Powered by Deep Web Technologies
Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

2

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

3

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

4

Philadelphia Gas Works - Residential and Commercial Construction Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Commercial Construction Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Residential: $750 Commercial: $60,000 Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount '''Residential''' Residential Construction: $750 '''Commercial/Industrial''' 10% to 20% to 30% above code, $40/MMBtu first-year savings Philadelphia Gas Works (PGW) provides incentives to developers, home

5

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

6

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

7

Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial EnergySense Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Insulation Appliances & Electronics Water Heating Maximum Rebate $75,000 Program Info Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Varies Widely Philadelphia Gas Works' (PGW) Commercial and Industrial Retrofit Incentive Program is part of EnergySense, PGW's portfolio of energy efficiency

8

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

9

End-of-Month Working Gas in  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The level of gas in storage at the end of the last heating season (March 31, 2000) was 1,150 billion cubic feet (Bcf), just above the 1995-1999 average of 1,139 Bcf. However, according to American Gas Association data, injection rates since April 1 have been below average, resulting in a 10-percent shortfall compared to the 5-year average for total stocks as of September 1. Net injections in August have been 10 percent below average. If net injections continue at 10 percent below historically average rates through the remainder of the refill season, gas inventories would be 2,750 Bcf on November 1, which is 8 percent below the 5-year average of about 3,000 Bcf. We are currently projecting that working gas will be between 2,800 and 2,900 Bcf at the end of October, entering the heating season

10

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2012 (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

11

Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of...  

Energy Savers (EERE)

Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule More Documents & Publications Focus Series: Philadelphia Energyworks: In...

12

Federal Utility Partnership Working Group: Atlanta Gas Light...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group: Atlanta Gas Light Resources Federal Utility Partnership Working Group: Atlanta Gas Light Resources Presentation-given at the April 2012 Federal Utility Partnership Working...

13

Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930 86,773 86,048 87,257 87,558 88,012 87,924 85,137 81,930 1994 78,106 72,445 71,282 70,501 71,440 73,247 74,599 75,685 77,456 78,490 76,784 74,111 1995 70,612 68,618 67,929 68,727 70,007 72,146 75,063 78,268 79,364 78,810 75,764 70,513

14

Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 18,661 17,042 17,387 20,796 23,060 26,751 30,924 33,456 34,200 30,588 1991 24,821 19,663 16,425 15,850 17,767 18,744 22,065 26,710 31,199 37,933 35,015 30,071 1992 23,328 18,843 14,762 14,340 15,414 17,948 23,103 27,216 32,427 35,283 32,732 29,149 1993 23,702 18,626 15,991 17,160 18,050 20,109 24,565 29,110 33,303 34,605 32,707 30,052 1994 23,623 20,052 18,102 17,396 17,194 19,647 24,780 29,088 33,077 35,877 36,408 33,424 1995 27,732 21,973 19,542 18,899 19,227 21,026 23,933 27,541 31,972 36,182 36,647 31,830

15

Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884 55,215 61,028 60,752 38,314 31,086 1994 21,838 17,503 20,735 25,099 29,837 30,812 37,339 42,607 44,739 47,674 48,536 43,262 1995 32,938 27,069 23,018 27,735 34,699 36,337 40,488 41,240 47,530 50,166 40,729 32,224

16

Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 55,509 49,604 47,540 48,128 53,233 64,817 76,933 92,574 99,253 115,704 93,290 1991 59,383 54,864 49,504 47,409 53,752 61,489 64,378 67,930 78,575 89,747 80,663 82,273 1992 76,311 63,152 53,718 48,998 51,053 53,700 57,987 69,653 79,756 82,541 73,094 61,456 1993 44,893 33,024 27,680 26,796 46,806 58,528 64,198 75,616 89,955 92,825 87,252 76,184 1994 52,998 41,644 39,796 40,779 49,519 55,059 64,664 77,229 86,820 91,309 84,568 74,364 1995 59,292 47,263 37,998 39,071 48,761 60,148 65,093 65,081 81,654 93,880 90,905 73,982

17

Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000 865 863 1,178 1,112 1,202 1,809 1,890 1,890 1,780 1,638 1,434 1,349 2001 1,020 1,261 657 851 807 1,384 1,538 1,651 1,669 1,549 2,837 2,848 2002 2,435 2,119 1,849 2,106 2,206 2,076 2,326 2,423 2,423 1,863 2,259 2,117

18

Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491 22,694 17,504 13,313 17,552 23,767 28,965 33,972 35,196 34,955 34,660 1991 26,266 24,505 17,544 16,115 17,196 21,173 25,452 30,548 35,254 36,813 37,882 36,892 1992 33,082 29,651 22,962 18,793 18,448 20,445 24,593 30,858 36,770 38,897 35,804 33,066 1993 28,629 23,523 21,015 17,590 20,302 24,947 28,113 31,946 36,247 34,224 30,426 29,254 1994 24,249 19,331 16,598 11,485 16,989 18,501 23,590 28,893 34,044 34,298 32,687 29,307 1995 24,948 21,446 16,467 12,090 14,043 19,950 25,757 29,774 32,507 33,707 35,418 30,063

19

California Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 125,898 106,575 111,248 132,203 157,569 170,689 174,950 177,753 182,291 196,681 196,382 153,841 1991 132,323 132,935 115,982 136,883 163,570 187,887 201,443 204,342 199,994 199,692 193,096 168,789 1992 125,777 109,000 93,277 107,330 134,128 156,158 170,112 182,680 197,049 207,253 197,696 140,662 1993 106,890 87,612 100,869 109,975 138,272 152,044 175,917 185,337 199,629 210,423 198,700 164,518 1994 121,221 77,055 76,162 95,079 123,190 143,437 161,081 170,434 191,319 203,562 186,826 161,202 1995 130,241 125,591 117,650 114,852 141,222 167,231 181,227 179,508 194,712 212,867 214,897 188,927

20

Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 117,492 109,383 110,052 117,110 131,282 145,105 158,865 173,570 188,751 197,819 190,747 1991 141,417 109,568 96,781 103,300 122,648 146,143 159,533 169,329 190,953 211,395 197,661 165,940 1992 120,212 91,394 79,753 85,867 106,675 124,940 136,861 152,715 174,544 194,414 187,236 149,775 1993 103,287 66,616 47,157 49,577 86,976 120,891 149,120 176,316 212,046 227,566 213,581 170,503 1994 112,054 93,499 80,056 101,407 134,333 155,279 184,802 207,383 230,726 239,823 235,775 197,145 1995 145,373 106,289 97,677 107,610 126,266 154,036 174,808 175,953 199,358 213,417 188,967 141,572

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122 27,044 24,271 21,990 1994 21,363 18,661 19,224 20,115 21,689 22,447 23,568 25,072 26,511 27,440 26,978 25,065 1995 22,086 20,762 19,352 18,577 19,027 20,563 22,264 23,937 25,846 27,025 26,298 24,257

22

Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 459 343 283 199 199 199 333 467 579 682 786 787 1999 656 532 401 321 318 462 569 645 749 854 911 855 2000 691 515 452 389 371 371 371 371 371 420 534 619 2001 623 563 490 421 525 638 669 732 778 840 598 597 2002 647 648 650 650 625 622 609 605 602 600 512 512 2003 404 294 226 179 214 290 365 460 463 508 508 447 2004 344 293 281 312 345 391 454 509 514 539 527 486 2005 444 364 265 184 143 126 126 126 88 79 73 60 2006 52 52 44 44 44 44 44 44 44 44 44 44

23

Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 163,571 125,097 100,438 110,479 158,720 215,000 265,994 318,024 358,535 364,421 359,766 306,561 1991 194,349 153,061 137,579 147,399 174,145 196,678 219,025 254,779 297,531 315,601 305,179 272,103 1992 201,218 144,582 93,826 103,660 140,908 188,078 222,215 264,511 306,113 331,416 332,959 288,433 1993 217,967 120,711 66,484 89,931 133,866 187,940 233,308 272,685 320,921 334,285 328,073 278,791 1994 172,190 97,587 75,470 114,979 166,013 222,300 272,668 315,887 339,424 354,731 335,483 294,393 1995 232,561 139,624 111,977 124,790 168,112 221,731 253,442 290,185 338,021 355,887 311,749 236,656

24

Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 311,360 252,796 228,986 221,127 269,595 333,981 410,982 481,628 534,303 553,823 542,931 472,150 1991 348,875 285,217 262,424 287,946 315,457 372,989 431,607 478,293 498,086 539,454 481,257 405,327 1992 320,447 244,921 179,503 179,306 224,257 292,516 367,408 435,817 504,312 532,896 486,495 397,280 1993 296,403 194,201 133,273 148,416 222,106 303,407 386,359 468,790 534,882 568,552 516,491 426,536 1994 282,144 193,338 162,719 203,884 276,787 351,286 425,738 502,577 568,235 599,504 579,874 516,887 1995 410,946 298,325 247,016 245,903 299,050 364,569 438,995 492,773 545,157 577,585 511,573 392,896

25

Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 118,053 119,532 116,520 130,817 139,698 150,336 158,048 165,206 171,008 180,706 154,515 1991 111,225 106,204 111,759 125,973 140,357 150,549 151,393 156,066 166,053 169,954 144,316 133,543 1992 115,658 107,281 103,919 109,690 117,435 128,505 145,962 153,948 166,637 174,182 154,096 123,225 1993 46,462 26,472 19,429 30,902 49,259 67,110 82,104 95,435 111,441 118,880 101,220 86,381 1994 56,024 35,272 32,781 49,507 73,474 86,632 102,758 115,789 124,652 129,107 126,148 109,979 1995 86,312 72,646 62,779 67,245 83,722 96,319 103,388 101,608 113,587 126,287 116,265 92,617

26

Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226 54,179 53,869 54,783 56,160 57,690 56,165 56,611 57,708 58,012 57,606 54,005 1991 52,095 51,060 50,341 51,476 54,531 56,673 56,409 56,345 57,250 56,941 56,535 54,163 1992 52,576 51,568 51,525 52,136 53,768 56,396 58,446 59,656 60,842 60,541 57,948 54,512 1993 51,102 49,136 48,100 49,069 52,016 55,337 57,914 59,772 61,281 10,707 8,936 6,562 1994 3,476 743 886 1,845 3,983 4,882 6,505 6,852 8,978 9,908 10,078 8,075 1995 6,063 5,068 4,138 3,940 4,583 5,449 3,881 4,059 4,443 3,676 2,078 485 1996 - - - - - 806 1,938 3,215 3,960 3,389 2,932 1,949

27

Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882 5,257 3,304 2,365 1,893 5,005 7,942 10,880 11,949 12,154 12,235 9,008 1991 6,557 6,453 3,509 6,342 7,864 10,580 12,718 12,657 12,652 14,112 15,152 14,694 1992 12,765 9,785 9,204 8,327 9,679 10,854 11,879 13,337 14,533 13,974 13,312 9,515 1993 6,075 2,729 3,958 4,961 9,491 10,357 12,505 13,125 15,508 13,348 9,567 11,274 1994 9,672 5,199 4,765 6,867 9,471 11,236 13,045 13,496 14,629 14,846 14,458 12,884 1995 10,750 8,520 8,267 8,500 11,070 12,622 14,035 13,764 16,258 16,158 16,224 12,869 1996 6,547 5,488 4,672 4,780 6,742 10,060 11,344 15,100 14,244 12,391 11,634 9,724

28

Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235 1,045 888 1,237 1,642 2,011 2,213 2,362 2,360 2,356 2,284 1995 1,771 1,294 1,037 990 1,321 1,584 1,890 2,121 2,362 2,368 2,365 2,110 1996 1,329 1,069 847 935 1,301 1,596 1,883 2,093 2,295 2,328 2,297 2,070

29

Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081 5,796 6,047 7,156 7,151 7,146 7,140 7,421 7,927 8,148 8,157 7,869 1991 7,671 5,875 4,819 6,955 7,638 7,738 8,033 8,335 8,547 8,765 8,964 8,952 1992 7,454 6,256 5,927 7,497 7,924 8,071 8,337 8,555 8,763 8,954 8,946 8,939 1993 7,848 6,037 4,952 6,501 7,550 8,001 8,104 8,420 8,627 8,842 8,720 8,869 1994 7,602 7,073 6,794 4,640 6,094 7,449 7,765 8,072 8,341 8,548 8,778 8,783 1995 8,200 7,921 7,879 7,608 8,230 8,221 8,210 8,559 9,022 9,145 9,311 8,981 1996 7,558 7,658 7,225 6,931 8,250 8,511 8,751 8,958 9,162 9,372 9,067 8,993

30

Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 1,309 844 534 742 1,055 1,364 1,553 1,894 2,218 2,349 2,255 1,897 1999 1,519 1,070 745 929 1,202 1,413 1,641 1,830 2,248 2,357 2,175 1,708 2000 998 843 814 1,063 1,642 1,848 2,066 2,215 2,223 2,594 2,242 1,529 2001 991 823 532 963 1,477 1,869 2,113 2,416 2,677 2,651 2,711 2,503 2002 2,029 1,356 968 1,090 1,627 1,899 2,181 2,322 2,631 2,838 2,559 2,065 2003 1,042 546 367 660 1,107 1,582 1,994 2,710 3,247 3,281 3,167 2,621 2004 1,570 1,195 865 1,024 1,706 1,990 2,188 2,925 3,253 4,115 4,082 3,077

31

Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 1,668 2,849 4,357 5,601 6,365 7,001 7,373 7,562 7,517 6,766 1991 5,691 4,726 2,959 1,980 2,694 4,248 5,706 6,798 7,472 7,811 7,834 7,347 1992 5,779 4,239 2,653 2,211 3,783 5,323 6,518 7,528 7,981 8,154 7,055 6,475 1993 4,557 3,161 2,433 2,007 3,651 4,949 6,130 7,172 7,750 8,240 7,509 6,406 1994 5,145 4,018 3,073 648 1,858 3,357 4,553 5,628 6,312 6,566 6,129 5,491 1995 3,814 3,429 2,989 3,856 5,035 6,069 6,765 6,765 7,251 7,251 7,193 6,371 1996 5,120 4,179 3,528 3,396 4,119 5,292 6,425 6,862 6,965 6,759 6,206 4,967

32

AGA Producing Region Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097 466,366 1997 314,140 248,911 297,362 326,566 401,514 471,824 478,925 532,982 617,733 705,879 642,254 494,485 1998 391,395 384,696 362,717 457,545 550,232 610,363 684,086 748,042 784,567 893,181 888,358 768,239 1999 611,978 585,458 530,610 568,307 653,498 728,071 744,307 750,460 826,493 858,836 849,011 718,513

33

West Virginia Natural Gas in Underground Storage (Working Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) West Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 95,718 84,444 80,152 86,360 105,201 122,470 139,486 155,506 168,801 172,513 172,198 155,477 1991 102,542 81,767 79,042 86,494 101,636 117,739 132,999 142,701 151,152 154,740 143,668 121,376 1992 87,088 60,200 32,379 33,725 57,641 75,309 97,090 115,537 128,969 141,790 135,853 143,960 1993 112,049 69,593 41,670 46,361 84,672 111,540 131,113 150,292 170,597 176,189 162,821 129,738 1994 71,547 38,973 20,662 41,766 67,235 97,887 125,442 147,683 168,538 174,514 166,920 140,377 1995 96,574 55,283 43,199 48,420 72,781 96,991 120,021 128,965 146,728 161,226 138,140 98,925

34

Second AEO2014 Oil and Gas Working Group Meeting Summary  

Gasoline and Diesel Fuel Update (EIA)

TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert...

35

Work Breakdown Structure and Plant/Equipment Designation System Numbering Scheme for the High Temperature Gas- Cooled Reactor (HTGR) Component Test Capability (CTC)  

SciTech Connect

This white paper investigates the potential integration of the CTC work breakdown structure numbering scheme with a plant/equipment numbering system (PNS), or alternatively referred to in industry as a reference designation system (RDS). Ideally, the goal of such integration would be a single, common referencing system for the life cycle of the CTC that supports all the various processes (e.g., information, execution, and control) that necessitate plant and equipment numbers be assigned. This white paper focuses on discovering the full scope of Idaho National Laboratory (INL) processes to which this goal might be applied as well as the factors likely to affect decisions about implementation. Later, a procedure for assigning these numbers will be developed using this white paper as a starting point and that reflects the resolved scope and outcome of associated decisions.

Jeffrey D Bryan

2009-09-01T23:59:59.000Z

36

The Physics Analysis of a Gas Attenuator with Argon as a Working Gas  

SciTech Connect

A gas attenuator is an important element of the LCLS facility. The attenuator must operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. S. Shen has recently carried out a detailed design study of the attenuator based on the use of nitrogen as a working gas. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues, not the design features.

Ryutov,, D.D.

2010-12-07T23:59:59.000Z

37

Philadelphia Gas Works: Who’s on First?  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—about the Philadelphia Gas Works (PGW) and its federal projects.

38

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815 27,780 16,330 1993 16,748 -23,871 -27,342 -13,729 -7,043 -138 11,093 8,174 14,808 2,868 -4,885 -9,642 1994 -45,776 -23,124 8,987 25,048 32,148 34,360 39,360 43,202 18,502 20,447 7,409 15,602 1995 60,371 42,037 36,507 9,811 2,098 -569 -19,226 -25,702 -1,403 1,156 -23,733 -57,737

39

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5 1.3 -0.3 -7.1 -8.1 -0.4 0.3 -7.1 -19.6 1996 -32.3 -32.6 -49.9 -39.0 -28.4 -18.3 -0.5 4.4 0.7 -0.2 3.9 26.8 1997 31.1 63.7 89.6 41.7 24.2 9.7 -4.5 -6.2 -2.2 -2.4 -0.3 -8.7 1998 5.7 9.8 22.4 52.3 49.3 32.7 23.0 11.1 3.1 4.1 12.5 17.6

40

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas Flowmeter Calibrations with the Working Gas Flow Standard NIST Special Publication 250-80  

E-Print Network (OSTI)

Gas Flowmeter Calibrations with the Working Gas Flow Standard NIST Special Publication 250-80 John of Standards and Technology U. S. Department of Commerce #12;ii Table of Contents Gas Flowmeter Calibrations with the Working Gas Flow Standard .......................... i Abstract

42

Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

43

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

44

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

45

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Designated Product Assessment for Commercial Gas Water Heaters FEMP Designated Product Assessment for Commercial Gas Water Heaters Title FEMP Designated Product Assessment for Commercial Gas Water Heaters Publication Type Report LBNL Report Number LBNL-5514E Year of Publication 2010 Authors Lutz, James D. Subsidiary Authors Energy Analysis Department Document Number LBNL-5514E Pagination 8 Date Published April 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-5514E Abstract None Notes This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Attachment Size PDF 240.22 KB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/50317

46

Method for designing gas tag compositions  

DOE Patents (OSTI)

For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

Gross, K.C.

1995-04-11T23:59:59.000Z

47

Method for designing gas tag compositions  

DOE Patents (OSTI)

For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

Gross, Kenny C. (1433 Carriage La., Bolingbrook, IL 60440)

1995-01-01T23:59:59.000Z

48

Philadelphia Gas Works - Residential and Small Business Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Small Business Equipment Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 4/1/2011 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler (Purchase prior to 02/17/12): $1000 Boiler (Purchase 02/17/12 or after): $2000 Furnace (Purchase prior to 02/17/12): $250 Furnace (Purchase prior to 02/17/12): $500

49

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

50

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

51

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

52

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

53

Differences Between Monthly and Weekly Working Gas In Storage  

Weekly Natural Gas Storage Report (EIA)

December 19, 2013 December 19, 2013 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from May 2002 through September 2013, estimated total working gas stocks have exhibited an average absolute error of 16 billion cubic feet, or 0.6 percent. Background The Energy Information Administration (EIA) provides weekly estimates of working gas volumes held in underground storage facilities at the national and regional levels. These are estimated from volume data provided by a

54

Differences Between Monthly and Weekly Working Gas In Storage  

Weekly Natural Gas Storage Report (EIA)

November 7, 2013 November 7, 2013 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from May 2002 through August 2013, estimated total working gas stocks have exhibited an average absolute error of 16 billion cubic feet, or 0.6 percent. Background The Energy Information Administration (EIA) provides weekly estimates of working gas volumes held in underground storage facilities at the national and regional levels. These are estimated from volume data provided by a

55

AGA Western Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116 333,134 322,501 282,392 1997 216,113 179,067 171,563 184,918 227,756 273,507 306,641 330,075 351,975 363,189 350,107 263,455 1998 211,982 163,084 150,923 155,766 206,048 254,643 281,422 305,746 346,135 379,917 388,380 330,906

56

Work Structuring to Achieve Integrated ProductProcess Design  

E-Print Network (OSTI)

Work Structuring to Achieve Integrated Product­Process Design Cynthia C. Y. Tsao, A.M.ASCE1 ; Iris presents "work structuring," a term used to describe the effort of integrating product and process design. As the project progresses, work structuring becomes more focused to guide the design and execution of interacting

Tommelein, Iris D.

57

,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (MMcf)" Working Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5410us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5410us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:28 PM"

58

,"U.S. Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (MMcf)" Working Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5510us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5510us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:32 PM"

59

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

60

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 2,322 1994-Jan 01/07 2,186 01/14 2,019 01/21 1,782 01/28 1,662 1994-Feb 02/04 1,470 02/11 1,303 02/18 1,203 02/25 1,149 1994-Mar 03/04 1,015 03/11 1,004 03/18 952 03/25 965 1994-Apr 04/01 953 04/08 969 04/15 1,005 04/22 1,085 04/29 1,161 1994-May 05/06 1,237 05/13 1,325 05/20 1,403 05/27 1,494

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Eastern Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 1,411 1994-Jan 01/07 1,323 01/14 1,199 01/21 1,040 01/28 958 1994-Feb 02/04 838 02/11 728 02/18 665 02/25 627 1994-Mar 03/04 529 03/11 531 03/18 462 03/25 461 1994-Apr 04/01 465 04/08 475 04/15 494 04/22 541 04/29 593 1994-May 05/06 636 05/13 690 05/20 731 05/27 795

62

AGA Eastern Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243 1,192,952 1,456,355 1,695,873 1,838,842 1,664,539 1,423,793 1997 965,310 711,444 521,508 539,750 735,527 985,803 1,230,970 1,474,855 1,702,601 1,816,709 1,706,526 1,416,580 1998 1,108,737 878,420 669,205 772,790 1,017,260 1,248,564 1,462,360 1,644,247 1,797,048 1,918,157 1,878,225 1,630,559

63

Intranet Development and Design that Works  

SciTech Connect

Making information available and easy to find is the objective of designing a good web site. A company's Intranet typically provides a great deal of information to its employees in an effort to help them better perform their jobs. If the information is available but is difficult to locate, the usefulness of this information is diminished. Sandia National Laboratories performed a redesign of its home page and has obtained a successful design which enables its employees to locate information quickly and efficiently. Three phases of usability testing were conducted to develop and optimize the home page. This paper will discuss the redesign of the Intranet home page and describe how usability studies were used to help ensure a usable design.

BACA,BOBBY G.; CASSIDY,ANDREA L.

1999-09-09T23:59:59.000Z

64

Philadelphia Gas Works Looking for a challenge and ready to power up your career?  

E-Print Network (OSTI)

Philadelphia Gas Works Looking for a challenge and ready to power up your career? The Philadelphia Gas Works (PGW) is the largest municipally-owned gas utility in the nation, supplying gas service into the large, modern facility that exists today. As one of the nation's leading natural gas providers, PGW

Plotkin, Joshua B.

65

Resilience-Based Design of Natural Gas Distribution Networks  

E-Print Network (OSTI)

Case Study Resilience-Based Design of Natural Gas Distribution Networks G. P. Cimellaro, Ph.D., A response to natural disasters. In this paper, a new performance index measuring the functionality of a gas; Disaster resilience; Vulnerability; Gas networks; Damage assessment; Lifelines; Serviceability; Natural gas

Bruneau, Michel

66

Pressure-transient test design in tight gas formations  

SciTech Connect

This paper outlines a procedure for pre- and postfracture pressure-transient test design in low-permeability (tight) gas formations. The procedures proposed are based on many years' experience in evaluating low-permeability formations, and particularly on recent experience with Gas Research Inst. (GRI) programs in eastern Devonian gas shales and in western tight-gas formations.

Lee, W.J.

1987-10-01T23:59:59.000Z

67

PRE-DESIGN INVESTIGATION WORK PLAN FOR COLDWATER CREEK FROM  

E-Print Network (OSTI)

Formerly Utilized Sites Remedial Action Program #12;#12;REVISION 0 PRE-DESIGN INVESTIGATION WORK PLANREVISION 0 PRE-DESIGN INVESTIGATION WORK PLAN FOR COLDWATER CREEK FROM FROST AVENUE TO ST. DENIS.S. Army Corps of Engineers, St. Louis District Office, Formerly Utilized Sites Remedial Action Program

US Army Corps of Engineers

68

Lower 48 States Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Lower 48 States Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,985 38,541 -75,406 -222,622 -232,805 -210,409 -190,434 -133,607 -91,948 -46,812 73,978 350,936 2012 778,578 852,002 1,047,322 994,769 911,345 800,040 655,845 556,041 481,190 406,811 271,902 259,915 2013 -216,792 -360,517 -763,506 -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

69

U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000 1,215,000 1,427,000 1,731,000 2,030,000 2,348,000 2,599,000 2,824,000 2,929,000 2,821,000 2,475,000 1978 1,819,000 1,310,000 1,123,000 1,231,000 1,491,000 1,836,000 2,164,000 2,501,000 2,813,000 2,958,000 2,927,000 2,547,000

70

Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,086 66,477 61,296 61,444 65,918 70,653 76,309 82,236 85,955 89,866 87,913 73,603 1991 71,390 60,921 57,278 59,014 63,510 74,146 79,723 86,294 97,761 109,281 101,166 86,996 1992 67,167 54,513 50,974 53,944 62,448 70,662 82,259 93,130 103,798 112,898 103,734 83,223 1993 18,126 8,099 5,896 10,189 16,993 25,093 35,988 46,332 58,949 64,538 57,880 40,257 1994 21,994 12,505 9,508 11,414 16,978 23,485 33,733 44,726 56,420 65,515 60,945 43,175 1995 22,656 11,780 7,447 6,865 10,632 18,717 28,858 43,748 55,435 62,560 51,890 36,857

71

Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 321,678 314,918 308,955 347,344 357,995 370,534 383,549 377,753 378,495 396,071 402,265 365,396 1991 279,362 271,469 271,401 289,226 303,895 323,545 327,350 329,102 344,201 347,984 331,821 316,648 1992 284,571 270,262 264,884 267,778 286,318 298,901 320,885 338,320 341,156 345,459 324,873 288,098 1993 165,226 149,367 141,472 157,250 183,990 198,041 207,344 220,032 216,071 222,798 210,181 194,014 1994 143,701 103,889 111,945 135,634 168,679 181,683 207,232 226,641 248,857 261,209 266,958 235,718 1995 215,449 192,489 184,914 206,178 228,388 238,593 238,850 234,779 254,339 265,781 248,336 200,382

72

Lower 48 States Total Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,693,215 2,088,293 1,709,624 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

73

EIA - Natural Gas Pipeline Network - Network Configuration & System Design  

U.S. Energy Information Administration (EIA) Indexed Site

Network Configuration & System Design Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this requirement, the facilities developed by the natural gas transmission industry are a combination of transmission pipelines to bring the gas to the market areas and of underground natural gas storage sites and liquefied natural gas (LNG) peaking facilities located in the market areas.

