Sample records for working gas design

  1. Working on new gas turbine cycle for heat pump drive

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor DO NOT 16 0 REMOVE 16 Small recuperated gas turbine engine, design rated at 13 hp and 27% efficiency of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

  2. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan Feb Marper3Working Gas in

  3. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan Feb Marper3Working Gas

  4. Work Breakdown Structure and Plant/Equipment Designation System Numbering Scheme for the High Temperature Gas- Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect (OSTI)

    Jeffrey D Bryan

    2009-09-01T23:59:59.000Z

    This white paper investigates the potential integration of the CTC work breakdown structure numbering scheme with a plant/equipment numbering system (PNS), or alternatively referred to in industry as a reference designation system (RDS). Ideally, the goal of such integration would be a single, common referencing system for the life cycle of the CTC that supports all the various processes (e.g., information, execution, and control) that necessitate plant and equipment numbers be assigned. This white paper focuses on discovering the full scope of Idaho National Laboratory (INL) processes to which this goal might be applied as well as the factors likely to affect decisions about implementation. Later, a procedure for assigning these numbers will be developed using this white paper as a starting point and that reflects the resolved scope and outcome of associated decisions.

  5. The Physics Analysis of a Gas Attenuator with Argon as a Working Gas

    SciTech Connect (OSTI)

    Ryutov,, D.D.

    2010-12-07T23:59:59.000Z

    A gas attenuator is an important element of the LCLS facility. The attenuator must operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. S. Shen has recently carried out a detailed design study of the attenuator based on the use of nitrogen as a working gas. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues, not the design features.

  6. Measurement of work function in CF? gas

    E-Print Network [OSTI]

    Wolfe, Ian C

    2010-01-01T23:59:59.000Z

    CF4 gas is useful in many applications, especially as a drift gas in particle detection chambers. In order to make accurate measurements of incident particles the properties of the drift gas must be well understood. An ...

  7. Philadelphia Gas Works: Who’s on First?

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—about the Philadelphia Gas Works (PGW) and its federal projects.

  8. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J. (Troy, NY)

    1987-01-01T23:59:59.000Z

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  9. Gas Flowmeter Calibrations with the Working Gas Flow Standard NIST Special Publication 250-80

    E-Print Network [OSTI]

    Gas Flowmeter Calibrations with the Working Gas Flow Standard NIST Special Publication 250-80 John of Standards and Technology U. S. Department of Commerce #12;ii Table of Contents Gas Flowmeter Calibrations with the Working Gas Flow Standard .......................... i Abstract

  10. Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Equipment rebates are available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food...

  11. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

  12. Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

  13. Underground Natural Gas Working Storage Capacity - Methodology

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet) Gas WellsNatural Gas Glossary

  14. Method of coverning the working gas temperature of a solar heated hot gas engine

    SciTech Connect (OSTI)

    Almstrom, S.-H.; Nelving, H.G.

    1984-07-03T23:59:59.000Z

    A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

  15. Method of governing the working gas temperature of a solar heated hot gas engine

    SciTech Connect (OSTI)

    Almstrom, S.H.; Nelving, H.G.

    1984-07-03T23:59:59.000Z

    A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

  16. CONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES

    E-Print Network [OSTI]

    Foss, Bjarne A.

    . The exhaust gas from a gas turbine with CO2 as working fluid, is used as heating medium for a steam cycleCONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES Dagfinn Snarheim Lars Imsland. of Science and Technology, 7491 Trondheim Abstract: The semi-closed oxy-fuel gas turbine cycle has been

  17. Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYearBase Gas)

  18. Radial Inflow Gas Turbine Flow Path Design

    E-Print Network [OSTI]

    Samip Shah; Gaurang Chaudhri; Digvijay Kulshreshtha; S. A. Channiwalla

    Abstract:- A new method for radial inflow gas turbine flow paths design based on a unique integrated conceptual design environment AxSTREAM is presented in this paper. This integrated environment is a seamless and swift processing scheme that incorporates stages aerodynamic analysis and preliminary design/sizing based on the one dimensional method. The environment makes possible to find number of different designs with inverse task solver, basing on initially specified boundary conditions, closing conditions and design variables. Design space explorer provides easy and visual comparison for range of obtained design in customizable coordinate axes. Solution filtering on different parameters, such as meridional and axial dimensions, maximal blades weight, saving the time to choose from thousands obtained solutions the only one right design. Flexibility of presented approach allows to built-up complete gas turbine flow path from consequence of individual elements: stationary and rotating elements, ducts, heat exchangers, and analyze it in common environment. Complete control of all aspects of aerodynamic flow path quality, structural reliability, and integral performances on design and offdesign conditions is performing throughout all design process. This gives full interaction between user and system for immediate correction and enhancement of current design data using various optimization capabilities to feel the impact of changes on each design step. Integrated system AxSTREAM significantly shortening the design cycle time from initial machine concept to finalized design with all offdesign performances details. The design process is demonstrated for a 25kW radial inflow gas turbine. Keywords:- Radial Inflow Turbine, Performance Maps, AxSTREAM I.

  19. Weekly Working Gas in Underground Storage

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 2012 MEMORANDUM FOR:0,0, 1997Working

  20. Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear JanDecadeFeet) Working

  1. Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial ConsumersDecadeFeet) Working

  2. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01T23:59:59.000Z

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  3. Resilience-Based Design of Natural Gas Distribution Networks

    E-Print Network [OSTI]

    Bruneau, Michel

    Case Study Resilience-Based Design of Natural Gas Distribution Networks G. P. Cimellaro, Ph.D., A response to natural disasters. In this paper, a new performance index measuring the functionality of a gas; Disaster resilience; Vulnerability; Gas networks; Damage assessment; Lifelines; Serviceability; Natural gas

  4. Apparatus for controlling working gas pressure in Stirling engines

    SciTech Connect (OSTI)

    Tsunekawa, M.; Naito, Y.; Hyodo, M.; Hayashi, T.

    1987-11-17T23:59:59.000Z

    A working gas pressure control apparatus for a Stirling engine is described which comprises: a pressure boost valve provided in a minimum cycle pressure line connected to a working space by a first unidirectional valve; a pressure reducing valve provided in a maximum cycle pressure line connected to the working space by a second unidirectional valve; an operating lever for controlling opening and closing of the pressure boost valve and the pressure reducing valve; a compressor connected by the pressure reducing valve and the pressure boost valves to the cycle pressure lines; an unloading valve arranged in a circuit short-circuiting suction and discharge lines of the compressor; and a control circuit for opening the unloading valve when any one of a rotational speed of the engine falls to a value lower than a present rotational speed for engine idling, the pressure boost valve is opened, and the engine is in a steady-state mode of operation.

  5. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

    1995-12-01T23:59:59.000Z

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  6. Intranet Development and Design that Works

    SciTech Connect (OSTI)

    BACA,BOBBY G.; CASSIDY,ANDREA L.

    1999-09-09T23:59:59.000Z

    Making information available and easy to find is the objective of designing a good web site. A company's Intranet typically provides a great deal of information to its employees in an effort to help them better perform their jobs. If the information is available but is difficult to locate, the usefulness of this information is diminished. Sandia National Laboratories performed a redesign of its home page and has obtained a successful design which enables its employees to locate information quickly and efficiently. Three phases of usability testing were conducted to develop and optimize the home page. This paper will discuss the redesign of the Intranet home page and describe how usability studies were used to help ensure a usable design.

  7. Optimization for Design and Operation of Natural Gas Transmission Networks 

    E-Print Network [OSTI]

    Dilaveroglu, Sebnem 1986-

    2012-08-22T23:59:59.000Z

    designing and operating the network. A well-designed network helps natural gas companies minimize the costs while increasing the customer service level. The aim of the study is to determine the optimum installation scheduling and locations of new pipelines...

  8. Rapid Gas Hydrate Formation Processes: Will They Work?

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.P.

    2010-01-01T23:59:59.000Z

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve (see Figure 1).

  9. Rapid Gas Hydrate Formation Processes: Will They Work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-01T23:59:59.000Z

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formationmore »of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  10. Designing for Nomadic Work Norman Makoto Su and Gloria Mark

    E-Print Network [OSTI]

    Su, Norman Makoto

    nomadic work practices. Drawing from strategies for survival of pastoralist nomads to guide our design strategy do so for quite good reasons. ­ [Salzman, p. 40] A new type of mobile work practice is emerging support for their work practices. We employed ethnographic interviews and observations to understand

  11. Improved helium exchange gas cryostat and sample tube designs for automated gas sampling and cryopumping

    E-Print Network [OSTI]

    Severinghaus, Jeffrey P.

    Improved helium exchange gas cryostat and sample tube designs for automated gas sampling, California 92093-0244, USA [1] In order to eliminate the use of liquid helium for the extraction of atmospheric gases from polar ice cores, two units of a redesigned top load helium exchange gas cryostat were

  12. Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul AugDecade Year-0Working Gas)

  13. New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet) Working Gas) (Million

  14. New Mexico Natural Gas in Underground Storage - Change in Working Gas from

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet) Working Gas)

  15. New Mexico Natural Gas in Underground Storage - Change in Working Gas from

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet) Working Gas)Same Month

  16. ,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to EndAdditions (MMcf)"Working Gas (MMcf)" ,"Click

  17. Conceptual Liquefied Natural Gas (LNG) terminal design for Kuwait

    E-Print Network [OSTI]

    Aljeeran, Fares

    2006-08-16T23:59:59.000Z

    This research study investigated a new conceptual design for a modular structural configuration incorporating storage for Liquefied Natural Gas (LNG) within the base of the platform structure. The structure, referred to as a modified gravity base...

  18. Conceptual Liquefied Natural Gas (LNG) terminal design for Kuwait 

    E-Print Network [OSTI]

    Aljeeran, Fares

    2006-08-16T23:59:59.000Z

    This research study investigated a new conceptual design for a modular structural configuration incorporating storage for Liquefied Natural Gas (LNG) within the base of the platform structure. The structure, referred to ...

  19. Climate VISION: Private Sector Initiatives: Oil and Gas: Work...

    Office of Scientific and Technical Information (OSTI)

    Work Plans API has developed a work plan based on API's commitment letter and the Climate Challenge Program which addresses the overall elements of the Climate VISION program...

  20. Design of a diesel exhaust-gas purification system for inert-gas drilling

    SciTech Connect (OSTI)

    Caskey, B.C.

    1982-01-01T23:59:59.000Z

    To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

  1. NBER WORKING PAPER SERIES THE HOUSING MARKET IMPACTS OF SHALE GAS DEVELOPMENT

    E-Print Network [OSTI]

    Habib, Ayman

    NBER WORKING PAPER SERIES THE HOUSING MARKET IMPACTS OF SHALE GAS DEVELOPMENT Lucija Muehlenbachs © notice, is given to the source. #12;The Housing Market Impacts of Shale Gas Development Lucija to control for confounding factors, we recover hedonic estimates of property value impacts from shale gas

  2. Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine Shoemaker

    E-Print Network [OSTI]

    Angenent, Lars T.

    Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine and environmental groups. The Shale Gas Roundtable of the Institute of Politics at the University of Pittsburgh produced a report with several recommendations dealing especially with shale gas research, water use

  3. Designing programs that check their work \\Lambda Manuel Blum

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Designing programs that check their work \\Lambda Manuel Blum Comp. Sci. Division U. of California Classification D.2.4 F.2.0 F.3.1 G.3 Abstract A program correctness checker is an algorithm for checking the output of a computation. That is, given a program and an instance on which the program is run

  4. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01T23:59:59.000Z

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  5. Preconceptual design of the gas-phase decontamination demonstration cart

    SciTech Connect (OSTI)

    Munday, E.B.

    1993-12-01T23:59:59.000Z

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF{sub 6}, which is generated from the reaction of ClF{sub 3} with the uranium deposits, by use of NaF traps.

  6. Differences Between Monthly and Weekly Working Gas In Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact: Shelley Martin, DOEVehicles and

  7. AGA Eastern Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n s u o Q(MillionGas)

  8. AGA Western Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w nGas) (Million Cubic

  9. AEO2014 Oil and Gas Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor3 Oil and Gas

  10. Preliminary gas turbine combustor design using a network approach

    SciTech Connect (OSTI)

    Stuttaford, P.J.; Rubini, P.A. [Cranfield Univ. (United Kingdom). School of Mechanical Engineering

    1997-07-01T23:59:59.000Z

    The preliminary design process of a gas turbine combustor often involves the use of cumbersome, geometry restrictive semi-empirical models. The objective of this analysis is the development of a versatile design tool for gas turbine combustors, able to model all conceivable combustor types. A network approach is developed that divides the flow into a number of independent semi-empirical subflows. A pressure-correction methodology solves the continuity equation and a pressure-drop/flow rate relationship. The development of a full conjugate heat transfer model allows the calculation of flame tube heat loss in the presence of cooling films, annulus heat addition, and flame tube feature heat pick-up. A constrained equilibrium calculation, incorporating mixing and recirculation models, simulates combustion processes. Comparison of airflow results to a well-validated combustor design code showed close agreement. The versatility of the network solver is illustrated with comparisons to experimental data from a reverse flow combustor.

  11. Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011 20123.9684,094Working

  12. Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (BillionThousand CubicWorking Natural

  13. AGA Eastern Consuming Region Natural Gas Working Underground Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001Capacity (Million Cubic Feet) Working

  14. Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0Separation3,262,7160 0 0Working Natural

  15. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    SciTech Connect (OSTI)

    R.E. Rogers

    1999-09-27T23:59:59.000Z

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  16. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    SciTech Connect (OSTI)

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01T23:59:59.000Z

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus

  17. OECD TRADE POLICY WORKING PAPERS The OECD Trade Policy Working Paper series is designed to make available to a wide

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    #12;OECD TRADE POLICY WORKING PAPERS The OECD Trade Policy Working Paper series is designed to make been declassified on the responsibility of the Working Party of the Trade Committee under the OECD.contact@oecd.org. OECD TRADE POLICY WORKING PAPERS are published on www.oecd.org/trade © OECD 2011 Applications

  18. Cooling design of large capacity gas insulated transformer

    SciTech Connect (OSTI)

    Kawano, Koichiro; Biswas, Debasis; Ishizuka, Masaru; Muramatsu, Koji; Nakadate, Masumi; Toda, Katsutoshi [Toshiba Corp., Kawasaki (Japan)

    1995-12-31T23:59:59.000Z

    From the view point of safety and maintenance simplicity, the development of large capacity gas insulated transformer has been desirable. In this type of transformer, the coolant gas is circulated in the gap between the coils to cool it. The flow pattern of coolant in the flow path strongly depend on its configuration formed by the coil. Therefore, in order to achieve high cooling efficiency of coils and at the same time to reduce the pressure loss, it is important to have sufficient knowledge about the flow behavior in the coil flow path. In the present work, in order to improve the coil cooling efficiency, appropriate flow path configuration were decided on the basis of numerical simulation using various coil configuration and validity of the computed results were tested by comparing with experimental data.

  19. Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base Gas) (Million

  20. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base Gas) (MillionMonth

  1. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base Gas)

  2. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYearBase Gas)Same

  3. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYearBase Gas)SameSame

  4. Interim measure work plan/design for Agra, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-18T23:59:59.000Z

    This Interim Measure Work Plan/Design (IMWP/D) is supplemental to the Argonne document Interim Measure Conceptual Design for Remediation of Source Area Contamination at Agra, Kansas. The IMWP/D includes information required by Kansas Department of Health and Environment (KDHE) Policy BER-RS-029, Policy and Scope of Work for Interim Measures. Specific to Policy BER-RS-029 is the requirement for several documents that will ensure that an adequate amount and type of data are collected for implementation of the IMWP/D and that data quality and safe conditions are prevailed. Such information is included in the IMWP/D as follows: Appendix A: Data Acquisition Plan--Design Testing Requirements; Appendix B: Basis of Design; Appendix C: Permits; Appendix D: Quality Assurance Project Plan; Appendix E: Health and Safety Plan; and Appendix F: Operations, Maintenance, and Monitoring Schedule. The proposed remedial technology for this project is the installation of five large-diameter boreholes (LDBs) in a source area that has been identified on the property formerly used for grain storage by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The goal of the LDB technology is the remediation of the source area by removal of mass quantities of contaminated soil from the vadose zone and treatment of any remaining contaminated soils that are adjacent to the source area to achieve a carbon tetrachloride concentration below 200 {micro}g/kg. Secondary to the soil remediation is the remediation of groundwater at and adjacent to the source areas. The LDB technology serves the following purposes: (1) The physical removal of contaminated soil from the identified source area. (2) Replacement of less permeable native materials (silty clay, clayey silt, and silty sand) with more permeable materials to facilitate the capture of volatilized contaminants in the vertical borehole. (3) Removal of contaminants volatilized by air sparging (AS) and extracted from the vadose zone by soil vapor extraction (SVE). (4) Volatilization of contaminants from portions of the affected aquifer that can be accessed from the former CCC/USDA property. The primary objective of the proposed removal action is removal of mass quantities of carbon tetrachloride from the vadose zone and treatment of any remaining contaminated soils that are adjacent to the source area, to achieve a carbon tetrachloride concentration below 200 {micro}g/kg. This objective will be the basis for evaluating system performance. The scope of action outlined in the IMWP/D is limited to the five treatment zones defined by the LDB/SVE/AS locations. Surrounding soils and groundwater will benefit; however, remedial benefits to groundwater will be limited to the area of influence associated with the five treatment zones. While treatment should be aggressive in the vicinity of the LDB locations, the heterogeneity, clay content, and low permeability of the soils will place inherent limits on the area of influence.

