National Library of Energy BETA

Sample records for working gas design

  1. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  2. Texas Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Working Gas) ... Underground Working Natural Gas in Storage - All Operators Texas Underground Natural Gas ...

  3. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  4. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  5. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  6. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  7. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  8. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Alabama Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 ...

  10. Minnesota Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 ...

  11. Indiana Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 ...

  12. Ohio Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467 ...

  13. Colorado Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491 ...

  14. Nebraska Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226 ...

  15. Iowa Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,086 66,477 ...

  16. Louisiana Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 ...

  17. Missouri Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081 ...

  18. Maryland Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,303 ...

  19. Oregon Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 ...

  20. Pennsylvania Natural Gas in Underground Storage (Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  1. Kentucky Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 58,567 ...

  2. Michigan Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 311,360 ...

  3. Kansas Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 ...

  4. Arkansas Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,676 ...

  5. Montana Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    in Underground Storage (Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct ...

  6. Oklahoma Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 ...

  7. Mississippi Natural Gas in Underground Storage (Working Gas)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 ...

  8. California Natural Gas in Underground Storage (Working Gas) ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 125,898 ...

  9. Illinois Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 234,149 ...

  10. Tennessee Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0...

  11. Weekly Working Gas in Underground Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    company data. Notes: This table tracks U.S. natural gas inventories held in underground storage facilities. The weekly stocks generally are the volumes of working gas as...

  12. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  13. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  14. Philadelphia Gas Works - Commercial and Industrial Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Philadelphia Gas Works Website http:www.pgwenergysense.comdownloads.html State Pennsylvania Program Type Rebate Program Rebate Amount Commercial Boilers: 800 -...

  15. East Region Natural Gas in Underground Storage (Working Gas)...

    U.S. Energy Information Administration (EIA) Indexed Site

    East Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 451,335 271,801 167,715 213,475 349,739 ...

  16. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides services to strengthen its impact. With expertise in nanomaterials, computing,...

  17. How Gas Turbine Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex ...

  18. New Mexico Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  19. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  20. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  1. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  2. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  3. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  4. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  6. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  7. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  9. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  11. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  13. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  14. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  15. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  16. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  17. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  19. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. West Virginia Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) West Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  1. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  2. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  3. South Central Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) South Central Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 668,540 452,778 337,592 426,793 560,429 666,015 755,579 806,418 929,012 1,090,604 1,084,413 1,044,833 2015 831,268 576,019 574,918 749,668 920,727 1,002,252 1,050,004 1,095,812 1,206,329 1,321,297 1,332,421 1,303,737 2016 1,097,870 1,023,662 - = No Data Reported; -- = Not Applicable; NA =

  4. Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 8,956 13,913 13,743 14,328 15,277 16,187 17,087 18,569 20,455 22,149 21,244 19,819 2014 20,043 19,668 20,566 20,447 20,705 22,252 22,508 23,254 23,820 23,714 24,272 24,997 2015 24,811 24,626 24,391 24,208 24,279 24,357 24,528 24,635 24,543 24,595 24,461 24,319 2016 24,295 24,790 - = No Data Reported; -- = Not

  5. Pacific Region Natural Gas in Underground Storage (Working Gas) (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Working Gas) (Million Cubic Feet) Pacific Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 197,953 115,235 104,941 144,268 200,453 249,196 274,725 302,752 318,020 345,640 339,201 322,520 2015 275,977 273,151 275,677 293,557 325,456 335,995 344,215 347,827 358,941 379,501 368,875 319,740 2016 276,196 262,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. AGA Producing Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097

  7. West Virginia Natural Gas in Underground Storage (Working Gas) (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Working Gas) (Million Cubic Feet) West Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 95,718 84,444 80,152 86,360 105,201 122,470 139,486 155,506 168,801 172,513 172,198 155,477 1991 102,542 81,767 79,042 86,494 101,636 117,739 132,999 142,701 151,152 154,740 143,668 121,376 1992 87,088 60,200 32,379 33,725 57,641 75,309 97,090 115,537 128,969 141,790 135,853 143,960 1993 112,049 69,593

  8. Midwest Region Natural Gas in Underground Storage (Working Gas...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 449,673 237,999 142,513 179,338 317,901 471,765 625,764 788,930 935,822...

