Powered by Deep Web Technologies
Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Join the EV Everywhere Workplace Charging Challenge  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Workplace Charging Challenge is open to employers of all sizes and industry types in the United States. Taking the Challenge offers benefits to employers who are...

2

Workplace Charging Challenge Partner: Chrysler Group LLC | Department...  

Broader source: Energy.gov (indexed) [DOE]

Joined the Workplace Charging Challenge: January 31, 2013 Headquarters: Auburn Hills, MI Charging Locations: Auburn Hills, MI Domestic Employees: 44,000 More Partners See All...

3

Workplace Charging Challenge: Partners | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the Challenge Workplace Charging

4

Workplace Charging Challenge: Press Release template for Clean Cities coordinators  

Broader source: Energy.gov [DOE]

An editable press release that Clean Cities coordinators can use to announce local Partners' participation in the EV Everywhere Workplace Charging Challenge

5

Workplace Charging Challenge: Press Release template for Ambassadors  

Broader source: Energy.gov [DOE]

An editable press release that Ambassador organizations can use to announce their and local Partners' participation in the EV Everywhere Workplace Charging Challenge

6

Workplace Charging Challenge: Join the Challenge | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the Challenge Workplace Charging Challenge:

7

Workplace Charging Challenge: Promote PEVs and Charging at Work |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the Challenge Workplace ChargingDepartment of

8

EV Everywhere Workplace Charging Challenge: Resources | Department...  

Broader source: Energy.gov (indexed) [DOE]

the basics of electric vehicles and their charging needs. Vehicle Basics The Alternative Fuel Data Center's section on Plug-in Vehicles provides basic information on these...

9

Workplace Charging Challenge Partner: National Renewable Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

advance related science and engineering, and transfer knowledge and innovations. A 1,800-car parking garage at NREL's South Table Mountain Campus includes 36 charging stations. In...

10

Workplace Charging Challenge Partner: Lawrence Berkeley National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has made plug-in electric vehicle (PEV) readiness a major focus of its site sustainability strategy. The laboratory began PEV charging for employees on a modest scale in May...

11

Workplace Charging Challenge Progress Update 2014: Employers Take Charge  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| DepartmentZapposWorkplace

12

Workplace Charging Challenge Progress Update 2014: Employers Take Charge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14WorkingPrimaryWasteTechUsWorkplace

13

Workplace Charging Challenge Summit 2014 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | DepartmentDeborahTanzimaJuly2015Workplace Charging

14

Workplace Charging Challenge Summit 2014: Agenda | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| DepartmentZapposWorkplaceFinal

15

Workplace Charging Challenge Summit 2014: Session 1, Track B | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | DepartmentDeborahTanzimaJuly2015Workplace

16

Workplace Charging Challenge Partner: Fraunhofer Center for Sustainabl...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

work and at home. By installing electric vehicle charging stations at their Albuquerque solar test laboratory, employees who now drive longer distances to work can consider the use...

17

Workplace Charging Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14WorkingPrimaryWasteTechUs

18

Workplace Charging Challenge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve Laurens WomenPioneering U.S. employers are

19

Workplace Charging Challenge 2014 Agenda  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve Laurens WomenPioneering U.S. employers are:00

20

Thirteen Major Companies Join Energy Department's Workplace Charging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

availability of workplace charging, increasing the convenience of plug-in electric vehicles (PEVs) and providing drivers with more options. "The market for electric vehicles is...

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Workplace Charging Success: MetLife | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the Challenge Workplace ChargingDepartment

22

Workplace Charging: Comparison of Sustainable Commuting Options  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve Laurens WomenPioneering U.S. Workplace

23

Bringing Your Workplace Charging Story to Life  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy For Persons Bringing Your Workplace

24

Vehicle Technologies Office: EV Everywhere Workplace Charging...  

Broader source: Energy.gov (indexed) [DOE]

States are parked at overnight locations with access to plugs, providing a great foundation for the country's plug-in electric vehicle (PEV) charging infrastructure. However,...

25

Sample Employee Survey for Workplace Charging Planning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle (ex. Chevy Volt, Ford C-MAX, etc.) b. Electric vehicle (ex. Nissan Leaf, BMW Active-E, etc.) 5. Do you or would you have the ability to install a charging station...

26

EV Everywhere Workplace Charging Challenge: Ambassadors | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Work initiative, which brings the PEV marketplace to a corporate campus for a day of test drives and information exchange about clean, electric transportation. Plug In America also...

27

EV Everywhere Workplace Charging Challenge: Partners | Department...  

Broader source: Energy.gov (indexed) [DOE]

Inc. Ford Fraunhofer Center for Sustainable Energy Systems General Electric General Motors Georgia Institute of Technology Google Green Cab VT Green Mountain Power Green...

28

Workplace Charging Challenge Partner: Vermont Energy Investment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of their employees, to taking action by implementing the necessary infrastructure, and to sharing their progress and success. VEIC has already taken steps to fulfill this...

29

Workplace Charging Challenge Partner: University of Maryland...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Center The University of Maryland Baltimore Washington Medical Center (UM BWMC) is an energy efficient organization. UM BWMC's Green Health Committee is made up of hospital...

30

Workplace Charging Challenge Partner: Appalachian State University |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer ExchangeEnergy

31

Workplace Charging Challenge Partner: Baxter International Inc. |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer

32

Workplace Charging Challenge Partner: Heartland Community College |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy

33

Workplace Charging Challenge Partner: Kankakee Community College |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz hasof

34

Workplace Charging Challenge Partner: Portland General Electric |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartment ofEnergy

35

Workplace Charging Challenge Partner: Sears Holdings Corporation |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy Sears Holdings Corporation

36

Workplace Charging Challenge Partner: Shorepower Technologies | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy Sears Holdingsof Energy

37

Workplace Charging Challenge Partner: Southern California Edison |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy Sears

38

Workplace Charging Challenge Partner: WESCO International, Inc. |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| Department of

39

Workplace Charging Challenge: Ambassadors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|Energy Learnof

40

Workplace Charging Challenge Progress Update 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve Laurens WomenPioneering U.S. employers

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Driving and Charging Behavior of Nissan Leafs in The EV Project with Access to Workplace Charging  

SciTech Connect (OSTI)

This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

Don Scoffield; Shawn Salisbury; John Smart

2014-11-01T23:59:59.000Z

42

Workplace Charging Challenge: Workplace PEV Ride and Drive | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|Energy

43

Workplace Charging Success: Zappos.com | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the Challenge Workplace

44

Workplace Charging Success: lynda.com | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join the Challenge Workplacelynda.com Workplace

45

Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011

46

Workplace Charging Challenge Progress Update 2014: Employers Take Charge |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | DepartmentDeborahTanzimaJuly2015

47

Workplace Charging Challenge: Install and Manage PEV Charging at Work |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |

48

Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites  

SciTech Connect (OSTI)

This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

David Rohrbaugh; John Smart

2014-11-01T23:59:59.000Z

49

ADA Requirements for Workplace Charging Installation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014DepartmentI325 8ADA Requirements for Workplace

50

Workplace Charging Challenge Partner: University of North Carolina...  

Broader source: Energy.gov (indexed) [DOE]

transportation strategies that supports the campus' sustainability goal of becoming carbon neutral by the year 2050. Most of the electricity utilized by plug-in electric...

51

Workplace Charging Challenge Partner: El Camino Real Charter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

which aims to enable U.S. companies to produce electric vehicles that are as affordable and convenient for the average American family as today's gas---powered vehicles by 2022....

52

Workplace Charging Challenge Partner: UCLA Smart Grid Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

as part of its ongoing research on the topics of Electric Vehicle Integration Automated Demand Response Microgrids, and Distributed and Renewable Integration, and Energy Storage...

53

Workplace Charging Challenge Partner: Capital One Financial Corporatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

contribute to these emissions, Capital One developed a Sustainable Transportation Demand Management program which includes Flexible Work Solutions to enable associates to work...

54

EV Everywhere Workplace Charging Challenge | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. Steven Chu AboutAbout UsEPAAbout Us

55

How can Workplace Charging Challenge be of assistance? | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department of EnergyFuelEnergy Your

56

Workplace Charging Challenge Overview Factsheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer Exchange Call: Working

57

Workplace Charging Challenge Partner: 3M | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer Exchange Call: Working3M

58

Workplace Charging Challenge Partner: ABB, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer Exchange Call: Working3MABB,

59

Workplace Charging Challenge Partner: APEI | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer Exchange Call:

60

Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer Exchange Call:Department of

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Workplace Charging Challenge Partner: Advocate Health Care | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer Exchange Call:Department

62

Workplace Charging Challenge Partner: AeroVironment, Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer Exchange

63

Workplace Charging Challenge Partner: Alameda County, CA | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer ExchangeEnergy Alameda

64

Workplace Charging Challenge Partner: Avista Utilities | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer ExchangeEnergyEnergy

65

Workplace Charging Challenge Partner: Bentley Systems, Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeerEnergy Bentley Systems,

66

Workplace Charging Challenge Partner: Biogen Idec Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeerEnergy Bentley

67

Workplace Charging Challenge Partner: Bloomberg LP | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeerEnergy BentleyBloomberg

68

Workplace Charging Challenge Partner: BookFactory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeerEnergy

69

Workplace Charging Challenge Partner: Broward County, FL | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeerEnergyEnergy Broward

70

Workplace Charging Challenge Partner: CFV Solar Test Laboratory, Inc. |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeerEnergyEnergy

71

Workplace Charging Challenge Partner: Capital One Financial Corporation |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy

72

Workplace Charging Challenge Partner: Cisco Systems, Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy Cisco Systems, Inc. Cisco supports

73

Workplace Charging Challenge Partner: City of Atlanta | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy Cisco Systems, Inc. Cisco

74

Workplace Charging Challenge Partner: City of Auburn Hills | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy Cisco Systems, Inc.

75

Workplace Charging Challenge Partner: City of Beaverton, OR | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy Cisco Systems, Inc.Energy

76

Workplace Charging Challenge Partner: City of Hillsboro | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy Cisco Systems,

77

Workplace Charging Challenge Partner: City of Sacramento | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy Cisco Systems,Energy

78

Workplace Charging Challenge Partner: ClipperCreek, Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy Cisco Systems,EnergyEnergy

79

Workplace Charging Challenge Partner: Concurrent Design, Inc. | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy Cisco

80

Workplace Charging Challenge Partner: DIRECTV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTV is committed

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Workplace Charging Challenge Partner: DTE Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTV is

82

Workplace Charging Challenge Partner: Dell Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTV isDell Inc.

83

Workplace Charging Challenge Partner: Dominion Resources, Inc. | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTV isDell Inc.of

84

Workplace Charging Challenge Partner: Duke Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTV isDell

85

Workplace Charging Challenge Partner: El Camino Real Charter High School |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTV

86

Workplace Charging Challenge Partner: Eli Lilly | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTVEli Lilly In

87

Workplace Charging Challenge Partner: FCA US LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTVEli Lilly

88

Workplace Charging Challenge Partner: FEV North America Inc. | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTVEli Lillyof

89

Workplace Charging Challenge Partner: Facebook | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTVEli

90

Workplace Charging Challenge Partner: Ford Motor Company | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV DIRECTVEliEnergy

91

Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV

92

Workplace Charging Challenge Partner: Freudenberg-NOK Sealing Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV(FNST) | Department of

93

Workplace Charging Challenge Partner: General Motors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV(FNST) | Department

94

Workplace Charging Challenge Partner: Georgia Institute of Technology |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV(FNST) |

95

Workplace Charging Challenge Partner: Google | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV(FNST) |Google Google

96

Workplace Charging Challenge Partner: Hannah Solar, LLC | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV(FNST) |Google

97

Workplace Charging Challenge Partner: Harris Civil Engineers, LLC |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV(FNST)

98

Workplace Charging Challenge Partner: Harvard University | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergy CiscoDIRECTV(FNST)Energy

99

Workplace Charging Challenge Partner: Hertz | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz has embraced plug-in

100

Workplace Charging Challenge Partner: Hewlett-Packard | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz has embraced

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Workplace Charging Challenge Partner: IDEXX Laboratories | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz has embracedEnergy

102

Workplace Charging Challenge Partner: JEA | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz has

103

Workplace Charging Challenge Partner: JLA Public Involvement | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz hasof Energy JLA

104

Workplace Charging Challenge Partner: Kaiser Permanente | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz hasof Energy

105

Workplace Charging Challenge Partner: Kohl's Department Stores | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz hasofof Energy

106

Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz hasofof Energy|

107

Workplace Charging Challenge Partner: Legrand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz hasofof

108

Workplace Charging Challenge Partner: Lewis & Clark Community College |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz hasofofDepartment of

109

Workplace Charging Challenge Partner: Melink Corporation | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz hasofofDepartment

110

Workplace Charging Challenge Partner: NRG Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG Energy NRG Energy is

111

Workplace Charging Challenge Partner: NYSERDA | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG Energy NRG Energy

112

Workplace Charging Challenge Partner: National Grid | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG Energy NRG

113

Workplace Charging Challenge Partner: National Renewable Energy Laboratory  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG Energy NRG(NREL) |

114

Workplace Charging Challenge Partner: NetApp | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG Energy NRG(NREL)

115

Workplace Charging Challenge Partner: New York Power Authority | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG Energy NRG(NREL)of

116

Workplace Charging Challenge Partner: Nissan North America, Inc. |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG Energy

117

Workplace Charging Challenge Partner: North Central College | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG EnergyEnergy

118

Workplace Charging Challenge Partner: OSRAM SYLVANIA | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG

119

Workplace Charging Challenge Partner: Oak Ridge National Laboratory |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRGDepartment of

120

Workplace Charging Challenge Partner: Odell Brewing Co. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRGDepartment

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Workplace Charging Challenge Partner: Organic Valley | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRGDepartmentOrganic

122

Workplace Charging Challenge Partner: Pacific Gas & Electric Company |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz

123

Workplace Charging Challenge Partner: Pentair Water Pool and Spa, Inc. |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartment of Energy

124

Workplace Charging Challenge Partner: Pepco Holdings, Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartment of

125

Workplace Charging Challenge Partner: Phil Haupt Electric | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartment ofEnergy Phil

126

Workplace Charging Challenge Partner: Prairie State College | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartment

127

Workplace Charging Challenge Partner: Raytheon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartmentRaytheon Raytheon

128

Workplace Charging Challenge Partner: SAS Institute | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartmentRaytheon RaytheonSAS

129

Workplace Charging Challenge Partner: Salt River Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartmentRaytheon

130

Workplace Charging Challenge Partner: Samsung Electronics | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartmentRaytheonEnergy

131

Workplace Charging Challenge Partner: San Diego Gas & Electric | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertzDepartmentRaytheonEnergyof

132

Workplace Charging Challenge Partner: Schneider Electric | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof

133

Workplace Charging Challenge Partner: SemaConnect, Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy Sears Holdings

134

Workplace Charging Challenge Partner: Siemens | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy Sears Holdingsof