74

Fuel Cell and Micro Gas Turbine Integrated Design; Integrerad Design av Bränsle cell och Mikro Gas Turbin.  

E-Print Network (OSTI)

?? This work represents the integration of a hybrid system based on Micro Gas Turbine system available at the division of Heat and Power Technology… (more)

Woldesilassie, Endale

2014-01-01T23:59:59.000Z

75

U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (Million Cubic Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 47,455 36,864 41,979 49,646 58,678 56,813 63,882 64,460 70,583 72,447 73,277 69,641 1995 72,965 64,476 58,510 66,025 73,529 78,437 76,026 63,026 80,949 87,711 83,704 71,638 1996 58,880 47,581 37,918 56,995 62,439 71,476 70,906 75,927 84,962 88,061 87,029 85,140 1997 57,054 49,490 55,865 58,039 73,265 79,811 65,589 66,536 77,598 93,020 95,180 82,610 1998 69,390 68,851 63,549 80,476 82,711 83,080 90,544 92,319 83,365 115,709 118,521 104,104 1999 82,043 77,133 67,758 77,908 94,436 101,788 95,521 102,210 111,680 115,048 116,495 99,921

76

New York Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 35,239 28,083 24,437 26,484 32,304 42,192 50,845 59,950 66,681 69,508 68,996 59,183 1991 38,557 30,227 25,695 29,076 35,780 43,534 51,822 60,564 69,005 73,760 68,941 61,246 1992 49,781 35,441 23,732 26,771 36,307 45,716 57,152 66,993 72,724 76,134 72,836 56,289 1993 43,019 26,790 16,578 20,740 30,875 41,858 51,917 54,363 63,952 65,899 62,563 53,140 1994 40,502 26,320 17,867 26,755 35,465 47,773 56,880 65,819 70,776 72,168 69,544 60,807 1995 46,883 32,592 26,685 27,192 35,773 47,125 54,358 62,641 71,561 73,249 63,560 45,810

77

New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,085 11,213 10,893 12,718 8,903 13,496 17,077 20,270 21,829 24,996 26,006 23,472 1991 20,026 18,023 15,855 8,701 11,626 14,635 15,689 13,734 16,376 16,270 16,031 16,988 1992 14,969 14,258 13,522 11,923 11,828 12,369 10,270 12,215 13,412 15,976 14,938 15,350 1993 12,704 8,540 8,417 5,490 8,195 9,416 9,685 7,367 8,356 10,544 7,832 7,914 1994 4,952 3,973 3,588 3,256 4,025 4,716 5,087 5,306 8,708 10,826 10,274 9,735 1995 7,590 7,588 8,025 8,247 9,470 10,575 10,593 9,503 10,022 10,057 8,980 7,490 1996 6,178 4,942 4,250 3,871 4,212 4,219 4,193 4,308 5,444 5,866 5,030 4,605

78

Multi-Echelon Supply Chain Design in Natural Gas Industry  

E-Print Network (OSTI)

Abstract: In this paper, a framework is proposed for integrating of the operational parts of Natural Gas Transmission Systems (NGTSs) through pipelines and better coordination for the flow of natural gas and information in the system. The objective functions of this study are to provide a brief review of literature in natural gas supply chain modeling and to design a multi-echelon Supply Chain for the Natural Gas Transmission Systems (NSTSC). To achieve this, extensive and detailed studies in this field of research have been done. Subsequently, a complete study on the transmission of natural gas through pipelines, as well as the supply chain and its application, has been made in gas industry. Next, based on the operational systems in the natural gas industry, the supply chain levels are developed. These designs are very effective for modeling and optimization of the gas networks. In addition, the developed supply chain helps to reduce the costs of the NGTSs and increase customer satisfaction.

Mehrdad Nikbakht; N. Zulkifli; N. Ismail; S. Sulaiman; Abdolhossein Sadrnia; M. Suleiman

79

Missouri Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -114 -943 -336 775 774 774 773 -107 103 55 -146 1,291 1991 -410 79 -1,227 -201 487 592 893 913 620 617 807 1,083 1992 -216 381 1,107 542 286 333 304 220 216 189 -18 -13 1993 393 -220 -975 -996 -374 -69 -233 -135 -136 -112 -226 -70 1994 -245 1,036 1,842 -1,862 -1,456 -552 -338 -348 -285 -294 58 -85 1995 598 848 1,085 2,969 2,136 772 445 487 680 597 533 197 1996 -642 -262 -655 -677 21 290 541 398 140 226 -244 12 1997 309 461 -279 -42 -162 -311 -119 55 90 95 607 453

80

Design decisions in workflow management and quality of work  

Science Journals Connector (OSTI)

In this paper, the design and implementation of a workflow management (WFM) system in a large Dutch social insurance organisation is described. The effect of workflow design decisions on the quality of work is explored theoretically and empirically, using the model of Zur Muehlen as a frame of reference. It was found among a total sample of 66 employees that there was no change in the experience of work quality before and after the introduction of the WFM system. There are however, significant differences in the quality of work before and after the WFM adoption if different functions are distinguished.

Benny M.E. De Waal; Ronald Batenburg

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Los Alamos National Laboratory to work on nuclear design, plutonium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab to work on nuclear design, plutonium research Lab to work on nuclear design, plutonium research Los Alamos National Laboratory to work on nuclear design, plutonium research and development, and supercomputing LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. December 18, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

82

Sustainable Design Inspiration at Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Design Inspiration at Work Sustainable Design Inspiration at Work Sustainable Design Inspiration at Work April 5, 2011 - 3:23pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs I recently had the opportunity to get out of my regular work routine in DC to visit picturesque Golden, Colorado. Golden is the site of the National Renewable Energy Laboratory campus-one of ten National Labs across the country. While there I got to learn from scientists, engineers and experts of all kinds about ongoing, innovative renewable energy research projects-from high performance solar cells to utility-scale wind turbines. The Research Support Facility at the National Renewable Energy Laboratory. Photo by Dennis Schroeder The main attraction of the trip was our tour of the new, U.S Department of

83

GAs for aerodynamic shape design II: multiobjective optimization and multi-criteria design  

E-Print Network (OSTI)

GAs for aerodynamic shape design II: multiobjective optimization and multi-criteria design D, and on their application to multi-criteria design problems. A short introduction to multi- point aerodynamic shape design-lift conditions, and to transonic wing design. 1 Introduction The aerodynamic design problem can be defined

Coello, Carlos A. Coello

84

Starter systems designed for efficient air/gas comsumption  

SciTech Connect

This paper examines engine starting systems designed by Pow-R-Quik. Pow-R-Quik's most recent product line includes several models that are designed to start most diesel and natural gas engines. Pow-R-Quick also offers air starting systems for a wide range of gas turbine applications. The model DS16, air or gas starter, is designed for engines with a displacement up to 500 cid diesel and up to 1000 cid natural gas. The DS60 model is also an air or gas operated starter with specially designed heavy duty bearings for maximum performance. To prove out starter durability and performance, Pow-R-Quik has installed three fully instrumented diesel engine test cells. The number of starts that can be achieved ranges from zero to 99,000. The system can be set to regulate the air for low or high pressure starts, control the lubricant, etc.

Not Available

1985-05-01T23:59:59.000Z

85

Effect of Natural Gas Composition on the Design of Natural Gas Liquid Demethanizers  

Science Journals Connector (OSTI)

Effect of Natural Gas Composition on the Design of Natural Gas Liquid Demethanizers ... The hydrocarbon composition of natural gas varies fairly significantly from location to location. ... The relative amounts of methane (C1) and ethane (C2) have a profound effect on the cryogenic high-pressure distillation column used to recover the C2 and heavier components as a bottoms product called “natural gas liquid” (NGL). ...

William L. Luyben

2013-04-17T23:59:59.000Z

86

Climate VISION: Private Sector Initiatives: Oil and Gas: Work...  

Office of Scientific and Technical Information (OSTI)

Work Plans API has developed a work plan based on API's commitment letter and the Climate Challenge Program which addresses the overall elements of the Climate VISION program...

87

Oregon Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -30,641 13,186 6,384 -1,434 1,227 -3,129 3,399 2,573 2,606 1,953 968 1,423 1991 1,986 2,360 1,291 -869 -1,664 -1,353 -659 -203 99 250 317 582 1992 89 -487 -305 231 1,089 1,075 811 730 509 343 -779 -872 1993 -1,222 -1,079 -221 -204 -131 -374 -387 -356 -231 86 454 -69 1994 587 858 640 -1,359 -1,793 -1,593 -1,578 -1,544 -1,438 -1,674 -1,380 -915 1995 -1,331 -589 -83 3,208 3,177 2,713 2,212 1,136 939 685 1,065 880 1996 1,306 751 539 -460 -916 -777 -340 97 -286 -492 -987 -1,405

88

Mississippi Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,714 -2,484 2,221 9,026 9,501 3,159 1,926 1,511 539 1,182 1,803 9,892 1991 10,604 5,727 4,873 6,047 4,879 3,728 -584 -3,344 -2,211 -1,535 -10,107 -9,904 1992 -2,980 443 -1,846 -7,642 -6,984 -4,083 -1,435 -2,987 -1,706 -4,499 3,130 1,793 1993 5,569 -864 -4,596 -2,260 694 -12 478 3,249 2,672 1,131 -20,850 -21,299 1994 -24,589 -21,355 -12,019 -10,157 -12,687 -15,926 -14,545 -12,608 -16,289 -13,079 10,221 12,176 1995 11,100 9,566 2,283 2,636 4,862 5,526 3,149 -1,367 2,792 2,492 -7,807 -11,038

89

Illinois Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,275 18,043 13,193 1,851 5,255 9,637 5,108 8,495 9,773 7,534 9,475 11,984 1991 -9,933 -7,259 454 6,145 6,270 3,648 2,744 1,010 -13 7,942 -12,681 -9,742 1992 -9,345 -8,466 -9,599 -19,126 -16,878 -15,372 -13,507 -9,010 -7,228 -7,653 -6,931 -18,707 1993 -51,572 -52,876 -51,081 -40,760 -41,229 -40,132 -39,867 -44,533 -43,110 -44,873 -36,080 -34,184 1994 -6,101 -1,289 8,929 5,795 -3,558 -6,807 -4,948 -4,181 -3,006 -678 -77 11,376 1995 20,962 7,104 -805 -3,970 -29,257 -30,038 -32,571 -35,022 -40,472 -36,406 -41,858 -53,433

90

Montana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437 -17,034 -19,377 -21,219 -23,373 -24,811 -24,628 -25,093 -24,213 -22,944 -22,384 -19,989 1994 -18,713 -19,954 -18,358 -17,429 -15,333 -12,802 -12,658 -11,874 -10,555 -9,434 -8,353 -7,819 1995 -7,494 -3,827 -3,353 -1,774 -1,433 -1,101 464 2,584 1,908 321 -1,020 -3,599

91

Texas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,315 40,513 43,111 18,628 12,189 2,033 47 -10,549 -21,072 -9,288 -13,355 -8,946 1991 -42,316 -43,449 -37,554 -58,118 -54,100 -46,988 -56,199 -48,651 -34,294 -48,087 -70,444 -48,747 1992 5,209 -1,207 -6,517 -21,448 -17,577 -24,644 -6,465 9,218 -3,044 -2,525 -6,948 -28,550 1993 -119,345 -120,895 -123,412 -110,528 -102,328 -100,860 -113,541 -118,288 -125,086 -122,661 -114,692 -94,084 1994 -21,524 -45,478 -29,527 -21,615 -15,311 -16,358 -113 6,609 32,786 38,411 56,777 41,703 1995 71,748 88,600 72,969 70,544 59,709 56,910 31,618 8,138 5,482 4,572 -18,623 -35,336

92

Kansas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,362 -8,989 -8,480 -6,853 -3,138 -3,221 -2,686 -2,091 824 166 -307 3,561 1991 -6,300 -645 -100 -132 5,625 8,255 -439 -9,003 -13,999 -9,506 -35,041 -11,017 1992 16,928 8,288 4,215 1,589 -2,700 -7,788 -6,391 1,723 1,181 -7,206 -7,569 -20,817 1993 -31,418 -30,129 -26,038 -22,202 -4,247 4,828 6,211 5,963 10,199 10,284 14,158 14,727 1994 8,105 8,620 12,116 13,982 2,713 -3,469 465 1,613 -3,134 -1,516 -2,683 -1,820 1995 6,294 5,619 -1,798 -1,708 -758 5,090 429 -12,148 -5,167 2,571 6,337 -382

93

Virginia Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 1,533 1999 210 227 211 187 147 49 88 -64 30 8 -80 -189 2000 -521 -228 69 134 440 435 425 385 -24 236 67 -179 2001 -7 -19 -282 -100 -165 21 46 202 453 58 469 975 2002 1,038 533 436 127 151 30 68 -94 -46 187 -153 -439 2003 -987 -810 -600 -430 -520 -317 -187 388 616 443 608 557 2004 528 649 498 364 599 408 194 216 6 834 916 456 2005 201 391 -60 22 -116 -186 -62 -780 -679 -910 1,097 1,608 2006 3,081 2,559 3,389 3,163 2,744 2,220 2,009 2,014 2,869 2,415 531 784

94

Maryland Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133 -1,700 -270 -379 -1,170 1994 -4,444 -2,565 -113 1,629 1,482 1,771 2,779 2,519 1,569 658 -517 1,249 1995 5,583 3,808 3,166 1,674 1,629 2,195 -93 -369 129 -488 -247 -2,056 1996 -3,630 -2,064 -3,459 -3,286 -3,097 -2,473 -372 315 -34 394 -346 1,808

95

Indiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,295 -2,048 303 1,673 2,267 2,054 632 690 1,081 1,169 1,343 2,765 1991 2,450 1,002 -617 -1,537 -1,372 -2,052 -995 -41 274 4,477 815 -517 1992 -1,493 -820 -1,663 -1,510 -2,353 -796 1,038 506 1,229 -2,650 -2,283 -922 1993 374 -217 1,229 2,820 2,636 2,160 1,462 1,893 876 -679 -25 903 1994 -79 1,426 2,111 236 -856 -462 215 -22 -226 1,272 3,701 3,372 1995 4,108 1,921 1,440 1,503 2,033 1,379 -847 -1,547 -1,105 305 239 -1,594 1996 -2,809 -931 -2,059 -2,296 -2,608 -2,010 -508 2,016 1,499 -9 283 1,806

96

Iowa Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2,696 -5,556 -4,018 -2,430 -2,408 3,493 3,414 4,058 11,806 19,414 13,253 13,393 1992 -4,224 -6,407 -6,304 -5,070 -1,061 -3,484 2,536 6,836 6,037 3,618 2,568 -3,773 1993 -49,040 -46,415 -45,078 -43,755 -45,456 -45,569 -46,271 -46,798 -44,848 -48,360 -45,854 -42,967 1994 3,868 4,407 3,612 1,225 -15 -1,608 -2,255 -1,606 -2,529 977 3,064 2,918 1995 662 -725 -2,062 -4,549 -6,346 -4,768 -4,875 -978 -985 -2,955 -9,054 -6,318 1996 -2,596 -433 -1,982 -2,204 -5,609 -6,677 -4,290 -5,912 -4,983 -1,206 3,642 151

97

Colorado Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 701 995 446 26 639 1,368 2,249 3,219 1,102 2,496 892 1991 -1,225 1,811 40 2,493 3,883 3,621 1,685 1,583 1,282 1,616 2,927 2,233 1992 6,816 5,146 5,417 2,679 1,253 -728 -859 310 1,516 2,085 -2,078 -3,827 1993 -4,453 -6,128 -1,947 -1,204 1,853 4,502 3,520 1,087 -522 -4,673 -5,378 -3,812 1994 -4,380 -4,192 -4,417 -6,105 -3,313 -6,446 -4,523 -3,052 -2,203 74 2,261 53 1995 699 2,115 -131 605 -2,947 1,448 2,167 881 -1,537 -592 2,731 756 1996 -3,583 -1,460 -1,587 1,297 1,828 892 223 -114 831 -332 -2,174 183

98

West Virginia Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,093 -693 -375 128 493 786 2 -447 -512 -333 -99 1,138 1991 6,825 -2,677 -1,109 134 -3,564 -4,731 -6,487 -12,806 -17,650 -17,773 -28,530 -34,101 1992 -15,454 -21,567 -46,663 -52,768 -43,995 -42,430 -35,909 -27,164 -22,183 -12,950 -7,815 22,584 1993 24,960 9,394 9,292 12,636 27,031 36,232 34,023 34,755 41,628 34,399 26,968 -14,222 1994 -40,501 -30,621 -21,008 -4,595 -17,438 -13,653 -5,670 -2,609 -2,058 -1,674 4,099 10,639 1995 25,027 16,310 22,537 6,655 5,546 -896 -5,421 -18,718 -21,810 -13,288 -28,780 -41,453

99

New Mexico Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -4,944 -5,851 -5,300 -3,038 -4,576 -4,057 77 1,820 2,686 6,478 7,515 9,209 1991 7,941 6,810 4,962 -4,017 2,723 1,139 -1,388 -6,536 -5,453 -8,726 -9,976 -6,483 1992 -5,057 -3,765 -2,333 3,222 202 -2,266 -5,420 -1,519 -2,964 -294 -1,093 -1,638 1993 -2,265 -5,717 -5,105 -6,433 -3,632 -2,953 -584 -4,847 -5,056 -5,431 -7,107 -7,436 1994 -7,752 -4,567 -4,829 -2,234 -4,170 -4,700 -4,598 -2,062 352 281 2,443 1,820 1995 2,638 3,615 4,436 4,991 5,445 5,859 5,506 4,197 1,314 -768 -1,294 -2,244

100

Louisiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -16,163 -3,291 4,933 5,735 6,541 3,761 1,457 -2,718 333 6,361 22,218 1991 25,998 -7,924 -12,602 -6,752 5,539 14,861 14,428 10,464 17,383 22,644 -158 -24,807 1992 -21,205 -18,174 -17,028 -17,433 -15,973 -21,203 -22,672 -16,614 -16,409 -16,981 -10,425 -16,165 1993 -16,925 -24,778 -32,596 -36,290 -19,699 -4,049 12,259 23,601 37,502 33,152 26,345 20,728 1994 8,768 26,882 32,899 51,830 47,357 34,388 35,682 31,067 18,680 12,257 22,195 26,643 1995 33,319 12,790 17,621 6,203 -8,067 -1,243 -9,994 -31,430 -31,368 -26,406 -46,809 -55,574

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219 -9,773 -9,196 -8,590 -7,100 -6,215 -4,763 -4,433 -2,461 -3,475 -1,939 1994 834 524 1,455 1,850 2,436 1,126 195 143 389 396 2,707 3,074 1995 723 2,101 128 -1,538 -2,661 -1,884 -1,303 -1,135 -665 -416 -680 -807 1996 -1,225 -2,881 -2,568 -1,148 1,099 1,302 1,744 832 -482 -1,417 -3,593 -5,063

102

Washington Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -72 452 283 -1,858 -801 699 -1,353 41 108 1,167 -1,339 1991 -2,326 1,196 205 3,977 26,799 5,575 4,775 1,778 703 1,958 2,917 5,687 1992 6,208 3,332 5,695 1,986 1,815 275 -839 679 1,880 -138 -1,840 -5,179 1993 -6,689 -7,057 -5,245 -3,367 -188 -497 627 -212 975 -626 -3,745 1,760 1994 3,597 2,471 806 1,906 -20 879 539 371 -878 1,499 4,890 1,609 1995 1,078 3,321 3,503 1,633 1,599 1,386 990 268 1,628 1,312 1,767 -15 1996 -4,203 -3,033 -3,595 -3,720 -4,328 -2,562 -2,690 1,336 -2,014 -3,767 -4,591 -3,144

103

U.S. Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 305,000 1974 NA NA NA NA NA NA NA NA NA NA NA 16,000 1975 NA NA NA NA NA NA NA NA NA 196,000 NA 162,000 1976 NA NA NA NA NA NA NA NA 182,000 65,000 -133,000 -286,000 1977 -361,000 -281,000 -111,000 4,000 94,000 122,000 156,000 152,000 174,000 265,000 413,000 549,000 1978 532,000 147,000 -92,000 -196,000 -240,000 -194,000 -184,000 -98,000 -11,000 29,000 106,000 72,000 1979 71,000 39,000 113,000 104,000 128,000 114,000 120,000 127,000 107,000 121,000 118,000 207,000

104

Ohio Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,596 507 381 -2,931 -46 -596 -311 -234 178 167 7,030 9,898 1991 19,571 17,816 10,871 17,001 13,713 16,734 12,252 11,416 8,857 5,742 -6,023 -8,607 1992 -14,527 -26,506 -45,308 -51,996 -46,282 -36,996 -26,224 -22,672 -22,086 -18,888 -11,177 -16,353 1993 -11,967 -21,375 -21,809 -21,634 -20,069 -20,488 -16,719 -11,806 -1,499 -5,717 -13,058 -21,422 1994 -39,036 -30,048 -9,070 4,162 7,033 5,081 8,939 7,976 3,961 7,543 16,019 30,397 1995 36,925 34,571 29,611 9,077 7,499 9,345 6,077 2,682 -942 -2,597 -22,632 -39,593

105

Alabama Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196 -533 -430 2001 155 398 -521 -260 -395 -413 -352 -239 -111 -89 1,403 1,499 2002 1,415 858 1,192 1,255 1,399 692 788 772 755 314 -578 -731 2003 -2,107 -1,207 -476 304 1,194 2,067 2,346 2,392 3,132 4,421 4,005 3,823

106

Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine Shoemaker  

E-Print Network (OSTI)

Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine and environmental groups. The Shale Gas Roundtable of the Institute of Politics at the University of Pittsburgh produced a report with several recommendations dealing especially with shale gas research, water use

Angenent, Lars T.

107

Design for safety framework for offshore oil and gas platforms.  

E-Print Network (OSTI)

??This main aim of this work is to develop a “design for safety” based risk assessment technique for the offshore platforms in order to facilitate… (more)

Umar, Abubakar Attah

2010-01-01T23:59:59.000Z

108

Government works with technology to boost gas output/usage  

SciTech Connect

Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

Nicoll, H. [Dow Chemical Co., Houston, TX (United States). GAS/SPEC Technology Group

1996-10-01T23:59:59.000Z

109

How the Simplification of Work Can Degrade Safety: A Gas Company Case Study  

E-Print Network (OSTI)

How the Simplification of Work Can Degrade Safety: A Gas Company Case Study Hortense Blazsin.guarnieri @ mines-paristech.fr christophe.martin @ mines-paristech.fr Abstract. Work is focused on a gas company that wishes to develop a better understanding of its safety culture and identify potential enhancement

Paris-Sud XI, Université de

110

Mississippi Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0 10.5 16.3 17.9 8.4 -3.2 6.2 5.2 -16.1 -25.5 1996 -25.7 -20.7 -31.6 -29.8 -36.9 -21.2 -9.3 8.1 9.4 9.4 21.0 38.5 1997 33.4 39.7 105.3 64.1 71.0 44.2 10.9 -1.2 -5.3 -6.4 1.9 -7.4 1998 6.1 2.0 -13.3 -3.6 -8.6 -10.1 5.8 7.1 -4.2 10.9 11.9 23.7

111

Indiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 11.0 5.4 -3.6 -8.8 -7.2 -9.9 -4.3 -0.2 0.9 13.4 2.4 -1.7 1992 -6.0 -4.2 -10.1 -9.5 -13.2 -4.2 4.7 1.9 3.9 -7.0 -6.5 -3.1 1993 1.6 -1.2 8.3 19.7 17.1 12.0 6.3 7.0 2.7 -1.9 -0.1 3.1 1994 -0.3 7.7 13.2 1.4 -4.7 -2.3 0.9 -0.1 -0.7 3.7 11.3 11.2 1995 17.4 9.6 8.0 8.6 11.8 7.0 -3.4 -5.3 -3.3 0.8 0.7 -4.8 1996 -10.1 -4.2 -10.5 -12.2 -13.6 -9.6 -2.1 7.3 4.7 0.0 0.8 5.7 1997 5.1 6.0 13.3 1.9 2.2 -0.6 -6.1 -12.4 -8.9 -7.0 -6.5 -9.3 1998 0.6 3.3 -5.1 6.1 8.3 -0.3 -0.9 -0.2 -0.4 -0.8 2.9 3.4

112

California Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 13,690 18,121 8,849 5,853 7,132 14,219 18,130 10,561 13,390 31,974 19,181 9,703 1991 6,425 26,360 4,734 4,680 6,001 17,198 26,493 26,589 17,703 3,011 -3,286 14,947 1992 -6,546 -23,935 -22,706 -29,553 -29,442 -31,729 -31,331 -21,662 -2,945 7,561 4,600 -28,127 1993 -18,888 -21,388 7,592 2,646 4,145 -4,114 5,805 2,657 2,580 3,170 1,004 23,856 1994 14,332 -10,557 -24,707 -14,896 -15,082 -8,607 -14,837 -14,903 -8,310 -6,861 -11,874 -3,316 1995 9,020 48,536 41,487 19,773 18,032 23,794 20,147 9,074 3,393 9,305 28,072 27,725

113

Maryland Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8 35.6 24.2 26.7 -0.9 -3.1 1.0 -3.2 -1.7 -15.6 1996 -33.1 -30.7 -52.3 -51.6 -37.0 -23.8 0.0 0.0 -0.3 2.7 -2.5 16.3 1997 -3.8 -5.7 -21.1 -23.6 -25.2 -29.3 -27.9 -19.8 -9.3 -3.7 4.9 1.1 1998 39.5 61.5 119.5 179.6 87.5 54.4 63.0 38.2 13.2 4.1 3.6 -1.8

114

U.S. Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 17.6 1974 NA NA NA NA NA NA NA NA NA NA NA 0.8 1975 NA NA NA NA NA NA NA NA NA 8.2 NA 7.9 1976 NA NA NA NA NA NA NA NA 7.4 2.5 -5.2 -12.9 1977 -21.9 -19.5 -8.4 0.3 5.7 6.4 7.1 6.2 6.6 9.9 17.2 28.5 1978 41.3 12.6 -7.6 -13.7 -13.9 -9.6 -7.8 -3.8 -0.4 1.0 3.8 2.9 1979 3.9 3.0 10.1 8.4 8.6 6.2 5.5 5.1 3.8 4.1 4.0 8.1 1980 23.0 37.3 29.0 26.7 23.4 17.9 13.3 8.6 6.1 3.5 -0.6 -3.6 1981 -7.4 -1.5 2.3 4.3 -1.1 -2.0 -1.1 1.0 1.7 1.9 5.8 6.1 1982 1.4 -2.0 -1.7 -5.0 2.9 5.2 5.7 4.0 3.1 3.6 3.4 9.0

115

Virginia Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 16.1 26.9 39.6 25.2 13.9 3.6 5.7 -3.4 1.3 0.3 -3.5 -10.0 2000 -34.3 -21.3 9.2 14.4 36.6 30.7 25.9 21.0 -1.1 10.0 3.1 -10.5 2001 -0.7 -2.3 -34.6 -9.4 -10.1 1.1 2.2 9.1 20.4 2.2 20.9 63.8 2002 104.8 64.7 81.8 13.2 10.2 1.6 3.2 -3.9 -1.7 7.0 -5.6 -17.5 2003 -48.6 -59.7 -62.0 -39.4 -32.0 -16.7 -8.6 16.7 23.4 15.6 23.8 27.0 2004 50.7 118.7 135.4 55.0 54.1 25.8 9.7 8.0 0.2 25.4 28.9 17.4

