hybrid

  1. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  2. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing

  3. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  4. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  5. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R.; Beaty, Kevin D.; Zou, Zhanijang; Kang, Xiaosong

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  6. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-22

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  7. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  8. Scientists Create Worlds Smallest Battery | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Create World's Smallest Battery Stories of Discovery & Innovation Scientists Create World's Smallest Battery Enlarge Photo Image shows distortion of nanowire electrode ...

  9. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  10. High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry

    SciTech Connect (OSTI)

    Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2014-01-01

    Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

  11. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  12. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  13. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  14. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  15. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  16. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  17. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  18. Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LiMn₂O₄ Cathode - Joint Center for Energy Storage Research July 11, 2016, Research Highlights Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel LiMn₂O₄ Cathode Two Mg-Li dual salt hybrid electrolytes were successfully developed and can enable rechargeable Mg-LiMn2O4 batteries Scientific Achievement Two Mg-Li dual salt hybrid electrolytes were developed with excellent oxidative stability up to around 3.8 V (vs Mg/Mg2+) on a aluminum current collector, enabling the

  19. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  20. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity

    Broader source: Energy.gov [DOE]

    Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

  1. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the

  2. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank

  3. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-02-13

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  4. Scientists Create World's Smallest Battery | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientists Create World's Smallest Battery News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.16.11 Scientists Create World's Smallest Battery Effort yields insights that could improve battery

  5. US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing

    SciTech Connect (OSTI)

    Donald Karner; J.E. Francfort

    2005-09-01

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

  6. Will Your Battery Survive a World With Fast Chargers?

    SciTech Connect (OSTI)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  7. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

  8. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  9. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  10. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  11. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  12. Plug-in Hybrid Battery Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. es_05_ashtiani.pdf (1.06 MB) More Documents & Publications USABC PHEV Battery Development Project USABC HEV and PHEV Programs Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

  13. Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2010-02-01

    With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

  14. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  15. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  16. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect (OSTI)

    Gray, Tyler; Shirk, Matthew; Wishart, Jeffrey

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  17. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  18. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  19. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  20. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  1. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  2. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Bridges, Craig A.; Paranthaman, Mariappan Parans; Dai, Sheng; Brown, Gilbert M.

    2015-12-07

    A unique battery hybrid utilizes an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g-1 at a current rate of C/5. It also shows good rate capability and cycling performance.

  3. Hybrid anodes for redox flow batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be ...

  4. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures

    SciTech Connect (OSTI)

    Huang, C; Xiao, J; Shao, YY; Zheng, JM; Bennett, WD; Lu, DP; Saraf, LV; Engelhard, M; Ji, LW; Zhang, J; Li, XL; Graff, GL; Liu, J

    2014-01-09

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAhg(-1) for 400 cycles at a high rate of 1,737mAg(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices.

  5. Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids?

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (PEVs) include both battery electric vehicles (BEVs) which run only on electricity, and plug-in hybrid electric vehicles (PHEVs) which run on electricity and/or gasoline....

  6. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  7. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  8. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  9. Battery Test Manual For 12 Volt Start/Stop Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Belt, Jeffrey R.

    2015-05-01

    This manual was prepared by and for the United Stated Advanced Battery Consortium (USABC) Electrochemical Energy Storage Team. It is based on the targets established for 12 Volt Start/Stop energy storage development and is similar (with some important changes) to an earlier manual for the former FreedomCAR program. The specific procedures were developed primarily to characterize the performance of energy storage devices relative to the USABC requirements. However, it is anticipated that these procedures will have some utility for characterizing 12 Volt Start/Stop hybrid energy storage device behavior in general.

  10. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode

    SciTech Connect (OSTI)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Bridges, Craig A.; Paranthaman, Mariappan Parans; Dai, Sheng; Brown, Gilbert M.

    2015-12-07

    A unique battery hybrid utilizes an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g-1 at a current rate of C/5. It also shows good rate capability and cycling performance.

  11. CNEEC - Batteries Tutorial by Prof. Cui

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries

  12. World Induced Technical Change Hybrid (WITCH) | Open Energy Informatio...

    Open Energy Info (EERE)

    main economic and environmental policies in each world region as the outcome of a dynamic game. When to Use This Tool This tool is most useful for development impacts assessments...

  13. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures

    SciTech Connect (OSTI)

    Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

    2014-01-09

    Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

  14. Batteries

    Broader source: Energy.gov [DOE]

    From consumer electronics to laptops to vehicles, batteries are an important part of our everyday life. Learn about the Energy Department's innovative research and development in different energy storage options.

  15. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.

  16. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.

  17. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  18. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect (OSTI)

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  19. Hybrid Electric Vehicles: How They Perform in the Real World | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Hybrid Electric Vehicles: How They Perform in the Real World Hybrid Electric Vehicles: How They Perform in the Real World October 5, 2009 - 11:27am Addthis John Lippert One advantage of working on a U.S. Department of Energy (DOE) support team is that I'm exposed to the impressive work DOE is doing to develop and promote advanced energy technologies. I'm particularly impressed with the data DOE has gathered as part of the Advanced Vehicle Testing Activity (AVTA) on many of the

  20. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  1. Battery SEAB Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation (1.43 MB) More Documents & Publications Overview of Battery R&D Activities Hybrid Electric Systems Overview of Battery R&D Activities

  2. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs...

    Broader source: Energy.gov (indexed) [DOE]

    Although plug-in vehicles sell in much lower volume, their battery packs are much larger with capacities as high as 85 kWh - a battery offering for the Tesla Model S. Number of ...

  3. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less

  4. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemoreof the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.less

  5. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    SciTech Connect (OSTI)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong; Islam, Md Tariqul; Noveron, Juan C.; Ramabadran, Navaneet

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  6. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries

    SciTech Connect (OSTI)

    Rowlette, J.J.

    1981-01-15

    Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  7. High Energy Density Na-S/NiCl2 Hybrid Battery

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-02-15

    High temperature (250-350C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

  8. SBIR/STTR FY15 Phase 1 Release 2 Awards Announced—Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards, including projects demonstrating fuel cell-battery electric hybrid trucks and developing a real-time, in-line optical detector for the measurement of fuel cell membrane thickness.

  9. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  10. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries

    SciTech Connect (OSTI)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail; Hu, Shilin; Yi, Ran; Tang, Duihai; Walter, Timothy; Regula, Michael; Choi, Daiwon; Li, Xiaolin; Manivannan, Ayyakkannu; Wang, Donghai

    2014-11-12

    Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost, natural abundance of sodium. Here, we report a novel graphene nanosheets-wrapped phosphorus composite as an anode for high performance sodium-ion batteries though a facile ball-milling of red phosphorus and graphene nanosheets. Not only can the graphene nanosheets significantly improve the electrical conductivity, but they also serve as a buffer layer to accommodate the large volume change of phosphorus in the charge-discharge process. As a result, the graphene wrapped phosphorus composite anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700 mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially extend to other electrode materials with unstable solid electrolyte interphases in sodium-ion batteries.

  11. Composite Organic Radical - Inorganic Hybrid Cathode for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Huang, Qian; Cosimbescu, Lelia; Koech, Phillip K.; Choi, Daiwon; Lemmon, John P.

    2013-07-01

    A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.

  12. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect (OSTI)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  13. Stories of Discovery & Innovation: Scientists Create World's...

    Office of Science (SC) Website

    Scientists Create World's Smallest Battery Energy Frontier Research Centers (EFRCs) EFRCs ... Stories of Discovery & Innovation: Scientists Create World's Smallest Battery Print Text ...

  14. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  15. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report traces the connections between DOE energy storage research and downstream energy storage systems used in hybrid electric, plug-in hybrid electric, and fully electric vehicles.

  16. Rechargeable Nanoelectrofuels for Flow Batteries | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Nanoelectrofuels for Flow Batteries Four-page general brochure describing a groundbreaking energy storage concept that may revolutionize the world of batteries PDF...

  17. batteries and energy storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries and Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' ...

  18. Hybrid CuO/SnO{sub 2} nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials

    SciTech Connect (OSTI)

    Xing, G. Z.; Wang, Y.; Wong, J. I.; Shi, Y. M.; Huang, Z. X.; Yang, H. Y.; Li, S.

    2014-10-06

    Hybrid CuO/SnO{sub 2} nanocomposites are synthesized by a facile thermal annealing method on Cu foils. Compared to pristine CuO and SnO{sub 2} nanostructures, hybrid CuO/SnO{sub 2} nanocomposites exhibit the enhanced electrochemical performances as the anode material of lithium ion batteries (LIBs) with high specific capacity and excellent rate capability. The binder free CuO/SnO{sub 2} nanocomposites deliver a specific capacity of 718 mA h g{sup ?1} at a current density of 500?mA g{sup ?1} even after 200 cycles. The enhanced electrochemical performances are attributed to the synergistic effect between SnO{sub 2} nanoparticles and CuO nanoarchitectures. Such hybrid CuO/SnO{sub 2} nanocomposites could open up a new route for the development of next-generation high-performance and cost-effective binder free anode material of LIBs for mass production.

  19. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  20. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  1. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  2. Vehicle Technologies Office: Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries » Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) cars, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas

  3. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid

  4. DOE to Provide up to $14 Million to Develop Advanced Batteries...

    Energy Savers [EERE]

    in funding for a 28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. ...