135

Workplace Charging Challenge Partner: Sierra Nevada Brewing Co. |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy Sears HoldingsofDepartment of

136

Workplace Charging Challenge Partner: SolarWorld | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy Sears HoldingsofDepartment

137

Workplace Charging Challenge Partner: Sprint | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprint Sprint is committed

138

Workplace Charging Challenge Partner: TECO Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprint Sprint isTECO

139

Workplace Charging Challenge Partner: Telefonix, Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprint Sprint

140

Workplace Charging Challenge Partner: Territo Electric, Inc. | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprint Sprintof Energy

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Workplace Charging Challenge Partner: The Hartford | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprint SprintofThe

142

Workplace Charging Challenge Partner: The Venetian and The Palazzo |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprint

143

Workplace Charging Challenge Partner: Township High School District 214 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprintDepartment of

144

Workplace Charging Challenge Partner: UCLA Smart Grid Energy Research  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprintDepartment ofCenter

145

Workplace Charging Challenge Partner: University of Maryland Baltimore  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprintDepartment

146

Workplace Charging Challenge Partner: University of North Carolina at  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprintDepartmentPembroke |

147

Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprintDepartmentPembroke

148

Workplace Charging Challenge Partner: Verizon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy

149

Workplace Charging Challenge Partner: Vermont Energy Investment Corporation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| Department of Energy

150

Workplace Charging Challenge Partner: Westar Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| Department ofWestar Energy

151

Workplace Charging Challenge Partner: World Learning Inc. | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| Department ofWestar

152

Workplace Charging Challenge Partner: World Wildlife Fund | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| Department ofWestarEnergy

153

Workplace Charging Challenge Partner: Xcel Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| Department

154

Workplace Charging Challenge Partner: Zappos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| DepartmentZappos Zappos

155

Workplace Charging Challenge Partner: lynda.com | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy| DepartmentZappos

156

Workplace Charging Challenge Summit 2014: Closing Plenary | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|

157

Workplace Charging Challenge Summit 2014: Opening Plenary | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|Energy Learn about

158

Workplace Charging Challenge Summit 2014: Session 1, Track A | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|Energy Learn aboutof

159

Workplace Charging Challenge Summit 2014: Session 2, Track A | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|Energy Learn aboutofofof

160

Workplace Charging Challenge Summit 2014: Session 3, Track A | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|Energy Learn

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Workplace Charging Challenge Summit 2014: Session 3, Track B | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|Energy Learnof Energy

162

Workplace Charging Challenge Summit 2014: Session 2, Track B | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | DepartmentDeborahTanzimaJuly2015Workplaceof

163

EV Everywhere Workplace Charging Challenge | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power DeploymentYouDepartment101 EPA

164

workplace Charging Challenge Partner: Advanced Micro Devices | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof Energy AMD recognizes its responsibility as a global citizen

165

EV Everywhere Workplace Charging Challenge: Benefits of Joining |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM Included Not Included EVDepartment of

166

NASCAR and Sprint Join Energy Department's Workplace Charging Challenge |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUALNASCAR Green Gets First Place in Daytona 500

167

EV Everywhere Workplace Charging Challenge Partners | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdfAnnualAssessor CandidatesEM/Stewardship ESF 12Vehicles | Department

168

Thirteen Major Companies Join Energy Department's Workplace Charging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability|interactions.EarlyChallenge |

169

Fact #857 January 26, 2015 Number of Partner Workplaces Offering...  

Energy Savers [EERE]

7 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 Fact 857 January 26, 2015 Number of Partner Workplaces Offering...

170

Workplace Charging Challenge Partner: MetLife, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz Hertz

171

Workplace Charging Challenge Partner: State University of New York at New  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprint Sprint is

172

Workplace Charging Challenge Partner: The Coca-Cola Company | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy SearsSprint Sprintof

173

19 U.S. Employers Join the Workplace Charging Challenge | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartmentWomen17.2 (June 2004) 1 Cost Participation

174

Workplace Charging Case Study: Charging Station Utilization at a Work Site with AC Level 1, AC Level 2, and DC Fast Charging Units  

SciTech Connect (OSTI)

This paper describes the use of electric vehicle charging stations installed at a large corporate office complex. It will be published to the INL website for viewing by the general public.

John Smart; Don Scoffield

2014-06-01T23:59:59.000Z

175

Trends in Workplace Charging  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel27, 2008,Inc. |DesignedJeff Donofrio

176

Electric Vehicle Workplace Charging  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summaryand Contact InformationofEnergy 1

177

Automakers and Workplace Charging  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5, 2010AutoDepartment

178

Utilities and Workplace Charging  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......UraniumEfficiencyEnergySummit Mike

179

EV Everywhere Grand Challenge - Charge to the Breakout Groups | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ ContractConsumerof Energy Charge to the

180

EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ ContractConsumerof Energy Charge to theEV

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EV Everywhere Grand Challenge: Consumer Acceptance and Charging  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ ContractConsumerof Energy ChargeRoad

182

'Taking Charge': Kansans Save $2.3M in Challenge to Change Their Energy Behavior  

Broader source: Energy.gov [DOE]

How did the Climate and Energy Project (CEP), a small environmental organization that has received Recovery Act funding, achieve $2.3 million in savings annually for Kansans? Learn more about the Take Charge Challenge, a 9-month competition in which residents across 16 communities competed against each other to save the most energy and money.

183

Our Workplace  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC)Organization Ames LaboratoryWorkplace

184

Workplace Charging Program and Initiatives  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve Laurens WomenPioneering U.S. employersProgram

185

Workplace Charging at Leased Facilities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve Laurens WomenPioneering U.S. employersProgram

186

Nissan EV Workplace Charging Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |MillionNextNick Sinai About Us Nick

187

Workplace Learning & Development UMass Amherst  

E-Print Network [OSTI]

Workplace Learning & Development (WL&D) promotes employee and organizational growth, developmentWorkplace Learning & Development UMass Amherst 303 Goodell Amherst, MA 01003 Workplace Learning workshops to ALL UMass Amherst staff and faculty members. * Fall 2014 Programs Workplace Learning

Mountziaris, T. J.

188

Professor Eikichi IsoProfessor Eikichi IsoProfessor Eikichi IsoProfessor Eikichi Iso''''s Workplaces Workplaces Workplaces Workplace ((((Former Workplace of Advanced Academy of Agriculture and ForestryFormer Workplace of Advanced Academy of Agriculture an  

E-Print Network [OSTI]

''''s Workplaces Workplaces Workplaces Workplace ((((Former Workplace of Advanced Academy of Agriculture and ForestryFormer Workplace of Advanced Academy of Agriculture and ForestryFormer Workplace of Advanced Academy of Agriculture and ForestryFormer Workplace of Advanced Academy of Agriculture and Forestry

Wu, Yih-Min

189

The Final 40%: SunShot charges forward to tackle solar challenges...  

Energy Savers [EERE]

May 21, 2014 - 9:56pm Addthis Ali Zaidi, Deputy Director for Energy Policy, The White House Domestic Policy Council delivers keynote at the 2014 SunShot Grand Challenge...

190

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Attendence List  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, September 25- 7/20/2012Challenge:

191

Workplace Charging Management Policies: Administration | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|EnergyEnergy The first

192

Workplace Charging Management Policies: Registration & Liability |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|EnergyEnergy

193

Workplace Charging Presentation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of

194

Workplace Charging: Ambassador Outreach Presentation Template | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment ofof Energy Presentation slides and

195

Workplace Charging: Clean Cities Outreach Presentation Template |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment ofof Energy Presentation slides

196

Sample Employee Survey for Workplace Charging Planning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety2 DOE

197

Measuring the Economic Benefits of Workplace Flexibility  

E-Print Network [OSTI]

Measuring the Economic Benefits of Workplace Flexibility 24th Annual Transportation Research IMPACTS economics · It is tough to measure the CAUSAL relationship between workplace flexibility and economic benefits. #12;In the News... #12;Workforce flexibility defined Workplace flexibility can

Minnesota, University of

198

University of Saskatchewan Workplace Responsibilities System  

E-Print Network [OSTI]

University of Saskatchewan Workplace Responsibilities System Department of Health, Safety & Environment University of Saskatchewan Workplace Responsibilities System Department of Health, Safety of the University of Saskatchewan (herein referred to as University), as well as its visitors, is of utmost concern

Saskatchewan, University of

199

Workplace policies and practices of care  

E-Print Network [OSTI]

Workplace policies and practices of care are designed to support workers caring responsibilities outside of the workplace as well as their general wellbeing. A previous CRFR briefing (McKie et al 2004) detailed the ...

McKie, Linda; Bowby, Sophie; Hogg, Gill; Smith, Andrew

200

Generation Y in the Workplace  

E-Print Network [OSTI]

, administration, and management programs across the nation regarding their workplace attitudes, sector preferences, technology usage, and demographics. We sent the survey link to school program directors and requested they forward it to their graduate students... ............................................................................................................................................. 17 Public Service Workforce ....................................................................................................................... 20 Federal Government...

Brown, Sky; Carter, Britt; Collins, Michael; Gallerson, Christopher; Giffin, Grady; Greer, Jon; Griffith, Ray; Johnson, Emily; Richardson, Kate

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ruth Yeoman Meaningful Work and Workplace Democracy Meaningful Work and Workplace Democracy  

E-Print Network [OSTI]

Contents Page Number Abstract 8 Introduction 9 Chapter One Meaningful Work as a Fundamental Human Need 1Ruth Yeoman Meaningful Work and Workplace Democracy Page 1 Meaningful Work and Workplace Democracy;Ruth Yeoman Meaningful Work and Workplace Democracy Page 2 Declaration I hereby declare that all

Sheldon, Nathan D.

202

Legislating for smoke-free workplaces  

E-Print Network [OSTI]

free workplaces page 18 Montenegro (2000), Slovakia (1993),1988), Serbia and Montenegro (2000), Slovakia (1993),1999), Serbia and Montenegro (2000), Slovakia (1993),

World Health Organization

2006-01-01T23:59:59.000Z

203

Keeping the workplace safe COMPUTER WORKSTATION  

E-Print Network [OSTI]

Keeping the workplace safe COMPUTER WORKSTATION ERGONOMICS #12;Table of Contents Introduction ................................................................................... 2 Office Ergonomics Process at UCDHS ........................................................ 3 UCDHS Ergonomics Demonstration Room ...............................................16 Reference

Leistikow, Bruce N.

204

Women in engineering conference: capitalizing on today`s challenges  

SciTech Connect (OSTI)

This document contains the conference proceedings of the Women in Engineering Conference: Capitalizing on Today`s Challenges, held June 1-4, 1996 in Denver, Colorado. Topics included engineering and science education, career paths, workplace issues, and affirmative action.

Metz, S.S.; Martins, S.M. [eds.] [eds.

1996-06-01T23:59:59.000Z

205

Aggregated Purchasing and Workplace Charging Can Drive EV Market...  

Energy Savers [EERE]

including the boom. On Tuesday, November 18, Energy Secretary Moniz joined Senior Advisor to the President John Podesta, Edison Electric Institute (EEI) President Tom Kuhn,...

206

NASCAR and Sprint Join Energy Department's Workplace Charging...  

Broader source: Energy.gov (indexed) [DOE]

vehicles (PEVs) as affordable and convenient for the American family as gasoline-powered vehicles within the next 10 years. "In his State of the Union address, President...

207

EV Everywhere Charges Up the Workplace | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Volt), 2011 World Car of the Year (Nissan Leaf), 2013 Motor Trend Car of the Year (Tesla Model S) and 2012 Green Car Vision Award Winner (Ford C-MAX Energi). To maintain this...

208

Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan Update as ofCommittee

209

Workplace Charging Management Policies: Pricing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|EnergyEnergy The

210

Workplace Charging Management Policies: Sharing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of EnergyofDepartment of Energy|EnergyEnergyEmployers

211

Sample Employee Survey for Workplace Charging Planning | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENT OF PeterSafetySallyEnergy Sample

212

Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet,ProposedEnergySITINGDepartment of Energy

213

Promote Plug-In Electric Vehicles and Workplace Charging Infrastructure |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and Launches the First ofDepartmentEnergy

214

Survey Says: Workplace Charging is Growing in Popularity and Impact |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:StepRenewableIndustry |Department

215

Greenhouse Gas Emissions Reduction Benefits of Workplace Charging |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann GeorgeLogging Systems (December

216

EV Everywhere Charges Up the Workplace | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ Contract DocumentBreakout

217

EV Everywhere: NASCAR and Sprint Race Forward with Workplace Charging |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ ContractConsumerof EnergyGroupofVehicles

218

Working with DOE to Promote your Workplace Charging Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve Laurens Women @ContractWorkingWithout:

219

Workplace Lessons Learned through the Nation's Largest PEV Charging Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve Laurens WomenPioneering U.S. Workplacegov

220

Developing spatial strategies for workplace change  

E-Print Network [OSTI]

This thesis lays out a framework to address issues of uncertainty and constant change facing organizations in today's unstable and turbulent business world. The framework structures the complex process of workplace change ...

Venkatesh, Rashmi, 1973-

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Workplace Violence Prevention: Employee Awareness Class  

Broader source: Energy.gov [DOE]

Registration:Federal employees should sign up directly in CHRIS (NTC Workplace Violence Course #002647) for one of the sessions below.Approved contractor employees should email Steven Martinez...

222

Community and collaboration : new shared workplaces for evolving work practices  

E-Print Network [OSTI]

The 'collaborative community workplace' is a growing type of shared, flexible workplace that has emerged in recent years in response to a growing need for productive workspaces for mobile, distributed, and independent ...

Bates, Timothy W. (Timothy Waterbury)

2011-01-01T23:59:59.000Z

223

A Holistic Approach to the Sustainable Workplace of the Future  

E-Print Network [OSTI]

for the sustainable workplace of the future. In his presentation, Mr. Andersen will be focusing on: Buildings and the Environment: Sustainable Development - many new sustainable building are being designed and built with a focus only on their physical... and environment impact as criteria to achieve sustainable development. However, these criteria alone cannot guarantee a good sustainable workplace. Buildings and People: The Integrated Workplace - many new workplace design projects are being designed...

Andersen, S. E.

2008-01-01T23:59:59.000Z

224

Workplace Violence Prevention Employee Awareness Class  

Broader source: Energy.gov [DOE]

The Office of Health, Safety, and Security has been working to organize a Workplace Violence Prevention Program that includes dealing with the Active Shooter scenario. After the Navy Yard event, HSS has been trying to accelerate the roll out. Next week we start two-a-days for the Employee Awareness class, which is the first step in the program development and roll out.

225

Psychologically Healthy Workplace Practices = Good Business  

Broader source: Energy.gov [DOE]

Creating a psychologically healthy workplace is not just the right thing to do for employees; its also the smart thing to do for an organizations financial well being and productivity. A small investment in psychologically healthy work practices can pay big dividends in years to come.