  9. Mountain Region Natural Gas in Underground Storage (Working Gas...

    Gasoline and Diesel Fuel Update (EIA)

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 137,378 102,507 83,983 82,058 98,717 121,623 140,461 157,716 174,610 187,375...

  10. Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 1,309 844 534 742 1,055 1,364 1,553 1,894 2,218 2,349 2,255 1,897 1999 1,519 1,070 745 929 1,202 1,413 1,641 1,830 2,248 2,357 2,175 1,708 2000 998 843 814 1,063 1,642 1,848 2,066 2,215 2,223 2,594 2,242 1,529 2001 991 823 532 963 1,477 1,869 2,113 2,416 2,677 2,651 2,711 2,503 2002 2,029

  11. Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882 5,257 3,304 2,365 1,893 5,005 7,942 10,880 11,949 12,154 12,235 9,008 1991 6,557 6,453 3,509 6,342 7,864 10,580 12,718 12,657 12,652 14,112 15,152 14,694 1992 12,765 9,785 9,204 8,327 9,679 10,854 11,879 13,337 14,533 13,974 13,312 9,515 1993 6,075 2,729 3,958 4,961 9,491 10,357 12,505 13,125 15,508 13,348

  12. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122

  13. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815

  14. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Share Speakers Andreas Roelofs Topic Programs Materials science Nanoscience Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides services to strengthen its impact. With expertise in nanomaterials, computing, chemistry, materials, and energy systems, along with its world-class facilities, Argonne is a perfect match for companies looking to make a big impact with tiny materials

  15. Weekly Working Gas in Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas in Underground Storage (Billion Cubic Feet) Period: Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Region 04/15/16 04/22/16 04/29/16 05/06/16 05/13/16 05/20/16 View History Total Lower 48 States 2,484 2,557 2,625 2,681 2,754 2,825 2010-2016 East 408 431 454 468 490 511 2010-2016 Midwest 538 554 566 582 606 629 2010-2016 Mountain 152 155 157 161 166 171 2010-2016 Pacific 271 277 284 288 293 298 2010-2016 South

  16. Philadelphia Gas Works: Who’s on First?

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—about the Philadelphia Gas Works (PGW) and its federal projects.

  17. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5

  18. ,"U.S. Natural Gas Non-Salt Underground Storage - Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5510us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  19. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  20. Minnesota Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 ...

  1. Minnesota Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  2. California Natural Gas in Underground Storage - Change in Working...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Percent) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5.1 ...

  3. California Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  4. Philadelphia Gas Works- Residential and Commercial Construction Incentives Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works (PGW) provides incentives to developers, home builders and building owners that build new facilities or undergo gut-rehab projects to conserve gas beyond the level consumed...

  5. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  6. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  7. Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelhia Gas Works (PGW) Doe Furnace Rule PDF icon DOE Furnace Rule More Documents & Publications Focus Series: Philadelphia Energyworks: In the City of Brotherly Love, Sharing ...

  8. Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

  9. Working Together to Address Natural Gas Storage Safety | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Together to Address Natural Gas Storage Safety Working Together to Address Natural Gas Storage Safety April 1, 2016 - 11:15am Addthis Working Together to Address Natural Gas Storage Safety Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese Dominguez Administrator, U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration As a part of the Administration's ongoing commitment to support

  10. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,932,196 4,355,742 4,822,114 1980's 4,902,354 4,990,667 4,772,873 4,182,233 4,706,782 4,185,519 4,185,515 4,671,801 4,746,664 4,771,411 1990's 5,046,660 4,849,657 4,771,744 4,765,865 4,996,197 4,942,089 5,246,422 5,315,514 5,185,312 5,130,746 2000's 5,043,769 5,136,962 4,615,443 4,505,443 4,055,340

