Powered by Deep Web Technologies
Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Working natural gas inventories below last year's level at ...  

U.S. Energy Information Administration (EIA)

Despite inventory levels at the end of March above the 5-year average, cumulative net injections this year are over 20% lower than in 2010.

2

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

... Demonstrated maximum working gas volume is the sum of the highest storage inventory levels of working gas observed in each facility over the previous 5-year ...

3

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Note: 1) 'Demonstrated Peak Working Gas Capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period as...

4

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

... (see Table 1), and why any given week's storage ... Demonstrated maximum working gas volume is the sum of the highest storage inventory levels of ...

5

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

6

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

7

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

8

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

9

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

10

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

11

Alaska Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

9302013 Next Release Date: 10312013 Referring Pages: Underground Working Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Working...

12

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

13

Utah Natural Gas in Underground Storage (Working Gas) (Million...  

Annual Energy Outlook 2012 (EIA)

Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993...

14

Ohio Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467...

15

Illinois Natural Gas in Underground Storage (Working Gas) (Million...  

Gasoline and Diesel Fuel Update (EIA)

Working Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 234,149...

16

End-of-Month Working Gas in  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The level of gas in storage at the end of the last heating season (March 31, 2000) was 1,150 billion cubic feet (Bcf), just above the 1995-1999 average of 1,139 Bcf. However, according to American Gas Association data, injection rates since April 1 have been below average, resulting in a 10-percent shortfall compared to the 5-year average for total stocks as of September 1. Net injections in August have been 10 percent below average. If net injections continue at 10 percent below historically average rates through the remainder of the refill season, gas inventories would be 2,750 Bcf on November 1, which is 8 percent below the 5-year average of about 3,000 Bcf. We are currently projecting that working gas will be between 2,800 and 2,900 Bcf at the end of October, entering the heating season

17

Peak Underground Working Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Peak Working Natural Gas Capacity. Data and Analysis from the Energy Information Administration (U.S. Dept. of Energy)

18

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

19

Utah Natural Gas in Underground Storage - Change in Working Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2...

20

Indiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

22

Louisiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

23

Virginia Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

24

New Mexico Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

25

Illinois Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

26

New York Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

27

Maryland Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

28

Oklahoma Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

29

Alabama Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

30

Kansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

31

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

32

Missouri Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

33

Oregon Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

34

Colorado Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

35

Montana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

36

Minnesota Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

37

Arkansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

38

Iowa Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

39

Nebraska Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

40

Texas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Kentucky Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

42

Michigan Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

43

Ohio Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

44

California Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 125,898 106,575 111,248 132,203 157,569 170,689 174,950 177,753 182,291 196,681 196,382 153,841 1991 132,323 132,935 115,982 136,883 163,570 187,887 201,443 204,342 199,994 199,692 193,096 168,789 1992 125,777 109,000 93,277 107,330 134,128 156,158 170,112 182,680 197,049 207,253 197,696 140,662 1993 106,890 87,612 100,869 109,975 138,272 152,044 175,917 185,337 199,629 210,423 198,700 164,518 1994 121,221 77,055 76,162 95,079 123,190 143,437 161,081 170,434 191,319 203,562 186,826 161,202 1995 130,241 125,591 117,650 114,852 141,222 167,231 181,227 179,508 194,712 212,867 214,897 188,927

45

Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 117,492 109,383 110,052 117,110 131,282 145,105 158,865 173,570 188,751 197,819 190,747 1991 141,417 109,568 96,781 103,300 122,648 146,143 159,533 169,329 190,953 211,395 197,661 165,940 1992 120,212 91,394 79,753 85,867 106,675 124,940 136,861 152,715 174,544 194,414 187,236 149,775 1993 103,287 66,616 47,157 49,577 86,976 120,891 149,120 176,316 212,046 227,566 213,581 170,503 1994 112,054 93,499 80,056 101,407 134,333 155,279 184,802 207,383 230,726 239,823 235,775 197,145 1995 145,373 106,289 97,677 107,610 126,266 154,036 174,808 175,953 199,358 213,417 188,967 141,572

46

Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122 27,044 24,271 21,990 1994 21,363 18,661 19,224 20,115 21,689 22,447 23,568 25,072 26,511 27,440 26,978 25,065 1995 22,086 20,762 19,352 18,577 19,027 20,563 22,264 23,937 25,846 27,025 26,298 24,257

47

Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 459 343 283 199 199 199 333 467 579 682 786 787 1999 656 532 401 321 318 462 569 645 749 854 911 855 2000 691 515 452 389 371 371 371 371 371 420 534 619 2001 623 563 490 421 525 638 669 732 778 840 598 597 2002 647 648 650 650 625 622 609 605 602 600 512 512 2003 404 294 226 179 214 290 365 460 463 508 508 447 2004 344 293 281 312 345 391 454 509 514 539 527 486 2005 444 364 265 184 143 126 126 126 88 79 73 60 2006 52 52 44 44 44 44 44 44 44 44 44 44

48

Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 163,571 125,097 100,438 110,479 158,720 215,000 265,994 318,024 358,535 364,421 359,766 306,561 1991 194,349 153,061 137,579 147,399 174,145 196,678 219,025 254,779 297,531 315,601 305,179 272,103 1992 201,218 144,582 93,826 103,660 140,908 188,078 222,215 264,511 306,113 331,416 332,959 288,433 1993 217,967 120,711 66,484 89,931 133,866 187,940 233,308 272,685 320,921 334,285 328,073 278,791 1994 172,190 97,587 75,470 114,979 166,013 222,300 272,668 315,887 339,424 354,731 335,483 294,393 1995 232,561 139,624 111,977 124,790 168,112 221,731 253,442 290,185 338,021 355,887 311,749 236,656

49

Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 311,360 252,796 228,986 221,127 269,595 333,981 410,982 481,628 534,303 553,823 542,931 472,150 1991 348,875 285,217 262,424 287,946 315,457 372,989 431,607 478,293 498,086 539,454 481,257 405,327 1992 320,447 244,921 179,503 179,306 224,257 292,516 367,408 435,817 504,312 532,896 486,495 397,280 1993 296,403 194,201 133,273 148,416 222,106 303,407 386,359 468,790 534,882 568,552 516,491 426,536 1994 282,144 193,338 162,719 203,884 276,787 351,286 425,738 502,577 568,235 599,504 579,874 516,887 1995 410,946 298,325 247,016 245,903 299,050 364,569 438,995 492,773 545,157 577,585 511,573 392,896

50

Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 118,053 119,532 116,520 130,817 139,698 150,336 158,048 165,206 171,008 180,706 154,515 1991 111,225 106,204 111,759 125,973 140,357 150,549 151,393 156,066 166,053 169,954 144,316 133,543 1992 115,658 107,281 103,919 109,690 117,435 128,505 145,962 153,948 166,637 174,182 154,096 123,225 1993 46,462 26,472 19,429 30,902 49,259 67,110 82,104 95,435 111,441 118,880 101,220 86,381 1994 56,024 35,272 32,781 49,507 73,474 86,632 102,758 115,789 124,652 129,107 126,148 109,979 1995 86,312 72,646 62,779 67,245 83,722 96,319 103,388 101,608 113,587 126,287 116,265 92,617

51

Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930 86,773 86,048 87,257 87,558 88,012 87,924 85,137 81,930 1994 78,106 72,445 71,282 70,501 71,440 73,247 74,599 75,685 77,456 78,490 76,784 74,111 1995 70,612 68,618 67,929 68,727 70,007 72,146 75,063 78,268 79,364 78,810 75,764 70,513

52

Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 18,661 17,042 17,387 20,796 23,060 26,751 30,924 33,456 34,200 30,588 1991 24,821 19,663 16,425 15,850 17,767 18,744 22,065 26,710 31,199 37,933 35,015 30,071 1992 23,328 18,843 14,762 14,340 15,414 17,948 23,103 27,216 32,427 35,283 32,732 29,149 1993 23,702 18,626 15,991 17,160 18,050 20,109 24,565 29,110 33,303 34,605 32,707 30,052 1994 23,623 20,052 18,102 17,396 17,194 19,647 24,780 29,088 33,077 35,877 36,408 33,424 1995 27,732 21,973 19,542 18,899 19,227 21,026 23,933 27,541 31,972 36,182 36,647 31,830

53

Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884 55,215 61,028 60,752 38,314 31,086 1994 21,838 17,503 20,735 25,099 29,837 30,812 37,339 42,607 44,739 47,674 48,536 43,262 1995 32,938 27,069 23,018 27,735 34,699 36,337 40,488 41,240 47,530 50,166 40,729 32,224

54

Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 55,509 49,604 47,540 48,128 53,233 64,817 76,933 92,574 99,253 115,704 93,290 1991 59,383 54,864 49,504 47,409 53,752 61,489 64,378 67,930 78,575 89,747 80,663 82,273 1992 76,311 63,152 53,718 48,998 51,053 53,700 57,987 69,653 79,756 82,541 73,094 61,456 1993 44,893 33,024 27,680 26,796 46,806 58,528 64,198 75,616 89,955 92,825 87,252 76,184 1994 52,998 41,644 39,796 40,779 49,519 55,059 64,664 77,229 86,820 91,309 84,568 74,364 1995 59,292 47,263 37,998 39,071 48,761 60,148 65,093 65,081 81,654 93,880 90,905 73,982

55

Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000 865 863 1,178 1,112 1,202 1,809 1,890 1,890 1,780 1,638 1,434 1,349 2001 1,020 1,261 657 851 807 1,384 1,538 1,651 1,669 1,549 2,837 2,848 2002 2,435 2,119 1,849 2,106 2,206 2,076 2,326 2,423 2,423 1,863 2,259 2,117

56

Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491 22,694 17,504 13,313 17,552 23,767 28,965 33,972 35,196 34,955 34,660 1991 26,266 24,505 17,544 16,115 17,196 21,173 25,452 30,548 35,254 36,813 37,882 36,892 1992 33,082 29,651 22,962 18,793 18,448 20,445 24,593 30,858 36,770 38,897 35,804 33,066 1993 28,629 23,523 21,015 17,590 20,302 24,947 28,113 31,946 36,247 34,224 30,426 29,254 1994 24,249 19,331 16,598 11,485 16,989 18,501 23,590 28,893 34,044 34,298 32,687 29,307 1995 24,948 21,446 16,467 12,090 14,043 19,950 25,757 29,774 32,507 33,707 35,418 30,063

57

Differences Between Monthly and Weekly Working Gas In Storage  

Weekly Natural Gas Storage Report (EIA)

December 19, 2013 December 19, 2013 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from May 2002 through September 2013, estimated total working gas stocks have exhibited an average absolute error of 16 billion cubic feet, or 0.6 percent. Background The Energy Information Administration (EIA) provides weekly estimates of working gas volumes held in underground storage facilities at the national and regional levels. These are estimated from volume data provided by a

58

Differences Between Monthly and Weekly Working Gas In Storage  

Weekly Natural Gas Storage Report (EIA)

November 7, 2013 November 7, 2013 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from May 2002 through August 2013, estimated total working gas stocks have exhibited an average absolute error of 16 billion cubic feet, or 0.6 percent. Background The Energy Information Administration (EIA) provides weekly estimates of working gas volumes held in underground storage facilities at the national and regional levels. These are estimated from volume data provided by a

59

California Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic...

60

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

New Mexico Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet)...

62

Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 1,309 844 534 742 1,055 1,364 1,553 1,894 2,218 2,349 2,255 1,897 1999 1,519 1,070 745 929 1,202 1,413 1,641 1,830 2,248 2,357 2,175 1,708 2000 998 843 814 1,063 1,642 1,848 2,066 2,215 2,223 2,594 2,242 1,529 2001 991 823 532 963 1,477 1,869 2,113 2,416 2,677 2,651 2,711 2,503 2002 2,029 1,356 968 1,090 1,627 1,899 2,181 2,322 2,631 2,838 2,559 2,065 2003 1,042 546 367 660 1,107 1,582 1,994 2,710 3,247 3,281 3,167 2,621 2004 1,570 1,195 865 1,024 1,706 1,990 2,188 2,925 3,253 4,115 4,082 3,077

63

Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 1,668 2,849 4,357 5,601 6,365 7,001 7,373 7,562 7,517 6,766 1991 5,691 4,726 2,959 1,980 2,694 4,248 5,706 6,798 7,472 7,811 7,834 7,347 1992 5,779 4,239 2,653 2,211 3,783 5,323 6,518 7,528 7,981 8,154 7,055 6,475 1993 4,557 3,161 2,433 2,007 3,651 4,949 6,130 7,172 7,750 8,240 7,509 6,406 1994 5,145 4,018 3,073 648 1,858 3,357 4,553 5,628 6,312 6,566 6,129 5,491 1995 3,814 3,429 2,989 3,856 5,035 6,069 6,765 6,765 7,251 7,251 7,193 6,371 1996 5,120 4,179 3,528 3,396 4,119 5,292 6,425 6,862 6,965 6,759 6,206 4,967

64

AGA Producing Region Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097 466,366 1997 314,140 248,911 297,362 326,566 401,514 471,824 478,925 532,982 617,733 705,879 642,254 494,485 1998 391,395 384,696 362,717 457,545 550,232 610,363 684,086 748,042 784,567 893,181 888,358 768,239 1999 611,978 585,458 530,610 568,307 653,498 728,071 744,307 750,460 826,493 858,836 849,011 718,513

65

West Virginia Natural Gas in Underground Storage (Working Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) West Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 95,718 84,444 80,152 86,360 105,201 122,470 139,486 155,506 168,801 172,513 172,198 155,477 1991 102,542 81,767 79,042 86,494 101,636 117,739 132,999 142,701 151,152 154,740 143,668 121,376 1992 87,088 60,200 32,379 33,725 57,641 75,309 97,090 115,537 128,969 141,790 135,853 143,960 1993 112,049 69,593 41,670 46,361 84,672 111,540 131,113 150,292 170,597 176,189 162,821 129,738 1994 71,547 38,973 20,662 41,766 67,235 97,887 125,442 147,683 168,538 174,514 166,920 140,377 1995 96,574 55,283 43,199 48,420 72,781 96,991 120,021 128,965 146,728 161,226 138,140 98,925

66

Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226 54,179 53,869 54,783 56,160 57,690 56,165 56,611 57,708 58,012 57,606 54,005 1991 52,095 51,060 50,341 51,476 54,531 56,673 56,409 56,345 57,250 56,941 56,535 54,163 1992 52,576 51,568 51,525 52,136 53,768 56,396 58,446 59,656 60,842 60,541 57,948 54,512 1993 51,102 49,136 48,100 49,069 52,016 55,337 57,914 59,772 61,281 10,707 8,936 6,562 1994 3,476 743 886 1,845 3,983 4,882 6,505 6,852 8,978 9,908 10,078 8,075 1995 6,063 5,068 4,138 3,940 4,583 5,449 3,881 4,059 4,443 3,676 2,078 485 1996 - - - - - 806 1,938 3,215 3,960 3,389 2,932 1,949

67

Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882 5,257 3,304 2,365 1,893 5,005 7,942 10,880 11,949 12,154 12,235 9,008 1991 6,557 6,453 3,509 6,342 7,864 10,580 12,718 12,657 12,652 14,112 15,152 14,694 1992 12,765 9,785 9,204 8,327 9,679 10,854 11,879 13,337 14,533 13,974 13,312 9,515 1993 6,075 2,729 3,958 4,961 9,491 10,357 12,505 13,125 15,508 13,348 9,567 11,274 1994 9,672 5,199 4,765 6,867 9,471 11,236 13,045 13,496 14,629 14,846 14,458 12,884 1995 10,750 8,520 8,267 8,500 11,070 12,622 14,035 13,764 16,258 16,158 16,224 12,869 1996 6,547 5,488 4,672 4,780 6,742 10,060 11,344 15,100 14,244 12,391 11,634 9,724

68

Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235 1,045 888 1,237 1,642 2,011 2,213 2,362 2,360 2,356 2,284 1995 1,771 1,294 1,037 990 1,321 1,584 1,890 2,121 2,362 2,368 2,365 2,110 1996 1,329 1,069 847 935 1,301 1,596 1,883 2,093 2,295 2,328 2,297 2,070

69

Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081 5,796 6,047 7,156 7,151 7,146 7,140 7,421 7,927 8,148 8,157 7,869 1991 7,671 5,875 4,819 6,955 7,638 7,738 8,033 8,335 8,547 8,765 8,964 8,952 1992 7,454 6,256 5,927 7,497 7,924 8,071 8,337 8,555 8,763 8,954 8,946 8,939 1993 7,848 6,037 4,952 6,501 7,550 8,001 8,104 8,420 8,627 8,842 8,720 8,869 1994 7,602 7,073 6,794 4,640 6,094 7,449 7,765 8,072 8,341 8,548 8,778 8,783 1995 8,200 7,921 7,879 7,608 8,230 8,221 8,210 8,559 9,022 9,145 9,311 8,981 1996 7,558 7,658 7,225 6,931 8,250 8,511 8,751 8,958 9,162 9,372 9,067 8,993

70

Knowledge-Intensive Work in the Oil and Gas Industry  

E-Print Network (OSTI)

Knowledge-Intensive Work in the Oil and Gas Industry: A Case Study Thesis for the degree collaborative work practices within a large international oil and gas company (OGC). The work is founded empirical findings, we argue that in knowledge-intensive, interdisciplinary work such as oil and gas

Langseth, Helge

71

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

72

Working Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

73

Estimates of Peak Underground Working Gas Storage Capacity in...  

U.S. Energy Information Administration (EIA) Indexed Site

Administration report, The Basics of Underground Storage, http:www.eia.doe.govpuboilgasnaturalgasanalysispublicationsstoragebasicsstoragebasics.html. 2 Working gas is...

74

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815 27,780 16,330 1993 16,748 -23,871 -27,342 -13,729 -7,043 -138 11,093 8,174 14,808 2,868 -4,885 -9,642 1994 -45,776 -23,124 8,987 25,048 32,148 34,360 39,360 43,202 18,502 20,447 7,409 15,602 1995 60,371 42,037 36,507 9,811 2,098 -569 -19,226 -25,702 -1,403 1,156 -23,733 -57,737

75

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5 1.3 -0.3 -7.1 -8.1 -0.4 0.3 -7.1 -19.6 1996 -32.3 -32.6 -49.9 -39.0 -28.4 -18.3 -0.5 4.4 0.7 -0.2 3.9 26.8 1997 31.1 63.7 89.6 41.7 24.2 9.7 -4.5 -6.2 -2.2 -2.4 -0.3 -8.7 1998 5.7 9.8 22.4 52.3 49.3 32.7 23.0 11.1 3.1 4.1 12.5 17.6

76

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

77

Peak Underground Working Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Related Links: Storage Basics: ... natural gas consumption declined roughly 2 percent from the previous year a reflection of 2009's mild temperatures and weak ...

78

California Natural Gas in Underground Storage - Change in Working...  

Gasoline and Diesel Fuel Update (EIA)

Percent) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5.1...

79

Michigan Natural Gas in Underground Storage - Change in Working...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

80

Figuring on energy: can gas discounts work  

SciTech Connect

A Pennsylvania lawsuit is examining the effects of price competition among gas utilities in their efforts to retain industrial customers and the extra burdens discounts place on other users. Because gas markets have not matched the fall in oil prices, gas utilities face the loss of their largest customers to residual oil unless small users are willing to accept a surcharge to cover a larger share of the utility's fixed prices. The dilemma of when to switch is causing uncertainty among dual-fuel users. (DCK)

Schaffer, P.

1983-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Philadelphia Gas Works - Residential and Commercial Construction Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Commercial Construction Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Residential: $750 Commercial: $60,000 Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount '''Residential''' Residential Construction: $750 '''Commercial/Industrial''' 10% to 20% to 30% above code, $40/MMBtu first-year savings Philadelphia Gas Works (PGW) provides incentives to developers, home

82

Estimate of Maximum Underground Working Gas Storage Capacity in ...  

U.S. Energy Information Administration (EIA)

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update This report provides an update to an estimate for U.S. aggregate ...

83

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor DO NOT 16 0 REMOVE 16 Small recuperated gas turbine engine, design rated at 13 hp and 27% efficiency of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

84

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

85

Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial EnergySense Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Insulation Appliances & Electronics Water Heating Maximum Rebate $75,000 Program Info Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Varies Widely Philadelphia Gas Works' (PGW) Commercial and Industrial Retrofit Incentive Program is part of EnergySense, PGW's portfolio of energy efficiency

86

U.S. Working Natural Gas Underground Storage Depleted Fields...  

Annual Energy Outlook 2012 (EIA)

Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

87

U.S. Working Natural Gas Underground Storage Acquifers Capacity...  

Gasoline and Diesel Fuel Update (EIA)

Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

88

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

89

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

90

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

91

Philadelphia Gas Works - Residential and Small Business Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Small Business Equipment Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 4/1/2011 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler (Purchase prior to 02/17/12): $1000 Boiler (Purchase 02/17/12 or after): $2000 Furnace (Purchase prior to 02/17/12): $250 Furnace (Purchase prior to 02/17/12): $500

92

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

93

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

94

AGA Western Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116 333,134 322,501 282,392 1997 216,113 179,067 171,563 184,918 227,756 273,507 306,641 330,075 351,975 363,189 350,107 263,455 1998 211,982 163,084 150,923 155,766 206,048 254,643 281,422 305,746 346,135 379,917 388,380 330,906

95

,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (MMcf)" Working Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5410us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5410us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:28 PM"

96

,"U.S. Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (MMcf)" Working Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5510us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5510us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:32 PM"

97

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 2,322 1994-Jan 01/07 2,186 01/14 2,019 01/21 1,782 01/28 1,662 1994-Feb 02/04 1,470 02/11 1,303 02/18 1,203 02/25 1,149 1994-Mar 03/04 1,015 03/11 1,004 03/18 952 03/25 965 1994-Apr 04/01 953 04/08 969 04/15 1,005 04/22 1,085 04/29 1,161 1994-May 05/06 1,237 05/13 1,325 05/20 1,403 05/27 1,494

98

Eastern Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 1,411 1994-Jan 01/07 1,323 01/14 1,199 01/21 1,040 01/28 958 1994-Feb 02/04 838 02/11 728 02/18 665 02/25 627 1994-Mar 03/04 529 03/11 531 03/18 462 03/25 461 1994-Apr 04/01 465 04/08 475 04/15 494 04/22 541 04/29 593 1994-May 05/06 636 05/13 690 05/20 731 05/27 795

99

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

100

GasSense: appliance-level, single-point sensing of gas activity in the home  

Science Conference Proceedings (OSTI)

This paper presents GasSense, a low-cost, single-point sensing solution for automatically identifying gas use down to its source (e.g., water heater, furnace, fireplace). This work adds a complementary sensing solution to the growing body of work in ... Keywords: gas, sensing, sustainability, ubiquitous computing

Gabe Cohn; Sidhant Gupta; Jon Froehlich; Eric Larson; Shwetak N. Patel

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AGA Eastern Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243 1,192,952 1,456,355 1,695,873 1,838,842 1,664,539 1,423,793 1997 965,310 711,444 521,508 539,750 735,527 985,803 1,230,970 1,474,855 1,702,601 1,816,709 1,706,526 1,416,580 1998 1,108,737 878,420 669,205 772,790 1,017,260 1,248,564 1,462,360 1,644,247 1,797,048 1,918,157 1,878,225 1,630,559

102

Impact of Natural Gas Appliances on Pollutant Levels in California...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Appliances on Pollutant Levels in California Homes NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated...