226

Workplace Training Module: Enhancing Ecotourism Business Performance  

E-Print Network [OSTI]

Workplace Training Module: Enhancing Ecotourism Business Performance (Level 5 ­ 10 credits as part on understanding best practice in ecotourism development and management (see second part of Appendix 1). The module focuses on the ecotourism business dimension ­ emphasizing best case examples of what creates successful

227

Program Review, Workplace Inspections, Hazards Analysis And Abatement  

Broader source: Energy.gov [DOE]

This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

228

Workplace Skills Enhancement Program (Newfoundland and Labrador, Canada)  

Broader source: Energy.gov [DOE]

The Workplace Skills Enhancement Program (WSEP) helps businesses in strategic sectors train employees to improve productivity and/or global competitiveness.

229

DIRECT COSTS OF DISABLING WORKPLACE INJURIES GROW 2.5 PERCENT  

Broader source: Energy.gov [DOE]

April 7, 2003 Annual Liberty Mutual Workplace Safety Index Shows Direct Costs of the Three Leading Causes of Workplace Incidents Grew Significantly Faster...

230

Drug-Free Federal Workplace Testing Implementation Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The subject directive provides requirements and responsibilities for the implementation of a workplace program to test for the use of illegal drugs to facilitate the maintenance of a drug-free Federal workplace. In the course of the revision, the document number will change from DOE O 3792.3 to DOE O 343.1.

2012-12-06T23:59:59.000Z

231

Interactive ergonomic analysis of a physically disabled person's workplace  

E-Print Network [OSTI]

Interactive ergonomic analysis of a physically disabled person's workplace Matthieu Aubry1 , Fr approach for in- teractive ergonomics evaluation, and especially adaptation of physically disabled people's workplaces. After a general survey of existing tools, we describe the requirements to perform ergonomic

Paris-Sud XI, Université de

232

Drug-Free Federal Workplace Testing Implementation Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order provides guidance and policy for the administration, application and implementation of the DOE Drug-free Federal Workplace Plan and other regulations that facilitate the maintenance of a drug-free Federal workplace through the establishment of programs to test for the use of illegal drugs. Chg 1, dated 8-21-92

1988-07-29T23:59:59.000Z

233

Workplace Applications of Sensor Networks* W. Steven Conner1  

E-Print Network [OSTI]

]. The recent trend to integrate wireless networking into interactive devices such as PDAs, cellular phones throughout workplaces in both industrial and non-industrial office environments. These sensors include HVAC

Heidemann, John

234

Characterization of lead-recycling facility emissions at various workplaces  

E-Print Network [OSTI]

studies on lead smelter emissions deal with the environmental impact of outdoor particles, but only a few and then compared; namely Furnace and Refining PM respectively present in the smelter and at refinery workplaces

Paris-Sud XI, Université de

235

Workplace Plug-in Electric Vehicle Ride and Drive  

Broader source: Energy.gov [DOE]

Workplace plug-in electric vehicle (PEV) Ride and Drive events are one of the most effective ways to drive PEV adoption. By providing staff the opportunity to experience PEVs first hand, they can...

236

Charged Condensation  

E-Print Network [OSTI]

We consider Bose-Einstein condensation of massive electrically charged scalars in a uniform background of charged fermions. We focus on the case when the scalar condensate screens the background charge, while the net charge of the system resides on its boundary surface. A distinctive signature of this substance is that the photon acquires a Lorentz-violating mass in the bulk of the condensate. Due to this mass, the transverse and longitudinal gauge modes propagate with different group velocities. We give qualitative arguments that at high enough densities and low temperatures a charged system of electrons and helium-4 nuclei, if held together by laboratory devices or by force of gravity, can form such a substance. We briefly discuss possible manifestations of the charged condensate in compact astrophysical objects.

Gregory Gabadadze; Rachel A. Rosen

2007-08-24T23:59:59.000Z

237

Supercomputing Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manzano High School student wins top award in 22nd New Mexico Supercomputing Challenge April 24, 2012 LOS ALAMOS, New Mexico, April 24, 2012-Jordan Medlock of Albuquerque's Manzano...

238

Supercomputing Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4th New Mexico Supercomputing Challenge April 22, 2014 Modeling Tree Growth and Resource Use with Applications LOS ALAMOS, N.M., April 22, 2014-The dynamic duo of Eli Echt-Wilson...

239

Supercomputing Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3rd New Mexico Supercomputing Challenge April 23, 2013 Clustering algorithms to find correlations, "meaningful" words, topics LOS ALAMOS, N.M., April 23, 2013-A trio of Albuquerque...

240

Preventing and Responding to all Forms of Violence in the Workplace  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Policy states DOE's expectation regarding the prevention of all forms of violence (to include physical and psychological) within the DOE workplace and providing support and assistance to employees whose lives are affected by workplace violence.

2014-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Intergenerational and Peer Communication in the Workplace: An Analysis of Satisfaction and Dissatisfaction  

E-Print Network [OSTI]

This research used an on-line survey to examine intergenerational communication in the workplace. Respondents were 165 young, middle-aged, and older working adults randomly assigned to report on workplace communication ...

Kennedy, Pamela Sue

2009-12-04T23:59:59.000Z

242

Drug-Free Workplace Program UT-B Contracts Page 1 of 1  

E-Print Network [OSTI]

Drug-Free Workplace Program UT-B Contracts Sep 2012 Page 1 of 1 drug-free-workplace-ext-sep12 DRUG-FREE, the Seller and its subcontractors working on the project site must maintain a drug-free workplace program. (B) If the Seller is an out-of-state entity, the Company may upon request allow a drug-free workplace

Pennycook, Steve

243

NERSC HPSS Charging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale SubsurfaceExascalePhase-1 HPSS Charging NERSC uses

244

Personal Devices in the Workplace NC Digital Government Summit  

E-Print Network [OSTI]

Personal Devices in the Workplace NC Digital Government Summit August 31, 2011 Marc Hoit, PhD Vice planning being undertaken to determine path forward. #12;Personal IT Devices on a University Campus Marc Students Owned Laptops Than Other Devices in 2010 http://chronicle.com/section/Almanac/536 95% of students

245

Challenge Home  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with SecretaryDerived from HeavyJuneDOE Challenge

246

Submeter Challenge  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate Characterization|EnergySubmeter Challenge Jason

247

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network [OSTI]

for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

Michalek, Jeremy J.

248

Grid-Integrated Fleet & Workplace Charging for Plug-in Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: GuidanceNotGrandPurchasingGO-102009-2829Department

249

Standards Pave the Way for Next Generation Workplace Charging Technology Opportunities/Decisions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview * AnalyzerNanoAgency (IEA-AMT) Annex on

250

U.S. Employers Drive Change with Workplace Charging | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office of Civil Rights, 1000of Energy

251

Technical Basis for Radiological Workplace Air Monitoring and Sampling for the River Corridor Project 300 area  

SciTech Connect (OSTI)

This report documents the technical basis by which the workplace air monitoring and sampling program is operated in the 324 and 327 Buildings.

MANTOOTH, D.S.

2000-01-17T23:59:59.000Z

252

E-Print Network 3.0 - activity workplace intervention Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: the Expanding Roles of Millennials in the Workplace (attached), authored by Lauren Stiller Rikleen, Executive... in organizations. Creating Tomorrow's Leaders: The Expanding...

253

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field  

E-Print Network [OSTI]

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field Liu UCD Phy1B 2012 #12;I Basic ConceptsI. Basic Concepts Static electricity: charges at rest Electric charge Like charges repel Unlike charges attract Liu UCD Phy1B 2012 #12;Electric ChargeElectric Charge Electron charge: -eElectron charge

Yoo, S. J. Ben

254

User Guide Remote Access to VDI/Workplace Using PIV  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote Access to VDI/Workplace Using PIV Card

255

User Guide Remote Access to VDI/Workplace Using RSA  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote Access to VDI/Workplace Using PIV

256

"We are not in the loop": Resource Wastage and Conservation Attitude of Employees in Indian Workplace  

E-Print Network [OSTI]

of Computer Science, University of Toronto, ON, Canada khai@cs.toronto.edu ABSTRACT Though rapid depletion, to facilitate conservation at workplaces. Author Keywords Sustainability, Energy, Workplace, Developing World. INTRODUCTION Global consumption of energy, water, fuel and trees has been increasing rapidly. The supply cannot

Toronto, University of

257

Process Control on Workplace Level - User Comfort Energy Optimalization  

E-Print Network [OSTI]

Utility building developments in the near future face two mayor challenges. These challenges are closely related. The first one is the pressure to reduce the amount of energy needed to acclimatize the building and the second is to increase...

Verhaart, J.; Zeiler, W.; Boxem, G.

2013-01-01T23:59:59.000Z

258

Energy Challenge Four: The Baltimore Neighborhood Energy Challenge...  

Energy Savers [EERE]

Challenge Four: The Baltimore Neighborhood Energy Challenge Energy Challenge Four: The Baltimore Neighborhood Energy Challenge June 28, 2010 - 10:00am Addthis John Lippert We've...

259

Energy Challenge Three: The Greenbelt Green Neighborhood Challenge...  

Broader source: Energy.gov (indexed) [DOE]

Energy Challenge Three: The Greenbelt Green Neighborhood Challenge Energy Challenge Three: The Greenbelt Green Neighborhood Challenge June 21, 2010 - 5:52pm Addthis John Lippert...

260

Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions  

SciTech Connect (OSTI)

A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

Trabert, E

2009-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Competitive Charging Station Pricing for Plug-in Electric Vehicles  

E-Print Network [OSTI]

. To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

Huang, Jianwei

262

Fostering innovation : designing technological solutions to proactively encourage informal communication in the workplace  

E-Print Network [OSTI]

I have designed, built, and evaluated three devices to encourage informal interactions in the workplace. Previous research has found that such interactions can lead to increased idea cross-flow, creativity, productivity, ...

Salzberg, Shaun (Shaun David)

2013-01-01T23:59:59.000Z

263

EV Everywhere Grand Challenge: Consumer Acceptance and Charging  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ ContractConsumerof Energy

264

EV Everywhere Grand Challenge - Charge to the Breakout Groups  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, September 25- 7/20/2012 7/25/2012

265

EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, September 25- 7/20/2012

266

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

March 2013 Number of Charging Units Charging Electricity Charging Unit - Private Not Installed to Events Consumed By Region Residential Commercia Public Specified Date...

267

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

June 2013 Number of Charging Units Charging Electricity Charging Unit - Private Not Installed to Events Consumed By Region Residential Commercia Public Specified Date Performed...

268

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

December 2012 Number of Charging Units Charging Electricity Charging Unit - Private Not Installed to Events Consumed By Region Residential Commercia Public Specified Date...

269

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Report Project Status to Date through: March 2012 Number of Charging Units Charging Electricity Charging Unit - Private Installed to Events Consumed By State Residential...

270

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

September 2012 Number of Charging Units Charging Electricity Charging Unit - Private Installed to Events Consumed By State Residential Commercial Public Not Specified Date...

271

ChargePoint America Vehicle Charging Infrastructure Summary Report  

Broader source: Energy.gov (indexed) [DOE]

June 2012 Number of Charging Units Charging Electricity Charging Unit - Private Installed to Events Consumed By State Residential Commercial Public Not Specified Date Performed...

272

BIOENERGIZEME INFOGRAPHIC CHALLENGE: BIOfuel  

Broader source: Energy.gov [DOE]

This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

273

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

for Multiplexed Electric Vehicle Charging, US20130154561A1,Chynoweth, Intelligent Electric Vehicle Charging System,of RFID Mesh Network for Electric Vehicle Smart Charging

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

274

River Corridor Project Workplace Air Monitoring Technical Basis  

SciTech Connect (OSTI)

This document provides the technical basis by which the workplace air monitoring and sampling program is operated in the River Corridor Project (RCP). Revision 2 addresses and incorporates changes in the air monitoring program drivers and implementing documents which occurred after the previous revision was issued. This revision also includes an additional RCP project to make Revision 2 applicable to the entire RCP. These changes occurred in the following areas: (1) Changes resulting from the conversion of the Hanford Site Radiological Control Manual (HSRCM-1) into the Project Hanford Radiological Control Manual (F-5173). HNF-5173 is now the implementing document for 10CFR835. (2) Changes resulting from the issue of new and revised Hanford Site implementing procedures. (3) Changes resulting from the issue of new and revised, as well as the cancellation of RCP implementing procedures. (4) Addition of the 200 Area Accelerated Deactivation Project (ADP). (5) Modification of some air sampling/monitoring locations to better meet the needs of facility operations. (6) Changes resulting from the RCP reorganization.

MANTOOTH, D.S.

2001-01-17T23:59:59.000Z

275

Electric Charge and Electric Field Electrostatics: Charge at rest  

E-Print Network [OSTI]

Chapter 16 Electric Charge and Electric Field #12;Electrostatics: Charge at rest Electric Charges of conservation of Electric Charge: The net amount of electric charge produced in any process is zero. Model, neutral). #12;· All protons and electrons have same magnitude of electric charge but their masses

Yu, Jaehoon

276

System Benefits Charge  

Broader source: Energy.gov [DOE]

New York's system benefits charge (SBC), established in 1996 by the New York Public Service Commission (PSC), supports energy efficiency, education and outreach, research and development, and low...

277

Managing Occupational Health and Safety in Small, Culturally Diverse Workplaces: Issues and Solutions, Sophia Antipolis : France (2011)  

E-Print Network [OSTI]

Managing Occupational Health and Safety in Small, Culturally Diverse Workplaces: Issues;Managing Occupational Health and Safety in Small, Culturally Diverse Workplaces: Issues and Solutions-00660170,version1-20Sep2012 Author manuscript, published in "Managing Occupational Health and Safety

Paris-Sud XI, Université de

278

Image Charge Differential  

E-Print Network [OSTI]

Image Charge Differential Amplifier FT 0 Crude Oil Time (s) 543210 Frequency (kHz) m/z m q B f Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) uses the frequency of cyclotron motion of the ions in a static magnetic field to determine the mass-to-charge ratio, which is then used

Weston, Ken

279

Charging Black Saturn?  

E-Print Network [OSTI]

We construct new charged static solutions of the Einstein-Maxwell field equations in five dimensions via a solution generation technique utilizing the symmetries of the reduced Lagrangian. By applying our method on the multi-Reissner-Nordstrom solution in four dimensions, we generate the multi-Reissner-Nordstrom solution in five dimensions. We focus on the five-dimensional solution describing a pair of charged black objects with general masses and electric charges. This solution includes the double Reissner-Nordstrom solution as well as the charged version of the five-dimensional static black Saturn. However, all the black Saturn configurations that we could find present either a conical singularity or a naked singularity. We also obtain a non-extremal configuration of charged black strings that reduces in the extremal limit to a Majumdar-Papapetrou like solution in five dimensions.