116

Colorado Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5 8.0 0.2 18.3 29.2 20.6 7.1 5.5 3.8 4.6 8.4 6.4 1992 25.9 21.0 30.9 16.6 7.3 -3.4 -3.4 1.0 4.3 5.7 -5.5 -10.4 1993 -13.5 -20.7 -8.5 -6.4 10.0 22.0 14.3 3.5 -1.4 -12.0 -15.0 -11.5 1994 -15.3 -17.8 -21.0 -34.7 -16.3 -25.8 -16.1 -9.6 -6.1 0.2 7.4 0.2 1995 2.9 10.9 -0.8 5.3 -17.3 7.8 9.2 3.0 -4.5 -1.7 8.4 2.6 1996 -14.4 -6.8 -9.6 10.7 13.0 4.5 0.0 0.0 2.6 -1.0 -6.1 0.6 1997 15.7 -0.6 19.6 -8.7 10.6 9.4 9.1 10.7 13.9 12.4 3.0 -2.1 1998 1.5 1.9 -7.3 5.5 7.3 -0.1 -5.5 -0.6 1.5 8.0 23.7 18.0

117

New York Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -484 -13 300 294 -712 -349 -288 393 1,101 972 1,011 1,114 1991 3,318 2,144 1,258 2,592 3,476 1,343 977 614 2,324 4,252 -55 2,063 1992 11,224 5,214 -1,963 -2,306 527 2,182 5,330 6,430 3,719 2,374 3,894 -4,958 1993 -6,762 -8,650 -7,154 -6,031 -5,432 -3,859 -5,235 -12,631 -8,772 -10,235 -10,273 -3,149 1994 -2,517 -470 1,289 6,015 4,590 5,915 4,963 11,457 6,824 6,269 6,981 7,667 1995 6,381 6,272 8,818 437 309 -648 -2,521 -3,178 786 1,081 -5,984 -14,997 1996 -14,592 -13,733 -14,382 -13,026 -10,421 -9,742 -4,162 368 -1,791 -848 2,368 11,761

118

Illinois Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.2 -4.0 0.3 4.2 3.5 1.7 1.1 0.4 0.0 2.4 -3.8 -3.3 1992 -4.2 -4.8 -6.4 -12.6 -9.2 -7.2 -5.6 -3.3 -2.3 -2.3 -2.2 -6.6 1993 -24.0 -31.6 -36.3 -30.7 -24.7 -20.2 -17.4 -16.7 -14.3 -13.7 -11.6 -12.9 1994 -3.7 -1.1 10.0 6.3 -2.8 -4.3 -2.6 -1.9 -1.2 -0.2 0.0 4.9 1995 13.3 6.3 -0.8 -4.1 -24.0 -19.8 -17.7 -16.0 -15.8 -12.9 -15.3 -22.1 1996 -32.4 -34.1 -42.5 -37.1 -6.6 -2.1 2.0 3.5 5.3 3.1 3.2 8.3 1997 15.3 24.7 33.5 27.3 14.8 7.4 3.9 3.6 2.9 2.4 8.6 5.5 1998 12.9 22.3 23.5 24.2 18.8 14.7 8.2 4.3 2.2 2.3 -0.8 0.8

119

Minnesota Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 15.0 -0.3 -19.3 -19.7 -9.3 -1.7 -4.1 -2.7 -5.2 -8.5 6.3 1992 8.7 18.6 1.8 -25.1 -13.0 -11.2 -9.4 -1.0 0.5 1.8 5.3 -1.4 1993 1.3 -17.1 -29.0 -19.2 -19.0 -13.4 -5.9 -7.8 -2.5 1.2 -1.7 -7.0 1994 -16.3 -4.2 19.8 7.9 8.4 10.5 6.2 9.4 4.5 0.7 3.9 16.7 1995 23.8 4.8 -0.7 11.5 6.8 -3.5 -6.0 -4.1 0.0 0.3 0.4 -7.6 1996 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.8 -1.7 -2.9 -1.9 1997 11.5 27.8 39.0 29.2 13.8 12.4 12.3 7.6 3.7 2.3 3.5 14.6 1998 30.1 26.3 11.2 -4.8 -22.3 -26.4 -23.9 -19.0 -11.9 -4.1 -0.3 -18.6

120

Arkansas Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3 -6.6 1995 17.7 53.9 163.4 177.6 64.0 80.9 96.0 105.5 99.3 96.9 80.2 20.9 1996 -23.6 -51.7 -97.8 -92.0 -31.2 -23.8 -31.6 -36.6 -21.2 -16.7 -17.7 8.9 1997 22.6 54.8 3,707.8 830.5 36.2 47.9 57.3 62.7 46.5 34.5 36.1 21.2

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6 -12.3 -8.4 -5.5 -4.5 -2.5 -1.5 -2.5 -3.2 1996 -5.5 -13.9 -13.3 -6.2 5.8 6.3 7.8 3.5 -1.9 -5.2 -13.7 -20.9 1997 -28.6 -33.1 -34.9 -38.1 -41.3 -35.8 -27.4 -18.7 -11.1 -9.6 -6.5 -5.2 1998 -4.6 1.6 0.9 -10.6 -7.1 2.5 -1.3 -4.6 -3.6 0.4 12.4 16.6

122

Texas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.2 -13.8 -12.2 -16.7 -15.1 -12.7 -14.7 -12.9 -9.1 -12.1 -17.5 -13.3 1992 1.9 -0.4 -2.4 -7.4 -5.8 -7.6 -2.0 2.8 -0.9 -0.7 -2.1 -9.0 1993 -41.9 -44.7 -46.6 -41.3 -35.7 -33.7 -35.4 -35.0 -36.7 -35.5 -35.3 -32.7 1994 -13.0 -30.4 -20.9 -13.7 -8.3 -8.3 -0.1 3.0 15.2 17.2 27.0 21.5 1995 49.9 85.3 65.2 52.0 35.4 31.3 15.3 3.6 2.2 1.8 -7.0 -15.0 1996 -39.6 -55.6 -63.2 -60.9 -56.4 -52.4 -54.0 -45.4 -36.2 -30.4 -29.0 -23.9 1997 -22.9 -11.1 43.9 42.6 36.6 44.1 39.4 29.5 14.7 19.6 15.0 -3.0 1998 10.4 54.6 29.7 45.6 40.4 30.3 52.1 51.3 37.5 31.2 44.1 72.7

123

Michigan Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 12.0 12.8 14.6 30.2 17.0 11.7 5.0 -0.7 -6.8 -2.6 -11.4 -14.2 1992 -8.1 -14.1 -31.6 -37.7 -28.9 -21.6 -14.9 -8.9 1.2 -1.2 1.1 -2.0 1993 -7.5 -20.7 -25.8 -17.2 -1.0 3.7 5.2 7.6 6.1 6.7 6.2 7.4 1994 -4.8 -0.4 22.1 37.4 24.6 15.8 10.2 7.2 6.2 5.4 12.3 21.2 1995 45.7 54.3 51.8 20.6 8.0 3.8 3.1 -2.0 -4.1 -3.7 -11.8 -24.0 1996 -36.3 -39.8 -47.6 -41.4 -32.3 -22.7 -17.5 -9.7 -4.1 -0.9 -0.2 9.0 1997 16.9 31.2 41.0 40.5 23.5 15.4 11.0 6.8 3.1 0.2 1.9 3.7 1998 17.4 33.0 41.3 43.7 44.2 36.0 22.0 14.2 6.0 4.5 11.4 17.1

124

Ohio Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19.5 22.4 15.4 23.1 14.3 14.4 9.1 7.4 5.2 3.1 -3.3 -5.5 1992 -12.1 -27.3 -55.6 -57.4 -42.1 -27.9 -17.8 -13.7 -12.2 -10.0 -6.4 -11.0 1993 -11.3 -30.2 -60.3 -56.1 -31.6 -21.4 -13.8 -8.2 -0.9 -3.4 -7.9 -16.2 1994 -41.7 -61.0 -63.3 24.5 16.2 6.8 8.5 6.1 2.5 4.6 10.6 27.3 1995 67.7 179.6 562.8 43.0 14.8 11.6 5.3 1.9 -0.6 -1.5 -13.5 -28.0 1996 -36.6 -54.9 -83.2 -46.6 -20.6 -7.3 -0.6 4.2 6.7 8.8 9.2 20.8 1997 11.5 50.2 163.8 -2.8 8.0 4.9 2.0 2.8 2.3 -0.2 6.1 3.3 1998 43.1 60.2 92.8 193.9 65.5 24.3 15.1 8.6 5.6 7.5 12.7 20.9

125

Iowa Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3.6 -8.4 -6.6 -4.0 -3.7 4.9 4.5 4.9 13.7 21.6 15.1 18.2 1992 -5.9 -10.5 -11.0 -8.6 -1.7 -4.7 3.2 7.9 6.2 3.3 2.5 -4.3 1993 -73.0 -85.1 -88.4 -81.1 -72.8 -64.5 -56.2 -50.3 -43.2 -42.8 -44.2 -51.6 1994 21.3 54.4 61.3 12.0 -0.1 -6.4 -6.3 -3.5 -4.3 1.5 5.3 7.2 1995 3.0 -5.8 -21.7 -39.9 -37.4 -20.3 -14.5 -2.2 -1.7 -4.5 -14.9 -14.6 1996 -11.5 0.0 -26.6 -32.1 -52.8 -35.7 -14.9 -13.5 -9.0 -1.9 7.0 0.4 1997 5.1 11.2 76.8 72.4 129.0 65.0 16.6 4.6 3.7 -1.1 8.3 16.8 1998 15.2 41.6 15.6 34.6 25.3 14.9 48.5 17.4 12.0 8.3 9.4 4.7

126

Oklahoma Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 -10.0 -6.5 8.1 7.3 7.8 0.7 -1.3 0.5 -0.6 -20.1 -13.6 1992 4.0 1.0 -7.0 -12.9 -16.3 -14.6 -3.6 -1.4 0.4 2.5 6.8 -7.7 1993 -59.8 -75.3 -81.3 -71.8 -58.1 -47.8 -43.7 -38.0 -33.1 -31.7 -34.3 -29.9 1994 20.6 33.2 68.7 60.2 49.2 29.1 25.2 21.3 11.9 8.6 24.6 27.3 1995 54.1 106.0 91.5 35.8 13.9 11.2 0.6 -12.2 -8.9 -2.2 -7.8 -15.8 1996 -31.5 -51.7 -63.0 -57.6 -49.9 -45.9 -42.1 -26.5 -18.0 -15.4 -23.0 -27.6 1997 -28.4 -3.5 62.3 59.0 49.7 32.7 17.2 5.5 0.1 6.6 12.9 11.8 1998 34.3 61.5 15.9 41.1 37.9 45.5 53.2 46.9 37.6 31.0 46.7 62.1

127

Kansas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.6 -1.2 -0.2 -0.3 11.7 15.5 -0.7 -11.7 -15.1 -9.6 -30.3 -11.8 1992 28.5 15.1 8.5 3.4 -5.0 -12.7 -9.9 2.5 1.5 -8.0 -9.4 -25.3 1993 -41.2 -47.7 -48.5 -45.3 -8.3 9.0 10.7 8.6 12.8 12.5 19.4 24.0 1994 18.1 26.1 43.8 52.2 5.8 -5.9 0.7 2.1 -3.5 -1.6 -3.1 -2.4 1995 11.9 13.5 -4.5 -4.2 -1.5 9.2 0.7 -15.7 -6.0 2.8 7.5 -0.5 1996 -22.8 -19.2 -23.4 -13.2 -16.5 -13.8 -4.8 7.7 -4.5 -10.7 -22.9 -23.0 1997 -0.9 -1.0 19.1 6.4 12.1 9.5 -2.4 2.6 9.6 12.4 23.3 28.2 1998 26.0 30.6 4.0 18.0 34.9 19.3 33.7 29.6 20.8 18.7 25.3 28.3

128

Tennessee Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 43.0 55.3 41.7 61.2 59.6 131.5 70.6 38.1 29.2 25.1 16.0 8.6 2000 5.3 -3.2 12.8 21.0 16.7 -19.5 -34.7 -42.4 -50.4 -50.8 -41.4 -27.6 2001 -9.8 9.3 8.4 8.3 41.3 71.7 80.1 97.0 109.6 99.9 12.1 -3.5 2002 3.9 15.1 32.5 54.2 19.0 -2.5 -9.0 -17.3 -22.6 -28.6 -14.4 -14.2 2003 -37.6 -54.6 -65.2 -72.4 -65.7 -53.4 -40.1 -24.0 -23.2 -15.3 -0.8 -12.8 2004 -15.0 -0.5 24.1 74.4 61.1 82.6 24.4 10.6 11.2 6.1 3.7 8.9

129

Alabama Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3 -6.9 -10.7 -27.1 -24.2 2001 17.9 46.2 -44.2 -23.4 -32.8 -23.0 -18.6 -12.6 -6.3 -5.4 97.8 111.1 2002 138.8 68.1 181.5 147.4 173.3 50.0 51.2 46.8 45.2 20.3 -20.4 -25.7 2003 -86.5 -57.0 -25.7 14.4 54.1 99.5 100.8 98.7 129.2 237.3 177.3 180.6

130

Montana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5 1995 -9.6 -5.3 -4.7 -2.5 -2.0 -1.5 0.6 3.4 2.5 0.4 -1.3 -4.9 1996 -9.0 -11.4 -16.2 -18.1 -20.7 -19.2 -18.0 -16.9 -13.6 -13.4 -16.2 -17.7 1997 -18.5 -20.5 -19.6 -21.9 -19.3 -20.3 -20.1 -20.8 -22.7 -23.8 -22.5 -20.6

131

Utah Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722 6,012 6,934 10,321 7,849 7,551 8,609 1995 5,458 10,271 8,870 8,362 6,546 8,164 11,552 10,230 4,613 2,012 5,484 -708 1996 -5,185 -10,201 -9,074 -10,256 -8,313 -7,322 -7,566 -7,192 -6,606 -8,327 -14,146 -13,483 1997 -10,123 -4,260 296 2,223 969 2,109 3,330 4,725 5,811 8,139 10,145 6,148

132

Louisiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0 6.1 -6.0 -0.8 -5.4 -15.2 -13.6 -11.0 -19.9 -28.2 1996 -31.0 -28.8 -47.1 -50.7 -48.5 -47.6 -37.5 -19.6 -12.8 -11.9 -14.6 -6.4 1997 -14.5 -14.9 61.5 61.3 62.8 54.4 24.7 7.8 3.7 7.4 13.1 7.3 1998 40.7 86.3 35.5 55.9 46.9 35.0 42.0 40.1 22.5 26.5 40.7 56.9

133

New Mexico Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 65.7 60.7 45.6 -31.6 30.6 8.4 -8.1 -32.2 -25.0 -34.9 -38.4 -27.6 1992 -25.3 -20.9 -14.7 37.0 1.7 -15.5 -34.5 -11.1 -18.1 -1.8 -6.8 -9.6 1993 -15.1 -40.1 -37.8 -54.0 -30.7 -23.9 -5.7 -39.7 -37.7 -34.0 -47.6 -48.4 1994 -61.0 -53.5 -57.4 -40.7 -50.9 -49.9 -47.5 -28.0 4.2 2.7 31.2 23.0 1995 53.3 91.0 123.6 153.3 135.3 124.2 108.2 79.1 15.1 -7.1 -12.6 -23.1 1996 -18.6 -34.9 -47.0 -53.1 -55.5 -60.1 -60.4 -54.7 -45.7 -41.7 -44.0 -38.5 1997 -33.5 -29.5 0.6 10.4 4.4 10.4 13.4 27.8 18.1 14.5 24.1 19.8

134

New York Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4 7.6 5.1 9.8 10.8 3.2 1.9 1.0 3.5 6.1 -0.1 3.5 1992 29.1 17.2 -7.6 -7.9 1.5 5.0 10.3 10.6 5.4 3.2 5.6 -8.1 1993 -13.6 -24.4 -30.1 -22.5 -15.0 -8.4 -9.2 -18.9 -12.1 -13.4 -14.1 -5.6 1994 -5.8 -1.8 7.8 29.0 14.9 14.1 9.6 21.1 10.7 9.5 11.2 14.4 1995 15.8 23.8 49.4 1.6 0.9 -1.4 -4.4 -4.8 1.1 1.5 -8.6 -24.7 1996 -31.2 -42.1 -53.7 -47.7 -29.0 -20.4 -7.4 0.8 -1.8 -1.2 3.8 25.9 1997 23.3 57.3 67.6 58.2 25.1 3.5 -0.3 -3.1 -5.1 -5.3 -2.6 -2.0 1998 13.7 23.0 38.5 46.2 37.9 33.6 18.6 6.4 6.6 9.4 15.5 25.9

135

Washington Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -26.2 22.8 6.2 168.1 -141.5 111.4 60.1 16.3 5.9 16.1 23.8 63.1 1992 94.7 51.6 162.3 31.3 23.1 2.6 -6.6 5.4 14.9 -1.0 -12.1 -35.2 1993 -52.4 -72.1 -57.0 -40.4 -1.9 -4.6 5.3 -1.6 6.7 -4.5 -28.1 18.5 1994 59.2 90.5 20.4 38.4 -0.2 8.5 4.3 2.8 -5.7 11.2 51.1 14.3 1995 11.1 63.9 73.5 23.8 16.9 12.3 7.6 2.0 11.1 8.8 12.2 -0.1 1996 -39.1 -35.6 -43.5 -43.8 -39.1 -20.3 -19.2 9.7 -12.4 -23.3 -28.3 -24.4 1997 25.9 17.4 -31.4 -31.5 35.7 28.4 19.3 -17.0 3.9 13.8 20.4 11.4 1998 30.6 2.6 2.4 -47.6 -38.3 -33.5 -34.2 0.1 -2.9 -3.1 3.0 3.4

136

Nebraska Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.7 -5.8 -6.6 -6.0 -2.9 -1.8 0.4 -0.5 -0.8 -1.8 -1.9 0.3 1992 0.9 1.0 2.4 1.3 -1.4 -0.5 3.6 5.9 6.3 6.3 2.5 0.6 1993 -2.8 -4.7 -6.6 -5.9 -3.3 -1.9 -0.9 0.2 0.7 -82.3 -84.6 -88.0 1994 -93.2 -98.5 -98.2 -96.2 -92.3 -91.2 -88.8 -88.5 -85.3 -7.5 12.8 23.1 1995 74.4 582.5 367.3 113.6 15.1 11.6 -40.3 -40.8 -50.5 -62.9 -79.4 -94.0 1996 -100.0 -100.0 -100.0 -100.0 -100.0 -85.2 -50.1 -20.8 -10.9 -7.8 41.1 301.9 1997 0.0 0.0 0.0 0.0 0.0 193.8 26.0 6.0 13.6 34.7 51.4 79.3 1998 188.1 377.6 104.3 6.6 14.8 -1.5 28.0 9.9 2.4 8.9 -0.1 -7.9

137

Kentucky Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2 7.3 3.3 6.6 5.5 -4.6 -8.7 1996 -14.5 -16.8 -24.3 -29.4 -33.2 -22.0 -13.0 -5.9 -3.8 -3.6 0.9 5.3 1997 5.8 15.5 27.1 28.5 28.0 13.5 3.6 -0.7 -1.1 -0.7 0.2 -3.1 1998 7.5 5.2 -1.0 3.5 9.7 9.1 12.7 12.8 7.3 9.4 12.3 14.5

138

Missouri Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.1 1.4 -20.3 -2.8 6.8 8.3 12.5 12.3 7.8 7.6 9.9 13.8 1992 -2.8 6.5 23.0 7.8 3.7 4.3 3.8 2.6 2.5 2.2 -0.2 -0.1 1993 5.3 -3.5 -16.4 -13.3 -4.7 -0.9 -2.8 -1.6 -1.6 -1.3 -2.5 -0.8 1994 -3.1 17.2 37.2 -28.6 -19.3 -6.9 -4.2 -4.1 -3.3 -3.3 0.7 -1.0 1995 7.9 12.0 16.0 64.0 35.0 10.4 5.7 6.0 8.2 7.0 6.1 2.2 1996 -7.8 0.0 -8.3 -8.9 0.0 0.0 6.6 0.0 1.6 2.5 -2.6 0.1 1997 4.1 6.0 -3.9 -0.6 -2.0 -3.7 -1.4 0.6 1.0 1.0 6.7 5.0 1998 14.2 10.6 23.2 23.5 10.9 7.6 2.1 0.1 2.0 1.8 1.8 -1.8 1999 1.3 -2.4 0.6 1.5 4.1 5.7 5.7 4.0 3.8 3.7 3.3 6.0

139

Comparative controller design for a marine gas turbine propulsion system  

SciTech Connect

Controller design for marine gas turbine systems should consider three measures of performance: transient control, steady-state accuracy, and disturbance rejection. This paper presents and compares two common types of controller design in terms of these measures. The goal of the controllers was shaft speed control. To meet this goal, a classical proportional-plus-integral controller was designed and compared to a modern linear quadratic regulator design. The controllers' performances were evaluated with respect to the three measures mentioned above, with disturbances being input as oscillations in shaft torque due to seaway cycling.

Smith, D.L.; Stammetti, V.A. (Naval Postgraduate School, Monterey, CA (USA). Dept. of Mechanical Engineering)

1990-04-01T23:59:59.000Z

140

High temperature gas cooled reactor steam-methane reformer design  

SciTech Connect

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A successful methodology for designing and implementing virtual work teams  

SciTech Connect

A system has been implemented at Los Alamos National Laboratory to rapidly staff and manage project teams. These project teams are created and subsequently perform their project functions using information technology as the communication medium. A simplified model of group interactions was used to guide the design and implementation of the system. The model uses three primary axes of group interactions to express the functional requirements that must be supported by a virtual work team application. The evolution of the approach and its relationship to traditional project management are described. A number of design characteristics were found to be critical to the success of the implementation and are presented. The technology and supporting processes and the business results stemming from implementation of the system are described in a limited manner.

Stuewe, R.B.; Barnes, M.G.; Hughes, D.K.

1997-11-01T23:59:59.000Z

142

Solar gas turbine systems: Design, cost and perspectives  

Science Journals Connector (OSTI)

The combination of high solar shares with high conversion efficiencies is one of the major advantages of solar gas turbine systems compared to other solar-fossil hybrid power plants. Pressurized air receivers are used in solar tower plants to heat the compressed air in the gas turbine to temperatures up to 1000 °C. Therefore solar shares in the design case of 40% up to 90% can be realized and annual solar shares up to 30% can be achieved in base load. Using modern gas turbine systems in recuperation or combined cycle mode leads to conversion efficiencies of the solar heat from around 40% up to more than 50%. This is an important step towards cost reduction of solar thermal power. Together with the advantages of hybrid power plants—variable solar share, fully dispatchable power, 24 h operation without storage—solar gas turbine systems are expected to have a high potential for market introduction in the mid term view. In this paper the design and performance assessment of several prototype plants in the power levels of 1 MW, 5 MW and 15 MW are presented. Advanced software tools are used for design optimization and performance prediction of the solar tower gas turbine power plants. Detailed cost assumptions for the solarized gas turbine, the solar tower plant and further equipment as well as for operation and maintenance are presented. Intensive performance and economic analysis of the prototype plants for different locations and capacity factors are shown. The cost reduction potential through automation and remote operation is revealed.

Peter Schwarzbözl; Reiner Buck; Chemi Sugarmen; Arik Ring; Ma Jesús Marcos Crespo; Peter Altwegg; Juan Enrile

2006-01-01T23:59:59.000Z

143

Cogeneration of electricity and refrigeration by work-expanding pipeline gas  

SciTech Connect

The process for the cogeneration of electricity and commercially saleable refrigeration by expanding pressurized pipeline gas with the performance of work is described which comprises: injecting methanol into the pipeline gas; passing the pipeline gas containing the methanol through a turbo-expander coupled to an electrical generator to reduce the pressure of the pipeline gas at least 100 psi but not reducing the pressure enough to drop the temperature of the resulting cold expanded gas below about - 100/sup 0/F; separating aqueous methanol condensate from the cold expanded gas and introducing the condensate into a distillation column for separation into discard water and recycle methanol for injection into the pipeline gas; recovering the saleable refrigeration from the cold expanded gas; adding reboiler heat to the distillation column in an amount required to warm the expanded gas after the recovery of the saleable refrigeration therefrom to a predetermined temperature above 32/sup 0/F; and passing the expanded gas after the recovery of the saleable refrigeration therefrom in heat exchange with methanol vapor rising to the top of the distillation column to condense the methanol vapor so that liquid methanol is obtained partly for reflux in the distillation column and partly for the recycle methanol and simultaneously the expanded gas is warmed to the predetermined temperature above 32/sup 0/F.

Markbreiter, S.J.; Dessanti, D.J.

1987-12-08T23:59:59.000Z

144

New model adds precision to gas-lift design  

SciTech Connect

Conoco Inc.'s new analytical technique for lift-gas allocation identifies, in one-pass, injection rates and the achievable mandrel location for injection. Current gas-lift allocation techniques do not determine production rates for discrete mandrel locations. Allocation rates for particular wells are made on the basis of a fixed differential pressure. When actual mandrel locations are superimposed on these solutions, gas often must be reallocated. The advantages of the new technique include: determining the transfer capability of the gas-lift valve in each mandrel; finding valve pressure drop as a function of injection gas rate; obtaining a more realistic response curve. Another potential benefit is that the response curve can be adjusted to reflect the water cut and/or multizone completion effects at different injection depths. Because the node is at the mandrel, the inflow performance relationship (IPR) at that depth can easily be adjusted to include such effects. The paper describes gas-lift applications; response curves; injection depth; field-wide curves; the mandrel curve; and valve design.

Kendrick, R.A. (Hampton Resources Inc., Houston, TX (United States)); Woodyard, A.H.; Hall, J.W. (Conoco Inc., Houston, TX (United States))

1993-05-03T23:59:59.000Z

145

Proper design hikes gas-lift system efficiency  

SciTech Connect

Proper design of gas-lift pumping systems, used for pumping corrosive or erosive fluids, involves the correct selection of submergence ratio, flow regime, pipe diameter, and physical properties of the fluid. Correlations for maximum lifting efficiency on a friction-free basis vs. submergence ratio have been developed based on experimental data. The Oshinowo and Charles flow map for vertical upward flow has been chosen for determining the two-phase flow regimes. For large-diameter gas-lifting systems, the effects of fluid physical properties on the maximum lifting efficiency become diminished. Gas-lift pumping systems are widely used in the process industry as well as in oil and gas production. In an ethylene dichloride/vinyl chloride monomer (EDC/VCM) plant, quench column bottoms are recirculated back to the column by gas lift of the EDC/VCM stream from the EDC pyrolysis furnace. Gas lift is utilized instead of pumps to alleviate the plugging and erosion problems caused by the presence of coke/tar particulates. Other process applications include those where pumps suffer severe corrosion from the fluids pumped.

Tsai, T.C.

1986-06-30T23:59:59.000Z

146

Retrofit design of a boil-off gas handling process in liquefied natural gas receiving terminals  

Science Journals Connector (OSTI)

Generation of Boil-off gas (BOG) in liquefied natural gas (LNG) receiving terminals considerably affects operating costs and the safety of the facility. For the above reasons, a proper BOG handling process is a major determinant in the design of a LNG receiving terminal. This study proposes the concept of a retrofit design for a BOG the handling process using a fundamental analysis. A base design was determined for a minimum send-out case in which the BOG handling becomes the most difficult. In the proposed design, the cryogenic energy of the LNG stream is used to cool other streams inside the process. It leads to a reduction in the operating costs of the compressors in the BOG handling process. Design variables of the retrofit design were optimized with non-linear programming to maximize profitability. Optimization results were compared with the base design to show the effect of the proposed design. The proposed design provides a 22.7% energy saving ratio and a 0.176 year payback period.