  11. ,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    1","U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","2...dnavnghistn5410us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  12. Second AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    7 November 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert Anderson (DOE) Peter Balash (NETL)* David Bardin (self) Joe Benneche (EIA) Philip Budzik (EIA) Kara Callahan

  13. First AEO2015 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    5 August 8, 2014 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group Meeting Summary (presented on August 7, 2014) Attendees: Tien Nguyen (DOE) Joseph Benneche (EIA) Dana Van Wagener (EIA)* Troy Cook (EIA)* Angelina LaRose (EIA) Laura Singer (EIA) Michael

  14. Philadelphia Gas Works- Commercial and Industrial Efficient Building Grant Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Efficient Building Grant Program is part of PGW's EnergySense program. This program offers incentives up to $75,000 for multifamily,...

  15. Lower 48 States Natural Gas Working Underground Storage (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value...

  16. Method for designing gas tag compositions

    DOE Patents [OSTI]

    Gross, K.C.

    1995-04-11

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

  17. Method for designing gas tag compositions

    DOE Patents [OSTI]

    Gross, Kenny C.

    1995-01-01

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

  18. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report (EIA)

    Differences Between Monthly and Weekly Working Gas In Storage Latest update: May 5, 2016 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from January 2010

  19. AGA Eastern Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243

  20. AGA Western Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116

  1. Intranet Development and Design that Works

    SciTech Connect (OSTI)

    BACA,BOBBY G.; CASSIDY,ANDREA L.

    1999-09-09

    Making information available and easy to find is the objective of designing a good web site. A company's Intranet typically provides a great deal of information to its employees in an effort to help them better perform their jobs. If the information is available but is difficult to locate, the usefulness of this information is diminished. Sandia National Laboratories performed a redesign of its home page and has obtained a successful design which enables its employees to locate information quickly and efficiently. Three phases of usability testing were conducted to develop and optimize the home page. This paper will discuss the redesign of the Intranet home page and describe how usability studies were used to help ensure a usable design.

  2. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  3. Salt South Central Region Natural Gas Working Underground Storage (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 159 01/08 123 01/15 91 01/22 102 01/29 108 2010-Feb 02/05 95 02/12 85 02/19 71 02/26 70 2010-Mar 03/05 63 03/12 71 03/19 80 03/26 89 2010-Apr 04/02 101 04/09 112 04/16 120

  4. South Central Region Natural Gas Working Underground Storage (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 985 01/08 886 01/15 793 01/22 789 01/29 779 2010-Feb 02/05 719 02/12 658 02/19 592 02/26 566 2010-Mar 03/05 535 03/12 548 03/19 567 03/26 581 2010-Apr 04/02 612 04/09 649 04/16 679 04/23 710

  5. East Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    East Region Natural Gas Working Underground Storage (Billion Cubic Feet) East Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 769 01/08 703 01/15 642 01/22 616 01/29 582 2010-Feb 02/05 523 02/12 471 02/19 425 02/26 390 2010-Mar 03/05 349 03/12 341 03/19 334 03/26 336 2010-Apr 04/02 333 04/09 358 04/16 376 04/23 397 04/30 416 2010-May 05/07

  6. Nonsalt South Central Region Natural Gas Working Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt South Central Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 826 01/08 763 01/15 702 01/22 687 01/29 671 2010-Feb 02/05 624 02/12 573 02/19 521 02/26 496 2010-Mar 03/05 472 03/12 477 03/19 487 03/26 492 2010-Apr 04/02

  7. Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet) Pacific Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 268 01/08 257 01/15 246 01/22 235 01/29 221 2010-Feb 02/05 211 02/12 197 02/19 193 02/26 184 2010-Mar 03/05 182 03/12 176 03/19 179 03/26 185 2010-Apr 04/02 189 04/09 193 04/16 199 04/23 209 04/30 220 2010-May