Brenda Chng; Robert Mann; Eugen Radu; Cristian Stelea

2008-10-28T23:59:59.000Z

280

Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

April 10, 2014 - "Workplace Disruptions, Reorganizations, and 'Change  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges toReport | Department of Energy 11Approaches

282

taking charge : optimizing urban charging infrastructure for shared electric vehicles  

E-Print Network [OSTI]

This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

Subramani, Praveen

2012-01-01T23:59:59.000Z

283

Screening model for nanowire surface-charge sensors in liquid  

E-Print Network [OSTI]

The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers. We discuss this effect within Thomas-Fermi and Debye-Huckel theory and derive analytical results for cylindrical wires which can be used to estimate the sensitivity of nanowire surface-charge sensors. We study the interplay between the nanowire radius, the Thomas-Fermi and Debye screening lengths, and the length of the functionalization molecules. The analytical results are compared to finite-element calculations on a realistic geometry.

Martin H. Sorensen; Niels Asger Mortensen; Mads Brandbyge

2007-08-17T23:59:59.000Z

284

Health physics manual of good practices for the prompt detection of airborne plutonium in the workplace  

SciTech Connect (OSTI)

This manual provides guidance to US Department of Energy (DOE) facilities on the prompt detection of airborne plutonium in the workplace. Information is first given to aid in detection systems that will function effectively in various workplaces. Steps in designing a system are covered: its general requirements, the plotting of workplace sources of plutonium, and methods of determining workplace airflow patterns. Guidance is provided on the proper numbers and locations of probe sites, the orientation of probes for representative sampling, and the mixture of stationary and portable probes. Recommendations for delivery in sampling systems include examination of particle loss and self-absorption problems, methods of eliminating air leakage in the system, and optimization of decontamination capabilities. System flow rate, requirements in a collection medium, burial loss and pressure drop, and prudent frequency of renewing the collection medium are among air sampling considerations covered. After a discussion of controlling airflow and of vacuum sources and system backups, the checkpoints to ensure system reliability are listed. The manual then discusses instrument specifications that provide correct airborne plutonium concentrations and reliably activate alarms. Focusing on the interrelationship of all components, essential factors in instrument reliability are addressed: the regulatory lower limit of detection and performance specifications of detectors and filters, maintenance and calibration requirements, and features of commonly used plutonium air-sampling instruments. Finally, the manual advises on establishing a documentation program to archive and evaluate the performance of a plutonium air-sampling program.

Not Available

1988-07-01T23:59:59.000Z

285

The living workplace : a conscious work environment for a small publishing company  

E-Print Network [OSTI]

This thesis is about the oneness of working and living, and about the making of workplaces that support and encourage the idea that one's work can be an integral part of one's life. The opening position is that there is a ...

Berg, Richard Carl

1986-01-01T23:59:59.000Z

286

Workplace Substance Abuse Programs Baseline Requirements UT-B Contracts Div Page 1 of 2  

E-Print Network [OSTI]

. Testing Designated Positions (TDPs). If subcontractor has employees working in TDPs, the Program Document Mandatory Guidelines for Federal Workplace Drug Testing Programs. The program must include at least, phone and fax number. 8. Specimen Collection and Testing. a. Process for collection and testing. b

Pennycook, Steve

287

Guide on Preventing and Responding to All Forms of Violence in the Workplace  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To ensure all sites have the tools to implement processes, we have created this guide. Each site is expected to develop its own site specific set of procedures/process to implement DOE Policy 444.1 Preventing and Responding to all forms of violence in the Workplace.

2014-10-21T23:59:59.000Z

288

Contractor Workplace Substance Abuse Program at DOE Sites (10 CFR 707)  

Broader source: Energy.gov [DOE]

This rule establishes policies, criteria, and procedures for developing and implementing programs to maintain a workplace free from the use of illegal drugs. It applies to DOE contractors performing work at sites owned or controlled by DOE and to individuals with unescorted access to the control areas of certain DOE reactors.

289

Managing work-life policies in the European workplace: explorations for future research  

E-Print Network [OSTI]

In this paper we focus on the implementation and management of work-life policies in the workplace and the key role of managers in this context. We review the existing literature, enabling us to set a research agenda focused on explaining managerial...

den Dulk, Laura; Peper, Bram

2009-01-01T23:59:59.000Z

290

Complete Policy Title: Policy Number (if applicable): Violence in the Workplace -  

E-Print Network [OSTI]

Complete Policy Title: Policy Number (if applicable): Violence in the Workplace - McMaster University Policy on Approved by: Date of Most Recent Approval: Senate June 2, 2010 Board of Governors June 17, 2010 Date of Original Approval: Supersedes/Amends Policy dated: June 2, 2010 Responsible

Haykin, Simon

291

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

292

Alternative Fuels Data Center: Companies Power up Through Workplace  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its Fleet BluePetroleumColoradoCharging

293

High School Ocean Sciences Challenge 2008 Challenge Review  

E-Print Network [OSTI]

High School Ocean Sciences Challenge 2008 Challenge Review Created by Laura Dover, Ocean Sciences Laboratory at Oregon State University High School Students Record PSAs James Roddey Facilitates a PSA ................................ 3 High School Challenge ............................ 3 High School Program Model

Kurapov, Alexander

294

International aeronautical user charges  

E-Print Network [OSTI]

Introduction: 1.1 BACKGROUND AND MOTIVATION Very few issues relating to the international air transportation industry are today as divisive as those pertaining to user charges imposed at international airports and enroute ...

Odoni, Amedeo R.

1985-01-01T23:59:59.000Z

295

Societal Benefits Charge  

Broader source: Energy.gov [DOE]

New Jersey's 1999 electric-utility restructuring legislation created a "societal benefits charge" (SBC) to support investments in energy efficiency and "Class I" renewable energy. The SBC funds New...

296

Abstract adiabatic charge pumping  

E-Print Network [OSTI]

This paper is devoted to the analysis of an abstract formula describing quantum adiabatic charge pumping in a general context. We consider closed systems characterized by a slowly varying time-dependent Hamiltonian depending on an external parameter $\\alpha$. The current operator, defined as the derivative of the Hamiltonian with respect to $\\alpha$, once integrated over some time interval, gives rise to a charge pumped through the system over that time span. We determine the first two leading terms in the adiabatic parameter of this pumped charge under the usual gap hypothesis. In particular, in case the Hamiltonian is time periodic and has discrete non-degenerate spectrum, the charge pumped over a period is given to leading order by the derivative with respect to $\\alpha$ of the corresponding dynamical and geometric phases.

A. Joye; V. Brosco; F. Hekking

2010-02-05T23:59:59.000Z

297

Charged Schrodinger black holes  

E-Print Network [OSTI]

We construct charged and rotating asymptotically Schrdinger black hole solutions of type IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of a broad class of type IIB backgrounds, ...

Adams, Allan

298

Albuquerque duo wins Supercomputing Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenge Erika DeBenedictis and Tony Huang captured the top prize during the 2008 New Mexico Supercomputing Challenge award ceremony. April 22, 2008 Los Alamos National Laboratory...

299

Ris Energy Report 6 Energy challenges 3 Energy challenges  

E-Print Network [OSTI]

Risø Energy Report 6 Energy challenges 3 Energy challenges POUL ERIk MORTHORsT, RIsø DTU; JøRgEN HENNINgsEN, FORMER PRINCIPAL ADVIsER, Dg FOR ENERgY AND TRANsPORT, EUROPEAN COMMIssION 3.1 Danish and European energy challenges The European Community faces three major energy challenges [1]: · Sustainability

300

A spatial structuring approach to IT use and workplace change : what's space got to do with it?  

E-Print Network [OSTI]

This dissertation uses the disparate spatial practices of radiologists and outpatient physicians to frame a study of the relationship between space, information technology use and workplace change, with a particular focus ...

Goelman, Ari

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Banff Challenge 2  

SciTech Connect (OSTI)

Experimental particle physics collaborations constantly seek newer and better ideas for improving the sensitivity of their searches for new particles and phenomena. Statistical techniques are the last step in interpreting the results of an experiment; they are used to make discoveries (hypothesis testing), and to measure parameters (point estimation). They are also used in the first step - experiment and analysis design. Banff Challenge 2 asks participants to test their methods of discovering hidden signals in simulated datasets and of measuring the properties of these signals. The Challenge problems are described, and the performances of the submitted entries is summarized, for datasets with and without simulated signals present.

Junk, Thomas R.; /Fermilab

2011-08-01T23:59:59.000Z

302

Challenges facing production grids  

SciTech Connect (OSTI)

Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

Pordes, Ruth; /Fermilab

2007-06-01T23:59:59.000Z

303

Optimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low  

E-Print Network [OSTI]

Abstract-- Motivated by the power-grid-side challenges in the integration of electric vehicles, we proposeOptimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low a decentralized protocol for negotiating day-ahead charging schedules for electric vehicles. The overall goal

Low, Steven H.

304

Quick charge battery  

SciTech Connect (OSTI)

Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

Parise, R.J.

1998-07-01T23:59:59.000Z

305

Indiana Energy Energy Challenges  

E-Print Network [OSTI]

Indiana Energy Conference Energy Challenges And Opportunities November 5, 2013 ­ 9:00 a.m. ­ 5:00 p spectrum of business sectors including: Energy Community Manufacturing Policymakers Finance Engineering of Energy & Water: A Well of Opportunity Our water and energy systems are inextricably linked. Energy

Ginzel, Matthew

306

New Opportunities & New Challenges  

E-Print Network [OSTI]

Orientation August 26, 2014 #12;THE UNH Mission The University of New Hampshire is the state's public research. #12;CoreValues of UNH Engagement Teaching, research, and public service that make a differenceNew Opportunities & New Challenges Harry Richards, Dean of the Graduate School Graduate Assistant

New Hampshire, University of

307

AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Siemens-VersiCharge AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

308

THE ELECTRIC PROGRAM INVESTMENT CHARGE  

E-Print Network [OSTI]

THE ELECTRIC PROGRAM INVESTMENT CHARGE: PROPOSED 201214 TRIENNIAL INVESTMENT PLAN The California Energy Commission has prepared this triennial investment plan (2012 ­ 2014) for the new Electric, 2012, Phase 2 Decision 1205037. This decision established the Electric Program Investment Charge

309

Sewerage service charges  

E-Print Network [OSTI]

SEWER&.GE SERVICE CHARGES A Dissertation Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy Major Subject* Municipal suid Sanitary... Engineering By Samuel Robert Wright May 1946 BA.GRV ACKNOWLEDGMENTS The writer wishes to express appreciation to the State Health Department and to Mr* E. E. McA-dams of the League of Texas Municipalities for their aid and assistance in the collection...

Wright, Samuel Robert

1946-01-01T23:59:59.000Z

310

A Stable Massive Charged Particle  

E-Print Network [OSTI]

We consider the possibility of the existence of a stable massive charged particle by a minimal extension of the standard model particle content. Absolute stability in the case of singly charged particle is not possible if the usual doublet Higgs exists, unless a discrete symmetry is imposed.But a doubly charged particle is absolutely stable.

G. Rajasekaran

2011-06-08T23:59:59.000Z

311

Tools for charged Higgs bosons  

E-Print Network [OSTI]

We review the status of publicly available software tools applicable to charged Higgs physics. A selection of codes are highlighted in more detail, focusing on new developments that have taken place since the previous charged Higgs workshop in 2008. We conclude that phenomenologists now have the tools ready to face the LHC data. A new webpage collecting charged Higgs resources is presented.

Oscar Stl

2010-12-13T23:59:59.000Z

312

Holography, charge and baryon asymmetry  

E-Print Network [OSTI]

The reason for baryon asymmetry in our universe has been a pertinent question for many years. The holographic principle suggests a charged preon model underlies the Standard Model of particle physics and any such charged preon model requires baryon asymmetry. This note estimates the baryon asymmetry predicted by charged preon models in closed inflationary Friedmann universes.

T. R. Mongan

2012-02-08T23:59:59.000Z

313

Charge Diagnostics for Laser Plasma Accelerators  

E-Print Network [OSTI]

Laser plasma accelerator, charge diagnostics, Lanex, ICT,Charge Diagnostics for Laser Plasma Accelerators K .CHARGE DIAGNOSTICS CROSS-CALIBRATIONS WITH LASER PLASMA

Nakamura, K.

2011-01-01T23:59:59.000Z

314

BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel  

Broader source: Energy.gov [DOE]

This infographic was created by students from Seward HS in Seward, AK, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

315

The Global Energy Challenge  

ScienceCinema (OSTI)

The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use. The continued use of fossil fuels raises concerns about supply, security, environment and climate. New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.

George Crabtree

2010-01-08T23:59:59.000Z

316

Mathematics: Challenging, Useful, and Fun!  

E-Print Network [OSTI]

Mathematics: Challenging, Useful, and Fun! Mathematics: Challenging, Useful, and Fun! #12;What available to math students Provide an overview of the math major and department Mathematics: Challenging, Useful, and Fun! #12;Why study mathematics? Open doors: careers, majors, higher education Useful skills

Myers, Amy

317

Chinas Challenges  

E-Print Network [OSTI]

In line with its aim to meet growing energy demand while shifting away from coal, China has set an ambitious goal of doubling its use of natural gas from 2011 levels by 2015. Prospects are good for significant new supplies both domestic and imported, conventional and unconventional to come online in the medium term, but notable challenges remain, particularly concerning gas pricing and the institutional and regulatory landscape. While Chinas circumstances are, in many respects unique, some current issues are similar to those a number of IEA countries have faced. This report highlights some key challenges China faces in its transition to greater reliance on natural gas, then explores in detail relevant IEA experience, particularly in the United Kingdom, the Netherlands, the European Union, and the United States. Preliminary suggestions about how lessons learned in other countries could be applied to Chinas situation are offered as well. The aim is to provide stakeholders in China with a useful reference as they consider decisions about the evolution of the gas sector in their country. PARTNER COUNTRY SERIES

318

The ALICE Data Challenges  

E-Print Network [OSTI]

Since 1998, the ALICE experiment and the CERN/IT division have jointly executed several large-scale high throughput distributed computing exercises: the ALICE data challenges. The goals of these regular exercises are to test hardware and software components of the data acquisition and computing systems in realistic conditions and to execute an early integration of the overall ALICE computing infrastructure. This paper reports on the third ALICE Data Challenge (ADC III) that has been performed at CERN from January to March 2001. The data used during the ADC III are simulated physics raw data of the ALICE TPC, produced with the ALICE simulation program AliRoot. The data acquisition was based on the ALICE online framework called the ALICE Data Acquisition Test Environment (DATE) system. The data after event building were then formatted with the ROOT I/O package and a data catalogue based on MySQL was established. The Mass Storage System used during ADC III is CASTOR. Different software tools have been used to mo...

Baud, J P; Carminati, F; Collignon, M; Collin, F; Divi, R; Durand, J D; Jarp, S; Jouanigot, J M; Panzer, B; Rademakers, F; Saiz, P; Schossmaier, K; Van de Vyvre, P; Vascotto, Alessandro

2001-01-01T23:59:59.000Z

319

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents [OSTI]

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

320

An Examination of Sex, Ethnicity, and Sexual Orientation in Experiences and Consequences of Workplace Incivility  

E-Print Network [OSTI]

This dissertation is dedicated to Mom, Dad, and Sarah for the late night ?treatise? runs, the ?you-can-do-it? e-mails, and for always being there when I needed to vent...or sob. You helped me to believe in myself when I didnt, and I truly couldnt have done... workplace discrimination. However, research suggests that discrimination in organizations remains pervasive (Brief et al., 1997; Dipboye & Halverson, 2004) and that policies often remain unenforced (Riger, 1991; Williams, Fitzgerald, & Drasgow, 1999...