  5. Full Hybrid: Starting

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an

  6. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  7. Hybrids Plus | Open Energy Information

    Open Energy Info (EERE)

    Area Sector: Vehicles Product: Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website: www.eetrex.com Coordinates: 40.022143, -105.250981 Show Map...

  8. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  9. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  10. Fact #877: June 15, 2015 Which States Have More Battery Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids? Fact 877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids? ...

  11. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  12. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  13. Scientists View Battery Under Microscope

    SciTech Connect (OSTI)

    2015-04-10

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  14. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  15. Saft America Advanced Batteries Plant Celebrates Grand Opening...

    Office of Environmental Management (EM)

    They will also be used to power military hybrid vehicles and for other industrial, agricultural, and military applications. Saft expects to produce 370 megawatt hours of battery ...

  16. Vehicle Technologies Office: Applied Battery Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Applied Battery Research Vehicle Technologies Office: Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, applied battery research concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and battery

  17. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    SciTech Connect (OSTI)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  18. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    information about thin-film lithium batteries is available in full-text and on the Web. ... Additional Web Pages: Thin Films for Advanced Batteries Thin-Film Rechargeable Lithium, ...

  19. The Breakthrough Behind the Chevy Volt Battery

    DOE R&D Accomplishments [OSTI]

    Lerner, Louise

    2011-03-28

    A revolutionary breakthrough cathode for lithium-ion batteries—the kind in your cell phone, laptop and new hybrid cars—makes them last longer, run more safely and perform better than batteries currently on the market.

  20. Battery Charger Efficiency

    Energy Savers [EERE]

    Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. ...

  1. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  2. JCESR introduces high school students to the future of battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCESR introduces high school students to the future of battery science By Robyn Henderson ... of energy storage and how battery science is improving our world both today and tomorrow. ...

  3. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. This is not the case in Marine and RV applications. * The battery charger manufacturer has no influence on the selection of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple

  4. Vehicle Technologies Office: AVTA - Battery Testing Data | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Battery Testing Data Vehicle Technologies Office: AVTA - Battery Testing Data For plug-in electric vehicles to achieve widespread market adoption, vehicle batteries must have excellent real-world performance. Through the Advanced Vehicle Testing Activity, the Vehicle Technologies Office supports work to test vehicles, including battery packs, in on-road, real-world conditions. The procedure manuals for the pack-level testing are available from the USCAR Electrochemical Energy Storage

  5. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.' -Edited excerpt from Medical Applications of Non-medical ...

  6. Electro-Thermal Modeling to Improve Battery Design: Preprint

    SciTech Connect (OSTI)

    Bharathan, D.; Pesaran, A.; Kim, G.; Vlahinos, A.

    2005-09-01

    Operating temperature greatly affects the performance and life of batteries in electric and hybrid electric vehicles (HEVs). Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. This study describes an electro-thermal finite element approach that predicts the thermal performance of a battery cell or module with realistic geometry.

  7. Washington: Battery Manufacturer Brings Material Production Home

    Broader source: Energy.gov [DOE]

    EERE-supported company, EnerG2, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles.

  8. Fact #877: June 15, 2015 Which States Have More Battery Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids? - Dataset Fact 877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in ...

  9. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  10. Battery charging stations

    SciTech Connect (OSTI)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  11. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  12. Lithium battery

    SciTech Connect (OSTI)

    Ikeda, H.; Nakaido, S.; Narukara, S.

    1983-08-16

    In a lithium battery having a negative electrode formed with lithium as active material and the positive electrode formed with manganese dioxide, carbon fluoride or the like as the active material, the discharge capacity of the negative electrode is made smaller than the discharge capacity of the positive electrode, whereby a drop in the battery voltage during the final discharge stage is steepened, and prevents a device using such a lithium battery as a power supply from operating in an unstable manner, thereby improving the reliability of such device.

  13. Compliant Glass-Polymer Hybrid Single Ion-ConductingElectrolytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliant Glass-Polymer Hybrid Single Ion-ConductingElectrolytes for Lithium Batteries ... excellent electrochemical stability, and limit the dissolution of lithium polysulfides. ...

  14. PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Markel, T.; Pesaran, A.

    2009-03-01

    Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

  15. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  16. Sodium Battery | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sodium Battery Technology Improves Performance and Safety Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Sodium Battery Technology Improves Performance and Safety Imagination and innovation have always been in GE's DNA. While exploring the expanded use of hybrid power in the rail, mining and marine industries, GE began

  17. Bipolar battery

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  18. Stories of Discovery & Innovation: Scientists Create World's Smallest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery | U.S. DOE Office of Science (SC) Scientists Create World's Smallest Battery Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 05.16.11 Stories of Discovery & Innovation: Scientists Create World's Smallest Battery Print Text Size: A A A Subscribe FeedbackShare Page Effort yields insights that could improve battery performance. This work, featured

  19. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  20. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  1. INL Hybrid Shuttle Buses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL Hybrid Shuttle Buses Four 28 to 36 passenger hybrid-electric shuttle buses, operated at the Idaho National Laboratory, were equipped with data loggers. The shuttle buses were delivered in 2010 with MaxxForce DT engines configured for 620 ft-lb of torque, and Eaton City-Delivery hybrid-electric systems, each containing a lithium-ion battery pack, electric motor, and Fuller six-speed automated manual transmission. Road speed, engine speed, and fueling data were gathered from the diagnostic

  2. RADIOACTIVE BATTERY

    DOE Patents [OSTI]

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  3. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  4. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center (OSTI)

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  5. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  6. Improving Battery Design with Electro-Thermal Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Kim, G.-H.; Duong, T.

    2005-08-01

    Temperature greatly affects the performance and life of batteries in electric and hybrid vehicles under real driving conditions, so increased attention is being paid to battery thermal management. Sophisticated electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry, material properties, loads, and boundary conditions.

  7. Overview of Battery R&D Activities

    Broader source: Energy.gov (indexed) [DOE]

    The Parker Ranch installation in Hawaii US Department of Energy Vehicle Technologies Program Overview of Battery R&D Activities May 15, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 eere.energy.gov VTP Battery R&D  Battery affordability and performance are the keys. Program targets include: - Increase performance (power, energy, durability) - Reduce weight & volume -

  8. 2008 Annual Merit Review Results Summary - 2. Applied Battery Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-1 2. Applied Battery Research Introduction Applied battery research focuses on addressing the cross-cutting barriers facing the lithium-ion systems that are closest to meeting all of the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, the applied battery research activity concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and

  9. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will play a key role in the country's transportation future. In fact, transitioning to a mix of plug-in

  10. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt020_es_coy_2012_p.pdf (1.72 MB) More Documents & Publications Lithium-Ion Battery Recycling Facilities Recycling Hybrid and Elecectric Vehicle Batteries EA-1722: Final Environmental Assessment

  11. Low-temperature Sodium-Beta Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Low-temperature Sodium-Beta Battery Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary Rechargeable metallic sodium batteries have application in large-scale energy storage applications such as electric power generation and distribution, in motive applications such as electric vehicles, hybrids, and plug-in hybrids, and for aerospace applications such as powering satellites. So

  12. Thermal battery

    SciTech Connect (OSTI)

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  13. Development and Testing of an UltraBattery-Equipped Honda Civic

    SciTech Connect (OSTI)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  14. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  15. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  16. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect (OSTI)

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  17. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  18. battery2.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. ... Signature 2. Joint Entry with High Power Battery Systems Company 5 Silkin Street, Apt. 40 ...

  19. Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than Plug-in Hybrids? - Dataset | Department of Energy 7: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids? - Dataset Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids? - Dataset Excel file and dataset for Which States Have More Battery Electric Vehicles than Plug-in Hybrids? fotw#877_web.xlsx (188.57 KB) More Documents & Publications Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest

  20. Overview of Battery R&D Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es000_howell_2012_o.pdf (2.61 MB) More Documents & Publications Overview of Battery R&D Activities Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Hybrid Electric Systems

  1. Fact #607: January 25, 2010 Energy and Power by Battery Type | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 7: January 25, 2010 Energy and Power by Battery Type Fact #607: January 25, 2010 Energy and Power by Battery Type Batteries are made from many different types of materials. The chart below shows the energy to power ratio for different battery types (a range is shown for each battery). An increase in specific energy correlates with a decrease in specific power. Lithium-ion batteries have a clear advantage when optimized for both energy and power density. Most hybrid vehicles sold to

  2. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  3. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1995-01-01

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  4. battery electrode percolating network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery electrode percolating network - Sandia Energy Energy Search Icon Sandia Home ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  5. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  6. Batteries - Beyond Lithium Ion Breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g.

  7. Hybrid Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmore » systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.« less

  8. Hardware Architecture for Measurements for 50-V Battery Modules

    SciTech Connect (OSTI)

    Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

    2012-06-01

    Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

  9. Piezonuclear battery

    DOE Patents [OSTI]

    Bongianni, Wayne L.

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  10. Hybrid vehicle control

    SciTech Connect (OSTI)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  11. An Update on Advanced Battery Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29

  12. High Performance Cathodes for Li-Air Batteries

    SciTech Connect (OSTI)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  13. Optima Batteries | Open Energy Information

    Open Energy Info (EERE)

    Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: www.optimabatteries.com References: Optima Batteries1 Information About...