  5. The design, development and performance of a Duplex Stirling natural gas liquefier

    SciTech Connect (OSTI)

    Berchowitz, D.M.

    1982-09-01T23:59:59.000Z

    The idea of using a Duplex Stirling System for natural gas liquefaction has long been considered by Sunpower as an attractive application for Stirling engines. A few years ago an internally funded project was embarked upon to build a small demonstration Duplex Stirling unit. This machine was designed around the Model M-100 engine which was then being produced commercially. The demonstrator machine first ran in 1979 and soon proved to be a stable and reliable performer. A series of three further machines incorporating various improvements and modifications followed at which point it was confidently felt that the design of a large machine of more realistic capacity could be attempted. Work was started in August 1981 on the design and development of a preproduction natural gas liquefier with a capacity of at least 4 1/hr. The design of the larger machine borrows extensively from the experience gained from the small prototype machines. Scaling, computer simulation and optimization are used to refine the design. Presented here is a summary of the design and development of the preproduction machine.

  6. Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr will describe the design of a high temperature solar receiver capable of driving a gas turbine for power conclusions regarding the best way to operate a solar powered gas turbine have been obtained

  7. DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES

    E-Print Network [OSTI]

    Camci, Cengiz

    DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES (AERSP 597/497-K) SPRING 814 865 9871 cxc11@psu.edu Summary : The proposed course is a three-credit gas turbine design course will be evaluated against (agreed) deadlines by the instructor. A number of lecturers from the gas turbine industry

  8. CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Query Sheet Q1: AU: short title OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland, Dagfinn Snarheim, and Bjarne A. Foss Department-closed / gas turbine cycle for capture. Some control strategies and their interaction with the process design

  9. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul AugDecade Year-0Working

  10. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul AugDecade Year-0WorkingMonth

  11. Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9 20102009Vented andYearWorking

  12. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Trond Bjornard; John Hockert

    2011-08-01T23:59:59.000Z

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

  13. Work distribution of an expanding gas and transverse energy production in relativistic heavy ion collisions

    E-Print Network [OSTI]

    Zhang, Bin

    2013-01-01T23:59:59.000Z

    The work distribution of an expanding extreme relativistic gas is shown to be a gamma distribution with a different shape parameter as compared with its non-relativistic counterpart. This implies that the shape of the transverse energy distribution in relativistic heavy ion collisions depends on the particle contents during the evolution of the hot and dense matter. Therefore, transverse energy fluctuations provide additional insights into the Quark-Gluon Plasma produced in these collisions.

  14. Work distribution of an expanding gas and transverse energy production in relativistic heavy ion collisions

    E-Print Network [OSTI]

    Bin Zhang; Jay P. Mayfield

    2014-01-19T23:59:59.000Z

    The work distribution of an expanding extreme relativistic gas is shown to be a gamma distribution with a different shape parameter as compared with its non-relativistic counterpart. This implies that the shape of the transverse energy distribution in relativistic heavy ion collisions depends on the particle contents during the evolution of the hot and dense matter. Therefore, transverse energy fluctuations provide additional insights into the Quark-Gluon Plasma produced in these collisions.

  15. Sustainable Design Inspiration at Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    by many to be one of the most energy-efficient commercial buildings in the world. The sustainable building is a "living laboratory" of cost-effective, sustainable design and...

  16. Firing microfine coal with a low NOx, RSFC burner in an industrial boiler designed for oil and gas

    SciTech Connect (OSTI)

    Thornhock, D.E.; Patel, R.; Borio, R.W. [Combustion Engineering, Inc., Windsor, CT (United States). ABB Power Plant Labs.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center

    1996-12-31T23:59:59.000Z

    ABB Power Plant Laboratories (ABB-PPL) working under a US Department of Energy-Pittsburgh Energy Technology Center (DOE-PETC) contract has carried out tests with the Radially Stratified Flame Core (RSFC) burner which was licensed from the Massachusetts Institute of Technology who developed and patented the RSFC burner. Tests were carried out in a small industrial boiler, designed for oil and natural gas, located at the Energy and Fuels Research Center of Penn State University who was working as a subcontractor to ABB-PPL. The paper presents results from the long-term testing task in the DOE-PETC program with particular attention being paid to the challenges faced in maintaining high combustion efficiencies while achieving low NOx in a small industrial boiler designed for firing oil or natural gas. The paper will also address the issue of ash management when firing coal in a boiler designed for fuels having essentially no ash.

  17. Statement of work for definitive design of the K basins integrated water treatment system project

    SciTech Connect (OSTI)

    Pauly, T.R., Westinghouse Hanford

    1996-07-16T23:59:59.000Z

    This Statement of Work (SOW) identifies the scope of work and schedule requirements for completing definitive design of the K Basins Integrated Water Treatment Systems (IWTS) Subproject. This SOW shall form the contractual basis between WHC and the Design Agent for the Definitive Design.

  18. Future designs of raw-gas conversion systems

    SciTech Connect (OSTI)

    Colton, J.W.; Fleming, D.K.

    1981-01-01T23:59:59.000Z

    Many different processes are available to convert raw gas to substitute natural gas (SNG). Several additional processes have been proposed and are now in development. An Institute of Gas Technology (IGT) computer program assesses the efficiency of various raw-gas conversion processes for the recovery of high-temperature enthalpy and the net export of high-pressure steam. The steam balance is a prime measure of economic attractiveness of the alternative processes. Of the currently available processes, the sequence that uses sour-gas shift followed by conventional cold sweetening and nickel-based multistage methanation is preferred. Certain novel process concepts beginning with sour-gas shift and hot-gas carbon dioxide removal should be a significant improvement. The improved processes will require either sulfur-tolerant methanation or hot-gas sulfur removal plus conventional methanation. In either case, the gas would not be cooled to room temperature before being entirely converted to methane.

  19. Design of an electronically-actuated gas lift safety valve

    E-Print Network [OSTI]

    Yu, Changkuan, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Gas lift valves are widely used in oil production fields to pump recycled gas and nitrogen into the production tubing, to sustain production by aerating the oil and lifting it to the ground or sea surface. Today's industry ...

  20. Optimization for Design and Operation of Natural Gas Transmission Networks

    E-Print Network [OSTI]

    Dilaveroglu, Sebnem 1986-

    2012-08-22T23:59:59.000Z

    and compressor stations. On an existing network, the model also optimizes the total flow through pipelines that satisfy demand to determine the best purchase amount of gas. A mixed integer nonlinear programming model for steady-state natural gas transmission...

  1. Design of a Thermally-Actuated Gas Lift Safety Valve

    E-Print Network [OSTI]

    Gilbertson, Eric W.

    Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valve assemblies (GLV). One failure mode occurs when the GLV check valve fails and product passes into the well annulus, potentially reaching ...

  2. Control structure design for stabilizing unstable gas-lift oil wells

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control structure design for stabilizing unstable gas-lift oil wells Esmaeil Jahanshahi, Sigurd valve is the recommended solution to prevent casing-heading instability in gas-lifted oil wells. Focus to be effective to stabilize this system. Keywords: Oil production, two-phase flow, gas-lift, controllability, H

  3. A comparison between the performance of different silencer designs for gas turbine exhaust systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A comparison between the performance of different silencer designs for gas turbine exhaust systems in more specialist applications, such as the exhaust systems of gas turbines, different silencer experiments are carried out with the aim of investigating performance of silencers used on gas turbines

  4. Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa

    E-Print Network [OSTI]

    Bruneau, Michel

    Resilience-Based design of Natural Gas Pipelines G. P. Cimellaro, O. Villa Department of Structural systems. No models are available in literature to measure the performance of natural gas network of natural or manmade hazard which might lead to the disruption of the system. The gas distribution network

  5. Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1 , P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

  6. Process Design and Integration of Shale Gas to Methanol 

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process...

  7. The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration 

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Ford, D.

    1981-01-01T23:59:59.000Z

    This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas...

  8. The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Ford, D.

    1981-01-01T23:59:59.000Z

    This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas...

  9. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group

  10. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group5: Oil

  11. Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel

    SciTech Connect (OSTI)

    Philip Casey Durst; Mark Schanfein

    2012-08-01T23:59:59.000Z

    The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC.

  12. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    price for a condensing commercial water heater is $1,579.For condensing commercial water heaters with a thermalFound products for water heater in any product field and gas

  13. Process Design and Integration of Shale Gas to Methanol

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

  14. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  15. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants 

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  16. Off-design performance characteristics of a twin shaft gas turbine engine with regeneration

    E-Print Network [OSTI]

    Leckie, Todd Stewart

    1984-01-01T23:59:59.000Z

    OFF-DESIGN PERFORMANCE CHARACTERISTICS OF A TWIN SHAFT GAS TURBINE ENGINE WITH RECTION A 'Ihesis TODD STEWART LECKIE Submitted to the Graduate College Texas ABM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1984 Major Subject: Mechanical Engineering OFF-DESIGN PERFORMANCE CHARACTERISTICS OF A TWIN SHAFT GAS TURBINE ENGINE WITH REGENERATION A Thesis by Approved as to style and content by: er E. J 'ns rrman of Corrmittee) Je- 'n Han...

  17. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)

    SciTech Connect (OSTI)

    David Petti; Philippe Martin; Mayeul Phélip; Ronald Ballinger; Petti does not have NT account

    2004-12-01T23:59:59.000Z

    The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

  18. Overall plant design specification Modular High Temperature Gas-cooled Reactor. Revision 9

    SciTech Connect (OSTI)

    NONE

    1990-05-01T23:59:59.000Z

    Revision 9 of the ``Overall Plant Design Specification Modular High Temperature Gas-Cooled Reactor,`` DOE-HTGR-86004 (OPDS) has been completed and is hereby distributed for use by the HTGR Program team members. This document, Revision 9 of the ``Overall Plant Design Specification`` (OPDS) reflects those changes in the MHTGR design requirements and configuration resulting form approved Design Change Proposals DCP BNI-003 and DCP BNI-004, involving the Nuclear Island Cooling and Spent Fuel Cooling Systems respectively.

  19. Report on the NGS3 Working Group on Safeguards by Design For Aqueous Reprocessing Plants

    SciTech Connect (OSTI)

    Johnson, Shirley J.; Ehinger, Michael; Schanfein, Mark

    2011-02-01T23:59:59.000Z

    The objective of the Working Group on SBD for Aqueous Reprocessing Facilities was to provide recommendations, for facility operators and designers, which would aid in the coordination and integration of nuclear material accountancy and the safeguards requirements of all concerned parties - operators, state/regional authorities, and the IAEA. The recommendations, which are to be provided to the IAEA, are intended to assist in optimizing facility design and operating parameters to ensure the safeguardability of the facility while minimizing impact on the operations. The one day Working Group session addressed a wide range of design and operating topics.

  20. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    SciTech Connect (OSTI)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons, E-mail: baiker@chem.ethz.ch [Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Hönggerberg, HCI, CH-8093 Zürich (Switzerland)

    2014-08-15T23:59:59.000Z

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  1. Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

  2. Conceptual design statement of work for the immobilized low-activity waste disposal facility, project W-520

    SciTech Connect (OSTI)

    Pickett, W.W.

    1998-04-30T23:59:59.000Z

    This Statement of Work outlines the deliverables and schedule for preparation of the Project W-520 Conceptual Design Report, including, work plans, site development plan, preliminary safety evaluation, and conceptual design.

  3. Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    First, the comments on May 3, 1979 Notice of Inquiry of DOE relating to the Gas Utility Rate Design Study Required by Section 306 of PURPA are presented. Then, comments on the following are included: (1) ICF Gas Utility Model, Gas Utility Model Data Outputs, Scenario Design; (2) Interim Model Development Report with Example Case Illustrations; (3) Interim Report on Simulation of Seven Rate Forms; (4) Methodology for Assessing the Impacts of Alternative Rate Designs on Industrial Energy Use; (5) Simulation of Marginal-Cost-Based Natural Gas Rates; and (6) Preliminary Discussion Draft of the Gas Rate Design Study. Among the most frequent comments expressed were the following: (a) the public should be given the opportunity to review the final report prior to its submission to Congress; (b) results based on a single computer model of only four hypothetical utility situations cannot be used for policy-making purposes for individual companies or the entire gas industry; (c) there has been an unobjective treatment of traditional and economic cost rate structures; the practical difficulties and potential detrimental consequences of economic cost rates are not fully disclosed; and (d) it is erroneous to assume that end users, particularly residential customers, are influenced by price signals in the rate structure, as opposed to the total bill.

  4. Impact Of Melter Internal Design On Off-Gas Flammability

    SciTech Connect (OSTI)

    Choi, A. S.; Lee, S. Y.

    2012-05-30T23:59:59.000Z

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.

  5. Applying observations of work activity in designing prototype data analysis tools

    SciTech Connect (OSTI)

    Springmeyer, R.R.

    1993-07-06T23:59:59.000Z

    Designers, implementers, and marketers of data analysis tools typically have different perspectives than users. Consequently, data analysis often find themselves using tools focused on graphics and programming concepts rather than concepts which reflect their own domain and the context of their work. Some user studies focus on usability tests late in development; others observe work activity, but fail to show how to apply that knowledge in design. This paper describes a methodology for applying observations of data analysis work activity in prototype tool design. The approach can be used both in designing improved data analysis tools, and customizing visualization environments to specific applications. We present an example of user-centered design for a prototype tool to cull large data sets. We revisit the typical graphical approach of animating a large data set from the point of view of an analysis who is culling data. Field evaluations using the prototype tool not only revealed valuable usability information, but initiated in-depth discussions about user`s work, tools, technology, and requirements.

  6. A novel compact design of calibration equipment for gas and thermal sensors

    SciTech Connect (OSTI)

    Feng, P. X.; Zhang, H. X.; Peng, X. Y.; Sajjad, M.; Chu, J. [Institute for Functional Nanomaterials and Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, 00936-8377 (Puerto Rico)

    2011-04-15T23:59:59.000Z

    A novel design of calibration equipment has been developed for static and dynamic calibrations of gas and thermal sensors. This system is cheap, compact, and easily adjustable, which is also combined with a plasma surface modification source for tailoring the surface of sensors to ensure the sensitivity and selectivity. The main advantage of this equipment is that the operating temperature, bias voltage, types of plasma source (for surface modification), types of feeding gases, and gas flow rate (for calibrations), etc., can be independently controlled. This novel system provides a highly reliable, reproducible, and economical method of calibrations for various gas and thermal sensors.

  7. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    SciTech Connect (OSTI)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06T23:59:59.000Z

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  8. Experimental study of work exchange with a granular gas: the viewpoint of the Fluctuation Theorem.

    E-Print Network [OSTI]

    Boyer, Edmond

    and irreversible thermodynamics PACS 05.40.-a ­ Fluctuation phenomena, random processes, noise, and Brownian motion of the fluctuations of energy flux between a granular gas and a small driven harmonic oscillator. The DC-motor driving forcing, between the motor and the gas are examined from the viewpoint of the Fluctuation Theorem

  9. Adaptive SSL: Design, Implementation and Overhead Analysis submission for Work-in-Progress/Application Paper track.

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Adaptive SSL: Design, Implementation and Overhead Analysis submission for Work an adaptation controller for SSL (Secure Socket Layer), called Adaptive SSL. 1 Introduction Applications adaptation of the Secure Socket Layer (SSL) protocol [3]. Adaptive SSL (ASSL) aims to provide appropriate se

  10. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  11. Core design and reactor physics of a breed and burn gas-cooled fast reactor

    E-Print Network [OSTI]

    Yarsky, Peter

    2005-01-01T23:59:59.000Z

    In order to fulfill the goals set forth by the Generation IV International Forum, the current NERI funded research has focused on the design of a Gas-cooled Fast Reactor (GFR) operating in a Breed and Burnm (B&B) fuel cycle ...