Zurbrugg, Lauren Elders

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technical assessment of compliance with workplace air sampling requirements at WRAP  

SciTech Connect (OSTI)

The purpose of this Technical Assessment is to satisfy HSRCM-1, ''Hanford Site Radiological Control Manual'' Article 551.4 for a documented study of facility Workplace Air Monitoring (WAM) programs. HSRCM-1 is the primary guidance for radiological control at Waste Management Federal Services of Hanford, Inc. (WMH). The HSRCM-1 complies with Title 10. Part 835 of the Code of Federal Regulations (10CFR835). This document provides an evaluation of the compliance of the Waste Receiving and Processing facility (WRAP) WAM program to the criteria standards, requirements, and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance.

HACKWORTH, M.F.

1999-06-02T23:59:59.000Z

322

Evaluating Electric Vehicle Charging Impacts and Customer Charging...  

Energy Savers [EERE]

The report also examines when consumers want to recharge vehicles, and to what extent pricing and incentives can encourage consumers to charge during off-peak periods. Evaluating...

323

Fuel Cell Technology Challenges | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Challenges Fuel Cell Technology Challenges Cost and durability are the major challenges to fuel cell commercialization. However, hurdles vary according to the...

324

Effective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron Nitride  

E-Print Network [OSTI]

Nitride Bing Huang,1 Hongjun Xiang,2 Jaejun Yu,3 and Su-Huai Wei1 1 National Renewable Energy LaboratoryEffective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron devices but is still challenging. Here we suggest that the magnetic and charge states of transition

Gong, Xingao

325

High dynamic range charge measurements  

DOE Patents [OSTI]

A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

De Geronimo, Gianluigi

2012-09-04T23:59:59.000Z

326

International Hydrogen Infrastructure Challenges Workshop Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE...

327

R-charge Kills Monopoles  

E-Print Network [OSTI]

Large charge density, unlike high temperature, may lead to nonrestoration of global and gauge symmetries. Supersymmetric GUTs with the appealing scenario of unification scale being generated dynamically naturally contain global continuous $R$ symmetries. We point out that the presence of a large $R$ charge in the early Universe can lead to GUT symmetry nonrestoration. This provides a simple way out of the monopole problem.

Borut Bajc; Antonio Riotto; Goran Senjanovic

1998-03-24T23:59:59.000Z

328

From Manufacturing Green Office Furniture to providing Sustainable Workplace Services: A necessary change in practices, tools and  

E-Print Network [OSTI]

1 From Manufacturing Green Office Furniture to providing Sustainable Workplace Services company in office furniture like Steelcase is moving its business from manufacturing physical products. After this statement, we stress the issues raised by the shift from a current state of green product

Boyer, Edmond

329

Piston-assisted charge pumping  

E-Print Network [OSTI]

We examine charge transport through a system of three sites connected in series in the situation when an oscillating charged piston modulates the energy of the middle site. We show that with an appropriate set of parameters, charge can be transferred against an applied voltage. In this scenario, when the oscillating piston shifts away from the middle site, the energy of the site decreases and it is populated by a charge transferred from the lower energy site. On the other hand, when the piston returns to close proximity, the energy of the middle site increases and it is depopulated by the higher energy site. Thus through this process, the charge is pumped against the potential gradient. Our results can explain the process of proton pumping in one of the mitochondrial enzymes, Complex I. Moreover, this mechanism can be used for electron pumping in semiconductor nanostructures.

Kaur, D; Mourokh, L

2015-01-01T23:59:59.000Z

330

Charge-pump voltage converter  

DOE Patents [OSTI]

A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

Brainard, John P. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

2009-11-03T23:59:59.000Z

331

Collective thermoelectrophoresis of charged colloids  

E-Print Network [OSTI]

Thermally driven colloidal transport is, to a large extent, due to the thermoelectric or Seebeck effect of the charged solution.We show that, contrary to the generally adopted single-particle picture, the transport coefficient depends on the colloidal concentration. For solutions that are dilute in the hydrodynamic sense, collective effects may significantly affect the thermophoretic mobility. Our results provide an explanation for recent experimental observations on polyelectrolytes and charged particles and suggest that for charged colloids collective behavior is the rule rather than the exception.

Arghya Majee; Alois Wrger

2014-01-29T23:59:59.000Z

332

Emission Spectroscopy of Highly Charged Ions in Plasma of an Electron Beam Ion Trap  

SciTech Connect (OSTI)

The results of experimental study of magnetic dipole (M1) transitions in highly charged ions of argon (Ar9+, Ar10+, Ar13+ and Ar14+) and krypton (Kr18+ and Kr22+) are presented. The forbidden transitions of the highly charged ions in the visible and near UV range of the photon emission spectra have been measured with accuracy better than 1 ppm. Our measurements for the 'coronal lines' are the most accurate yet reported using an EBIT as a spectroscopic source of highly charged ions. These precise wavelength determinations provide a useful test and challenge for atomic structure calculations of many-electron systems.

Draganic, I. [Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia and Montenegro); Max-Planck Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Crespo Lopez-Urrutia, J.R.; Soria Orts, R.; Ullrich, J. [Max-Planck Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); DuBois, R. [University of Missouri-Rolla, Physics Building, Rolla, MO 63409-0640 (United States); Shevelko, V. [Lebedev Physical Institute, Russian Academy of Science, 117924 Moscow (Russian Federation); Fritzsche, S. [Department of Physics, University of Kassel, Heinrich-Plett-St. 40, D-34132 Kassel (Germany); Zou, Y. [Applied Ion Beam Physics Lab, Fudan University, Shanghai 200433 (China)

2004-12-01T23:59:59.000Z

333

AirTAP BriefingsA publication of the AirTAP program of the Center for Transportation Studies at the University of Minnesota Setting rates and charges can be one of  

E-Print Network [OSTI]

at the University of Minnesota Setting rates and charges can be one of the most challenging tasks an airport services, and rates and charges can fluctu- ate depending on the types of services that are offered. Finally, if rates and charges are set too high at an airport, pilots can easily relocate their aircraft

Minnesota, University of

334

Measuring momentum for charged particle tomography  

DOE Patents [OSTI]

Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

Morris, Christopher (Los Alamos, NM); Fraser, Andrew Mcleod (Los Alamos, NM); Schultz, Larry Joe (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Klimenko, Alexei Vasilievich (Maynard, MA); Sossong, Michael James (Los Alamos, NM); Blanpied, Gary (Lexington, SC)

2010-11-23T23:59:59.000Z

335

Turbo-Charged Lighting Design  

E-Print Network [OSTI]

TURBO-CHARGED LIGHTING DESIGN William H. Clark II Design Engineer O'Connell Robertson & Assoc Austin/ Texas ABSTRACT The task of the lighting designer has become very complex, involving thousands of choices for fixture types and hundreds...

Clark, W. H. II

336

GREEN BUILDINGS IN CHALLENGES AND  

E-Print Network [OSTI]

GREEN BUILDINGS IN DELAWARE: CHALLENGES AND OPPORTUNITIES FINAL REPORT A Renewable Energy and collaborative research and supports graduate instruction in energy, environmental, and sustainable development policy, sustainable development, political economy of energy, environment and development, environmental

Delaware, University of

337

Challenges in Industrial Heat Recovery  

E-Print Network [OSTI]

This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

Dafft, T.

2007-01-01T23:59:59.000Z

338

BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Impacts  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

339

BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bessie's Biofuel  

Broader source: Energy.gov [DOE]

This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

340

BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel  

Broader source: Energy.gov [DOE]

This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuel Acts  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

342

BIOENERGIZEME INFOGRAPHIC CHALLENGE: Tertiary Treatment  

Broader source: Energy.gov [DOE]

This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

343

Nuclear Proliferation and Grand Challenges  

ScienceCinema (OSTI)

Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

McCarthy, Kathy

2013-05-28T23:59:59.000Z

344

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

345

Thermophoresis of charged colloidal particles  

E-Print Network [OSTI]

Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes' equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.

S. Fayolle; T. Bickel; A. Wrger

2014-01-30T23:59:59.000Z

346

A holographic charged preon model  

E-Print Network [OSTI]

The Standard Model (SM) is a successful approach to particle physics calculations. However, there are indications that the SM is only a good approximation to an underlying non-local reality involving fundamental entities (preons) that are not point particles. Furthermore, our universe seems to be dominated by a vacuum energy/cosmological constant. The holographic principle then indicates only a finite number of bits of information will ever be available to describe the observable universe, and that requires a holographic preon model linking the (0,1) holographic bits to SM particles. All SM particles have charges 0, 1/3, 2/3 or 1 in units of the electron charge, so the bits in a holographic preon model must be identified with fractional electric charge. Such holographic charged preon models require baryon asymmetry and also suggest a mechanism for stationary action. This paper outlines a holographic charged preon model where preons are strands with finite energy density specified by bits of information identifying the charge on each end. In the model, SM particles consist of three strands with spin states corresponding to wrapped states of the strands. SM particles in this wrapped preon model can be approximated by preon bound states in non-local dynamics based on three-preon Bethe-Salpeter equations with instantaneous three-preon interactions. The model can be falsified by data from the Large Hadron Collider because it generates baryon asymmetry without axions, and does not allow more than three generations of SM fermions.

T. R. Mongan

2013-04-20T23:59:59.000Z

347

A Study of the Advanced Systems at the CMU Intelligent Workplace with an Evaluation of Potential Applications to Texas A&M International University  

E-Print Network [OSTI]

A detailed study has been conducted of the performance of several innovative aspects of the Intelligent Workplace (IW) at Carnegie Mellon University, a low energy consumption building that uses radiant heating, cooling and a desiccant ventilation...

Claridge, D. E.; Gong, X.; Verdict, M.; Clingenpeel, K.

348

Trace-level beryllium analysis in the laboratory and in the field: State of the art, challenges, and opportunities  

SciTech Connect (OSTI)

Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the laboratory and in the field. These techniques also require a greater degree of standardization to permit reliable comparison of data obtained from different locations and at different times. Analysis of low-level beryllium samples, in the form of air filters or surface wipes, is frequently required for workplace monitoring or to provide data to support decision-making on implementation of exposure controls. In the United States and the United Kingdom, the current permissible exposure level is 2 {micro}g/m{sup 3} (air), and the United States Department of Energy has implemented an action level of 0.2 {micro}g/m{sup 3} (air) and 0.2 {micro}g/100 cm{sup 2} (surface). These low-level samples present a number of analytical challenges, including (1) a lack of suitable standard reference materials, (2) unknown robustness of sample preparation techniques, (3) interferences during analysis, (4) sensitivity (sufficiently low detection limits), (5) specificity (beryllium speciation), and (6) data comparability among laboratories. Additionally, there is a need for portable, real-time (or near real-time) equipment for beryllium air monitoring and surface wipe analysis that is both laboratory-validated and field-validated in a manner that would be accepted by national and/or international standards organizations. This paper provides a review of the current analytical requirements for trace-level beryllium analysis for worker protection, and also addresses issues that may change those requirements. The current analytical state of the art and relevant challenges facing the analytical community will be presented, followed by suggested criteria for real-time monitoring equipment. Recognizing and addressing these challenges will present opportunities for laboratories, research and development organizations, instrument manufacturers, and others.

BRISSON, MICHAEL

2006-03-30T23:59:59.000Z

349

Study of space charge compensation phenomena in charged particle beams  

SciTech Connect (OSTI)

The propagation of a charged particle beam is accompanied by the production of secondary particles created in the interaction of the beam itself with the background gas flowing in the accelerator tube. In the drift region, where the electric field of the electrodes is negligible, secondary particles may accumulate giving a plasma which shields the self-induced potential of the charged beam. This phenomenon, known as space charge compensation is a typical issue in accelerator physics, where it is usually addressed by means of 1D radial transport codes or Monte Carlo codes. The present paper describes some theoretical studies on this phenomenon, presenting a Particle in Cell-Monte Carlo (PIC-MC) Code developed ad hoc where both radial and axial confinements of secondary particles are calculated. The features of the model, offering a new insight on the problem, are described and some results discussed.

Veltri, P.; Serianni, G. [Consorzio RFX, C.so Stati Uniti 4, 35100 Padova (Italy); Cavenago, M. [INFN-LNL, Viale dell'Universita 2, 35020 Legnaro (Italy)

2012-02-15T23:59:59.000Z

350

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

351

DOE Challenge Home Recommended Quality Management Provisions...  

Broader source: Energy.gov (indexed) [DOE]

Recommended Quality Management Provisions DOE Challenge Home Recommended Quality Management Provisions DOE Challenge Home Recommended Quality Management Provisions. qm6-14-13.pdf...

352

Analysis of Transportation and Logistics Challenges Affecting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results Analysis of Transportation and Logistics Challenges Affecting...

353

Grand Challenge Portfolio: Driving Innovations in Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January...

354

Colorado Industrial Challenge and Recognition Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Colorado Industrial Challenge and Recognition Program Colorado Industrial Challenge and Recognition Program This fact sheet offers details of the Colorado Industrial program state...

355

Towards a Visual Turing Challenge  

E-Print Network [OSTI]

As language and visual understanding by machines progresses rapidly, we are observing an increasing interest in holistic architectures that tightly interlink both modalities in a joint learning and inference process. This trend has allowed the community to progress towards more challenging and open tasks and refueled the hope at achieving the old AI dream of building machines that could pass a turing test in open domains. In order to steadily make progress towards this goal, we realize that quantifying performance becomes increasingly difficult. Therefore we ask how we can precisely define such challenges and how we can evaluate different algorithms on this open tasks? In this paper, we summarize and discuss such challenges as well as try to give answers where appropriate options are available in the literature. We exemplify some of the solutions on a recently presented dataset of question-answering task based on real-world indoor images that establishes a visual turing challenge. Finally, we argue despite the success of unique ground-truth annotation, we likely have to step away from carefully curated dataset and rather rely on 'social consensus' as the main driving force to create suitable benchmarks. Providing coverage in this inherently ambiguous output space is an emerging challenge that we face in order to make quantifiable progress in this area.

Mateusz Malinowski; Mario Fritz

2014-11-11T23:59:59.000Z

356

Electric Charge Quantization in Standard Model  

E-Print Network [OSTI]

In the framework of Standard Model for the arbitrary values of Higgs and fermions fields hypercharges, taking into account parity invariance of electromagnetic interaction, expressions for the fermions charges, testifying the electric charge quantization are obtained. From the chiral anomalies cancellation condition within one family of leptons and quarks, numerical values of fermions charges, coinciding with standard values of charges have been obtained.