  14. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  15. Overview of PNGV Battery Development and Test Programs

    SciTech Connect (OSTI)

    Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

    2002-02-01

    Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energy’s Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

  16. Nanotube composite anode materials improve lithium-ion battery performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-09-034) - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Nanotube composite anode materials improve lithium-ion battery performance (ANL-09-034) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Rechargeable lithium-ion batteries are a critical technology for many applications, including consumer electronics and electric vehicles. As the demand for hybrid and

  17. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  18. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  19. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  20. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: PolyPlus is developing the worlds first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithiumbased negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the batterys reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  1. Anodes for Batteries

    SciTech Connect (OSTI)

    Windisch, Charles F.

    2003-01-01

    The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

  2. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level PHEVs Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H 2 Gen Innovations, Inc. Alexandria, Virginia Thomas@h2gen.com 1.0 Introduction Detailed computer simulations demonstrate that all-electric vehicles will be required to meet our energy security and climate change reduction goals 1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plug-in hybrid electric vehicles (PHEV's) both reduce greenhouse gas (GHG) emissions, but neither of

  3. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  4. Thermal Evaluation of the Honda Insight Battery Pack: Preprint

    SciTech Connect (OSTI)

    Zolot, M.D.; Kelly, K.; Keyser, M.; Mihalic, M.; Pesaran, A.; Hieronymus, A.

    2001-06-18

    The hybrid vehicle test efforts at National Renewable Energy Laboratory (NREL), with a focus on the Honda Insight's battery thermal management system, are presented. The performance of the Insight's high voltage NiMH battery pack was characterized by conducting in-vehicle dynamometer testing at Environmental Testing Corporation's high altitude dynamometer test facility, on-road testing in the Denver area, and out-of-car testing in NREL's Battery Thermal Management Laboratory. It is concluded that performance does vary considerably due to thermal conditions the pack encounters. The performance variations are due to both inherent NiMH characteristics, and the Insight's thermal management system.

  5. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System...

    Office of Scientific and Technical Information (OSTI)

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of ...

  6. Overview of Battery R&D Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es000_howell_2011_o.pdf (874.61 KB) More Documents & Publications Hybrid Electric Systems Battery SEAB Presentation

  7. AGM Batteries Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: AGM Batteries Ltd Place: United Kingdom Product: Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References: AGM Batteries Ltd1...

  8. Hybrid radical energy storage device and method of making

    DOE Patents [OSTI]

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  9. Hybrid radical energy storage device and method of making

    DOE Patents [OSTI]

    Gennett, Thomas; Ginley, David S.; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2016-04-26

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  10. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Broader source: Energy.gov (indexed) [DOE]

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 Energy Efficiency & Renewable Energy Advanced Battery Materials Research (BMR) Program  Previously known as: - Batteries for Advanced Transportation Technologies (BATT) -

  11. Batteries and energy systems

    SciTech Connect (OSTI)

    Mantell, C.L.

    1982-01-01

    A historical review of the galvanic concept and a brief description of the theory of operation of batteries are followed by chapters on specific types of batteries and energy systems. Chapters contain a section on basic theory, performance and applications. Secondary cells discussed are: SLI batteries, lead-acid storage batteries, lead secondary cells, alkaline secondary cells, nickel and silver-cadmium systems and solid electrolyte systems. Other chapters discuss battery charging, regenerative electrochemical systems, solar cells, fuel cells, electric vehicles and windmills. (KAW)

  12. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  13. U.S. Battery R&D Progress and Plans

    Broader source: Energy.gov (indexed) [DOE]

    The Parker Ranch installation in Hawaii U.S. Battery R&D Progress and Plans May 14, 2013 David Howell, Team Leader Hybrid & Electric Vehicles R&D Vehicle Technologies Office U.S. Department of Energy 1000 Independence Avenue Washington DC 20585 2 Advance the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on enabling market success (increase performance at lower cost while meeting weight, volume & safety).

  14. Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform todays technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envias batteries exhibit world-record energy densities.

  15. Standard Missile Block IV battery

    SciTech Connect (OSTI)

    Martin, J.

    1996-11-01

    During the 1980`s a trend in automatic primary battery technologies was the replacement of silver-zinc batteries by thermal battery designs. The Standard missile (SM 2) Block IV development is a noteworthy reversal of this trend. The SM2, Block IV battery was originally attempted as a thermal battery with multiple companies attempting to develop a thermal battery design. These attempts resulted in failure to obtain a production thermal battery. A decision to pursue a silver-zinc battery design resulted in the development of a battery to supply the SM 2, Block IV (thermal battery design goal) and also the projected power requirements of the evolving SM 2, Block IVA in a single silver-zinc battery design. Several advancements in silver-zinc battery technology were utilized in this design that improve the producibility and extend the boundaries of silver-zinc batteries.

  16. High Power Performance Lithium Ion Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Power Performance Lithium Ion Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Technology Marketing SummaryGao Liu and colleagues at Berkeley Lab have

  17. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Button Braking button highlighted Stopped Button subbanner graphic: gray bar BRAKING: PART 2 If additional stopping power is needed, conventional friction brakes (e.g., disc brakes) are also applied automatically. Go back… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Battery:

  18. Computer-Aided Engineering and Secondary Use of Automotive Batteries (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.; Smith, K.; Newbauer, J.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  19. Electric Vehicle Battery Performance

    Energy Science and Technology Software Center (OSTI)

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  20. Polyoxometalate flow battery

    DOE Patents [OSTI]

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  1. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S.; Shlomo, Golan; Anderson, Marc A.

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  2. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  3. GBP Battery | Open Energy Information

    Open Energy Info (EERE)

    GBP Battery Jump to: navigation, search Name: GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications....

  4. Rechargeable Heat Battery's Secret Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture ... Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A ...

  5. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  6. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  7. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  8. Implications of NiMH Hysteresis on HEV Battery Testing and Performance

    SciTech Connect (OSTI)

    Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

    2002-08-01

    Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

  9. USABC Development of 12 Volt Battery for Start-Stop Application: Preprint

    SciTech Connect (OSTI)

    Tataria, H.; Gross, O.; Bae, C.; Cunningham, B.; Barnes, J. A.; Deppe, J.; Neubauer, J.

    2015-02-01

    Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortium of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.

  10. Phylion Battery | Open Energy Information

    Open Energy Info (EERE)

    Phylion Battery Jump to: navigation, search Name: Phylion Battery Place: Suzhou, Jiangsu Province, China Zip: 215011 Sector: Vehicles Product: Jiangsu-province-based producer of...

  11. Battery Ventures | Open Energy Information

    Open Energy Info (EERE)

    Battery Ventures (Boston) Name: Battery Ventures (Boston) Address: 930 Winter Street, Suite 2500 Place: Waltham, Massachusetts Zip: 02451 Region: Greater Boston Area Product:...

  12. Prieto Battery | Open Energy Information

    Open Energy Info (EERE)

    Colorado Zip: 80526 Product: Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This...

  13. Consortium for Advanced Battery Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  14. Predictive Models of Li-ion Battery Lifetime

    SciTech Connect (OSTI)

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  15. Materials and Processing for Lithium-Ion batteries

    SciTech Connect (OSTI)

    Daniel, Claus

    2008-01-01

    Lithium ion battery technology is projected to be the leapfrog technology for the electrification of the drivetrain and to provide stationary storage solutions to enable the effective use of renewable energy sources. The technology is already in use for low-power applications such as consumer electronics and power tools. Extensive research and development has enhanced the technology to a stage where it seems very likely that safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of the technology is still a concern, service life is not yet sufficient, and costs are too high. This paper summarizes the state of the art of lithium ion battery technology for nonexperts. It lists materials and processing for batteries and summarizes the costs associated with them. This paper should foster an overall understanding of materials and processing and the need to overcome the remaining barriers for a successful market introduction.

  16. Novel electrolyte chemistries for Mg-Ni rechargeable batteries.

    SciTech Connect (OSTI)

    Garcia-Diaz, Brenda; Kane, Marie; Au, Ming

    2010-10-01

    Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

  17. EERE Success Story—Washington: Battery Manufacturer Brings Material Production Home

    Broader source: Energy.gov [DOE]

    EERE-supported company, EnerG2, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles.

  18. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  19. Battery separator assembly

    SciTech Connect (OSTI)

    Faust, M.A.; Suchanski, M.R.; Osterhoudt, H.W.

    1988-05-03

    A separator assembly for use in batteries is described comprising a film bearing a thermal fuse in the form of a layer of wax coated fibers; wherein the assembly is sufficiently porous to allow continuous flow of ions in the battery.

  20. Battery Particle Simulation

    SciTech Connect (OSTI)

    2014-09-15

    Two simulations show the differences between a battery being drained at a slower rate, over a full hour, versus a faster rate, only six minutes (a tenth of an hour). In both cases battery particles go from being fully charged (green) to fully drained (red), but there are significant differences in the patterns of discharge based on the rate.

  1. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2012-10-01

    Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

  2. Hybrid2 - The hybrid power system simulation model

    SciTech Connect (OSTI)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van; Manwell, J.F.

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  3. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    SciTech Connect (OSTI)

    Bower, W. ); O'Sullivan, G. )

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  4. Hybrid power management system and method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  5. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-next-generation_li-ion_b.pdf (136.48 KB) More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion

  6. Company Adds Commercial Trucks to List of Hybrids

    Broader source: Energy.gov [DOE]

    Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system.

  7. Polymeric battery separators

    SciTech Connect (OSTI)

    Minchak, R. J.; Schenk, W. N.