  12. Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems

    SciTech Connect (OSTI)

    Ronald G. Ballinger Chunyun Wang Andrew Kadak Neil Todreas

    2004-08-30T23:59:59.000Z

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

  13. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  14. AGA Producing Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n sGas from SameGas

  15. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2005-10-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  16. Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report

    SciTech Connect (OSTI)

    Not Available

    1994-05-24T23:59:59.000Z

    This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

  17. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    SciTech Connect (OSTI)

    Mukul Sharma; Kyle Friehauf

    2009-12-31T23:59:59.000Z

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

  18. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  19. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    SciTech Connect (OSTI)

    Lee C. Cadwallader

    2013-10-01T23:59:59.000Z

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  20. The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline com-

    E-Print Network [OSTI]

    Boyer, Edmond

    gas hydrates. Gas hydrates are crystalline com- pounds that are often encountered in oil and gas briefly present the hydrate crystalline structure and the role of hydrates in oil-and gas industry the industrial contexts where they appear, we shall cite : hydrate plugs obstructing oil- or gas

  1. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D. [POSCO, Cheonnam (Korea, Republic of). Kwangyang Works; Lee, D.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; Paik, S.C. [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering; Chung, J.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering

    1995-12-01T23:59:59.000Z

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  2. AGA Producing Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n sGas from Same

  3. Gary Works No. 13 blast furnace: A new removable trough design

    SciTech Connect (OSTI)

    Schuett, K.J.; Pawlak, J.P. [U.S. Steel Group, Gary, IN (United States). Gary Works; Traina, L.; Brenneman, R.G.

    1995-12-01T23:59:59.000Z

    No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

  4. Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

  5. Analysis of the conceptual shielding design for the upflow Gas-Cooled Fast Breeder Reactor

    SciTech Connect (OSTI)

    Slater, C.O.; Reed, D.A.; Cramer, S.N.; Emmett, M.B.; Tomlinson, E.T.

    1981-01-01T23:59:59.000Z

    Conceptual Shielding Configuration III for the Gas-Cooled Fast Breeder Reactor (GCFR) was analyzed by performing global calculations of neutron and gamma-ray fluences and correcting the results as appropriate with bias factors from localized calculations. Included among the localized calculations were the radial and axial cell streaming calculations, plus extensive preliminary calculations and three final confirmation calculations of the plenum flow-through shields. The global calculations were performed on the GCFR mid-level and the lower and upper plenum regions. Calculated activities were examined with respect to the design constraint, if any, imposed on the particular activity. The spatial distributions of several activities of interest were examined with the aid of isoplots (i.e., symbols are used to describe a surface on which the activity level is everywhere the same). In general the results showed that most activities were below the respective design constraints. Only the total neutron fluence in the core barrel appeared to be marginal with the present reactor design. Since similar results were obtained for an earlier design, it has been proposed that the core barrel be cooled with inlet plenum gas to maintain it at a temperature low enough that it can withstand a higher fluence limit. Radiation levels in the prestressed concrete reactor vessel (PCRV) and liner appeared to be sufficiently below the design constraint that expected results from the Radial Shield Heterogeneity Experiment should not force any levels above the design constraint. A list was also made of a number of issues which should be examined before completion of the final shielding design.

  6. Turbine cooling configuration selection and design optimization for the high-reliability gas turbine. Final report

    SciTech Connect (OSTI)

    Smith, M J; Suo, M

    1981-04-01T23:59:59.000Z

    The potential of advanced turbine convectively air-cooled concepts for application to the Department of Energy/Electric Power Research Institute (EPRI) Advanced Liquid/Gas-Fueled Engine Program was investigated. Cooling of turbine airfoils is critical technology and significant advances in cooling technology will permit higher efficiency coal-base-fuel gas turbine energy systems. Two new airfoil construction techniques, bonded and wafer, were the principal designs considered. In the bonded construction, two airfoil sections having intricate internal cooling configurations are bonded together to form a complete blade or vane. In the wafer construction, a larger number (50 or more) of wafers having intricate cooling flow passages are bonded together to form a complete blade or vane. Of these two construction techniques, the bonded airfoil is considered to be lower in risk and closer to production readiness. Bonded airfoils are being used in aircraft engines. A variety of industrial materials were evaluated for the turbine airfoils. A columnar grain nickel alloy was selected on the basis of strength and corrosion resistance. Also, cost of electricity and reliability were considered in the final concept evaluation. The bonded airfoil design yielded a 3.5% reduction in cost-of-electricity relative to a baseline Reliable Engine design. A significant conclusion of this study was that the bonded airfoil convectively air-cooled design offers potential for growth to turbine inlet temperatures above 2600/sup 0/F with reasonable development risk.

  7. Gobar gas (biogas) survey in Nepal - 1979; a survey of three community biogas plants in Nepal - 1980; survey of present gobar gas work in India; and night soil gas plant

    SciTech Connect (OSTI)

    Bulmer, A.; Schlorholtz, A.; Fulford, D.J.; Peters, N.

    1980-01-01T23:59:59.000Z

    The first of these documents investigates the success of a project to bring the use of Biogas to Nepal. 50 users and 24 non-users were interviewed. The conclusions were that use of biogas in Nepal is successful, providing clean kitchens, healthier lives, and saving forests. They cause no social problems, but the service company for the plants needs improvement. The second report shows that community plants relying on continued cooperation are fragile enterprises. One of the plants ended up being run by one family, the gas distributed according to the dung input by each family. The gas was not used fully. Technical problems were partly responsible for this. In the second village technical problems and social problems reduced the number of users to 5 families from 26. In the third case the plant fell into disrepair but the social pattern of using a common area for defecation to fill the plant benefitted from having a permanent enclosure built. This scheme charged for use of the gas to help run the plant but the technical and social problems stymied correction. The third report lists the activities of various gobar gas research stations in India. The fourth report gives directions and specifications to build a night soil gas plant, including working drawings.

  8. Models, Calculation and Optimization of Gas Networks, Equipment and Contracts for Design, Operation, Booking and Accounting

    E-Print Network [OSTI]

    Ostromuhov, Leonid A

    2011-01-01T23:59:59.000Z

    There are proposed models of contracts, technological equipment and gas networks and methods of their optimization. The flow in network undergoes restrictions of contracts and equipment to be operated. The values of sources and sinks are provided by contracts. The contract models represent (sub-) networks. The simplest contracts represent either nodes or edges. Equipment is modeled by edges. More sophisticated equipment is represented by sub-networks. Examples of such equipment are multi-poles and compressor stations with many entries and exits. The edges can be of different types corresponding to equipment and contracts. On such edges, there are given systems of equation and inequalities simulating the contracts and equipment. On this base, the methods proposed that allow: calculation and control of contract values for booking on future days and for accounting of sales and purchases; simulation and optimization of design and of operation of gas networks. These models and methods are realized in software syst...

  9. 7.09 ERGONOMIC ANALYSIS IN ORDER TO DESIGN A WORK HELP TOOL : SIGOONS Corinne Chabaud & Sandrine Cazabat

    E-Print Network [OSTI]

    Winckler, Marco Antonio Alba

    7.09 ERGONOMIC ANALYSIS IN ORDER TO DESIGN A WORK HELP TOOL : SIGOONS Corinne Chabaud & Sandrine. INTRODUCTION This study issue is ergonomics part in design processes. We will describe how ergonomics tackle results and ambitions. 2. CONTEXT AND OBJECTIVES 2. 1 Context The present ergonomic study has been

  10. Trading Agent Competition Market Design Game Strategic Trader Game Conclusion and Future Work A Platform for Trading Agent Competition

    E-Print Network [OSTI]

    Zhang, Dongmo

    -2011 TAC Ad Auctions: 2009-2012 Power TAC: 2011-2012 #12;Trading Agent Competition Market Design GameTrading Agent Competition Market Design Game Strategic Trader Game Conclusion and Future Work A Platform for Trading Agent Competition Dongmo Zhang and Chun Gao Intelligent Systems Laboratory University

  11. Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K. Steiglitz; D. J. Kleitman

    E-Print Network [OSTI]

    Steiglitz, Kenneth

    Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K@jstor.org. http://www.jstor.org Mon Oct 22 13:48:01 2007 #12;OPTIMAL DESIGN OF OFFSHORE NATURAL-GAS PIPELINEAnolog,tj, Cambridge, Massachusetts (Received January 28, 1969) The exploitation of offshore natural gas reserves

  12. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  13. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels (I-NERI Annual Report)

    SciTech Connect (OSTI)

    Petti, David Andrew; Maki, John Thomas; Languille, Alain; Martin, Philippe; Ballinger, Ronald

    2002-11-01T23:59:59.000Z

    The objective of this INERI project is to develop improved fuel behavior models for gas reactor coated particle fuels and to develop improved coated-particle fuel designs that can be used reliably at very high burnups and potentially in fast gas-cooled reactors. Thermomechanical, thermophysical, and physiochemical material properties data were compiled by both the US and the French and preliminary assessments conducted. Comparison between U.S. and European data revealed many similarities and a few important differences. In all cases, the data needed for accurate fuel performance modeling of coated particle fuel at high burnup were lacking. The development of the INEEL fuel performance model, PARFUME, continued from earlier efforts. The statistical model being used to simulate the detailed finite element calculations is being upgraded and improved to allow for changes in fuel design attributes (e.g. thickness of layers, dimensions of kernel) as well as changes in important material properties to increase the flexibility of the code. In addition, modeling of other potentially important failure modes such as debonding and asphericity was started. A paper on the status of the model was presented at the HTR-2002 meeting in Petten, Netherlands in April 2002, and a paper on the statistical method was submitted to the Journal of Nuclear Material in September 2002. Benchmarking of the model against Japanese and an older DRAGON irradiation are planned. Preliminary calculations of the stresses in a coated particle have been calculated by the CEA using the ATLAS finite element model. This model and the material properties and constitutive relationships will be incorporated into a more general software platform termed Pleiades. Pleiades will be able to analyze different fuel forms at different scales (from particle to fuel body) and also handle the statistical variability in coated particle fuel. Diffusion couple experiments to study Ag and Pd transport through SiC were conducted. Analysis and characterization of the samples continues. Two active transport mechanisms are proposed: diffusion in SiC and release through SiC cracks or another, as yet undetermined, path. Silver concentration profiles determined by XPS analysis suggest diffusion within the SiC layer, most likely dominated by grain boundary diffusion. However, diffusion coefficients calculated from mass loss measurements suggest a much faster release path, postulated as small cracks or flaws that provide open paths with little resistance to silver migration. Work is ongoing to identify and characterize this path. Work on Pd behavior has begun and will continue next year.

  14. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,397 125 Q 69 0.11 0.09634636

  15. Total Working Gas Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,ProductionMarketed18,736 269,010 305,508 187,6564,784,895

  16. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect (OSTI)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21T23:59:59.000Z

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

  17. Design and construction techniques of an American vernacular architect : the work of Dr. Henry Chapman Mercer

    E-Print Network [OSTI]

    Eichenberger, Kurt Frederick

    1982-01-01T23:59:59.000Z

    The design and building process of Dr. Henry Chapman Mercer is explored for its relationship to vernacular design. The vehicle for this exploration is 'Fonthill,' the home of Dr. Mercer constructed by him in 1908. Complete ...

  18. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

    2013-02-15T23:59:59.000Z

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  19. Design and fabrication of a CMOS-compatible MHP gas sensor

    SciTech Connect (OSTI)

    Li, Ying; Yu, Jun, E-mail: junyu@dlut.edu.cn; Wu, Hao; Tang, Zhenan [College of Electronic Science and Technology, Dalian University of Technology, Dalian 116024 (China)] [College of Electronic Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-03-15T23:59:59.000Z

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ?19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.

  20. Design of a Gas Test Loop Facility for the Advanced Test Reactor

    SciTech Connect (OSTI)

    C. A. Wemple

    2005-09-01T23:59:59.000Z

    The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.

  1. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01T23:59:59.000Z

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  2. Statement of work for system design and engineering of the SNF multi-canister overpack

    SciTech Connect (OSTI)

    Smith, K.E., Westinghouse Hanford

    1996-09-11T23:59:59.000Z

    This document describes the workscope for final design of the Multi-Canister Overpack to be used for long term storage of N Reactor fuel.

  3. Abstract--Multimedia groupware systems provide rich support for distributed team work. Yet effective design of these systems is

    E-Print Network [OSTI]

    Greenberg, Saul

    1 Abstract--Multimedia groupware systems provide rich support for distributed team work. Yet evolve design ideas. The problem is that multimedia groupware is hard to prototype because distributed multimedia systems are complex to implement. To solve this problem, we offer the Collabrary, a toolkit

  4. Abstract--Multimedia groupware systems provide rich support for distributed team work. Yet effective design of these

    E-Print Network [OSTI]

    Greenberg, Saul

    Abstract--Multimedia groupware systems provide rich support for distributed team work. Yet evolve design ideas. The problem is that multimedia groupware is hard to prototype because distributed multimedia systems are complex to implement. To solve this problem, we offer the Collabrary, a toolkit

  5. Planning an Empirical Experiment To Evaluate The Effects Of Pair Work On The Design Phase Of The Software Lifecycle

    E-Print Network [OSTI]

    New South Wales, University of

    on the process and products of the design phase of the software development lifecycle. However, literature revealed that the product and process of pair programming work in the software development lifecycle have Of The Software Lifecycle Hiyam Al-Kilidar1 , Ross Jeffery1 , Aybuke Aurum2 , Cat Kutay1 1 School of Computer

  6. Impact of mine closure and access facilities on gas emissions from old mine workings to surface: examples of French iron and coal

    E-Print Network [OSTI]

    Boyer, Edmond

    : examples of French iron and coal Lorraine basins C. Lagny, R. Salmon, Z. Pokryszka and S. Lafortune (INERIS of mine shafts located in the iron Lorraine basin, in the Lorraine and in North-East coal basins are quite in mine workings but gas entrance and exit are allowed. Coal shafts are secured and can be equipped

  7. Researchers are working towards fabricating state-of-the-art artificial lungs using gas-permeable materials containing myriads of microchannels.

    E-Print Network [OSTI]

    Ottino, Julio M.

    Researchers are working towards fabricating state-of-the-art artificial lungs using gas function of most internal organs (e.g., lungs, kidneys, liver, and pancreas) is the transport of chemical of artificial organs, of which lungs are the primary target. Organ function replacements devices that contain

  8. Study on Off-Design Steady State Performances of Helium Gas Turbo-compressor for HTGR-GT

    SciTech Connect (OSTI)

    Qisen Ren; Xiaoyong Yang; Zhiyong Huang; Jie Wang [Tsinghua University, Beijing, 100084 (China)

    2006-07-01T23:59:59.000Z

    The high temperature gas-cooled reactor (HTGR) coupled with direct gas turbine cycle is a promising concept in the future of nuclear power development. Both helium gas turbine and compressor are key components in the cycle. Under normal conditions, the mode of power adjustment is to control total helium mass in the primary loop using gas storage vessels. Meanwhile, thermal power of reactor core is regulated. This article analyzes off-design performances of helium gas turbine and compressors for high temperature gas-cooled reactor with gas turbine cycle (HTGR-GT) at steady state level of electric power adjustment. Moreover, performances of the cycle were simply discussed. Results show that the expansion ratio of turbine decreases as electric power reduces but the compression ratios of compressors increase, efficiencies of both turbine and compressors decrease to some extent. Thermal power does not vary consistently with electric power, the difference between these two powers increases as electric power reduces. As a result of much thermal energy dissipated in the temperature modulator set at core inlet, thermal efficiency of the cycle has a widely reduction under partial load conditions. (authors)

  9. On the design of capillary and effusive gas dosers for surface science D. E. Kuhl and R. G. Tobina)

    E-Print Network [OSTI]

    Tobin, Roger G.

    On the design of capillary and effusive gas dosers for surface science D. E. Kuhl and R. G. Tobina the sample. Additional effects due to trapping by cold surfaces in the chamber and multiple collisions on the chamber walls, very high flux levels---it is necessary to use a doser that provides a high flux

  10. Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects

    E-Print Network [OSTI]

    Lopez Hernandez, Henry De Jesus

    2004-11-15T23:59:59.000Z

    to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2004 Major Subject: Petroleum Engineering...) _______________________________ Guy L. Curry (Member) _______________________________ Stephen A. Holditch (Head of Department) August 2004 Major Subject: Petroleum Engineering iii ABSTRACT Optimal Fracture Treatment Design for Dry Gas Wells Maximizes...