O. B. Abdinov; F. T. Khalil-zade; S. S. Rzaeva

2008-07-28T23:59:59.000Z

357

Grand Challenges of Enterprise Integration  

SciTech Connect (OSTI)

Enterprise Integration connects and combines people, processes, systems, and technologies to ensure that the right people and the right processes have the right information and the right resources at the right time. A consensus roadmap for Technologies for Enterprise Integration was created as part of an industry/government/academia partnership in the Integrated Manufacturing Technology Initiative (IMTI). Two of the grand challenges identified by the roadmapping effort will be addressed here--Customer Responsive Enterprises and Totally Connected Enterprises. Each of these challenges is briefly discussed as to the current state of industry and the future vision as developed in the roadmap.

Brosey, W.D; Neal, R.E.; Marks, D.

2001-04-01T23:59:59.000Z

358

Electrostatic wire stabilizing a charged particle beam  

DOE Patents [OSTI]

In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

1983-03-21T23:59:59.000Z

359

Magnetic moment versus tensor charge  

E-Print Network [OSTI]

We express the baryon magnetic moments in terms of the baryon tensor charges, considering the quarks as relativistic interacting objects. Once tensor charges get measured accurately, the formula for the baryon magnetic moment will serve to extract precise information on the quark anomalous magnetic moment, the quark effective mass and the ratio of the quark constituent mass to the quark effective mass. The analogous formula for the baryon electric dipole moment is of no great use as it gets eventually sizable contributions from various CP- violating sources not necessary associated to the quark electric dipole moment.

M. Mekhfi

2005-05-10T23:59:59.000Z

360

Charge amplifier with bias compensation  

DOE Patents [OSTI]

An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

Johnson, Gary W. (Livermore, CA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging  

E-Print Network [OSTI]

PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging All Others Subject to Citation. PLUG-IN ELECTRIC VEHICLE CHARGING RATES MondayFriday, 7:30am5pm Hours Power Parking Power+Parking 1://chargepoint.net PAYMENT IS REQUIRED FOR USE OF A CHARGING STATION The rate for charging your vehicle is $1/hour. Please

Bigelow, Stephen

362

Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS  

SciTech Connect (OSTI)

ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

2008-05-31T23:59:59.000Z

363

Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and the University of New Mexico. Lockheed Martin, Sandia National Laboratories, Siemens Foundation, and Wolfram Research, Inc. are "Gold" commercial partners. "Silver"...

364

Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding FriedelIron-Sulfur Protein DomainSSRLChainRemarksduo

365

Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding FriedelIron-Sulfur Protein DomainSSRLChainRemarksduo12th

366

Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding FriedelIron-Sulfur Protein

367

PROVOST CHALLENGE OVERVIEW STATUS REPORT  

E-Print Network [OSTI]

PROVOST CHALLENGE OVERVIEW STATUS REPORT December 2013 # Project Status Project Name · Project Lead report) Joyce O'Halloran and Rachel Webb, The Fariborz Maseeh Department of Mathematics and Statistics 54 ON SCHEDULE Online Academic Advising & Career Development Modules. (Link to detailed report) Mary Ann Barham

Lafferriere, Gerardo

368

Challenges in Integrating Renewable Technologies  

E-Print Network [OSTI]

-5706 Phone: 480-965-1643 Fax: 480-965-0745 Notice Concerning Copyright Material Permission is given to copy as the source material. This white paper is available for downloading from the PSERC website. 2010 Arizona State University All rights reserved #12;PSERC White Paper 1 Challenges in Integrating Renewable Technologies

369

The solar energy challenge?Seth Darling  

ScienceCinema (OSTI)

Argonne researcher Seth Darling talks about the solar energy challenge in creating alternative sources of energy

Seth Darling

2013-06-05T23:59:59.000Z

370

The solar energy challengeSeth Darling  

SciTech Connect (OSTI)

Argonne researcher Seth Darling talks about the solar energy challenge in creating alternative sources of energy

Seth Darling

2012-08-08T23:59:59.000Z

371

Stability of charged thin shells  

SciTech Connect (OSTI)

In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio, C.C. 67, Suc. 28, 1428, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. I, 1428, Buenos Aires (Argentina); Simeone, Claudio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. I, 1428, Buenos Aires (Argentina); IFIBA, CONICET, Ciudad Universitaria Pab. I, 1428, Buenos Aires (Argentina)

2011-05-15T23:59:59.000Z

372

Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL  

SciTech Connect (OSTI)

As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Galata, A.; Porcellato, A. M.; Prete, G. F. [INFN-Laboratori Nazionali di Legnaro, Viale dell'Universita 2, 35020 Legnaro, Padova (Italy); Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T. [LPSC Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); Ban, G. [LPC Caen, 6 bd Marechal Juin, 14050 Caen Cedex (France); Celona, L.; Lunney, D. [INFN-Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5a, 02 093 Warsaw (Poland); Kalvas, T. [Department of Physics, University of Jyvaeskylae, PB 35 (YFL) 40351 Jyvaeskylae (Finland); and others

2012-02-15T23:59:59.000Z

373

The Final 40%: SunShot charges forward to tackle solar challenges! |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds FamiliesDepartment of

374

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, September 25- 7/20/2012

375

The challenge of unconventional superconductivity.  

SciTech Connect (OSTI)

During the past few decades, several new classes of superconductors have been discovered that do not appear to be related to traditional superconductors. The source of the superconductivity of these materials is likely different from the electron-ion interactions that are at the heart of conventional superconductivity. Developing a rigorous theory for any of these classes of materials has proven to be a difficult challenge and will remain one of the major problems in physics in the decades to come.

Norman, M. R. (Materials Science Division)

2011-04-08T23:59:59.000Z

376

On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems  

E-Print Network [OSTI]

Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

2011-01-01T23:59:59.000Z

377

Direct observation of dynamic charge stripes in La2 xSrxNiO4  

SciTech Connect (OSTI)

The insulator-to-metal transition continues to be a challenging subject, especially when electronic correlations are strong. In layered compounds, such as La2 xSrxNiO4 and La2 xBaxCuO4, the doped charge carriers can segregate into periodically spaced charge stripes separating narrow domains of antiferromagnetic order. Although there have been theoretical proposals of dynamically fluctuating stripes, direct spectroscopic evidence of charge-stripe fluctuations has been lacking. Here we report the detection of critical lattice fluctuations, driven by charge-stripe correlations, in La2 xSrxNiO4 using inelastic neutron scattering. This scattering is detected at large momentum transfers where the magnetic form factor suppresses the spin fluctuation signal. The lattice fluctuations associated with the dynamic charge stripes are narrow in q and broad in energy. They are strongest near the charge-stripe melting temperature. Our results open the way towards the quantitative theory of dynamic stripes and for directly detecting dynamical charge stripes in other strongly correlated systems, including high-temperature superconductors such as La2 xSrxCuO4.

Anissimova, S. [University of Colorado, Boulder] [University of Colorado, Boulder; Parshall, D [University of Colorado, Boulder] [University of Colorado, Boulder; Gu, Genda [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Marty, K. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Lumsden, Mark D [ORNL] [ORNL; Chi, Songxue [ORNL] [ORNL; Fernandez-Baca, Jaime A [ORNL] [ORNL; Abernathy, D. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Lamago, D. [Laboratoire Leon Brillouin, France] [Laboratoire Leon Brillouin, France; Tranquada, John M. [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Reznik, Dmitry [University of Colorado, Boulder] [University of Colorado, Boulder

2014-01-01T23:59:59.000Z

378

Methods for reduction of charging emissions  

SciTech Connect (OSTI)

One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

Schuecker, F.J.; Schulte, H. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

379

Transport of elliptic intense charged -particle beams  

E-Print Network [OSTI]

The transport theory of high-intensity elliptic charged-particle beams is presented. In particular, the halo formation and beam loss problem associated with the high space charge and small-aperture structure is addressed, ...

Zhou, J. (Jing), 1978-

2006-01-01T23:59:59.000Z

380

Fast Methods for Bimolecular Charge Optimization  

E-Print Network [OSTI]

We report a Hessian-implicit optimization method to quickly solve the charge optimization problem over protein molecules: given a ligand and its complex with a receptor, determine the ligand charge distribution that minimizes ...

Bardhan, Jaydeep P.

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Free form hemispherical shaped charge  

DOE Patents [OSTI]

A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.

Haselman, L.C. Jr.

1996-06-04T23:59:59.000Z

382

Free form hemispherical shaped charge  

DOE Patents [OSTI]

A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.

Haselman, Jr., Leonard C. (Livermore, CA)

1996-01-01T23:59:59.000Z

383

Vortex Structure in Charged Condensate  

E-Print Network [OSTI]

We study magnetic fields in the charged condensate that we have previously argued should be present in helium-core white dwarf stars. We show that below a certain critical value the magnetic field is entirely expelled from the condensate, while for larger values it penetrates the condensate within flux-tubes that are similar to Abrikosov vortex lines; yet higher fields lead to the disruption of the condensate. We find the solution for the vortex lines in both relativistic and nonrelativistic theories that exhibit the charged condensation. We calculate the energy density of the vortex solution and the values of the critical magnetic fields. The minimum magnetic field required for vortices to penetrate the helium white dwarf cores ranges from roughly 10^7 to 10^9 Gauss. Fields of this strength have been observed in white dwarfs. We also calculate the London magnetic field due to the rotation of a dwarf star and show that its value is rather small.

Gabadadze, Gregory

2009-01-01T23:59:59.000Z

384

Vortex Structure in Charged Condensate  

E-Print Network [OSTI]

We study magnetic fields in the charged condensate that we have previously argued should be present in helium-core white dwarf stars. We show that below a certain critical value the magnetic field is entirely expelled from the condensate, while for larger values it penetrates the condensate within flux-tubes that are similar to Abrikosov vortex lines; yet higher fields lead to the disruption of the condensate. We find the solution for the vortex lines in both relativistic and nonrelativistic theories that exhibit the charged condensation. We calculate the energy density of the vortex solution and the values of the critical magnetic fields. The minimum magnetic field required for vortices to penetrate the helium white dwarf cores ranges from roughly 10^7 to 10^9 Gauss. Fields of this strength have been observed in white dwarfs. We also calculate the London magnetic field due to the rotation of a dwarf star and show that its value is rather small.

Gregory Gabadadze; Rachel A. Rosen

2009-05-14T23:59:59.000Z

385

Charge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant naval steel |Impact ofARM-0501

386

Charge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant naval steel |Impact ofARM-05012

387

Charge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant naval steel |Impact

388

Charge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheir AtmosphericAnalysisVents Using1 Mixed-Phase Cloud

389

CHARGED PARTICLE MULTIPLICITIES AT BRAHMS.  

SciTech Connect (OSTI)

This report presents the measurement of charged particle multiplicity densities dN/d{eta} in ultrarelativistic heavy ion collisions as function of {eta} and the centrality of the collisions. This distributions were extracted from data collected by the BRAHMS collaboration during the first RHK run with gold ions at {radical}s{sub NN} = 130A {center_dot} GeV. The analysis method is described and, results are compared to some model predictions.

DEBBE, R., FOR THE BRAHMS COLLABORATION

2001-07-30T23:59:59.000Z

390

Quarks with Integer Electric Charge  

E-Print Network [OSTI]

Within the context of the Standard Model, quarks are placed in a $(\\mathbf{3},\\mathbf{2})\\oplus (\\mathbf{3},\\bar{\\mathbf{2}})$ matter field representation of $U_{EW}(2)$. Although the quarks carry unit intrinsic electric charge in this construction, anomaly cancellation constrains the Lagrangian in such a way that the quarks' associated currents couple to the photon with the usual 2/3 and 1/3 fractional electric charge associated with conventional quarks. The resulting model is identical to the Standard Model in the $SU_C(3)$ sector: However, in the $U_{EW}(2)$ sector it is similar but not necessarily equivalent. Off hand, the model appears to be phenomenologically equivalent to the conventional quark model in the electroweak sector for experimental conditions that preclude observation of individual constituent currents. On the other hand, it is conceivable that detailed analyses for electroweak reactions may reveal discrepancies with the Standard Model in high energy and/or large momentum transfer reactions. The possibility of quarks with integer electric charge strongly suggests the notion that leptons and quarks are merely different manifestations of the same underlying field. A speculative model is proposed in which a phase transition is assumed to occur between $SU_C(3)\\otimes U_{EM}(1)$ and $U_{EM}(1)$ regimes. This immediately; explains the equality of lepton/quark generations and lepton/hadron electric charge, relates neutrino oscillations to quark flavor mixing, reduces the free parameters of the Standard Model, and renders the issue of quark confinement moot.

J. LaChapelle

2015-01-26T23:59:59.000Z

391

Charging Graphene for Energy Storage  

SciTech Connect (OSTI)

Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

Liu, Jun

2014-10-06T23:59:59.000Z

392

Electrochemically controlled charging circuit for storage batteries  

DOE Patents [OSTI]

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

393

Electric Vehicle Charging as an Enabling Technology  

E-Print Network [OSTI]

Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

394

Charged Cosmic Rays And Particle Dark Matter  

E-Print Network [OSTI]

#12;Charged Particle Astrophysics With Pamela Combination of tracker and calorimeter enable charge, mass, and energy determinations Very accurate particle ID Tracker Calorimeter e- e+ p+ Dan Hooper screwed up? Charge-dependent solar modulation important below 5-10 GeV! (Pamela's sub-10 GeV positrons

Maryland at College Park, University of

395

STATE OF CALIFORNIA CHARGE INDICATOR DISPLAY (CID)  

E-Print Network [OSTI]

RA3.4.2. If refrigerant charge verification is required for compliance, and a CID has been installed compliance with the refrigerant charge verification requirement for that system, thus submittal of a standard refrigerant charge verification compliance form (MECH 25) is not required for a system that has a passing CID

396

Space Charge and Equilibrium Emittances in Damping Rings  

E-Print Network [OSTI]

SPACE CHARGE AND EQUILIBRIUM EMITTANCES IN DAMPING RINGS ?for the pos- sible impact of space charge on the equilibriumrings. INTRODUCTION Direct space charge effects have the

Venturini, Marco; Oide, Katsunobu; Wolski, Andy

2006-01-01T23:59:59.000Z

397

Overview of IMG Challenges (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)  

ScienceCinema (OSTI)

DOE JGI's Victor Markowitz gives an overview of IMG challenges at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

Markowitz, Victor [JGI

2013-01-22T23:59:59.000Z

398

BIOENERGIZEME INFOGRAPHIC CHALLENGE: What is Biogas?  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

399

BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass Reduces Carbon Dioxide  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

400

BIOENERGIZEME INFOGRAPHIC CHALLENGE: What is Biomass?  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Biomass  

Broader source: Energy.gov [DOE]

This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

402

BIOENERGIZEME INFOGRAPHIC CHALLENGE: Iowa Ethanol Production  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

403

Women's Participation in Endurance Motorcycle Challenges.  