    1985-06-11

    Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

  8. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  9. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  10. GP Batteries International Limited | Open Energy Information

    Open Energy Info (EERE)

    International Limited is principally engaged in the development, manufacture and marketing of batteries and battery-related products. References: GP Batteries International...

  11. RPM Flywheel Battery | Open Energy Information

    Open Energy Info (EERE)

    RPM Flywheel Battery Jump to: navigation, search Name: RPM Flywheel Battery Place: California Product: Start-up planning to develop, produce, and market flywheel batteries for...

  12. Ford Electric Battery Group | Open Energy Information

    Open Energy Info (EERE)

    Electric Battery Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL...

  13. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  14. Carbon Micro Battery LLC | Open Energy Information

    Open Energy Info (EERE)

    Micro Battery LLC Jump to: navigation, search Name: Carbon Micro Battery, LLC Place: California Sector: Carbon Product: Carbon Micro Battery, LLC, technology developer of micro and...

  15. Intellect Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Intellect Battery Co Ltd Jump to: navigation, search Name: Intellect Battery Co Ltd Place: Guangdong Province, China Product: Producer of NiMH rechargeable batteries and...

  16. Advanced Battery Factory | Open Energy Information

    Open Energy Info (EERE)

    Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in 1958. References: Advanced Battery Factory1 This...

  17. Ningbo Veken Battery Company | Open Energy Information

    Open Energy Info (EERE)

    search Name: Ningbo Veken Battery Company Place: China Product: Ningbo-based maker of Lithium polymer, aluminum-shell and lithium power batteries. References: Ningbo Veken Battery...

  18. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make ...

  19. Hierarchically Structured Materials for Lithium Batteries (Journal...

    Office of Scientific and Technical Information (OSTI)

    Hierarchically Structured Materials for Lithium Batteries Citation Details In-Document Search Title: Hierarchically Structured Materials for Lithium Batteries Lithium-ion battery ...

  20. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone ...

  1. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Thirsty' Metals Key to Longer Battery Lifetimes 'Thirsty' Metals Key to Longer Battery Lifetimes Computations at NERSC show how multiply charged metal ions impact battery capacity ...

  2. PHEV Battery Cost Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    es_02_barnett.pdf (615.99 KB) More Documents & Publications PHEV Battery Cost Assessment PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment

  3. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research ... We develop more robust, safer and higher-energy density lithium-ion batteries, while using ...

  4. Depletion Aggregation > Batteries & Fuel Cells > Research > The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries & Fuel Cells In This Section Battery Anodes Battery Cathodes Depletion Aggregation Membranes Depletion Aggregation We are exploring a number of synthetic strategies to ...

  5. NERSC Helps Develop Next-Gen Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December ...

  6. Laor Batteries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Laor Batteries Ltd Jump to: navigation, search Name: Laor Batteries Ltd. Place: Upper Nazareth, Israel Zip: 17105 Product: develops and distributes lead-acid batteries for variety...

  7. Aerospatiale Batteries ASB | Open Energy Information

    Open Energy Info (EERE)

    Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

  8. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Button Stopped button highlighted subbanner graphic: gray bar STOPPED When the vehicle is stopped, such as at a red light, the gasoline engine and electric motor shut off automatically so that energy is not wasted in idling. The battery continues to power auxillary systems, such as the air conditioning and dashboard displays. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See

  9. Hybrid: Cruising

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Button Cruising button highlighted Passing Button Braking Button Stopped Button subbanner graphic: gray bar CRUISING The gasoline engine powers the vehicle at cruising speeds and, if needed, provides power to the battery for later use. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the gasoline engine to

  10. Hybrid: Passing

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Braking Button Stopped Button subbanner graphic: gray bar PASSING During heavy accelerating or when additional power is needed, the gasoline engine and electric motor are both used to propel the vehicle. Additional power from the battery is used to power the electric motor as needed. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is passing another vehicle. There are red arrows flowing from the gasoline

  11. Hybrid: Starting

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary, the electric motor acts as a generator, converting energy from the engine into electricity and storing it in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline

  12. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  13. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  14. Thermal battery degradation mechanisms

    SciTech Connect (OSTI)

    Missert, Nancy A.; Brunke, Lyle Brent

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  15. Battery Life Predictive Model

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.

  16. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  17. battery2.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. Submitting Organization Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM USA 87158-1033 Randy A. Normann (505) 845-9675, (505) 844-3952 (fax), ranorma@sandia.gov Affi rmation I affi rm that all information submitted as a part of, or supplemental to, this entry is fair and accurate representation of this product. ________________________________________________________________ Submitter Signature

  18. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  19. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the

  20. Marine Hybrid Propulsion Market Revenue is anticipated to Reach...

    Open Energy Info (EERE)

    ferry operators are the major adopters of marine hybrid propulsion systems across the world. These vessels primarily operate in coastal areas and inland waterways, where emission...

  1. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Progress of ...

  2. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation es009jang2011o.pdf (764.62 KB) More Documents & Publications Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Progress ...

  3. Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2009-06-01

    NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

  4. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 8

    SciTech Connect (OSTI)

    Tim Richter

    2004-11-08

    The vehicle model has been improved with coastdown testing. The hybrid system was simplified by moving to one battery technology. Full-scale testing apparatus is under construction; majority of parts are ordered and received.

  5. Category:Battery makers | Open Energy Information

    Open Energy Info (EERE)

    Battery makers Jump to: navigation, search Pages in category "Battery makers" The following 5 pages are in this category, out of 5 total. B Battery Ventures F Ford Electric Battery...

  6. Nickel coated aluminum battery cell tabs

    SciTech Connect (OSTI)

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  7. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  8. BLE: Battery Life Estimator | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BLE: Battery Life Estimator BLE: Battery Life Estimator Argonne's Battery Life Estimator (BLE) software is a state-of-the-art tool kit for fitting battery aging data and for ...

  9. Development of Industrially Viable Battery Electrode Coatings...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Development of Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings Development of ...

  10. Flexible low-cost packaging for lithium ion batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Chaiko, D. J.; Henriksen, G. L.; Chemical Engineering

    2004-01-01

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL

  11. Battery, heal thyself: Inventing self-repairing batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery, heal thyself: Inventing self-repairing batteries By Louise Lerner * January 11, 2012 Tweet EmailPrint Imagine dropping your phone on the hard concrete sidewalk-but when...

  12. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  13. Multi-Disciplinary Decision Making and Optimization for Hybrid Electric Propulsion Systems

    SciTech Connect (OSTI)

    Shoultout, Mohamed L.; Malikopoulos, Andreas; Pannala, Sreekanth; Chen, Dongmei

    2014-01-01

    In this paper, we investigate the trade-offs among the subsystems of a hybrid electric vehicle (HEV), e.g., the engine, motor, and the battery, and discuss the related im- plications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences.

  14. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  15. Compliant Glass-Polymer Hybrid Single Ion-Conducting Electrolytes for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Batteries - Joint Center for Energy Storage Research December 21, 2015, Research Highlights Compliant Glass-Polymer Hybrid Single Ion-Conducting Electrolytes for Lithium Batteries Images for Ionic Conductivity Scientific Achievement We have successfully developed non-flammable hybrid single-ion-conducting electrolytes comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. These electrolytes present high transference numbers, unprecedented

  16. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  17. Battery Vent Mechanism And Method

    SciTech Connect (OSTI)

    Ching, Larry K. W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  18. Battery venting system and method

    SciTech Connect (OSTI)

    Casale, Thomas J.; Ching, Larry K. W.; Baer, Jose T.; Swan, David H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  19. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following

  20. AVTA: Battery Testing - Electric Drive and Advanced Battery and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testbed | Department of Energy Battery Testing - Electric Drive and Advanced Battery and Components Testbed AVTA: Battery Testing - Electric Drive and Advanced Battery and Components Testbed The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future

  1. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  2. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 June 9, 2016 2 Outline  Advanced Battery Materials Research (BMR) - Role - Program update  Current research emphasis - Lithium metal anode and solid electrolytes - Sulfur

  3. Improving Batteries for Electric Vehicle Use is Common Goal - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Improving Batteries for Electric Vehicle Use is Common Goal May 11, 2004 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will collaborate with the Korea Automotive Research Institute (KATECH) on a project to test advanced battery systems that could be used in future generations of electric, hybrid and fuel cell vehicles. The research effort was announced today following the formal signing of a memorandum of understanding by Stan Bull, NREL

  4. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  5. Lithium-Ion Battery Recycling Issues | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pmp_05_gaines.pdf (566.25 KB) More Documents & Publications International Collaboration With a Case Study in Assessment of Worlds Supply of Lithium Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6

  6. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  7. Safe battery solvents

    DOE Patents [OSTI]

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  8. Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries

    SciTech Connect (OSTI)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  9. Polymer considerations in rechargeable lithium ion plastic batteries

    SciTech Connect (OSTI)

    Gozdz, A.S.; Tarascon, J.M.; Schmutz, C.N.; Warren, P.C.; Gebizlioglu, O.S.; Shokoohi, F.

    1995-07-01

    A series of polymers have been investigated in order to determine their suitability as ionically conductive binders of the active electrode materials and as hybrid electrolyte matrices in plastic lithium ion rechargeable batteries. Hybrid electrolyte films used in this study have been prepared by solvent casting using a 1:1 w/w mixture of the matrix polymer with 1 M LiPF{sub 6} in EC/PC. Based on electrochemical stability, mechanical strength, liquid electrolyte retention, and softening temperature, random copolymers of vinylidene fluoride containing ca. 12 mole % of hexafluoropropylene have been selected for this application.