  11. Strategic Planning, Design and Development of the Shale Gas Supply Chain Network

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and fluids from the pure gas (methane) to produce what is known as "pipeline quality" dry natural gas.[2 in wells, providing raw materials for oil refineries or petrochemical plants, and as sources of energy.[3

  12. Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick, P.E., M.ASCE and Lynn E. Brown2

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick, P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

  13. A Robust Infrastructure Design for Gas Centrifuge Enrichment Plant Unattended Online Enrichment Monitoring

    SciTech Connect (OSTI)

    Younkin, James R [ORNL; Rowe, Nathan C [ORNL; Garner, James R [ORNL

    2012-01-01T23:59:59.000Z

    An online enrichment monitor (OLEM) is being developed to continuously measure the relative isotopic composition of UF6 in the unit header pipes of a gas centrifuge enrichment plant (GCEP). From a safeguards perspective, OLEM will provide early detection of a facility being misused for production of highly enriched uranium. OLEM may also reduce the number of samples collected for destructive assay and if coupled with load cell monitoring can provide isotope mass balance verification. The OLEM design includes power and network connections for continuous monitoring of the UF6 enrichment and state of health of the instrument. Monitoring the enrichment on all header pipes at a typical GCEP could require OLEM detectors on each of the product, tails, and feed header pipes. If there are eight process units, up to 24 detectors may be required at a modern GCEP. Distant locations, harsh industrial environments, and safeguards continuity of knowledge requirements all place certain demands on the network robustness and power reliability. This paper describes the infrastructure and architecture of an OLEM system based on OLEM collection nodes on the unit header pipes and power and network support nodes for groupings of the collection nodes. A redundant, self-healing communications network, distributed backup power, and a secure communications methodology. Two candidate technologies being considered for secure communications are the Object Linking and Embedding for Process Control Unified Architecture cross-platform, service-oriented architecture model for process control communications and the emerging IAEA Real-time And INtegrated STream-Oriented Remote Monitoring (RAINSTORM) framework to provide the common secure communication infrastructure for remote, unattended monitoring systems. The proposed infrastructure design offers modular, commercial components, plug-and-play extensibility for GCEP deployments, and is intended to meet the guidelines and requirements for unattended and remotely monitored safeguards systems.

  14. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    SciTech Connect (OSTI)

    Godfroy, Thomas J.; Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, TD40, Huntsville, Alabama, 35812 (United States); University of Michgan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor MI 48109 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-02-04T23:59:59.000Z

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  15. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01T23:59:59.000Z

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  16. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff

    SciTech Connect (OSTI)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2014-01-15T23:59:59.000Z

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ?6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10{sup 7} per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  17. Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works

    SciTech Connect (OSTI)

    Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

    1995-12-01T23:59:59.000Z

    The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

  18. Conceptual design for the field test and evaluation of the gas-phase UF/sub 6/ enrichment meter

    SciTech Connect (OSTI)

    Strittmatter, R.B.; Leavitt, J.N.; Slice, R.W.

    1980-12-01T23:59:59.000Z

    An in-line enrichment monitor is being developed to provide real-time enrichment data for the gas-phase UF/sub 6/ feed stream of an enrichment plant. Data from proof-of-principle measurements using a laboratory prototype system are presented. A conceptual design for an enrichment monitor to be field tested and evaluated at the Oak Ridge Gaseous Diffusion Plant is reported.

  19. Spoke cavity power coupler conceptual design work for the HEL-JTO beam exp.

    SciTech Connect (OSTI)

    Rusnak, B

    2007-10-09T23:59:59.000Z

    The objective of this report was to create a low-cost, modest-power RF coupler for a SRF spoke cavity beam test of electrons test to be done at LANL. Developing the design for this magnetically-coupled SRF spoke cavity testing coupler was basically straightforward since the cavity coupling port needed to be one of the 1.22-inch ID ports, and the power level was limited by the available RF to less than 400 W TW power. In addition, the coupler would be immersed in bath cryostat filled with liquid helium, and ultimately used in a pulsed mode to accelerate beam, thereby significantly relaxing the thermal loads on the coupler. Combining the above considerations with the level of resources available for this task, emphasis was placed on rapidly developing a robust, reliable design that would use commercially-available components as available to save design, engineering, and fabrication costs. Analysis was also kept to a minimum. As such, the design incorporates the following features: (1) Use of a commercially-available Type-N ceramic feedthrough. For the power and frequency range of the test, with the feedthrough immersed in LHe, it was felt the Type-N feedthrough would provide a robust, low-cost vacuum window solution. (2) The coupler outer conductors would be solid OFE copper that is brazed into two 2.75-inch CFF, with the cavity-sde flange being rotatable to allow minor Qx adjustments by rotating the coupler. The braze joint shown has the copper brazed into a groove in the SST to ensure maximum strength for successive thermal cyclings. The outer wall of the copper between the two flanges serves as the heat sink for depositing coupler heat to the liquid helium. (3) The inner conductor would be solid OFE copper brazed to the outer conductor at the top to ensure maximum thermal conductivity from the outer thermal sink area to the base of the feedthrough. A mass-reducing hole is placed down the center of the inner conductor to decrease thermal mass and weight. (4) This assembly would be mated to the Type-N feedthrough by pushing the pin from the feedthrough into a spring-loaded connector on the base of the inner conductor, then bolting the flanges together. (5) If the coupling needs to be greatly reduced, an additional 1/2-inch CFF can be inserted between the coupler and cavity flanges. Increasing the coupling can be done with a 3 stub tuner.

  20. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  1. Ergonomic evaluation of footrest designs for sitting and standing work postures

    E-Print Network [OSTI]

    Gray, Jada Lea

    1993-01-01T23:59:59.000Z

    that raising one foot with a footrest, can reduce back disc pressure and alleviate lower leg/foot discomfort during standing work. This reduction may be due to relaxing the iliopsoas and flattening the lumbar curve (Calliet, 1983). Andersson has conducted... mentions the importance of footrests "so that small people can avoid sitting with hanging feet" (Grandjean, 1987). A seat which is too high leads to static loads and bodily pains in the knee, calf of leg, and foot (Grandjean, 1980). Physiology "When a...

  2. Design, construction, and operation of a life-cycle test system for the evaluation of flue gas cleanup processes

    SciTech Connect (OSTI)

    Pennline, H.W.; Yeh, James T.; Hoffman, J.S. [USDOE Pittsburgh Energy Technology Center, PA (United States); Longton, E.J.; Vore, P.A.; Resnik, K.P.; Gromicko, F.N. [Gilbert/Commonwealth, Inc., Library, PA (United States)

    1995-12-01T23:59:59.000Z

    The Pittsburgh Energy Technology Center of the US Department of Energy has designed, constructed, and operated a Life-Cycle Test Systems (LCTS) that will be used primarily for the investigation of dry, regenerable sorbent flue gas cleanup processes. Sorbent continuously cycles from an absorber reactor where the pollutants are removed from the flue gas, to a regenerator reactor where the activity of the spent sorbent is restored and a usable by-product stream of gas is produced. The LCTS will initially be used to evaluate the Moving-Bed Copper Oxide Process by determining the effects of various process parameters on SO{sub 2} and NO{sub x} removals. The purpose of this paper is to document the design rationale and details, the reactor/component/instrument installation, and the initial performance of the system. Although the Moving-Bed Copper Oxide Process will be investigated initially, the design of the LCTS evolved to make the system a multipurpose, versatile research facility. Thus, the unit can be used to investigate various other processes for pollution abatement of SO{sub 2}, NO{sub x}, particulates, air toxics, and/or other pollutants.

  3. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  4. Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs 

    E-Print Network [OSTI]

    Ma, Xiaodan

    2013-12-10T23:59:59.000Z

    Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

  5. Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams

    E-Print Network [OSTI]

    Latcham, Jacob G. (Jacob Greco)

    2009-01-01T23:59:59.000Z

    An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

  6. Optimal Process Design for Coupled CO2 Sequestration and Enhanced Gas Recovery in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Odi, Uchenna

    2013-12-09T23:59:59.000Z

    Increasing energy demand combined with public concern for the environment obligates the oil industry to supply oil and natural gas to the public while minimizing the carbon footprint due to its activities. Today, fossil fuels are essential...

  7. Performance improvement of Gas-Liquid Cylindrical Cyclone separator using different design for tangential inlet

    E-Print Network [OSTI]

    Barbuceanu, Nicolae

    2001-01-01T23:59:59.000Z

    separators often rely on centrifugal forces to enhance the separation process and are therefore highly dependent on inlet geometry. This paper investigates expanding the operational envelope of a compact Gas-Liquid Cylindrical Cyclone separator through...

  8. Optimal Process Design for Coupled CO2 Sequestration and Enhanced Gas Recovery in Carbonate Reservoirs

    E-Print Network [OSTI]

    Odi, Uchenna

    2013-12-09T23:59:59.000Z

    Increasing energy demand combined with public concern for the environment obligates the oil industry to supply oil and natural gas to the public while minimizing the carbon footprint due to its activities. Today, fossil fuels are essential...

  9. Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs

    E-Print Network [OSTI]

    Ma, Xiaodan

    2013-12-10T23:59:59.000Z

    Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

  10. Statement of work for conceptual design of solidified high-level waste interim storage system project (phase I)

    SciTech Connect (OSTI)

    Calmus, R.B., Westinghouse Hanford

    1996-12-17T23:59:59.000Z

    The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities. This plan contains a two phased approach. Phase I is a ``proof-of-principle/commercial demonstration- scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage (IS) and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidification HLW IS entails use of Vaults 2 and 3 in the Spent Nuclear Fuel Canister Storage Building, to be located in the Hanford Site 200 East Area. This Statement of Work describes the work scope to be performed by the Architect-Engineer to prepare a conceptual design for the solidified HLW IS System.

  11. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  12. Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems

    E-Print Network [OSTI]

    Griswold, Julia Baird

    2013-01-01T23:59:59.000Z

    Working Group on Social Cost of Carbon, United StatesSupport Document: Social Cost of Carbon for Regulatory

  13. Statement of work for sytem design and engineering of the spent nuclear fuel multi-cansiter overpack

    SciTech Connect (OSTI)

    Smith, K.E., Fluor Daniel Hanford

    1997-03-03T23:59:59.000Z

    This Statement of Work (SOW) describes the work scope for the preparation of the Phase 2 (final) design for the Multiple Canister Overpack (MCO) equipment. The MCO is to be used as the radiological containment device for the Spent Nuclear Fuel (SNF) assemblies, currently in wet storage in K East and West Basins, to be transported and stored in the Canister Storage Building (CSB) until final disposal facilities are made available. The engineering services contractor will be requested to provide reports, studies, analyses, engineering, drawings, specifications, estimates and schedules. The overall goal of this task order is to do the following: 1. Prepare a fabrication specification, ASME Code exception report, a packaging, shipping and warehouse plan, and detailed fabrication drawings of the MCO in accordance with the MCO Performance Specification (HNF-S-0426, Rev. 3) for procurement activities by the SNF MCO Subproject. 2. Establish and maintain a comment data base on the comments, resolutions, changes to the design of the MCO. 3. Support fabrication activities through the review of vendor fabrication drawings and shop test reports.

  14. Design of a high-pressure research flow loop for the experimental investigation of liquid loading in gas wells

    E-Print Network [OSTI]

    Fernandez Alvarez, Juan Jose

    2009-05-15T23:59:59.000Z

    compressors working in parallel is the most technical and economic configuration for the TowerLab based on the overall costs provided by the supplier, the footprint but most importantly the flexibility. The design of the pressure vessel required a cylindrical...

  15. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  16. The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

  17. Design and Operation of a Fast Electromagnetic Inductive Massive Gas Injection Valve for NSTX-Ua)

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response based on valve opening times and orifice size, in these studies the vessel pressure increase following injects the required amount of gas (200 Torr.L, at an operating pressure of just 7000 Torr) in less than 3

  18. Thermionic-combustor combined-cycle system. Volume III. A thermionic converter design for gas-turbine combined-cycle systems

    SciTech Connect (OSTI)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S. Jr.

    1981-05-01T23:59:59.000Z

    Thermionic converter design is strongly influenced by the configuration of the heat source and heat sink. These two externally imposed conditions are of major importance in arriving at a viable converter design. In addition to these two factors, the economical and reliable transfer of energy internally within the converter is another major item in the design. The effects of the engineering trade-offs made in arriving at the design chosen for the Gas Turbine Combined Cycle combustor are reviewed.

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  20. Proceedings of the Right Light 4 Conference, November 19-21, 1997, Copenhagen, Denmark. This work was supported by the U.S. General Services Administration, Pacific Rim Region, the Pacific Gas &

    E-Print Network [OSTI]

    Cyclotron Road Berkeley, California, USA, 94720 Steven Blanc Pacific Gas & Electric Co. Customer Energy, Denmark. This work was supported by the U.S. General Services Administration, Pacific Rim Region, the Pacific Gas & Electric Company, and the Assistant Secretary for Energy Efficiency and Renewable Energy

  1. Design and operation of the coke-oven gas sulfur removal facility at Geneva Steel

    SciTech Connect (OSTI)

    Havili, M.U.; Fraser-Smyth, L.L.; Wood, B.W. [Geneva Steel, Provo, UT (United States)

    1996-02-01T23:59:59.000Z

    The coke-oven gas sulfur removal facility at Geneva Steel utilizes a combination of two technologies which had never been used together. These two technologies had proven effective separately and now in combination. However, it brought unique operational considerations which has never been considered previously. The front end of the facility is a Sulfiban process. This monoethanolamine (MEA) process effectively absorbs hydrogen sulfide and other acid gases from coke-oven gas. The final step in sulfur removal uses a Lo-Cat II. The Lo-Cat process absorbs and subsequently oxidizes H{sub 2}S to elemental sulfur. These two processes have been effective in reducing sulfur dioxide emissions from coke-oven gas by 95%. Since the end of the start-up and optimization phase, emission rate has stayed below the 104.5 lb/hr limit of equivalent SO{sub 2} (based on a 24-hr average). In Jan. 1995, the emission rate from the sulfur removal facility averaged 86.7 lb/hr with less than 20 lb/hr from the Econobator exhaust. The challenges yet to be met are decreasing the operating expenses of the sulfur removal facility, notably chemical costs, and minimizing the impact of the heating system on unit reliability.

  2. COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...

    E-Print Network [OSTI]

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

  3. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2006-10-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  4. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19T23:59:59.000Z

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  5. Design of compact intermediate heat exchangers for gas cooled fast reactors

    E-Print Network [OSTI]

    Gezelius, Knut, 1978-

    2004-01-01T23:59:59.000Z

    Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

  6. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  7. Nuclear design of small-sized high temperature gas-cooled reactor for developing countries

    SciTech Connect (OSTI)

    Goto, M.; Seki, Y.; Inaba, Y.; Ohashi, H.; Sato, H.; Fukaya, Y.; Tachibana, Y. [Japan Atomic Energy Agency, 4002, Oarai-machi, Higashi Ibaraki-gun, Ibaraki-ken 311-1394 (Japan)

    2012-07-01T23:59:59.000Z

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries such as Kazakhstan in the 2020's. The nuclear design of the HTR50S is performed by upgrading the proven technology of the High Temperature Engineering Test Reactor (HTTR) to reduce the cost for the construction. In the HTTR design, twelve kinds of fuel enrichment was used to optimize the power distribution, which is required to make the maximum fuel temperature below the thermal limitation during the burn-up period. However, manufacture of many kinds of fuel enrichment causes increase of the construction cost. To solve this problem, the present study challenges the nuclear design by reducing the number of fuel enrichment to as few as possible. The nuclear calculations were performed with SRAC code system whose validity was proven by the HTTR burn-up data. The calculation results suggested that the optimization of the power distribution was reasonably achieved and the maximum fuel temperature was kept below the limitation by using three kinds of fuel enrichment. (authors)

  8. Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Mach number, in the range of 0.4 to 0.7, to prevent air separation on the compressor blades. Compressor pressure ratio (CPR) along with adiabatic efficiency and work are the important performance. The software in use for many years was developed in the DOS environment and lacked many of the ease

  9. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2003-06-25T23:59:59.000Z

    The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquid cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.