E-Print Network [OSTI]

??This work examines women's participation in endurance motorcycle challenges, specifically the Hoka Hey motorcycle challenge, a multi-thousand mile turn-by-turn endurance event and lifestyle sport to (more)

Van Vlerah, Abagail Lea

2013-01-01T23:59:59.000Z

404

Materials Challenges in Nuclear Energy  

SciTech Connect (OSTI)

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

2013-01-01T23:59:59.000Z

405

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

Leonard Bond; Kevin Kostelnik; Richard Holman

2006-11-01T23:59:59.000Z

406

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need. (authors)

Bond, L.; Kostelnik, K.; Holman, R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3898 (United States)

2006-07-01T23:59:59.000Z

407

Nuclear Safeguards and Security Challenge:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclearSafeguards and Security Challenge:

408

Characterization Challenges for Nanomaterials. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStanding FriedelIron-Sulfur3-1 November8-1 November36Challenges

409

Challenge Home | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrie Noonan About UsEnergyCentralChairsChallenge

410

EV Everywhere Challenge Battery Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM Included Not Included Challenge Battery

411

DOE Challenge Home: Orientation Training October 2012  

Broader source: Energy.gov [DOE]

A publication of the U.S. Department of Energy Challenge Home program: Orientation Training October 2012.

412

SunShot Rooftop Challenge Awardees  

Broader source: Energy.gov [DOE]

Awardees, partners, award amounts, estimated population, and project descriptions for the 2011 SunShot Rooftop Challenge.

413

Residual dust charges in discharge afterglow  

SciTech Connect (OSTI)

An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar.

Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A. [GREMI - Groupe de Recherches sur l'Energetique des Milieux Ionises, CNRS/Universite d'Orleans, 14 rue d'Issoudun, 45067 Orleans Cedex 2 (France); School of Physics A28, University of Sydney, NSW 2006 (Australia)

2006-08-15T23:59:59.000Z

414

Living in the Intelligent Workplace Structuring and Managing Building Operation Information  

E-Print Network [OSTI]

to record and evaluate operational performance of building components and user comfort (figure 1). So far the IW has experimented with integration of smart building technologies with advanced design and engineering strategies, enabling.... Technological advances over time also influence the composition and configuration of building systems. Buildings create technical challenges of providing individual comfort, organizational flexibility, technological adaptability, environmental sustainability...

Lam, K. P.; Srivastava, V.

2005-01-01T23:59:59.000Z

415

Multiphysics simulations: challenges and opportunities.  

SciTech Connect (OSTI)

This report is an outcome of the workshop Multiphysics Simulations: Challenges and Opportunities, sponsored by the Institute of Computing in Science (ICiS). Additional information about the workshop, including relevant reading and presentations on multiphysics issues in applications, algorithms, and software, is available via https://sites.google.com/site/icismultiphysics2011/. We consider multiphysics applications from algorithmic and architectural perspectives, where 'algorithmic' includes both mathematical analysis and computational complexity and 'architectural' includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities. We also initiate a modest suite of test problems encompassing features present in many applications.

Keyes, D.; McInnes, L. C.; Woodward, C.; Gropp, W.; Myra, E.; Pernice, M. (Mathematics and Computer Science); (KAUST and Columbia Univ.); (Lawrence Livermore National Laboratory); (Univ. of Illinois at Urbana-Champaign); (Univ. of Mich.); (Idaho National Lab.)

2012-11-29T23:59:59.000Z

416

DECAY CONSTANTS OF CHARGED PSEUDO-SCALAR MESONS  

E-Print Network [OSTI]

- and D+ s decays, the existence of a charged Higgs boson (or any other charged object beyond the Standard

417

DECAY CONSTANTS OF CHARGED PSEUDO-SCALAR MESONS  

E-Print Network [OSTI]

, the existence of a charged Higgs boson (or any other charged object beyond the Standard Model) would modify

418

Technical solutions to nonproliferation challenges  

SciTech Connect (OSTI)

The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

Satkowiak, Lawrence [Director, Nonproliferation, Safeguards and Security Programs, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

2014-05-09T23:59:59.000Z

419

Quantum Information: Opportunities and Challenges  

SciTech Connect (OSTI)

Modern society is shaped by the ability to transmit, manipulate, and store large amounts of information. Although we tend to think of information as abstract, information is physical, and computing is a physical process. How then should we understand information in a quantum world, in which physical systems may exist in multiple states at once and are altered by the very act of observation? This question has evolved into an exciting new field of research called Quantum Information (QI). QI challenges many accepted rules and practices in computer science. For example, a quantum computer would turn certain hard problems into soft problems, and would render common computationally-secure encryption methods (such as RSA) insecure. At the same time, quantum communication would provide an unprecedented kind of intrinsic information security at the level of the smallest physical objects used to store or transmit the information. This talk provides a general introduction to the subject of quantum information and its relevance to cyber security. In the first part, two of the stranger aspects of quantum physics namely, superposition and uncertainty are explained, along with their relation to the concept of information. These ideas are illustrated with a few examples: quantum ID cards, quantum key distribution, and Grover s quantum search algorithm. The state-of-the-art in quantum computing and communication hardware is then discussed, along with the daunting technological challenges that must be overcome. Relevant experimental and theoretical efforts at ORNL are highlighted. The talk concludes with speculations on the short- and long-term impact of quantum information on cyber security.

Bennink, Ryan S [ORNL

2008-01-01T23:59:59.000Z

420

OSHA says that at least 90% of all workplace eye injuries can be prevented through the use of proper eye protection.  

E-Print Network [OSTI]

OSHA says that at least 90% of all workplace eye injuries can be prevented through the use of proper eye protection. Why So Many Injuries? 1. Workers weren't wearing any eye protection. By some estimates, as many as three out of five injured workers weren't wearing eye protection at the time

Burke, Peter

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Why do Particle Clouds Generate Electric Charges?  

E-Print Network [OSTI]

Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug, and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, for it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. In this paper, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains, and we confirm the model's predictions using discrete element simulations and a tabletop granular experiment.

T. Phtz; H. J. Herrmann; T. Shinbrot

2010-03-26T23:59:59.000Z

422

Circular, confined distribution for charged particle beams  

DOE Patents [OSTI]

A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

1995-01-01T23:59:59.000Z

423

Circular, confined distribution for charged particle beams  

DOE Patents [OSTI]

A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

Garnett, R.W.; Dobelbower, M.C.

1995-11-21T23:59:59.000Z

424

Non-intrusive refrigerant charge indicator  

DOE Patents [OSTI]

A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

Mei, Viung C.; Chen, Fang C.; Kweller, Esher

2005-03-22T23:59:59.000Z

425

Why do Particle Clouds Generate Electric Charges?  

E-Print Network [OSTI]

Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

T. Phtz; H. J. Herrmann; T. Shinbrot

2015-03-16T23:59:59.000Z

426

Review of Variable Generation Integration Charges  

SciTech Connect (OSTI)

The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

2013-03-01T23:59:59.000Z

427

Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide EmissionEconomy thanNewVehicle Charging

428

Demonstrating Dynamic Wireless Charging of an Electric Vehicle - The benefit of Electrochemical Capacitor Smoothing  

SciTech Connect (OSTI)

The wireless charging of an electric vehicle (EV) while it is in motion presents challenges in terms of low-latency communications for roadway coil excitation sequencing and maintenance of lateral alignment, plus the need for power-flow smoothing. This article summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at the Oak Ridge National Laboratory (ORNL) using various combinations of electrochemical capacitors at the grid side and in the vehicle. Electrochemical capacitors of the symmetric carbon carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories (ESL) fabricated the passive and active parallel lithium-capacitor (LiC) unit used to smooth the grid-side power. The power pulsation reduction was 81% on the grid by the LiC, and 84% on the vehicle for both the LiC and the carbon ultracapacitors (UCs).

Miller (JNJ), John M. [JNJ-Miller PLC] [JNJ-Miller PLC; Onar, Omer C [ORNL] [ORNL; White, Cliff P [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Coomer, Chester [ORNL] [ORNL; Seiber, Larry Eugene [ORNL] [ORNL; Sepe, Raymond B [ORNL] [ORNL; Steyerl, Anton [ORNL] [ORNL

2014-01-01T23:59:59.000Z

429

On the Electric Charge of the Neutrino  

E-Print Network [OSTI]

Exact expression is obtained for the differential cross section of elastic electroweak scattering of longitudinal polarized massive Dirac neutrinos with the electric charge and anomalous magnetic moment on a spinless nucleus. This formula contains all necessary information about the nature of the neutrino mass, charge and magnetic moment. Some of them state that between the mass of the neutrino its electric charge there exists an interconnection.

Rasulkhozha S. Sarafiddinov

2010-12-09T23:59:59.000Z

430

Particle accelerator employing transient space charge potentials  

DOE Patents [OSTI]

The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

Post, Richard F. (Walnut Creek, CA)

1990-01-01T23:59:59.000Z

431

Magnetic guidance of charged particles  

E-Print Network [OSTI]

Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case and present analytical point spread functions (PSF) for magnetic transport that deviate strongly from previous results. The "magnetic" PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests, for instance in neutrino mass retardation spectrometers.

Dubbers, Dirk

2015-01-01T23:59:59.000Z

432

EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov (indexed) [DOE]

Melissa Lapsa 2014 DOE Vehicle Technologies Office Review Presentation EV Project - Solar- Assisted Charging Demo VSS138 2014 U.S. DOE Hydrogen Program and Vehicle Technologies...

433

Randomly charged polymers in porous environment  

E-Print Network [OSTI]

We study the conformational properties of charged polymers in a solvent in the presence of structural obstacles correlated according to a power law $\\sim x^{-a}$. We work within the continuous representation of a model of linear chain considered as a random sequence of charges $q_i=\\pm q_0$. Such a model captures the properties of polyampholytes -- heteropolymers comprising both positively and negatively charged monomers. We apply the direct polymer renormalization scheme and analyze the scaling behavior of charged polymers up to the first order of an $\\epsilon=6-d$, $\\delta=4-a$-expansion.

V. Blavatska; C. von Ferber

2013-11-22T23:59:59.000Z

434

Electric Vehicle Charging Infrastructure Deployment Guidelines...  

Open Energy Info (EERE)

Guidelines: British Columbia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Agency...

435

Soret Motion of a Charged Spherical Colloid  

E-Print Network [OSTI]

The thermophoretic motion of a charged spherical colloidal particle and its accompanying cloud of counterions and co-ions in a temperature gradient is studied theoretically. Using the Debye-Huckel approximation, the Soret drift velocity of a weakly charged colloid is calculated analytically. For highly charged colloids, the nonlinear system of electrokinetic equations is solved numerically, and the effects of high surface potential, dielectrophoresis, and convection are examined. Our results are in good agreement with some of the recent experiments on highly charged colloids without using adjustable parameters.

Seyyed Nader Rasuli; Ramin Golestanian

2008-08-05T23:59:59.000Z

436

Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system  

SciTech Connect (OSTI)

Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jet of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain.

Bilici, Mihai A.; Toth, Joseph R.; Sankaran, R. Mohan; Lacks, Daniel J. [Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217 (United States)

2014-10-15T23:59:59.000Z

437

Making your Building Smarter : The Retrofit Challenge  

E-Print Network [OSTI]

Wireless Temp Sensors IBM Dublin Research Labs : Smart Buildings Living Lab Environment Background ? 2012 IBM Corporation IBM Dublin Research Labs Our Smart Building Retrofit Challenges Retrofit Challenges Summary 1. Smart Building Design 2... Comfortable environment ?Reduce Energy/Water usage environment ?Keep within Budget ?Biggest Challenge ?? Constantly competing (& changing) objectives within the design and build cycles What to include ? What is critical? Where to Invest ? 5 ? 2012...

Brady, N.

2012-01-01T23:59:59.000Z

438

Aspects of charge recombination and charge transport in organic solar cells and light-emitting devices  

E-Print Network [OSTI]

In this thesis, aspects of charge reconbination and charge transport in organic solar cells and light-emitting devices are presented. These devices show promise relative to traditional inorganic semiconductors. We show ...

Difley, Seth

2010-01-01T23:59:59.000Z

439

Verification Challenges at Low Numbers  

SciTech Connect (OSTI)

Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of Going to Zero. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100s of warheads, and then 10s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100s, 10s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

2013-06-01T23:59:59.000Z

440

The Climate Challenge... and What's at Stake  

ScienceCinema (OSTI)

Secretary Chu uses a famous moment from the Apollo 8 mission to lay out what's at stake as we take on the climate challenge.

Chu, Steven

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE & Strategic Sourcing "New Challenges, New Opportunities"  

Broader source: Energy.gov (indexed) [DOE]

& Strategic Sourcing "New Challenges, New Opportunities" What is it? NNSA Model DOE Future Activities Bill Marks, Commodity Manager, NNSA Supply Chain Management Center Gary...

442

Challenges and strategies of shale gas development.  

E-Print Network [OSTI]

??The objective of this paper is to help new investors and project developers identify the challenges of shale gas E&P and to enlighten them of (more)

Lee, Sunje

2012-01-01T23:59:59.000Z

443

Some challenges for Nuclear Density Functional Theory  

E-Print Network [OSTI]

We discuss some of the challenges that the DFT community faces in its quest for the truly universal energy density functional applicable over the entire nuclear chart.

T. Duguet; K. Bennaceur; T. Lesinski; J. Meyer

2006-06-20T23:59:59.000Z

444

Sandia National Laboratories: Research Challenge 0: Overarching...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Overarching" research is what connects the six main scientific research challenges to SSL technology. SSL technology is itself evolving rapidly, and we devote some effort to...

445

Known Challenges Associated with the Production, Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Known Challenges Associated with the Production,...

446

Addressing Wind Turbine Tribological Challenges with Surface...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addressing Wind Turbine Tribological Challenges with Surface Engineering Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Addressing...

447

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

448

Energy Department Highlights Nissan's Better Plants Challenge...  

Broader source: Energy.gov (indexed) [DOE]

Participating organizations receive technical assistance from the Department and share best practices on industrial energy efficiency with other Challenge partners. For more...

449

2nd International Hydrogen Infrastructure Challenges Webinar  

Broader source: Energy.gov [DOE]

Text version and video recording of the webinar titled "2nd International Hydrogen Infrastructure Challenges Webinar," originally presented on March 10, 2015.

450

Breakout Session: Solar Securitization: Opportunities and Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by solar securitization expert Michael Mendelsohn from the National Renewable Energy Laboratory, this panel discussion will explore U.S. market challenges and...

451

Identifying the Charge Carriers of the Quark-Gluon Plasma  

E-Print Network [OSTI]

Charge correlations in lattice gauge calculations suggest that up, down and strange charges move independently in the QGP (quark-gluon plasma), and that the density of such charges is similar to what is expected from simple thermal arguments. Here, we show how specific elements of the charge-charge correlation matrix in the QGP survive hadronization and become manifest in final-state charge-charge correlation measurements.