  10. Ultracapacitor/battery electronic interface development. Final report

    SciTech Connect (OSTI)

    King, R.D.; Salasoo, L.; Schwartz, J.; Cardinal, M.

    1998-06-30

    A flexible, highly efficient laboratory proof-of-concept Ultracapacitor/Battery Interface power electronic circuit with associated controls was developed on a cost-shared contract funded by the US Department of Energy (DOE), the New York State Energy Research and Development Authority (NYSERDA), and the General Electric Company (GE). This power electronic interface translates the varying dc voltage on an ultracapacitor with bi-directional power flow to the dc bus of an inverter-supplied ac propulsion system in an electric vehicle application. In a related application, the electronic interface can also be utilized to interface a low-voltage battery to a dc bus of an inverter supplied ac propulsion system. Variations in voltage for these two intended applications occur (1) while extracting energy (discharge) or supplying energy (charge) to an ultracapacitor, and (2) while extracting energy (discharge) or supplying energy (charge) to a low-voltage battery. The control electronics of this interface is designed to be operated as a stand-alone unit acting in response to an external power command. However, the interface unit`s control is not configured to provide any of the vehicle system control functions associated with load leveling or power splitting between the propulsion battery and the ultracapacitor in an electric or hybrid vehicle application. A system study/preliminary design effort established the functional specification of the interface unit, including voltage, current, and power ratings, to meet the program objectives and technical goals for the development of a highly efficient ultracapacitor/battery electronic interface unit; and performed a system/application study of a hybrid-electric transit bus including an ultracapacitor and appropriate electronic interface. The maximum power capability of the ultracapacitor/battery electronic interface unit is 25 kW.

  11. Battery Test Manual For Electric Vehicles, Revision 3

    SciTech Connect (OSTI)

    Christophersen, Jon P.

    2015-06-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Electric Vehicles (EV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for EVs. However, it does share some methods described in the previously published battery test manual for plug-in hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Chul Bae of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  12. Battery switch for downhole tools

    DOE Patents [OSTI]

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  13. Seal for sodium sulfur battery

    DOE Patents [OSTI]

    Topouzian, Armenag; Minck, Robert W.; Williams, William J.

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  14. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  15. AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT

    SciTech Connect (OSTI)

    Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

    2010-11-01

    The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

  16. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  17. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 1

    SciTech Connect (OSTI)

    Salasoo, Lembit

    2003-02-11

    The mine proving ground to be used for the hybrid off highway vehicle (OHV) demonstration was visited, to obtain haul route profile data and OHV vehicle data. A 6500-ft haul mission with 7% average grade was selected. Enhancements made to a dynamic model of hybrid missions provided capability to analyze hybrid OHV performance. A benefits study defined relationships between fuel and productivity benefits and hybrid system parameters. OHV hybrid system requirements were established, and a survey of candidate energy storage technology characteristics was carried out. Testing of the performance of an existing power battery bank verified its suitability for use in the hybrid OHV demonstration.

  18. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  19. Batteries & Fuel Cells > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries & Fuel Cells Here are the details of what we're doing in the labs to improve battery & fuel cell technology. Battery Anodes Battery Cathodes Depletion Aggregation ...

  20. China Hyper Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Battery Co Ltd Jump to: navigation, search Name: China Hyper Battery Co Ltd Place: Shenzhen, China Zip: 518048 Product: Manufacturer and exporter of batteries and battery packs....

  1. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H.

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  2. Predictive Models of Li-ion Battery Lifetime (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  3. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  4. NRELs Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries that can deliver the range, performance, reliability, price, and safety that drivers

  5. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K.; Andrew, Michael G.; Eskra, Michael D.

    1992-01-01

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  6. Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calorimetry Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  7. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Stopped Button subbanner graphic: gray bar BRAKING: PART 1 Regenerative braking converts otherwise wasted energy from braking into electricity and stores it in the battery. In regenerative braking, the electric motor is reversed so that, instead of using electricity to turn the wheels, the rotating wheels turn the motor and create electricity. Using energy from the wheels to turn the motor slows the vehicle down. Go to next… stage graphic: vertical blue rule Main stage: See

  8. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses Citation Details In-Document Search Title: Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid

  9. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  10. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect (OSTI)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  11. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Testing Reports DC Fast Charge Impacts on Battery Life and Vehicle Performance INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems

  12. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 Analysis of Electric Vehicle Battery Performance Targets Building America Whole-House Solutions ...

  13. Block copolymer battery separator

    DOE Patents [OSTI]

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  14. Batteries Breakout Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Reasonable for EV100 and EV300, Power/energy does not box well for PHEV40 * Need to look at whole system view of EV300 (utilization is not high) * EV100 has much better utilization * Target needs to capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers

  15. Battery Chargers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Chargers Battery Chargers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Battery Chargers -- v1.0 (94 KB) More Documents & Publications Illuminated Exit Signs

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery...

  17. SANIK Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    SANIK Battery Co Ltd Jump to: navigation, search Name: SANIK Battery Co., Ltd. Place: China Product: Foshan City-based NiCd and NiMH rechargeable batteries producer for smaller...

  18. JYH Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    JYH Battery Co Ltd Jump to: navigation, search Name: JYH Battery Co, Ltd Place: China Product: China-based maker of NiMH rechargeable batteries, also with some NiCd and Li-ion...

  19. Beijing Tianruichi Battery TRC | Open Energy Information

    Open Energy Info (EERE)

    Tianruichi Battery TRC Jump to: navigation, search Name: Beijing Tianruichi Battery (TRC) Place: China Product: China-based maker of Li-Poly, Li-Iron and Li-Ion batteries....

  20. Category:Batteries | Open Energy Information

    Open Energy Info (EERE)

    9 pages are in this category, out of 9 total. * Definition:Battery B Batteries and Energy Storage Technology BEST L Definition:Lead-acid battery L cont. Definition:DIY...

  1. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ ...

  2. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can be used in ultracapacitors, lithium-ion batteries, and advanced lead acid batteries. ... EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo ...

  3. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.

    SciTech Connect (OSTI)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution

  4. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  5. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  6. EV Everywhere Challenge Battery Workshop

    Broader source: Energy.gov [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  7. Si composite electrode with Li metal doping for advanced lithium-ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  8. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles ... 4.4 Battery Electric Vehicles 2013 Tesla Model S 85 2013 Tesla Model S 60 2013 ...

  9. Overview of Battery R&D Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vtpn07_es_howell_2012_o.pdf (1.38 MB) More Documents & Publications Hybrid Electric Systems Overview of Battery R&D Activities

  10. Electromechanical battery research and development at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

    1993-06-01

    The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

  11. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  12. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  13. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  14. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  15. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  17. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Thirsty' Metals Key to Longer Battery Lifetimes 'Thirsty' Metals Key to Longer Battery Lifetimes Computations at NERSC show how multiply charged metal ions impact battery capacity June 30, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked for months between charges. A massive battery that stores the intermittent electricity from wind turbines and releases it when

  18. Electric Fuel Battery Corporation | Open Energy Information

    Open Energy Info (EERE)

    Fuel Battery Corporation Jump to: navigation, search Name: Electric Fuel Battery Corporation Place: Auburn, Alabama Zip: 36832 Product: Develops and manufactures BA-8180U high...

  19. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  20. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  1. Kayo Battery Industries Group | Open Energy Information

    Open Energy Info (EERE)

    started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications including batteries suitable for...

  2. Bullith Batteries AG | Open Energy Information

    Open Energy Info (EERE)

    Batteries AG Place: Ismaning, Germany Zip: 85737 Product: Batteries producer using the lithium-polymer technology. Coordinates: 48.22727, 11.676305 Show Map Loading map......

  3. TCL Hyperpower Batteries Inc | Open Energy Information

    Open Energy Info (EERE)

    Batteries, Inc Place: China Product: China-based subsidiary of TCL Group, they make Lithium Polymer, NiMH and Primary batteries, primarily for smaller devices. References: TCL...

  4. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electrolytic orthoborate salts for lithium batteries Title: Electrolytic orthoborate salts for lithium batteries Orthoborate salts suitable for use as electrolytes in lithium ...

  5. Cathode material for lithium batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Title: Cathode material for lithium batteries A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium ...

  6. Zibo Storage Battery Factory | Open Energy Information

    Open Energy Info (EERE)

    Storage Battery Factory Jump to: navigation, search Name: Zibo Storage Battery Factory Place: Zibo, Shandong Province, China Zip: 255056 Product: China-based affiliate of CSIC...

  7. Advanced Lithium Ion Battery Technologies - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence ... improved battery life when used in the fabrication of negative silicon electrodes. ...

  8. Vehicle Technologies Office Battery Research Partner Requests...

    Office of Environmental Management (EM)

    Battery Research Partner Requests Proposals for Thermal Management Systems Vehicle Technologies Office Battery Research Partner Requests Proposals for Thermal Management Systems ...

  9. EV Everywhere Grand Challenge - Battery Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...2012 EV Everywhere Grand Challenge -- Battery Workshop Thursday, July 26, 2012 - ... Technologies Program 9:25-9:50 AM EV BATTERY TECHNOLOGY-CURRENT STATUS & COST ...

  10. Dual Functional Cathode Additives for Battery Technologies -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Dual Functional Cathode Additives for Battery Technologies Brookhaven ... activation of the cell of a lithium battery having a primary metal sulfide additive ...