103

U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000 1,215,000 1,427,000 1,731,000 2,030,000 2,348,000 2,599,000 2,824,000 2,929,000 2,821,000 2,475,000 1978 1,819,000 1,310,000 1,123,000 1,231,000 1,491,000 1,836,000 2,164,000 2,501,000 2,813,000 2,958,000 2,927,000 2,547,000

104

Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,086 66,477 61,296 61,444 65,918 70,653 76,309 82,236 85,955 89,866 87,913 73,603 1991 71,390 60,921 57,278 59,014 63,510 74,146 79,723 86,294 97,761 109,281 101,166 86,996 1992 67,167 54,513 50,974 53,944 62,448 70,662 82,259 93,130 103,798 112,898 103,734 83,223 1993 18,126 8,099 5,896 10,189 16,993 25,093 35,988 46,332 58,949 64,538 57,880 40,257 1994 21,994 12,505 9,508 11,414 16,978 23,485 33,733 44,726 56,420 65,515 60,945 43,175 1995 22,656 11,780 7,447 6,865 10,632 18,717 28,858 43,748 55,435 62,560 51,890 36,857

105

Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 321,678 314,918 308,955 347,344 357,995 370,534 383,549 377,753 378,495 396,071 402,265 365,396 1991 279,362 271,469 271,401 289,226 303,895 323,545 327,350 329,102 344,201 347,984 331,821 316,648 1992 284,571 270,262 264,884 267,778 286,318 298,901 320,885 338,320 341,156 345,459 324,873 288,098 1993 165,226 149,367 141,472 157,250 183,990 198,041 207,344 220,032 216,071 222,798 210,181 194,014 1994 143,701 103,889 111,945 135,634 168,679 181,683 207,232 226,641 248,857 261,209 266,958 235,718 1995 215,449 192,489 184,914 206,178 228,388 238,593 238,850 234,779 254,339 265,781 248,336 200,382

106

Lower 48 States Total Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,693,215 2,088,293 1,709,624 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

107

Lower 48 States Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Lower 48 States Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,985 38,541 -75,406 -222,622 -232,805 -210,409 -190,434 -133,607 -91,948 -46,812 73,978 350,936 2012 778,578 852,002 1,047,322 994,769 911,345 800,040 655,845 556,041 481,190 406,811 271,902 259,915 2013 -216,792 -360,517 -763,506 -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

108

Rapid Gas Hydrate Formation Processes: Will They Work?  

SciTech Connect

Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve (see Figure 1).

Brown, T.D.; Taylor, C.E.; Bernardo, M.P.

2010-01-01T23:59:59.000Z

109

U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (Million Cubic Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 47,455 36,864 41,979 49,646 58,678 56,813 63,882 64,460 70,583 72,447 73,277 69,641 1995 72,965 64,476 58,510 66,025 73,529 78,437 76,026 63,026 80,949 87,711 83,704 71,638 1996 58,880 47,581 37,918 56,995 62,439 71,476 70,906 75,927 84,962 88,061 87,029 85,140 1997 57,054 49,490 55,865 58,039 73,265 79,811 65,589 66,536 77,598 93,020 95,180 82,610 1998 69,390 68,851 63,549 80,476 82,711 83,080 90,544 92,319 83,365 115,709 118,521 104,104 1999 82,043 77,133 67,758 77,908 94,436 101,788 95,521 102,210 111,680 115,048 116,495 99,921

110

New York Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 35,239 28,083 24,437 26,484 32,304 42,192 50,845 59,950 66,681 69,508 68,996 59,183 1991 38,557 30,227 25,695 29,076 35,780 43,534 51,822 60,564 69,005 73,760 68,941 61,246 1992 49,781 35,441 23,732 26,771 36,307 45,716 57,152 66,993 72,724 76,134 72,836 56,289 1993 43,019 26,790 16,578 20,740 30,875 41,858 51,917 54,363 63,952 65,899 62,563 53,140 1994 40,502 26,320 17,867 26,755 35,465 47,773 56,880 65,819 70,776 72,168 69,544 60,807 1995 46,883 32,592 26,685 27,192 35,773 47,125 54,358 62,641 71,561 73,249 63,560 45,810

111

New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,085 11,213 10,893 12,718 8,903 13,496 17,077 20,270 21,829 24,996 26,006 23,472 1991 20,026 18,023 15,855 8,701 11,626 14,635 15,689 13,734 16,376 16,270 16,031 16,988 1992 14,969 14,258 13,522 11,923 11,828 12,369 10,270 12,215 13,412 15,976 14,938 15,350 1993 12,704 8,540 8,417 5,490 8,195 9,416 9,685 7,367 8,356 10,544 7,832 7,914 1994 4,952 3,973 3,588 3,256 4,025 4,716 5,087 5,306 8,708 10,826 10,274 9,735 1995 7,590 7,588 8,025 8,247 9,470 10,575 10,593 9,503 10,022 10,057 8,980 7,490 1996 6,178 4,942 4,250 3,871 4,212 4,219 4,193 4,308 5,444 5,866 5,030 4,605

112

Missouri Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -114 -943 -336 775 774 774 773 -107 103 55 -146 1,291 1991 -410 79 -1,227 -201 487 592 893 913 620 617 807 1,083 1992 -216 381 1,107 542 286 333 304 220 216 189 -18 -13 1993 393 -220 -975 -996 -374 -69 -233 -135 -136 -112 -226 -70 1994 -245 1,036 1,842 -1,862 -1,456 -552 -338 -348 -285 -294 58 -85 1995 598 848 1,085 2,969 2,136 772 445 487 680 597 533 197 1996 -642 -262 -655 -677 21 290 541 398 140 226 -244 12 1997 309 461 -279 -42 -162 -311 -119 55 90 95 607 453

113

Withdrawals from Working Natural Gas Stocks During Summer 2006  

U.S. Energy Information Administration (EIA)

natural gas for air conditioning. According to the Edison Electric Institute, electricity consumption reached record highs during the week ended July ...

114

Climate VISION: Private Sector Initiatives: Oil and Gas: Work...  

Office of Scientific and Technical Information (OSTI)

Work Plans API has developed a work plan based on API's commitment letter and the Climate Challenge Program which addresses the overall elements of the Climate VISION program...

115

Flammable gas tank waste level reconcilliation for 241-SX-102  

SciTech Connect

Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ``Wallet Report`` is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980.

Brevick, C.H.; Gaddie, L.A.

1997-06-23T23:59:59.000Z

116

What is the total working gas capacity in underground natural gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

117

Indiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,295 -2,048 303 1,673 2,267 2,054 632 690 1,081 1,169 1,343 2,765 1991 2,450 1,002 -617 -1,537 -1,372 -2,052 -995 -41 274 4,477 815 -517 1992 -1,493 -820 -1,663 -1,510 -2,353 -796 1,038 506 1,229 -2,650 -2,283 -922 1993 374 -217 1,229 2,820 2,636 2,160 1,462 1,893 876 -679 -25 903 1994 -79 1,426 2,111 236 -856 -462 215 -22 -226 1,272 3,701 3,372 1995 4,108 1,921 1,440 1,503 2,033 1,379 -847 -1,547 -1,105 305 239 -1,594 1996 -2,809 -931 -2,059 -2,296 -2,608 -2,010 -508 2,016 1,499 -9 283 1,806

118

Iowa Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2,696 -5,556 -4,018 -2,430 -2,408 3,493 3,414 4,058 11,806 19,414 13,253 13,393 1992 -4,224 -6,407 -6,304 -5,070 -1,061 -3,484 2,536 6,836 6,037 3,618 2,568 -3,773 1993 -49,040 -46,415 -45,078 -43,755 -45,456 -45,569 -46,271 -46,798 -44,848 -48,360 -45,854 -42,967 1994 3,868 4,407 3,612 1,225 -15 -1,608 -2,255 -1,606 -2,529 977 3,064 2,918 1995 662 -725 -2,062 -4,549 -6,346 -4,768 -4,875 -978 -985 -2,955 -9,054 -6,318 1996 -2,596 -433 -1,982 -2,204 -5,609 -6,677 -4,290 -5,912 -4,983 -1,206 3,642 151

119

Colorado Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 701 995 446 26 639 1,368 2,249 3,219 1,102 2,496 892 1991 -1,225 1,811 40 2,493 3,883 3,621 1,685 1,583 1,282 1,616 2,927 2,233 1992 6,816 5,146 5,417 2,679 1,253 -728 -859 310 1,516 2,085 -2,078 -3,827 1993 -4,453 -6,128 -1,947 -1,204 1,853 4,502 3,520 1,087 -522 -4,673 -5,378 -3,812 1994 -4,380 -4,192 -4,417 -6,105 -3,313 -6,446 -4,523 -3,052 -2,203 74 2,261 53 1995 699 2,115 -131 605 -2,947 1,448 2,167 881 -1,537 -592 2,731 756 1996 -3,583 -1,460 -1,587 1,297 1,828 892 223 -114 831 -332 -2,174 183

120

West Virginia Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,093 -693 -375 128 493 786 2 -447 -512 -333 -99 1,138 1991 6,825 -2,677 -1,109 134 -3,564 -4,731 -6,487 -12,806 -17,650 -17,773 -28,530 -34,101 1992 -15,454 -21,567 -46,663 -52,768 -43,995 -42,430 -35,909 -27,164 -22,183 -12,950 -7,815 22,584 1993 24,960 9,394 9,292 12,636 27,031 36,232 34,023 34,755 41,628 34,399 26,968 -14,222 1994 -40,501 -30,621 -21,008 -4,595 -17,438 -13,653 -5,670 -2,609 -2,058 -1,674 4,099 10,639 1995 25,027 16,310 22,537 6,655 5,546 -896 -5,421 -18,718 -21,810 -13,288 -28,780 -41,453

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New Mexico Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -4,944 -5,851 -5,300 -3,038 -4,576 -4,057 77 1,820 2,686 6,478 7,515 9,209 1991 7,941 6,810 4,962 -4,017 2,723 1,139 -1,388 -6,536 -5,453 -8,726 -9,976 -6,483 1992 -5,057 -3,765 -2,333 3,222 202 -2,266 -5,420 -1,519 -2,964 -294 -1,093 -1,638 1993 -2,265 -5,717 -5,105 -6,433 -3,632 -2,953 -584 -4,847 -5,056 -5,431 -7,107 -7,436 1994 -7,752 -4,567 -4,829 -2,234 -4,170 -4,700 -4,598 -2,062 352 281 2,443 1,820 1995 2,638 3,615 4,436 4,991 5,445 5,859 5,506 4,197 1,314 -768 -1,294 -2,244

122

Louisiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -16,163 -3,291 4,933 5,735 6,541 3,761 1,457 -2,718 333 6,361 22,218 1991 25,998 -7,924 -12,602 -6,752 5,539 14,861 14,428 10,464 17,383 22,644 -158 -24,807 1992 -21,205 -18,174 -17,028 -17,433 -15,973 -21,203 -22,672 -16,614 -16,409 -16,981 -10,425 -16,165 1993 -16,925 -24,778 -32,596 -36,290 -19,699 -4,049 12,259 23,601 37,502 33,152 26,345 20,728 1994 8,768 26,882 32,899 51,830 47,357 34,388 35,682 31,067 18,680 12,257 22,195 26,643 1995 33,319 12,790 17,621 6,203 -8,067 -1,243 -9,994 -31,430 -31,368 -26,406 -46,809 -55,574

123

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219 -9,773 -9,196 -8,590 -7,100 -6,215 -4,763 -4,433 -2,461 -3,475 -1,939 1994 834 524 1,455 1,850 2,436 1,126 195 143 389 396 2,707 3,074 1995 723 2,101 128 -1,538 -2,661 -1,884 -1,303 -1,135 -665 -416 -680 -807 1996 -1,225 -2,881 -2,568 -1,148 1,099 1,302 1,744 832 -482 -1,417 -3,593 -5,063

124

Washington Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -72 452 283 -1,858 -801 699 -1,353 41 108 1,167 -1,339 1991 -2,326 1,196 205 3,977 26,799 5,575 4,775 1,778 703 1,958 2,917 5,687 1992 6,208 3,332 5,695 1,986 1,815 275 -839 679 1,880 -138 -1,840 -5,179 1993 -6,689 -7,057 -5,245 -3,367 -188 -497 627 -212 975 -626 -3,745 1,760 1994 3,597 2,471 806 1,906 -20 879 539 371 -878 1,499 4,890 1,609 1995 1,078 3,321 3,503 1,633 1,599 1,386 990 268 1,628 1,312 1,767 -15 1996 -4,203 -3,033 -3,595 -3,720 -4,328 -2,562 -2,690 1,336 -2,014 -3,767 -4,591 -3,144

125

U.S. Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 305,000 1974 NA NA NA NA NA NA NA NA NA NA NA 16,000 1975 NA NA NA NA NA NA NA NA NA 196,000 NA 162,000 1976 NA NA NA NA NA NA NA NA 182,000 65,000 -133,000 -286,000 1977 -361,000 -281,000 -111,000 4,000 94,000 122,000 156,000 152,000 174,000 265,000 413,000 549,000 1978 532,000 147,000 -92,000 -196,000 -240,000 -194,000 -184,000 -98,000 -11,000 29,000 106,000 72,000 1979 71,000 39,000 113,000 104,000 128,000 114,000 120,000 127,000 107,000 121,000 118,000 207,000

126

Ohio Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,596 507 381 -2,931 -46 -596 -311 -234 178 167 7,030 9,898 1991 19,571 17,816 10,871 17,001 13,713 16,734 12,252 11,416 8,857 5,742 -6,023 -8,607 1992 -14,527 -26,506 -45,308 -51,996 -46,282 -36,996 -26,224 -22,672 -22,086 -18,888 -11,177 -16,353 1993 -11,967 -21,375 -21,809 -21,634 -20,069 -20,488 -16,719 -11,806 -1,499 -5,717 -13,058 -21,422 1994 -39,036 -30,048 -9,070 4,162 7,033 5,081 8,939 7,976 3,961 7,543 16,019 30,397 1995 36,925 34,571 29,611 9,077 7,499 9,345 6,077 2,682 -942 -2,597 -22,632 -39,593

127

Alabama Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196 -533 -430 2001 155 398 -521 -260 -395 -413 -352 -239 -111 -89 1,403 1,499 2002 1,415 858 1,192 1,255 1,399 692 788 772 755 314 -578 -731 2003 -2,107 -1,207 -476 304 1,194 2,067 2,346 2,392 3,132 4,421 4,005 3,823

128

Oregon Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -30,641 13,186 6,384 -1,434 1,227 -3,129 3,399 2,573 2,606 1,953 968 1,423 1991 1,986 2,360 1,291 -869 -1,664 -1,353 -659 -203 99 250 317 582 1992 89 -487 -305 231 1,089 1,075 811 730 509 343 -779 -872 1993 -1,222 -1,079 -221 -204 -131 -374 -387 -356 -231 86 454 -69 1994 587 858 640 -1,359 -1,793 -1,593 -1,578 -1,544 -1,438 -1,674 -1,380 -915 1995 -1,331 -589 -83 3,208 3,177 2,713 2,212 1,136 939 685 1,065 880 1996 1,306 751 539 -460 -916 -777 -340 97 -286 -492 -987 -1,405

129

Mississippi Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,714 -2,484 2,221 9,026 9,501 3,159 1,926 1,511 539 1,182 1,803 9,892 1991 10,604 5,727 4,873 6,047 4,879 3,728 -584 -3,344 -2,211 -1,535 -10,107 -9,904 1992 -2,980 443 -1,846 -7,642 -6,984 -4,083 -1,435 -2,987 -1,706 -4,499 3,130 1,793 1993 5,569 -864 -4,596 -2,260 694 -12 478 3,249 2,672 1,131 -20,850 -21,299 1994 -24,589 -21,355 -12,019 -10,157 -12,687 -15,926 -14,545 -12,608 -16,289 -13,079 10,221 12,176 1995 11,100 9,566 2,283 2,636 4,862 5,526 3,149 -1,367 2,792 2,492 -7,807 -11,038

130

Illinois Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,275 18,043 13,193 1,851 5,255 9,637 5,108 8,495 9,773 7,534 9,475 11,984 1991 -9,933 -7,259 454 6,145 6,270 3,648 2,744 1,010 -13 7,942 -12,681 -9,742 1992 -9,345 -8,466 -9,599 -19,126 -16,878 -15,372 -13,507 -9,010 -7,228 -7,653 -6,931 -18,707 1993 -51,572 -52,876 -51,081 -40,760 -41,229 -40,132 -39,867 -44,533 -43,110 -44,873 -36,080 -34,184 1994 -6,101 -1,289 8,929 5,795 -3,558 -6,807 -4,948 -4,181 -3,006 -678 -77 11,376 1995 20,962 7,104 -805 -3,970 -29,257 -30,038 -32,571 -35,022 -40,472 -36,406 -41,858 -53,433

131

Montana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437 -17,034 -19,377 -21,219 -23,373 -24,811 -24,628 -25,093 -24,213 -22,944 -22,384 -19,989 1994 -18,713 -19,954 -18,358 -17,429 -15,333 -12,802 -12,658 -11,874 -10,555 -9,434 -8,353 -7,819 1995 -7,494 -3,827 -3,353 -1,774 -1,433 -1,101 464 2,584 1,908 321 -1,020 -3,599

132

Texas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,315 40,513 43,111 18,628 12,189 2,033 47 -10,549 -21,072 -9,288 -13,355 -8,946 1991 -42,316 -43,449 -37,554 -58,118 -54,100 -46,988 -56,199 -48,651 -34,294 -48,087 -70,444 -48,747 1992 5,209 -1,207 -6,517 -21,448 -17,577 -24,644 -6,465 9,218 -3,044 -2,525 -6,948 -28,550 1993 -119,345 -120,895 -123,412 -110,528 -102,328 -100,860 -113,541 -118,288 -125,086 -122,661 -114,692 -94,084 1994 -21,524 -45,478 -29,527 -21,615 -15,311 -16,358 -113 6,609 32,786 38,411 56,777 41,703 1995 71,748 88,600 72,969 70,544 59,709 56,910 31,618 8,138 5,482 4,572 -18,623 -35,336

133

Kansas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,362 -8,989 -8,480 -6,853 -3,138 -3,221 -2,686 -2,091 824 166 -307 3,561 1991 -6,300 -645 -100 -132 5,625 8,255 -439 -9,003 -13,999 -9,506 -35,041 -11,017 1992 16,928 8,288 4,215 1,589 -2,700 -7,788 -6,391 1,723 1,181 -7,206 -7,569 -20,817 1993 -31,418 -30,129 -26,038 -22,202 -4,247 4,828 6,211 5,963 10,199 10,284 14,158 14,727 1994 8,105 8,620 12,116 13,982 2,713 -3,469 465 1,613 -3,134 -1,516 -2,683 -1,820 1995 6,294 5,619 -1,798 -1,708 -758 5,090 429 -12,148 -5,167 2,571 6,337 -382

134

Virginia Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 1,533 1999 210 227 211 187 147 49 88 -64 30 8 -80 -189 2000 -521 -228 69 134 440 435 425 385 -24 236 67 -179 2001 -7 -19 -282 -100 -165 21 46 202 453 58 469 975 2002 1,038 533 436 127 151 30 68 -94 -46 187 -153 -439 2003 -987 -810 -600 -430 -520 -317 -187 388 616 443 608 557 2004 528 649 498 364 599 408 194 216 6 834 916 456 2005 201 391 -60 22 -116 -186 -62 -780 -679 -910 1,097 1,608 2006 3,081 2,559 3,389 3,163 2,744 2,220 2,009 2,014 2,869 2,415 531 784

135

Maryland Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133 -1,700 -270 -379 -1,170 1994 -4,444 -2,565 -113 1,629 1,482 1,771 2,779 2,519 1,569 658 -517 1,249 1995 5,583 3,808 3,166 1,674 1,629 2,195 -93 -369 129 -488 -247 -2,056 1996 -3,630 -2,064 -3,459 -3,286 -3,097 -2,473 -372 315 -34 394 -346 1,808

136

Sandia Site Office Assessment of Activity-Levell Work Planning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center (FMOC) and Technical Area (TA) V and review of work activities at the Auxiliary Hot Cell Facility (AHCF), the Annular Core Research Reactor (ACRR), and the Gamma...

137

Understanding the essential work of fracture at the molecular level.  

E-Print Network (OSTI)

??xix, 138 leaves : ill. ; 30 cm HKUST Call Number: Thesis MECH 2006 Chen The essential work of fracture (EWF), a tool for characterizing… (more)

Chen, Haibin

2006-01-01T23:59:59.000Z

138

Flammable gas tank waste level reconciliation for 241-S-111  

SciTech Connect

Fluor Daniel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-S-111. The trapped gas evaluation document states that Tank S-111 exceeds the 25% of the lower flammable-limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank S-111 transfers. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of the unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank S-111 initially received waste from REDOX in 1952, and after April 1974, primarily received processed waste slurry from the 242-S Evaporator/Crystallizer and transferred supernatant waste to Tank S-102. From the FDNW review and comparisons of the Welty Report versus other daily records for Tank S-111, FDNW determined that the majority of the time, the Welty Report is consistent with daily records. Surface level decreases that occurred following saltwell pumping were identified as unaccounted for decreases in the Welty Report, however they were probably a continued settlement caused by saltwell pumping of the interstitial liquids. Because the flammable/trapped gas issue is linked to the unexplained increase in the surface level, FDNW recommends that all occurrence reports, concerning tank waste level increases or decreases from 1970 through 1980, be reevaluated for acceptability of the evaluation as to the root cause of the occurrence.

Brevick, C.H.; Gaddis, L.A.