Chansaem Park; Kiwook Song; Sangho Lee; Youngsub Lim; Chonghun Han

2012-01-01T23:59:59.000Z

147

Equipment design guidance document for flammable gas waste storage tank new equipment  

SciTech Connect

This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

Smet, D.B.

1996-04-11T23:59:59.000Z

148

Work domain analysis and ecological interface design for the vehicle routing problem  

E-Print Network (OSTI)

Work domain analysis and ecological interface design for the vehicle routing problem B. GACIAS1 , J 4 Ecological Interface Design 5 Experimental Study 6 Results 7 Conclusions and further work Gacias Proposed DSS 3 Work Domain Analysis 4 Ecological Interface Design 5 Experimental Study 6 Results 7

Ingrand, François

149

Deregulating UK Gas and Electricity Markets: How is Competition Working for  

NLE Websites -- All DOE Office Websites (Extended Search)

Deregulating UK Gas and Electricity Markets: How is Competition Working for Deregulating UK Gas and Electricity Markets: How is Competition Working for Residential Consumers? Speaker(s): Catherine Waddams Date: April 15, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Chris Marnay Retail gas and electricity prices were deregulated in the UK in April 2002, following introduction of retail choice for residential consumers between 1996 and 1999. We use information from consumer surveys, including a panel survey over three years, to analyse consumer attitudes and behaviour. In particular we explore how awareness changed, whether those who were actively considering switching in one wave of the survey had actually done so by the next round, whether individuals become willing to switch for smaller price gains as the markets matured, and how expectations

150

This work was supported by the USDepartment of Energy, UnconventionalGas Recovery Research Program.  

E-Print Network (OSTI)

#12;This work was supported by the USDepartment of Energy, UnconventionalGas Recovery Research the world's first Hot Dry Rock geothermalenergyextractionsystemat FentonHill,New Mexico. The system-specifiedtools should be capableof operatingfor sustained periodsin hot wells; have automaticgain controland

151

Working fluid design for organic rankine cycle systems (ORC):.  

E-Print Network (OSTI)

??The Organic Rankine Cycle is an energy conversion cycle similar to the conventional Rankine cycle which runs on a working fluid other than water. The… (more)

Hattiangadi, A.

2013-01-01T23:59:59.000Z

152

Working Fluid Design for Organic Rankine Cycle (ORC) Systems:.  

E-Print Network (OSTI)

??The Organic Rankine Cycle is an energy conversion cycle similar to the conventional Rankine cycle which runs on a working fluid other than water. The… (more)

Hattiangadi, A.

2013-01-01T23:59:59.000Z

153

Design of a low-cost, high-resolution retrofit module for residential natural gas meters  

Science Journals Connector (OSTI)

Abstract There has been considerable interest in recent years in deploying smart meters in residential homes capable of distinguishing appliance-specific usage from whole-house consumption. Smart meters used in conjunction with algorithms that analyze usage data and other appliance attributes have been found to be a cost-effective and scalable approach. Based on this idea, the authors recently reported a laboratory-based solution for natural gas consisting of an encoder module retrofitted onto an existing residential gas meter. In this work, a detailed analysis of real gas consumption rates and patterns from common household appliances is performed and used to simulate the metering performance of a meter equipped with such an encoder module. The simulation is used to establish the optimal encoder resolution for a prototype encoder design that balances cost with performance. Improvements to the algorithms presented in the previous study to analyze the time-resolved data by deducing which appliance is using natural gas are also presented. The design, fabrication, and testing of a prototype encoder module is also presented.

M. Tewolde; J.C. Fritch; J.P. Longtin

2015-01-01T23:59:59.000Z

154

Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions  

Science Journals Connector (OSTI)

Abstract Improved energy efficiency is an issue of increasing importance in offshore oil and gas installations. The power on offshore installations is generated by gas turbines operating in a simple cycle. There is an obvious possibility for heat recovery for further power generation from the exhaust heat. However, the limited space and weight available makes the inclusion of bottoming cycles challenging. Due to its high working pressure and thereby compact components CO2 (carbon dioxide) could be a viable solution, combining compactness and efficiency. An in-house simulation tool is used to evaluate the performance of CO2 bottoming cycles at design and off-design conditions. Both a simple recuperated single stage cycle and a more advanced dual stage system are modelled. Results from simulations show a potential for 10–11%-points increase in net plant efficiency at 100% gas turbine load. Also off-design simulations taking the variation in heat exchanger performance into account are performed showing that the bottoming cycle improves the off-design performance compared to the standard gas turbine solution. Even at 60% GT (gas turbine) load, the combined cycle with CO2 bottoming cycle can achieve up to 45% net plant efficiency, compared to 31% for only the gas turbine.

Harald Taxt Walnum; Petter Nekså; Lars O. Nord; Trond Andresen

2013-01-01T23:59:59.000Z

155

Statement of work for definitive design of the K basins integrated water treatment system project  

SciTech Connect

This Statement of Work (SOW) identifies the scope of work and schedule requirements for completing definitive design of the K Basins Integrated Water Treatment Systems (IWTS) Subproject. This SOW shall form the contractual basis between WHC and the Design Agent for the Definitive Design.

Pauly, T.R., Westinghouse Hanford

1996-07-16T23:59:59.000Z

156

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant.… (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

157

Method and apparatus for removing non-condensible gas from a working fluid in a binary power system  

DOE Patents (OSTI)

Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

Mohr, Charles M. (Idaho Falls, ID); Mines, Gregory L. (Idaho Falls, ID); Bloomfield, K. Kit (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

158

Work distribution of an expanding gas and transverse energy production in relativistic heavy ion collisions  

E-Print Network (OSTI)

The work distribution of an expanding extreme relativistic gas is shown to be a gamma distribution with a different shape parameter as compared with its non-relativistic counterpart. This implies that the shape of the transverse energy distribution in relativistic heavy ion collisions depends on the particle contents during the evolution of the hot and dense matter. Therefore, transverse energy fluctuations provide additional insights into the Quark-Gluon Plasma produced in these collisions.

Bin Zhang; Jay P. Mayfield

2014-01-19T23:59:59.000Z

159

Work distribution of an expanding gas and transverse energy production in relativistic heavy ion collisions  

E-Print Network (OSTI)

The work distribution of an expanding extreme relativistic gas is shown to be a gamma distribution with a different shape parameter as compared with its non-relativistic counterpart. This implies that the shape of the transverse energy distribution in relativistic heavy ion collisions depends on the particle contents during the evolution of the hot and dense matter. Therefore, transverse energy fluctuations provide additional insights into the Quark-Gluon Plasma produced in these collisions.

Zhang, Bin

2013-01-01T23:59:59.000Z

160

A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis  

Science Journals Connector (OSTI)

Abstract The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100 mg Nm?3.Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators.

P. Raman; N.K. Ram; Ruchi Gupta

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Material Control and Accounting Design Considerations for High-Temperature Gas Reactors  

SciTech Connect

The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

Trond Bjornard; John Hockert

2011-08-01T23:59:59.000Z

162

Traits at Work: the design of a new trait-based stream library  

E-Print Network (OSTI)

Traits at Work: the design of a new trait-based stream library Published in Computer LanguagesINRIA-Futurs Bordeaux bINRIA-Lille Nord Europe, Adam Team, CNRS 8022 - LIFL/UTSL cIMEC, Kapeldreef 75, B-3001 Leuven patterns. This paper presents our work on designing and implementing a new trait-based stream library named

Paris-Sud XI, Université de

163

Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1  

E-Print Network (OSTI)

Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1 , P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

Barkan, Christopher P.L.

164

Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa  

E-Print Network (OSTI)

Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa Department of Structural systems. No models are available in literature to measure the performance of natural gas network of natural or manmade hazard which might lead to the disruption of the system. The gas distribution network

Bruneau, Michel

165

Strategic Planning, Design and Development of the Shale Gas Supply Chain Network  

E-Print Network (OSTI)

1 Strategic Planning, Design and Development of the Shale Gas Supply Chain Network Diego C. Cafaro1-term planning of the shale gas supply chain is a relevant problem that has not been addressed before Shale gas, supply chain, strategic planning, MINLP, solution algorithm * Corresponding author. Tel.: +1

Grossmann, Ignacio E.

166

Control structure design for stabilizing unstable gas-lift oil wells  

E-Print Network (OSTI)

Control structure design for stabilizing unstable gas-lift oil wells Esmaeil Jahanshahi, Sigurd valve is the recommended solution to prevent casing-heading instability in gas-lifted oil wells. Focus to be effective to stabilize this system. Keywords: Oil production, two-phase flow, gas-lift, controllability, H

Skogestad, Sigurd

167

,"U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacws_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacws_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

168

,"U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwa_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwa_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

169

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

170

,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage Capacity (MMcf)" Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacw0_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacw0_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

171

Gas-turbine power stations on associated gas by Motor Sich OJSC  

Science Journals Connector (OSTI)

Wide introduction of gas-turbine power stations working on associated oil gas is topical for Russia. Designing and operational ... ) and EG-6000 (6.0 MW) gas-turbine power stations on associated oil gas manufactu...

P. A. Gorbachev; V. G. Mikhailutsa

2011-12-01T23:59:59.000Z

172

Low Prandtl number gas mixtures as a working fluid in a thermoacoustic refrigerator  

Science Journals Connector (OSTI)

Prandtl number (Pr) is the dimensionless ratio of kinematicviscosity to thermal diffusivity and is about 0.7 for most ideal gases. This value can be lowered significantly by mixing two gas species having molecular weights that are very different resulting in a minimum Pr of 0.22 for He?Xe mixtures. This can be used to minimize the nuisance effect of viscous shear losses for a thermoacousticrefrigerator as well as for other types of heat engines. The principle of thermoacousticheat transport will be briefly discussed [J. Wheatley T. Hofler G. W. Swift and A. Migliori J. Acoust. Soc. Am. 74 153–170 (1983)]. However changing the viscosity of the working fluid also changes the details of the acoustic velocity distribution thereby modifying the basic thermoacousticheat transport mechanism. Measurements indicate that this effect may be more important than the simple reduction of viscons shear losses. [Work supported by the Office of Naval Research and the Office of Naval Technology.

M. Suzalla; T. Hofler; S. L. Garrett

1988-01-01T23:59:59.000Z

173

Design, modelling and control of a gas turbine air compressor .  

E-Print Network (OSTI)

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

174

The Effect of Working Gas Admixture, Applied Voltage and Pressure on Focusing Time Parameter in the APF Plasma Focus Device  

Science Journals Connector (OSTI)

In the present research the effects of key parameters, applied voltage, working gas composition and pressure, on the focusing time in the APF plasma focus device are investigated. Pure nitrogen (N2) and three vol...

A. Roomi; M. Habibi

2012-06-01T23:59:59.000Z

175

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

176

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

177

Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel  

SciTech Connect

The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC.

Philip Casey Durst; Mark Schanfein

2012-08-01T23:59:59.000Z

178

System design and performance of a spiral groove gas seal for hydrogen service  

SciTech Connect

In the past, typical seal designs for low molecular weight gases, such as hydrogen, incorporated high pressure oil seal systems. Technology of the seventies and eighties produced a new concept - the spiral groove gas seal. This paper discusses the problems related to oil seal systems, as well as the design, application and performance of a dry gas seal. It also discusses the limitations encountered with the start-up and operation of a dry gas seal in a high pressure, oil-soluble mixture of light hydrocarbons. Results show how the spiral groove gas seal can handle adverse demands without seal failure.

Pecht, G.G.; Carter, D. (John Crane, Inc., Morton Grove, IL (USA) Marathon Petroleum Co., Robinson, IL (USA))

1990-09-01T23:59:59.000Z

179

Process Design and Integration of Shale Gas to Methanol  

E-Print Network (OSTI)

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

Ehlinger, Victoria M.

2013-02-04T23:59:59.000Z

180

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 156,161 158,351 126,677 101,609 72,294 83,427 33,855 -43,870 -34,609 -17,003 -75,285 -121,212 1996 -180,213 -191,939 -220,847 -233,967 -253,766 -260,320 -246,398 -159,895 -134,327 -127,911 -138,359 -86,091 1997 -55,406 -14,740 101,915 102,564 121,784 132,561 86,965 58,580 38,741 67,379 80,157 28,119 1998 77,255 135,784 65,355 130,979 148,718 138,540 205,160 215,060 166,834 187,302 246,104 273,754

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An Empirical Analysis of Gas Well Design and Pumping Tests for Retrofitting Landfill Gas Collection.  

E-Print Network (OSTI)

??Retrofitting a landfill with a gas collection system is an expensive and time consuming endeavor. Such an undertaking usually consists of longer-term extraction testing programs… (more)

Stevens, Derek

2013-01-01T23:59:59.000Z

182

FY 95 engineering work plan for the design reconstitution implementation action plan  

SciTech Connect

Design reconstitution work is to be performed as part of an overall effort to upgrade Configuration Management (CM) at TWRS. WHC policy is to implement a program that is compliant with DOE-STD-1073-93, Guide for Operational Configuration Management Program. DOE-STD-1073 requires an adjunct program for reconstituting design information. WHC-SD-WM-CM-009, Design Reconstitution Program Plan for Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System, is the TWRS plan for meeting DOE-STD-1073 design reconstitution requirements. The design reconstitution plan is complex requiring significant time and effort for implementation. In order to control costs, and integrate the work into other TWRS activities, a Design Reconstitution Implementation Action Plan (DR IAP) will be developed, and approved by those organizations having ownership or functional interest in this activity.

Bigbee, J.D.

1994-11-09T23:59:59.000Z

183

Energy-efficient wireless communication net-work design is an important and challenging  

E-Print Network (OSTI)

methodology achieves over traditional design methodologies, and the trade- off between energy consumption communication system and understand the trade-off between performance and energy consumption in each individualABSTRACT Energy-efficient wireless communication net- work design is an important and challenging

184

Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel  

SciTech Connect

Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC. For the nuclear industry to reap the benefits of SBD (i.e. avoid cost overruns and construction schedule slippages), nuclear facility designers and operators should work closely with the State Regulatory Authority and IAEA as soon as a decision is taken to build a new nuclear facility. Ideally, this interaction should begin during the conceptual design phase and continue throughout construction and start-up of a nuclear facility. Such early coordination and planning could influence decisions on the design of the nuclear material processing flow-sheet, material storage and handling arrangements, and facility layout (including safeguards equipment), etc.

Mark Schanfein; Casey Durst

2012-11-01T23:59:59.000Z

185

work  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE THE U.S. DEPARTMENT OF ENERGY'S WORKING CAPITAL FUND U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES OCTOBER 1998 AUDIT REPORT CR-B-99-01 MEMORANDUM FOR THE DIRECTOR, BUSINESS MANAGEMENT STAFF FROM: William S. Maharay Acting Manager, Capital Regional Audit Office, Office of Inspector General SUBJECT: INFORMATION : Audit Report on the Department's Working Capital Fund BACKGROUND The Department established the Working Capital Fund (Fund) in January 1996 as a financial management tool for charging the costs of common services provided at Headquarters to Departmental program offices. The objectives in establishing the Fund were to increase efficiency of the Department's operations, improve management of administrative services

186

``Designing Lagrangian experiments to measure regional-scale trace gas fluxes''  

E-Print Network (OSTI)

``Designing Lagrangian experiments to measure regional-scale trace gas fluxes'' J. C. Lin,1 C gas fluxes at the land surface is essential for understanding the impact of human activities as they travel over the landscape. Successful Lagrangian experiments depend critically on forecasts of air parcel

187

Design and Optimization of a Pure Refrigerant Cycle for Natural Gas Liquefaction with Subcooling  

Science Journals Connector (OSTI)

Design and Optimization of a Pure Refrigerant Cycle for Natural Gas Liquefaction with Subcooling ... The world’s first commercial LNG plant uses the cascade process, which employs three different pure refrigerants: propane, ethane (or ethylene), and methane. ...

Inkyu Lee; Kyungjae Tak; Hweeung Kwon; Junghwan Kim; Daeho Ko; Il Moon

2014-05-14T23:59:59.000Z

188

Design and Experimental Study of the Steam Mining System for Natural Gas Hydrates  

Science Journals Connector (OSTI)

Figure 3. Schematic diagram of the SMSGH: (1) water tank, (2) water pump, (3) water treatment system, (4) soft water tank, (5) small pump, (6) electricity steam generator, (7) steam control valve, (8) orifice device, (9) dual-wall drill pipe, (10) non-productive layer bushing, (11) floral tube in the mined bed, (12) submersible pump, (13) air pump, (14) water tank, (15) gas–liquid separator, (16) cartridge gas filter, (17) gas flow meter, (18) gas storage tank, and (19) ignition device. ... The working principle of the gas collection system is as follows: The obtained natural gas spills from the layer of earth through the floral tube in the mined bed (11) and will generate a high flow rate with the vapor and water mixture using the pump function of the air pump (13). ... Hydrates continuously generated natural gas. ...

You-hong Sun; Rui Jia; Wei Guo; Yong-qin Zhang; You-hai Zhu; Bing Li; Kuan Li

2012-11-06T23:59:59.000Z

189

Fuel cell design for gas hydrates exploration and research.  

E-Print Network (OSTI)

?? In this thesis the design, manufacture and testing of an Alkaline Fuel Cell (AFC) that provide electrical power to a deep sea measurement problem… (more)

Sauer, Gerhard, (Thesis)

2006-01-01T23:59:59.000Z

190

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 -47.60 -43.40 -38.60 -25.20 -18.80 -16.70 -19.80 -15.60 1997 -15.00 -5.60 52.10 45.80 43.50 39.10 22.20 12.30 6.70 10.60 14.30 6.00 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.30 55.40 1999 56.40 52.20 46.30 24.20 18.80 19.30 8.80 0.30 5.30 -3.80 0.00 0.00 2000 -14.80 -32.50 -28.30 -30.80 -35.70 -34.40 -30.70 -30.60 -28.40 -22.30 -28.90 -46.70 2001 -38.30 -35.20 -37.70 -12.80 9.80 25.20 31.70 43.40 46.40 30.90 52.60 127.30 2002 127.50 140.90 136.10 82.90 59.20 34.80 18.30 10.40 3.10 -0.50 -14.40 -23.90

191

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)  

SciTech Connect

The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

David Petti; Philippe Martin; Mayeul Phélip; Ronald Ballinger; Petti does not have NT account

2004-12-01T23:59:59.000Z

192

Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell–gas turbine systems  

Science Journals Connector (OSTI)

Design performances of the hybrid solid oxide fuel cell (SOFC)–gas turbine (GT) system have been investigated. A pressurized system and an indirectly heated ambient pressure system were analyzed and their performances were compared. In the baseline layout, the basic performance characteristics of the two system configurations were analyzed, with the cell operation temperature and the pressure ratio as the main design parameters. The pressurized system exhibits a better efficiency owing to not only the higher cell voltage but also more effective utilization of gas turbine, i.e., a larger GT power contribution due to a higher turbine inlet temperature. Independent setting of the turbine inlet temperature was simulated by using the additional fuel supply as well as the air bypass. Increasing the pressure ratio of the gas turbine hardly improves the system efficiency, but the efficiency becomes less sensitive to the turbine inlet temperature. In the ambient pressure system, the available design parameter range is much reduced due to the limit on the recuperator temperature. In particular, design of the ambient pressure hybrid system with a gas turbine of a high pressure ratio does not seem quite feasible because the system efficiency that can be achieved at the possible design conditions is even lower than the efficiency of the SOFC only system.

S.K. Park; T.S. Kim

2006-01-01T23:59:59.000Z

193

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

Unknown

2002-01-31T23:59:59.000Z

194

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

Unknown

2002-03-31T23:59:59.000Z

195

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss  

E-Print Network (OSTI)

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

Foss, Bjarne A.

196

Design and Study of Gas Calorimeter for Absolute Measurements of the Combustion Heat of Natural Gas  

Science Journals Connector (OSTI)

A novel burning calorimeter design based on a heat pipe is presented. A circuit for automated control over operation of the proposed device is considered. The stability of the results is assessed. Several acce...

Yu. I. Aleksandrov; V. P. Varganov; S. Sarge

2001-09-01T23:59:59.000Z

197

Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning  

E-Print Network (OSTI)

The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms.

S. Colafranceschi; L. Benussi; S. Bianco; L. Passamonti; D. Piccolo; D. Pierluigi; A. Russo; G. Saviano; C. Vendittozzi; M. Abbrescia; A. Aleksandrov; U. Berzano; C. Calabria; C. Carrillo; A. Colaleo; V. Genchev; P. Iaydjiev; M. Kang; K. S. Lee; F. Loddo; S. K. Park; G. Pugliese; M. Maggi; S. Shin; M. Rodozov; M. Shopova; G. Sultanov; P. Verwillingen

2012-09-18T23:59:59.000Z

198

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

199

Impact of mine closure and access facilities on gas emissions from old mine workings to surface: examples of French iron and coal  

E-Print Network (OSTI)

with a vent to enable mine gas outflow in specific conditions. Measurements stations were installed on mine conditions. Some parts of the basin are under gas capture stations influence. This is not the case in "La1 Impact of mine closure and access facilities on gas emissions from old mine workings to surface

Boyer, Edmond

200

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity for the California desert and in other appro- priate regions worldwide. Current technology relies on steam Rankine

Ponce, V. Miguel

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analysis of design and part load performance of micro gas turbine/organic Rankine cycle combined systems  

Science Journals Connector (OSTI)

This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several differe...

Joon Hee Lee; Tong Seop Kim

2006-09-01T23:59:59.000Z

202

Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects  

E-Print Network (OSTI)

This thesis presents a methodology based on Proppant Number approach for optimal fracture treatment design of natural gas wells considering non-Darcy flow effects in the design process. Closure stress is taken into account, by default, because...

Lopez Hernandez, Henry De Jesus

2004-11-15T23:59:59.000Z

203

Modular high temperature gas-cooled reactor plant design duty cycle. Revision 3  

SciTech Connect

This document defines the Plant Design Duty Cycle (PCDC) for the Modular High Temperature Gas-cooled Reactor (MHTGR). The duty cycle is a set of events and their design number of occurrences over the life of the plant for which the MHTGR plant shall be designed to ensure that the plant meets all the top-level requirements. The duty cycle is representative of the types of events to be expected in multiple reactor module-turbine plant configurations of the MHTGR. A synopsis of each PDDC event is presented to provide an overview of the plant response and consequence. 8 refs., 1 fig., 4 tabs.

Chan, T.

1989-12-31T23:59:59.000Z

204

655Appendix 1.The ELT Design Study This appendix provides a brief descriptive of the Work Packages of the ELT Design Study. Work  

E-Print Network (OSTI)

sensors for the phasing of segments. Tasks: development, design, supply and testing of cost to 20,000 position sensors. #12;The ELT Design Study 656 04300 Position actuators ESO Objective: feasibility of nm-accuracy, cost-effective segments position actuators. Tasks: development, design, supply

Liske, Jochen

205

Work domain analysis and intelligent transport systems: implications for vehicle design  

Science Journals Connector (OSTI)

This article presents a Work Domain Analysis (WDA) of the road transport system in Victoria, Australia. A series of driver information requirements and tasks that could potentially be supported through the use of Intelligent Transport Systems (ITS) are then extracted from the WDA. The potential use of ITS technologies to circumvent these information gaps and provide additional support to drivers is discussed. It is concluded that driver information requirements are currently not entirely satisfied by contemporary vehicle design and also that there are a number of driving tasks that could be further supported through the provision of supplementary systems within vehicles.

Paul M. Salmon; Michael Regan; Michael G. Lenne; Neville A. Stanton; Kristie Young

2007-01-01T23:59:59.000Z

206

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network (OSTI)

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

207

The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline com-  

E-Print Network (OSTI)

gas hydrates. Gas hydrates are crystalline com- pounds that are often encountered in oil and gas briefly present the hydrate crystalline structure and the role of hydrates in oil-and gas industry the industrial contexts where they appear, we shall cite : hydrate plugs obstructing oil- or gas

Boyer, Edmond

208

Project Information Form Project Title Working toward a policy framework for reducing greenhouse gas  

E-Print Network (OSTI)

Provided (by each agency or organization) US DOT $37,874 Total Project Cost $37,874 Agency ID or ContractProject Information Form Project Title Working toward a policy framework for reducing greenhouse of Research Project This white paper is concerned with a preliminary investigation of the extent to which

California at Davis, University of

209

Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design  

SciTech Connect

This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

Lee C. Cadwallader

2013-10-01T23:59:59.000Z

210

Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants  

SciTech Connect

Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed.

McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

1980-02-01T23:59:59.000Z

211

DESIGN OF A CONTAINMENT VESSEL CLOSURE FOR SHIPMENT OF TRITIUM GAS  

SciTech Connect

This paper presents a design summary of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This new package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The new design is based on changes in the regulatory requirements. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials that enhance the package's ability to withstand dynamic loading and thermal effects. This paper will specifically summarize the design philosophy and engineered features of the BTSP containment vessel closure. The closure design incorporates a concave closure lid, metallic C-Ring seals for containing tritium gas, a metal bellows valve and an elastomer O-Ring for leak testing. The efficient design minimizes the overall vessel height and protects the valve housing from damage during postulated drop and crush scenarios. Design features will be discussed.

Eberl, K; Paul Blanton, P

2007-07-03T23:59:59.000Z

212

Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture  

SciTech Connect

Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is designed followed by the supervisory control layer. Finally, an optimization layer is designed. In this paper, the proposed two-stage control system design approach is applied to the AGR unit for an IGCC power plant with CO{sub 2} capture. Aspen Plus Dynamics® is used to develop the dynamic AGR process model while MATLAB is used to perform the control system design and for implementation of model predictive control (MPC).

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

213

Gas-turbine units of OAO Aviadvigatel’ designed for operation on synthesis gas obtained from gasification of coal  

Science Journals Connector (OSTI)

Problems that have to be solved for adapting a 16-MW gas-turbine unit used as part of a gas turbine-based power station for firing low-grade...

D. D. Sulimov

2010-02-01T23:59:59.000Z

214

Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work  

SciTech Connect

This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

D. E. Shanklin

2007-07-25T23:59:59.000Z

215

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

216

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

217

7.09 ERGONOMIC ANALYSIS IN ORDER TO DESIGN A WORK HELP TOOL : SIGOONS Corinne Chabaud & Sandrine Cazabat  

E-Print Network (OSTI)

7.09 ERGONOMIC ANALYSIS IN ORDER TO DESIGN A WORK HELP TOOL : SIGOONS Corinne Chabaud & Sandrine. INTRODUCTION This study issue is ergonomics part in design processes. We will describe how ergonomics tackle results and ambitions. 2. CONTEXT AND OBJECTIVES 2. 1 Context The present ergonomic study has been

Winckler, Marco Antonio Alba

218

Abstract--Multimedia groupware systems provide rich support for distributed team work. Yet effective design of these systems is  

E-Print Network (OSTI)

evolve design ideas. The problem is that multimedia groupware is hard to prototype because distributed that inform the design of universally accepted toolkits for building distributed multimedia systems: we1 Abstract--Multimedia groupware systems provide rich support for distributed team work. Yet

Greenberg, Saul

219

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

220

Design, analyses and experimental study of a foil gas bearing with compression springs as a compliance support  

E-Print Network (OSTI)

A new foil bearing with compression springs is designed, built, analyzed, and tested. This foil gas bearing uses a series of compression springs as a compliant structure instead of corrugated bump foils. A spring model to estimate the stiffness...