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  12. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  13. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: ... Improving charge time and these other battery characteristics could significantly expand ...

  14. Epitaxial Single Crystal Nanostructures for Batteries & PVs ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance ...

  15. Self-Regulating, Nonflamable Rechargeable Lithium Batteries ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryRechargeable lithium batteries are superior to ...

  16. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov ...

  17. Ovonic Battery Company Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery...

  18. electrochemical battery stress-induced degradation mechanisms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrochemical battery stress-induced degradation mechanisms - Sandia Energy Energy ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  19. Horizon Batteries formerly Electrosource | Open Energy Information

    Open Energy Info (EERE)

    Batteries formerly Electrosource Jump to: navigation, search Name: Horizon Batteries (formerly Electrosource) Place: Texas Sector: Vehicles Product: Manufacturer of high-power,...

  20. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-05-01

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  1. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  2. VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The

  3. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  4. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  5. Isothermal Battery Calorimeter Technology Transfer and Development: Cooperative Research and Development Final Report, CRADA Number CRD-12-461

    SciTech Connect (OSTI)

    Pesaran, A.; Keyser, M.

    2014-12-01

    During the last 15 years, NREL has been utilizing its unique expertise and capabilities to work with industry partners on battery thermal testing and electric and hybrid vehicle simulation and testing. Further information and publications about NREL's work and unique capabilities in battery testing and modeling can be found at NREL's Energy Storage website: http://www.nrel.gov/vehiclesandfuels/energystorage/. Particularly, NREL has developed and fabricated a large volume isothermal battery calorimeter that has been made available for licensing and potential commercialization (http://techportal.eere.energy.gov/technology.do/techID=394). In summer of 2011, NREL developed and fabricated a smaller version of the large volume isothermal battery calorimeter, called hereafter 'cell-scale LVBC.' NETZSCH Instruments North America, LLC is a leading company in thermal analysis, calorimetry, and determination of thermo-physical properties of materials (www.netzsch-thermal-analysis.com). NETZSCH is interested in evaluation and eventual commercialization of the NREL large volume isothermal battery calorimeter.

  6. Hydraulic seal battery terminal

    SciTech Connect (OSTI)

    Stadnick, S.J.

    1980-09-23

    A self-sealing battery terminal is described that includes a hydroformed Inconel outer case, a low shear strength sealant material, and a central post in the form of a bolt which acts as both a conductor and transmits the preload from a pair of Belleville washers to a lower ceramic washer. The lower ceramic washer acts like a piston to compress the sealant when the nut on the central post is tightened. The Belleville washers serve to maintain a minimum tension on the central post. A top ceramic washer is held in place by the tension in the central bolt as long as the tension exceeds a minimum value.

  7. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  8. The ANL electric vehicle battery R D program for DOE-EHP

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  9. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore » electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less

  10. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    SciTech Connect (OSTI)

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueous electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.

  11. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  12. Evaluation of electric vehicle battery systems through in-vehicle testing: Third annual report, April 1989

    SciTech Connect (OSTI)

    Blickwedel, T.W.; Thomas, W.A.; Whitehead, G.D.

    1989-04-01

    This third annual summary report documents the performance from October 1986 through September 1987 of the Tennessee Valley Authority's ongoing project to evaluate near-term electric vehicle traction battery packs. Detailed test procedures and test data are available from EPRI in an informal data report. The purpose of this field test activity is to provide an impartial life evaluation and comparison of the performance of various battery systems in a real-world operating environment. Testing includes initial acceptance testing of battery components and systems, daily in-vehicle operation of the batteries, monthly in-vehicle driving range tests, and periodic static (constant current) discharge tests under computer control. This year's report gives the final results on a NiZn, NiCd, Gel Cell, and two lead-acid battery packs. Specific energy and monthly driving ranges (SAE J227a ''C'' cycle and 35 mi/h constant speed cycles) are maintained throughout battery life. Vehicle range test data is analyzed statistically and variable conditions are normalized for comparative purposes. Battery modules in the pack are replaced when their measured ampere-hour capacity at a fixed discharge rate drops to 60 percent of the manufacturer's rated value. The life of a test battery pack is terminated when 25 percent of the modules in the pack have been replaced or require replacement. 26 figs., 8 tabs.

  13. Full Hybrid: Low Speed

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Cruising button Passing button Braking button Stopped button LOW SPEED For initial acceleration and slow-speed driving, as well as reverse, the electric motor uses electricity from the battery to power the vehicle. If the battery needs to be recharged, the generator starts the engine and converts energy from the engine into electricity, which is stored in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device,

  14. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  15. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  16. Battery Life Data Analysis

    Energy Science and Technology Software Center (OSTI)

    2008-07-01

    The FreedomCar Partnership has established life goals for batteries. Among them is a 15 year calendar life. The software and the underlying methodology attempt to predict cell and battery life using, at most, two years of test data. The software uses statistical models based on data from accelerated aging experiments to estimate cell life. The life model reflects the average cell performance under a given set of stress conditions with time. No specific form ofmore » the life model is assumed. The software will fit the model to experimental data. An error model, reflecting the cell-to-cell variability and measurement errors, is included in the software. Monte Carlo simulations, based on the developed models, are used to assess Lack-of-fit and develop uncertainty limis for the average cell life. The software has three operating modes: fit only, fit and simulation and simulation only. The user is given these options by means of means and alert boxes.« less

  17. BEST (Battery Economics for more Sustainable Transportation)

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    Computer software for the simulation of battery economics based on various transportation business models.

  18. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  19. Hybrid: Overview

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is

  20. Room temperature, hybrid sodium-based flow batteries with multi...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 5; Journal ID: ISSN 2045-2322 Publisher: Nature Publishing Group Research Org: Pacific Northwest National Laboratory (PNNL), ...

  1. Recycling Hybrid and Elecectric Vehicle Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    January 29, 2013 "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to analyze, measure, and then carefully

  2. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi...

    Office of Scientific and Technical Information (OSTI)

    ... J. Power Sources 217, 199-203 (2012). 40. Binary Phase Diagram. ASM International, Materials Park, OH, 2000. 41. Ionotec Specifications. at

  3. Hybrid anodes for redox flow batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. ...

  4. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  5. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  6. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J.; Liu, Meilin; DeJonghe, Lutgard C.

    1992-01-01

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  7. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  8. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  9. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Office of Scientific and Technical Information (OSTI)

    Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation Neubauer, J. 25 ENERGY STORAGE BATTERY; LITHIUM-ION; STATIONARY ENERGY STORAGE; BLAST; BATTERY DEGRADATION;...

  10. Leading experts to speak at battery & energy storage technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including: new battery chemistries, battery longevity and performance, energy storage in electric grid applications and the latest developments in fuel cells and flow batteries. ...

  11. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  12. Hunan Copower EV Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Copower EV Battery Co Ltd Jump to: navigation, search Name: Hunan Copower EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and...

  13. Guangzhou Fullriver Battery New Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Fullriver Battery New Technology Co, Ltd Place: China Product: China-based maker of Lithium Polymer and Lithium Iron batteries as well protection circuit modules and battery...

  14. Estimating the system price of redox flow batteries for grid...

    Office of Scientific and Technical Information (OSTI)

    Estimating the system price of redox flow batteries for grid storage Citation Details ... Subject: energy storage; flow battery; grid storage; lithium-ion battery; manufacturing ...

  15. Fact Sheet: Vanadium Redox Flow Batteries (October 2012)

    Office of Environmental Management (EM)

    temperature window by 83%, so the battery can operate between -5 and 50C. Other ... Old Battery Technology New Battery Technology The benefits of the new electrolyte include: ...

  16. EERE Success Story-Colorado: Isothermal Battery Calorimeter Quantifies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries EERE Success Story-Colorado: Isothermal Battery Calorimeter Quantifies ...

  17. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Computer-Aided Engineering of Batteries (CAEBAT) and Introduction to Multi-Scale, Multi-Dimensional (MSMD) Modeling of Lithium-Ion Batteries Battery Thermal Modeling ...

  18. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion ...

  19. Recent Developments and Trends in Redox Flow Batteries - Joint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 1, 2015, Research Highlights Recent Developments and Trends in Redox Flow Batteries Different flow batteries schemes were investigated. The classic flow battery (top left, ...

  20. Sandia National Laboratories: Due Diligence on Lead Acid Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

  1. Molecular-Confinement of Polysulfide within HybridElectrodes for High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Loading in Lithium Sulfur Batteries - Joint Center for Energy Storage Research February 19, 2015, Research Highlights Molecular-Confinement of Polysulfide within HybridElectrodes for High Mass Loading in Lithium Sulfur Batteries (Top) Nitrogen doping effectively attracts and stabilizes sulfur radicals generated during the electrochemical process. (Bottom) A high areal capacity of ca. 2.5 mAh/cm2 with capacity retention of 81.6% over 100 cycles. Scientific Achievement N-doped carbon

  2. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  3. Thermal battery with composite anode

    SciTech Connect (OSTI)

    Higley, L.R.

    1990-11-06

    This patent describes a thermal battery for generating electrical energy. It comprises: a sodium composite electrode comprising sodium metal and a protective metal; a cathode; and a separator located between the sodium composite electrode and the cathode.