1997-06-23T23:59:59.000Z

139

Arkansas Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3 -6.6 1995 17.7 53.9 163.4 177.6 64.0 80.9 96.0 105.5 99.3 96.9 80.2 20.9 1996 -23.6 -51.7 -97.8 -92.0 -31.2 -23.8 -31.6 -36.6 -21.2 -16.7 -17.7 8.9 1997 22.6 54.8 3,707.8 830.5 36.2 47.9 57.3 62.7 46.5 34.5 36.1 21.2

140

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6 -12.3 -8.4 -5.5 -4.5 -2.5 -1.5 -2.5 -3.2 1996 -5.5 -13.9 -13.3 -6.2 5.8 6.3 7.8 3.5 -1.9 -5.2 -13.7 -20.9 1997 -28.6 -33.1 -34.9 -38.1 -41.3 -35.8 -27.4 -18.7 -11.1 -9.6 -6.5 -5.2 1998 -4.6 1.6 0.9 -10.6 -7.1 2.5 -1.3 -4.6 -3.6 0.4 12.4 16.6

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Texas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.2 -13.8 -12.2 -16.7 -15.1 -12.7 -14.7 -12.9 -9.1 -12.1 -17.5 -13.3 1992 1.9 -0.4 -2.4 -7.4 -5.8 -7.6 -2.0 2.8 -0.9 -0.7 -2.1 -9.0 1993 -41.9 -44.7 -46.6 -41.3 -35.7 -33.7 -35.4 -35.0 -36.7 -35.5 -35.3 -32.7 1994 -13.0 -30.4 -20.9 -13.7 -8.3 -8.3 -0.1 3.0 15.2 17.2 27.0 21.5 1995 49.9 85.3 65.2 52.0 35.4 31.3 15.3 3.6 2.2 1.8 -7.0 -15.0 1996 -39.6 -55.6 -63.2 -60.9 -56.4 -52.4 -54.0 -45.4 -36.2 -30.4 -29.0 -23.9 1997 -22.9 -11.1 43.9 42.6 36.6 44.1 39.4 29.5 14.7 19.6 15.0 -3.0 1998 10.4 54.6 29.7 45.6 40.4 30.3 52.1 51.3 37.5 31.2 44.1 72.7

142

Michigan Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 12.0 12.8 14.6 30.2 17.0 11.7 5.0 -0.7 -6.8 -2.6 -11.4 -14.2 1992 -8.1 -14.1 -31.6 -37.7 -28.9 -21.6 -14.9 -8.9 1.2 -1.2 1.1 -2.0 1993 -7.5 -20.7 -25.8 -17.2 -1.0 3.7 5.2 7.6 6.1 6.7 6.2 7.4 1994 -4.8 -0.4 22.1 37.4 24.6 15.8 10.2 7.2 6.2 5.4 12.3 21.2 1995 45.7 54.3 51.8 20.6 8.0 3.8 3.1 -2.0 -4.1 -3.7 -11.8 -24.0 1996 -36.3 -39.8 -47.6 -41.4 -32.3 -22.7 -17.5 -9.7 -4.1 -0.9 -0.2 9.0 1997 16.9 31.2 41.0 40.5 23.5 15.4 11.0 6.8 3.1 0.2 1.9 3.7 1998 17.4 33.0 41.3 43.7 44.2 36.0 22.0 14.2 6.0 4.5 11.4 17.1

143

Ohio Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19.5 22.4 15.4 23.1 14.3 14.4 9.1 7.4 5.2 3.1 -3.3 -5.5 1992 -12.1 -27.3 -55.6 -57.4 -42.1 -27.9 -17.8 -13.7 -12.2 -10.0 -6.4 -11.0 1993 -11.3 -30.2 -60.3 -56.1 -31.6 -21.4 -13.8 -8.2 -0.9 -3.4 -7.9 -16.2 1994 -41.7 -61.0 -63.3 24.5 16.2 6.8 8.5 6.1 2.5 4.6 10.6 27.3 1995 67.7 179.6 562.8 43.0 14.8 11.6 5.3 1.9 -0.6 -1.5 -13.5 -28.0 1996 -36.6 -54.9 -83.2 -46.6 -20.6 -7.3 -0.6 4.2 6.7 8.8 9.2 20.8 1997 11.5 50.2 163.8 -2.8 8.0 4.9 2.0 2.8 2.3 -0.2 6.1 3.3 1998 43.1 60.2 92.8 193.9 65.5 24.3 15.1 8.6 5.6 7.5 12.7 20.9

144

Iowa Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3.6 -8.4 -6.6 -4.0 -3.7 4.9 4.5 4.9 13.7 21.6 15.1 18.2 1992 -5.9 -10.5 -11.0 -8.6 -1.7 -4.7 3.2 7.9 6.2 3.3 2.5 -4.3 1993 -73.0 -85.1 -88.4 -81.1 -72.8 -64.5 -56.2 -50.3 -43.2 -42.8 -44.2 -51.6 1994 21.3 54.4 61.3 12.0 -0.1 -6.4 -6.3 -3.5 -4.3 1.5 5.3 7.2 1995 3.0 -5.8 -21.7 -39.9 -37.4 -20.3 -14.5 -2.2 -1.7 -4.5 -14.9 -14.6 1996 -11.5 0.0 -26.6 -32.1 -52.8 -35.7 -14.9 -13.5 -9.0 -1.9 7.0 0.4 1997 5.1 11.2 76.8 72.4 129.0 65.0 16.6 4.6 3.7 -1.1 8.3 16.8 1998 15.2 41.6 15.6 34.6 25.3 14.9 48.5 17.4 12.0 8.3 9.4 4.7

145

Oklahoma Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 -10.0 -6.5 8.1 7.3 7.8 0.7 -1.3 0.5 -0.6 -20.1 -13.6 1992 4.0 1.0 -7.0 -12.9 -16.3 -14.6 -3.6 -1.4 0.4 2.5 6.8 -7.7 1993 -59.8 -75.3 -81.3 -71.8 -58.1 -47.8 -43.7 -38.0 -33.1 -31.7 -34.3 -29.9 1994 20.6 33.2 68.7 60.2 49.2 29.1 25.2 21.3 11.9 8.6 24.6 27.3 1995 54.1 106.0 91.5 35.8 13.9 11.2 0.6 -12.2 -8.9 -2.2 -7.8 -15.8 1996 -31.5 -51.7 -63.0 -57.6 -49.9 -45.9 -42.1 -26.5 -18.0 -15.4 -23.0 -27.6 1997 -28.4 -3.5 62.3 59.0 49.7 32.7 17.2 5.5 0.1 6.6 12.9 11.8 1998 34.3 61.5 15.9 41.1 37.9 45.5 53.2 46.9 37.6 31.0 46.7 62.1

146

Kansas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.6 -1.2 -0.2 -0.3 11.7 15.5 -0.7 -11.7 -15.1 -9.6 -30.3 -11.8 1992 28.5 15.1 8.5 3.4 -5.0 -12.7 -9.9 2.5 1.5 -8.0 -9.4 -25.3 1993 -41.2 -47.7 -48.5 -45.3 -8.3 9.0 10.7 8.6 12.8 12.5 19.4 24.0 1994 18.1 26.1 43.8 52.2 5.8 -5.9 0.7 2.1 -3.5 -1.6 -3.1 -2.4 1995 11.9 13.5 -4.5 -4.2 -1.5 9.2 0.7 -15.7 -6.0 2.8 7.5 -0.5 1996 -22.8 -19.2 -23.4 -13.2 -16.5 -13.8 -4.8 7.7 -4.5 -10.7 -22.9 -23.0 1997 -0.9 -1.0 19.1 6.4 12.1 9.5 -2.4 2.6 9.6 12.4 23.3 28.2 1998 26.0 30.6 4.0 18.0 34.9 19.3 33.7 29.6 20.8 18.7 25.3 28.3

147

Tennessee Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 43.0 55.3 41.7 61.2 59.6 131.5 70.6 38.1 29.2 25.1 16.0 8.6 2000 5.3 -3.2 12.8 21.0 16.7 -19.5 -34.7 -42.4 -50.4 -50.8 -41.4 -27.6 2001 -9.8 9.3 8.4 8.3 41.3 71.7 80.1 97.0 109.6 99.9 12.1 -3.5 2002 3.9 15.1 32.5 54.2 19.0 -2.5 -9.0 -17.3 -22.6 -28.6 -14.4 -14.2 2003 -37.6 -54.6 -65.2 -72.4 -65.7 -53.4 -40.1 -24.0 -23.2 -15.3 -0.8 -12.8 2004 -15.0 -0.5 24.1 74.4 61.1 82.6 24.4 10.6 11.2 6.1 3.7 8.9

148

Alabama Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3 -6.9 -10.7 -27.1 -24.2 2001 17.9 46.2 -44.2 -23.4 -32.8 -23.0 -18.6 -12.6 -6.3 -5.4 97.8 111.1 2002 138.8 68.1 181.5 147.4 173.3 50.0 51.2 46.8 45.2 20.3 -20.4 -25.7 2003 -86.5 -57.0 -25.7 14.4 54.1 99.5 100.8 98.7 129.2 237.3 177.3 180.6

149

Montana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5 1995 -9.6 -5.3 -4.7 -2.5 -2.0 -1.5 0.6 3.4 2.5 0.4 -1.3 -4.9 1996 -9.0 -11.4 -16.2 -18.1 -20.7 -19.2 -18.0 -16.9 -13.6 -13.4 -16.2 -17.7 1997 -18.5 -20.5 -19.6 -21.9 -19.3 -20.3 -20.1 -20.8 -22.7 -23.8 -22.5 -20.6

150

Utah Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722 6,012 6,934 10,321 7,849 7,551 8,609 1995 5,458 10,271 8,870 8,362 6,546 8,164 11,552 10,230 4,613 2,012 5,484 -708 1996 -5,185 -10,201 -9,074 -10,256 -8,313 -7,322 -7,566 -7,192 -6,606 -8,327 -14,146 -13,483 1997 -10,123 -4,260 296 2,223 969 2,109 3,330 4,725 5,811 8,139 10,145 6,148

151

Louisiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0 6.1 -6.0 -0.8 -5.4 -15.2 -13.6 -11.0 -19.9 -28.2 1996 -31.0 -28.8 -47.1 -50.7 -48.5 -47.6 -37.5 -19.6 -12.8 -11.9 -14.6 -6.4 1997 -14.5 -14.9 61.5 61.3 62.8 54.4 24.7 7.8 3.7 7.4 13.1 7.3 1998 40.7 86.3 35.5 55.9 46.9 35.0 42.0 40.1 22.5 26.5 40.7 56.9

152

New Mexico Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 65.7 60.7 45.6 -31.6 30.6 8.4 -8.1 -32.2 -25.0 -34.9 -38.4 -27.6 1992 -25.3 -20.9 -14.7 37.0 1.7 -15.5 -34.5 -11.1 -18.1 -1.8 -6.8 -9.6 1993 -15.1 -40.1 -37.8 -54.0 -30.7 -23.9 -5.7 -39.7 -37.7 -34.0 -47.6 -48.4 1994 -61.0 -53.5 -57.4 -40.7 -50.9 -49.9 -47.5 -28.0 4.2 2.7 31.2 23.0 1995 53.3 91.0 123.6 153.3 135.3 124.2 108.2 79.1 15.1 -7.1 -12.6 -23.1 1996 -18.6 -34.9 -47.0 -53.1 -55.5 -60.1 -60.4 -54.7 -45.7 -41.7 -44.0 -38.5 1997 -33.5 -29.5 0.6 10.4 4.4 10.4 13.4 27.8 18.1 14.5 24.1 19.8

153

New York Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4 7.6 5.1 9.8 10.8 3.2 1.9 1.0 3.5 6.1 -0.1 3.5 1992 29.1 17.2 -7.6 -7.9 1.5 5.0 10.3 10.6 5.4 3.2 5.6 -8.1 1993 -13.6 -24.4 -30.1 -22.5 -15.0 -8.4 -9.2 -18.9 -12.1 -13.4 -14.1 -5.6 1994 -5.8 -1.8 7.8 29.0 14.9 14.1 9.6 21.1 10.7 9.5 11.2 14.4 1995 15.8 23.8 49.4 1.6 0.9 -1.4 -4.4 -4.8 1.1 1.5 -8.6 -24.7 1996 -31.2 -42.1 -53.7 -47.7 -29.0 -20.4 -7.4 0.8 -1.8 -1.2 3.8 25.9 1997 23.3 57.3 67.6 58.2 25.1 3.5 -0.3 -3.1 -5.1 -5.3 -2.6 -2.0 1998 13.7 23.0 38.5 46.2 37.9 33.6 18.6 6.4 6.6 9.4 15.5 25.9

154

Washington Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -26.2 22.8 6.2 168.1 -141.5 111.4 60.1 16.3 5.9 16.1 23.8 63.1 1992 94.7 51.6 162.3 31.3 23.1 2.6 -6.6 5.4 14.9 -1.0 -12.1 -35.2 1993 -52.4 -72.1 -57.0 -40.4 -1.9 -4.6 5.3 -1.6 6.7 -4.5 -28.1 18.5 1994 59.2 90.5 20.4 38.4 -0.2 8.5 4.3 2.8 -5.7 11.2 51.1 14.3 1995 11.1 63.9 73.5 23.8 16.9 12.3 7.6 2.0 11.1 8.8 12.2 -0.1 1996 -39.1 -35.6 -43.5 -43.8 -39.1 -20.3 -19.2 9.7 -12.4 -23.3 -28.3 -24.4 1997 25.9 17.4 -31.4 -31.5 35.7 28.4 19.3 -17.0 3.9 13.8 20.4 11.4 1998 30.6 2.6 2.4 -47.6 -38.3 -33.5 -34.2 0.1 -2.9 -3.1 3.0 3.4

155

Nebraska Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.7 -5.8 -6.6 -6.0 -2.9 -1.8 0.4 -0.5 -0.8 -1.8 -1.9 0.3 1992 0.9 1.0 2.4 1.3 -1.4 -0.5 3.6 5.9 6.3 6.3 2.5 0.6 1993 -2.8 -4.7 -6.6 -5.9 -3.3 -1.9 -0.9 0.2 0.7 -82.3 -84.6 -88.0 1994 -93.2 -98.5 -98.2 -96.2 -92.3 -91.2 -88.8 -88.5 -85.3 -7.5 12.8 23.1 1995 74.4 582.5 367.3 113.6 15.1 11.6 -40.3 -40.8 -50.5 -62.9 -79.4 -94.0 1996 -100.0 -100.0 -100.0 -100.0 -100.0 -85.2 -50.1 -20.8 -10.9 -7.8 41.1 301.9 1997 0.0 0.0 0.0 0.0 0.0 193.8 26.0 6.0 13.6 34.7 51.4 79.3 1998 188.1 377.6 104.3 6.6 14.8 -1.5 28.0 9.9 2.4 8.9 -0.1 -7.9

156

Kentucky Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2 7.3 3.3 6.6 5.5 -4.6 -8.7 1996 -14.5 -16.8 -24.3 -29.4 -33.2 -22.0 -13.0 -5.9 -3.8 -3.6 0.9 5.3 1997 5.8 15.5 27.1 28.5 28.0 13.5 3.6 -0.7 -1.1 -0.7 0.2 -3.1 1998 7.5 5.2 -1.0 3.5 9.7 9.1 12.7 12.8 7.3 9.4 12.3 14.5

157

Mississippi Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0 10.5 16.3 17.9 8.4 -3.2 6.2 5.2 -16.1 -25.5 1996 -25.7 -20.7 -31.6 -29.8 -36.9 -21.2 -9.3 8.1 9.4 9.4 21.0 38.5 1997 33.4 39.7 105.3 64.1 71.0 44.2 10.9 -1.2 -5.3 -6.4 1.9 -7.4 1998 6.1 2.0 -13.3 -3.6 -8.6 -10.1 5.8 7.1 -4.2 10.9 11.9 23.7

158

Indiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 11.0 5.4 -3.6 -8.8 -7.2 -9.9 -4.3 -0.2 0.9 13.4 2.4 -1.7 1992 -6.0 -4.2 -10.1 -9.5 -13.2 -4.2 4.7 1.9 3.9 -7.0 -6.5 -3.1 1993 1.6 -1.2 8.3 19.7 17.1 12.0 6.3 7.0 2.7 -1.9 -0.1 3.1 1994 -0.3 7.7 13.2 1.4 -4.7 -2.3 0.9 -0.1 -0.7 3.7 11.3 11.2 1995 17.4 9.6 8.0 8.6 11.8 7.0 -3.4 -5.3 -3.3 0.8 0.7 -4.8 1996 -10.1 -4.2 -10.5 -12.2 -13.6 -9.6 -2.1 7.3 4.7 0.0 0.8 5.7 1997 5.1 6.0 13.3 1.9 2.2 -0.6 -6.1 -12.4 -8.9 -7.0 -6.5 -9.3 1998 0.6 3.3 -5.1 6.1 8.3 -0.3 -0.9 -0.2 -0.4 -0.8 2.9 3.4

159

California Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 13,690 18,121 8,849 5,853 7,132 14,219 18,130 10,561 13,390 31,974 19,181 9,703 1991 6,425 26,360 4,734 4,680 6,001 17,198 26,493 26,589 17,703 3,011 -3,286 14,947 1992 -6,546 -23,935 -22,706 -29,553 -29,442 -31,729 -31,331 -21,662 -2,945 7,561 4,600 -28,127 1993 -18,888 -21,388 7,592 2,646 4,145 -4,114 5,805 2,657 2,580 3,170 1,004 23,856 1994 14,332 -10,557 -24,707 -14,896 -15,082 -8,607 -14,837 -14,903 -8,310 -6,861 -11,874 -3,316 1995 9,020 48,536 41,487 19,773 18,032 23,794 20,147 9,074 3,393 9,305 28,072 27,725

160

Maryland Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8 35.6 24.2 26.7 -0.9 -3.1 1.0 -3.2 -1.7 -15.6 1996 -33.1 -30.7 -52.3 -51.6 -37.0 -23.8 0.0 0.0 -0.3 2.7 -2.5 16.3 1997 -3.8 -5.7 -21.1 -23.6 -25.2 -29.3 -27.9 -19.8 -9.3 -3.7 4.9 1.1 1998 39.5 61.5 119.5 179.6 87.5 54.4 63.0 38.2 13.2 4.1 3.6 -1.8

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.S. Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 17.6 1974 NA NA NA NA NA NA NA NA NA NA NA 0.8 1975 NA NA NA NA NA NA NA NA NA 8.2 NA 7.9 1976 NA NA NA NA NA NA NA NA 7.4 2.5 -5.2 -12.9 1977 -21.9 -19.5 -8.4 0.3 5.7 6.4 7.1 6.2 6.6 9.9 17.2 28.5 1978 41.3 12.6 -7.6 -13.7 -13.9 -9.6 -7.8 -3.8 -0.4 1.0 3.8 2.9 1979 3.9 3.0 10.1 8.4 8.6 6.2 5.5 5.1 3.8 4.1 4.0 8.1 1980 23.0 37.3 29.0 26.7 23.4 17.9 13.3 8.6 6.1 3.5 -0.6 -3.6 1981 -7.4 -1.5 2.3 4.3 -1.1 -2.0 -1.1 1.0 1.7 1.9 5.8 6.1 1982 1.4 -2.0 -1.7 -5.0 2.9 5.2 5.7 4.0 3.1 3.6 3.4 9.0

162

Virginia Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 16.1 26.9 39.6 25.2 13.9 3.6 5.7 -3.4 1.3 0.3 -3.5 -10.0 2000 -34.3 -21.3 9.2 14.4 36.6 30.7 25.9 21.0 -1.1 10.0 3.1 -10.5 2001 -0.7 -2.3 -34.6 -9.4 -10.1 1.1 2.2 9.1 20.4 2.2 20.9 63.8 2002 104.8 64.7 81.8 13.2 10.2 1.6 3.2 -3.9 -1.7 7.0 -5.6 -17.5 2003 -48.6 -59.7 -62.0 -39.4 -32.0 -16.7 -8.6 16.7 23.4 15.6 23.8 27.0 2004 50.7 118.7 135.4 55.0 54.1 25.8 9.7 8.0 0.2 25.4 28.9 17.4

163

Colorado Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5 8.0 0.2 18.3 29.2 20.6 7.1 5.5 3.8 4.6 8.4 6.4 1992 25.9 21.0 30.9 16.6 7.3 -3.4 -3.4 1.0 4.3 5.7 -5.5 -10.4 1993 -13.5 -20.7 -8.5 -6.4 10.0 22.0 14.3 3.5 -1.4 -12.0 -15.0 -11.5 1994 -15.3 -17.8 -21.0 -34.7 -16.3 -25.8 -16.1 -9.6 -6.1 0.2 7.4 0.2 1995 2.9 10.9 -0.8 5.3 -17.3 7.8 9.2 3.0 -4.5 -1.7 8.4 2.6 1996 -14.4 -6.8 -9.6 10.7 13.0 4.5 0.0 0.0 2.6 -1.0 -6.1 0.6 1997 15.7 -0.6 19.6 -8.7 10.6 9.4 9.1 10.7 13.9 12.4 3.0 -2.1 1998 1.5 1.9 -7.3 5.5 7.3 -0.1 -5.5 -0.6 1.5 8.0 23.7 18.0

164

New York Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -484 -13 300 294 -712 -349 -288 393 1,101 972 1,011 1,114 1991 3,318 2,144 1,258 2,592 3,476 1,343 977 614 2,324 4,252 -55 2,063 1992 11,224 5,214 -1,963 -2,306 527 2,182 5,330 6,430 3,719 2,374 3,894 -4,958 1993 -6,762 -8,650 -7,154 -6,031 -5,432 -3,859 -5,235 -12,631 -8,772 -10,235 -10,273 -3,149 1994 -2,517 -470 1,289 6,015 4,590 5,915 4,963 11,457 6,824 6,269 6,981 7,667 1995 6,381 6,272 8,818 437 309 -648 -2,521 -3,178 786 1,081 -5,984 -14,997 1996 -14,592 -13,733 -14,382 -13,026 -10,421 -9,742 -4,162 368 -1,791 -848 2,368 11,761

165

Illinois Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.2 -4.0 0.3 4.2 3.5 1.7 1.1 0.4 0.0 2.4 -3.8 -3.3 1992 -4.2 -4.8 -6.4 -12.6 -9.2 -7.2 -5.6 -3.3 -2.3 -2.3 -2.2 -6.6 1993 -24.0 -31.6 -36.3 -30.7 -24.7 -20.2 -17.4 -16.7 -14.3 -13.7 -11.6 -12.9 1994 -3.7 -1.1 10.0 6.3 -2.8 -4.3 -2.6 -1.9 -1.2 -0.2 0.0 4.9 1995 13.3 6.3 -0.8 -4.1 -24.0 -19.8 -17.7 -16.0 -15.8 -12.9 -15.3 -22.1 1996 -32.4 -34.1 -42.5 -37.1 -6.6 -2.1 2.0 3.5 5.3 3.1 3.2 8.3 1997 15.3 24.7 33.5 27.3 14.8 7.4 3.9 3.6 2.9 2.4 8.6 5.5 1998 12.9 22.3 23.5 24.2 18.8 14.7 8.2 4.3 2.2 2.3 -0.8 0.8

166

Minnesota Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 15.0 -0.3 -19.3 -19.7 -9.3 -1.7 -4.1 -2.7 -5.2 -8.5 6.3 1992 8.7 18.6 1.8 -25.1 -13.0 -11.2 -9.4 -1.0 0.5 1.8 5.3 -1.4 1993 1.3 -17.1 -29.0 -19.2 -19.0 -13.4 -5.9 -7.8 -2.5 1.2 -1.7 -7.0 1994 -16.3 -4.2 19.8 7.9 8.4 10.5 6.2 9.4 4.5 0.7 3.9 16.7 1995 23.8 4.8 -0.7 11.5 6.8 -3.5 -6.0 -4.1 0.0 0.3 0.4 -7.6 1996 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.8 -1.7 -2.9 -1.9 1997 11.5 27.8 39.0 29.2 13.8 12.4 12.3 7.6 3.7 2.3 3.5 14.6 1998 30.1 26.3 11.2 -4.8 -22.3 -26.4 -23.9 -19.0 -11.9 -4.1 -0.3 -18.6

167

Missouri Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.1 1.4 -20.3 -2.8 6.8 8.3 12.5 12.3 7.8 7.6 9.9 13.8 1992 -2.8 6.5 23.0 7.8 3.7 4.3 3.8 2.6 2.5 2.2 -0.2 -0.1 1993 5.3 -3.5 -16.4 -13.3 -4.7 -0.9 -2.8 -1.6 -1.6 -1.3 -2.5 -0.8 1994 -3.1 17.2 37.2 -28.6 -19.3 -6.9 -4.2 -4.1 -3.3 -3.3 0.7 -1.0 1995 7.9 12.0 16.0 64.0 35.0 10.4 5.7 6.0 8.2 7.0 6.1 2.2 1996 -7.8 0.0 -8.3 -8.9 0.0 0.0 6.6 0.0 1.6 2.5 -2.6 0.1 1997 4.1 6.0 -3.9 -0.6 -2.0 -3.7 -1.4 0.6 1.0 1.0 6.7 5.0 1998 14.2 10.6 23.2 23.5 10.9 7.6 2.1 0.1 2.0 1.8 1.8 -1.8 1999 1.3 -2.4 0.6 1.5 4.1 5.7 5.7 4.0 3.8 3.7 3.3 6.0

168

Working natural gas storage capacity grows 3% year-over-year ...  

U.S. Energy Information Administration (EIA)

EIA estimates that the demonstrated peak working gas capacity for underground storage in the lower 48 states rose 3%, or 136 billion cubic feet (Bcf), to 4,239 Bcf in ...

169

Ecological Optimization Performance of An Irreversible Quantum Otto Cycle Working with an Ideal Fermi Gas  

Science Conference Proceedings (OSTI)

The model of an irreversible Otto cycle using an ideal Fermi gas as the working fluid, which is called as the irreversible Fermi Otto cycle, is established in this paper. Based on the equation of state of an ideal Fermi gas, the ecological optimization ...

Feng Wu; Lingen Chen; Fengrui Sun; Chih Wu; Fangzhong Guo; Qing Li

2006-03-01T23:59:59.000Z

170

Agricultural greenhouse gas emissions : costs associated with farm level mitigation.  

E-Print Network (OSTI)

??Agricultural greenhouse gas emissions within New Zealand account for 48 percent of all national greenhouse gas emissions. With the introduction of the emissions trading scheme… (more)

Wolken, Antony Raymond

2009-01-01T23:59:59.000Z

171

Experimental study of work exchange with a granular gas: the viewpoint of the Fluctuation Theorem  

E-Print Network (OSTI)

This article reports on an experimental study of the fluctuations of energy flux between a granular gas and a small driven harmonic oscillator. The DC-motor driving this system is used simultaneously as actuator and probe. The statistics of work fluctuations at controlled forcing, between the motor and the gas are examined from the viewpoint of the Fluctuation Theorem. A characteristic energy $E_c$ of the granular gas, is obtained from this relation between the probabilities of an event and its reversal.

Antoine Naert

2011-07-26T23:59:59.000Z

172

Levels of financial responsibility for liquefied-natural-gas and liquefied-petroleum-gas facilities  

SciTech Connect

Pursuant to Section 7(a) of the Pipeline Safety Act of 1979, a study was conducted of the risks associated with liquefied natural gas (LNG) and liquefied petroleum gas (LPG) facilities, and of methods of assuring adequate levels of financial responsibility for those who own and/or operate facilities. The main purpose of the study is to provide a basis for determining general levels of financial responsibility for LNG and LPG facilities, as measured by the risk they represent to the public. It must be emphasized that the quantification of risk is a complicated subject. As used in this study, risk is defined as the occurrence of a maximum credible accident and the consequences that would result from such an accident. Part I of the study describes in detail the methodology used in the report to estimate the magnitude of the financial responsibility requirements associated with nine major facility types - e.g., tankships, pipelines, barges, rail tank car, tank truck, etc. - used to store and transport LNG and LPG under 48 separate operational and storage containment modes. Parts II and III of the study, in addition to providing estimates of the risks and corresponding levels of financial responsibility, contain information on the historical safety record and structure of the LNG facilities and LPG facilities.