Song, Ju Ho

2009-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel performance models for high-temperature gas-cooled reactor core design  

SciTech Connect

Mechanistic fuel performance models are used in high-temperature gas-cooled reactor core design and licensing to predict failure and fission product release. Fuel particles manufactured with defective or missing SiC, IPyC, or fuel dispersion in the buffer fail at a level of less than 5 x 10/sup -4/ fraction. These failed particles primarily release metallic fission products because the OPyC remains intact on 90% of the particles and retains gaseous isotopes. The predicted failure of particles using performance models appears to be conservative relative to operating reactor experience.

Stansfield, O.M.; Simon, W.A.; Baxter, A.M.

1983-09-01T23:59:59.000Z

222

Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect

The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

NONE

1995-10-01T23:59:59.000Z

223

Compact design improves efficiency and CAPEX -- combining plate heat exchangers and gas-liquid separators for gas processing savings  

SciTech Connect

This paper presents the unique combination of two well proven technologies: a compact large scale welded plate heat exchanger with a gas-liquid separator within the same pressure vessel. Explained are the benefits for raw gas processing on production sites where cost, weight and efficiency are of particular importance. Application of this Combined Heat Exchanger-Separator is presented for various gas processing schemes: Turbo Expander, Mechanical Refrigeration and Joule-Thompson.

Waintraub, L.; Sourp, T. [Proser (France)

1998-12-31T23:59:59.000Z

224

Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation  

SciTech Connect

A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

Restrepo, Bernardo; Banta, Larry E.; Tucker, David

2012-10-01T23:59:59.000Z

225

High-temperature gas-cooled-reactor steam-methane reformer design  

SciTech Connect

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam reforming reaction, is currently being evaluated as an energy source/application for use early in the 21st century. The steam-methane reforming reaction is an endothermic reaction at temperatures approximately 700/sup 0/C and higher, which produces hydrogen, carbon monoxide and carbon dioxide. The heat of the reaction products can then be released, after being pumped to industrial site users, in a methanation process producing superheated steam and methane which is then returned to the reactor plant site. In this application the steam reforming reaction temperatures are produced by the heat energy from the core of the HTGR through forced convection of the primary or secondary helium circuit to the catalytic chemical reactor (steam reformer). This paper summarizes the design of a helium heated steam reformer utilized in conjunction with a 1170 MW(t) intermediate loop, 850/sup 0/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, materials selection and the structural design analysis.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-20T23:59:59.000Z

226

Off-design performance of solar Centaur-40 gas turbine engine using Simulink  

Science Journals Connector (OSTI)

In the present study, a Simulink model based on Matlab software is used to calculate the off-design running point for single shaft Centaur 40 power generation gas turbine engine. The off-design calculations comprise two models, the first is the operation during engine starting (from 65% to 100% speed, no load) while the other is the engine operation during the loading (constant speed of 100%). For starting model the baseline parameter is the engine speed while the net power is the baseline parameter in the case of loading operation. Herein, the component characteristics maps, the air and air/fuel mixture properties as functions of temperature and the engine design point parameters are introduced to the calculating program. Because of the lack of real component characteristics, scaling law is followed to adapt these characteristics. The loading operation results are then compared with the field results to check the validity of Simulink model. Also the effects of the ambient temperature on the engine performance parameters at the design condition are investigated.

M.H. Gobran

2013-01-01T23:59:59.000Z

227

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 View History U.S. 4,211,193 4,327,844 4,410,224 4,483,650 4,576,356 2008-2012 Alabama 20,900 20,900 25,150 27,350 27,350 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 296,318 303,761 303,500 302,385 302,962 2008-2012 Indiana 32,769 32,157 32,982 33,024 33,024 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 119,260 119,339 123,190 123,225 123,343 2008-2012 Kentucky

228

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

12,178 2012-2014 California 374,296 374,296 374,296 374,296 374,296 374,296 2012-2014 Colorado 60,582 60,582 60,582 60,582 60,582 63,774 2012-2014 Illinois 303,312 303,312...

229

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K. Steiglitz; D. J. Kleitman  

E-Print Network (OSTI)

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K@jstor.org. http://www.jstor.org Mon Oct 22 13:48:01 2007 #12;OPTIMAL DESIGN OF OFFSHORE NATURAL-GAS PIPELINEAnolog,tj, Cambridge, Massachusetts (Received January 28, 1969) The exploitation of offshore natural gas reserves

Steiglitz, Kenneth

230

Framework and systematic functional criteria for integrated work processes in complex assets: a case study on integrated planning in offshore oil and gas production industry  

Science Journals Connector (OSTI)

Improving the efficiency and cost-effectiveness of the oil and gas (O&G) production process is considered as a critical timely need. The core work processes in particular are targeted for considerable improvements. In this context, development related to integrated planning (IP) is seen as one of the major bases for developing collaborative work processes connecting offshore production and onshore support system. With feasible benefits, for instance, relating to reduction of non-working time, less work repetition, reduction of reduction in production losses, better resource utilisation, etc., a systematic and a complete IP system is today seen as an attractive solution for integrating complex operations and to work smarter. This paper, based on a case study from North Sea oil and gas production environment, describes the systematic functional criteria required as the basis for developing a fully functional IP system.

Yu Bai; Jayantha P. Liyanage

2012-01-01T23:59:59.000Z

231

Statement of work for system design and engineering of the SNF multi-canister overpack  

SciTech Connect

This document describes the workscope for final design of the Multi-Canister Overpack to be used for long term storage of N Reactor fuel.

Smith, K.E., Westinghouse Hanford

1996-09-11T23:59:59.000Z

232

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report)  

SciTech Connect

The objective of this INERI project is to develop improved fuel behavior models for gas reactor coated particle fuels and to develop improved coated-particle fuel designs that can be used reliably at very high burnups and potentially in fast gas-cooled reactors. Thermomechanical, thermophysical, and physiochemical material properties data were compiled by both the US and the French and preliminary assessments conducted. Comparison between U.S. and European data revealed many similarities and a few important differences. In all cases, the data needed for accurate fuel performance modeling of coated particle fuel at high burnup were lacking. The development of the INEEL fuel performance model, PARFUME, continued from earlier efforts. The statistical model being used to simulate the detailed finite element calculations is being upgraded and improved to allow for changes in fuel design attributes (e.g. thickness of layers, dimensions of kernel) as well as changes in important material properties to increase the flexibility of the code. In addition, modeling of other potentially important failure modes such as debonding and asphericity was started. A paper on the status of the model was presented at the HTR-2002 meeting in Petten, Netherlands in April 2002, and a paper on the statistical method was submitted to the Journal of Nuclear Material in September 2002. Benchmarking of the model against Japanese and an older DRAGON irradiation are planned. Preliminary calculations of the stresses in a coated particle have been calculated by the CEA using the ATLAS finite element model. This model and the material properties and constitutive relationships will be incorporated into a more general software platform termed Pleiades. Pleiades will be able to analyze different fuel forms at different scales (from particle to fuel body) and also handle the statistical variability in coated particle fuel. Diffusion couple experiments to study Ag and Pd transport through SiC were conducted. Analysis and characterization of the samples continues. Two active transport mechanisms are proposed: diffusion in SiC and release through SiC cracks or another, as yet undetermined, path. Silver concentration profiles determined by XPS analysis suggest diffusion within the SiC layer, most likely dominated by grain boundary diffusion. However, diffusion coefficients calculated from mass loss measurements suggest a much faster release path, postulated as small cracks or flaws that provide open paths with little resistance to silver migration. Work is ongoing to identify and characterize this path. Work on Pd behavior has begun and will continue next year.

Petti, David Andrew; Maki, John Thomas; Languille, Alain; Martin, Philippe; Ballinger, Ronald

2002-11-01T23:59:59.000Z

233

Fuel cell–gas turbine hybrid system design part II: Dynamics and control  

Science Journals Connector (OSTI)

Abstract Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P–I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

Dustin McLarty; Jack Brouwer; Scott Samuelsen

2014-01-01T23:59:59.000Z

234

Design and implementation of a universal controller working under the MCX-16 real-time kernel  

E-Print Network (OSTI)

In this thesis, the design of a universal controller is introduced. The controller has a 16-bit processor, four A/D channels and two D/A channels. It can run a control program up to 64K byte long. The real-time kernel, MCX-16, is selected...

Xue, Yuannong

2012-06-07T23:59:59.000Z

235

Saving energy at work: the design of a pervasive game for office spaces  

Science Journals Connector (OSTI)

Decreasing the energy consumption is an important goal for individuals and public or industrial institutions. Pervasive games have been used to teach people to save energy in private households. We present Climate Race, a pervasive game addressing ... Keywords: designing for the workplace, energy efficiency, pervasive games

Jonathan Simon; Marco Jahn; Amro Al-Akkad

2012-12-01T23:59:59.000Z

236

Agile User Experience Design: A Practitioner's Guide to Making It Work  

Science Journals Connector (OSTI)

Being able to fit design into the Agile software development processes is an important skill in today's market. There are many ways for a UX team to succeed (and fail) at being Agile. This book provides you with the tools you need to determine what Agile ...

Diana Brown

2012-10-01T23:59:59.000Z

237

Multi-Scale Thermal Measurement and Design of Cooling Systems in Gas Turbine  

Science Journals Connector (OSTI)

The present gas turbine technology increases the turbine inlet temperature to a limitation which is very high gas temperature accomplished by recently developed material and cooling technology. In order to overco...

Hyung Hee Cho; Kyung Min Kim; Sangwoo Shin…

2009-01-01T23:59:59.000Z

238

A Robust Infrastructure Design for Gas Centrifuge Enrichment Plant Unattended Online Enrichment Monitoring  

SciTech Connect

An online enrichment monitor (OLEM) is being developed to continuously measure the relative isotopic composition of UF6 in the unit header pipes of a gas centrifuge enrichment plant (GCEP). From a safeguards perspective, OLEM will provide early detection of a facility being misused for production of highly enriched uranium. OLEM may also reduce the number of samples collected for destructive assay and if coupled with load cell monitoring can provide isotope mass balance verification. The OLEM design includes power and network connections for continuous monitoring of the UF6 enrichment and state of health of the instrument. Monitoring the enrichment on all header pipes at a typical GCEP could require OLEM detectors on each of the product, tails, and feed header pipes. If there are eight process units, up to 24 detectors may be required at a modern GCEP. Distant locations, harsh industrial environments, and safeguards continuity of knowledge requirements all place certain demands on the network robustness and power reliability. This paper describes the infrastructure and architecture of an OLEM system based on OLEM collection nodes on the unit header pipes and power and network support nodes for groupings of the collection nodes. A redundant, self-healing communications network, distributed backup power, and a secure communications methodology. Two candidate technologies being considered for secure communications are the Object Linking and Embedding for Process Control Unified Architecture cross-platform, service-oriented architecture model for process control communications and the emerging IAEA Real-time And INtegrated STream-Oriented Remote Monitoring (RAINSTORM) framework to provide the common secure communication infrastructure for remote, unattended monitoring systems. The proposed infrastructure design offers modular, commercial components, plug-and-play extensibility for GCEP deployments, and is intended to meet the guidelines and requirements for unattended and remotely monitored safeguards systems.

Younkin, James R [ORNL; Rowe, Nathan C [ORNL; Garner, James R [ORNL

2012-01-01T23:59:59.000Z

239

Spoke cavity power coupler conceptual design work for the HEL-JTO beam exp.  

SciTech Connect

The objective of this report was to create a low-cost, modest-power RF coupler for a SRF spoke cavity beam test of electrons test to be done at LANL. Developing the design for this magnetically-coupled SRF spoke cavity testing coupler was basically straightforward since the cavity coupling port needed to be one of the 1.22-inch ID ports, and the power level was limited by the available RF to less than 400 W TW power. In addition, the coupler would be immersed in bath cryostat filled with liquid helium, and ultimately used in a pulsed mode to accelerate beam, thereby significantly relaxing the thermal loads on the coupler. Combining the above considerations with the level of resources available for this task, emphasis was placed on rapidly developing a robust, reliable design that would use commercially-available components as available to save design, engineering, and fabrication costs. Analysis was also kept to a minimum. As such, the design incorporates the following features: (1) Use of a commercially-available Type-N ceramic feedthrough. For the power and frequency range of the test, with the feedthrough immersed in LHe, it was felt the Type-N feedthrough would provide a robust, low-cost vacuum window solution. (2) The coupler outer conductors would be solid OFE copper that is brazed into two 2.75-inch CFF, with the cavity-sde flange being rotatable to allow minor Qx adjustments by rotating the coupler. The braze joint shown has the copper brazed into a groove in the SST to ensure maximum strength for successive thermal cyclings. The outer wall of the copper between the two flanges serves as the heat sink for depositing coupler heat to the liquid helium. (3) The inner conductor would be solid OFE copper brazed to the outer conductor at the top to ensure maximum thermal conductivity from the outer thermal sink area to the base of the feedthrough. A mass-reducing hole is placed down the center of the inner conductor to decrease thermal mass and weight. (4) This assembly would be mated to the Type-N feedthrough by pushing the pin from the feedthrough into a spring-loaded connector on the base of the inner conductor, then bolting the flanges together. (5) If the coupling needs to be greatly reduced, an additional 1/2-inch CFF can be inserted between the coupler and cavity flanges. Increasing the coupling can be done with a 3 stub tuner.

Rusnak, B

2007-10-09T23:59:59.000Z

240

The Gas Flow from the Gas Attenuator to the Beam Line  

SciTech Connect

The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

Ryutov, D.D.

2010-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced natural-gas-fueled-engine development. Part 1: design and analyses. Final report, April 1985-July 1986  

SciTech Connect

The objective of the research program was to design an advanced natural gas engine (NG 1990) to be produced in the 1990's which will have high thermal efficiency and 40,000 hours durability of the valve-train components before major engine overhaul. Preliminary design and feasibility of the NG 1990 advanced natural gas engine was completed. A natural gas engine simulation model predicts up to 43.6% brake thermal efficiency (5840 Btu/hp-hr BSFC) for the advanced engine with the advanced concepts like K-Miller cycle (early intake valve closing), lean burn combustion - A/F ratio = 24.5, high compression ratio up to 14:1, higher turbocharger efficiency of 63.2% overall, and axially stratified charge combustion system resulting in fast burning. The use of K-Miller cycle reduces the in-cylinder gas temperatures and allows engine operation at 14:1 compression ratio without knock tendencies. The design and analyses of the NG 1990 engine and its components like K-Miller system were completed in the program.

Kamo, R.; Walson, R.; Kakwani, R.M.; Kamo, L.

1986-11-01T23:59:59.000Z

242

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

243

Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities  

SciTech Connect

A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

MM Hall

2006-01-31T23:59:59.000Z

244

Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine  

Science Journals Connector (OSTI)

Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.

R Braun; K Kusterer; T Sugimoto; K Tanimura; D Bohn

2013-01-01T23:59:59.000Z

245

Statement of work for sytem design and engineering of the spent nuclear fuel multi-cansiter overpack  

SciTech Connect

This Statement of Work (SOW) describes the work scope for the preparation of the Phase 2 (final) design for the Multiple Canister Overpack (MCO) equipment. The MCO is to be used as the radiological containment device for the Spent Nuclear Fuel (SNF) assemblies, currently in wet storage in K East and West Basins, to be transported and stored in the Canister Storage Building (CSB) until final disposal facilities are made available. The engineering services contractor will be requested to provide reports, studies, analyses, engineering, drawings, specifications, estimates and schedules. The overall goal of this task order is to do the following: 1. Prepare a fabrication specification, ASME Code exception report, a packaging, shipping and warehouse plan, and detailed fabrication drawings of the MCO in accordance with the MCO Performance Specification (HNF-S-0426, Rev. 3) for procurement activities by the SNF MCO Subproject. 2. Establish and maintain a comment data base on the comments, resolutions, changes to the design of the MCO. 3. Support fabrication activities through the review of vendor fabrication drawings and shop test reports.

Smith, K.E., Fluor Daniel Hanford

1997-03-03T23:59:59.000Z

246

Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

Ma, Xiaodan

2013-12-10T23:59:59.000Z

247

Design and analysis of multi-stage expander processes for liquefying natural gas  

Science Journals Connector (OSTI)

Multi-stage expander refrigeration cycles were proposed and analyzed in order to develop an efficient natural gas liquefaction process. The proposed dual and cascade expander processes have high efficiency and th...

Wonsub Lim; Inkyu Lee; Kwanghee Lee…

2014-09-01T23:59:59.000Z

248

portation and Greenhouse Gas (MUNTAG) model is a macroscopic, highly aggregate model that works at the municipal level and solely  

E-Print Network (OSTI)

identifies the following four sectors: buildings; trans- portation and land use; energy supply; and municipal GHG inventory. This work is part of a project to write a guide called Getting to Car- bon Neutral

Illinois at Chicago, University of

249

Design data needs modular high-temperature gas-cooled reactor. Revision 2  

SciTech Connect

The Design Data Needs (DDNs) provide summary statements for program management, of the designer`s need for experimental data to confirm or validate assumptions made in the design. These assumptions were developed using the Integrated Approach and are tabulated in the Functional Analysis Report. These assumptions were also necessary in the analyses or trade studies (A/TS) to develop selections of hardware design or design requirements. Each DDN includes statements providing traceability to the function and the associated assumption that requires the need.

NONE

1987-03-01T23:59:59.000Z

250

Evaluation of gas-phase technetium decontamination and safety related experiments during FY 1994. A report of work in progress  

SciTech Connect

Laboratory activities for FY94 included: evaluation of decontamination of Tc by gas-phase techniques, evaluation of diluted ClF{sub 3} for removing U deposits, evaluation of potential hazard of wet air inlekage into a vessel containing ClF{sub 3}, planning and preparation for experiments to assess hazard of rapid reaction of ClF{sub 3} and hydrated UO{sub 2}F{sub 2} or powdered Al, and preliminary evaluation of compatibility of Tenic valve seat material.

Simmons, D.W.; Munday, E.B.

1995-05-01T23:59:59.000Z

251

Design, Fabrication, and Application of a Dynamic Chamber for Measuring Gas Emissions from Soil  

Science Journals Connector (OSTI)

Accurate measurement of the emission of trace gases and VOCs from soils to the atmosphere is essential for studying the behavior of gas movement and its fate in the subsurface, for evaluating existing theories and models of trace gas and VOC emissions, for estimating masses of trace gases and VOCs emitted into the atmosphere, and thus, for assessing the effects of such emissions upon the environment. ... (6) The outside surface of the chamber should be able to reflect solar radiation so that the radiant heating or the “greenhouse” effect can be effectively reduced. ... This flow rate was monitored every 1 s using a turbine-wheel gas flow sensor (McMillan Co., Georgetown, TX), averaged over a 5-min interval and recorded by an on-site computer. ...

Fang Gao; S. R. Yates; M. V. Yates; Jianying Gan; F. F. Ernst

1996-12-30T23:59:59.000Z

252

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network (OSTI)

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure infrastructure in US fleet. c Under US grid mix, PEVs provide minor GHG reductions and work chargers do little. c vehicles Plug-in hybrid electric vehicles Hybrid electric vehicles a b s t r a c t Electrified vehicles can

Michalek, Jeremy J.

253

CONCEPTUAL DESIGN FOR A RADICALLY SMALLER, HIGHLY ADAPTIVE AND APPLICATION-FLEXIBLE MINING MACHINE FOR UTILITY AND DEVELOPMENT WORK  

SciTech Connect

The aim of this research project was to develop a preliminary ''conceptual design'' for a radically smaller, highly adaptive and application-flexible underground coal mining machine, for performing non-production utility work and/or also undertake limited production mining for the recovery of reserves that would otherwise be lost. Whereas historically, mining philosophies have reflected a shift to increasing larger mechanized systems [such as the continuous miner (CM)], specific mining operations that do not benefit from the economy of the large mining equipment are often ignored or addressed with significant inefficiencies. Developing this prototype concept will create a new class of equipment that can provide opportunities to re-think the very structure of the mining system across a broad range of possibilities, not able to be met by existing machinery. The approach involved pooling the collective input from mining professionals, using a structured listing of desired inputs in the form of a questionnaire, which was used to define the range of desired design specifications. From these inputs, a conceptual specification was blended, by the author, to embody the general concurrence of mission concepts for this machine.

Andrew H. Stern

2004-12-20T23:59:59.000Z

254

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect

The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

R. P. Wells

2006-09-19T23:59:59.000Z

255

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

256

The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics  

SciTech Connect

This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

NONE

1995-10-01T23:59:59.000Z

257

Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine  

Science Journals Connector (OSTI)

Abstract A small-scale combined cooling and power (CCP) system usually serves district air conditioning apart from power generation purposes. The typical system consists of a gas turbine and an exhaust gas-fired absorption refrigerator. The surplus heat of the gas turbine is recovered to generate cooling energy. In this way, the CCP system has a high overall efficiency at the design point. However, the CCP system usually runs under off-design conditions because the users’ demand varies frequently. The operating strategy of the gas turbine will affect the thermodynamic performance of itself and the entire CCP system. The operating strategies for gas turbines include the reducing turbine inlet temperature (TIT) and the compressor inlet air throttling (IAT). A CCP system, consisting of an OPRA gas turbine and a double effects absorption refrigerator, is investigated to identify the effects of different operating strategies. The CCP system is simulated based on the partial-load model of gas turbine and absorption refrigerator. The off-design performance of the CCP system is compared under different operating strategies. The results show that the IAT strategy is the better one. At 50% rated power output of the gas turbine, the IAT operating strategy can increase overall system efficiency by 10% compared with the TIT strategy. In general, the IAT operating strategy is suited for other gas turbines. However, the benefits of IAT should be investigated in the future, when different gas turbine is adopted. This study may provide a new operating strategy of small scale gas turbine to improve the off-design performance of CCP system.

Wei Han; Qiang Chen; Ru-mou Lin; Hong-guang Jin

2015-01-01T23:59:59.000Z

258

Thermionic-combustor combined-cycle system. Volume III. A thermionic converter design for gas-turbine combined-cycle systems  

SciTech Connect

Thermionic converter design is strongly influenced by the configuration of the heat source and heat sink. These two externally imposed conditions are of major importance in arriving at a viable converter design. In addition to these two factors, the economical and reliable transfer of energy internally within the converter is another major item in the design. The effects of the engineering trade-offs made in arriving at the design chosen for the Gas Turbine Combined Cycle combustor are reviewed.

Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S. Jr.

1981-05-01T23:59:59.000Z

259

Current Status and Perspectives of Liquefied Natural Gas (LNG) Plant Design  

Science Journals Connector (OSTI)

The processes can be classified into three general categories based on the type of refrigeration cycle and equipment used: a cascade process using pure refrigerants, a mixed refrigerant process using refrigerant mixtures, and an expander process using expanders instead of Joule–Thomson (J–T) valves. ... To cool the nitrogen to a low-enough temperature to liquefy natural gas, the cLNG process uses both self-cooling and turbo expanders. ...

Wonsub Lim; Kwangho Choi; Il Moon

2012-12-15T23:59:59.000Z

260

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

SciTech Connect

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Designing a model for reliability improvement with FTA and FMEA techniques on medical gas outlet  

Science Journals Connector (OSTI)

In this case study of medical equipment industry, a reliability improvement cycle was conducted about medical gas outlet. Outlet connects four main hospital gases including oxygen, vacuum, air and nitroxide from hospital gas lines to certain equipment such as flowmeter, suction and other medical equipment by adaptor. Outlet product was chosen because it is a necessary and sensitive product in a hospital, and a small mistake during its production and installation can endanger a patient's life. In this study, reliability allocation was initially carried out for outlet parts. Two valves and spring were identified as important parts by means of tools such as functional flow block diagram and N*N that recognised system parts and their relationships. Then, fault tree analysis (FTA), failure modes and effective analysis (FMEA) were performed. System reliability was calculated via Bayesian method. Finally, improvement and redesigning were performed for system. In this study, a new model was proposed for reliability improvement of the products. In addition, reliability of medical gas outlet was increased.

Marzieh Sadeghi; Mehdi Karbasiyan; Mehrzad Navabakhsh

2014-01-01T23:59:59.000Z

262

Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid  

SciTech Connect

The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

Mehta, R. N. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076, India and Government Engineering College Bharuch, Gujarat - 392002 (India); Bapat, S. L.; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

2014-01-29T23:59:59.000Z

263

ORIGEN-ARP Cross-Section Libraries for Magnox, Advanced Gas-Cooled, and VVER Reactor Designs  

SciTech Connect

Cross-section libraries for the ORIGEN-ARP system were extended to include four non-U.S. reactor types: the Magnox reactor, the Advanced Gas-Cooled Reactor, the VVER-440, and the VVER-1000. Typical design and operational parameters for these four reactor types were determined by an examination of a variety of published information sources. Burnup simulation models of the reactors were then developed using the SAS2H sequence from the Oak Ridge National Laboratory SCALE code system. In turn, these models were used to prepare the burnup-dependent cross-section libraries suitable for use with ORIGEN-ARP. The reactor designs together with the development of the SAS2H models are described, and a small number of validation results using spent-fuel assay data are reported.

Murphy, BD

2004-03-10T23:59:59.000Z

264

Mixed Refrigerant Cascade Liquefiers for Natural Gas—Design and Optimization  

Science Journals Connector (OSTI)

This paper describes the development of highly flexible calculation methods and computer programs to deal with the complex problems encountered in the design of Mixed Refrigerant Cascade (MRC) plants. The relativ...

D. T. Linnett; K. C. Smith

1995-01-01T23:59:59.000Z

265

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosov…

2013-03-01T23:59:59.000Z

266

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV  

SciTech Connect

This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

R. P. Wells

2006-11-14T23:59:59.000Z

267

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan  

SciTech Connect

This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

D. E. Shanklin

2006-06-01T23:59:59.000Z

268

Simulation-Based Optimization Methodology for Offshore Natural Gas Liquefaction Process Design  

Science Journals Connector (OSTI)

Base Case Design of Turbo-Expander Process ... In addn., the exergy anal. is conducted for N2 expander and the results indicate that the compression equipments and after coolers, expanders and LNG heat exchangers are the main contribution to the total exergy losses. ...