  4. Electroactive materials for rechargeable batteries

    DOE Patents [OSTI]

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  5. World's First Printed Car

    SciTech Connect (OSTI)

    Rogers, Jay

    2015-06-03

    Local Motors partnered with ORNL to print the worlds first 3D-printed car (Strati) at the 2014 International Manufacturing Technology Show.

  6. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  7. The Battery Storage Hub is Making the Battery of the Future ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 8, 2014, Videos The Battery Storage Hub is Making the Battery of the Future Deputy Director Jeff Chamberlain (JCESR) details how JCESR research is aimed at developing ...

  8. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries

    Broader source: Energy.gov [DOE]

    Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

  9. Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half

    Broader source: Energy.gov [DOE]

    Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

  10. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  11. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  12. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  13. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  14. Alkali metal/sulfur battery

    DOE Patents [OSTI]

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  15. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  16. Microsoft Word - RelaxedBattery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Persistent State-of-Charge Heterogeneity in Fully Relaxed Battery Electrode Particles Lithium ion batteries are used ubiquitously for portable energy storage in today's modern electronic devices and have served in that capacity for decades. Recently, budding energy storage markets - such as those of electric vehicles, large-scale renewable energy storage, and grid balancing - have emerged that require storage capabilities that are beyond what today's lithium ion technologies currently provide.

  17. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  18. Lessons Learned from the Puerto Rico Battery Energy Storage System

    SciTech Connect (OSTI)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  19. Thermal batteries: A technology review and future directions

    SciTech Connect (OSTI)

    Guidotti, R.A.

    1995-07-01

    Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couples that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.

  20. Using all energy in a battery

    SciTech Connect (OSTI)

    Dudney, Nancy J.; Li, Juchuan

    2015-01-09

    It is not simple to pull all the energy from a battery. For a battery to discharge, electrons and ions have to reach the same place in the active electrode material at the same moment. To reach the entire volume of the battery and maximize energy use, internal pathways for both electrons and ions must be low-resistance and continuous, connecting all regions of the battery electrode. Traditional batteries consist of a randomly distributed mixture of conductive phases within the active battery material. In these materials, bottlenecks and poor contacts may impede effective access to parts of the battery. On page 149 of this issue, Kirshenbaum et al. (1) explore a different approach, in which silver electronic pathways form on internal surfaces as the battery is discharged. Finally, the electronic pathways are well distributed throughout the electrode, improving battery performance.

  1. Using all energy in a battery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dudney, Nancy J.; Li, Juchuan

    2015-01-09

    It is not simple to pull all the energy from a battery. For a battery to discharge, electrons and ions have to reach the same place in the active electrode material at the same moment. To reach the entire volume of the battery and maximize energy use, internal pathways for both electrons and ions must be low-resistance and continuous, connecting all regions of the battery electrode. Traditional batteries consist of a randomly distributed mixture of conductive phases within the active battery material. In these materials, bottlenecks and poor contacts may impede effective access to parts of the battery. On pagemore » 149 of this issue, Kirshenbaum et al. (1) explore a different approach, in which silver electronic pathways form on internal surfaces as the battery is discharged. Finally, the electronic pathways are well distributed throughout the electrode, improving battery performance.« less

  2. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P.; Cunningham, R.; Hockings, K.

    1997-12-31

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  3. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  4. Project Milestone. Analysis of Range Extension Techniques for Battery Electric Vehicles

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Pesaran, Ahmad

    2013-07-01

    This report documents completion of the July 2013 milestone as part of NREL’s Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy. The objective was to perform analysis on range extension techniques for battery electric vehicles (BEVs). This work represents a significant advancement over previous thru-life BEV analyses using NREL’s Battery Ownership Model, FastSim,* and DRIVE.* Herein, the ability of different charging infrastructure to increase achievable travel of BEVs in response to real-world, year-long travel histories is assessed. Effects of battery and cabin thermal response to local climate, battery degradation, and vehicle auxiliary loads are captured. The results reveal the conditions under which different public infrastructure options are most effective, and encourage continued study of fast charging and electric roadway scenarios.

  5. Graphene-based battery electrodes having continuous flow paths...

    Office of Scientific and Technical Information (OSTI)

    Title: Graphene-based battery electrodes having continuous flow paths Some batteries can ... Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show ...

  6. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  7. Hybrid electric vehicle power management system

    SciTech Connect (OSTI)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  8. World Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  9. WCI - World Consensus Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World Consensus Initiative 2005 Workshop Recap WCI 2004 Website WCI Book Contributed Papers

  10. Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faster Battery Charging, Discharging Technology available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery ...

  11. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and ...

  12. Low-cost flexible packaging for high-power Li-Ion HEV batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Henriksen, G. L.

    2004-06-18

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL

  13. Materials cost evaluation report for high-power Li-ion batteries.

    SciTech Connect (OSTI)

    Henriksen, G. L.; Amine, K.; Liu, J.

    2003-01-10

    The U.S. Department of Energy (DOE) is the lead federal agency in the partnership between the U.S. automobile industry and the federal government to develop fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs) as part of the FreedomCAR Partnership. DOE's FreedomCAR and Vehicle Technologies Office sponsors the Advanced Technology Development (ATD) Program--involving 5 of its national laboratories--to assist the industrial developers of high-power lithium-ion batteries to overcome the barriers of cost, calendar life, and abuse tolerance so that this technology can be rendered practical for use in HEV and FCEV applications under the FreedomCAR Partnership. In the area of cost reduction, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously extending the calendar life and enhancing the inherent safety of this electrochemical system. The material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in the production of batteries that are designed to meet the requirements of a minimum-power-assist HEV battery or a maximum-power-assist HEV battery for the FreedomCAR Partnership. Similar models will be developed for FEV batteries when the requirements for those batteries are finalized. In order to quantify the material costs relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared with the battery cost goals to determine the probability of meeting the goals with these cell chemistries. As can be

  14. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  15. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  16. Battery Wireless Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Inc Jump to: navigation, search Name: Battery & Wireless Solutions Inc Place: New Westminster, British Columbia, Canada Zip: V3M 5V9 Product: Distributor of battery and...

  17. Forever Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Forever Battery Co, Ltd Place: China Product: China-based producer of NiMH, NiCd and Li-ion batteries and packs primarily for smaller...

  18. Axion Battery Products Inc | Open Energy Information

    Open Energy Info (EERE)

    Axion Battery Products Inc Jump to: navigation, search Name: Axion Battery Products Inc Place: Woodbridge, Ontario, Canada Zip: L4L 5Y9 Product: Subsidiary of Axion Power...

  19. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion...

  20. Battery Life Predictor Model - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Battery Life Predictor Model National Renewable ... in order to meet the battery warrantee's end-of-life (EOL) power and energy requirements. ...

  1. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  2. Probability-theoretic characteristics of solar batteries

    SciTech Connect (OSTI)

    Lidorenko, N.S.; Asharin, L.N.; Borisova, N.A.; Evdokimov, V.M.; Ryabikov, S.V.

    1980-01-01

    Results are reported for an investigation into the characteristics of solar batteries on the basis of probability theory with the photocells treated as current generators; methods for reducing solar-battery circuit losses are considered.

  3. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  5. Recent Analysis of UCAPs in Mild Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.

    2006-05-01

    This report presents the analysis of ultracapacitors for mild/moderate hybrid electric vehicle (HEV) performance. The objectives of this report are to: (1) review the fuel economy improvement trends of today's HEVs with respect to degree of hybridization; (2) perform analysis to see the extent of fuel economy improvement possible with various strategies in mild/moderate HEVs, with no engine downsizing, using either batteries or ultracapacitors; (3) identify energy requirements of various driving events/functions--what matches a limited ucap's energy; and (4) discuss potential roles for high-voltage ultracapacitors in HEVs, if any.

  6. Evaluation of lithium-ion synergetic battery pack as battery charger

    SciTech Connect (OSTI)

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-09-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and a battery charger. In this paper, the authors compare the performance of the Synergetic Battery Pack as a battery charger with several simple conventional battery charging circuits via computer simulation. The factors of comparison were power factor, harmonic distortion, and circuit efficiency. The simulations showed that the SBP is superior to the conventional charging circuits since the power factor is unity and harmonic distortion is negligible.

  7. Hybrid and Electric Traction Motor | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World-Class Traction Motor for Hybrid and Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) A World-Class Traction Motor for Hybrid and Electric Vehicles Engineers at GE Global Research are advancing motor technology that could have a substantial impact on hybrid and electric vehicles (EVs) of the

  8. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  9. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  10. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  11. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es111_gallagher_2012_o.pdf (1.1 MB) More Documents & Publications Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes PHEV Battery Cost Assessment EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

  12. California Lithium Battery, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage

  13. Copper (II) chloride-tetrachloroaluminate battery

    SciTech Connect (OSTI)

    Erbacher, J.K.; Hussey, C.L.; King, L.A.

    1980-06-10

    A pelletized, light weight, thermal battery having copper (II) chloride and an alkali tetrachloroaluminate as electrolytic components is disclosed.

  14. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  15. Alternator control for battery charging

    SciTech Connect (OSTI)

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  16. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  17. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  18. Hybrid Radical Energy Storage Device - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Hybrid Radical Energy Storage Device National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary In order to provide a cost effective, environmentally benign and efficient means for storing electric energy from renewable sources, breakthroughs are needed in rechargeable battery technology that will substantially increase energy and power densities.