1981-05-30T23:59:59.000Z

173

Deregulating UK Gas and Electricity Markets: How is Competition Working for  

NLE Websites -- All DOE Office Websites (Extended Search)

Deregulating UK Gas and Electricity Markets: How is Competition Working for Deregulating UK Gas and Electricity Markets: How is Competition Working for Residential Consumers? Speaker(s): Catherine Waddams Date: April 15, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Chris Marnay Retail gas and electricity prices were deregulated in the UK in April 2002, following introduction of retail choice for residential consumers between 1996 and 1999. We use information from consumer surveys, including a panel survey over three years, to analyse consumer attitudes and behaviour. In particular we explore how awareness changed, whether those who were actively considering switching in one wave of the survey had actually done so by the next round, whether individuals become willing to switch for smaller price gains as the markets matured, and how expectations

174

Gas Explosion Tests on East Jordan Iron Works Rectangular Composite Secondary Box Covers for Con Edison  

Science Conference Proceedings (OSTI)

This report is an account of continuing research by Con Edison and EPRI to address issues related to manhole events caused by the accumulation of gases in underground structures. It summarizes the results of gas explosion tests performed in June 2008 on rectangular composite vented covers produced by East Jordan Iron Works Company.

2009-07-21T23:59:59.000Z

175

Yale University committed to reducing its primary greenhouse gas emissions 43% below 2005 levels.  

E-Print Network (OSTI)

Yale University committed to reducing its primary greenhouse gas emissions 43% below 2005 levels. Beginning in 2013, emissions from the University fleet are included in the reduction target. Greenhouse Gas. 2005 2013 In 2005,Yale University pledged to reduce its primary greenhouse gas emissions forty

176

Method and apparatus for removing non-condensible gas from a working fluid in a binary power system  

DOE Patents (OSTI)

Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

Mohr, Charles M. (Idaho Falls, ID); Mines, Gregory L. (Idaho Falls, ID); Bloomfield, K. Kit (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

177

Estimating retained gas volumes in the Hanford tanks using waste level measurements  

SciTech Connect

The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

1997-09-01T23:59:59.000Z

178

Leveling the Playing Field for Women: Work at the Energy Department |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leveling the Playing Field for Women: Work at the Energy Department Leveling the Playing Field for Women: Work at the Energy Department Leveling the Playing Field for Women: Work at the Energy Department August 15, 2012 - 1:40pm Addthis Karl Fraiser, a member of the Savannah River Special Emphasis Planning Committee, meets with Dot Harris at the site’s Women’s Equality Day Celebration. | Photo by Rob Davis, Savannah River Site. Karl Fraiser, a member of the Savannah River Special Emphasis Planning Committee, meets with Dot Harris at the site's Women's Equality Day Celebration. | Photo by Rob Davis, Savannah River Site. Dot Harris Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity We Need to Get More Women Involved Women hold only 27 percent of jobs in science and engineering-sectors that are essential to our nation's growth in a 21st

179

Leveling the Playing Field for Women: Work at the Energy Department |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leveling the Playing Field for Women: Work at the Energy Department Leveling the Playing Field for Women: Work at the Energy Department Leveling the Playing Field for Women: Work at the Energy Department August 15, 2012 - 1:40pm Addthis Karl Fraiser, a member of the Savannah River Special Emphasis Planning Committee, meets with Dot Harris at the site’s Women’s Equality Day Celebration. | Photo by Rob Davis, Savannah River Site. Karl Fraiser, a member of the Savannah River Special Emphasis Planning Committee, meets with Dot Harris at the site's Women's Equality Day Celebration. | Photo by Rob Davis, Savannah River Site. Dot Harris Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity We Need to Get More Women Involved Women hold only 27 percent of jobs in science and engineering-sectors that are essential to our nation's growth in a 21st

180

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage Capacity (MMcf)" Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacw0_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacw0_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

182

,"U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacws_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacws_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

183

,"U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwa_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwa_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

184

Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes  

DOE Green Energy (OSTI)

The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

2002-04-08T23:59:59.000Z

185

Natural Gas Year-in-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

12 'Demonstrated peak working gas capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period ...

186

work  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE THE U.S. DEPARTMENT OF ENERGY'S WORKING CAPITAL FUND U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES OCTOBER 1998 AUDIT REPORT CR-B-99-01 MEMORANDUM FOR THE DIRECTOR, BUSINESS MANAGEMENT STAFF FROM: William S. Maharay Acting Manager, Capital Regional Audit Office, Office of Inspector General SUBJECT: INFORMATION : Audit Report on the Department's Working Capital Fund BACKGROUND The Department established the Working Capital Fund (Fund) in January 1996 as a financial management tool for charging the costs of common services provided at Headquarters to Departmental program offices. The objectives in establishing the Fund were to increase efficiency of the Department's operations, improve management of administrative services

187

Issues related to setting exemption levels for oil and gas NORM  

Science Conference Proceedings (OSTI)

In the absence of any federal regulations that specifically address the handling and disposal of wastes containing naturally occurring radioactive material (NORM), individual states have taken responsibility for developing their own regulatory programs for NORM. A key issue in developing NORM rules is defining exemption levels--specific levels or concentrations that determine which waste materials are subject to controlled management. In general, states have drawn upon existing standards and guidelines for similar waste types in establishing exemption levels for NORM. Simply adopting these standards may not be appropriate for oil and gas NORM for several reasons. The Interstate Oil and Gas Compact Commission's NORM Subcommittee has summarized the issues involved in setting exemption levels in a report titled ``Naturally Occurring Radioactive Materials (NORM): Issues from the Oil and Gas Point of View''. The committee has also recommended a set of exemption levels for controlled practices and for remediation activities on the basis of the issues discussed.

Blunt, D. L.; Gooden, D. S.; Smith, K. P.

1999-11-12T23:59:59.000Z

188

Natural gas storage working capacity grows 2% in 2012 - Today in ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas Storage Report ... This lack of growth in natural gas storage capacity may be partly ...

189

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 156,161 158,351 126,677 101,609 72,294 83,427 33,855 -43,870 -34,609 -17,003 -75,285 -121,212 1996 -180,213 -191,939 -220,847 -233,967 -253,766 -260,320 -246,398 -159,895 -134,327 -127,911 -138,359 -86,091 1997 -55,406 -14,740 101,915 102,564 121,784 132,561 86,965 58,580 38,741 67,379 80,157 28,119 1998 77,255 135,784 65,355 130,979 148,718 138,540 205,160 215,060 166,834 187,302 246,104 273,754

190

Nondegenerate parametric down conversion in coherently prepared two-level atomic gas  

E-Print Network (OSTI)

We describe parametric down conversion process in a two-level atomic gas, where the atoms are in a superposition state of relevant energy levels. This superposition results in splitting of the phase matching condition into three different conditions. Another, more important, peculiarity of the system under discussion is the nonsaturability of amplification coefficients with increasing pump wave intensity, under "sideband" generation conditions.

Gevorg Muradyan; Atom Zh. Muradyan

2008-07-14T23:59:59.000Z

191

Nondegenerate parametric down conversion in coherently prepared two-level atomic gas  

E-Print Network (OSTI)

We describe parametric down conversion process in a two-level atomic gas, where the atoms are in a superposition state of relevant energy levels. This superposition results in splitting of the phase matching condition into three different conditions. Another, more important, peculiarity of the system under discussion is the nonsaturability of amplification coefficients with increasing pump wave intensity, under "sideband" generation conditions.

Muradyan, Gevorg

2008-01-01T23:59:59.000Z

192

Statement of work for the immobilized high-level waste transportation system, Project W-464  

SciTech Connect

The objective of this Statement of Work (SOW) is to present the scope, the deliverables, the organization, the technical and schedule expectations for the development of a Package Design Criteria (PDC), cost and schedule estimate for the acquisition of a transportation system for the Immobilized High-Level Waste (IHLW). This transportation system which includes the truck, the trailer, and a shielded cask will be used for on-site transportation of the IHLW canisters from the private vendor vitrification facility to the Hanford Site interim storage facility, i.e., vaults 2 and 3 of the Canister Storage Building (CSB). This Statement of Work asks Waste Management Federal Services, Inc., Northwest Operations, to provide Project W-464 with a Design Criteria Document, plus a life-cycle schedule and cost estimate for the acquisition of a transportation system (shielded cask, truck, trailer) for IHLW on-site transportation.

Mouette, P.

1998-06-24T23:59:59.000Z

193

Huge natural gas reserves central to capacity work, construction plans in Iran  

SciTech Connect

Questions about oil production capacity in Iran tend to mask the country's huge potential as a producer of natural gas. Iran is second only to Russia in gas reserves, which National Iranian Gas Co. estimates at 20.7 trillion cu m. Among hurdles to Iran's making greater use of its rich endowment of natural gas are where and how to sell gas not used inside the country. The marketing logistics problem is common to other Middle East holders of gas reserves and a reason behind the recent proliferation of proposals for pipeline and liquefied natural gas schemes targeting Europe and India. But Iran's challenges are greater than most in the region. Political uncertainties and Islamic rules complicate long-term financing of transportation projects and raise questions about security of supply. As a result, Iran has remained mostly in the background of discussions about international trade of Middle Eastern gas. The country's huge gas reserves, strategic location, and existing transport infrastructure nevertheless give it the potential to be a major gas trader if the other issues can be resolved. The paper discusses oil capacity plans, gas development, gas injection for enhanced oil recovery, proposals for exports of gas, and gas pipeline plans.

Not Available

1994-07-11T23:59:59.000Z

194

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 -47.60 -43.40 -38.60 -25.20 -18.80 -16.70 -19.80 -15.60 1997 -15.00 -5.60 52.10 45.80 43.50 39.10 22.20 12.30 6.70 10.60 14.30 6.00 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.30 55.40 1999 56.40 52.20 46.30 24.20 18.80 19.30 8.80 0.30 5.30 -3.80 0.00 0.00 2000 -14.80 -32.50 -28.30 -30.80 -35.70 -34.40 -30.70 -30.60 -28.40 -22.30 -28.90 -46.70 2001 -38.30 -35.20 -37.70 -12.80 9.80 25.20 31.70 43.40 46.40 30.90 52.60 127.30 2002 127.50 140.90 136.10 82.90 59.20 34.80 18.30 10.40 3.10 -0.50 -14.40 -23.90

195

How the GAS Program Works with a Note on Simulating Turtles with Touch Sensors  

E-Print Network (OSTI)

The GAS program is a display simulation of a 2 dimensional ideal gas. Barriers, or walls, are line segments, and molecules, alias particles or balls, are circles. Collisions occur between balls and other balls as well ...

Speciner, Michael

1972-12-01T23:59:59.000Z

196

Gas generation from low-level radioactive waste: Concerns for disposal  

DOE Green Energy (OSTI)

The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

Siskind, B.

1992-01-01T23:59:59.000Z

197

Gas generation from low-level radioactive waste: Concerns for disposal  

DOE Green Energy (OSTI)

The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

Siskind, B.

1992-04-01T23:59:59.000Z

198

Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage  

SciTech Connect

Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.

Sokhansanj, Shahabaddine [ORNL; Kuang, Xingya [University of British Columbia, Vancouver; Shankar, T.S. [University of British Columbia, Vancouver; Lim, C. Jim [University of British Columbia, Vancouver; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [University of British Columbia, Vancouver

2009-10-01T23:59:59.000Z

199

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update  

Reports and Publications (EIA)

This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

Information Center

2007-10-23T23:59:59.000Z

200

Working natural gas storage capacity grows 3% year-over-year | U.S ...  

U.S. Energy Information Administration (EIA)

tags: natural gas storage. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site. Have a question, comment, or suggestion for a future article?

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Intra-Landau level polarization effect for a striped Hall gas  

E-Print Network (OSTI)

We calculate the polarization function including only intra-Landau level correlation effects of striped Hall gas. Using the polarization function, the dielectric function, the dispersion of the plasmon and the correlation energy are computed in a random phase approximation (RPA) and generalized random phase approximation (GRPA). The plasmon becomes anisotropic and gapless owing to the anisotropy of the striped Hall gas and two dimensionality of the quantum Hall system. The plasmon approximately agrees with the phonon derived before by the single mode approximation. The (G)RPA correlation energy is compared with other numerical calculations.

T. Aoyama; K. Ishikawa; Y. Ishizuka; N. Maeda

2003-12-10T23:59:59.000Z

202

Climate Change Standards Working Group, SUDS Policy and Planning Committee Quantifying Greenhouse Gas Emissions  

E-Print Network (OSTI)

from Transit Abstract: This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement by laying out a standard methodology for transit agencies to report their greenhouse gas emissions in a transparent, consistent and cost-effective manner.

unknown authors

2009-01-01T23:59:59.000Z

203

Integration of Nevada Test Site (NTS) Work Control Programs and Incorporating Integrated Safety Management (ISM) into Activity Level Work Planning and Control  

SciTech Connect

This session will examine a method developed by Federal and Contractor personnel at the Nevada Site Office (NSO) to improve the planning and execution of work activities utilizing an Activity Level Work Control process in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations. The process was initially developed during Fiscal Year (FY) 2007, and implementation is commencing during the fourth quarter of FY 2008. This process will significantly enhance the flexibility and the appropriate rigor in the performance of work activities.

Mike Kinney and Kevin Breen

2008-08-30T23:59:59.000Z

204

Gas dynamic aspects of silicon thin layers deposition using excitation of a free jet of the working gas mixture by an electron beam  

Science Conference Proceedings (OSTI)

A film of microcrystalline silicon ({mu}c-Si:H) deposited at low temperature is a promising material for thin-film silicon solar cells with high efficiency and high stability. To deposit silicon thin films with high deposition rate and high quality, a novel gas-jet deposition method has been developed. The paper is devoted to experimental and numerical study of the method from the gas dynamic point of view. A numerical model of the flow field of the working gas mixture in the device was developed that provides predictions of the film thickness distribution over the substrate surface and was found to describe the measured data satisfactory. The model may be used to optimize the operating parameters of the device.

Skovorodko, P. A.; Sharafutdinov, R. G.; Shchukin, V. G.; Konstantinov, V. O. [CJSC Institute of Plasma Chemical Technologies, 630090, Novosibirsk (Russian Federation) and Kutateladze Institute of Thermophysics, 630090, Novosibirsk (Russian Federation)

2012-11-27T23:59:59.000Z

205

Natural Gas - U.S. Energy Information Administration (EIA) -...  

Gasoline and Diesel Fuel Update (EIA)

gas capacity, which is the sum of the highest observed working natural gas storage inventory level in each facility over the prior 5-year period; and working gas design...

206

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

by numerical simulation below. pipeline gas shalecushion gas sand shale CH4 working gas CH4 working gas sand

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

207

Programs for the work with ENSDF format files: Evaluator's editor EVE, Viewer for the nuclear level schemes  

E-Print Network (OSTI)

Tools for the regular work of the nuclear data evaluator are presented: the context-dependent editor EVE and the viewer for the level schemes of nuclei from ENSDF datasets. These programs may be used by everybody who works with the Evaluated Nuclear Structure Data File and for the educational purposed.

Shulyak, G I

2010-01-01T23:59:59.000Z

208

Programs for the work with ENSDF format files: Evaluator's editor EVE, Viewer for the nuclear level schemes  

E-Print Network (OSTI)

Tools for the regular work of the nuclear data evaluator are presented: the context-dependent editor EVE and the viewer for the level schemes of nuclei from ENSDF datasets. These programs may be used by everybody who works with the Evaluated Nuclear Structure Data File and for the educational purposed.

G. I. Shulyak; A. A. Rodionov

2010-04-19T23:59:59.000Z

209

Estimate of Maximum Underground Working Gas Storage Capacity in the United States  

Reports and Publications (EIA)

This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacityseems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. Thereport presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

Information Center

2006-09-19T23:59:59.000Z

210

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

211

Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario  

SciTech Connect

In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

2004-10-06T23:59:59.000Z

212

Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste  

DOE Green Energy (OSTI)

This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

HU, T.A.

2000-04-27T23:59:59.000Z

213

SOLOX coke-oven gas desulfurization ppm levels -- No toxic waste  

SciTech Connect

For sulfur removal from coke-oven gas, the reduction/oxidation processes such as Stretford are the most effective, capable of removing the H[sub 2]S down to ppm levels. However, these processes have, in the past, suffered from ecological problems with secondary pollutant formation resulting from side reactions with HCN and O[sub 2]. The SOLOX gas desulfurization system is a development of the Stretford process in which the toxic effluent problems are eliminated by installing a salt decomposition process operating according to the liquid-phase hydrolysis principle. In this process, the gaseous hydrolysis products H[sub 2]S, NH[sub 3] and CO[sub 2] are returned to the untreated gas, and the regenerated solution is recycled to the absorption process. The blowdown from the absorption circuit is fed into a tube reactor where the hydrolysis process takes place. The toxic salts react with water, producing as reaction products the gases H[sub 2]S, NH[sub 3] and CO[sub 2], and the nontoxic salt Na[sub 2]SO[sub 4]. From the hydrolysis reactor the liquid stream flows into a fractionating crystallization plant. This plant produces a recycle stream of regenerated absorption solution and a second stream containing most of the Na[sub 2]SO[sub 4]. This second stream comprises the net plant waste and can be disposed of with the excess ammonia liquor or sprayed onto the coal.

Platts, M. (Thyssen Still Otto Technical Services, Pittsburgh, PA (United States)); Tippmer, K. (Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany))

1994-09-01T23:59:59.000Z

214

Monitoring of mental workload levels during an everyday life office-work scenario  

Science Conference Proceedings (OSTI)

Personal and ubiquitous healthcare applications offer new opportunities to prevent long-term health damage due to increased mental workload by continuously monitoring physiological signs related to prolonged high workload and providing just-in-time feedback. ... Keywords: Heart rate variability, Mental workload, Office-work, Personal and ubiquitous healthcare, Stress

Burcu Cinaz; Bert Arnrich; Roberto Marca; Gerhard Tröster

2013-02-01T23:59:59.000Z

215

End of Month Working  

Gasoline and Diesel Fuel Update (EIA)

The level of gas in storage at the end of the last heating season (March The level of gas in storage at the end of the last heating season (March 31, 2000) was 1,150 billion cubic feet (Bcf), just above the 1995-1999 average of 1,139 Bcf. Underground working gas storage levels are currently about 8-9 percent below year-ago levels. In large part, this is because injection rates since April 1 have been below average. Storage injections picked up recently due to warm weather in the last half of October. The month of November is generally the last month available in the year for injections into storage. A cold November would curtail net injections into storage. If net injections continue at average levels this winter, we project that storage levels will be low all winter, reaching a level of 818 Bcf at the end of March, the lowest level since 1996

216

U.S. dry natural gas production growth levels off following ...  

U.S. Energy Information Administration (EIA)

U.S. dry natural gas production has increased since late 2005 due mainly to rapid growth in production from shale gas resources. However, there have ...

217

U.S. marketed natural gas production levels off in the first half ...  

U.S. Energy Information Administration (EIA)

U.S. marketed natural gas production has flattened since late 2011, mainly in response to lower natural gas prices. Nevertheless, volumes remain at historically high ...

218

Statements of work for FY 1996 to 2001 for the Hanford Low-Level Tank Waste Performance Assessment Project  

SciTech Connect

The statements of work for each activity and task of the Hanford Low-Level Tank Waste Performance Assessment project are given for the fiscal years 1996 through 2001. The end product of this program is approval of a final performance assessment by the Department of Energy in the year 2000.

Mann, F.M.

1995-06-07T23:59:59.000Z

219

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

220

An approximate-reasoning-based method for screening high-level waste tanks for flammable gas  

DOE Green Energy (OSTI)

The in situ retention of flammable gas produced by radiolysis and thermal decomposition in high-level waste can pose a safety problem if the gases are released episodically into the dome space of a storage tank. Screening efforts at Hanford have been directed at identifying tanks in which this situation could exist. Problems encountered in screening motivated an effort to develop an improved screening methodology. Approximate reasoning (AR) is a formalism designed to emulate the kinds of complex judgments made by subject matter experts. It uses inductive logic structures to build a sequence of forward-chaining inferences about a subject. AR models incorporate natural language expressions known as linguistic variables to represent evidence. The use of fuzzy sets to represent these variables mathematically makes it practical to evaluate quantitative and qualitative information consistently. The authors performed a pilot study to investigate the utility of AR for flammable gas screening. They found that the effort to implement such a model was acceptable and that computational requirements were reasonable. The preliminary results showed that important judgments about the validity of observational data and the predictive power of models could be made. These results give new insights into the problems observed in previous screening efforts.

Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sandia Site Office Assessment of Activity-Levell Work Planning and Control at Sandia National Laboratories/New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SNL-2011-02-18 SNL-2011-02-18 Site: Sandia National Laboratories (SNL) Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Independent Activity Report for the Sandia Site Office Assessment of Activity-Level Work Planning and Control at Sandia National Laboratories /New Mexico (SNL) Dates of Activity : 02/14/2011 - 02/18/2011 Report Preparer: Patricia Williams Activity Description/Purpose: At the request of the Sandia Site Office (SSO), the Office of Environment, Safety and Health Evaluations (HS-64) personnel participated in an SSO assessment of SNL's Activity-Level Work Planning and Control processes, procedures, and implementation by line organizations, including feedback and improvement activities and efforts to sustain the

222

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

5-year average inventory level for the report week, according to EIA's Weekly Natural Gas Storage Report (See Storage Figure). This matches the highest level that weekly working...

223

Level  

E-Print Network (OSTI)

7 at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) 4. Other entry N/A Credit Level awards (if applicable): 5. Exit Awards: PGDip Advanced Computer Science 120 credits with not more than 30 credits at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) Credit

Programme Csad

2007-01-01T23:59:59.000Z

224

Level  

E-Print Network (OSTI)

7 at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) 4. Other entry N/A Credit Level awards (if applicable): 5. Exit Awards: PGDip Computer Science 120 credits with not more than 30 credits at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) Credit

unknown authors

2006-01-01T23:59:59.000Z

225

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

was 70 percent below the level reported last year at this time. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,337 Bcf as of...

226

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

Science Conference Proceedings (OSTI)

This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

MEACHAM JE

2009-10-26T23:59:59.000Z

227

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 View History U.S. 4,211,193 4,327,844 4,410,224 4,483,650 4,576,356 2008-2012 Alabama 20,900 20,900 25,150 27,350 27,350 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 296,318 303,761 303,500 302,385 302,962 2008-2012 Indiana 32,769 32,157 32,982 33,024 33,024 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 119,260 119,339 123,190 123,225 123,343 2008-2012 Kentucky

228

Evolved Gas Analysis for High-alumina HLW (High Level Waste) Feed  

Science Conference Proceedings (OSTI)

Using the thermogravimetry coupled with gas chromatography-mass spectrometer, ... Tungstic Acid for Sorption of Uranium from Natural and Waste Waters and ...

229

Level  

E-Print Network (OSTI)

7 180 credits with not more than 30 credits at level 3 (FHEQ level 6) and the rest at level M (FHEQ level 7) 4. Other entry N/A Credit Level awards (if applicable): 5. Exit Awards: PGDip in Advanced Computer Science with

Programme Csci

2010-01-01T23:59:59.000Z

230

Evaluation of high-level nuclear waste tanks having a potential flammable gas hazard  

DOE Green Energy (OSTI)

In 1990 the U.S. Department of Energy declared an unreviewed safety question as a result of the behavior of tank 241-SY-101. This tank exhibited episodic releases of flammable gases that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years a considerable amount of knowledge has been gained about the chemical and physical processes that govern the behavior of tank 241-SY-101 and the other tanks associated with a potential flammable gas hazard. This paper presents an overview of the current understanding of gas generation, retention, and release and covers the results of direct sampling of the tanks to determine the gas composition and the amount of stored gas.