  10. MEMS micropump for a Micro Gas Analyzer

    E-Print Network [OSTI]

    Sharma, Vikas, 1979-

    2009-01-01T23:59:59.000Z

    This thesis presents a MEMS micro-vacuum pump designed for use in a portable gas analysis system. It is designed to be pneumatically-driven and as such does not have self-contained actuation (the focus of future work). ...

  11. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    SciTech Connect (OSTI)

    R. P. Wells

    2006-11-14T23:59:59.000Z

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  12. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    SciTech Connect (OSTI)

    G.E. Fuchs

    2007-12-31T23:59:59.000Z

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a useful tool to help reduce the number of iterations necessary to perform laboratory experiments or alloy development. However, we clearly are not able to rely solely on computational techniques in the development of high temperature materials for IGT applications. A significant amount of experimentation will continue to be required.

  13. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect (OSTI)

    D. E. Shanklin

    2006-06-01T23:59:59.000Z

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  14. Future of Natural Gas

    Office of Environmental Management (EM)

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  15. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  16. Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1992-01-01T23:59:59.000Z

    This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

  17. Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1992-07-01T23:59:59.000Z

    This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

  18. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2001-04-30T23:59:59.000Z

    This report presents a brief overview of the activities and tasks accomplished during the first half year (October 1, 2000-March 31, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

  19. Landscape architects, working along with scientists and consultants, combine science with other more qualitative planning and design

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    energy potentials can include incorporating passive solar, small-scale hydrologic, and wind. The latest more qualitative planning and design processes and methods. They design "artful" places for people of landscape design include the use of geology and soil science for sensitive land planning. Soil erosion

  20. Assessment of hot gas contaminant control

    SciTech Connect (OSTI)

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31T23:59:59.000Z

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  1. Welcome FUPWG- Natural Gas Overview

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—provides an overview of natural gas, including emissions, compressed natural gas (CNG) vehicles, and landfill gas supplement for natural gas system.

  2. Working Gas Capacity of Aquifers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicle Fuel2.9 2.896,950

  3. System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings

    SciTech Connect (OSTI)

    Joe Ferrall, Tim Rehg, Vesna Stanic

    2000-09-30T23:59:59.000Z

    The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requires that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.

  4. Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired

    E-Print Network [OSTI]

    Li, Mo

    Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet materials for these aggressive environments. For example, Ni-base superalloys are used to fabricate blades

  5. Results Conclusions & Future Work TRADEOFF ANALYSIS OF Design of a Green Campus Motor Fleet Decision Support System

    E-Print Network [OSTI]

    Greenhouse Gas (GHG) emissions from owned or leased vehicles by 12.3% by 2020 compared to a FY 2008 baseline (NAS) - Resources include more than 48,000 employees and a 2013 budget of $15.2 billion Mission: Our fueled by December 31 2015, Hybrid, electric, compre

  6. Gas lift valve failure mode analysis and the design of a thermally-actuated positive-locking safety valve

    E-Print Network [OSTI]

    Gilbertson, Eric (Eric W.)

    2010-01-01T23:59:59.000Z

    Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valves. This is a growing concern as offshore wells are drilled thousands of meters below the ocean floor in extreme temperature and pressure ...

  7. Process Design, Simulation and Integration of Dimethyl Ether (DME) Production from Shale Gas by Direct and Indirect Methods 

    E-Print Network [OSTI]

    Karagoz, Secgin

    2014-08-11T23:59:59.000Z

    may be obtained from shale gas is dimethyl ether (DME). Dimethyl ether can be used in many areas such as power generation, transportation fuel, and domestic heating and cooking. Dimethyl ether is currently produced from natural gas, coal and biomass...

  8. Acres International Ltd. (1987) Northumberland Strait Bridge Ice Forces Report. Public Works Canada, April, 1987.

    E-Print Network [OSTI]

    Bruneau, Steve

    1987-01-01T23:59:59.000Z

    Pipelines. Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, ASCE, 1984. Blenkarn, K) The Indentation of Sand Formations. Prepared for K.R.Croasdale and Associates on behalf of Public Works Canada

  9. Abstract--In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures,

    E-Print Network [OSTI]

    da Silva, Alberto Rodrigues

    Abstract--In this work is proposed the design of a system to create and handle Electric Vehicles network limitation and absence of smart meter devices, Electric Vehicles charging should be performed application to assist the EV driver on these processes. This proposed Smart Electric Vehicle Charging System

  10. Energy Recovery By Direct Contact Gas-Liquid Heat Exchange

    E-Print Network [OSTI]

    Fair, J. R.; Bravo, J. L.

    ENERGY RECOVERY BY DIRECf CONTACf GAS-LIQUID HEAT EXCHANGE James R. Fair and Jose L. Bravo Separations Research Program The University o/Texas at Austin Austin, Texas ABSIRACf Energy from hot gas discharge streams can be recovered... by transfer directly to a coolant liquid in one of several available gas-liquid contacting devices. The design of the device is central to the theme of this paper, and experimental work has verified that the analogy between heat transfer and mass transfer...

  11. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  12. Reactor physics design of supercritical CO?-cooled fast reactors

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2004-01-01T23:59:59.000Z

    Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

  13. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    SciTech Connect (OSTI)

    Moridis, G.; Reagan, M.T.

    2011-01-15T23:59:59.000Z

    In the second paper of this series, we evaluate two additional well designs for production from permafrost-associated (PA) hydrate deposits. Both designs are within the capabilities of conventional technology. We determine that large volumes of gas can be produced at high rates (several MMSCFD) for long times using either well design. The production approach involves initial fluid withdrawal from the water zone underneath the hydrate-bearing layer (HBL). The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, and a short stage (days to weeks) that involves destruction of the secondary hydrate (mainly through warm water injection) that evolves during the first stage, and is followed by a reduction in the fluid withdrawal rate. A well configuration with completion throughout the HBL leads to high production rates, but also the creation of a secondary hydrate barrier around the well that needs to be destroyed regularly by water injection. However, a configuration that initially involves heating of the outer surface of the wellbore and later continuous injection of warm water at low rates (Case C) appears to deliver optimum performance over the period it takes for the exhaustion of the hydrate deposit. Using Case C as the standard, we determine that gas production from PA hydrate deposits increases with the fluid withdrawal rate, the initial hydrate saturation and temperature, and with the formation permeability.

  14. Ajay K. Agrawal Work: Home

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    . Senior group leader in-charge to develop the Gas Turbine Laboratory. Led design and development of a major gas turbine research facility to simulate combustor-diffuser flow in power generating gas turbines/TEACHING INTERESTS · Combustion and fluid flow in gas turbine systems · Quantitative rainbow schlieren deflectometry

  15. Design, Synthesis and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2007-03-31T23:59:59.000Z

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based materials with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth and sixth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials during the sixth reporting period. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. Finally, we also started a study of the use of colloidal precipitation methods for the synthesis small Co clusters using recently developed methods to explore possible further improvements in FTS rates and selectivities. We found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, were formed. During this seventh reporting period, we have explored several methods to modify the silanol groups on SiO{sub 2} by using either a homogeneous deposition-precipitation method or surface titration of Si-OH on SiO{sub 2} with zirconium (IV) ethoxide to prevent the formation of unreducible and unreactive CoO{sub x} species during synthesis and FTS catalysis. We have synthesized monometallic Co/ZrO{sub 2}/SiO{sub 2} catalysts with different Co loadings (11-20 wt%) by incipient wetness impregnation methods and characterized the prepared Co supported catalysts by H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and H{sub 2}-chemisorption. We have measured the catalytic performance in FTS reactions and shown that although the hydroxyl groups on the SiO{sub 2} surface are difficult to be fully titrated by ZrO{sub 2}, modification of ZrO{sub 2} on SiO{sub 2} surface can improve the Co clusters dispersion and lead to a larger number of exposed Co surface atoms after reduction and during FTS reactions. During this seventh reporting period, we have also advanced our development of the reaction mechanism proposed in the previous reporting period. Specifically, we have shown that our novel proposal for the pathways involved in CO activation on Fe and Co catalysts is consistent with state-of-the-art theoretical calculations carried out in collaboration with Prof. Manos Mavrikakis (University of Wisconsin-Madison). Finally, we have also worked on the preparation of several manuscripts describing our findings about the preparation, activation and mechanism of the FTS with Fe-based catalysts and we have started redacting the final report for this project.

  16. Design, analyses and experimental study of a foil gas bearing with compression springs as a compliance support

    E-Print Network [OSTI]

    Song, Ju Ho

    2009-06-02T23:59:59.000Z

    systems for aircraft [2], micro-gas turbines (MGT) as independent power generators or for fuel cell-MGT hybrid systems [3], turbochargers, turbo compressors, etc. 1.1 Literature Review Heshmat et al [4] preformed the first numerical analysis...

  17. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Energy Savers [EERE]

    FORMAT: Natural Gas Use in Transportation REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation RCC Workplan NGV.PDF More Documents &...

  18. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    SciTech Connect (OSTI)

    none,

    1981-05-01T23:59:59.000Z

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  19. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  20. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  1. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  2. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  3. Use of a directional spray system design to control respirable dust and free gas concentrations around a continuous mining machine

    SciTech Connect (OSTI)

    Goodman, G.V.R.; Pollock, D.E. [NIOSH, Pittsburgh, PA (US). Pittsburgh Research Lab.

    2004-12-15T23:59:59.000Z

    A laboratory study assessed the impacts of water spray pressure, face ventilation quantity, and line brattice setback distance on respirable dust and SF6 tracer gas concentrations around a continuous mining machine using a sprayfan or directional spray system. Dust levels were measured at locations representing the mining machine operator and the standard and off standard shuttle car operators, and in the return airway. The results showed that changes in all three independent variables significantly affected log-transformed dust levels at the three operator sampling locations. Changes in setback distance impacted return airway dust levels. Laboratory testing also identified numerous variable interactions affecting dust levels. Tracer gas levels were measured on the left and right sides of the cutting drum and in the return. Untransformed gas levels around the cutting drum were significantly affected by changes in water pressure, face ventilation quantity, and setback distance. Return gas levels measured at the low curtain quantity were generally unaffected by changes in water pressure or curtain setback distance. At the high curtain quantity, return airway gas levels were affected by curtain setback distance. A field study was conducted to assess the impact of these parameters in an actual mining operation. These data showed that respirable dust levels may have been impacted by a change in water pressure and, to a lesser extent, by an increase in curtain setback distance. A series of tracer gas pulse tests were also conducted during this study. The results showed that effectiveness of the face ventilation was impacted by changes in curtain flow quantity and setback distance.

  4. Conceptual design and system analysis of a poly-generation system for power and olefin production from natural gas

    E-Print Network [OSTI]

    Huang, Yinlun

    -production system based on coal and natural gas for the production of electric- ity and Dimethyl ether (DME) and electricity being more thermodynamically efficient and economically viable than single purpose power resources and environmental considerations. In some senses, energy shortages and environmental pollution

  5. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost

  6. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31T23:59:59.000Z

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  7. Natural Gas Rules (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

  8. Risk-informed design guidance for a Generation-IV gas-cooled fast reactor emergency core cooling system

    E-Print Network [OSTI]

    Delaney, Michael J. (Michael James), 1979-

    2004-01-01T23:59:59.000Z

    Fundamental objectives of sustainability, economics, safety and reliability, and proliferation resistance, physical protection and stakeholder relations must be considered during the design of an advanced reactor. However, ...

  9. Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells 

    E-Print Network [OSTI]

    Wang, Wenxin

    2006-04-12T23:59:59.000Z

    This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of ...

  10. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-02-12T23:59:59.000Z

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  11. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17T23:59:59.000Z

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  12. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  13. Design of an experimental loop for post-LOCA heat transfer regimes in a Gas-cooled Fast Reactor

    E-Print Network [OSTI]

    Cochran, Peter A. (Peter Andrew)

    2005-01-01T23:59:59.000Z

    The goal of this thesis is to design an experimental thermal-hydraulic loop capable of generating accurate, reliable data in various convection heat transfer regimes for use in the formulation of a comprehensive convection ...

  14. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  15. Gas storage plays critical role in deregulated U. S. marketplace

    SciTech Connect (OSTI)

    True, W.R.

    1994-09-12T23:59:59.000Z

    Oil Gas Journal for the first time has compiled a county-by-county list of underground natural-gas storage operating in the US on Sept. 1. Nearly 3.1 tcf of working gas in storage is currently operated. As will be discussed, several projects to add capacity are under way or planned before 2000. To collect the data, OGJ contacted every company reported by the American Gas Association, U.S. Federal Energy Regulatory Commission, or the US Department of Energy to have operated storage in the past 2 years. The results were combined with other published information to form Table 1 which provides base, working, and total gas capacities for storage fields, types of reservoirs used, and daily design injection and withdrawal rates. The paper also discusses deregulation, what's ahead, and salt cavern storage.

  16. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    E-Print Network [OSTI]

    Moridis, G.

    2011-01-01T23:59:59.000Z

    m). As in all cases of gas hydrates (Moridis et al. , 2007;by destroying the secondary gas hydrate barrier (if such aInduced Gas Production From Class 1 Hydrate Deposits,” SPE

  17. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Barsell, A.W.

    1980-05-01T23:59:59.000Z

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  18. APT Blanket System Loss-of-Helium-Gas Accident Based on Initial Conceptual Design - Helium Supply Rupture into Blanket Module

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    The model results are used to determine if beam power shutdown is necessary (or not) as a result of the LOHGA accident to maintain the blanket system well below any of the thermal-hydraulic constraints imposed on the design. The results also provide boundary conditions to the detailed bin model to study the detailed temperature response of the hot blanket module structure. The results for these two cases are documented in the report.

  19. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Enrique Iglesia; Akio Ishikawa; Manual Ojeda; Nan Yao

    2007-09-30T23:59:59.000Z

    A detailed study of the catalyst composition, preparation and activation protocol of Fe-based catalysts for the Fischer-Tropsch Synthesis (FTS) have been carried out in this project. We have studied the effects of different promoters on the catalytic performance of Fe-based catalysts. Specifically, we have focused on how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C{sub 5+} selectivities of the Fe-based catalysts that we have developed as part of this project. Selectivity to C{sub 5+} hydrocarbon was close to 90 % (CO{sub 2}-free basis) and CO conversion rate was about 6.7 mol h{sup -1} g-at Fe{sup -1} at 2.14 MPa, 508 K and with substoichiometric synthesis gas; these rates were larger than any reported previously for Fe-based FTS catalysts at these conditions. We also tested the stability of Fe-based catalysts during FTS reaction (10 days); as a result, the high hydrocarbon formation rates were maintained during 10 days, though the gradual deactivation was observed. Our investigation has also focused on the evaluation of Fe-based catalysts with hydrogen-poor synthesis gas streams (H{sub 2}/CO=1). We have observed that the Fe-based catalysts prepared in this project display also a high hydrocarbon synthesis rate with substoichiometric synthesis gas (H{sub 2}/CO=1) stream, which is a less desirable reactant mixture than stoichiometric synthesis gas (H{sub 2}/CO=2). We have improved the catalyst preparation protocols and achieved the highest FTS reaction rates and selectivities so far reported at the low temperatures required for selectivity and stability. Also, we have characterized the catalyst structural change and active phases formed, and their catalytic behavior during the activation process to evaluate their influences on FTS reaction. The efforts of this project led to (i) structural evolution of Fe-Zn oxide promoted with K and Cu, and (ii) evaluation of hydrocarbon and CH{sub 4} formation rates during activation procedures at various temperature and H{sub 2}/CO ratios. On the basis of the obtained results, we suggest that lower reactor temperature can be sufficient to activate catalysts and lead to the high FTS performance. In this project, we have also carried out a detailed kinetic and mechanistic study of the Fischer-Tropsch Synthesis with Fe-based catalysts. We have proposed a reaction mechanism with two CO activation pathways: unassisted and H-assisted. Both routes lead to the formation of the same surface monomers (CH{sub 2}). However, the oxygen removal mechanism is different. In the H-assisted route, oxygen is removed exclusively as water, while oxygen is rejected as carbon dioxide in the unassisted CO dissociation. The validity of the mechanism here proposed has been found to be in agreement with the experimental observation and with theoretical calculations over a Fe(110) surface. Also, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by two CO activation pathways. We have also explored the catalytic performance of Co-based catalysts prepared by using inverse micelles techniques. We have studied several methods in order to terminate the silanol groups on SiO{sub 2} support including impregnation, urea homogeneous deposition-precipitation, or zirconium (IV) ethoxide titration. Although hydroxyl groups on the SiO{sub 2} surface are difficult to be stoichiometrically titrated by ZrO{sub 2}, a requirement to prevent the formation of strongly-interacting Co oxide species on SiO{sub 2}, modification of ZrO{

  20. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Akio; Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2006-09-30T23:59:59.000Z

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. More specifically, we were focused on the roles of hydrogen-assisted and alkali-assisted dissociation of CO in determining rates and CO{sub 2} selectivities. During this sixth reporting period, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by the two CO activation pathways we propose. During this reporting period, the experimental kinetic study has been also complemented with periodic, self-consistent, DFT-GGA investigations in a parallel collaboration with the group of Manos Mavrikakis at the University of Wisconsin-Madison. These DFT calculations suggest minimal energy paths for proposed elementary steps on Fe(110) and Co(0001) surfaces. These calculations support our novel conclusions about the preferential dissociation of CO dissociation via H-assisted pathways on Fe-based catalysts. Unassisted CO dissociation also occurs and lead to the formation of CO{sub 2} as a primary oxygen scavenging mechanism after CO dissociation on Fe-based catalysts. Simulations and our experimental data show also that unassisted CO dissociation route is much less likely on Co surfaces and that hydrocarbons form exclusively via H-assisted pathways with the formation of H{sub 2}O as the sole oxygen rejection product. We have also started a study of the use of colloidal precipitation methods for the synthesis of small Fe and Co clusters using recently developed methods to explore possible further improvements in Fischer-Tropsch synthesis rates and selectivities. We have found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, are formed. The nature of the cobalt precursor and the modification of the support seem to be critical parameters in order to obtain highly dispersed and reducible Co nanoparticles.