  19. The ANL electric vehicle battery R&D program for DOE-EHP. Quarterly progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  20. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  1. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  2. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  3. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  4. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  5. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  6. Sodium-sulfur thermal battery

    SciTech Connect (OSTI)

    Ludwig, F.A.

    1990-12-11

    This paper discusses a sodium-sulfur thermal battery for generating electrical energy at temperatures above the melting point of sodium metal and sulfur. It comprises a sodium electrode comprising sodium metal; a sulfur electrode comprising sulfur; and a separator located between the sodium and sulfur electrodes. The separator having sufficient porosity to allow preliminary migration of fluid sodium metal and fluid sulfur and fluid sodium polysulfides therethrough during operation of the thermal battery to form a mixed polysulfides electrolyte gradient within the separator.

  7. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  8. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  9. WORLD EDITOR TRAINING GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORLD EDITOR TRAINING GUIDE Doc number: ESD-12-P19313 Revision: 1.0, April 2013 World Editor Training Guide April 2013 i . CONTENTS CONTENTS ............................................................................................................................... I INTRODUCTION .....................................................................................................................1 Learning Objectives

  10. World Bio Markets

    Broader source: Energy.gov [DOE]

    Held in Amsterdam, Netherlands, the 10th anniversary World Bio Markets convened from March 1– 4, 2015.

  11. Interaction of CuS and sulfur in Li-S battery system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Ke; Su, Dong; Zhang, Qing; Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Gan, Hong

    2015-10-27

    Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithiumion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacitycontributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, undermore » a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li2S3 and CuS. As a result, we identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate.« less

  12. Interaction of CuS and sulfur in Li-S battery system

    SciTech Connect (OSTI)

    Sun, Ke; Su, Dong; Zhang, Qing; Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Gan, Hong

    2015-10-27

    Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithiumion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacitycontributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, under a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li2S3 and CuS. As a result, we identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate.

  13. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  14. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find

  15. Advanced battery technology for electric two-wheelers in the people's Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2009-07-22

    This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

  16. Degradation Mechanisms and Lifetime Prediction for Lithium-Ion Batteries -- A Control Perspective: Preprint

    SciTech Connect (OSTI)

    Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram

    2015-07-29

    Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under different levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.

  17. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  18. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing | Department of Energy Advanced Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing

  19. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  20. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  1. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Todays EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  2. The Science of Battery Degradation.

    SciTech Connect (OSTI)

    Sullivan, John P; Fenton, Kyle R; El Gabaly Marquez, Farid; Harris, Charles Thomas; Hayden, Carl C.; Hudak, Nicholas; Jungjohann, Katherine Leigh; Kliewer, Christopher Jesse; Leung, Kevin; McDaniel, Anthony H.; Nagasubramanian, Ganesan; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M; Zavadil, Kevin R.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  3. Stand Alone Battery Thermal Management System

    SciTech Connect (OSTI)

    Brodie, Brad

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  4. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  5. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  6. Mesoscale hybrid calibration artifact

    DOE Patents [OSTI]

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  7. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    John Olson, PhD

    2004-07-21

    This project involved the synthesis of nanowire -MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing -MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the -MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the -MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into -MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the -MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high

  8. Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards

    SciTech Connect (OSTI)

    Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

    2011-10-19

    Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

  9. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  10. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  11. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS

  12. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  13. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health

    SciTech Connect (OSTI)

    Hsieh, AG; Bhadra, S; Hertzberg, BJ; Gjeltema, PJ; Goy, A; Fleischer, JW; Steingart, DA

    2015-01-01

    We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk moduli of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.

  14. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  15. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  16. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  17. Full Hybrid: Stopped

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Braking button Stopped button STOPPED When the vehicle is stopped, such as at a red light, the gasoline engine and electric motor shut off automatically so that energy is not wasted in idling. All other systems, including the electric air conditioning, continue to run. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery,

  18. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  19. Battery system with temperature sensors

    SciTech Connect (OSTI)

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  20. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  1. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  2. Robotic thermal battery pellet fabrication

    SciTech Connect (OSTI)

    Kimbler, D.L.; Townsend, A.S.; Walton, R.D.; Jones, C.W.

    1985-03-01

    Thermal battery manufacturing at the General Electric Neutron Devices Department (GEND) is a sequence of operations involving materials processing, component manufacture, and assembly. These operations, for the most part, have been manually performed although some operations have been computer- or fixture-assisted. The high labor intensity and the need for process consistency in these operations made the conversion to a robotic work cell appealing in that it could increase productivity while allowing the reassignment of highly-trained workers to other duties. An Alpha robot (Microbot, Inc.) was coupled with a Hewlett-Packard HP-9816 microcomputer, and custom software was developed to control the thermal battery manufacturing process. The software provided a menu-driven main program with feedback at virtually every step to allow technicians with little or no computer experience to operate the system. Previously, one or two workers were assigned to each of several industrial presses used in the manufacture of thermal batteries. With the introduction of a robotic operator and a microcomputer process control, one worker alone could support two to three presses, thus freeing as many as five workers to be assigned to other labor intensive duties. The production rate of the robotic work cell was approximately the same as the manual method, but the consistency of production and yield showed significant improvement.

  3. NERSC Helps Develop Next-Gen Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December 18, 2012 Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 XBD201110-01310.jpg Kristin Persson To reduce the United States' reliance on foreign oil and lower consumer energy costs, the Department of Energy (DOE) is bringing together five national laboratories, five universities and four private firms to revolutionize

  4. Lithium-Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Energy Analysis Energy Analysis Find More Like This Return to Search Lithium-Ion Batteries Predictive computer models for lithium-ion battery performance under standard and potentially abusive conditions National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Design. Build. Test. Break. Repeat. Developing batteries is an expensive and time-intensive process. Testing costs the

  5. Primer on lead-acid storage batteries

    SciTech Connect (OSTI)

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  6. Self-Regulating, Nonflamable Rechargeable Lithium Batteries

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-06-23

    Rechargeable lithium batteries are superior to other rechargeable batteries due to their ability to store more energy per unit size and weight and to operate at higher voltages. The performance of lithium ion batteries available today, however, has been compromised by their tendency to overheat during operation. This condition, called “thermal runaway,” can melt the battery’s lithium metal and, in the most serious cases, result in explosive chemical reactions....

  7. Pyrite cathode material for a thermal battery

    SciTech Connect (OSTI)

    Pemsler, J.P.; Litchfield, J.K.

    1991-02-07

    The present invention relates in general to a synthetic cathode material for a molten salt battery and, more particularly, to a process of providing and using synthetic pyrite for use as a cathode in a thermal battery. These batteries, which have been successfully used in a number of military applications, include iron disulfide cathode material obtained as benefacted or from natural occurring pyrite deposits, or as a byproduct of flotation concentrate from the processing of base or noble metal ores.

  8. Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

    2013-06-01

    This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

  9. Shenzhen Better Power Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Power Battery Co Ltd Jump to: navigation, search Name: Shenzhen Better Power Battery Co, Ltd Place: China Product: China-based maker of NiMH batteries. References: Shenzhen Better...

  10. Shida Battery Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shida Battery Technology Co Ltd Jump to: navigation, search Name: Shida Battery Technology Co, Ltd Place: China Product: Shida is a China-based maker of NiMH and Li-Poly batteries...

  11. Zhejiang KAN Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    KAN Battery Co Ltd Jump to: navigation, search Name: Zhejiang KAN Battery Co Ltd Place: Suichang, Zhejiang Province, China Zip: 323300 &1228 Product: Zhejiang - based NiMH battery...

  12. High-energy metal air batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    High-energy metal air batteries Title: High-energy metal air batteries Disclosed herein are embodiments of lithiumair batteries and methods of making and using the same. Certain ...

  13. Japan Storage Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Storage Battery Co Ltd Jump to: navigation, search Name: Japan Storage Battery Co Ltd Place: Kyoto-shi, Kyoto, Japan Zip: 601-8520 Product: Japan Storage Battery offers full...

  14. YaoAn Battery Potech | Open Energy Information

    Open Energy Info (EERE)

    Name: YaoAn Battery Potech Place: China Product: China-based maker of various types of Lithium rechargeable batteries. References: YaoAn Battery Potech1 This article is a stub....

  15. Zhuhai Hange Battery Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhuhai Hange Battery Tech Co, Ltd Place: China Product: ZhuHai City - based maker of Lithium Polymer batteries. References: Zhuhai Hange Battery Tech Co, Ltd1 This article is a...

  16. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Situ Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of ...

  17. TRNSYS HYBRID wind diesel PV simulator

    SciTech Connect (OSTI)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J.

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  18. Performance evaluation of stand alone hybrid PV-wind generator

    SciTech Connect (OSTI)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  19. CanTrilBat_ThermalBattery

    SciTech Connect (OSTI)

    Moffat, Harry K.; John Hewson, Victor Brunini

    2013-09-24

    CanTrilBat applications solves transient problems involving batteries. It is a 1-D application that represents 3-D physical systems that can be reduced using the porous flow approximation for the anode, cathode, and separator. CanTrilBat_ThermalBattery adds constitutive models on top of the CanTrilBat framework. CanTrilBat_ThermalBattery contains constitutive models for the electrode behavior when more than one electrode heterogeneous surface is reacting. This is a novel capability within the battery community. These models are named as the “Electrode_MultiPlateau” model.

  20. Steps to Commercialization: Nickel Metal Hydride Batteries |...

    Broader source: Energy.gov (indexed) [DOE]

    funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of...