Kiwook Song; Sangho Lee; Seolin Shin; Ho Jae Lee; Chonghun Han

2014-03-10T23:59:59.000Z

269

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquid cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2003-06-25T23:59:59.000Z

270

Design change management in regulation of nuclear fleets: World nuclear association's working groups on Cooperation in Reactor Design Evaluation and Licensing (CORDEL)  

SciTech Connect

The 60 year life of a reactor means that a plant will undergo change during its life. To ensure continuing safety, changes must be made with a full understanding of the design intent. With this aim, regulators require that each operating organisation should have a formally designated entity responsible for complete design knowledge in regard to plant safety. INSAG-19 calls such an entity 'Design Authority'. This requirement is difficult to achieve, especially as the number of countries and utilities operating plants increases. Some of these operating organisations will be new, and some will be small. For Gen III plants sold on a turnkey basis, it is even more challenging for the operating company to develop and retain the full knowledge needed for this role. CORDEL's Task Force entitled 'Design Change Management' is investigating options for effective design change management with the aim to support design standardization throughout a fleet's lifetime by means of enhanced international cooperation within industry and regulators. This paper starts with considering the causes of design change and identifies reasons for the increased beneficial involvement of the plant's original vendor in the design change process. A key central theme running through the paper is the definition of responsibilities for design change. Various existing mechanisms of vendor-operator interfaces over design change and how they are managed in different organisational and regulatory environments around the world are considered, with the functionality of Owners Groups and Design Authority being central. The roles played in the design change process by vendors, utilities, regulators, owners' groups and other organisations such as WANO are considered The aerospace industry approach to Design Authority has been assessed to consider what lessons might be learned. (authors)

Swinburn, R. [CORDEL DCM Task Force, Rolls-Royce Plc (United Kingdom); Borysova, I. [CORDEL, WNA, 22a St.James Sq., London SW1Y 4JH (United Kingdom); Waddington, J. [CORDEL Group (United Kingdom); Head, J. G. [CORDEL Group, GE-Hitachi Nuclear Energy (United Kingdom); Raidis, Z. [CORDEL Group, Candu Energy (United Kingdom)

2012-07-01T23:59:59.000Z

271

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

272

Working Gas Capacity of Aquifers  

U.S. Energy Information Administration (EIA) Indexed Site

96,950 396,092 364,228 363,521 367,108 2008-2012 96,950 396,092 364,228 363,521 367,108 2008-2012 Alabama 0 2012-2012 Arkansas 0 2012-2012 California 0 0 2009-2012 Colorado 0 2012-2012 Illinois 244,900 252,344 216,132 215,017 215,594 2008-2012 Indiana 19,978 19,367 19,437 19,479 19,215 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 0 2012-2012 Kentucky 6,629 6,629 6,629 6,629 6,629 2008-2012 Louisiana 0 2012-2012 Michigan 0 2012-2012 Minnesota 2,000 2,000 2,000 2,000 2,000 2008-2012 Mississippi 0 2012-2012 Missouri 11,276 3,040 3,656 6,000 6,000 2008-2012 Montana 0 2012-2012 New Mexico 0 2012-2012 New York 0 2012-2012 Ohio 0 2012-2012 Oklahoma 31 2012-2012 Oregon 0 2012-2012 Pennsylvania 942 2012-2012 Tennessee 0 2012-2012 Texas 0 2012-2012 Utah 948 948 939 939 948 2008-2012

273

Working Gas Capacity of Aquifers  

Gasoline and Diesel Fuel Update (EIA)

96,950 396,092 364,228 363,521 367,108 2008-2012 96,950 396,092 364,228 363,521 367,108 2008-2012 Alabama 0 2012-2012 Arkansas 0 2012-2012 California 0 0 2009-2012 Colorado 0 2012-2012 Illinois 244,900 252,344 216,132 215,017 215,594 2008-2012 Indiana 19,978 19,367 19,437 19,479 19,215 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 0 2012-2012 Kentucky 6,629 6,629 6,629 6,629 6,629 2008-2012 Louisiana 0 2012-2012 Michigan 0 2012-2012 Minnesota 2,000 2,000 2,000 2,000 2,000 2008-2012 Mississippi 0 2012-2012 Missouri 11,276 3,040 3,656 6,000 6,000 2008-2012 Montana 0 2012-2012 New Mexico 0 2012-2012 New York 0 2012-2012 Ohio 0 2012-2012 Oklahoma 31 2012-2012 Oregon 0 2012-2012 Pennsylvania 942 2012-2012 Tennessee 0 2012-2012 Texas 0 2012-2012 Utah 948 948 939 939 948 2008-2012

274

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-07-01T23:59:59.000Z

275

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-01-01T23:59:59.000Z

276

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

This report presents a brief overview of the activities and tasks accomplished during the second half year (April 1, 2001-September 30, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2001-10-30T23:59:59.000Z

277

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect

This report presents a brief overview of the activities and tasks accomplished during the first half year (October 1, 2000-March 31, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2001-04-30T23:59:59.000Z

278

Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: Modeling, design and control  

Science Journals Connector (OSTI)

Abstract Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.

Zhenzhong Jia; Jing Sun; Herb Dobbs; Joel King

2015-01-01T23:59:59.000Z

279

System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings  

SciTech Connect

The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requires that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.

Joe Ferrall, Tim Rehg, Vesna Stanic

2000-09-30T23:59:59.000Z

280

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

282

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

283

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inletElevated Temperature Materials for Power Generation and Propulsion The energy industry is designing of thermomechanical fatigue life of the next generation's Ni-base superalloys are being developed to enhance life

Li, Mo

284

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

285

Design of a novel drilled-and-grouted pile in sand for offshore oil&gas structures  

Science Journals Connector (OSTI)

Abstract New offshore oil and gas exploration has placed renewed emphasis on developing structures in relatively complex geological conditions. Due to the damaging nature of impact driving, traditional steel piles used to support jacket structures, are not ideally suited to specific soil types, such as carbonate sands. Drilled and grouted piles are commonly used to support structures in these soil conditions. This paper describes a novel drilled pile, which has been developed specifically to provide a cost effective installation process while maintaining the benefits of grouted piles. The installation process negates the need for temporary casing in weak soils and minimizes the number of offshore operations. In this paper, the installation methodology and post-installation performance of a large scale onshore field trial is described. The installation process was successfully demonstrated with a 1.9 m diameter test pile installed in fine sand to 17.7 m depth in under 3 h. The performance of the pile, as measured in a tension static load test, was shown to compare favorably with existing pile design methods.

David Igoe; Giovanni Spagnoli; Paul Doherty; Leonhard Weixler

2014-01-01T23:59:59.000Z

286

Thermodynamic-Analysis-Based Design and Operation for Boil-Off Gas Flare Minimization at LNG Receiving Terminals  

Science Journals Connector (OSTI)

The LNG (liquefied natural gas) receiving terminal is an important component of the entire LNG value chain. ... Corpus Christi, TX, U.S. ...

Chaowei Liu; Jian Zhang; Qiang Xu; John L. Gossage

2010-07-14T23:59:59.000Z

287

Method for estimation of the average local working temperatures and the residual resource of metal coatings of gas-turbine blades  

Science Journals Connector (OSTI)

A new method is proposed for estimation of the average local operating temperatures and the residual service life (resource) of protective MCrAlY metal coatings of gas-turbine blades after a certain time of opera...

P. G. Krukovskii; K. A. Tadlya

2007-05-01T23:59:59.000Z

288

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

289

Design, Synthesis and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

SciTech Connect

This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based materials with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth and sixth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials during the sixth reporting period. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. Finally, we also started a study of the use of colloidal precipitation methods for the synthesis small Co clusters using recently developed methods to explore possible further improvements in FTS rates and selectivities. We found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, were formed. During this seventh reporting period, we have explored several methods to modify the silanol groups on SiO{sub 2} by using either a homogeneous deposition-precipitation method or surface titration of Si-OH on SiO{sub 2} with zirconium (IV) ethoxide to prevent the formation of unreducible and unreactive CoO{sub x} species during synthesis and FTS catalysis. We have synthesized monometallic Co/ZrO{sub 2}/SiO{sub 2} catalysts with different Co loadings (11-20 wt%) by incipient wetness impregnation methods and characterized the prepared Co supported catalysts by H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and H{sub 2}-chemisorption. We have measured the catalytic performance in FTS reactions and shown that although the hydroxyl groups on the SiO{sub 2} surface are difficult to be fully titrated by ZrO{sub 2}, modification of ZrO{sub 2} on SiO{sub 2} surface can improve the Co clusters dispersion and lead to a larger number of exposed Co surface atoms after reduction and during FTS reactions. During this seventh reporting period, we have also advanced our development of the reaction mechanism proposed in the previous reporting period. Specifically, we have shown that our novel proposal for the pathways involved in CO activation on Fe and Co catalysts is consistent with state-of-the-art theoretical calculations carried out in collaboration with Prof. Manos Mavrikakis (University of Wisconsin-Madison). Finally, we have also worked on the preparation of several manuscripts describing our findings about the preparation, activation and mechanism of the FTS with Fe-based catalysts and we have started redacting the final report for this project.

Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

2007-03-31T23:59:59.000Z

290

Design and implementation of an integrated safety management system for compressed natural gas stations using ubiquitous sensor network  

Science Journals Connector (OSTI)

To increase awareness of safety in facilities where hazards may exist, operators, managers, and executive officers on the site should be able to monitor such facilities. However, most compressed natural gas (CNG)...

Jae Mo Yang; Byung Seok Ko; Chulhwan Park…

2014-03-01T23:59:59.000Z

291

Natural Gas Transmission and Distribution Module  

U.S. Energy Information Administration (EIA) Indexed Site

31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT...

292

Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Design of a Multithreaded Barnes-Hut Algorithm for Multicore Clusters Technical Report Junchao Zhang and Babak Behzad Department of Computer Science, University of Illinois at Urbana-Champaign {jczhang, bbehza2}@illinois.edu Marc Snir Department of Computer Science, University of Illinois at Urbana-Champaign and MCS Division, Argonne National Laboratory snir@anl.gov Abstract We describe in this paper an implementation of the Barnes-Hut al- gorithm on multicore clusters. Based on a partitioned global ad- dress space (PGAS) library, the design integrates intranode mul- tithreading and internode one-sided communication, exemplifying a PGAS + X programming style. Within a node, the computation is decomposed into tasks (subtasks), and multitasking is used to hide network latency. We study the tradeoffs between locality in private caches and locality in shared caches

293

Fast Model Based Approximation of the Closed-loop Performance Limits of Gas/Liquid Inline Separators for Accelerated Design  

E-Print Network (OSTI)

trend in the oil and gas (exploration & production) industry is to use compact ­centrifugal forces based the centrifugal forces necessary for separating the light from the heavy component. The resulting separation force) to keep the downstream pumps and compressors within a proper operating range (preventing e.g. cavitation

Van den Hof, Paul

294

Analysis of design variables for an efficient natural gas steam reforming process comprised in a small scale hydrogen fueling station  

Science Journals Connector (OSTI)

Natural gas steam reforming process comprised in a small scale H2-fueling station for on-site hydrogen production was simulated and analyzed. The effects of process variables on the process efficiency of hydrogen production were investigated, and their optimum set point values were suggested to minimize the sizes of the process sub-units and to secure a stable operability of the reforming process. Steam to carbon (S/C) ratio of the reforming reactants was found to be a crucial parameter mostly governing both the hydrogen production efficiency and the stable operability of the process. In this study, a process run was assumed stable if feed water (WR) as a reforming reactant could have been completely evaporated into dry steam through a heat recovery steam generator (HRSG). The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas (NGR) and WR as reforming reactants and of natural gas (NGB) as a burner fuel were also determined for a target rate of hydrogen production, 27 Nm3/h. Set point temperatures of the combustion flue gas (CFG) and the reformed gas (RFG) from the reformer had no effects on the hydrogen production efficiency, however, they were important parameters affecting the stable operability of the process. The effect of the set point temperatures of the RFG from cooler and the CFG from HRSG on the hydrogen production efficiency was not much significant as compared to the S/C ratio, but needed to be adjusted because of their considerable effects on the stable operability of the process and the required heat transfer areas in cooler and HRSG.

Deuk Ki Lee; Kee Young Koo; Dong Joo Seo; Wang Lai Yoon

2012-01-01T23:59:59.000Z

295

Chapter Nine - Gas Sweetening  

Science Journals Connector (OSTI)

Abstract This chapter begins by reviewing the processing of natural gas to meet gas sales contract specifications. It then describes acid gas limitations for pipelines and gas plants, before detailing the most common acid gas removal processes, such as solid-bed, chemical solvent processes, physical solvent processes, direct conversion processes, distillation process, and gas permeation processes. The chapter discusses the selection of the appropriate removal process for a given situation, and it provides a detailed design procedure for a solid-bed and chemical solvent process. The chapter ends by supplying a sample design for a solid-bed and chemical solvent process.

Maurice I. Stewart Jr.

2014-01-01T23:59:59.000Z

296

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

297

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

298

Design of a high-pressure research flow loop for the experimental investigation of liquid loading in gas wells  

E-Print Network (OSTI)

2.5 (a) The optical acrylic and (b) inlet mixing section ................................... 16 2.6 (a) Slug catcher at the outlet of the test section and (b) gas/liquid (top) and oil/water separators... loops, the process is accompanied by the installation of major equipment and hardware that may include but is not limited to compressed air systems, water pumps, multiphase pumps and static vessels used as separators. Commercial and non...

Fernandez Alvarez, Juan Jose

2009-05-15T23:59:59.000Z

299

Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input  

SciTech Connect

A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

2014-02-12T23:59:59.000Z

300

Design and implementation of a five-hp, switched reluctance, fuel-lube, pump motor drive for a gas turbine engine  

SciTech Connect

A new switched reluctance (SR) fuel/lube (F/L) pump system has been developed for a gas turbine engine application. The system is rated at 5 hp, 270 Vdc, 12.5 krpm maximum operating speed, and consists of a SR machine mounted on the F/L pump shaft, an inverter, and an electronic controller. This paper focuses on the design, implementation, and performance of the system. The system can use one of two methods for rotor position sensing, either a resolver or electronic position sensing (EPS). The F/L pump system has undergone extensive performance testing with the resolver. Currently, testing is underway using electronic position sensing. Test results are given to validate the system design and compare the performance using both approaches to position sensing. System efficiency is about 82% at full load.

Ferreira, C.A.; Jones, S.R.; Drager, B.T.; Heglund, W.S. (Sundstrand Aerospace, Rockford, IL (United States))

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

302

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

force majeure declared December 17 at its Totem storage field, Colorado Interstate Gas Pipeline (CIG) reported that it anticipates repair work to be complete around February 12,...

303

Reversible Acid Gas Capture  

SciTech Connect

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2009-08-01T23:59:59.000Z

304

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

305

Work Permit # 51012MZ5 Work Order# '  

E-Print Network (OSTI)

Confined Space· 0 Ergonomics· 0 Material Handling o ,Beryllium· 0 Electrical 0 Hydraulic o Safety Harness o Electrical Working Hot o Electrical Noise 0 Potential to Cause aFalse Alarm o QiCombustible Gas o IHSurvey Dosimeter o LockoutITagout o Spill potential o Self-reading Pencil Dosimeter o Impair Fire Protection

Homes, Christopher C.

306

Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells  

E-Print Network (OSTI)

This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of the treatment parameters...

Wang, Wenxin

2006-04-12T23:59:59.000Z

307

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

SciTech Connect

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

308

Design and demonstration of an analysis Information system for magnetic flux leakage inspection of natural gas pipeline. Final letter report  

SciTech Connect

A staff exchange was conducted for the mutual benefit of the Department of Energy, the Gas Research Institute (GRI), Vetco Pipeline Services Inc. (VPSI), and the Pacific Northwest National Laboratory. This staff exchange provided direct exposure by a Laboratory staff member knowledgeable in inspection, integrity assessment, and robotic capabilities of the Laboratory to the needs of the natural gas pipeline industry. The project included an assignment to the GRI Pipeline Simulation Facility (PSF) during the period preceding the commissioning of the flow loop. GRI is interested in exploiting advanced technology at the National Laboratories. To provide a sense of the market impact, it is estimated that $3 billion was spent in 1993 for the repair, renovation, and replacement of distribution piping. GRI has goals of saving the distribution industry $500 million in Operations and Maintenance costs and having an additional $250M savings impact on transmission pipelines. The objectives of the project included: (1) For PNNL staff to present technology to GRI and PSF staff on non- destructive evaluation, robotics, ground penetrating radar, and risk based inspection guidelines for application to the operation and maintenance of natural gas pipelines. (2) For GRI and PSF staff to discuss with PNNL staff opportunities for improving the industrial competitiveness of operation and maintenance services. (3) To explore the basis for partnership with GRI and PSF staff on technology transfer topics. In this project, staff exchanges were conducted to GRI`s Pipeline Simulation Facility and to VPSI. PNNL . staff had access to the $10M GRI Pipeline Simulation Facility (PSF) at West Jefferson, Ohio. The facility has a 4,700-ft. long pipe loop, an NDE laboratory, and a data analysis laboratory. PNNL staff had access to the VPSI`s facility in Houston, TX. VPSI has developed some of the most sophisticated inspection tools currently used in the pipeline inspection industry.

Schuster, G.J.; Saffell, B.A.

1996-10-01T23:59:59.000Z

309

Effect of Natural Gas Fuel Addition on the Oxidation of Fuel Cell Anode Gas  

SciTech Connect

The anode exhaust gas from a fuel cell commonly has a fuel energy density between 15 and 25% that of the fuel supply, due to the incomplete oxidation of the input fuel. This exhaust gas is subsequently oxidized (catalytically or non-catalytically), and the resultant thermal energy is often used elsewhere in the fuel cell process. Alternatively, additional fuel can be added to this stream to enhance the oxidation of the stream, for improved thermal control of the power plant, or to adjust the temperature of the exhaust gas as may be required in other specialty co-generation applications. Regardless of the application, the cost of a fuel cell system can be reduced if the exhaust gas oxidation can be accomplished through direct gas phase oxidation, rather than the usual catalytic oxidation approach. Before gas phase oxidation can be relied upon however, combustor design requirements need to be understood. The work reported here examines the issue of fuel addition, primarily as related to molten-carbonate fuel cell technology. It is shown experimentally that without proper combustor design, the addition of natural gas can readily quench the anode gas oxidation. The Chemkin software routines were used to resolve the mechanisms controlling the chemical quenching. It is found that addition of natural gas to the anode exhaust increases the amount of CH3 radicals, which reduces the concentration of H and O radicals and results in decreased rates of overall fuel oxidation.

Randall S. Gemmen; Edward H. Robey, Jr.

1999-11-01T23:59:59.000Z

310

Valve for gas centrifuges  

DOE Patents (OSTI)

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

311

Incorporating reliability analysis into the design of passive cooling systems with an application to a gas-cooled reactor  

Science Journals Connector (OSTI)

A time-dependent reliability evaluation of a two-loop passive decay heat removal (DHR) system was performed as part of the iterative design process for a helium-cooled fast reactor. The system was modeled using RELAP5-3D. The uncertainties in input parameters were assessed and were propagated through the model using Latin hypercube sampling. An important finding was the discovery that the smaller pressure loss through the DHR heat exchanger than through the core would make the flow to bypass the core through one DHR loop, if two loops operated in parallel. This finding is a warning against modeling only one lumped DHR loop and assuming that n of them will remove n times the decay power. Sensitivity analyses revealed that there are values of some input parameters for which failures are very unlikely. The calculated conditional (i.e., given the LOCA) failure probability was deemed to be too high leading to the identification of several design changes to improve system reliability. This study is an example of the kinds of insights that can be obtained by including a reliability assessment in the design process. It is different from the usual use of PSA in design, which compares different system configurations, because it focuses on the thermal–hydraulic performance of a safety function.

Francisco J. Mackay; George E. Apostolakis; Pavel Hejzlar

2008-01-01T23:59:59.000Z

312

Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

SciTech Connect

A detailed study of the catalyst composition, preparation and activation protocol of Fe-based catalysts for the Fischer-Tropsch Synthesis (FTS) have been carried out in this project. We have studied the effects of different promoters on the catalytic performance of Fe-based catalysts. Specifically, we have focused on how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C{sub 5+} selectivities of the Fe-based catalysts that we have developed as part of this project. Selectivity to C{sub 5+} hydrocarbon was close to 90 % (CO{sub 2}-free basis) and CO conversion rate was about 6.7 mol h{sup -1} g-at Fe{sup -1} at 2.14 MPa, 508 K and with substoichiometric synthesis gas; these rates were larger than any reported previously for Fe-based FTS catalysts at these conditions. We also tested the stability of Fe-based catalysts during FTS reaction (10 days); as a result, the high hydrocarbon formation rates were maintained during 10 days, though the gradual deactivation was observed. Our investigation has also focused on the evaluation of Fe-based catalysts with hydrogen-poor synthesis gas streams (H{sub 2}/CO=1). We have observed that the Fe-based catalysts prepared in this project display also a high hydrocarbon synthesis rate with substoichiometric synthesis gas (H{sub 2}/CO=1) stream, which is a less desirable reactant mixture than stoichiometric synthesis gas (H{sub 2}/CO=2). We have improved the catalyst preparation protocols and achieved the highest FTS reaction rates and selectivities so far reported at the low temperatures required for selectivity and stability. Also, we have characterized the catalyst structural change and active phases formed, and their catalytic behavior during the activation process to evaluate their influences on FTS reaction. The efforts of this project led to (i) structural evolution of Fe-Zn oxide promoted with K and Cu, and (ii) evaluation of hydrocarbon and CH{sub 4} formation rates during activation procedures at various temperature and H{sub 2}/CO ratios. On the basis of the obtained results, we suggest that lower reactor temperature can be sufficient to activate catalysts and lead to the high FTS performance. In this project, we have also carried out a detailed kinetic and mechanistic study of the Fischer-Tropsch Synthesis with Fe-based catalysts. We have proposed a reaction mechanism with two CO activation pathways: unassisted and H-assisted. Both routes lead to the formation of the same surface monomers (CH{sub 2}). However, the oxygen removal mechanism is different. In the H-assisted route, oxygen is removed exclusively as water, while oxygen is rejected as carbon dioxide in the unassisted CO dissociation. The validity of the mechanism here proposed has been found to be in agreement with the experimental observation and with theoretical calculations over a Fe(110) surface. Also, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by two CO activation pathways. We have also explored the catalytic performance of Co-based catalysts prepared by using inverse micelles techniques. We have studied several methods in order to terminate the silanol groups on SiO{sub 2} support including impregnation, urea homogeneous deposition-precipitation, or zirconium (IV) ethoxide titration. Although hydroxyl groups on the SiO{sub 2} surface are difficult to be stoichiometrically titrated by ZrO{sub 2}, a requirement to prevent the formation of strongly-interacting Co oxide species on SiO{sub 2}, modification of ZrO{

Enrique Iglesia; Akio Ishikawa; Manual Ojeda; Nan Yao

2007-09-30T23:59:59.000Z

313

Multiple-well testing in low permeability gas sands  

SciTech Connect

The purpose of this work was to determine the effect of various reservoir and well parameters in order to design a multiple-well pressure transient test to be conducted in low permeability, porosity, gas saturation, net pay thickness and well spacing. Long test times were found to be required for interference or pulse testing in low permeability gas reservoirs; however, the well spacing has been optimized. These calculations were made using two techniques: interference testing and pulse testing.

Bixel, H.; Carroll, H.B. Jr.; Crawley, A.

1980-10-01T23:59:59.000Z

314

Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

SciTech Connect

This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. More specifically, we were focused on the roles of hydrogen-assisted and alkali-assisted dissociation of CO in determining rates and CO{sub 2} selectivities. During this sixth reporting period, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by the two CO activation pathways we propose. During this reporting period, the experimental kinetic study has been also complemented with periodic, self-consistent, DFT-GGA investigations in a parallel collaboration with the group of Manos Mavrikakis at the University of Wisconsin-Madison. These DFT calculations suggest minimal energy paths for proposed elementary steps on Fe(110) and Co(0001) surfaces. These calculations support our novel conclusions about the preferential dissociation of CO dissociation via H-assisted pathways on Fe-based catalysts. Unassisted CO dissociation also occurs and lead to the formation of CO{sub 2} as a primary oxygen scavenging mechanism after CO dissociation on Fe-based catalysts. Simulations and our experimental data show also that unassisted CO dissociation route is much less likely on Co surfaces and that hydrocarbons form exclusively via H-assisted pathways with the formation of H{sub 2}O as the sole oxygen rejection product. We have also started a study of the use of colloidal precipitation methods for the synthesis of small Fe and Co clusters using recently developed methods to explore possible further improvements in Fischer-Tropsch synthesis rates and selectivities. We have found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, are formed. The nature of the cobalt precursor and the modification of the support seem to be critical parameters in order to obtain highly dispersed and reducible Co nanoparticles.

Akio; Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

2006-09-30T23:59:59.000Z

315

Advances in the design of co-poly(ether-imide) membranes for CO2 separations. Influence of aromatic rigidity on crystallinity, phase segregation and gas transport  

Science Journals Connector (OSTI)

Abstract In our previous works, it was observed a clear relationship between the structure and the properties for different copoly(ether-imide)s, besides a good relation was found between SAXS characterization and permeability results. Here, a series of aliphatic aromatic copoly(ether-imide)s, based on an aromatic diamine (ODA), a diamine terminated poly(ethylene oxide) (PEO2000) of a molecular weight of 2000 g/mol and different aromatic dianhydrides (BPDA, BKDA (or BTDA) and PMDA) has been synthesized and characterized. The permeability for O2, N2, CO2 and CH4, increased with the rigidity of the monomers (BKDA CO2/N2 separation. This work gives indications on how to design advanced materials for this separation with the increasing possibilities of controlled structure and properties.

Alberto Tena; Ángel Marcos-Fernández; Mónica de la Viuda; Laura Palacio; Pedro Prádanos; Ángel E. Lozano; Javier de Abajo; Antonio Hernández

2015-01-01T23:59:59.000Z

316

How Fuel Cells Work | Department of Energy  

Energy Savers (EERE)

Fuel Cells Work How Energy Works 30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and...

317

Summary for Policymakers IPCC Fourth Assessment Report, Working Group III  

E-Print Network (OSTI)

this introduction: • Greenhouse gas (GHG) emission trends •2. Global greenhouse gas (GHG) emissions have grown sinceincrease in atmospheric GHG concentrations [1.3; Working

2007-01-01T23:59:59.000Z

318

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

319

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

320

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Work Authorization System  

Directives, Delegations, and Requirements

It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

1999-04-20T23:59:59.000Z

322

Work Authorization System  

Directives, Delegations, and Requirements

To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

2005-04-21T23:59:59.000Z

323

Work Authorization System  

Directives, Delegations, and Requirements

To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

2005-04-21T23:59:59.000Z

324

Working Gas Volume Change from Year Ago  

U.S. Energy Information Administration (EIA) Indexed Site

-753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 -753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 2011-2013 Alabama 131 998 -1,015 -975 -35 2,852 1996-2013 Arkansas -1,386 -1,403 -1,240 -1,239 -1,024 -1,050 1990-2013 California -6,702 -5,997 -10,684 274 24,044 28,854 1990-2013 Colorado -2,531 537 892 1,473 1,528 1,179 1990-2013 Illinois -11,767 -14,974 -8,820 -7,918 -12,002 -6,916 1990-2013 Indiana -4,126 -2,948 -2,927 -2,773 -1,025 -212 1990-2013 Iowa -6,614 -1,173 3,389 6,425 6,747 3,169 1991-2013 Kansas -38,081 -31,497 -26,449 -17,344 -10,369 -9,217 1990-2013 Kentucky -26,238 -26,922 -21,826 -15,927 -14,959 -12,801 1990-2013

325

Working Gas % Change from Year Ago  

Gasoline and Diesel Fuel Update (EIA)

21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 Alaska NA NA NA NA NA NA 2013-2013 Lower 48 States -21.9 -15.7 -10.0 -6.3 -4.0 -3.5 2011-2013 Alabama 5.0 -4.8 -4.5 -0.2 15.5 -12.0 1996-2013 Arkansas -42.1 -34.7 -31.2 -24.4 -23.7 -23.0 1991-2013 California -2.0 -3.3 0.1 7.9 9.3 3.4 1991-2013 Colorado 2.8 3.6 4.7 3.9 2.6 3.0 1991-2013 Illinois -16.5 -7.4 -5.2 -6.3 -3.1 -3.2 1991-2013 Indiana -21.2 -17.8 -14.8 -5.0 -0.9 -5.2 1991-2013 Iowa -6.2 16.6 24.3 16.6 5.2 -1.8 1991-2013 Kansas -38.9 -29.7 -17.9 -10.2 -8.3 -7.6 1991-2013 Kentucky -30.6 -24.1 -17.7 -15.8 -12.7 -10.5 1991-2013 Louisiana -26.6 -21.0 -10.2 -4.3 -2.3 1.0 1991-2013 Maryland -40.2 -26.0 -17.1 -4.8 1.5 0.8 1991-2013 Michigan -35.7 -26.7 -19.2 -13.9 -9.7 -6.9 1991-2013

326

Working Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1973-2013 Alabama 20,405 20,908 20,110 20,532 19,968 21,262 1995-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Arkansas 1,486 1,928 2,330 2,735 3,168 3,372 1990-2013 California 255,453 287,757 309,448 326,906 329,024 338,271 1990-2013 Colorado 15,625 19,489 25,833 32,642 40,240 46,136 1990-2013 Illinois 50,160 75,951 110,815 142,938 177,700 218,245 1990-2013 Indiana 8,965 10,955 13,533 15,951 19,622 22,817 1990-2013 Iowa 11,615 17,696 23,768 32,853 47,421 64,102 1990-2013 Kansas 35,397 49,412 62,747 79,590 91,430 101,169 1990-2013 Kentucky 52,985 61,078 68,847 74,285 79,656 88,369 1990-2013 Louisiana 212,975 235,835 263,701 296,375 315,517 342,981 1990-2013

327

Philadelphia Gas Works – Home Rebates Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

PGW’s Home Rebates program is available for residential customers within the PGW service territory. See the web site above for complete program details.