Johnson, G.D.; Barton, W.B.; Hill, R.C.; et al, Fluor Daniel Hanford

1997-02-14T23:59:59.000Z

231

High freestream turbulence levels have been shown to greatly augment the heat transfer along a gas turbine airfoil, particularly for the first stage  

E-Print Network (OSTI)

along a gas turbine airfoil, particularly for the first stage nozzle guide vane. For this study of the variables affecting boundary layer development on gas turbine airfoils, studies need to be performed of a variety of gas turbine combustors have shown that the levels can range between 8% and 40% (Kuotmos and Mc

Thole, Karen A.

232

Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes  

DOE Green Energy (OSTI)

Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages.

Dole, L.R.; Friedman, H.A.

1986-01-01T23:59:59.000Z

233

STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

SciTech Connect

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

HU TA

2007-10-26T23:59:59.000Z

234

Measurements of low level NO /SUB x/ emission from a Cheng Cycle Gas Turbine  

Science Conference Proceedings (OSTI)

Mass steam injection into the combustor of a Cheng Cycle turbine can influence combustion characteristics and pollutant formation. When using a Cheng Cycle system based on a Garrett 831 gas turbine liquid fuel, these influences were studied experimentally. Data obtained to date indicate that significant NO /SUB x/ reduction can be achieved without suffering combustion inefficiency or instability.

Chang, C.N.; Digumarthi, R.

1984-06-01T23:59:59.000Z

235

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2  

DOE Green Energy (OSTI)

Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

HU, T.A.

2003-09-30T23:59:59.000Z

236

Numerical modeling of gas migration at a proposed repository for low and intermediate level nuclear wastes at Oberbauenstock, Switzerland  

Science Conference Proceedings (OSTI)

Hydrologic impacts of corrosive gas release from a hypothetical L/ILW nuclear waste repository at Oberbauenstock are explored by means of numerical simulation. A schematic two dimensional vertical section through the mountain is modeled with the simulator TOUGH, which describes two-phase flow of water and gas in porous and fractured media. Two reference cases are considered which represent the formations as a porous and as a fractured-porous (dual permeability) medium, respectively. Both cases predict similar and rather modest pressure increases, from ambient 10 bars to near 25 bars at the repository level. These results are to be considered preliminary because important parameters affecting two-phase flow, such as relative permeabilities of a fractured medium, are not well known at present. 24 refs., 15 figs., 5 tabs.

Pruess, K.

1990-03-01T23:59:59.000Z

237

State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002  

Reports and Publications (EIA)

This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (N O), which represent a three-year weighted average for 1998-2000.

Information Center

2002-04-01T23:59:59.000Z

238

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

to replenish inventory levels of natural gas held in storage. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 3,052...

239

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

DOE Green Energy (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

HU TA

2009-10-26T23:59:59.000Z

240

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

DOE Green Energy (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

HU, T.A.

2005-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste  

DOE Green Energy (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. Hydrogen generation rate was calculated for 177 tanks using rate equation model. Ammonia liquid/vapor equilibrium model is incorporated into the methodology for ammonia analysis.

HU, T.A.

2001-02-23T23:59:59.000Z

242

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

DOE Green Energy (OSTI)

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

HU, T.A.

2004-10-27T23:59:59.000Z

243

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

244

Underwater robotic work systems for Russian arctic offshore oil/gas industry: Final report. Export trade information  

SciTech Connect

The study was performed in association with Rosshelf, a shelf developing company located in Moscow. This volume involves developing an underwater robotic work system for oil exploration in Russia`s Arctic waters, Sea of Okhotsk and the Caspian Sea. The contents include: (1) Executive Summary; (2) Study Background; (3) Study Outline and Results; (4) Conclusions; (5) Separately Published Elements; (6) List of Subcontractors.

NONE

1997-12-15T23:59:59.000Z

245

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

246

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

247

Statement of work for conceptual design of solidified high-level waste interim storage system project (phase I)  

SciTech Connect

The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities. This plan contains a two phased approach. Phase I is a ``proof-of-principle/commercial demonstration- scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage (IS) and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidification HLW IS entails use of Vaults 2 and 3 in the Spent Nuclear Fuel Canister Storage Building, to be located in the Hanford Site 200 East Area. This Statement of Work describes the work scope to be performed by the Architect-Engineer to prepare a conceptual design for the solidified HLW IS System.

Calmus, R.B., Westinghouse Hanford

1996-12-17T23:59:59.000Z

248

Natural gas monthly, August 1996  

Science Conference Proceedings (OSTI)

This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

NONE

1996-08-01T23:59:59.000Z

249

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

250

Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films  

SciTech Connect

Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu){sub 8}) films. Gas sensor shows a response of 185% to few parts per billion level of Cl{sub 2} gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01{<=}k{<=}0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.

Bedi, R. K.; Saini, Rajan; Mahajan, Aman [Material Science Laboratory, Department of PhysicsGuru Nanak Dev University, Amritsar-143005 (India)

2010-12-01T23:59:59.000Z

251

Natural Gas Storage in the United States in 2001: A Current ...  

U.S. Energy Information Administration (EIA)

2The estimates of working gas levels presented in this analysis are ... 3Historical data used in the scenario analyses are from: •Monthly data

252

EIA projects natural gas inventories to reach 3,800 billion cubic ...  

U.S. Energy Information Administration (EIA)

Demonstrated peak capacity of 4,265 bcf is the sum of the highest storage inventory level of working gas in each facility between 2008 and 2012.

253

Working Gas Capacity of Aquifers  

Gasoline and Diesel Fuel Update (EIA)

96,950 396,092 364,228 363,521 367,108 2008-2012 96,950 396,092 364,228 363,521 367,108 2008-2012 Alabama 0 2012-2012 Arkansas 0 2012-2012 California 0 0 2009-2012 Colorado 0 2012-2012 Illinois 244,900 252,344 216,132 215,017 215,594 2008-2012 Indiana 19,978 19,367 19,437 19,479 19,215 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 0 2012-2012 Kentucky 6,629 6,629 6,629 6,629 6,629 2008-2012 Louisiana 0 2012-2012 Michigan 0 2012-2012 Minnesota 2,000 2,000 2,000 2,000 2,000 2008-2012 Mississippi 0 2012-2012 Missouri 11,276 3,040 3,656 6,000 6,000 2008-2012 Montana 0 2012-2012 New Mexico 0 2012-2012 New York 0 2012-2012 Ohio 0 2012-2012 Oklahoma 31 2012-2012 Oregon 0 2012-2012 Pennsylvania 942 2012-2012 Tennessee 0 2012-2012 Texas 0 2012-2012 Utah 948 948 939 939 948 2008-2012

254

Working Gas Capacity of Aquifers  

U.S. Energy Information Administration (EIA) Indexed Site

96,950 396,092 364,228 363,521 367,108 2008-2012 96,950 396,092 364,228 363,521 367,108 2008-2012 Alabama 0 2012-2012 Arkansas 0 2012-2012 California 0 0 2009-2012 Colorado 0 2012-2012 Illinois 244,900 252,344 216,132 215,017 215,594 2008-2012 Indiana 19,978 19,367 19,437 19,479 19,215 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 0 2012-2012 Kentucky 6,629 6,629 6,629 6,629 6,629 2008-2012 Louisiana 0 2012-2012 Michigan 0 2012-2012 Minnesota 2,000 2,000 2,000 2,000 2,000 2008-2012 Mississippi 0 2012-2012 Missouri 11,276 3,040 3,656 6,000 6,000 2008-2012 Montana 0 2012-2012 New Mexico 0 2012-2012 New York 0 2012-2012 Ohio 0 2012-2012 Oklahoma 31 2012-2012 Oregon 0 2012-2012 Pennsylvania 942 2012-2012 Tennessee 0 2012-2012 Texas 0 2012-2012 Utah 948 948 939 939 948 2008-2012

255

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

Bjorn N. P. Paulsson

2006-09-30T23:59:59.000Z

256

A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration  

SciTech Connect

A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

2013-02-15T23:59:59.000Z

257

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

258

Natural Gas Monthly, August 1984  

SciTech Connect

Dry gas production during August 1984 was estimated at 1441 billion cubic feet (Bcf), 8.4% above August 1983 dry gas production. Consumption of natural gas during August 1984 was an estimated 1182 Bcf, 3.7% above the August 1983 level. Compared to the previous July, residential and commercial consumption was down 4.6 and 6.2%, respectively, industrial consumption was up 13.2%, and electric utility consumption was up 11.1% during July 1984. The volume of working gas in underground storage reservoirs at the end of August 1984 was 5.8% below the August 31, 1983 level. The average wellhead price of natural gas in June 1984 was $2.61 per thousand cubic feet (Mcf). In June 1983, the average was $2.62 per Mcf. In August 1984, the average residential price of natural gas was $6.17 per Mcf. The comparable price in August 1983 was $6.16 per Mcf. The average wellhead (first sale) price for natural gas purchases projected for September 1984 by selected interstate pipeline companies was $2.67 per Mcf. In September 1983, the average price was $2.64 per Mcf. The average price projected for Old Gas (NGPA Sections 104, 105, and 106) in September 1984 was $1.23 per Mcf; for New Gas (NGPA Sections 102, 103, 108, and 109), $3.66 per Mcf; and for High Cost Gas (NGPA Section 107), $5.18 per Mcf. In September 1983, the prices projected for Old Gas, New Gas, and High Cost Gas averaged $1.35, $3.47, and $5.66 per Mcf, respectively. On September 26, 1984 the FERC approved extension of the authorized natural gas producer and pipeline special marketing programs (SMP) for another year. The North Great Plains coal gasification plant in North Dakota begun producing gas in July of this year.

Not Available

1984-10-01T23:59:59.000Z

259

Interim On-Site Storage of Low-Level Waste: Volume 4, Part 3: Waste Container Closures, Seals, and Gas Vents  

Science Conference Proceedings (OSTI)

This volume of the Interim On-Site Storage report series supplements Volume 4, Part 1, which includes an extensive methodology and detailed information on the types and availability of low-level waste (LLW) containers and container coatings for extended storage. Part 2, soon to be published, addresses monitoring and inspection requirements for stored LLW containers. Part 3 continues the series by providing detailed guidance on container closures, seals, and gas vents, including performance goals and key ...

1993-11-11T23:59:59.000Z

260

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, March 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 9, 2011) Natural gas spot prices remained soft at nearly all domestic pricing points. The Henry Hub price rose an insignificant 2 cents per million Btu (MMBtu) (0.5 percent) for the week ending March 9, to $3.81 per MMBtu. Working natural gas in storage fell to 1,674 billion cubic feet (Bcf) as of Friday, March 4, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 71 Bcf, with storage volumes positioned 32 Bcf above year-ago levels. At the New York Mercantile Exchange (NYMEX), the April 2011 natural

262

Challenges and methodology for safety analysis of a high-level waste tank with large periodic releases of flammable gas  

SciTech Connect

Tank 241-SY-101, located at the Department of Energy Hanford Site, has periodically released up to 10,000 ft{sup 3} of flammable gas. This release has been one of the highest-priority DOE operational safety problems. The gases include hydrogen and ammonia (fuels) and nitrous oxide (oxidizer). There have been many opinions regarding the controlling mechanisms for these releases, but demonstrating an adequate understanding of the problem, selecting a mitigation methodology, and preparing the safety analysis have presented numerous new challenges. The mitigation method selected for the tank was to install a pump that would mix the tank contents and eliminate the sludge layer believed to be responsible for the gas retention and periodic releases. This report will describe the principal analysis methodologies used to prepare the safety assessment for the installation and operation of the pump, and because this activity has been completed, it will describe the results of pump operation.

Edwards, J.N.; Pasamehmetoglu, K.O.; White, J.R. [Los Alamos National Lab., NM (United States); Stewart, C.W. [Pacific Northwest Lab., Richland, WA (United States)

1994-07-01T23:59:59.000Z

263

Levelized life-cycle costs for four residue-collection systems and four gas-production systems  

DOE Green Energy (OSTI)

Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

1983-01-01T23:59:59.000Z

264

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

265

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

266

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

267

Steady State Flammable Gas Release Rate Calculation & Lower Flammability Level Evaluation for Hanford Tank Waste [SEC 1 & 2  

DOE Green Energy (OSTI)

Assess the steady state level at normal & off-normal ventilation conditions. Hydrogen generation rate calculated for 177 tanks using rate equation model. Flammability calc. based on hydrogen, ammonia, & methane proformed for tanks at various scenarios.

HU, T.A.

2002-06-20T23:59:59.000Z

268

U.S. Natural Gas -  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Working gas in storage is estimated to have been about 2,425 billion cubic feet at the end of November, 14% below the previous 5-year average. The current outlook for winter demand and supply suggests that storage is headed for record lows this winter if weather is normal or colder than normal. In the base case, we project that gas storage will fall to about 640 billion cubic feet at the end of the heating season (March 31, 2001). The previous record low was 758 billion cubic feet at the end of the winter of 1995-1996. If summer gas demand next year is as strong as we currently expect it to be, the low end-winter storage levels will present a strong challenge to the North American gas supply system to maintain flexibility and provide additional gas in preparation for the subsequent winter season.

269

U.S. Natural Gas -  

Gasoline and Diesel Fuel Update (EIA)

19 19 Notes: Working gas in storage is estimated to have been below 1,800 billion cubic feet at the end of December, more than 20% below the previous 5-year average. The estimated end-year level is the lowest for the period of time that EIA has records. The current outlook for winter demand and supply suggests that storage is likely to remain very low this winter. In the base case, we project that gas storage will fall to about 470 billion cubic feet at the end of the heating season (March 31, 2001). The previous 30-year observed low was 758 billion cubic feet at the end of the winter of 1995-1996. If summer gas demand next year is as strong as we currently expect it to be, the low end-winter storage levels will present a strong challenge to the North American gas supply system to maintain flexibility and provide

270

Natural Gas Monthly, October 1984  

Science Conference Proceedings (OSTI)

This report presents recent data and current estimates on the consumption, disposition, prices, storage, import, and export of natural gas in the USA for October 1984. Also included are operating and financial data for major interstate natural gas pipeline companies plus data on filings, ceiling prices and transportation under the Natural Gas Policy Act of 1978. Featured articles entitled Main Line Natural Gas Sales to Industrial Users, 1983, and Average Price of Natural Gas Delivered to Consumers, 1983 (Preliminary) are included. Dry gas production (wet marketed production minus extraction loss) during October 1984 was estimated at 1437 billion cubic feet (Bcf), 4.7% above October 1983 dry gas production. Consumption of natural gas during October 1984 was an estimated 1279 Bcf, 0.4% above the October 1983 level. Compared to the previous September, residential consumption was up 3.2%, commercial consumption down 6.8%, industrial consumption up 11.5%, and electric utility consumption down 2.7%. The volume of working gas in underground storage reservoirs at the end of October 1984 was 2.8% below the October 1983 level. The average wellhead price of natural gas in August 1984 was $2.60 per thousand cubic feet (Mcf). In August 1983, the average was $2.58 per Mcf. In October 1984, the average residential price of natural gas was $6.25 per Mcf. The comparable price in October 1983 was $6.10 per Mcf. The average wellhead (first sale) price for natural gas purchases projected for November 1984 by selected interstate pipeline companies was $2.82 per Mcf. 5 figures, 21 tables. (DMC)

Not Available

1984-12-01T23:59:59.000Z

271

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, June 23, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 15, 2011) The past week was characterized by passing of the earlier weekÂ’s heat wave. The Henry Hub price decreased 31 cents per million Btu (MMBtu) for the week (6.4 percent) to close at $4.52 per MMBtu on June 15. During the midst of the heat wave, working natural gas in storage last week rose to 2,256 billion cubic feet (Bcf) as of Friday, June 10, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 69 Bcf, leaving storage volumes positioned 275 Bcf below year-ago levels.

272

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, December 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 17, 2010) Natural gas spot prices fell modestly at nearly all domestic pricing points, likely because expectations for colder weather were slow in materializing and storage levels rose again. The Henry Hub price fell 23 cents (about 6 percent) for the week ending November 17, to $3.77 per million Btu (MMBtu). The West Texas Intermediate crude oil spot price settled at $80.43 per barrel ($13.87 per MMBtu), on Wednesday, November 17. This represents a decrease of $7.34 per barrel, or $1.27 per MMBtu, from the previous Wednesday. Working natural gas in storage set another new all-time record

273

Carbon dioxide laser with an e-beam-initiated discharge produced in the working gas mixture at a pressure up to 5 atm  

SciTech Connect

A high-pressure CO{sub 2} laser with a discharge initiated by an electron beam of sub-nanosecond duration in the laser gas mixture at a pressure up to 5 atm is fabricated. For the 20-ns pulses the energy from the active volume {approx} 4 cm{sup 3} amounted to 40 mJ. The laser operation at a pulse repetition rate up to 5 Hz is demonstrated. In the gas mixture CO{sub 2}:N{sub 2}:He = 1:1:6 at a pressure 5 atm, the specific energy deposition of {approx} 0.07 J cm{sup -3} atm{sup -1} is obtained in the process of a non-self-sustained discharge with ionisation amplification.

Orlovskii, Viktor M; Alekseev, S B; Tarasenko, Viktor F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2011-11-30T23:59:59.000Z

274

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

275

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16 (next release 2:00 p.m. on February 23, 2006) 16 (next release 2:00 p.m. on February 23, 2006) Winter-like conditions in much of the East this past weekend transitioned to above-normal temperatures, contributing to a further decline in natural gas spot prices this week (Wednesday, February 8 - Wednesday, February 15). On the week the Henry Hub spot price declined 57 cents per MMBtu to $7.31. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant declines. The futures contract for March delivery, which is the last contract for the current heating season, declined 66.9 cents per MMBtu on the week to $7.066. Relatively high levels of natural gas in working storage and falling prices for competing fuels likely contributed to falling natural gas prices this week. Working gas in storage as of Friday, February 10, was 2,266 Bcf, which is 43.9 percent above the 5-year (2001-2005) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $4.90 per barrel on the week to $57.61, or $9.93 per MMBtu.

276

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on March 29, 2007) 2, 2007 (next release 2:00 p.m. on March 29, 2007) As the bitter cold has evolved to more moderate temperatures, natural gas spot prices have eased through most of the country. During the report week (Wednesday-Wednesday, March 14-21), the Henry Hub spot price declined 4 cents per MMBtu to $6.82. At the New York Mercantile Exchange (NYMEX), prices for futures contracts were slightly higher, as increases Tuesday and yesterday (March 20 and 21) more than offset decreases that occurred in the 3 previous trading days. The futures contract for April delivery, which is the first contract following the current heating season, increased 7.7 cents per MMBtu on the week to $7.160. Relatively high levels of natural gas in working storage and decreasing prices for competing fuels likely contributed to falling natural gas spot prices this week. Working gas in storage as of Friday, March 16, was 1,533 Bcf, which is 18.5 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.17 per barrel on the week to $56.98, or $9.82 per MMBtu.

277

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

278

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

279

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas futures also reversed gains made in the previous week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased by 63 Bcf...

280

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Recent Natural Gas Market Data  

Gasoline and Diesel Fuel Update (EIA)

sectors U.S. Natural Gas Imports and Exports - Volumes and prices for pipeline and LNG imports and exports Underground Natural Gas Storage - Stocks of working and base gas...

282

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on July 19, 2007) 2, 2007 (next release 2:00 p.m. on July 19, 2007) Natural gas spot prices increased during this holiday-shortened report week (Thursday-Wednesday, July 5-11) as weather-related demand emerged in response to the hottest temperatures to date this year in the Northeast and Midwest. On the week, the Henry Hub spot price increased 36 cents per MMBtu, or 5.7 percent, to $6.65. At the New York Mercantile Exchange (NYMEX), the story was slightly different with the contract price for August delivery decreasing to $6.600 per MMBtu, which was 1.8 cents lower than last Thursday's (July 5) closing price. EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,627 Bcf as of Friday, July 7. This level of working gas in underground storage is 16.6 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.77 per barrel on the week to $72.58 per barrel. On a Btu basis, the crude oil price is now nearly double the price of natural gas at $12.51 per MMBtu. The relative difference in pricing can have a large effect on demand (mostly in the industrial sector and power plants).

283

U.S. Natural Gas -  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Working gas in storage is estimated to have been about 1,250 billion cubic feet at the end of January, about one-third below the previous 5-year average. The estimated end-year level for 2000 was the lowest for the period of time that EIA has records. The current outlook for winter demand and supply suggests that storage is likely to remain very low for the remainder of this winter. In the base case, we project that gas storage will fall to about 567 billion cubic feet at the end of the heating season (March 31, 2001). The previous 30-year observed low was 758 billion cubic feet at the end of the winter of 1995-1996. If summer gas demand next year is as strong as we currently expect it to be, the low end-winter storage levels will present a strong challenge

284

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14, 2007 (next release 2:00 p.m. on June 21, 2007) 14, 2007 (next release 2:00 p.m. on June 21, 2007) Natural gas spot and futures prices decreased this week (Wednesday-Wednesday, June 6-13) as weather-related demand was limited amid close-to-normal temperatures for this time of year. Easing prices also likely resulted in part from reduced supply uncertainty in response to the amount of natural gas in underground storage (mostly for use during the winter heating season but also available for periods of hot weather in the summer). Supplies from international sources have grown considerably this spring, as imports of liquefied natural gas (LNG) have increased markedly even as natural gas supplies from Canada (transported by pipeline) likely have decreased. On the week, the Henry Hub spot price decreased 23 cents per MMBtu, or 2.9 percent, to $7.60. At the New York Mercantile Exchange (NYMEX), the contract for July delivery decreased 47.2 cents per MMBtu on the week to a daily settlement of $7.608 yesterday (June 13). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,255 Bcf as of Friday, June 8, reflecting an implied net injection of 92 Bcf. This level of working gas in underground storage is 19.3 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.20 per barrel on the week to $66.17 per barrel, or $11.41 per MMBtu.

285

Easing the Natural Gas Crisis: Reducing Natural Gas Prices through  

E-Print Network (OSTI)

LBNL-56756 Easing the Natural Gas Crisis: Reducing Natural Gas Prices through Increased Deployment the Natural Gas Crisis: Reducing Natural Gas Prices through Increased Deployment of Renewable Energy-AC03-76SF00098. #12;#12;Easing the Natural Gas Crisis Acknowledgments The work described in this report

286

Historical Natural Gas Annual 1999  

Gasoline and Diesel Fuel Update (EIA)

1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

287

Breathable gas distribution apparatus  

SciTech Connect

The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

Garcia, Elmer D. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

288

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

289

Work Breakdown Structure and Plant/Equipment Designation System Numbering Scheme for the High Temperature Gas- Cooled Reactor (HTGR) Component Test Capability (CTC)  

SciTech Connect

This white paper investigates the potential integration of the CTC work breakdown structure numbering scheme with a plant/equipment numbering system (PNS), or alternatively referred to in industry as a reference designation system (RDS). Ideally, the goal of such integration would be a single, common referencing system for the life cycle of the CTC that supports all the various processes (e.g., information, execution, and control) that necessitate plant and equipment numbers be assigned. This white paper focuses on discovering the full scope of Idaho National Laboratory (INL) processes to which this goal might be applied as well as the factors likely to affect decisions about implementation. Later, a procedure for assigning these numbers will be developed using this white paper as a starting point and that reflects the resolved scope and outcome of associated decisions.

Jeffrey D Bryan

2009-09-01T23:59:59.000Z

290

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

25, 2001 25, 2001 The industry stock build that began in April has continued into June as the latest weekly estimate indicates that more than 100 Bcf was again added to working gas storage levels. At the same time that natural gas stocks have been increasing, prices have been generally trending down. Prices at many major spot markets moved down most days last week and ended the week between 20 and 30 cents per MMBtu below Tuesday's prices. On the NYMEX futures market, the near-month (July) contract also ended the week down 25 cents from Tuesday's high of $3.981. Much of the country continued to enjoy moderate temperatures during last week, which saw the first day of summer (June 21) prices (See Temperature Map) (See Deviation from Normal Temperatures Map).