Scott Pratt

2012-03-20T23:59:59.000Z

452

Charged Higgs boson searches at the LHC  

E-Print Network [OSTI]

We present the latest results from searches for singly charged Higgs bosons carried out by the ATLAS and CMS Collaborations at the LHC. Both experiments have searched for production of charged Higgs bosons in pp collisions of up to 20 (5) fb^-

Chakraborty, Dhiman; The ATLAS collaboration

2015-01-01T23:59:59.000Z

453

Optimal Decentralized Protocols for Electric Vehicle Charging  

E-Print Network [OSTI]

1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging. The algorithms exploit the elasticity and controllability of electric vehicle loads in order to fill the valleys

Low, Steven H.

454

INTRODUCTION The Electrical Charge and Relativity  

E-Print Network [OSTI]

INTRODUCTION The Electrical Charge and Relativity This course starts with the introduction of concepts related to just electricity: charge, electric field, electric potential energy, conservation of electric energy, etc. Notice that latter terms sound already very familiar to what you have learned in PH

455

Algebraic charge liquids RIBHU K. KAUL1  

E-Print Network [OSTI]

to this fermion as a `holon'. The holon comes in two species, carrying charges ±1 in its interaction holons with charges ±1. From the f± and aµ, we can construct a variety of observables whose correlations

Loss, Daniel

456

Hydrodynamics of charge fluctuations and balance functions  

E-Print Network [OSTI]

We apply stochastic hydrodynamics to the study of charge density fluctuations in QCD matter undergoing Bjorken expansion. We find that the charge density correlations are given by a time integral over the history of the system, with the dominant contribution coming from the QCD crossover region where the change of susceptibility per entropy, chi T/s, is most significant. We study the rapidity and azimuthal angle dependence of the resulting charge balance function using a simple analytic model of heavy-ion collision evolution. Our results are in agreement with experimental measurements, indicating that hydrodynamic fluctuations contribute significantly to the measured charge correlations in high energy heavy-ion collisions. The sensitivity of the balance function to the value of the charge diffusion coefficient D allows us to estimate the typical value of this coefficient in the crossover region to be rather small, of the order of 1/(2pi T), characteristic of a strongly coupled plasma.

B. Ling; T. Springer; M. Stephanov

2014-06-03T23:59:59.000Z

457

Electronically shielded solid state charged particle detector  

DOE Patents [OSTI]

An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

1996-08-20T23:59:59.000Z

458

Electronically shielded solid state charged particle detector  

DOE Patents [OSTI]

An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

Balmer, David K. (155 Coral Way, Broomfield, CO 80020); Haverty, Thomas W. (1173 Logan, Northglenn, CO 80233); Nordin, Carl W. (7203 W. 32nd Ave., Wheatridge, CO 80033); Tyree, William H. (1977 Senda Rocosa, Boulder, CO 80303)

1996-08-20T23:59:59.000Z

459

Proximity charge sensing for semiconductor detectors  

DOE Patents [OSTI]

A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

Luke, Paul N; Tindall, Craig S; Amman, Mark

2013-10-08T23:59:59.000Z

460

New charge radius relations for atomic nuclei  

E-Print Network [OSTI]

We show that the charge radii of neighboring atomic nuclei, independent of atomic number and charge, follow remarkably very simple relations, despite the fact that atomic nuclei are complex finite many-body systems governed by the laws of quantum mechanics. These relations can be understood within the picture of independent-particle motion and by assuming neighboring nuclei having similar pattern in the charge density distribution. A root-mean-square (rms) deviation of 0.0078 fm is obtained between the predictions in these relations and the experimental values, i.e., a comparable precision as modern experimental techniques. Such high accuracy relations are very useful to check the consistence of nuclear charge radius surface and moreover to predict unknown nuclear charge radii, while large deviations from experimental data is seen to reveal the appearance of nuclear shape transition or coexsitence.

B. H. Sun; Y. Lu; J. P. Peng; C. Y. Liu; Y. M. Zhao

2014-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Charge and spin topological insulators  

SciTech Connect (OSTI)

The topologically nontrivial states of matter-charge and spin topological insulators, which exhibit, respectively, properties of the integer quantum Hall effect and the quantum spin Hall effect-are discussed. The topological characteristics (invariant with respect to weak adiabatic changes in the Hamiltonian parameters) which lead to such states are considered. The model of a 2D hexagonal lattice having symmetries broken with respect to time reversal and spatial inversion which was proposed by Haldane and marked the beginning of unprecedented activity in the study of topologically nontrivial states is discussed. This model relates the microscopic nature of the symmetry breaking with respect to the time reversal to the occurrence of spontaneous orbital currents which circulate within a unit cell. Such currents become zero upon summation over the unit cell, but they may form spreading current states at the surface which are similar to the edge current states under the quantum Hall effect. The first model of spontaneous currents (exciton insulator model) is considered, and the possibility of implementing new topologically nontrivial states in this model is discussed.

Kopaev, Yu. V., E-mail: kopaev@sci.lebedev.ru; Gorbatsevich, A. A.; Belyavskii, V. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2011-09-15T23:59:59.000Z

462

Physics challenges for advanced fuel cycle assessment  

SciTech Connect (OSTI)

Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

2014-06-01T23:59:59.000Z

463

Some challenges of middle atmosphere data assimilation  

E-Print Network [OSTI]

Some challenges of middle atmosphere data assimilation 1234567 89A64BC7DEF72B4 8629EEC7C72DEEE5.1256/qj.05.87 Some challenges of middle atmosphere data assimilation By S. POLAVARAPU1,2, T. G. SHEPHERD2 Data assimilation is employed at operational weather forecast centres to combine measurements and model

Wirosoetisno, Djoko

464

Grand Challenges in Data Usage Control  

E-Print Network [OSTI]

Grand Challenges in Data Usage Control Prof. Ravi Sandhu Institute for Cyber Security Prof. Ravi.ics.utsa.edu © Ravi Sandhu World-Leading Research with Real Grand Challenges in Data Usage Control . Ravi Sandhu is about tradeoffs confidentiality, integrity, availability, usage, privacy, cost, usability, productivity

Sandhu, Ravi

465

Challenges and Complexity of Aerodynamic Wing  

E-Print Network [OSTI]

Chapter 1 Challenges and Complexity of Aerodynamic Wing Design Kasidit Leoviriyakit and Antony@stanford.edu and jameson@baboon.stanford.edu This paper focuses on aerodynamic design methodology. It discusses challenges and complexity of aerodynamic wing design for a transonic aircraft, which arise from the complex nature of flow

Jameson, Antony

466

The Challenge University of Minnesota's Educational Mission  

E-Print Network [OSTI]

The Challenge University of Minnesota's Educational Mission: To recruit, educate, challenge The Solution A pilot program in Fall 2010 involving: · 16 academic units from UM-Duluth and UM-Twin Cities · 15 Gayle Woodruff, Global Programs and Strategy Alliance, UM Shelley Smith, Instructional Development

Amin, S. Massoud

467

FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)  

SciTech Connect (OSTI)

Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

2014-09-01T23:59:59.000Z

468

The electric charge and magnetic moment of neutral fundamental particles  

E-Print Network [OSTI]

The article focuses on the issue of the two definitions of charge, mainly the gauge charge and the effective charge of fundamental particles. Most textbooks on classical electromagnetism and quantum field theory only works with the gauge charges while the concept of the induced charge remains unattended. In this article it has been shown that for intrinsically charged particles both of the charges remain the same but there can be situations where an electrically neutral particle picks up some electrical charge from its plasma surrounding. The physical origin and the scope of application of the induced charge concept has been briefly discussed in the article.

Kaushik Bhattacharya

2009-05-27T23:59:59.000Z

469

Simulating spin-charge separation with light  

E-Print Network [OSTI]

In this work we show that stationary light-matter excitations generated inside a hollow one-dimensional waveguide filled with atoms, can be made to generate a photonic two-component Lieb Liniger model. We explain how to prepare and drive the atomic system to a strongly interacting regime where spin-charge separation could be possible. We then proceed by explaining how to measure the corresponding effective spin and charge densities and velocities through standard optical methods based in measuring dynamically the emitted photon intensities or by analyzing the photon spectrum. The relevant interactions exhibit the necessary tunability both to generate and efficiently observe spin charge separation with current technology.

Dimitris G. Angelakis; Mingxia Huo; Elica Kyoseva; Leong Chuan kwek

2010-06-08T23:59:59.000Z

470

Superconducting Hair on Charged Black String Background  

E-Print Network [OSTI]

Behaviour of Dirac fermions in the background of a charged black string penetrated by an Abelian Higgs vortex is elaborated. One finds the evidence that the system under consideration can support fermion fields acting like a superconducting cosmic string in the sence that a nontrivial Dirac fermion field can be carried by the system in question. The case of nonextremal and extremal black string vortex systems were considered. The influence of electric and Higgs charge, the winding number and the fermion mass on the fermion localization near the black string event horizon was studied. It turned out that the extreme charged black string expelled fermion fields more violently comparing to the nonextremal one.

Lukasz Nakonieczny; Marek Rogatko

2012-01-25T23:59:59.000Z

471

Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures  

E-Print Network [OSTI]

Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures Improved Refrigerant Charge Purpose Component packages require in some climate zones that split system air refrigerant charge. For the performance method, the proposed design is modeled with less efficiency

472

Charging Up in King County, Washington  

Broader source: Energy.gov [DOE]

King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

473

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

474

Basophile: Accurate Fragment Charge State Prediction Improves...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accurate Fragment Charge State Prediction Improves Peptide Identification Rates."Genomics, Proteomics & Bioinformatics 11(2):86-95. doi:10.1016j.gpb.2012.11.004 Authors: D...

475

Congestion control in charging of electric vehicles  

E-Print Network [OSTI]

The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

Carvalho, Rui; Gibbens, Richard; Kelly, Frank

2015-01-01T23:59:59.000Z

476

Charging Up in King County, Washington  

ScienceCinema (OSTI)

King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

2013-05-29T23:59:59.000Z

477

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

478

Energetics of protein charge transfer and photosynthesis  

E-Print Network [OSTI]

Energetics of protein charge transfer and photosynthesis Dmitry Matyushov Arizona State scheme is to snap a proton from solution! #12; Bacterial photosynthesis e 0.25 eV lost in two

Matyushov, Dmitry

479

Weak Charge of 133 Walter Johnson  

E-Print Network [OSTI]

Atomic PNC and the Weak Charge of 133 Cs Walter Johnson Department of Physics Notre Dame University http://www.nd.edu/johnson June 21, 2002 Abstract Atomic PNC measurements and calculations are reviewed

Johnson, Walter R.

480

Robust statistical reconstruction for charged particle tomography  

DOE Patents [OSTI]

Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

2013-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "workplace charging challenge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

WRPS MEETING THE CHALLENGE OF TANK WASTE  

SciTech Connect (OSTI)

Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

BRITTON JC

2012-02-21T23:59:59.000Z

482

AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports...  

Broader source: Energy.gov (indexed) [DOE]

Charging Infrastructure Data Summary Reports AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

483

Charge Trapping in High Efficiency Alternating Copolymers: Implication...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in...

484

Former Oak Ridge Bechtel Jacobs Employee Charged with Violating...  

Broader source: Energy.gov (indexed) [DOE]

Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Department of...

485

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

all days Percentage of charging units connected on single calendar day with peak electricity demand Charging Demand: Range of Aggregate Electricity Demand versus Time of Day...

486

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE...

487

Vehicle Technologies Office Merit Review 2014: Wireless Charging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wireless Charging Vehicle Technologies Office Merit Review 2014: Wireless Charging Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program...

488

High Fidelity Modeling of Premixed Charge Compression Ignition...  

Broader source: Energy.gov (indexed) [DOE]

High Fidelity Modeling of Premixed Charge Compression Ignition Engines High Fidelity Modeling of Premixed Charge Compression Ignition Engines Most accurate and detailed chemical...

489

New Methodologies for Analysis of Premixed Charge Compression...  

Broader source: Energy.gov (indexed) [DOE]

New Methodologies for Analysis of Premixed Charge Compression Ignition Engines New Methodologies for Analysis of Premixed Charge Compression Ignition Engines Presentation given at...

490

A Shell Model for Atomistic Simulation of Charge Transfer in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shell Model for Atomistic Simulation of Charge Transfer in Titania. A Shell Model for Atomistic Simulation of Charge Transfer in Titania. Abstract: The derivation of atomistic...

491

AVTA: ARRA EV Project Residential Charging Infrastructure Maps...  

Broader source: Energy.gov (indexed) [DOE]

Residential Charging Infrastructure Maps AVTA: ARRA EV Project Residential Charging Infrastructure Maps The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries...

492

Scalable quantum computer using superconducting charge qubits  

E-Print Network [OSTI]

We present a scalable scheme for superconducting charge qubits with the assistance of one-dimensional superconducting transmission line resonator (STLR) playing the role of data bus. The coupling between qubit and data bus may be turned on and off by just controlling the gate voltage and externally applied flux of superconducting charge qubit. In our proposal, the entanglement between arbitrary two qubits and $W$ states of three qubits can be generated quickly and easily.

W. Y. Huo; G. L. Long

2007-06-15T23:59:59.000Z

493

Where do Nissan Leaf drivers in The EV Project charge when they have the opportunity to charge at work?  

SciTech Connect (OSTI)

This paper invesigates where Nissan Leaf drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at work, home, or some other location?

John Smart; Don Scoffield

2014-03-01T23:59:59.000Z

494

Where do Chevrolet Volt drivers in The EV Project charge when they have the opportunity to charge at work?  

SciTech Connect (OSTI)

This paper investigates where Chevy Volt drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at home, work, or some other location.

John Smart; Don Scoffield

2014-03-01T23:59:59.000Z

495

The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume VI, workplace and environmental monitoring  

SciTech Connect (OSTI)

This is the sixth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume VI is to describe record series pertaining to workplace and environmental monitoring activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of workplace and environmental monitoring practices at Rocky Flats, and identifies organizations contributing to workplace and environmental monitoring policies and activities. Other topics include the scope and arrangement of this volume and the organization to contact for access to these records. Comprehensive introductory and background information is available in Volume I. Other volumes in the guide pertain to administrative and general subjects, facilities and equipment, production and materials handling, waste management, and employee health. In addition, HAI has produced a subject-specific guide, titled The September 1957 Rocky Flats Fire. A Guide to Record Series of the Department of Energy and Its Contractors, which researchers should consult for further information about records related to this incident.

NONE

1995-08-01T23:59:59.000Z

496

Fusion materials modeling: Challenges and opportunities  

E-Print Network [OSTI]

The plasma facing components, first wall, and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National ...

Wirth, B. D.

497

Big data : evolution, components, challenges and opportunities  

E-Print Network [OSTI]

This work reviews the evolution and current state of the "Big Data" industry, and to understand the key components, challenges and opportunities of Big Data and analytics face in today business environment, this is analyzed ...

Zarate Santovena, Alejandro

2013-01-01T23:59:59.000Z

498

EcoCAR Challenge: Finish Line  

Broader source: Energy.gov [DOE]

The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle...

499

BIOENERGIZEME INFOGRAPHIC CHALLENGE: The History of Biomass  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

500

BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Biomass  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...