328

Working Gas % Change from Year Ago  

Gasoline and Diesel Fuel Update (EIA)

-26.2 -21.7 -19.9 1991-2014 California -60.5 -48.4 -37.4 -28.5 -25.9 -19.7 1991-2014 Colorado 2.3 16.0 12.8 12.6 6.8 1.9 1991-2014 Illinois -6.9 -11.6 -4.6 -2.6 0.3 1.8...

329

Working Gas Capacity of Salt Caverns  

U.S. Energy Information Administration (EIA) Indexed Site

230,456 271,785 312,003 351,017 488,268 2008-2012 230,456 271,785 312,003 351,017 488,268 2008-2012 Alabama 11,900 11,900 16,150 16,150 16,150 2008-2012 Arkansas 0 2012-2012 California 0 2012-2012 Colorado 0 2012-2012 Illinois 0 2012-2012 Indiana 0 2012-2012 Kansas 375 375 375 375 375 2008-2012 Kentucky 0 2012-2012 Louisiana 57,630 84,487 100,320 111,849 200,702 2008-2012 Maryland 0 2012-2012 Michigan 2,154 2,150 2,159 2,159 2,159 2008-2012 Mississippi 43,292 43,758 56,928 62,932 100,443 2008-2012 Montana 0 2012-2012 Nebraska 0 2012-2012 New Mexico 0 2012-2012 New York 1,450 1,450 1,450 1,450 0 2008-2012 Ohio 0 2012-2012 Oklahoma 0 2012-2012 Oregon 0 2012-2012 Pennsylvania 0 2012-2012 Tennessee 0 2012-2012 Texas 109,655 123,664 130,621 152,102 164,439 2008-2012 Utah 0 2012-2012 Virginia

330

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

331

Gas Storage Technology Consortium  

SciTech Connect

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

332

Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery – Performances under variable power loads coupled with off-design parameters  

Science Journals Connector (OSTI)

Abstract Lignite is a kind of low rank coal with high moisture content and low net heating value, which is mainly used for electric power generation. However, the thermal efficiency of power plants firing lignite directly is very low. Pre-drying is a proactive option, dehydrating raw lignite to raise its heating value, to improve the power plant thermal efficiency. A pre-dried lignite-fired power system integrated with boiler flue gas drying and waste heat recovery was proposed in this paper. The plant thermal efficiency could be improved by 1.51% at benchmark condition due to pre-drying and waste heat recovery. The main system performances under variable power loads were simulated and analyzed. Simulation results show that the improvement of plant thermal efficiency reduced to 1.36% at 50% full load. Moreover, the influences of drying system off-design parameters were simulated coupled with power loads. The variation tendencies of main system parameters were obtained. The influence of pre-drying degree (including moisture content of pre-dried lignite and raw lignite) on the plant thermal efficiency diminishes gradually with the decreasing power load. The dryer thermal efficiency and dryer exhaust temperature are also main factors and the influences on system parameters have been quantitatively analyzed.

Xiaoqu Han; Ming Liu; Jinshi Wang; Junjie Yan; Jiping Liu; Feng Xiao

2014-01-01T23:59:59.000Z

333

The design of an optical sensor arrangement for the detection of oil contamination in an adhesively bonded structure of a liquefied natural gas (LNG) ship  

Science Journals Connector (OSTI)

Liquefied natural gas (LNG) has been widely used as a substitute fuel for commercial purposes. It is transported mainly by LNG ships which have primary and secondary leakage barriers. The former is composed of welded thin stainless steel or invar plates, while the latter is composed of adhesively bonded glass composite or aluminum foil sheets. The role of the secondary barrier is to maintain fluid tightness when the primary barrier fails during the transport of LNG. The tightness of the secondary barrier is dependent on the wetting characteristics between the adhesive and adherend of the bonded structure during bonding operation, which depends much on the contamination on the adherend surface. Therefore, in this work, an optical measuring device of oil contamination on the aluminum surface for the secondary barrier was developed. A transparent oil was used as the contaminant and its effect on the bonding strength was investigated. From the experiments, it has been found that the developed measuring device for oil contamination can be used to detect oil contamination on a large bonding area of the secondary barrier in ship building yards.

Bu Gi Kim; Dai Gil Lee

2009-01-01T23:59:59.000Z

334

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Exterior Wall Insulation: $350 (single family), $150 (multifamily) Windows: $2.50/sq. ft. Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Single Family Homes (New Construction): $50 - $500 Multifamily Homes (New Construction): $50 - $300/unit

335

A Pressurized Air Receiver for Solar-driven Gas Turbines  

Science Journals Connector (OSTI)

Abstract A pressurized air-based solar receiver is considered for power generation via gas turbines using concentrated solar energy. The modular solar receiver is designed for heating compressed air to the entrance conditions of a gas turbine in the pressure range 4 – 30 bar and temperature range 800 – 1200 °C. The development work involved the design, fabrication, testing, and modelling of a 3 kWth and a 35 kWth solar receiver prototypes. System integration of an array of modular solar receivers with fossil-fuel hybridization was analysed.

P. Poživil; V. Aga; A. Zagorskiy; A. Steinfeld

2014-01-01T23:59:59.000Z

336

Morphology of Gas Release in Physical Simulants  

SciTech Connect

This report documents testing activities conducted as part of the Deep Sludge Gas Release Event Project (DSGREP). The testing described in this report focused on evaluating the potential retention and release mechanisms of hydrogen bubbles in underground radioactive waste storage tanks at Hanford. The goal of the testing was to evaluate the rate, extent, and morphology of gas release events in simulant materials. Previous, undocumented scoping tests have evidenced dramatically different gas release behavior from simulants with similar physical properties. Specifically, previous gas release tests have evaluated the extent of release of 30 Pa kaolin and 30 Pa bentonite clay slurries. While both materials are clays and both have equivalent material shear strength using a shear vane, it was found that upon stirring, gas was released immediately and completely from bentonite clay slurry while little if any gas was released from the kaolin slurry. The motivation for the current work is to replicate these tests in a controlled quality test environment and to evaluate the release behavior for another simulant used in DSGREP testing. Three simulant materials were evaluated: 1) a 30 Pa kaolin clay slurry, 2) a 30 Pa bentonite clay slurry, and 3) Rayleigh-Taylor (RT) Simulant (a simulant designed to support DSGREP RT instability testing. Entrained gas was generated in these simulant materials using two methods: 1) application of vacuum over about a 1-minute period to nucleate dissolved gas within the simulant and 2) addition of hydrogen peroxide to generate gas by peroxide decomposition in the simulants over about a 16-hour period. Bubble release was effected by vibrating the test material using an external vibrating table. When testing with hydrogen peroxide, gas release was also accomplished by stirring of the simulant.

Daniel, Richard C.; Burns, Carolyn A.; Crawford, Amanda D.; Hylden, Laura R.; Bryan, Samuel A.; MacFarlan, Paul J.; Gauglitz, Phillip A.

2014-07-03T23:59:59.000Z

337

Microsoft PowerPoint - Microwave Off-gas srnlTechBriefp1.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Microwave Off-Gas Treatment Microwave Off-Gas Treatment System at a glance  simple design  compact and portable  easy to operate  can be remotely operated  low cost, low maintenance  scalable for large and small volume operations  U.S. patent 6,534,754 The Microwave Off-Gas Treatment System uses microwave energy and high temperatures to treat off- gas emissions to reduce contaminants to acceptable or nondetectable levels. This allows the treated gaseous waste stream to be safety discharged to the atmosphere. New method Scientists at Savannah River National Laboratory (SRNL), working with colleagues from the University of Florida (UF), have invented a unique system to treat off-gas emissions from safe discharge into the atmosphere. The compact and portable Microwave Off-Gas Treatment System is designed to

338

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

Frederick, J. D.

339

End of Month Working  

Gasoline and Diesel Fuel Update (EIA)

The level of gas in storage at the end of the last heating season (March The level of gas in storage at the end of the last heating season (March 31, 2000) was 1,150 billion cubic feet (Bcf), just above the 1995-1999 average of 1,139 Bcf. Underground working gas storage levels are currently about 8-9 percent below year-ago levels. In large part, this is because injection rates since April 1 have been below average. Storage injections picked up recently due to warm weather in the last half of October. The month of November is generally the last month available in the year for injections into storage. A cold November would curtail net injections into storage. If net injections continue at average levels this winter, we project that storage levels will be low all winter, reaching a level of 818 Bcf at the end of March, the lowest level since 1996

340

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas Hydrate Storage of Natural Gas  

SciTech Connect

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

342

Chapter 10 - Natural Gas Sweetening  

Science Journals Connector (OSTI)

Abstract Acid gas constituents present in most natural gas streams are mainly hydrogen sulfide (H2S) and carbon dioxide (CO2). Many gas streams, however, particularly those in a refinery or manufactured gases, may contain mercaptans, carbon sulfide, or carbonyl sulfide. The level of acid gas concentration in the sour gas is an important consideration for selecting the proper sweetening process. Some processes are applicable for removal of large quantities of acid gas, and other processes have the capacity for removing acid gas constituents to ppm range. This chapter covers the minimum process requirements, criteria, and features for accomplishment of process design of gas sweetening units. The basic principles for process design of main equipment, piping, and instrumentation together with guidelines on present developments and process selection in the gas sweetening process are the main objectives throughout this chapter.

Alireza Bahadori

2014-01-01T23:59:59.000Z

343

Vermont Gas- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Vermont Gas (VGS) offers two energy efficiency programs for commercial customers: the WorkPlace New Construction Program and the WorkPlace Equipment Replacement and Retrofit Program.

344

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network (OSTI)

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

345

Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology  

SciTech Connect

The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

Cox, Daryl [ORNL

2009-05-01T23:59:59.000Z

346

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

347

Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler Controlled Variables Selection for a Gas-to-Liquids Process  

E-Print Network (OSTI)

) production of synthesis gas (syngas), (ii) Fischer-Tropsch (FT) reactor and (iii) upgrading units. Various production [1]. In our work, we study in a detail; design, optimization and controlled variables selection for a GTL process based on ATR for synthesis gas production and a FT reactor with Cobalt catalyst

Skogestad, Sigurd

348

NREL: Water Power Research - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us NREL works with industry in a public-private contracting environment to research, design, and build advanced water power technologies. NREL's National Wind...

349

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

350

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

351

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount New Construction Home Options Builder Option Package 1: $50 (single family), $50 (multifamily) Builder Option Package 2: $100 (single family), $100 (multifamily) Energy Star 3.0: $300 (single family), $200 (multifamily) High Performance Home: $500 (single family), $300 (multifamily)

352

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

353

Materials Issues in Innovative Turbine Blade Designs - Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Issues in Innovative Turbine Materials Issues in Innovative Turbine Blade Designs-Oak Ridge National Laboratory Background Gas turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's working fluid.

354

Going To Work: Work Relationships  

E-Print Network (OSTI)

One of a worker's top goals should be to develop good relationships with coworkers and supervisers. This publication discusses five general rules for building good relationships at work and offers advice on handling criticism....

Hoffman, Rosemarie

2000-07-20T23:59:59.000Z

355

Organic vapor separation: Process design with regards to high-flux membranes and the dependence on real gas behavior at high pressure applications  

SciTech Connect

High-flux membranes are well-suited for separating organic vapor from air. There are many applications for organic vapor recovery at tank farms. Here, the membrane technology is already considered as state of the art. However, new applications operating at higher pressures, e.g., water and hydrocarbon dewpointing of natural gas, real gas behavior, and the so-called concentration polarization effect have to be taken into account. Experimental investigations have been carried out and the results are presented. The performance of a membrane module is calculated considering real gas behavior.

Alpers, A.; Keil, B.; Luedtke, O.; Ohlrogge, K.

1999-10-01T23:59:59.000Z

356

Natural gas monthly, July 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01T23:59:59.000Z

357

Natural gas monthly, October 1996  

SciTech Connect

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

NONE

1996-10-01T23:59:59.000Z

358

Natural gas monthly, September 1993  

SciTech Connect

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-09-27T23:59:59.000Z

359

Natural gas monthly, August 1993  

SciTech Connect

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-08-25T23:59:59.000Z

360

Automatic control systems for gas-turbine units in mini power stations: Testing automation at the stages of design and tuning  

Science Journals Connector (OSTI)

This paper presents the testing automation procedure for automatic control systems of gas-turbine units used as drives in small-size power stations. We substantiate the applicability of mathematical modeling...

B. V. Kavalerov

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Influence of steam injection through exhaust heat recovery on the design performance of solid oxide fuel cell — gas turbine hybrid systems  

Science Journals Connector (OSTI)

This study analyzed the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. Two different ... the effects of injecting steam, generated by recovering

Sung Ku Park; Tong Seop Kim; Jeong L. Sohn

2009-02-01T23:59:59.000Z

362

Natural gas monthly: December 1993  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

Not Available

1993-12-01T23:59:59.000Z

363

Natural gas monthly, June 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1997-06-01T23:59:59.000Z

364

Natural gas monthly, August 1994  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1994-08-24T23:59:59.000Z

365

Natural gas monthly: September 1996  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1996-09-01T23:59:59.000Z

366

Natural gas monthly, November 1993  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-11-29T23:59:59.000Z

367

Interagency Working Groups (IWGs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Interagency Working Groups (IWGs) Print E-mail Interagency Working Groups (IWGs) Print E-mail Interagency Working Groups (IWGs) are the primary USGCRP vehicles for implementing and coordinating research activities within and across agencies. These groups are critical to Program integration and in assessing the Program's progress. The working groups span a wide range of interconnected issues of climate and global change, and address major components of the Earth's environmental and human systems, as well as cross-disciplinary approaches for addressing these issues. IWGs correspond to program functions and are designed to bring agencies together to plan and develop coordinated activities, implement joint activities, and identify and fill gaps in the Program's plans. They allow public officials to communicate with each other on emerging directions within their agencies, on their stakeholder needs, and on best practices learned from agency activities. Together, these functions allow the agencies to work in a more coordinated and effective manner.

368

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Star Home Certification: $500 Storage Water Heater: $50 Tankless Water Heater: $300 Furnace: $300 Boiler: $400 Provider Questar Gas Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All equipment and

369

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

370

Tetrahydrofuran Hydrate Crystal Growth Inhibition by Trialkylamine Oxides and Synergism with the Gas Kinetic Hydrate Inhibitor Poly(N-vinyl caprolactam)  

Science Journals Connector (OSTI)

High Pressure Gas Hydrate Rocker Rig Equipment Test Methods ... Solid plugs caused by gas hydrate formation are a menace in various stages of the upstream oil and gas industry such as in production lines, during drilling (especially in deep water), and in work-over operations. ... (1, 4-7) In particular, the design of a new field development with LDHI technology can give large CAPEX savings. ...

Malcolm A. Kelland; Ann Helen Kvæstad; Erik Langeland Astad

2012-06-26T23:59:59.000Z

371

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Effective Date: 11/05/13 WP 12-IS.01-6 Revision 10 Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls Cognizant Section: Industrial Safety/Industrial Hygiene Approved By: Tom Ferguson Working Copy Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls WP 12-IS.01-6, Rev. 10 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 7 ACRONYMS AND ABBREVIATIONS ............................................................................. 8 1.0 INTRODUCTION 1 ............................................................................................... 10 2.0 VISITORS ........................................................................................................... 11

372

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/WIPP-99-2286 Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan Revision 7 U.S. Department of Energy December 2013 This document supersedes DOE/WIPP-99-2286, Rev. 6. Working Copy Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan DOE/WIPP-99-2286, Rev. 7 2 TABLE OF CONTENTSCHANGE HISTORY SUMMARY .............................................. 3 ACRONYMS AND ABBREVIATIONS ............................................................................ 4 1.0 INTRODUCTION .................................................................................................. 6 2.0 NOTIFICATION OR REPORTING REQUIREMENTS AND COMMITMENTS ..... 7

373

Modeling of multiphase behavior for gas flooding simulation.  

E-Print Network (OSTI)

??Miscible gas flooding is a common method for enhanced oil recovery. Reliable design of miscible gas flooding requires compositional reservoir simulation that can accurately predict… (more)

Okuno, Ryosuke, 1974-

2011-01-01T23:59:59.000Z

374

Management of a complex cavern storage facility for natural gas  

SciTech Connect

The Epe cavern storage facility operated by Ruhrgas AG has developed into one of the largest gas cavern storage facilities in the world. Currently, there are 32 caverns and 18 more are planned in the future. Working gas volume will increase from approximately 1.5 {times} 10{sup 9} to 2 {times} 10{sup 9} m{sup 3}. The stratified salt deposit containing the caverns has a surface area of approximately 7 km{sup 2} and is 250 m thick at the edge and 400 m thick in the center. Caverns are leached by a company that uses the recovered brine in the chlorine industry. Cavern dimensions are determined before leaching. The behavior of each cavern, as well as the thermodynamic properties of natural gas must be considered in cavern management. The full-length paper presents the components of a complex management system covering the design, construction, and operation of the Epe gas-storage caverns.

NONE

1998-04-01T23:59:59.000Z

375

Natural Gas Issues and Trends - Record winter withdrawals create...  

Gasoline and Diesel Fuel Update (EIA)

withdrawals create summer storage challenges Released: June 12, 2014 On June 6, a net natural gas storage injection of 107 billion cubic feet (Bcf) brought natural gas working...

376

Water-saving liquid-gas conditioning system  

DOE Patents (OSTI)

A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

Martin, Christopher; Zhuang, Ye

2014-01-14T23:59:59.000Z

377

Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels  

E-Print Network (OSTI)

DEVELOPMENT, APPLICATION AND PERFORMANCE OF VENTURI REGISTER L. E. A. BURNER SYSTEM FOR FIRING OIL AND GAS FUELS A. D. Cawte CEA Combustion, Inc. Stamford, Connecticut INTRODUCTION The effect of reducing excess air as a means of curtailing..., extensive investigation work was undertaken us ing the water analog model techniques developed by Associated British Combustion for burner design. The development work resulted in the burner design known today as the Venturi Register, LEA (low excess air...

Cawte, A. D.

1979-01-01T23:59:59.000Z

378

Work Address:  

NLE Websites -- All DOE Office Websites (Extended Search)

BO SAULSBURY BO SAULSBURY Work Address: Home Address: Oak Ridge National Laboratory 12952 Buckley Road National Transportation Research Center Knoxville, TN 37934 Building NTRC-2, Room 118 (865) 288-0750 Oak Ridge, TN 37831-6479 (865) 574-4694 saulsburyjw@ornl.gov Technical Specialties: Land use planning Environmental and socioeconomic impact assessment National Environmental Policy Act (NEPA) project management Vehicle fuel economy Education: 1986 B. A., History (minors in English and Business), The University of Tennessee 1989 M. S., Planning, The University of Tennessee (Thesis title: Land Use Compatibility Planning for Airfield Environs: Intergovernmental Cooperation to Protect Land Users From the Effects of Aircraft Operations)

379

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

380

Chapter Ten - Gas Processing  

Science Journals Connector (OSTI)

Abstract This chapter describes the objectives of natural gas liquid (NGL) recovery. It then discusses the value of NGL components, providing the definitions of common gas-processing terminology. In addition, the chapter considers the most common liquid recovery processes, such as lean oil absorption, mechanical refrigeration, Joule-Thomson (J-T) Expansion, and cryogenic (turbo-expander) plants. It also provides guidance on process selection, and it ends by examining fractionation and design considerations.

Maurice I. Stewart Jr.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural gas prices rose at most market locations during the week, as consumption increased. The Henry Hub spot price increased 19 cents from $4.14 per million Btu (MMBtu) on Wednesday, April 13 to $4.33 per MMBtu on Wednesday, April 20. Futures prices behaved similar to spot prices; at the New York Mercantile Exchange, the price of the near-month natural gas contract (May 2011) rose from $4.141 per MMBtu to $4.310 per MMBtu. Working natural gas in storage rose to 1,654 billion cubic feet (Bcf) as of Friday, April 15, according to EIAÂ’s Weekly Natural Gas

382

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas spot prices generally declined this report week (June 17-24), with the largest decreases generally occurring in the western half of the country. During the report week, the Henry Hub spot price decreased by $0.19 per million Btu (MMBtu) to $3.80. At the New York Mercantile Exchange (NYMEX), futures prices for natural gas decreased as prices for most energy products fell amid concerns over the economy. The natural gas futures contract for July delivery decreased by 49 cents per MMBtu on the week to $3.761. Working gas in underground storage as of last Friday, June 19, is

383

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, June 30, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 22, 2011) Natural gas prices fell slightly at most market locations from Wednesday, June 15 to Wednesday, June 22. The Henry Hub price fell 10 cents from $4.52 per million Btu (MMBtu) last Wednesday to $4.42 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the July 2011 near-month futures contract fell by 26 cents, or about 6 percent, from $4.58 last Wednesday to $4.32 yesterday. Working natural gas in storage rose to 2,354 this week, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

384

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

385

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

386

Work Authorization System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, D.C. DOE O 412.1A Approved: 4-21-05 This directive was reviewed and certified as current and necessary by Susan J. Grant, Director, Office of Management, Budget and Evaluation/Chief Financial Officer, 4-21-05. SUBJECT: WORK AUTHORIZATION SYSTEM 1. OBJECTIVES. To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. 2. CANCELLATIONS. DOE O 412.1 Work Authorization System, dated 4-20-99. Cancellation of a directive does not, by itself, modify or otherwise affect any contractual

387

Gas ampoule-syringe  

DOE Patents (OSTI)

A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one end and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

Gay, Don D. (Aiken, SC)

1986-01-01T23:59:59.000Z

388

Gas ampoule-syringe  

DOE Patents (OSTI)

A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

Gay, D.D.

1985-02-02T23:59:59.000Z

389

Produce synthesis gas by steam reforming natural gas  

SciTech Connect

For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

Marsch, H.D.; Herbort, H.J.

1982-06-01T23:59:59.000Z

390

Avoca, New York Salt Cavern Gas Storage Facility  

SciTech Connect

The first salt cavern natural gas storage facility in the northeastern United States designed to serve the interstate gas market is being developed by J Makowski Associates and partners at Avoca in Steuben County, New York. Multiple caverns will be leached at a depth of about 3800 ft from an approximately 100 ft interval of salt within the F unit of the Syracuse Formation of the Upper Silurian Salina Group. The facility is designed to provide 5 Bcf of working gas capacity and 500 MMcfd of deliverability within an operating cavern pressure range between 760 psi and 2850 psi. Fresh water for leaching will be obtained from the Cohocton River aquifer at a maximum rate of 3 million gallons per day and produced brine will be injected into deep permeable Cambrian age sandstones and dolostones. Gas storage service is anticipated to commence in the Fall of 1997 with 2 Bcf of working gas capacity and the full 5 Bcf or storage service is scheduled to be available in the Fall of 1999.

Morrill, D.C. [J. Makowski and Associates, Boston, MA (United States)

1995-09-01T23:59:59.000Z

391

Optimal Design and Synthesis of Algal Biorefinery Processes for Biological Carbon Sequestration and Utilization with Zero Direct Greenhouse Gas Emissions: MINLP Model and Global Optimization Algorithm  

Science Journals Connector (OSTI)

Correspondingly, the superstructure is shown in Figure 7, and the border of continuous and discontinuous sections is redefined to cover the feed gas. ... The optimality tolerance for the branch-and-refine algorithm is set to 10–6, and optimality margins of the solving original problem (P1) and the linear relaxation problem (P2) are both zero. ... Sets ...

Jian Gong; Fengqi You

2014-01-03T23:59:59.000Z

392

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:09am Addthis YOU ARE HERE Step 4 When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts. The major cost elements associated with developing and implementing a project are identified in Table 1. Table 1. Major Costs for Project Development and Implementation Cost Element Description Variables Project planning costs Preparatory work by building owners and design team. Benchmarking activities. Building audits. Developing statements of work for subcontractors. Selecting contractors. Integrated design process (for major renovations). Type of project; previous team experience; local markets; number of stakeholders

393

Natural gas monthly, March 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

NONE

1997-03-01T23:59:59.000Z

394

Natural gas monthly, August 1995  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

NONE

1995-08-24T23:59:59.000Z

395

Natural gas monthly, June 1996  

SciTech Connect

The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

NONE

1996-06-24T23:59:59.000Z

396

Natural gas monthly, October 1997  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

NONE

1997-10-01T23:59:59.000Z

397

NITROGEN REMOVAL FROM NATURAL GAS  

SciTech Connect

The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest-cost technology for small gas streams containing less than 10% nitrogen. The membrane process can recover more than 60-70% of the hydrocarbon content of the gas at a cost of $0.60-0.70/Mscfd. The capital cost of the process is about $100-200/Mscf. A number of small operators appear to be ready to use the technology if these costs can be demonstrated in the field. A second, and perhaps better, application of the technology is to combine the membrane process with a cryogenic process to treat large gas streams containing 10-20% nitrogen. The combination process achieves significant synergies. The membrane process performs a bulk separation of the gas, after which the cryogenic process treats the membrane residue (nitrogen-enriched) gas to recover more methane. Overall, hydrocarbon recoveries are greater than 95%. The capital cost of the combination process is lower than that of either process used alone and the processing costs are in the range $0.30-0.40/Mscf. This operating cost would be attractive to many gas producers. MTR is collaborating with a producer of cryogenic systems to further develop the combination process. A number of innovations in membrane process designs were made during the project; four U.S. patents covering various aspects of the technology were filed and issued.

K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

1999-12-31T23:59:59.000Z

398

Exergetic optimization of a refrigeration cycle for natural gas liquefaction  

Science Journals Connector (OSTI)

Abstract Natural gas is widely use in many industries as fuel and also as raw material. Although gas pipelines present less transportation losses they become impracticable when distances are too long or when demands are highly variable. The liquefaction of natural gas is then necessary to allow its transportation in great volumes, with little loss of material. This also enables its storage in a more stable way. Natural gas consumption is continuously growing worldwide and consequently, the number of exporter terminals (liquefaction industries) and importer terminals (regasification plants) will increase. The natural gas liquefaction process is based on a sequence of refrigeration cycles, which need to work in an optimized way. The exergetic analysis is a very useful thermodynamic tool to evaluate the efficiency of these cycles. This work aims at an exergetic analysis of a multistage cascade refrigeration cycle applied to a natural gas liquefaction process. Firstly, the process was simulated using commercial software and the results obtained from the simulations were validated with literature data, showing a good agreement. After that, different operational conditions, according to a complete factorial design of experiments, were studied, in order to verify the influence of pressure in six specific points of the cycle. The response variable analyzed is the rate of total exergy destroyed in the cycle. The results showed a new set of operational condition to the refrigeration cycle in which the destroyed exergy rate was reduced by approximately 48% in comparison with literature data.