291

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, July 14, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 6, 2011) Nearly all pricing points were down overall for the week, some by more than 10 cents per million Btu (MMBtu). The Henry Hub price decreased 6 cents per MMBtu over the week (1.4 percent) to close at $4.34 per MMBtu on July 6. Working natural gas in storage rose last week to 2,527 billion cubic feet (Bcf) as of Friday, July 1, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 95 Bcf, leaving storage volumes positioned 224 Bcf under year-ago levels. At the New York Mercantile Exchange (NYMEX), the August 2011 natural

292

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

293

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on August 9, 2007) 2, 2007 (next release 2:00 p.m. on August 9, 2007) Natural gas spot prices increased this week (Wednesday-Wednesday, July 25-August 1) as tropical storm activity increased and weather-related demand returned along with normal summertime heat in large market areas in the East. On the week, the Henry Hub spot price increased 62 cents per MMBtu, or 11.1 percent, to $6.19. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery expired last Friday (July 27) at $6.11 per MMBtu. Although the price of the expiring contract in the last couple days of trading rose slightly, the expiration price was still the second lowest of the year (the January 2007 contract expired at $5.838). Taking over as the near-month contract, the September 2007 contract increased in price by $0.29 per MMBtu on the week to $6.352. EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,840 Bcf as of Friday, July 27. This level of working gas in underground storage exceeds the maximum level of the previous 5 years. The spot price for West Texas Intermediate (WTI) crude oil increased $0.75 per barrel on the week to $76.49 per barrel. On a Btu basis, the crude oil price is now more than double the price of natural gas at $13.19 per MMBtu.

294

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) Natural gas spot and futures prices fell for a third consecutive week (Wednesday to Wednesday, November 10-17), as temperatures for most of the nation continued to be moderate to seasonal. At the Henry Hub, the spot price declined 6 cents on the week, for the smallest week-on-week decrease in the nation. Spot gas traded there yesterday (Wednesday, November 17) at $6.06 per MMBtu. Price declines at the majority of market locations ranged from around a dime to nearly 60 cents per MMBtu. On the NYMEX, the price for the near-month natural gas futures contract (for December delivery) fell by almost 40 cents on the week, settling yesterday at $7.283 per MMBtu. EIA reported that working gas inventories in underground storage were 3,321 Bcf as of Friday, November 12, which is 9 percent greater than the previous 5-year average. The spot price for West Texas Intermediate (WTI) crude oil declined for a fourth consecutive week, dropping $1.85 per barrel ($0.32 per MMBtu), or nearly 4 percent, from last Wednesday's level, to trade yesterday at $46.85 per barrel ($8.08 per MMBtu).

295

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network (OSTI)

Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

296

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Prior to developing the API Compendium of GHG Emissions Methodologies for the Oil and Gas Industry (PDF 14.6 MB), API reviewed a wide range of government estimates of greenhouse gas emissions from the oil and gas industry as well as existing and widely used methodologies for estimating emissions from our industry's operations. This review made it quite clear that while existing data and methods may be adequate for national-level estimates of greenhouse gas emissions, they were inadequate for developing reliable facility- and company-specific estimates of greenhouse gas emissions from oil and gas operations. Download Acrobat Reader The Compendium is used by industry to assess its greenhouse gas emissions. Working with a number of other international associations as well as

297

WNGSR provides insight into natural gas markets and the broader ...  

U.S. Energy Information Administration (EIA)

EIA's Weekly Natural Gas Storage Report (WNGSR) measures how much natural gas is available for withdrawal–working natural gas–in the Nation's underground storage ...

298

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

299

February 28, 2006, Department letter reporting completion of NNSA portion of Commitment 23 in the 2004-1 implementation plan, Oversight of Complex, High-Hazard Nuclear Operations, which requires the development of site office action plans to improve the consistency and reliability of work planning and work control at the activity level, including the incorporation of Integrated Safety Management core functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington, DC 20585 Washington, DC 20585 February 28, 2006 OFFICE O F THE ADMINISTRATOR The Honorable A. J. Eggenberger Ch a i rm an Defensc Nuclear Facilities Safety Board 625 Indiana Avenue, NW., Suite 700 Washington, D.C. 20004-2901 Dear Mr. Chairman: On Julie 10, 2005, Secretary Bodnian submitted the Department's Iiizplenzentution Plun to Itizpt-ove Oversight qf'Nucleur Operutions in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2004- I , Oversight qf Complex, High-Hrrzurd Nucleur Openrtiotzs. Section 5.3 of the Implementation Plan (IP) addresses Revitalizing Integruted SU/i-'ty Munagernent Implementution, and Subsection 5.3.2 addresses Work Plunning mil Work Control ut the Activity Level. Commitment 23 of the 1P requires development of site office action plans to improve the consistency and reliability of work

300

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

NWP subcontractor personnel work at a number of DOE generator sites where NWP has no direct contractual authority for overall site operations. NWP has therefore negotiated...

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparison of Natural Gas Storage Estimates from the EIA and AGA  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has been publishing monthly storage information for years. In order to address the need for more timely information, in 1994 the American Gas Association (AGA) began publishing weekly storage levels. Both the EIA and the AGA series provide estimates of the total working gas in storage, but use significantly different methodologies.

Information Center

1997-10-01T23:59:59.000Z

302

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Monday, November 19, 2001 Monday, November 19, 2001 Last week, the NYMEX futures contract price for December delivery at the Henry Hub continued the generally downward trend that began in late October. The contract ended last week's trading at $2.637 per MMBtu-nearly 55 cents lower than the $3.183 recorded when it began as the near-month contract on October 30. Spot prices also experienced a similar pattern and reportedly declined well over $1.00 per MMBtu at most major market locations. The spot price at the Henry Hub on Friday hit its lowest level in more than two and a half years. The continued warmer-than-normal weather in most parts of the country appears to be a major contributing factor in the almost 3-week decline in natural gas prices. (Temperature Map) (Temperature Deviation Map) Another factor is the relatively high stocks that continued to increase in the second week of November. Working gas in storage now stands at its highest level since November 1998. The spot price for West Texas Intermediate (WTI) crude oil dropped by more than $2.00 per barrel on Thursday and ended the week at $18.05, or $3.11 per MMBtu-its lowest level in over 2 years.

303

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2007 (next release 2:00 p.m. on May 24, 2007) 7, 2007 (next release 2:00 p.m. on May 24, 2007) Natural gas spot and futures prices increased slightly this week (Wednesday-Wednesday, May 9-16), despite the usual lull in demand during this shoulder period between the winter heating and summer cooling seasons. The upward price trend likely resulted from a variety of factors, including rising prices for competing petroleum products (as evidenced by an increase in the underlying crude oil price). Additionally, concerns over current and future supplies do not appear to have eased. The official start of the hurricane season is imminent, and the first named tropical storm appeared this week. However, imports of liquefied natural gas (LNG) have increased markedly in the past few months. On the week, the Henry Hub spot price increased 16 cents per MMBtu, or 2 percent, to $7.62. At the New York Mercantile Exchange (NYMEX), the contract for June delivery increased 17.0 cents per MMBtu on the week to a daily settlement of $7.890 yesterday (May 16). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 1,842 Bcf as of Friday, May 11, reflecting an implied net injection of 95 Bcf. This level of working gas in underground storage is 20.6 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $1.03 per barrel on the week to $62.57 per barrel, or $10.79 per MMBtu.

304

Working Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1973-2013 Alabama 20,405 20,908 20,110 20,532 19,968 21,262 1995-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Arkansas 1,486 1,928 2,330 2,735 3,168 3,372 1990-2013 California 255,453 287,757 309,448 326,906 329,024 338,271 1990-2013 Colorado 15,625 19,489 25,833 32,642 40,240 46,136 1990-2013 Illinois 50,160 75,951 110,815 142,938 177,700 218,245 1990-2013 Indiana 8,965 10,955 13,533 15,951 19,622 22,817 1990-2013 Iowa 11,615 17,696 23,768 32,853 47,421 64,102 1990-2013 Kansas 35,397 49,412 62,747 79,590 91,430 101,169 1990-2013 Kentucky 52,985 61,078 68,847 74,285 79,656 88,369 1990-2013 Louisiana 212,975 235,835 263,701 296,375 315,517 342,981 1990-2013

305

Working Gas Capacity of Salt Caverns  

Gasoline and Diesel Fuel Update (EIA)

230,456 271,785 312,003 351,017 2008-2011 Alabama 11,900 11,900 16,150 16,150 2008-2011 Arkansas 0 2011-2011 California 0 2011-2011 Colorado 0 2011-2011 Illinois 0 2011-2011...

306

Philadelphia Gas Works - Commercial and Industrial Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food service equipment. All equipment must meet program...

307

Working Gas Capacity of Salt Caverns  

U.S. Energy Information Administration (EIA) Indexed Site

230,456 271,785 312,003 351,017 488,268 2008-2012 230,456 271,785 312,003 351,017 488,268 2008-2012 Alabama 11,900 11,900 16,150 16,150 16,150 2008-2012 Arkansas 0 2012-2012 California 0 2012-2012 Colorado 0 2012-2012 Illinois 0 2012-2012 Indiana 0 2012-2012 Kansas 375 375 375 375 375 2008-2012 Kentucky 0 2012-2012 Louisiana 57,630 84,487 100,320 111,849 200,702 2008-2012 Maryland 0 2012-2012 Michigan 2,154 2,150 2,159 2,159 2,159 2008-2012 Mississippi 43,292 43,758 56,928 62,932 100,443 2008-2012 Montana 0 2012-2012 Nebraska 0 2012-2012 New Mexico 0 2012-2012 New York 1,450 1,450 1,450 1,450 0 2008-2012 Ohio 0 2012-2012 Oklahoma 0 2012-2012 Oregon 0 2012-2012 Pennsylvania 0 2012-2012 Tennessee 0 2012-2012 Texas 109,655 123,664 130,621 152,102 164,439 2008-2012 Utah 0 2012-2012 Virginia

308

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

309

Working Gas Volume Change from Year Ago  

U.S. Energy Information Administration (EIA) Indexed Site

-753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 -753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 2011-2013 Alabama 131 998 -1,015 -975 -35 2,852 1996-2013 Arkansas -1,386 -1,403 -1,240 -1,239 -1,024 -1,050 1990-2013 California -6,702 -5,997 -10,684 274 24,044 28,854 1990-2013 Colorado -2,531 537 892 1,473 1,528 1,179 1990-2013 Illinois -11,767 -14,974 -8,820 -7,918 -12,002 -6,916 1990-2013 Indiana -4,126 -2,948 -2,927 -2,773 -1,025 -212 1990-2013 Iowa -6,614 -1,173 3,389 6,425 6,747 3,169 1991-2013 Kansas -38,081 -31,497 -26,449 -17,344 -10,369 -9,217 1990-2013 Kentucky -26,238 -26,922 -21,826 -15,927 -14,959 -12,801 1990-2013

310

Working Gas % Change from Year Ago  

Gasoline and Diesel Fuel Update (EIA)

21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 Alaska NA NA NA NA NA NA 2013-2013 Lower 48 States -21.9 -15.7 -10.0 -6.3 -4.0 -3.5 2011-2013 Alabama 5.0 -4.8 -4.5 -0.2 15.5 -12.0 1996-2013 Arkansas -42.1 -34.7 -31.2 -24.4 -23.7 -23.0 1991-2013 California -2.0 -3.3 0.1 7.9 9.3 3.4 1991-2013 Colorado 2.8 3.6 4.7 3.9 2.6 3.0 1991-2013 Illinois -16.5 -7.4 -5.2 -6.3 -3.1 -3.2 1991-2013 Indiana -21.2 -17.8 -14.8 -5.0 -0.9 -5.2 1991-2013 Iowa -6.2 16.6 24.3 16.6 5.2 -1.8 1991-2013 Kansas -38.9 -29.7 -17.9 -10.2 -8.3 -7.6 1991-2013 Kentucky -30.6 -24.1 -17.7 -15.8 -12.7 -10.5 1991-2013 Louisiana -26.6 -21.0 -10.2 -4.3 -2.3 1.0 1991-2013 Maryland -40.2 -26.0 -17.1 -4.8 1.5 0.8 1991-2013 Michigan -35.7 -26.7 -19.2 -13.9 -9.7 -6.9 1991-2013

311

Philadelphia Gas Works - Residential and Commercial Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an incentive of 13MMBtu, 24MMBtu or 40MMBtu in first year energy savings. Commercial incentives are capped at 60,000 per project. Projects may use a variety of...

312

Weekly Working Gas in Underground Storage  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: This table tracks U ...

313

Philadelphia Gas Works – Home Rebates Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

PGW’s Home Rebates program is available for residential customers within the PGW service territory. See the web site above for complete program details.

314

Working Gas Capacity of Depleted Fields  

Annual Energy Outlook 2012 (EIA)

,583,786 3,659,968 3,733,993 3,769,113 2008-2011 Alabama 9,000 9,000 9,000 11,200 2008-2011 Arkansas 14,500 13,898 13,898 12,036 2008-2011 California 283,796 296,096 311,096...

315

Total Working Gas Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

316

Work Manager  

Science Conference Proceedings (OSTI)

A real-time control system has been developed and deployed nationally to support BT‘s work management programme. This paper traces the history, system architecture, development, deployment and service aspects of this very large programme. Many ...

G. J. Garwood

1997-01-01T23:59:59.000Z

317

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

318

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

319

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Due to the observance of Veterans Day on Monday, November 12, the next Natural Gas Weekly Update, will be published on Tuesday, November 13, 2001. Due to the observance of Veterans Day on Monday, November 12, the next Natural Gas Weekly Update, will be published on Tuesday, November 13, 2001. Overview: Monday, November 5, 2001 Spot prices at the Henry Hub began the week up then trended down to end the week 10 cents below the previous Friday at $2.96 per MMBtu. This represents a reversal from the pattern of a week earlier when the Henry Hub price gained more than $0.70 per MMBtu on a Friday-to-Friday basis. Warmer-than-normal temperatures in most parts of the country last week along with forecasts calling for the moderate weather to continue into the weekend contributed to the decline in prices. .(See Temperature Map) (See Deviation Map) Estimates of weekly net additions to storage again were below normal levels for this time of year but the total working gas in storage remained above average and well above volumes at this time last year. The price of West Texas Intermediate (WTI) crude oil moved down $1.95 per barrel for the week to end trading on Friday at $20.20 or $3.48 per MMBtu.

320

Gas utilities to increase outlays  

Science Conference Proceedings (OSTI)

Despite rising natural gas prices and falling consumer demand for gas, experts predict a 16% increase in US gas transmission and distribution expenditures for 1983. Production and storage outlays will probably decrease because of the current gas surplus. The demand for natural gas has been below production levels since 1981. Increases in residential and commercial requirements have been offset by a drop in industrial use, which represents 50% of total gas demand.

O'Donnell, J.P.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Documentation of the Oil and Gas Supply Module (OGSM)  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1998-01-01T23:59:59.000Z

322

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

323

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

324

Oil and gas resources in the West Siberian Basin, Russia  

Science Conference Proceedings (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

325

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

326

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

24 (next release 2:00 p.m. on March 31) 24 (next release 2:00 p.m. on March 31) Both spot and futures prices were relatively unchanged for the week (Wednesday to Wednesday, March 16-23). Colder-than-normal temperatures were offset by high volumes of working gas in storage remaining with only 8 days left in the traditional heating season. The Henry Hub spot price increased 3 cents per MMBtu since last Wednesday, trading yesterday (Wednesday, March 23) for $7.11. On the NYMEX, the settlement price for the futures contract for April delivery at the Henry Hub fell $0.054 per MMBtu from last Wednesday's level to $7.138 per MMBtu at yesterday's close of trading. Working gas in underground storage was 1,290 Bcf as of Friday, March 18, which is 21.9 percent above the previous 5-year (2000-2004) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $7.07 per barrel, or about 12 percent, on the week to $49.43 per barrel or $8.52 per MMBtu.

327

Property Libraries for Working Fluids for Calculating Heat ...  

Science Conference Proceedings (OSTI)

... properties of working fluids can be used for the daily work of an engineer who calculates heat cycles, steam or gas turbines, boilers, heat pumps or ...

2006-07-20T23:59:59.000Z

328

Working crude oil storage capacity at Cushing, Oklahoma rises ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, ... as reported in EIA's recently released report on Working and Net Available Shell Storage Capacity. Utilization of working storage capacity ...

329

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

330

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Although natural gas storage inventories are currently below last year's levels, today's "In the news" features a look back at natural gas storage in 2012. This is a part of the new Natural Gas Year in Review series, which will be occasionally featured in the Natural Gas Weekly Update. Natural Gas Year-in-Review: High natural gas inventory last spring limited injections during the 2012 storage injection season Working natural gas storage inventories entered the injection season on March 31, 2012 at 2,477 billion cubic feet (Bcf), following a winter that had a combination of high natural gas production and low heating degree days. This storage volume was the highest amount recorded for that date

331

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8 (next release 2:00 p.m. on November 4) 8 (next release 2:00 p.m. on November 4) Natural gas spot prices spiked significantly higher for the second consecutive week, while futures prices for delivery months beyond November saw smaller, yet still substantial, increases. The November contract expired yesterday (Wednesday, October 27) at nearly the identical price of last Wednesday's settlement, up $0.003 on the week (Wednesday to Wednesday, October 21-28) to end trading at $7.626 per MMBtu. Taking over as the near-month contract, the NYMEX futures contract for December delivery settled yesterday at $8.775 per MMBtu, an increase of $0.235 per MMBtu, or almost 3 percent, since last Wednesday. The price for spot gas at the Henry Hub jumped $0.87 per MMBtu on the week, an increase of 12 percent, as spot gas traded yesterday at $8.12, topping $8 for the first time since early March 2003. Working gas inventories were 3,249 Bcf as of Friday, October 22, which is 6.9 percent greater than the 5-year average. The spot price for West Texas Intermediate crude oil reached a record-high $56.37 per barrel ($9.72 per MMBtu) on Tuesday (October 26), only to drop in yesterday's trading on news that last week's crude oil stocks build was about double the market's expectations. WTI ended trading yesterday at $52.52 per barrel ($9.06 per MMBtu), down $2.41 per barrel ($0.42 per MMBtu), or over 4 percent, from last Wednesday's level.

332

Historical Natural Gas Annual - 1930 Through 2000  

Annual Energy Outlook 2012 (EIA)

2000 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

333

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Effective Date: 11/05/13 WP 12-IS.01-6 Revision 10 Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls Cognizant Section: Industrial Safety/Industrial Hygiene Approved By: Tom Ferguson Working Copy Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls WP 12-IS.01-6, Rev. 10 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 7 ACRONYMS AND ABBREVIATIONS ............................................................................. 8 1.0 INTRODUCTION 1 ............................................................................................... 10 2.0 VISITORS ........................................................................................................... 11

334

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/WIPP-99-2286 Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan Revision 7 U.S. Department of Energy December 2013 This document supersedes DOE/WIPP-99-2286, Rev. 6. Working Copy Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan DOE/WIPP-99-2286, Rev. 7 2 TABLE OF CONTENTSCHANGE HISTORY SUMMARY .............................................. 3 ACRONYMS AND ABBREVIATIONS ............................................................................ 4 1.0 INTRODUCTION .................................................................................................. 6 2.0 NOTIFICATION OR REPORTING REQUIREMENTS AND COMMITMENTS ..... 7

335

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

supply disruptions during the remainder of the hurricane season. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage was 2,461 Bcf as of Friday,...

336

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

MMBtu lower than the final price of the November 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage As of Friday, September 24, working natural gas in...

337

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

per MMBtu, 22 cents or 4.3 percent lower than last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,615 Bcf as of...

338

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

were more moderate than the price increases for this summer. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,456...

339

Vermont Gas- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Vermont Gas (VGS) offers two energy efficiency programs for commercial customers: the WorkPlace New Construction Program and the WorkPlace Equipment Replacement and Retrofit Program.

340

CFCC working group meeting: Proceedings  

SciTech Connect

This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

NONE

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.

1984-06-01T23:59:59.000Z

342

Fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.A.

1984-01-01T23:59:59.000Z

343

Work Address:  

NLE Websites -- All DOE Office Websites (Extended Search)

BO SAULSBURY BO SAULSBURY Work Address: Home Address: Oak Ridge National Laboratory 12952 Buckley Road National Transportation Research Center Knoxville, TN 37934 Building NTRC-2, Room 118 (865) 288-0750 Oak Ridge, TN 37831-6479 (865) 574-4694 saulsburyjw@ornl.gov Technical Specialties: Land use planning Environmental and socioeconomic impact assessment National Environmental Policy Act (NEPA) project management Vehicle fuel economy Education: 1986 B. A., History (minors in English and Business), The University of Tennessee 1989 M. S., Planning, The University of Tennessee (Thesis title: Land Use Compatibility Planning for Airfield Environs: Intergovernmental Cooperation to Protect Land Users From the Effects of Aircraft Operations)

344

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

345

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

346

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

347

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

6 (next release 2:00 p.m. on February 23, 6 (next release 2:00 p.m. on February 23, 2006) Winter-like conditions in much of the East this past weekend transitioned to above-normal temperatures, contributing to a further decline in natural gas spot prices this week (Wednesday, February 8 - Wednesday, February 15). On the week the Henry Hub spot price declined 57 cents per MMBtu to $7.31. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant declines. The futures contract for March delivery, which is the last contract for the current heating season, declined 66.9 cents per MMBtu on the week to $7.066. Relatively high levels of natural gas in working storage and falling prices for competing fuels likely contributed to falling natural gas prices this week. Working gas in

348

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

349

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

350

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

351

Natural Gas - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... almost every region consumed less gas for power generation, ... History Table; Working Gas in Underground Storage;

352

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

353

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Monday, January 28, 2002 Monday, January 28, 2002 Natural gas prices generally declined last week as mild temperatures continued in most of the country and working gas storage stocks remain at very high levels. Spot prices at most major markets that serve the eastern two-thirds of the country ended the week down from the previous Friday with weather forecasts for the past weekend calling for daytime temperatures to be in the mid 50s to the low 60s in an area stretching from Chicago to Boston. At the Henry Hub prices moved down 9 cents on Friday to end at $2.04 per MMBtu--$0.25 below the previous Friday. The National Weather Service's (NWS) latest 6- to 10-day forecast is calling for above normal temperatures to continue through this week in most areas east of the Mississippi River. (See Temperature Map) (See Deviation Map) At the NYMEX futures market, the February contract continued to trend down as it ended the week trading at $2.037 per MMBtu-off almost $0.20 from previous Friday. The spot price for West Texas Intermediate (WTI) crude oil gained almost $1.80 per barrel reaching $19.80 on Friday or about $3.40 per MMBtu.

354

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

22, 2007 (next release 2:00 p.m. on March 1, 2007) 22, 2007 (next release 2:00 p.m. on March 1, 2007) As the weather has made the transition from extreme cold to much more moderate conditions this week, natural gas spot prices have declined in much of the country. For the week (Wednesday to Wednesday, February 14-21), the Henry Hub spot price declined $1.40 per MMBtu to $7.51 as prices for next-day delivery responded to reduced demand for space-heating. However, the bitter and widespread cold of the first 2 weeks of February likely contributed to revised expectations of future storage levels, leading to increased futures prices this week. At the New York Mercantile Exchange (NYMEX), the price for the futures contract for March delivery at the Henry Hub increased 41 cents per MMBtu or about 5.6 percent. Generally, futures prices for delivery months through next summer increased by more than 4 percent. Working gas in storage as of Friday, February 16, was 1,865 Bcf, which is 10.8 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.40 per barrel on the week to $59.40, or $10.24 per MMBtu.

355

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

356

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

357

Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing  

E-Print Network (OSTI)

Residential Market for Natural Gas,” 2008, working paper. [of Electricity and Natural Gas,” Journal of IndustrialPrices: Evidence from Natural Gas Distribution Utilities,”

Davis, Lucas; Muehlegger, Erich

2009-01-01T23:59:59.000Z

358

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Now that the heating season has ended, natural gas wellhead prices have fallen from the exceptionally high levels seen in February and early March. Nevertheless, they still remain historically and unseasonably high, hovering around $5.00 per MMBtu. EIA projects that natural gas wellhead prices will remain above $5.00 per MMBtu in April and then decrease to $4.36 in May and $4.26 in June (Short-Term Energy Outlook, April 2003). Wellhead prices for the 2002-2003 heating season (November through March) averaged $4.44 per MMBtu, or $2.08 more than last winter's price. Overall in 2003, wellhead prices are projected to increase about $1.53 per MMBtu over the 2002 level to $4.40 per MMBtu. This projection is based on the expectation of lower volumes of natural gas in underground storage compared with last year and continued increases in demand over 2002 levels. Cold temperatures this past winter led to a record drawdown of storage stocks. By the end of March, estimated working gas stocks were 676 Bcf (prior estimates were 696 Bcf), which is the lowest end-of-March level in EIA records and 44 percent below the previous 5-year average. In 2004, continued tightness of domestic natural gas supply and high demand levels are expected to keep the average wellhead price near the 2003 level.