  1. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  2. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  3. Working Draft

    Office of Environmental Management (EM)

    gases-including nitrogen, carbon dioxide, hydrogen sulfide, methane, ethane, and propane-and butanes and other volatile liquids) composition, and flash gas composition....

  4. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  5. Morphology of Gas Release in Physical Simulants

    SciTech Connect (OSTI)

    Daniel, Richard C.; Burns, Carolyn A.; Crawford, Amanda D.; Hylden, Laura R.; Bryan, Samuel A.; MacFarlan, Paul J.; Gauglitz, Phillip A.

    2014-07-03T23:59:59.000Z

    This report documents testing activities conducted as part of the Deep Sludge Gas Release Event Project (DSGREP). The testing described in this report focused on evaluating the potential retention and release mechanisms of hydrogen bubbles in underground radioactive waste storage tanks at Hanford. The goal of the testing was to evaluate the rate, extent, and morphology of gas release events in simulant materials. Previous, undocumented scoping tests have evidenced dramatically different gas release behavior from simulants with similar physical properties. Specifically, previous gas release tests have evaluated the extent of release of 30 Pa kaolin and 30 Pa bentonite clay slurries. While both materials are clays and both have equivalent material shear strength using a shear vane, it was found that upon stirring, gas was released immediately and completely from bentonite clay slurry while little if any gas was released from the kaolin slurry. The motivation for the current work is to replicate these tests in a controlled quality test environment and to evaluate the release behavior for another simulant used in DSGREP testing. Three simulant materials were evaluated: 1) a 30 Pa kaolin clay slurry, 2) a 30 Pa bentonite clay slurry, and 3) Rayleigh-Taylor (RT) Simulant (a simulant designed to support DSGREP RT instability testing. Entrained gas was generated in these simulant materials using two methods: 1) application of vacuum over about a 1-minute period to nucleate dissolved gas within the simulant and 2) addition of hydrogen peroxide to generate gas by peroxide decomposition in the simulants over about a 16-hour period. Bubble release was effected by vibrating the test material using an external vibrating table. When testing with hydrogen peroxide, gas release was also accomplished by stirring of the simulant.

  6. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  7. WORK PROGRAMME 2009 COOPERATION

    E-Print Network [OSTI]

    Milano-Bicocca, Università

    _______ 15 SSH-2009 - 4.1.1. Competition and collaboration in access to oil, gas and mineral resourcesWORK PROGRAMME 2009 COOPERATION THEME 8 SOCIO-ECONOMIC SCIENCES AND HUMANITIES (European Commission and the Humanities Page 1 of 38 OBJECTIVE_______________________________________________________________ 3 I CONTEXT

  8. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31T23:59:59.000Z

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  9. Environmental factors affecting the permitting of a gas turbine cogeneration system located in an area designated non-attainment for ozone and carbon monoxide

    SciTech Connect (OSTI)

    Memarzadeh, F. [National Inst. of Health, Bethesda, MD (United States). Office of Research

    1994-12-31T23:59:59.000Z

    This paper will describe air permitting regulations that apply to a new cogeneration facility or the modification of any existing facility. The permitting depends on several factors including the attainment status of the emitted criteria pollutants within the project area, with the facility classified as either a ``major new source`` or a ``major modification``. Depending on the attainment status of a given pollutant, either the Prevention of Significant Deterioration (PSD) or the Non-attainment area (NAA) regulations (Title I of the Clean Air Act Amendments of 1990) will apply for that pollutant. Since the greatest percentage of emissions generated by a gas turbine are nitrogen oxides (ozone precursors) and carbon monoxide this paper presents an overview of clean air regulations pertinent to those areas of the country that are designated as attaining the National Ambient Air Quality Standards (NAAQS) for sulphur dioxide (SO{sub 2}), particulate matter (PM), nitrogen oxides (NO{sub x}) and lead (Pb), and as areas of nonattainment for ozone (O{sub 3}) and carbon monoxide (CO). A hypothetical case is presented and all the environmental issues such as applicability of PSD and NAA regulations, available pollution offsets, and air quality compliance requirements for a modification to an existing facility located in a serious ozone and moderate carbon monoxide non-attainment area will be illustrated.

  10. Ductless fume hoods are designed to remove hazardous fumes and vapors from the work area by passing the exhaust air through a filter and/or adsorbent, such as an activated

    E-Print Network [OSTI]

    de Lijser, Peter

    I. Policy Ductless fume hoods are designed to remove hazardous fumes and vapors from the work area to Hazardous Chemicals in Laboratories); 5154.1 (Ventilation Requirements for Laboratory-Type Hood Operations require use of fume hoods to control exposure to hazardous or odorous chemicals. IV. Definitions Activated

  11. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYear Jan8,859 8,560 8,662)

  12. Working Gas Capacity of Depleted Fields

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicle Fuel2.9

  13. Working Gas Capacity of Salt Caverns

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicle Fuel2.9230,456

  14. Working Gas % Change from Year Ago

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"DataU.S.5.0 8.7 25.6

  15. Working Gas Volume Change from Year Ago

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan Feb Marper3

  16. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) 0PADPrevious Articles Previous

  17. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) 0PADPrevious Articles

  18. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) 0PADPrevious

  19. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20T23:59:59.000Z

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  20. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21T23:59:59.000Z

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  1. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21T23:59:59.000Z

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  2. Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0 0.0Decade4Year Jan

  3. Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)Year JanVentedFeet)

  4. Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569Decade Year-0

  5. Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.05.03 5.68YearYear

  6. Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYearDecade Year-0Feet)

  7. Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)

  8. Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade03 4.83YearYear

  9. Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.DecadeFuel2009YearYear Jan

  10. AGA Producing Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n s

  11. Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecade

  12. Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYearDecadeYear Jan Feb

  13. Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales

  14. California Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590FuelDecade Year-0 Year-1

  15. Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008Year JanBase

  16. Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810Year Jan Feb Mar Apr

  17. West Virginia Natural Gas in Underground Storage (Working Gas) (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan Feb Mar AprYearCubic

  18. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan FebDecadeBase

  19. Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2Feet)VentedBase

  20. Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotalVented andBase

  1. Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYear Jan Feb Mar Apr

  2. Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet)TotalVented andFeet)

  3. Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan FebYear Jan FebYear Jan

  4. Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr May JunYear Jan FebCubic

  5. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr May JunYear Jan

  6. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr May JunYear Janfrom Same

  7. How Fuel Cells Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology...

  8. Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology

    SciTech Connect (OSTI)

    Cox, Daryl [ORNL

    2009-05-01T23:59:59.000Z

    The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

  9. Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently in great

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently and natural gas engineers design and develop methods for getting oil and gas from underground deposits's Department of Petroleum and Natural Gas Engineering is competitive, with qualified applicants receiving

  10. Natural gas monthly, October 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Natural gas monthly, April 1999

    SciTech Connect (OSTI)

    NONE

    1999-05-06T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  12. Natural gas monthly, March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-22T23:59:59.000Z

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  13. Natural gas monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-25T23:59:59.000Z

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  14. Natural gas monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-27T23:59:59.000Z

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  15. Natural gas monthly, July 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

  16. Natural gas monthly, May 1999

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  17. Natural gas monthly, August 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-24T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  18. Natural gas monthly, October 1998

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  19. Natural gas monthly, June 1999

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  20. Natural gas monthly: December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

  1. Natural gas monthly, April 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-26T23:59:59.000Z

    The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  2. Natural gas monthly, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-22T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  3. Natural gas monthly, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-27T23:59:59.000Z

    The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  4. Natural gas monthly, November 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-29T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  5. Natural gas monthly, July 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  6. Natural gas monthly, April 1995

    SciTech Connect (OSTI)

    NONE

    1995-04-27T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

  7. Natural Gas Monthly, March 1996

    SciTech Connect (OSTI)

    NONE

    1996-03-25T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  8. Natural gas monthly, June 1998

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  9. Natural gas monthly, September 1998

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  10. Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing

    E-Print Network [OSTI]

    Davis, Lucas; Muehlegger, Erich

    2009-01-01T23:59:59.000Z

    Residential Market for Natural Gas,” 2008, working paper. [of Electricity and Natural Gas,” Journal of IndustrialPrices: Evidence from Natural Gas Distribution Utilities,”

  11. Turbine Drive Gas Generator for Zero Emission Power Plants

    SciTech Connect (OSTI)

    Doyle, Stephen E.; Anderson, Roger E.

    2001-11-06T23:59:59.000Z

    The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

  12. Work Experience Guidance for Managers

    E-Print Network [OSTI]

    Work Experience Guidance for Managers When approached with a request for work experience, managers. Any queries regarding CRB checks should be directed to your designated HR Manager. When a work any work, paid or unpaid: Before 7am or after 7pm For more than two hours on a school day or Sunday

  13. 4.5 A Carnot cycle uses 1.00 mol of a monatomic perfect gas as the working substance from an initial state of 10.0 atm and 600 K. It expands isothermally to a pressure of 1.00 atm (step 1),

    E-Print Network [OSTI]

    Findley, Gary L.

    4.5 A Carnot cycle uses 1.00 mol of a monatomic perfect gas as the working substance from, w, )U, )H, )S and )Stot for each stage of the cycle and for the cycle as a whole. Express your L, in three ways: (a) isothermally and reversibly, (b) isothermally against a constant external

  14. Working Paper

    E-Print Network [OSTI]

    2010-07-16T23:59:59.000Z

    Jul 2, 2010 ... Working Paper. Branch and Bound Algorithms for ...... interest when evaluating the performance. First, each derived subproblem means usage ...

  15. Water-saving liquid-gas conditioning system

    DOE Patents [OSTI]

    Martin, Christopher; Zhuang, Ye

    2014-01-14T23:59:59.000Z

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  16. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1984-01-01T23:59:59.000Z

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  17. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09T23:59:59.000Z

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  18. Management of a complex cavern storage facility for natural gas

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The Epe cavern storage facility operated by Ruhrgas AG has developed into one of the largest gas cavern storage facilities in the world. Currently, there are 32 caverns and 18 more are planned in the future. Working gas volume will increase from approximately 1.5 {times} 10{sup 9} to 2 {times} 10{sup 9} m{sup 3}. The stratified salt deposit containing the caverns has a surface area of approximately 7 km{sup 2} and is 250 m thick at the edge and 400 m thick in the center. Caverns are leached by a company that uses the recovered brine in the chlorine industry. Cavern dimensions are determined before leaching. The behavior of each cavern, as well as the thermodynamic properties of natural gas must be considered in cavern management. The full-length paper presents the components of a complex management system covering the design, construction, and operation of the Epe gas-storage caverns.

  19. Gas Generation from K East Basin Sludges - Series II Testing

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2001-03-14T23:59:59.000Z

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

  20. Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Semi-annual report, April--September 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The objective of this proposed program is to ensure reliable supply of high-quality natural gas by reducing the cost of treating subquality natural gas containing H{sub 2}O, CO{sub 2}, H{sub 2}S and/or trace quantities of other gaseous impurities by applying high-efficiency rotating and structured packing gas liquid contactors. Work accomplished during this reporting period are discussed for the following tasks: Task 2, field experimental site seletion; Task 3, field experimental skid unit design and preliminary economic evaluations; and Task 6, fluid dynamic studies.

  1. Study seeks to boost Appalachian gas recovery

    SciTech Connect (OSTI)

    Not Available

    1992-07-20T23:59:59.000Z

    Ashland Exploration Inc. and the Gas Research Institute (GRI) are trying to find ways to increase gas recovery in the Appalachian basin. They are working together to investigate Mississippian Berea sandstone and Devonian shale in a program designed to achieve better understanding and improved performance of tight natural gas formations in the area. This paper reports that three wells on Ashland Exploration acreage in Pike County, Ky., are involved in the research program. Findings from the first two wells will be used to optimize evaluation and completion of the third well. The first two wells have been drilled. Drilling of the third well was under way at last report. Ashland Exploration has been involved with GRI's Devonian shale research since 1988. GRI's initial focus was on well stimulation because Devonian shale wells it reviewed had much lower recoveries than could be expected, based on estimated gas in place. Research during the past few years was designed to improve the execution and quality control of well stimulation.

  2. alaska gas pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 4 A moving horizon solution to the gas pipeline...

  3. arctic gas pipeline: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

  4. arctic gas pipelines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

  5. Natural Gas Vehicle Cylinder Safety, Training and Inspection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    any proprietary or confidential information 22808 Purpose of Work Assure the safety of natural gas vehicle fuel systems in order to... Help encourage the use of natural gas...

  6. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working...

  7. Avoca, New York Salt Cavern Gas Storage Facility

    SciTech Connect (OSTI)

    Morrill, D.C. [J. Makowski and Associates, Boston, MA (United States)

    1995-09-01T23:59:59.000Z

    The first salt cavern natural gas storage facility in the northeastern United States designed to serve the interstate gas market is being developed by J Makowski Associates and partners at Avoca in Steuben County, New York. Multiple caverns will be leached at a depth of about 3800 ft from an approximately 100 ft interval of salt within the F unit of the Syracuse Formation of the Upper Silurian Salina Group. The facility is designed to provide 5 Bcf of working gas capacity and 500 MMcfd of deliverability within an operating cavern pressure range between 760 psi and 2850 psi. Fresh water for leaching will be obtained from the Cohocton River aquifer at a maximum rate of 3 million gallons per day and produced brine will be injected into deep permeable Cambrian age sandstones and dolostones. Gas storage service is anticipated to commence in the Fall of 1997 with 2 Bcf of working gas capacity and the full 5 Bcf or storage service is scheduled to be available in the Fall of 1999.

  8. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  9. Gas ampoule-syringe

    DOE Patents [OSTI]

    Gay, Don D. (Aiken, SC)

    1986-01-01T23:59:59.000Z

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one end and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  10. Gas ampoule-syringe

    DOE Patents [OSTI]

    Gay, D.D.

    1985-02-02T23:59:59.000Z

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  11. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect (OSTI)

    Eby, R.J.

    1980-12-01T23:59:59.000Z

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  12. Natural gas monthly, October 1997

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

  13. Natural gas monthly, June 1996

    SciTech Connect (OSTI)

    NONE

    1996-06-24T23:59:59.000Z

    The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

  14. Natural gas monthly, April 1997

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  15. Natural gas monthly, May 1997

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  16. Natural Gas Monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-10T23:59:59.000Z

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  17. Natural gas monthly, December 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  18. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30T23:59:59.000Z

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  19. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect (OSTI)

    Rachel Henderson; Robert Fickes

    2007-12-31T23:59:59.000Z

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

  20. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design 

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    2001-01-01T23:59:59.000Z

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  1. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  2. The Research Path to Determining the Natural Gas Supply Potential of Marine Gas Hydrates

    SciTech Connect (OSTI)

    Boswell, R.M.; Rose, K.K.; Baker, R.C.