Liza Cipolato; Maria C.A. Lirani; Thiago V. Costa; Francine M. Fábrega; José V.H. d'Angelo

2012-01-01T23:59:59.000Z

399

Particulate hot gas stream cleanup technical issues  

SciTech Connect

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

400

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

402

Modelling of menu design in computerized work  

Science Journals Connector (OSTI)

......football, films IBM operating system commands...military alphabet personnel characters 10 Honeywell...displaying upcoming selections improves performance...1985) Officer Training manufacturing Corp...A 20 military personnel 100 students agriculture...advantageous in menu selection with familiar words......

Julie A. Jacko; Gavriel Salvendy; Richard J. Koubek

1995-09-01T23:59:59.000Z

403

Designing Industrial DSM Programs that Work  

E-Print Network (OSTI)

.5% $0.021 BPA ConlMod Program 100% 2.5% $0.006 BPA Energy Savings Plan 26% 0.8% $0.007 Puget Power Industrial Conservation Program 5% 2.0% $0.026 UI Energy Blueprint 60% 0.1 % $0.035 ... Number of participating customers divided by number... (POO) Industrial Lighting Incentive Pilot Program. From 1985 through 1988, the Bonneville Power Administration (BPA) funded a lighting efficiency pilot program which served industrial and warehousing facilities in the Clark PUD service territory...

Nadel, S. M.; Jordan, J. A.

404

BEDES Strategic Working Group Recommendations  

Energy.gov (U.S. Department of Energy (DOE))

The BEDES Strategic Working Group Recommendations document is a guide to how the BEDES Dictionary can be brought to market and provide the services for which it was designed.

405

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

406

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

SciTech Connect

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

407

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

408

Gas from Veggies  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas from Veggies Gas from Veggies Name: Julie Location: N/A Country: N/A Date: N/A Question: Im doing my science experiment to see if the processing of food produces gas. I was told that you do this by getting the vegitables, grounding them up, mixing them with vinegar and putting it in a test tube and then place a balloon over it to see if gas is produced. First I tried mixing the foods (Im using canned, frozen and fresh broccoli first to see if it works) with the vinegar and put it in a test tube and I placed a balloon over it but no gas was produced. I then tried it again in heat and again in the cold and it still wouldnt work. I tried the experiment again and pureed the broccoli and mixed it with the vinegar, put the balloon over it and still no gas was produced. What could I be doing wrong? Im using 5% acidity vineger because that's the only kind I could find. Do I need a stronger one? Where can I get a stronger one? How much vinegar should I be using? How much of the broccoli should I be using? Do I have to do something to the broccoli first? Please try to answer my questions I really need help.

409

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

410

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

411

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

412

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

413

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

414

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

415

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

416

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

417

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

418

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

419

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

420

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

422

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

423

Natural gas monthly, August 1996  

SciTech Connect

This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

NONE

1996-08-01T23:59:59.000Z

424

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

Not Available

1992-12-01T23:59:59.000Z

425

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: July 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 15, 2009) Natural gas spot prices rose during the week in all trading locations. Price increases ranged between 6 cents and 48 cents per million Btu (MMBtu), with the biggest increases occurring in the Rocky Mountain region. During the report week, the spot price at the Henry Hub increased 15 cents or 5 percent to $3.37 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas near-month contract (August 2009) decreased 7 cents to $3.283 per MMBtu from $3.353 the previous week. During its tenure as the near-month contract, the August 2009 contract has lost 66 cents. As of Friday, July 10, 2009, working gas in storage rose to 2,886

426

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, August 18, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, August 10, 2011) Natural gas prices fell across the board this week, likely in response to cooling temperatures as well as weak economic news. The Henry Hub spot price fell 17 cents from $4.26 per million Btu (MMBtu) last Wednesday, August 3, to $4.09 per MMBtu yesterday, August 10. At the New York Mercantile Exchange, the price of the near-month contract (September 2011) fell by $0.087 per MMBtu, from $4.090 last Wednesday to $4.003 yesterday. Working natural gas in storage was 2,783 Bcf as of Friday, August 5, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

427

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, February 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 26, 2011) Natural gas spot prices were soft at all domestic pricing points. The Henry Hub price fell 8 cents per million Btu (MMBtu) (about 1.7 percent) for the week ending January 26, to $4.40 per MMBtu. The West Texas Intermediate crude oil spot price settled at $86.15 per barrel ($14.85 per MMBtu), on Wednesday, January 26. This represents a decrease of $4.70 per barrel, or $0.81 per MMBtu, from the previous Wednesday. Working natural gas in storage fell to 2,542 billion cubic feet (Bcf) as of Friday, January 21, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The

428

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, June 16, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 8, 2011) Natural gas prices rose on the week across the board, with somewhat moderate increases in most areas and steep increases in the Northeast United States. The Henry Hub spot price rose 20 cents on the week from $4.63 per million Btu (MMBtu) last Wednesday, June 1, to $4.83 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month (July 2011) contract rose about 5 percent, from $4.692 last Wednesday to $4.847 yesterday. Working natural gas in storage rose to 2,187 billion cubic feet (Bcf) as of Friday, June 3, according to EIAÂ’s Weekly Natural Gas Storage

429

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, July 28, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 20, 2011) Responding to extremely hot weather this week, natural gas prices moved up at market locations across the lower 48 States. The spot price at the Henry Hub increased 21 cents from $4.43 per million Btu (MMBtu) last Wednesday, July 13, to $4.64 per MMBtu yesterday, July 20. At the New York Mercantile Exchange, the price of the near-month futures contract (August 2011) increased from $4.403 per MMBtu to $4.500 per MMBtu. Working natural gas in storage rose to 2,671 billion cubic feet (Bcf) as of Friday, July 15, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

430

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, March 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 9, 2011) Natural gas spot prices remained soft at nearly all domestic pricing points. The Henry Hub price rose an insignificant 2 cents per million Btu (MMBtu) (0.5 percent) for the week ending March 9, to $3.81 per MMBtu. Working natural gas in storage fell to 1,674 billion cubic feet (Bcf) as of Friday, March 4, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 71 Bcf, with storage volumes positioned 32 Bcf above year-ago levels. At the New York Mercantile Exchange (NYMEX), the April 2011 natural

431

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, March 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 24, 2010) Natural gas prices declined across the board, continuing a downward trend from the previous week. The Henry Hub natural gas spot price closed at $4.91 per million Btu (MMBtu) on Wednesday, February 24, a decline of about 10 percent from $5.47 per MMBtu on February 17. At the New York Mercantile Exchange (NYMEX), the futures contract for March 2010 delivery, which expired yesterday, fell 11 percent on the week, from $5.386 per MMBtu to $4.816 per MMBtu. With an implied net withdrawal of 172 billion cubic feet (Bcf), working gas in storage decreased to 1,853 Bcf as of Friday, February 19,

432

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

433

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2011 at 2:00 P.M. 8, 2011 at 2:00 P.M. Next Release: Thursday, May 5, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 27, 2011) Mild temperatures coupled with continued strong domestic production resulted in natural gas cash market prices dropping modestly at nearly all domestic pricing points over the week. The lone exception was the Henry Hub price which rose a token 2 cents per million Btu (MMBtu) (0.5 percent) to $4.35 per MMBtu on April 27. Working natural gas in storage rose to 1,685 billion cubic feet (Bcf) as of Friday, April 22, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 31 Bcf, with storage volumes positioned

434

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 at 2:00 P.M. 1 at 2:00 P.M. Next Release: Thursday, November 17, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 9, 2011) Continuing its recent trend of languishing below the $4 per million Btu (MMBtu) mark, the Henry Hub natural gas spot price oscillated this week, and posted an overall net increase of 16 cents, from $3.39 per MMBtu last Wednesday, November 2, to $3.55 per MMBtu yesterday, November 9. At the New York Mercantile Exchange, the price of the near-month (December 2011) natural gas futures contract fell from $3.749 per MMBtu last Wednesday to $3.652 per MMBtu yesterday. Working natural gas in storage rose to 3,831 billion cubic feet (Bcf) as of Friday, November 4, according to EIAÂ’s Weekly Natural Gas

435

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

436

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, March 10, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 2, 2011) Natural gas prices showed continued relative weakness during the report week. The spot price at the Henry Hub fell from $3.83 per million Btu (MMBtu) on February 23 to $3.79 per MMBtu on March 2. At the New York Mercantile Exchange (NYMEX), the March 2011 futures contract expired at $3.793 per MMBtu, having declined about 12 percent during its tenure as the near-month contract. Working natural gas in storage fell to 1,745 Bcf as of Friday, February 25, according to EIAÂ’s Weekly Natural Gas Storage Report. The spot price of the West Texas Intermediate (WTI) crude oil

437

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, September 29, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 21, 2011) Natural gas spot prices declined at most market locations across the United States, as moderate temperatures led to declines in demand. Prices at the Henry Hub fell from $4.01 per MMBtu last Wednesday, September 14, to $3.78 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month futures contract (October 2011) dropped from $4.039 per MMBtu last Wednesday to $3.73 per MMBtu yesterday. Working natural gas in storage rose to 3,201 billion cubic feet (Bcf) as of Friday, September 16, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

438

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5 to Wednesday, December 12) 5 to Wednesday, December 12) Released: December 13 Next release: December 20, 2007 · Natural gas spot and futures prices increased this report week (Wednesday to Wednesday, December 5-12), as cooler temperatures in much of the country increased demand for space heating. On the week the Henry Hub spot price increased $0.18 per million Btu (MMBtu) to $7.22. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for January delivery rose about 22 cents per MMBtu on the week to $7.408. · Working gas in storage is well above the 5-year average for this time year, indicating a healthy supply picture as the winter heating season progress. As of Friday, December 7, working gas in storage was 3,294 Bcf, which is 8.5 percent above the 5-year (2002-2006) average.

439

Gas-phase chemical dynamics  

SciTech Connect

Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-01T23:59:59.000Z

440

Design and modeling of 1–10 MWe liquefied natural gas-fueled combined cooling, heating and power plants for building applications  

Science Journals Connector (OSTI)

Abstract Decentralized, liquefied natural gas-fueled, trigeneration plants are considered as alternatives to centralized, electricity-only generating power plants to improve efficiency and minimize running costs. The proposed system is analyzed in terms of efficiency and cost. Electrical power is generated with a gas turbine, while waste heat is recovered and utilized effectively to cover heating and cooling needs for buildings located in the vicinity of the plant. The high quality of cooling energy carried in the LNG fluid is used to cool the air supply to the air compressor. Waste heat is recovered with heat exchangers to generate useful heating in the winter period, while in the summer period an integrated double-effect absorption chiller converts waste heat to useful cooling. For the base system (10 MWe), net electrical efficiency is up to 36.5%, while the primary energy ratio reaches 90%. The payback period for the base system is 4 years, for a lifecycle cost of 221.6 million euros and an investment cost of 13 million euros. The base system can satisfy the needs of more than 21,000 average households, while an equivalent conventional system can only satisfy the needs of 12,000 average households.

Alexandros Arsalis; Andreas Alexandrou

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

442

Xcel Energy (Gas) - Business Energy Efficiency Rebate Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Energy Efficiency Rebate Programs Business Energy Efficiency Rebate Programs Xcel Energy (Gas) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Maximum Rebate Traps, Dampers, Tune-ups: $250/unit Steam Traps: $10,000/facility Modular Burner Control: $2,000/unit Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Hot Water Boilers (New/Non-Working Replacement): $750 - $3500/MMBTUh Hot Water Boilers (Working Replacement): $7000/MMBTUh Boiler Tune-ups: $250/MMBTUh Modular Burner Controls: $750/MMBTUh

443

How NIF Works  

SciTech Connect

The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

2009-07-30T23:59:59.000Z

444

How NIF Works  

ScienceCinema (OSTI)

The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

None

2010-09-01T23:59:59.000Z

445

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

446

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

447

Optimization of the gas production rate by marginal cost analysis: Influence of the sales gas pressure, gas price and duration of gas sales contract  

Science Journals Connector (OSTI)

Abstract The development of a gas field requires accurate planning, but the gas production rate is one of the main challenges in determining the feasibility of a gas project. An optimum gas production rate is determined not only by the gas reserve and reservoir characteristics but also by the consumer's requirements of the sales gas pressure, duration of the gas sales contract and gas price. This paper presents a gas production optimization model based on the marginal cost approach to maximize economic profit using a case study in the Donggi gas field. The results reveal that increasing the sales gas pressure and gas price raises the optimum gas production rate and increases the maximum profit; meanwhile, increasing the duration of a gas sales contract will reduce the optimum gas production rate and reduce or increase the maximum profit depending on the gas reserve and reservoir characteristics. This work clearly shows the relationship between the user's requirements and optimum gas production rate, which is an important piece of information for negotiating the gas price and planning production.

Suprapto Soemardan; Widodo Wahyu Purwanto; Arsegianto

2014-01-01T23:59:59.000Z

448

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

Hale of the Energy Information Administration for supporting and reviewing this work. Keywords: Natural Gas

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

449

(Gas discharges and applications)  

SciTech Connect

The traveler attended the Ninth International Conference on Gas Discharges and Their Applications, which was held in Venice, Italy, on September 19--23, 1988; presented two papers, (1) Ion Chemistry in SF{sub 6} Corona'' and (2) Production of S{sub 2}F{sub 10} by SF{sub 6} Spark Discharge''; and participated in numerous discussions with conference participants on gas discharges related to his work on SF{sub 6}. The traveler visited the Centre de Physique Atomique at the University Paul Sabatier in Toulouse, France, to discuss with Dr. J. Casanovas his work on SF{sub 6} decomposition. Following that visit, the traveler visited the Laboratoire de Photoelectricite at the University of Dijon to discuss with Dr. J.-P. Goudonnet his work on surface studies and on the use of tunneling electron spectroscopy for the chemical analysis of surfaces.

Sauers, I.

1988-10-04T23:59:59.000Z

450

Thermal performance prediction of a solar hybrid gas turbine  

Science Journals Connector (OSTI)

The present work focuses on a modelling procedure to simulate the operation of a solar hybrid gas turbine. The method is applied to a power generation system including an heliostat field, a receiver and a 36 MW commercial gas turbine. Heat is provided by concentrated solar power and integrated by fossil fuel. A detailed modelling of the gas turbine (GT) is proposed to predict the performance of commercial GT models in actual operating conditions. Advanced software tools were combined together to predict design and off-design performance of the whole system: TRNSYS® was used to model the solar field and the receiver while the gas turbine simulation was performed by means of Thermoflex®. A detailed comparison between the solarized and the conventional gas turbine is reported, taking into account GT electric power, efficiency and shaft speed. All thermodynamic parameters such pressure ratio, air flow and fuel consumption were compared. The main advantage of solarization is the fossil fuel saving, but it is balanced by a relevant penalty in power output and efficiency.

G. Barigozzi; G. Bonetti; G. Franchini; A. Perdichizzi; S. Ravelli

2012-01-01T23:59:59.000Z

451

DOE - Office of Legacy Management -- Morgantown Ordnance Works...  

Office of Legacy Management (LM)

(NETL). NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Morgantown Ordnance Works...

452

NREL: Climate Neutral Research Campuses - Flexible Work Strategies  

NLE Websites -- All DOE Office Websites (Extended Search)

These strategies can be used to reduce energy consumption and greenhouse gas (GHG) emissions. The following outlines conditions when and where flexible work schedules...

453

Power control system for a hot gas engine  

DOE Patents (OSTI)

A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

Berntell, John O. (Staffanstorp, SE)

1986-01-01T23:59:59.000Z

454

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

455

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

456

Cooperative Modeling and Design History Tracking Using Design Tracking Matrix  

E-Print Network (OSTI)

This thesis suggests a new framework for cooperative modeling which supports concurrency design protocol with a design history tracking function. The proposed framework allows designers to work together while eliminating design conflicts...

Kim, Jonghyun

2010-10-12T23:59:59.000Z

457

How Minds Work Working & Episodic Memory  

E-Print Network (OSTI)

1 How Minds Work Working & Episodic Memory Stan Franklin Computer Science Division & Institute for Intelligent Systems The University of Memphis #12;HMW: Working and Episodic Memory 2 Memory Systems #12;HMW: Working and Episodic Memory 3 #12;HMW: Working and Episodic Memory 4 Percept · Result of filtering

Memphis, University of

458

EPA Natural Gas STAR Program Accomplishments  

E-Print Network (OSTI)

Established in 1993, the Natural Gas STAR program is a partnership between the U.S. EPA and the oil and natural gas industry designed to cost-effectively reduce methane emissions from voluntary activities undertaken at oil and natural gas operations both

unknown authors

459

Technical Note Methane gas migration through geomembranes  

E-Print Network (OSTI)

and Fick's law. This chart can be used by landfill designers to evaluate the methane gas transmission rate for a selected geomembrane type and thickness and expected methane gas pressure in the landfill. KEYWORDS landfill usually consists, from bottom to top, of: graded landfill surface; a gas-venting layer; a low

460

U-GAS process  

SciTech Connect

The Institute of Gas Technology (IGT) has developed an advanced coal gasification process. The U-GAS process has been extensively tested in a pilot plant to firmly establish process feasibility and provide a large data base for scale-up and design of the first commercial plant. The U-GAS process is considered to be one of the more flexible, efficient, and economical coal gasification technologies developed in the US during the last decade. The U-GAS technology is presently available for licensing from GDC, Inc., a wholly-owned subsidiary of IGT. The U-GAS process accomplishes four important functions in a single-stage, fluidized-bed gasifier: It decakes coal, devolatilizes coal, gasifies coal, and agglomerates and separates ash from char. Simultaneously with coal gasification, the ash is agglomerated into spherical particles and separated from the bed. Part of the fluidizing gas enters the gasifier through a sloping grid. The remaining gas flows upward at a high velocity through the ash agglomerating device and forms a hot zone within the fluidized bed. High-ash-content particles agglomerate under these conditions and grow into larger and heavier particles. Agglomerates grow in size until they can be selectively separated and discharged from the bed into water-filled ash hoppers where they are withdrawn as a slurry. In this manner, the fluidized bed achieves the same low level of carbon losses in the discharge ash generally associated with the ash-slagging type of gasifier. Coal fines elutriated from the fluidized bed are collected in two external cyclones. Fines from the first cyclone are returned to the bed and fines from the second cyclone are returned to the ash agglomerating zone, where they are gasified, and the ash agglomerated with bed ash. The raw product gas is virtually free of tar and oils, thus simplifying ensuing heat recovery and purification steps.

Schora, F.C.; Patel, J.G.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working gas design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Multiphase stationary plasma generators working on oxidizing media  

Science Journals Connector (OSTI)

The subject of this paper is the design of two types of stationary multiphase ac plasma generators, developed for plasma chemical methods of waste destruction and processing (including syngas production). This paper presents plasma generators of average power (up to 50?kW) and high power (up to 500?kW) working on oxidizing media and describes the basic physical processes in the discharge chamber of a multiphase low-temperature (thermal) plasma generator. The presence of diffuse mode of arc burning at ne ~ 1014–1015?cm?3 and contracted mode ne ? 1016?cm?3 is detected. The external characteristics (dependence of working gas heat content, power in arcs and efficiency on flow rate) based on experimental data are presented. The influence of plasma forming gas variation on electric parameters is demonstrated. The powerful multiphase plasma generator works at atmospheric pressure on oxidizing media (air) in the power range 100–500?kW and the flow rates 10–70?g?s?1 with thermal efficiency of 70–90% and electrode lifetime of more than a hundred hours. The thermal efficiency of an average power (up to 50?kW) plasma generator in the range of air flow rate of 2–25?g?s?1 is 80–95%, while the electrode lifetime is hundreds of hours. The described multiphase plasma generators allow the working gas heat content to be controlled in a wide range at the outlet (for air—from 1.5?MJ?kg?1 up to 12.5?MJ?kg?1), which is important for the realization of plasma technologies, including syngas production.

Ph G Rutberg; A A Safronov; S D Popov; A V Surov; Gh V Nakonechny

2005-01-01T23:59:59.000Z

462

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

463

Perspectives on the Design and Planning of Oil Field Infrastructure  

Science Journals Connector (OSTI)

Abstract Drilling for oil and gas is a costly and risky endeavor. Existing literature has already recognized the role of modeling and simulation in aiding the development and management of an oil field and its infrastructure. The optimal design and planning of oil field infrastructure is a highly complex and challenging noncontinuous process design problem involving many continuous and discrete decisions over time. In this article, we describe its challenges and complexity, and review various contributions from the process systems and petroleum engineering communities. We classify the various design and planning issues based on the planning horizon, discuss progress trends, and highlight possible future work.

M. Sadegh Tavallali; Iftekhar A. Karimi

2014-01-01T23:59:59.000Z

464

Gas turbine noise control  

Science Journals Connector (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future and direct combustion of pulverized coal is also a possibility. The primary problem of generally unacceptable noise levels from gas turbine powered equipment affects both community noise and hearing conservation alike. The noise criteria of such plant remain a significant design factor. The paper looks at the technical and historical aspects associated with the noise generation process and examines past present and possible future approaches to the problem of silencing gas turbine units; adequately specifying the acoustical criteria and ratings; evaluates the techniques by which these criteria should be measured; and correlates these with the typical results achieved in the field.

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

465

5 - Combustors in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: This chapter discusses combustion systems in gas turbines. It begins by reviewing basic design principles before discussing developments in technology such as advanced fuel staging and reheat combustion systems. The chapter also covers the impact of different natural gas types on combustor operations, including combustor design for low calorific gases and fuel oils.

P. Flohr; P. Stuttaford

2013-01-01T23:59:59.000Z

466

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: Thursday, November 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 11, 2009) With little impact on production in the Gulf of Mexico from Hurricane Ida and moderate temperatures in many parts of the country, natural gas spot prices decreased sharply this report week (November 4-11). The Henry Hub spot price decreased by $0.90 to $3.59 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices also moved lower as the threat of an interruption in supplies from the hurricane passed. The futures contract for December delivery decreased by $0.22 on the report week to $4.503 per MMBtu. Working gas in underground storage as of last Friday (November 6) is

467

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2010 at 2:00 P.M. , 2010 at 2:00 P.M. Next Release: Thursday, April 8, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 31, 2010) Natural gas spot prices fell almost across the board, as mild weather moved into most areas in the lower 48 States. The Henry Hub price fell by 9 cents, from $4.02 per million Btu (MMBtu) on Wednesday, March 24, to $3.93 per MMBtu yesterday (March 31). At the New York Mercantile Exchange (NYMEX), the April 2010 contract expired on Monday, March 29, at $3.842 per MMBtu. The May 2010 contract ended trading yesterday at $3.869 per MMBtu, a decline of about 29 cents from its closing price of $4.154 per MMBtu on March 24. Inventories of working natural gas in storage rose to 1,638 billion

468

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, July 7, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 29, 2011) Nearly all pricing points were down slightly for the week on light weather load despite an end-week rally anticipating warmer weather for the approaching July 4th holiday weekend. The Henry Hub price decreased 2 cents per million Btu (MMBtu) over the week (0.5 percent) to close at $4.40 per MMBtu on June 29. Working natural gas in storage rose last week to 2,432 billion cubic feet (Bcf) as of Friday, June 24, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 78 Bcf, leaving storage volumes

469

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, September 22, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 14, 2011) A touch of autumn in the air combined with hopes for the eventual return of winter was likely the catalyst enabling natural gas prices to recapture the $4 mark this week despite an environment of negative consumption fundamentals and continued strong production. At the New York Mercantile Exchange (NYMEX), the October 2011 natural gas contract advanced 9.9 cents per million Btu (MMBtu) to close at $4.039 per MMBtu over the week. The Henry Hub price oscillated in a similar but narrow range before closing up 5 cents for the week at $4.01 per MMBtu on September 14. Working natural gas in storage rose last week to 3,112 billion cubic

470

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, May 26, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 18, 2011) The threat of shut-in production arising from lower Mississippi River flooding likely sent prices up temporarily at nearly all domestic pricing points over the week but the gains failed to stick. The Henry Hub price lost a modest 7 cents per million Btu (MMBtu) (1.9 percent) to close at $4.15 per MMBtu on May 18. Working natural gas in storage rose to 1,919 billion cubic feet (Bcf) as of Friday, May 13, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 92 Bcf, leaving storage volumes

471

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 3, 2009 Next Release: July 30, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 22, 2009) Natural gas spot prices rose this report week, as prices for energy products generally increased and the economic outlook improved. During the report week, the Henry Hub spot price increased by $0.12 per million Btu (MMBtu) to $3.49. At the New York Mercantile Exchange (NYMEX), futures prices increased significantly. The price of the futures contract for August delivery closed yesterday, July 22, at $3.793 per MMBtu, more than 50 cents higher than the closing price the previous Wednesday. Working gas in underground storage as of Friday, July 17, is estimated to have been 2,952 billion cubic feet (Bcf), which is 18.4

472

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, June 23, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 15, 2011) The past week was characterized by passing of the earlier weekÂ’s heat wave. The Henry Hub price decreased 31 cents per million Btu (MMBtu) for the week (6.4 percent) to close at $4.52 per MMBtu on June 15. During the midst of the heat wave, working natural gas in storage last week rose to 2,256 billion cubic feet (Bcf) as of Friday, June 10, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 69 Bcf, leaving storage volumes positioned 275 Bcf below year-ago levels.

473

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, December 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 17, 2010) Natural gas spot prices fell modestly at nearly all domestic pricing points, likely because expectations for colder weather were slow in materializing and storage levels rose again. The Henry Hub price fell 23 cents (about 6 percent) for the week ending November 17, to $3.77 per million Btu (MMBtu). The West Texas Intermediate crude oil spot price settled at $80.43 per barrel ($13.87 per MMBtu), on Wednesday, November 17. This represents a decrease of $7.34 per barrel, or $1.27 per MMBtu, from the previous Wednesday. Working natural gas in storage set another new all-time record

474

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 0, 2009 Next Release: August 27, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 19, 2009) Natural gas spot prices declined this report week (August 12-19), with the largest decreases generally occurring in the western half of the country. The Henry Hub spot price decreased by $0.34 to $3.02 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased as supplies continued to be viewed as more than adequate to address near-term demand, including heating-related demand increases this winter. The futures contract for September delivery decreased by $0.36 on the week to $3.12 per MMBtu. Working gas in underground storage as of last Friday is estimated to

475

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, October 13, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 5, 2011) Like autumn leaves floating down to earth, natural gas prices dropped decidedly from their $4 support branch this past week. In a whirlwind of generally unsupportive market fundamentals, the Henry Hub price closed down 25 cents for the week to $3.63 per million British thermal units (MMBtu) on October 5. At the New York Mercantile Exchange (NYMEX), the November 2011 natural gas contract dropped nearly 23 cents per MMBtu to close at $3.570 per MMBtu over the week. Working natural gas in storage rose last week to 3,409 billion cubic feet (Bcf) as of Friday, September 30, according to the U.S. Energy

476

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: October 22, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 14, 2009) Natural gas spot prices increased this report week (October 7-14) as a cold-air mass moved over major consuming areas of the country, including the populous Northeast. The Henry Hub spot price increased by $0.12 to $3.82 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased significantly after increasing for 5 consecutive weeks. The futures