359

Greenhouse gas mitigation options for Washington State  

DOE Green Energy (OSTI)

President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

Garcia, N.

1996-04-01T23:59:59.000Z

360

Natural gas annual 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjær, Jonas Bondegaard

2009-01-01T23:59:59.000Z

362

Condition based management of gas turbine engine using neural networks.  

E-Print Network (OSTI)

??This research work is focused on the development of the hybrid neural network model to asses the gas turbine’s compressor health. Effects of various gas… (more)

Muthukumar, Krishnan.

2008-01-01T23:59:59.000Z

363

Quasi-hydrostatic intracluster gas under radiative cooling  

E-Print Network (OSTI)

Quasi-hydrostatic cooling of the intracluster gas is studied. In the quasi-hydrostatic model, work done by gravity on the inflow gas with dP \

Kuniaki Masai; Tetsu Kitayama

2004-04-10T23:59:59.000Z

364

Spreadsheets for Geothermal Water and Gas Geochemistry | Open...  

Open Energy Info (EERE)

and plots four common ternaries, three3 "YT" gas geothermometer grids and two gas ratio geothermometer grids, mainly derived from the work of Werner Giggenbach. Typical...

365

EIA publishes historical data series on natural gas storage in ...  

U.S. Energy Information Administration (EIA)

In the January 17, 2013 Weekly Natural Gas Storage Report, EIA published historical data back to 2007 showing the breakout of working gas storage in salt caverns ...

366

Natural Gas Year-in-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas Storage Report ... U.S. inventories of working natural gas in storage hit new records ...

367

Enhanced Gas Recovery Using Pressure and Displacement Management.  

E-Print Network (OSTI)

??The work contained in this thesis combines two previous enhanced gas recovery techniques; coproduction of water and gas from water-drive reservoirs and waterflooding of low… (more)

Walker, Thomas

2005-01-01T23:59:59.000Z

368

Blood lead levels of traffic- and gasoline-exposed professionals in the city of Athens  

SciTech Connect

During the past 10 y, blood lead levels in the population of Athens, Greece, have decreased steadily. This decrease has paralleled the reduction of tetraethyl lead in gasoline and the introduction of unleaded fuel. Blood lead levels and other parameters were studied in 42 gas-station employees, 47 taxi drivers, 47 bus drivers, and 36 controls, all of whom worked in Athens. The blood lead levels did not differ significantly among the four groups. Glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase were elevated in gas-station employees, and the former was elevated in taxi drivers. Gas-station employees who smoked had higher blood lead levels than their nonsmoking counterparts. The absence of any difference in the blood lead levels of individuals for whom physical examinations were either normal or abnormal suggests that either lead was not the cause of increased blood lead levels or that its contribution may have been important in the past.

Kapaki, E.N.; Varelas, P.N.; Syrigou, A.I.; Spanaki, M.V.; Andreadou, E.; Kakami, A.E.; Papageorgiou, C.T. [Athens Univ. School of Medicine (Greece). Aeginition Hospital

1998-07-01T23:59:59.000Z

369

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

average $2.83 per MMBtu in 2002 compared with about $4.00 last year (Short-Term Energy Outlook, June 2002). Average wellhead prices have increased by nearly 50 percent from $2.09 per MMBtu in February to an estimated $3.11 per MMBtu in May. Spot prices at the Henry Hub have also increased, rising more than $1.00 per MMBtu since early February. It is atypical to see higher spot gas prices in the cooling season than during the heating season, particularly when working gas in underground storage is at high levels, as it has been for the past several months. As of the end of May, working gas levels were more than 20 percent above the previous 5-year average for that month. Moreover, gas-directed drilling, while down sharply from summer 2001 levels, is still quite strong from a historical perspective. The gas rig count as of May 31 was up 22 percent from the recent low of 591 for the week ending April 5.

370

Gas quantitative analysis with support vector machine  

Science Conference Proceedings (OSTI)

Gas sensor array is an important part of electronic nose. The gas analysis performance of electronic nose is affected badly by the cross sensitivity of gas sensor array. In order to solve the problem of the cross sensitivity, in this work a new method ... Keywords: electronic nose, gas mixture, quantitative analysis, support vector machine

Liang Xie; Xiaodong Wang

2009-06-01T23:59:59.000Z

371

Integrated Safety Management (ISM) - Work Planning and Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Work Planning and Control Integrated Safety Management (ISM) ism logo NNSA Activity Level Work Planning & Control Processes - January 2006...

372

Natural gas monthly  

Science Conference Proceedings (OSTI)

This report presents current data on the consumption, disposition, production, prices, storage, import and export of natural gas in the United States. Also included are operating and financial data for major interstate natural gas pipeline companies plus data on fillings, ceiling prices, and transportation under the Natural Gas Policy Act of 1978. A feature article, entitled Main Line Natural Gas Sales to Industrial Users, 1981, is included. Highlights of this month's publication are: Marketed production of natural gas during 1982 continued its downward trend compared to 1981, with November production of 1511 Bcf compared to 1583 Bcf for November 1981; total natural gas consumption also declined when compared to 1981; as of November 1982, working gas in underground storage was running ahead of a similar period in 1981 by 109 Bcf (3.4 percent); the average wellhead price of natural gas continued to rise in 1982; and applications for determination of maximum lawful prices under the Natural Gas Policy Act (NGPA) showed a decrease from October to November, principally for Section 103 classification wells (new onshore production wells).

Not Available

1983-01-01T23:59:59.000Z

373

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

374

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

375

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, June 30, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 22, 2011) Natural gas prices fell slightly at most market locations from Wednesday, June 15 to Wednesday, June 22. The Henry Hub price fell 10 cents from $4.52 per million Btu (MMBtu) last Wednesday to $4.42 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the July 2011 near-month futures contract fell by 26 cents, or about 6 percent, from $4.58 last Wednesday to $4.32 yesterday. Working natural gas in storage rose to 2,354 this week, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

376

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural gas prices rose at most market locations during the week, as consumption increased. The Henry Hub spot price increased 19 cents from $4.14 per million Btu (MMBtu) on Wednesday, April 13 to $4.33 per MMBtu on Wednesday, April 20. Futures prices behaved similar to spot prices; at the New York Mercantile Exchange, the price of the near-month natural gas contract (May 2011) rose from $4.141 per MMBtu to $4.310 per MMBtu. Working natural gas in storage rose to 1,654 billion cubic feet (Bcf) as of Friday, April 15, according to EIAÂ’s Weekly Natural Gas

377

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas spot prices generally declined this report week (June 17-24), with the largest decreases generally occurring in the western half of the country. During the report week, the Henry Hub spot price decreased by $0.19 per million Btu (MMBtu) to $3.80. At the New York Mercantile Exchange (NYMEX), futures prices for natural gas decreased as prices for most energy products fell amid concerns over the economy. The natural gas futures contract for July delivery decreased by 49 cents per MMBtu on the week to $3.761. Working gas in underground storage as of last Friday, June 19, is

378

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

4, 2012 | Release Date: Apr. 5, 4, 2012 | Release Date: Apr. 5, 2012 | Next Release: Apr. 12, 2012 Previous Issues Week: 12/22/2013 (View Archive) JUMP TO: In The News | Overview | Prices | Storage In the News: Working Natural Gas in Storage at All-Time High for March. Thursday's release of the Energy Information Administration's (EIA) Weekly Natural Gas Storage Report (WNGSR) represented the last full week of the winter heating season (November 1 - March 31). Although traditionally net withdrawals of working natural gas in storage occur during these months, this year net injections began the week ending March 16. Because the latest WNGSR represents inventory levels as of March 30, it excludes the last day of the winter heating season; official end-of-month levels will not be reported until the May Natural Gas Monthly is released.

379

Stand-Level Gas-Exchange Responses to Seasonal Drought in Very Young Versus Old Douglas-fir Forests of the Pacific Northwest, USA  

SciTech Connect

This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral stands (ES) (0-15 years old) and an old-growth (OG) ({approx} 450-500) forest in the Wind River Experiment Forest, Washington, USA. We use eddy covariance flux measurements of carbon dioxide (F{sub NEE}), latent energy ({lambda}E) and sensible heat (H) to derive evapotranspiration rate (E{sub T}), bowen ratio ({beta}), water use efficiency (WUE), canopy conductance (G{sub c}), the Priestley-Taylor coefficient ({alpha}) and a canopy decoupling factor ({Omega}). The canopy and bulk parameters are examined to see how ecophysiological responses to water stress, including changes in available soil water ({theta}{sub r}) and vapor pressure deficit ({delta}e) differ among the two forest successional-stages. Despite very different rainfall patterns in 2006 and 2007, we observed distinct successional-stage relationships between E{sub T}, {alpha}, and G{sub c} to {delta}e and {theta}{sub r} during both years. The largest stand differences were (1) higher morning G{sub c} (> 10 mm s{sup -1}) at the OG forest coinciding with higher CO{sub 2} uptake (F{sub NEE} = -9 to -6 {micro}mol m{sup -2} s{sup -1}) but a strong negative response in G{sub c} to moderate {delta}e later in the day and a subsequent reduction in E{sub T}, and (2) higher E{sub T} at the ES stands because midday canopy conductance did not decrease until very low water availability levels (<30%) were reached at the end of the summer. Our results suggest that early seral stands are more likely than mature forests to experience declines in production if the summer drought becomes longer or intensifies because water conserving ecophysiological responses were only observed at the very end of the seasonal drought period in the youngest stands.

Wharton, S; Schroeder, M; Bible, K; Falk, M; Paw U, K T

2009-02-23T23:59:59.000Z

380

NSLS Work Planning & Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Work Planning & Controls NSLS Work Planning and Control Procedure Lead Working Guidelines Information on Working in Areas Subject to Radiation from VUV Injection Procedure for...

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

0, 2013 | Release Date: November 21 0, 2013 | Release Date: November 21 2013 | Next Release: December 5, 2013 Previous Issues Week: 01/19/2014 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Natural gas storage sees first net withdrawal of season EIA earlier today reported the first net natural gas withdrawal of the heating season from Lower 48 storage facilities. This report covered the week ending November 15, following several days of cold weather-driven gas demand in the Northeast and Midwest. Stock levels recorded on November 8 of 3,834 billion cubic feet (Bcf) would mark the 2013 natural gas inventory peak if storage withdrawals continue in the coming weeks. Working natural gas inventory levels on November 8 were 84 Bcf below year ago inventories,

382

Gas Turbine World performance specs 1984  

SciTech Connect

The following topics are discussed: working insights into the performance specifications; performance and design characteristics of electric power plants, mechanical drive gas turbines, and marine propulsion gas turbines; and performance calculations.

1984-03-01T23:59:59.000Z

383

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

384

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

385

Documentation of the Oil and Gas Supply Module (OGSM)  

Science Conference Proceedings (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1995-10-24T23:59:59.000Z

386

Microsoft PowerPoint - Microwave Off-gas srnlTechBriefp1.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Microwave Off-Gas Treatment Microwave Off-Gas Treatment System at a glance  simple design  compact and portable  easy to operate  can be remotely operated  low cost, low maintenance  scalable for large and small volume operations  U.S. patent 6,534,754 The Microwave Off-Gas Treatment System uses microwave energy and high temperatures to treat off- gas emissions to reduce contaminants to acceptable or nondetectable levels. This allows the treated gaseous waste stream to be safety discharged to the atmosphere. New method Scientists at Savannah River National Laboratory (SRNL), working with colleagues from the University of Florida (UF), have invented a unique system to treat off-gas emissions from safe discharge into the atmosphere. The compact and portable Microwave Off-Gas Treatment System is designed to

387

U.S. Underground Natural Gas Storage Developments: 1998-2005  

U.S. Energy Information Administration (EIA) Indexed Site

S. Underground Natural Gas Storage Developments: 1998-2005 S. Underground Natural Gas Storage Developments: 1998-2005 Energy Information Administration, Office of Oil and Gas, October 2006 1 This special report examines the current status of the underground natural gas storage sector in the United States and how it has changed since 1998, particularly in regards to deliverability from storage, working gas capacity, ownership, and operational capabilities. In addition, it includes a discussion and an analysis of underground natural gas storage expansions in 2005 and an examination of the level of proposed additional storage expansions over the next several years. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835.

388

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, March 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 9, 2011) Natural gas spot prices remained soft at nearly all domestic pricing points. The Henry Hub price rose an insignificant 2 cents per million Btu (MMBtu) (0.5 percent) for the week ending March 9, to $3.81 per MMBtu. Working natural gas in storage fell to 1,674 billion cubic feet (Bcf) as of Friday, March 4, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 71 Bcf, with storage volumes positioned 32 Bcf above year-ago levels. At the New York Mercantile Exchange (NYMEX), the April 2011 natural

389

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on July 19, 2, 2007 (next release 2:00 p.m. on July 19, 2007) Natural gas spot prices increased during this holiday-shortened report week (Thursday-Wednesday, July 5-11) as weather-related demand emerged in response to the hottest temperatures to date this year in the Northeast and Midwest. On the week, the Henry Hub spot price increased 36 cents per MMBtu, or 5.7 percent, to $6.65. At the New York Mercantile Exchange (NYMEX), the story was slightly different with the contract price for August delivery decreasing to $6.600 per MMBtu, which was 1.8 cents lower than last Thursday's (July 5) closing price. EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,627 Bcf as of Friday, July 7. This level of working gas in underground storage is 16.6

390

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

391

A Guidebook for Low-Carbon Development at the Local Level  

E-Print Network (OSTI)

level. Percentage of landfill gas (methane) that is capturedenergy and reducing carbon emissions: landfill gas capture.Landfill gas is primarily methane; thus it can be captured

Zhou, Nan

2012-01-01T23:59:59.000Z

392

DOE - Office of Legacy Management -- Morgantown Ordnance Works...  

Office of Legacy Management (LM)

(NETL). NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Morgantown Ordnance Works...

393

Submitted Work & Work in Preparation - CECM  

E-Print Network (OSTI)

May 23, 2001 ... Submitted Work & Work in Preparation. I. G. Lisle and G. J. Reid, Symmetry Classification Using Invariant Moving Frames, to be submitted.

394

Synthesis gas production  

SciTech Connect

Raw synthesis gas produced by the gasification of coal, heavy oil or similar carbonaceous material is contacted with a reforming catalyst at a temperature in the range between about 1000/sup 0/ and about 1800/sup 0/F and at a pressure between about 100 and about 2000 psig prior to adjustment of the carbon monoxide-to-hydrogen ratio and treatment of the gas to increase its Btu content. This catalytic reforming step eliminates C/sub 2/+ compounds in the gas which tend to form tarry downstream waste products requiring further treatment, obviates polymerization problems which may otherwise interfere with upgrading of the gas by means of the water gas shift and methanation reactions, and improves overall process thermal efficiency by making possible efficient low level heat recovery.

Kalina, T.; Moore, R.E.

1977-09-06T23:59:59.000Z

395

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

396

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2007 (next release 2:00 p.m. on November 15, 2007) 8, 2007 (next release 2:00 p.m. on November 15, 2007) Natural gas spot price movements varied this week (Wednesday-Wednesday, October 31-November 7). Prices in Lower 48 market areas in the West and the Midcontinent decreased significantly on the week. Other regions, however, most notably the high-demand areas of the Northeast and the Midwest, as well as Gulf Coast production areas, recorded price increases. The spot price at the Henry Hub gained 16 cents per MMBtu, or about 2 percent, to $7.42 per MMBtu. In contrast to the spot market, prices of futures contracts at the New York Mercantile Exchange (NYMEX) for the next 12 months uniformly decreased, with the futures contract for December delivery at the Henry Hub decreasing about 71 cents since last Wednesday to close yesterday (November 7) at $7.624 per MMBtu. Working gas stocks as of Friday, November 2, again hit a record high with 3,545 Bcf in storage, which is 8.9 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $2.30 per barrel, or 2.4 percent, since last Wednesday to trade yesterday at $96.46 per barrel or $16.63 per MMBtu. Yesterday's crude oil price was $37.52 per barrel higher than the year-ago level, when crude oil traded at $58.94 per barrel on November 7, 2006.

397

Slurry growth and gas retention in synthetic Hanford waste  

DOE Green Energy (OSTI)

This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N{sub 2}, N{sub 2}O, and H{sub 2}. Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles.

Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

1992-09-01T23:59:59.000Z

398

Slurry growth and gas retention in synthetic Hanford waste  

DOE Green Energy (OSTI)

This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N[sub 2], N[sub 2]O, and H[sub 2]. Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles.

Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

1992-09-01T23:59:59.000Z

399

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

7, 2012 | Release Date: November 8, 7, 2012 | Release Date: November 8, 2012 | Next Release: November 15, 2012 Previous Issues Week: 12/22/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Natural Gas Inventories Finish 2012 Storage Injection Season at Record Levels Lower 48 working natural gas inventories as of October 31, 2012 were at an end-of-season record of 3,923 billion cubic feet (Bcf), based off an interpolation of the levels reported in the last two Weekly Natural Gas Storage Reports (which estimated stock levels for October 26 and November 2). This reflects a 3.0 percent year-over-year increase over inventories in 2011, and is 6.8 percent above the five-year average storage levels on October 31 for 2007-2011. The 264 heating degree-days recorded for October 2012 was the highest level

400

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen gas relief valve  

SciTech Connect

An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

Whittlesey, Curtis C. (Birmingham, MI)

1985-01-01T23:59:59.000Z

402

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

403

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

404

Thermionic gas switch  

DOE Patents (OSTI)

A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.

Hatch, George L. (San Francisco, CA); Brummond, William A. (Livermore, CA); Barrus, Donald M. (San Jose, CA)

1986-01-01T23:59:59.000Z

405

Gas from Veggies  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas from Veggies Gas from Veggies Name: Julie Location: N/A Country: N/A Date: N/A Question: Im doing my science experiment to see if the processing of food produces gas. I was told that you do this by getting the vegitables, grounding them up, mixing them with vinegar and putting it in a test tube and then place a balloon over it to see if gas is produced. First I tried mixing the foods (Im using canned, frozen and fresh broccoli first to see if it works) with the vinegar and put it in a test tube and I placed a balloon over it but no gas was produced. I then tried it again in heat and again in the cold and it still wouldnt work. I tried the experiment again and pureed the broccoli and mixed it with the vinegar, put the balloon over it and still no gas was produced. What could I be doing wrong? Im using 5% acidity vineger because that's the only kind I could find. Do I need a stronger one? Where can I get a stronger one? How much vinegar should I be using? How much of the broccoli should I be using? Do I have to do something to the broccoli first? Please try to answer my questions I really need help.

406

Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application  

Science Conference Proceedings (OSTI)

In this work, we present a framework for numerical modeling of CO"2 injection into porous media for enhanced gas recovery (EGR) from depleted reservoirs. Physically, we have to deal with non-isothermal, compressible gas flows resulting in a system of ... Keywords: Carbon dioxide sequestration, Enhanced gas recovery, Equation of state, Finite element method, Numerical simulation, Real gas behavior

N. BöTtcher; A. -K. Singh; O. Kolditz; R. Liedl

2012-12-01T23:59:59.000Z

407

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

408

U.S. Natural Gas Imports & Exports 2012 - Energy Information ...  

U.S. Energy Information Administration (EIA)

In the face of unprecedented levels of domestic natural gas production, ... in New England that hinder natural gas flow from the Marcellus shale play and ...

409

Dissolution of inert gas in a metal alloy  

DOE Patents (OSTI)

A metal powder is produced by inert gas atomization processes. The atomizon process is regulated to provide a preselected level of inert gas alloyed in the metal.

Flinn, John E. (Idaho Falls, ID); Korth, Gary E. (Blackfoot, ID); Wright, Richard N. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Loop, Richard B. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

410

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

of May, as strong demand for natural gas coupled with high petroleum prices has led to higher gas prices despite nearly normal storage inventory levels. Storage stocks at...

411

U. S. landfill gas research  

DOE Green Energy (OSTI)

This paper surveys US landfill gas RandD programs and presents some technical details of work being conducted at Argonne National Laboratory (Argonne, Illinois) through the support of the US Department of Energy. The two projects at Argonne include (1) a study of bidirectional gas movement through landfill cover materials and (2) development of standardized techniques to assay gas production from landfilled refuse (including qualitative microbiology of refuse assays).

Bogner, J.; Vogt, M.; Piorkowski, R.; Rose, C.; Hsu, M.

1988-01-01T23:59:59.000Z

412

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

413

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

414

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

415

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

416

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

417

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

418

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

419

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

420

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

422

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5 to Wednesday, December 12) 5 to Wednesday, December 12) Released: December 13 Next release: December 20, 2007 · Natural gas spot and futures prices increased this report week (Wednesday to Wednesday, December 5-12), as cooler temperatures in much of the country increased demand for space heating. On the week the Henry Hub spot price increased $0.18 per million Btu (MMBtu) to $7.22. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for January delivery rose about 22 cents per MMBtu on the week to $7.408. · Working gas in storage is well above the 5-year average for this time year, indicating a healthy supply picture as the winter heating season progress. As of Friday, December 7, working gas in storage was 3,294 Bcf, which is 8.5 percent above the 5-year (2002-2006) average.

423

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

With the arrival of snow, modes of travel, working, and living are transformed. Oil and gas exploration operations restricted to winter months use ice roads and ice pads in arctic...