    2008-06-01T23:59:59.000Z

    A primary goal of the U.S. National Interagency Gas Hydrates R&D program is to determine the natural gas production potential of marine gas hydrates. In pursuing this goal, four primary areas of effort are being conducted in parallel. First, are wide-ranging basic scientific investigations in both the laboratory and in the field designed to advance the understanding of the nature and behavior of gas hydrate bearing sediments (GHBS). This multi-disciplinary work has wide-ranging direct applications to resource recovery, including assisting the development of exploration and production technologies through better rock physics models for GHBS and also in providing key data for numerical simulations of productivity, reservoir geomechanical response, and other phenomena. In addition, fundamental science efforts are essential to developing a fuller understanding of the role gas hydrates play in the natural environment and the potential environmental implications of gas hydrate production, a critical precursor to commercial extraction. A second area of effort is the confirmation of resource presence and viability via a series of multi-well marine drilling expeditions. The collection of data in the field is essential to further clarifying what proportion of the likely immense in-place marine gas hydrate resource exists in accumulations of sufficient quality to represent potential commercial production prospects. A third research focus area is the integration of geologic, geophysical, and geochemical field data into an effective suite of exploration tools that can support the delineation and characterization commercial gas hydrate prospects prior to drilling. The fourth primary research focus is the development and testing of well-based extraction technologies (including drilling, completion, stimulation and production) that can safely deliver commercial gas production rates from gas hydrate reservoirs in a variety of settings. Initial efforts will take advantage of the relatively favorable economics of conducting production tests in Arctic gas-hydrate bearing sandstones with the intent of translating the knowledge gained to later testing in marine sandstone reservoirs. The full and concurrent pusuit of each of these research topics is essential to the determining the future production potential of naturally-occuring gas hydrates.

  3. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly report, April--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This quarterly technical progress report summarizes the work completed during the first quarter, April 1 through June 30, 1995. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasificafion and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel continued at a good pace during the quarter.

  4. Natural gas monthly, August 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

  5. Method of Liquifying a gas

    DOE Patents [OSTI]

    Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.

    2006-02-14T23:59:59.000Z

    A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.

  6. High-Btu gas from peat. A feasibility study. Task 11. Technical support. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    In September 1980, the US Department of Energy awarded grant No. DE-FG01-80RA50348 to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million SCF/day of substitute natural gas (SNG) from peat. Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering and economics of peat harvesting, dewatering and gasification systems); Ertec, Inc. (for environmental and socioeconomic analyses); Institute of Gas Technology (for gasification process information, and technical and engineering support). This report presents the work conducted under Task II (Technical Support) by the Institute of Gas Technology (IGT), the developer of the PEATGAS process, which was selected for the study. Task achievements are presented for: gasifier design and performance; technical support; and task management. 12 figures, 22 tables.

  7. Natural gas monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-25T23:59:59.000Z

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  8. Natural gas monthly, May 1995

    SciTech Connect (OSTI)

    NONE

    1995-05-24T23:59:59.000Z

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  10. Natural gas monthly, April 1998

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

  11. Natural Gas Pipe Line Companies (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records,...

  12. Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

  13. Gas-phase chemical dynamics

    SciTech Connect (OSTI)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01T23:59:59.000Z

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  14. Virginia Natural Gas's Hampton Roads Pipeline Crossing

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Virginia Natural Gas's (VNG's) pipeline project at Hampton Roads Crossing (HRX).

  15. Optimization Problems in Natural Gas Transportation Systems

    E-Print Network [OSTI]

    Roger Z. Ríos-Mercado

    2015-03-02T23:59:59.000Z

    Mar 2, 2015 ... Abstract: This paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline ...

  16. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to &83 3.3At DOE Working At

  17. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to &83 3.3At DOE Working

  18. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWork & Life

  19. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  20. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  1. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  2. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  3. Natural gas monthly, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

  4. Economics of gobar gas

    SciTech Connect (OSTI)

    Pang, A.; Shrestha, P.C.; Fulford, D.

    1980-01-01T23:59:59.000Z

    This series of reports follows a sequence necessary to start and run a biogas project. The first provides and introduction to biogas, its costs, and its yields. Its use will conserve forests, create clean, healthy fuel and fertilizer, and save Nepal foreign exchange. The feasibility study considered water and dung supply, degree of cooperation among the affected villagers, the need for the plant, and intangibles such as erosion control. The initial survey investigates the community social situation, needs, and cooperation. The Gobar Gas company had had personnel problems which decreased service, but the problems were being worked out. The project has been highly successful. The 11 Chinese plants worked well with no leaks from the cement but the gas valves leaked. The scum breaker also caused problems. The high quality plaster work required is the greatest hindrance.

  5. Power control system for a hot gas engine

    DOE Patents [OSTI]

    Berntell, John O. (Staffanstorp, SE)

    1986-01-01T23:59:59.000Z

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  6. Fermilab at Work | Work Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:Job Opportunities JoinWork Resources

  7. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  8. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  9. High Temperature Gas Reactors Briefing to

    E-Print Network [OSTI]

    Meltdown-Proof Advanced Reactor and Gas Turbine #12;TRISO Fuel Particle -- "Microsphere" · 0.9mm diameter · Utilizes gas turbine technology · Lower Power Density · Less Complicated Design (No ECCS) #12;AdvantagesHigh Temperature Gas Reactors Briefing to by Andrew C. Kadak, Ph.D. Professor of the Practice

  10. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30T23:59:59.000Z

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  11. C.D. Howe Institute Working Paper

    E-Print Network [OSTI]

    consultative review. This working paper reports on estimates of the effects of the current slate of federal reduction policies. To estimate the effects of the current slate of federal greenhouse gas policies, we

  12. Designing Industrial DSM Programs that Work

    E-Print Network [OSTI]

    Nadel, S. M.; Jordan, J. A.

    follow up leakage test three to six months later, or -- if the customer agrees to do quarterly leak testing for 2 1/2 years -- the customer and the utility split the cost of leak testing equipment. If the leak reduction targets are being met...

  13. MODELING, IDENTIFICATION AND CONTROL, 2006, VOL. 00, NO. 0, 000000 Control Design for a Gas Turbine Cycle with CO2 Capture

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Turbine Cycle with CO2 Capture Capabilities¶ DAGFINN SNARHEIM, LARS IMSLAND, BJARNE A. FOSS*, RAGNHILD ULFSNES and OLAV BOLLAND Keywords: Control structure, integrated process design, power production, CO2) as an alternative for power production with CO2 capture capabilities. This article is concerned with two critical

  14. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01T23:59:59.000Z

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  15. Cooperative Modeling and Design History Tracking Using Design Tracking Matrix

    E-Print Network [OSTI]

    Kim, Jonghyun

    2010-10-12T23:59:59.000Z

    This thesis suggests a new framework for cooperative modeling which supports concurrency design protocol with a design history tracking function. The proposed framework allows designers to work together while eliminating design conflicts...

  16. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-04-01T23:59:59.000Z

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  17. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-01-01T23:59:59.000Z

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  18. Spindletop salt-cavern points way for future natural-gas storage

    SciTech Connect (OSTI)

    Shotts, S.A.; Neal, J.R.; Solis, R.J. (Southwestern Gas Pipeline Inc., The Woodlands, TX (United States)); Oldham, C. (Centana Intrastate Pipeline Co., Beaumont, TX (United States))

    1994-09-12T23:59:59.000Z

    Spindletop underground natural-gas storage complex began operating in 1993, providing 1.7 bcf of working-gas capacity in its first cavern. The cavern and related facilities exemplify the importance and advantages of natural-gas storage in leached salt caverns. Development of a second cavern, along with continued leaching of the initial cavern, target 5 bcf of available working-gas capacity in both caverns by the end of this year. The facilities that currently make up the Spindletop complex include two salt dome gas-storage wells and a 24,000-hp compression and dehydration facility owned by Sabine Gas; two salt dome gas-storage wells and a 15,900-hp compression and dehydration facility owned by Centana; a 7,000-hp leaching plant; and three jointly owned brine-disposal wells. The paper discusses the development of the storage facility, design goals, leaching plant and wells, piping and compressors, dehydration and heaters, control systems, safety and monitoring, construction, first years operation, and customer base.

  19. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01T23:59:59.000Z

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore »evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  20. Cogeneration System Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    The commercial or industrial firm contemplating cogeneration at its facilities faces numerous basic design choices. The possibilities exist for fueling the system with waste materials, gas, oil, coal, or other combustibles. The choice of boiler...

  1. How NIF Works

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  2. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

    DOE Patents [OSTI]

    Yaghi, Omar M.; Eddaoudi, Mohamed; Li, Hailian; Kim, Jaheon; Rosi, Nathaniel

    2007-03-27T23:59:59.000Z

    The ability to design and construct solid-state materials with pre-determined structures is a grand challenge in chemistry. An inventive strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that has allowed the design of porous structures in which pore size and functionality can be varied systematically. MOF-5, a prototype of a new class of porous materials and one that is constructed from octahedral Zn--O--C clusters and benzene links, was used to demonstrate that its 3-D porous system can be functionalized with the organic groups, --Br, --NH2, --OC3H7, --OC5H11, --H4C2, and --H4C4, and its pore size expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. The ability to direct the formation of the octahedral clusters in the presence of a desired carboxylate link is an essential feature of this strategy, which resulted in the design of an isoreticular (having the same framework topology) series of sixteen well-defined materials whose crystals have open space representing up to 91.1% of the crystal volume, and homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. Unlike the unpredictable nature of zeolite and other molecular sieve syntheses, the deliberate control exercised at the molecular level in the design of these crystals is expected to have tremendous implications on materials properties and future technologies. Indeed, data indicate that members of this series represent the first monocrystalline mesoporous organic/inorganic frameworks, and exhibit the highest capacity for methane storage (155 cm3/cm3 at 36 atm) and the lowest densities (0.41 to 0.21 g/cm3) attained to date for any crystalline material at room temperature.

  3. Ultrafast gas switching experiments

    SciTech Connect (OSTI)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1996-11-01T23:59:59.000Z

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to I kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than I nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and wave forms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and pressure. We have applied this technology to practical systems driving ultrawideband radiating antennas and bounded wave simulators. For example, we have developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia- designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > 1 kHz at > 100 kV/m E field.

  4. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01T23:59:59.000Z

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  5. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14T23:59:59.000Z

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  6. Gas Generation from Actinide Oxide Materials

    SciTech Connect (OSTI)

    George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

    2000-12-01T23:59:59.000Z

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  8. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  9. [Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  10. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-01-01T23:59:59.000Z

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe's working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  11. Flammable gas project topical report

    SciTech Connect (OSTI)

    Johnson, G.D.

    1997-01-29T23:59:59.000Z

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  12. Natural gas monthly, February 1998

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This issue of the Natural Gas Monthly (NGM) presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through February 1998 for many data series, and through November 1997 for most natural gas prices. Highlights of the natural gas data contained in this issue are: Preliminary estimates for January and February 1998 show that dry natural gas production, net imports, and consumption are all within 1 percent of their levels in 1997. Warmer-than-normal weather in recent months has resulted in lower consumption of natural gas by the residential sector and lower net withdrawals of gas from under round storage facilities compared with a year ago. This has resulted in an estimate of the amount of working gas in storage at the end of February 1998 that is 18 percent higher than in February 1997. The national average natural gas wellhead price is estimated to be $3.05 per thousand cubic feet in November 1997, 7 percent higher than in October. The cumulative average wellhead price for January through November 1997 is estimated to be $2.42 per thousand cubic feet, 17 percent above that of the same period in 1996. This price increase is far less than 36-percent rise that occurred between 1995 and 1996. 6 figs., 26 tabs.

  13. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    SciTech Connect (OSTI)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16T23:59:59.000Z

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  14. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  15. Gas injection as an alternative option for handling associated gas produced from deepwater oil developments in the Gulf of Mexico 

    E-Print Network [OSTI]

    Qian, Yanlin

    2004-09-30T23:59:59.000Z

    associated gas. This project was designed to test the viability of storing associated gas in a saline sandstone aquifer above the producing horizon. Saline aquifer storage would have the dual benefits of gas emissions reduction and gas storage for future use...

  16. The Gas/Electric Partnership

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    The GaslElectric Partnership W. Richard Schmeal Dwight Royall K. Fred Wrenn, Jr. EPRI Chemical & Petroleum Center TU Electric Columbia Gas Transmission Corp. Houston, Texas Dallas, Texas Charleston, West Virginia The electric and gas industries... of information about emergmg technologies Cultural Issues A number of electric utilities formed an Electric Power For Compression Working Group with EPRI to address these issues openly and honestly to see if the issues were real and, if so to see...

  17. Western gas sands project. Status report, 1 June-30 June 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Progress of the government-sponsored projects during June 1980, that are directed towards increasing gas production from the low permeability gas sands of the western United States, is summarized. Northwest Exploration declined use of their site for the multi-well experiment; additional sites are being contemplated. Experiments began at Bartlesville Energy Technology Center designed to examine fracture closure and crushing strength of bauxite. At Lawrence Livermore Laboratory, work is progressing on the code to calculate fluid motion in an expanding propagation crack.

  18. Development of a Small-Scale Natural Gas Liquefier. Final Report

    SciTech Connect (OSTI)

    Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

    2003-04-30T23:59:59.000Z

    This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

  19. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

  20. High-temperature gas-cooled reactor safety studies for the Division of Accident Evaluation quarterly progress report, January 1-March 31, 1985

    SciTech Connect (OSTI)

    Ball, S.J.; Cleveland, J.C.; Harrington, R.M.; Weber, C.F.; Wilson, J.H.

    1985-10-01T23:59:59.000Z

    Modeling, code development, and analyses of the modular High-Temperature Gas-Cooled Reactor (HTGR) continued with work on the side-by-side design. Fission-product release and transport experiments were completed. A description and assessment report on Oak Ridge National Laboratory HTGR safety codes was issued.

  1. Geothermal Developments at San Diego Gas & Electric

    SciTech Connect (OSTI)

    Anastas, George; Hoaglin, Gregory J.

    1980-12-01T23:59:59.000Z

    In 1972, the first well flow tests were conducted by NARCO and Magma Power to determine reservoir characteristics such as mass flow, temperature, stability, and mineral content of geothermal brine from the exploration wells. The results of these tests were encouraging. Brine temperatures were relatively hot, and salinity was less than previously experienced. Results were sufficient to justify further testing of the process design to determine an appropriate energy conversion cycle for a power plant. Both the flash cycle and binary cycle were considered. In the binary cycle, geothermal heat is transferred from hot brine to a secondary working fluid by means of heat exchangers. The heated secondary fluid expands to drive a turbine-generator. The flash cycle was rejected because the high measured noncondensible gas content of the brines seriously reduced the cycle efficiency. The reduced salinity was expected to result in reduced scaling characteristics. For these reasons the binary cycle was selected for initial design and field testing. In 1973, a series of field tests was conducted to support the design of the binary conversion cycle. Unfortunately, a rapid decline in heat exchanger performance resulting from scaling demonstrated a need to reevaluate the cycle design. A flash/binary process was chosen as the basis for facility design modifications and additional field testing. Design modifications were to use as much of the original design as possible in order to minimize cost. In March of 1974, SDG&E resumed field testing at Niland using reduced size models of the new flash/binary design. The 1974 test program confirmed the decision to modify the design, construction, and operation of the GLEF in a four-stage, flash/binary cycle configuration. In May of 1975, the design was completed and construction of the GLEF began. Startup operations were initiated and in June 1976 the facility was dedicated. In the fall of 1976 while debugging and initial operation was being accomplished, a test program was developed to provide additional basic information necessary for the design of a commercial flash/binary geothermal plant. The primary objective of the program was to develop binary heat exchanger heat design data under a variety of conditions.

  2. Oil and Gas- Leases to remove or recover (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act states that a lease or agreement conveying the right to remove or recover oil, natural gas or gas of any other designation from lessor to lessee shall not be valid if such lease does not...

  3. Systems approach used in the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Rooks, W.A. Jr.

    1982-01-01T23:59:59.000Z

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  4. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  5. New inflow performance relationships for gas condensate reservoirs

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) production. These correlations...

  6. New inflow performance relationships for gas condensate reservoirs 

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) ...