424

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, March 10, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 2, 2011) Natural gas prices showed continued relative weakness during the report week. The spot price at the Henry Hub fell from $3.83 per million Btu (MMBtu) on February 23 to $3.79 per MMBtu on March 2. At the New York Mercantile Exchange (NYMEX), the March 2011 futures contract expired at $3.793 per MMBtu, having declined about 12 percent during its tenure as the near-month contract. Working natural gas in storage fell to 1,745 Bcf as of Friday, February 25, according to EIAÂ’s Weekly Natural Gas Storage Report. The spot price of the West Texas Intermediate (WTI) crude oil

425

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, September 29, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 21, 2011) Natural gas spot prices declined at most market locations across the United States, as moderate temperatures led to declines in demand. Prices at the Henry Hub fell from $4.01 per MMBtu last Wednesday, September 14, to $3.78 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month futures contract (October 2011) dropped from $4.039 per MMBtu last Wednesday to $3.73 per MMBtu yesterday. Working natural gas in storage rose to 3,201 billion cubic feet (Bcf) as of Friday, September 16, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

426

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: July 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 15, 2009) Natural gas spot prices rose during the week in all trading locations. Price increases ranged between 6 cents and 48 cents per million Btu (MMBtu), with the biggest increases occurring in the Rocky Mountain region. During the report week, the spot price at the Henry Hub increased 15 cents or 5 percent to $3.37 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas near-month contract (August 2009) decreased 7 cents to $3.283 per MMBtu from $3.353 the previous week. During its tenure as the near-month contract, the August 2009 contract has lost 66 cents. As of Friday, July 10, 2009, working gas in storage rose to 2,886

427

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, August 18, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, August 10, 2011) Natural gas prices fell across the board this week, likely in response to cooling temperatures as well as weak economic news. The Henry Hub spot price fell 17 cents from $4.26 per million Btu (MMBtu) last Wednesday, August 3, to $4.09 per MMBtu yesterday, August 10. At the New York Mercantile Exchange, the price of the near-month contract (September 2011) fell by $0.087 per MMBtu, from $4.090 last Wednesday to $4.003 yesterday. Working natural gas in storage was 2,783 Bcf as of Friday, August 5, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

428

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, February 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 26, 2011) Natural gas spot prices were soft at all domestic pricing points. The Henry Hub price fell 8 cents per million Btu (MMBtu) (about 1.7 percent) for the week ending January 26, to $4.40 per MMBtu. The West Texas Intermediate crude oil spot price settled at $86.15 per barrel ($14.85 per MMBtu), on Wednesday, January 26. This represents a decrease of $4.70 per barrel, or $0.81 per MMBtu, from the previous Wednesday. Working natural gas in storage fell to 2,542 billion cubic feet (Bcf) as of Friday, January 21, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The

429

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, June 16, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 8, 2011) Natural gas prices rose on the week across the board, with somewhat moderate increases in most areas and steep increases in the Northeast United States. The Henry Hub spot price rose 20 cents on the week from $4.63 per million Btu (MMBtu) last Wednesday, June 1, to $4.83 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month (July 2011) contract rose about 5 percent, from $4.692 last Wednesday to $4.847 yesterday. Working natural gas in storage rose to 2,187 billion cubic feet (Bcf) as of Friday, June 3, according to EIAÂ’s Weekly Natural Gas Storage

430

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, July 28, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 20, 2011) Responding to extremely hot weather this week, natural gas prices moved up at market locations across the lower 48 States. The spot price at the Henry Hub increased 21 cents from $4.43 per million Btu (MMBtu) last Wednesday, July 13, to $4.64 per MMBtu yesterday, July 20. At the New York Mercantile Exchange, the price of the near-month futures contract (August 2011) increased from $4.403 per MMBtu to $4.500 per MMBtu. Working natural gas in storage rose to 2,671 billion cubic feet (Bcf) as of Friday, July 15, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

431

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, March 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 24, 2010) Natural gas prices declined across the board, continuing a downward trend from the previous week. The Henry Hub natural gas spot price closed at $4.91 per million Btu (MMBtu) on Wednesday, February 24, a decline of about 10 percent from $5.47 per MMBtu on February 17. At the New York Mercantile Exchange (NYMEX), the futures contract for March 2010 delivery, which expired yesterday, fell 11 percent on the week, from $5.386 per MMBtu to $4.816 per MMBtu. With an implied net withdrawal of 172 billion cubic feet (Bcf), working gas in storage decreased to 1,853 Bcf as of Friday, February 19,

432

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

433

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2011 at 2:00 P.M. 8, 2011 at 2:00 P.M. Next Release: Thursday, May 5, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 27, 2011) Mild temperatures coupled with continued strong domestic production resulted in natural gas cash market prices dropping modestly at nearly all domestic pricing points over the week. The lone exception was the Henry Hub price which rose a token 2 cents per million Btu (MMBtu) (0.5 percent) to $4.35 per MMBtu on April 27. Working natural gas in storage rose to 1,685 billion cubic feet (Bcf) as of Friday, April 22, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 31 Bcf, with storage volumes positioned

434

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 at 2:00 P.M. 1 at 2:00 P.M. Next Release: Thursday, November 17, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 9, 2011) Continuing its recent trend of languishing below the $4 per million Btu (MMBtu) mark, the Henry Hub natural gas spot price oscillated this week, and posted an overall net increase of 16 cents, from $3.39 per MMBtu last Wednesday, November 2, to $3.55 per MMBtu yesterday, November 9. At the New York Mercantile Exchange, the price of the near-month (December 2011) natural gas futures contract fell from $3.749 per MMBtu last Wednesday to $3.652 per MMBtu yesterday. Working natural gas in storage rose to 3,831 billion cubic feet (Bcf) as of Friday, November 4, according to EIAÂ’s Weekly Natural Gas

435

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

436

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2003 (next release 2:00 p.m. on April 24) 7, 2003 (next release 2:00 p.m. on April 24) Spot and futures prices moved up for the second week in a row. Price increases for the week (Wednesday, April 9 to Wednesday, April 16) were generally around a half dollar in both the spot and futures markets-about twice the increase in spot prices (in most markets) the previous week, and three times the increase in the near-month (May delivery) futures contract price. At the Henry Hub, the average spot price rose 51 cents on the week, to $5.62 per MMBtu, an increase of nearly 10 percent. The settlement price for the May contract increased by just over 9 percent for the week, gaining a cumulative $0.482 to settle yesterday (Wednesday, April 16) at $5.677 per MMBtu. These price increases occurred despite a gradual warming trend since last Wednesday in every region of the country except in the West. Working gas in storage was 623 Bcf as of April 11, which was 49 percent below the previous 5-year (1998-2002) average, and a new record low level over the 9 years of EIA data. The spot price for West Texas Intermediate crude oil rose for the week by 23 cents per barrel, to $29.16 per barrel ($5.03 per MMBtu) in yesterday's trading.

437

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2003 (next release 2:00 p.m. on August 28) 1, 2003 (next release 2:00 p.m. on August 28) Despite rising temperatures in many regions of the country that helped push prices upward over the past 3 days, spot prices nonetheless ended trading yesterday (Wednesday, August 20) down for the most part from levels of the previous Wednesday (August 13). At the Henry Hub, the spot price fell by 14 cents per MMBtu on the week, ending trading yesterday at $5.03. Likewise on the NYMEX, the settlement price for the futures contract for September delivery ended the week down 6 cents per MMBtu from the previous week, when it finished trading yesterday at $5.119. The EIA reported that working gas in storage increased to 2,266 Bcf as of Friday, August 15, which is 7.4 percent below the 5-year (1998-2002) average for the week. West Texas Intermediate (WTI) crude oil on the spot market changed little during the week ending the week up 11 cents per barrel at $30.96, or $5.34 per MMBtu.

438

Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel  

Science Conference Proceedings (OSTI)

Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu [Mechanical Engineering Department, Jadavpur University, Kolkata-700032 (India)

2011-01-17T23:59:59.000Z

439

GAS PHOTOTUBE CIRCUIT  

DOE Patents (OSTI)

This patent pertains to electronic circuits for measuring the intensity of light and is especially concerned with measurement between preset light thresholds. Such a circuit has application in connection with devices for reading-out information stored on punch cards or tapes where the cards and tapes are translucent. By the novel arrangement of this invention thc sensitivity of a gas phototube is maintained at a low value when the light intensity is below a first threshold level. If the light level rises above the first threshold level, the tube is rendered highly sensitive and an output signal will vary in proportion to the light intensity change. When the light level decreases below a second threshold level, the gas phototube is automatically rendered highly insensitive. Each of these threshold points is adjustable.

Richardson, J.H.

1958-03-01T23:59:59.000Z

440

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

U.S. Natural Gas Market Assessment  

U.S. Energy Information Administration (EIA)

T?his has raised concerns about the availability of natural gas for next winter which is reflected in today’s average spot gas pr\\?ce levels.

442

Work Force Retention Work Group Charter  

Energy.gov (U.S. Department of Energy (DOE))

The Work force Retention Work Group is established to support the Department’s critical focus on maintaining a high-performing work force at a time when a significant number of the workers needed to support DOE’s national security mission are reaching retirement age.

443

Live Working Resource Center  

Science Conference Proceedings (OSTI)

This report is a summary of work performed in 2008 on the EPRI Live Working Resource Center (LWRC) web site.

2008-12-16T23:59:59.000Z

444

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

445

California's Greenhouse Gas Policies: Local Solutions to a Global Problem?  

E-Print Network (OSTI)

greater than a current combined-cycle natural gas plant. Inemissions level based on a Combined Cycle Gas Turbine (CCGT)profiles worse than the combined cycle gas plants upon which

Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

2007-01-01T23:59:59.000Z

446

North American Natural Gas Markets  

Science Conference Proceedings (OSTI)

This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

Not Available

1989-02-01T23:59:59.000Z

447

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

448

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

449

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

450

Historical Natural Gas Annual 1999  

Gasoline and Diesel Fuel Update (EIA)

1999 1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1999 and detailed annual historical information by State for 1967-1999. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CSV file formats. Tables 1-3 present annual historical data at the national level for 1930-1999. The remaining tables contain detailed annual historical information, by State, for 1967-1999. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

451

Work: An educational alternative to schooling  

Science Conference Proceedings (OSTI)

The educational establishment in America faces serious problems. The ... The first level at which an alternative program of work could function is the home.

452

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

this summer and continue at elevated levels through the rest of 2003 (Short-Term Energy Outlook, June 2003). Natural gas wellhead prices are expected to average $5.40 per MMBtu in June and remain above $5.13 through December 2003. Spot prices at the Henry Hub have stayed well above $5.00 per MMBtu on a monthly basis since the beginning of the year and have been above $6.00 for the first 10 days of June. The low level of underground storage is the principal reason for these unusually high prices. As of June 6, 2003, working gas stocks were 1,324 Bcf, which is about 35 percent below year-earlier levels and 25 percent below the 5-year average. Natural gas prices are likely to stay high as long as above-normal storage injection demand competes with industrial and power sector demand for gas. Overall in 2003, wellhead prices are projected to increase about $2.33 per MMBtu (the largest U.S. annual wellhead price increase on record) over the 2002 level to a record annual high of about $5.20 per MMBtu. For 2004, prices are projected to ease only moderately, as supplies are expected to remain tight.

453

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

26, 2012 | Release Date: September 27, 26, 2012 | Release Date: September 27, 2012 | Next Release: October 4, 2012 Previous Issues Week: 01/19/2014 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Although Storage Injections Are Below Historical Levels, Inventories Remain High Working natural gas levels as of September 21 were at 3,576 Bcf, representing an implied net injection of 80 Bcf from the previous week, the highest storage build of the 2012 injection season. This injection season, additions to working natural gas inventories have been below the five-year (2007-2011) average injections as well as below last year's injection levels, for all but three weeks, including the most current week. Despite lower injections, overall inventory levels remain at

454

Gas Turbine Procurement: 1988 Workshop  

Science Conference Proceedings (OSTI)

Specifying the levels of reliability and availability needed for new gas turbines or combined-cycle plants can help utilities meet plant operating requirements. Equipment specifiers can use information presented in this workshop to help them formulate more effective specifications for new gas turbine generating equipment.

1989-04-06T23:59:59.000Z

455

TRU TeamWorks  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2012 8, 2012 WIPP Quick Facts (As of 9-26-12) 10,849 Shipments received since opening (10,252 CH and 597 RH) 83,693 Cubic meters of waste disposed (82,394 CH and 299 RH) 162,472 Containers disposed in the underground (161,882 CH and 590 RH) Photo above right: CBFO Deputy Manager Ed Ziemianski presents a WIPP team with the Green Zia Program Silver Level Award from the New Mexico Environment Department on Aug. 15, 2012 in recognition of environmental initiatives. Shown right of Ziemianski is Farok Sharif, WTS President and General Manager. New WIPP Management and Operating Contractor to start October 1 Nuclear Waste Partnership LLC (NWP) will start work as the WIPP Management and Operating Contractor on Monday, October 1. WIPP receives Green Zia Award The Waste Isolation Pilot Plant (WIPP), the U.S. Department of Energy (DOE)

456

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

457

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

458

Historical Natural Gas Annual - 1930 Through 2000  

Gasoline and Diesel Fuel Update (EIA)

Historical Natural Gas Annual Historical Natural Gas Annual 1930 Through 2000 EIA Home > Natural Gas > Natural Gas Data Publications Historical Natural Gas Annual The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-2000 and detailed annual historical information by State for 1967-2000. To read reports in PDF format download a free copy of Adobe Acrobat Reader.

459

Structural and Kinetic Studies of Structure I Gas Hydrates via Low Temperature X-Ray Diffraction and High Resolution Neutron Diffraction.  

E-Print Network (OSTI)

??Gas hydrates are materials of interest as sources for clean energy, carbon sequestration, greenhouse gas mitigation, and gas storage. This body of work presents two… (more)

Everett, Susan Michelle

2013-01-01T23:59:59.000Z

460

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-04-01T23:59:59.000Z

462

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

7, to Wednesday, March 5) 7, to Wednesday, March 5) Released: March 6, 2008 Next release: March 13, 2008 · Since Wednesday, February 27, natural gas prices increased on both the spot and futures markets. There were a few scattered exceptions to the increases, but these were mostly confined to the Northeast. · The spot price at the Henry Hub increased 16 cents per million Btu (MMBtu) or 1.7 percent on the week, averaging $9.37 per MMBtu yesterday, the highest price since January 2006. · Boosted by record-high crude oil prices and declining working gas in storage, the prices of natural gas futures contracts increased on the week, reaching levels not seen in the market in more than 2 years. The price of the futures contract for April 2008 delivery increased 68 cents per MMBtu to $9.741.

463

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, June 23, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 15, 2011) The past week was characterized by passing of the earlier weekÂ’s heat wave. The Henry Hub price decreased 31 cents per million Btu (MMBtu) for the week (6.4 percent) to close at $4.52 per MMBtu on June 15. During the midst of the heat wave, working natural gas in storage last week rose to 2,256 billion cubic feet (Bcf) as of Friday, June 10, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 69 Bcf, leaving storage volumes positioned 275 Bcf below year-ago levels.

464

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, December 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 17, 2010) Natural gas spot prices fell modestly at nearly all domestic pricing points, likely because expectations for colder weather were slow in materializing and storage levels rose again. The Henry Hub price fell 23 cents (about 6 percent) for the week ending November 17, to $3.77 per million Btu (MMBtu). The West Texas Intermediate crude oil spot price settled at $80.43 per barrel ($13.87 per MMBtu), on Wednesday, November 17. This represents a decrease of $7.34 per barrel, or $1.27 per MMBtu, from the previous Wednesday. Working natural gas in storage set another new all-time record

465

ORISE: Work for Others  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute for Science Education Work for Others The U.S. Department of Energy's (DOE) Work for Others (WFO) program allows the performance of work for non-DOE entities when the...

466

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, June 9, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 1, 2011) The past week was marked by two distinct trading markets — “before” and “after” the Memorial Day holiday. Cash markets were listless going into the holiday weekend but escalated Tuesday following an early heat wave that drifted into the East. The Henry Hub price advanced 27 cents per million Btu (MMBtu) for the week (6.2 percent) to close at $4.63 per MMBtu on June 1. Just prior to the heat wave, working natural gas in storage last week rose to 2,107 billion cubic feet (Bcf) as of Friday, May 27, according to the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas

467

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

20, 2011 at 2:00 P.M. 20, 2011 at 2:00 P.M. Next Release: Thursday, October 27, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 19, 2011) Natural gas prices posted modest net gains at most market locations across the lower 48 States. The Henry Hub spot price increased from $3.54 per million Btu (MMBtu) last Wednesday, October 12, to $3.58 per MMBtu yesterday, October 19. Intra-week trading showed strong rallies followed by quick retreats. At the New York Mercantile Exchange, the price of the near-month futures contract (November 2011) gained about 10 cents on the week from $3.489 per MMBtu last Wednesday to $3.586 per MMBtu yesterday. Working natural gas in storage rose to 3,624 billion cubic feet (Bcf) as of Friday, October 14, according to EIAÂ’s Weekly Natural Gas

468

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, July 22, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 14, 2010) Natural gas prices moved significantly lower at market locations across the lower 48 States during the report week. The Henry Hub spot price averaged $4.39 per million Btu (MMBtu) in trading yesterday, July 14, decreasing $0.37 compared with the previous Wednesday. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for August delivery at the Henry Hub decreased in 4 out the 5 trading sessions during the report week. The near-month contract settled yesterday at $4.31 per MMBtu, about $0.26 lower than the previous Wednesday. As of Friday, July 9, working gas in underground storage was 2,840

469

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: Thursday, November 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 11, 2009) With little impact on production in the Gulf of Mexico from Hurricane Ida and moderate temperatures in many parts of the country, natural gas spot prices decreased sharply this report week (November 4-11). The Henry Hub spot price decreased by $0.90 to $3.59 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices also moved lower as the threat of an interruption in supplies from the hurricane passed. The futures contract for December delivery decreased by $0.22 on the report week to $4.503 per MMBtu. Working gas in underground storage as of last Friday (November 6) is

470

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2010 at 2:00 P.M. , 2010 at 2:00 P.M. Next Release: Thursday, April 8, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 31, 2010) Natural gas spot prices fell almost across the board, as mild weather moved into most areas in the lower 48 States. The Henry Hub price fell by 9 cents, from $4.02 per million Btu (MMBtu) on Wednesday, March 24, to $3.93 per MMBtu yesterday (March 31). At the New York Mercantile Exchange (NYMEX), the April 2010 contract expired on Monday, March 29, at $3.842 per MMBtu. The May 2010 contract ended trading yesterday at $3.869 per MMBtu, a decline of about 29 cents from its closing price of $4.154 per MMBtu on March 24. Inventories of working natural gas in storage rose to 1,638 billion

471

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, July 7, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 29, 2011) Nearly all pricing points were down slightly for the week on light weather load despite an end-week rally anticipating warmer weather for the approaching July 4th holiday weekend. The Henry Hub price decreased 2 cents per million Btu (MMBtu) over the week (0.5 percent) to close at $4.40 per MMBtu on June 29. Working natural gas in storage rose last week to 2,432 billion cubic feet (Bcf) as of Friday, June 24, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 78 Bcf, leaving storage volumes

472

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, September 22, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 14, 2011) A touch of autumn in the air combined with hopes for the eventual return of winter was likely the catalyst enabling natural gas prices to recapture the $4 mark this week despite an environment of negative consumption fundamentals and continued strong production. At the New York Mercantile Exchange (NYMEX), the October 2011 natural gas contract advanced 9.9 cents per million Btu (MMBtu) to close at $4.039 per MMBtu over the week. The Henry Hub price oscillated in a similar but narrow range before closing up 5 cents for the week at $4.01 per MMBtu on September 14. Working natural gas in storage rose last week to 3,112 billion cubic

473

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, May 26, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 18, 2011) The threat of shut-in production arising from lower Mississippi River flooding likely sent prices up temporarily at nearly all domestic pricing points over the week but the gains failed to stick. The Henry Hub price lost a modest 7 cents per million Btu (MMBtu) (1.9 percent) to close at $4.15 per MMBtu on May 18. Working natural gas in storage rose to 1,919 billion cubic feet (Bcf) as of Friday, May 13, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 92 Bcf, leaving storage volumes

474

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 3, 2009 Next Release: July 30, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 22, 2009) Natural gas spot prices rose this report week, as prices for energy products generally increased and the economic outlook improved. During the report week, the Henry Hub spot price increased by $0.12 per million Btu (MMBtu) to $3.49. At the New York Mercantile Exchange (NYMEX), futures prices increased significantly. The price of the futures contract for August delivery closed yesterday, July 22, at $3.793 per MMBtu, more than 50 cents higher than the closing price the previous Wednesday. Working gas in underground storage as of Friday, July 17, is estimated to have been 2,952 billion cubic feet (Bcf), which is 18.4

475

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 0, 2009 Next Release: August 27, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 19, 2009) Natural gas spot prices declined this report week (August 12-19), with the largest decreases generally occurring in the western half of the country. The Henry Hub spot price decreased by $0.34 to $3.02 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased as supplies continued to be viewed as more than adequate to address near-term demand, including heating-related demand increases this winter. The futures contract for September delivery decreased by $0.36 on the week to $3.12 per MMBtu. Working gas in underground storage as of last Friday is estimated to

476

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, October 13, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 5, 2011) Like autumn leaves floating down to earth, natural gas prices dropped decidedly from their $4 support branch this past week. In a whirlwind of generally unsupportive market fundamentals, the Henry Hub price closed down 25 cents for the week to $3.63 per million British thermal units (MMBtu) on October 5. At the New York Mercantile Exchange (NYMEX), the November 2011 natural gas contract dropped nearly 23 cents per MMBtu to close at $3.570 per MMBtu over the week. Working natural gas in storage rose last week to 3,409 billion cubic feet (Bcf) as of Friday, September 30, according to the U.S. Energy

477

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: October 22, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 14, 2009) Natural gas spot prices increased this report week (October 7-14) as a cold-air mass moved over major consuming areas of the country, including the populous Northeast. The Henry Hub spot price increased by $0.12 to $3.82 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased significantly after increasing for 5 consecutive weeks. The futures contract for November delivery decreased by $0.47 per MMBtu on the week to $4.436. Working gas in underground storage as of last Friday (October 9) is estimated to have been 3,716 billion cubic feet (Bcf), a record high

478

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2010 at 2:00 P.M. 7, 2010 at 2:00 P.M. Next Release: Thursday, October 14, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 6, 2010) Natural gas spot prices fell at most pricing point locations across the board in the lower 48 States as demand fell. The price at the Henry Hub fell 25 cents, or about 7 percent, since last Wednesday, September 29, from $3.81 per million Btu (MMBtu) to $3.56 per MMBtu. The West Texas Intermediate crude oil spot price settled at $83.21 per barrel, or $14.35 per MMBtu, on Wednesday, October 6. This represents an increase of $5.36 per barrel, or $0.92 per MMBtu, from the previous Wednesday. Working natural gas in storage increased to 3,499 billion cubic feet

479

Natural gas hydrates - issues for gas production and geomechanical stability  

E-Print Network (OSTI)

Natural gas hydrates are solid crystalline substances found in the subsurface. Since gas hydrates are stable at low temperatures and moderate pressures, gas hydrates are found either near the surface in arctic regions or in deep water marine environments where the ambient seafloor temperature is less than 10°C. This work addresses the important issue of geomechanical stability in hydrate bearing sediments during different perturbations. I analyzed extensive data collected from the literature on the types of sediments where hydrates have been found during various offshore expeditions. To better understand the hydrate bearing sediments in offshore environments, I divided these data into different sections. The data included water depths, pore water salinity, gas compositions, geothermal gradients, and sedimentary properties such as sediment type, sediment mineralogy, and sediment physical properties. I used the database to determine the types of sediments that should be evaluated in laboratory tests at the Lawrence Berkeley National Laboratory. The TOUGH+Hydrate reservoir simulator was used to simulate the gas production behavior from hydrate bearing sediments. To address some important gas production issues from gas hydrates, I first simulated the production performance from the Messsoyakha Gas Field in Siberia. The field has been described as a free gas reservoir overlain by a gas hydrate layer and underlain by an aquifer of unknown strength. From a parametric study conducted to delineate important parameters that affect gas production at the Messoyakha, I found effective gas permeability in the hydrate layer, the location of perforations and the gas hydrate saturation to be important parameters for gas production at the Messoyakha. Second, I simulated the gas production using a hydraulic fracture in hydrate bearing sediments. The simulation results showed that the hydraulic fracture gets plugged by the formation of secondary hydrates during gas production. I used the coupled fluid flow and geomechanical model "TOUGH+Hydrate- FLAC3D" to model geomechanical performance during gas production from hydrates in an offshore hydrate deposit. I modeled geomechanical failures associated with gas production using a horizontal well and a vertical well for two different types of sediments, sand and clay. The simulation results showed that the sediment and failures can be a serious issue during the gas production from weaker sediments such as clays.

Grover, Tarun

2008-08-01T23:59:59.000Z

480

A Discussion of SY-101 Crust Gas Retention and Release Mechanisms  

DOE Green Energy (OSTI)

The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to percolati on in single-shell tank (SST) waste forms. The much higher void being currently observed in SY-101 represents essentially a new crust configuration, and the mechanisms for sudden gas release need to be evaluated. The purpose of this study is to evaluate the situation of gas bubbles in crust based on the previous work on gas bubble retention, migration, and release in simulants and actual waste. We have also conducted some visual observations of bubble migration through simulated crusts to help understand the interaction of the various mechanisms.

SD Rassat; PA Gauglitz; SM Caley; LA Mahoney; DP Mendoza

1999-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "working gas levels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101  

DOE Green Energy (OSTI)

Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solids dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.

Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.; Kuhn, William L.; Antoniak, Zenen I.; Cuta, Judith M.; Recknagle, Kurtis P.; Terrones, Guillermo; Viswanathan, Vilayanur V.; Sukamto, Johanes H.; Mendoza, Donaldo P.

2000-01-24T23:59:59.000Z

482

Figure 6.6 Natural Gas Underground Storage, End of Year  

U.S. Energy Information Administration (EIA)

1954-2011 Base Gas and Working Gas in Underground Storage, 1954-2011 188 U.S. Energy Information Administration / Annual Energy Review 2011

483

Construction of a Simulator for the Siemens Gas Turbine SGT-600.  

E-Print Network (OSTI)

?? This thesis covers the development of a simulator for the Siemens Gas Tur-bine SGT-600. An explanation on how a gas turbine works is also… (more)

Nordström, Lisa

2005-01-01T23:59:59.000Z

484

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

485

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

486

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

487

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

488

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

489

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

490

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

491

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

492

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and