  7. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-09-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

  8. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27T23:59:59.000Z

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  9. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect (OSTI)

    LANCE HAYS

    2007-02-27T23:59:59.000Z

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  10. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  11. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30T23:59:59.000Z

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  12. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01T23:59:59.000Z

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

  13. Metallurgical Process Design A tribute to Douglas' conceptual design approach

    E-Print Network [OSTI]

    Linninger, Andreas A.

    and systematic flowsheet generation1-2. . Although perfected for continuous petrochemical processes, this work1 Metallurgical Process Design ­ A tribute to Douglas' conceptual design approach Andreas A. Linninger Laboratory for Product and Process Design Department of Chemical Engineering, University

  14. Determination of the effect of gas viscosity upon gas flow in permeable media containing water and gas

    E-Print Network [OSTI]

    Stegemeier, Richard Joseph

    1952-01-01T23:59:59.000Z

    ?ateredeaturated Natural Gas Visoositiss at Varieua PPISSQreao ~ ~ ~ o e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 32 VI Ns~tura+ed gitrogen Viscosities 0't Varieue h%00uraee ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ eel 33 VII Das Wbili... pressure to 1500 ysi per yccryoses of flew work~ tho viscosities af aitrogen aud tho natural gas wbou saturated with water vapor were also detercdcmd Sco basis yerpese of this pre)set was te dsteruine ths offset of the vtsoosQy of a gas nyon the web...

  15. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  16. Groupware Toolkits for Synchronous Work

    E-Print Network [OSTI]

    Greenberg, Saul

    sessions. A set of groupware programming abstractions allows develop- ers to control the behaviour's work- ing style. We illustrate the many ways these components can be designed by drawing on our own conventional single-user GUI toolkits are available, implementing even the simplest systems can be lengthy

  17. Natural Gas Monthly August 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

  18. Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions

    E-Print Network [OSTI]

    Cheng, R. K.

    2009-01-01T23:59:59.000Z

    a well-designed natural-gas premixed combustion system iscombustion system. Also shown are logarithmic fits of the emissions from natural gas

  19. Optimal structure of gas transmission trunklines

    E-Print Network [OSTI]

    2009-01-07T23:59:59.000Z

    Littoral Côte d'Opale, Institut des mers du Nord, 59140 Dunkerque, France Email: .... states that the compression ratios giving the minimum energy consumption ...... [9] Cheeseman A. P., How to optimize Gas Pipeline Design by computer, Oil &.

  20. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    calculation-toolsall-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions...

  1. advanced automotive gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the environment and legislation introduced to reduce greenhouse gas emissions and improve resource efficiency, eco product design and manufacturing strategies have to be developed...

  2. Analysis of U.S. Greenhouse Gas Tax Proposals

    E-Print Network [OSTI]

    Metcalf, Gilbert E.

    The U.S. Congress is considering a set of bills designed to limit the nation’s greenhouse gas (GHG)

  3. Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings 

    E-Print Network [OSTI]

    Iaquaniello, G.; Pietrogrande, P.

    1985-01-01T23:59:59.000Z

    Faster payout will result if gas turbine exhaust is used as combustion air for fired heaters. Here are economic examples and system design considerations....

  4. Gas Generation from K East Basin Sludges - Series II Testing

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2004-04-26T23:59:59.000Z

    This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focuses on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report presents results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. This report was originally published in March 2001. In January 2004, a transcription error was discovered in the value reported for the uranium metal content of KE North Loadout Pit sample FE-3. This revision of the report corrects the U metal content of FE-3 from 0.0013 wt% to 0.013 wt%.

  5. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect (OSTI)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30T23:59:59.000Z

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  6. Gas ejector modeling for design and analysis

    E-Print Network [OSTI]

    Liao, Chaqing

    2009-05-15T23:59:59.000Z

    in ejectors, particularly within the mixing section. Goff and Coogan [15] were the first to consider the two-dimensional aspects of ejector performance. Mikhail [16] assumed various velocity profiles at each stage of the mixing process in a constant...

  7. Probabilistic aerothermal design of gas turbine combustors

    E-Print Network [OSTI]

    Bradshaw, Sean D. (Sean Darien), 1978-

    2006-01-01T23:59:59.000Z

    This thesis presents a probability-based framework for assessing the impact of manufacturing variability on combustor liner durability. Simplified models are used to link combustor liner life, liner temperature variability, ...

  8. Laboratory tests in support of the MSRE reactive gas removal system

    SciTech Connect (OSTI)

    Rudolph, J.C.; Del Cul, G.D.; Caja, J.; Toth, L.M.; Williams, D.F.; Thomas, K.S.; Clark, D.E.

    1997-07-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since December 1969, at which time the molten salt mixture of LiF-BeF{sub 2}-ZrF{sub 4}-{sup 233}UF{sub 4} (64.5-30.3-5.0-0.13 mol%) was transferred to fuel salt drain tanks for storage. In the late 1980s, increased radiation in one of the gas lines from the drain tank was attributed to {sup 233}UF{sub 6}. In 1994 two gas samples were withdraw (from a gas line in the Vent House connecting to the drain tanks) and analyzed. Surprisingly, 350 mm Hg of F{sub 2}, 70 mm Hg of UF{sub 6}, and smaller amounts of other gases were found in both of the samples. To remote this gas from above the drain tanks and all of the associated piping, the reactive gas removal system (RGRS) was designed. This report details the laboratory testing of the RGRS, using natural uranium, prior to its implementation at the MSRE facility. The testing was performed to ensure that the equipment functioned properly and was sufficient to perform the task while minimizing exposure to personnel. In addition, the laboratory work provided the research and development effort necessary to maximize the performance of the system. Throughout this work technicians and staff who were to be involved in RGRS operation at the MSRE site worked directly with the research staff in completing the laboratory testing phase. Consequently, at the end of the laboratory work, the personnel who were to be involved in the actual operations had acquired all of the training and experience necessary to continue with the process of reactive gas removal.

  9. System Definition and Analysis: Power Plant Design and Layout

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

  10. Fermilab | Fermilab at Work | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto Fermilab at Work Main

  11. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    SciTech Connect (OSTI)

    Nexant, Inc., San Francisco, California

    2011-05-01T23:59:59.000Z

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  12. Ceramic stationary gas turbine

    SciTech Connect (OSTI)

    Roode, M. van

    1995-12-31T23:59:59.000Z

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  13. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  14. M. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    hr for steam-propulsion systems High back work ratio (ratio of compressor work to the turbine workM. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle Fig.1: Schematic for an open gas-turbine at constant pressure. The high temperature (and pressure) gas enters the turbine where it expands to ambient

  15. Cliffs Minerals, Inc. Eastern Gas Shales Project, Ohio No. 6 series: Gallia County. Phase II report. Preliminary laboratory results

    SciTech Connect (OSTI)

    none,

    1980-06-01T23:59:59.000Z

    The US Department of Energy is funding a research and development program entitled the Eastern Gas Shales Project designed to increase commercial production of natural gas in the eastern United States from Middle and Upper Devonian Shales. On September 28, 1978 the Department of Energy entered into a cooperative agreement with Mitchell Energy Corporation to explore Devonian shale gas potential in Gallia County, Ohio. Objectives of the cost-sharing contract were the following: (1) to select locations for a series of five wells to be drilled around the periphery of a possible gas reservoir in Gallia County, Ohio; (2) to drill, core, log, case, fracture, clean up, and test each well, and to monitor production from the wells for a five-year period. This report summarizes the procedures and results of core characterization work performed at the Eastern Gas Shales Project Core Laboratory on core retrieved from the Gallia County EGSP wells, designated OH No. 6/1, OH No. 6/2, OH No. 6/3, OH No. 6/4, and OH No. 6/5. Characterization work performed includes photographic logs, fracture logs, measurements of core color variation, and stratigraphic interpretation of the cored intervals. In addition the following tests were performed by Michigan Technological University to obtain the following data: directional ultrasonic velocity; directional tensile strength, strength in point load; trends of microfractures; and hydraulic fracturing characteristics.

  16. The development of a cyclonic combustor for high particulate, low caloric value gas produced by a fluidized bed 

    E-Print Network [OSTI]

    Cardenas, Manuel Moises

    1985-01-01T23:59:59.000Z

    the combustion of a low caloric value (LCV) and high particulate gas. Performance tests were conducted to verify the cyclone combustor design flexibility by identifying satisfactory performance characteristics. The LCV gas was produced from the gasification... to Dr. Thomas R. Lalk for being my committee chairman and giving me this opportunity to work on this project and his guidance through my master's degree program. I would also like to thank Drs. W. A. LePori, J. A. Caton and J. C. Dutton for being...

  17. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    SciTech Connect (OSTI)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-09-01T23:59:59.000Z

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850ºC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

  18. FY 1994 Annual Work Plan

    SciTech Connect (OSTI)

    Not Available

    1993-09-30T23:59:59.000Z

    In accordance with the Inspector General`s Strategic Planning Policy directive, the Office of Inspector General (OIG) annually updates its Strategic Plan with budgetary and program guidance for the next fiscal year. The program guidance identifies and establishes priorities for OIG coverage of important DOE issues and operations, provides the basis for assigning OIG resources, and is the source for issues covered in Assistant Inspectors General annual work plans. The Office of the Assistant Inspector General for Audits (AIGA) publishes an Annual Work Plan in September of each year. The plan includes the OIG program guidance and shows the commitment of resources necessary to accomplish the assigned work and meet our goals. The program guidance provides the framework within which the AIGA work will be planned and accomplished. Audits included in this plan are designed to help insure that the requirements of our stakeholders have been considered and blended into a well balanced audit program.

  19. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  20. Recovering Flare Gas Energy - A Different Approach

    E-Print Network [OSTI]

    Brenner, W.

    depend on a compressor to pull suction on the pressurized flare line and pump the gas into a plant-wide fuer gas system. Because SunOlin shares its flare system with an adjacent oil refinery, any change to the flare system operation could have far... design and operating scheme incorporating the results of the HAZOP study. The major features of our flare gas recovery system, then, are as follows: A 30" main flare gas header originating in the adjacent oil refinery is routed through the Sun...

  1. North American Natural Gas Markets. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  2. North American Natural Gas Markets. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  3. Going to Work: Understanding Work Schedules

    E-Print Network [OSTI]

    Hoffman, Rosemarie

    2000-07-20T23:59:59.000Z

    have to work: John, Joyce, Jessie and Mary are full- time employees, and Jan is part-time. Each employee is required to report to This is an example of a work schedule that tells you when and what you have to do: It is best to arrive at least 5 to 15... John, Jessie Joyce Mary Wednesday Joyce, Mary John Jan Thursday Jessie, Joyce Jan Mary Friday Jan, Jessie Joyce John Saturday Mary, Joyce John Jessie Please answer the following questions about the work schedule: 1. What week is this work schedule...

  4. West Virginia University 1 Department of Petroleum & Natural Gas

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University 1 Department of Petroleum & Natural Gas Engineering E-mail: Statler-PNGE@mail.wvu.edu Degree Offered · Bachelor of Science in Petroleum and Natural Gas Engineering (B.S.P.N.G.E.) Nature of Program Petroleum and Natural Gas Engineering is concerned with design and application aspects

  5. Carbon Dioxide Corrosion: Modelling and Experimental Work

    E-Print Network [OSTI]

    Carbon Dioxide Corrosion: Modelling and Experimental Work Applied to Natural Gas Pipelines Philip in the corrosion related research institutions at IFE and the Ohio University or any other scientific research;#12;Introduction - v - Summary CO2 corrosion is a general problem in the industry and it is expensive. The focus

  6. Natural gas monthly, March 1999

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This issue of the Natural Gas Monthly contains estimates for March 1999 for many natural gas data series at the national level. Estimates of national natural gas prices are available through December 1998 for most series. Highlights of the data contained in this issue are listed below. Preliminary data indicate that the national average wellhead price for 1998 declined to 16% from the previous year ($1.96 compared to $2.32 per thousand cubic feet). At the end of March, the end of the 1998--1999 heating season, the level of working gas in underground natural gas storage facilities is estimated to be 1,354 billion cubic feet, 169 billion cubic feet higher than at the end of March 1998. Gas consumption during the first 3 months of 1999 is estimated to have been 179 billion cubic feet higher than in the same period in 1998. Most of this increase (133 billion cubic feet) occurred in the residential sector due to the cooler temperatures in January and February compared to the same months last year. According to the National Weather Service, heating degree days in January 1999 were 15% greater than the previous year while February recorded a 5% increase.

  7. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  8. Review: [Untitled] Reviewed Work(s)

    E-Print Network [OSTI]

    Elman, Benjamin

    Review: [Untitled] Reviewed Work(s): Dodonæus in Japan: Translation and the Scientific Mind to leading academic journals and scholarly literature from around the world. The Archive is supported-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more

  9. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W. [Mobil Technology Co., Dallas, TX (United States)

    1998-12-31T23:59:59.000Z

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  10. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01T23:59:59.000Z

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  11. Working with compressed gas Canadian Centre for Occupational

    E-Print Network [OSTI]

    Cohen, Robert E.

    chemical supplier to find out about substitutes · E.g. propylene, propane can be substituted way of securing cylinders #12;Storage · Wellventilated and dry · Fireresistant, supply with suitable ones #12;Storage Temperature · Store in dry, cool areas, out of direct sunlight, away from steam pipes

  12. Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic Trough ParabolicPerformancePetition

  13. Indiana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0 0.0Decade4Year114,937 114,274

  14. Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base7 3 2 1 0

  15. Kansas Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade

  16. Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20 55 10

  17. Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0579,766 568,661 511,096Feet)

  18. Lower 48 States Working Natural Gas Total Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432 7,466,375 6,741,759(Million

  19. Maryland Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.04,000 64,000 64,000

  20. Michigan Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exportsper Thousand Cubic9 6

  1. Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand Cubic9 2.8Feet)

  2. Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)Same

  3. Missouri Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889 11,502 13,845 13,845

  4. Second AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptember 24, 2014 MEMORANDUM7, 20137

  5. Eastern Consuming Region Natural Gas Working Underground Storage (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877SouthwestWisconsinStatement 1 June2009 2010

  6. Alaska Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194 39,008

  7. Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1 0 11

  8. California Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590FuelDecadeCalifornia23 46 47 62

  9. Colorado Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain,606,602 1,622,434

  10. Nonsalt Producing Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb Mar Apr May1.878 2.358 -

  11. Producing Region Natural Gas Working Underground Storage (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009 2010

  12. Salt Producing Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity ForYear Jan7. Average Cost8.2.4.5.

  13. Western Consuming Region Natural Gas Working Underground Storage (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel5,266 6,090 7,16354,828 424,763 366,738

  14. First AEO2015 Oil and Gas Working Group Meeting Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5ValuesJune 201045

  15. Washington Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810Year Jan Feb39,287 39,210

  16. West Virginia Working Natural Gas Underground Storage Capacity (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan

  17. Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan

  18. Virginia Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-11,113,016 1,124,7170 0

  19. Underground Natural Gas Working Storage Capacity - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023USWNC MO SiteWSC

  20. How Gas Turbine Power Plants Work | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37Energy HighlightsCarbon CaptureShade YourHow

  1. Illinois Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumptionper Thousand Cubic4 15 0

  2. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P U TPurpose

  3. Underground Working Natural Gas in Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,197 14,197 14,197 2013-2015

  4. Montana Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan

  5. Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYear Jan

  6. AGA Producing Region Natural Gas Working Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001Capacity (Million(Million Cubic Feet)

  7. Alabama Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb Mar Aprper Thousand0

  8. New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousand Cubic Feet)Feet)Feet)556,905136

  9. New York Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousand CubicSeparation 29 0Year Jan0 0 0 0 0

  10. Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecadeSales (Billion CubicDecadeSameThousand1.4Feet)

  11. Lower 48 States Natural Gas Working Underground Storage (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0InputYear44Feet) Lower 48 States

  12. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 QDecember 2005 (Thousand Barrels)DecemberdJanuaryJune 4,

  13. Oregon Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet) DecadeYear JanYear0.9

  14. Pennsylvania Working Natural Gas Underground Storage Capacity (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand CubicFuelDecade Year-0(Dollars per 0 0Cubic

  15. Assessing the Potential of Using Hydrate Technology to Capture, Store and Transport Gas for the Caribbean Region 

    E-Print Network [OSTI]

    Rajnauth, Jerome Joel

    2012-02-14T23:59:59.000Z

    natural gas as a hydrate while focusing on small scale transportation of natural gas to the Caribbean Islands. This work proposes a workflow for capturing, storing and transporting gas in the hydrate form, particularly for Caribbean situations where...

  16. Satoshi Hada Department of Gas Turbine Engineering,

    E-Print Network [OSTI]

    Thole, Karen A.

    Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago on Vane Endwall Film-Cooling Turbines are designed to operate with high inlet temperatures to improve. The endwall design considers both an upstream slot, representing the combustor--turbine junction

  17. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  18. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  19. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  20. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...