  8. Producing Region Natural Gas Working Underground Storage (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22

  9. Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet) Midwest Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 900 01/08 820 01/15 750 01/22 710 01/29 661 2010-Feb 02/05 604 02/12 552 02/19 502 02/26 464 2010-Mar 03/05 433 03/12 422 03/19 419 03/26 410 2010-Apr 04/02 410 04/09 429 04/16 444 04/23 462 04/30 480 2010-May

  10. Mountain Region Natural Gas Working Underground Storage (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Mountain Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2010-Jan 01/01 195 01/08 185 01/15 176 01/22 171 01/29 164 2010-Feb 02/05 157 02/12 148 02/19 141 02/26 133 2010-Mar 03/05 129 03/12 127 03/19 126 03/26 126 2010-Apr 04/02 126 04/09 126 04/16 129 04/23 134 04/30 138

  11. Applying User Centered Design to Research Work

    SciTech Connect (OSTI)

    Scholtz, Jean; Love, Oriana J.; Pike, William A.; Bruce, Joseph R.; Kim, Dee DH; McBain, Arthur S.

    2014-07-01

    The SuperIdentity (SID) research project is a collaboration between six universities in the UK (Bath, Dundee, Kent, Leicester, Oxford, and Southampton) and the Pacific Northwest National Laboratory (PNNL). SID offers an innovative and exciting new approach to the concept of identity. The assumption underlying our hypothesis is that while there may be many dimensions to an identity - some more stable than others - all should ultimately reference back to a single core identity or a 'SuperIdentity.' The obvious consequence is that identification is improved by the combination of measures. Our work at PNNL has focused on the developing use cases to use in developing a model of identity and in developing visualizations for both researchers to explore the model and in the future for end users to use in determining various paths that may be possible to obtain various identity attributes from a set that is already known.

  12. Lower 48 Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Lower 48 Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 0.1 2.3 -4.6 -11.1 -9.6 -7.7 -6.4 -4.2 -2.6 -1.2 2.0 11.3 2012 36.5 53.4 73.5 61.5 46.1 34.6 25.3 19.5 15.0 11.5 7.7 8.2 2013 -7.6 -14.8 -31.0 -29.5 -21.9 -15.7 -10.0 -6.2 -4.0 -3.4 -5.7 -15.9

  13. EIA - Natural Gas Pipeline Network - Network Configuration & System Design

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this

  14. U.S. Natural Gas Non-Salt Underground Storage - Working Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,531,928 1,053,730 915,878 1,122,203 1,495,691 1,839,607 2,209,565 2,542,126 2,841,503 3,002,400 2,904,404 2,536,416 1995 1,972,316 1,477,193 1,273,311 1,313,255 1,594,809 1,935,579 2,225,266 2,431,646 2,721,269 2,908,317 2,644,778 2,081,635 1996 1,403,589 973,002 720,077 796,966 1,098,675 1,457,649 1,826,743

  15. U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000

  16. Pacific Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Pacific Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 -73,745 -134,228 -151,370 -126,913 -108,676 -88,833 -85,846 -63,506 -59,951 -41,003 -28,478 51,746 2015 78,024 157,916 170,736 149,288 125,002 86,799 69,490 45,075 40,921 33,861 29,674

  17. Lower 48 States Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Lower 48 States Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,985 38,541 -75,406 -222,622 -232,805 -210,409 -190,434 -133,607 -91,948 -46,812 73,978 350,936 2012 778,578 852,002 1,047,322 994,769 911,345 800,040 655,845

  18. Lower 48 States Total Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,690,271 2,085,441 1,706,102 1,840,859

  19. Midwest Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Midwest Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 -243,074 -255,871 -209,941 -189,692 -156,914 -124,375 -83,035 -47,387 -33,755 -8,053 -11,988 108,104 2015 168,043 107,093 109,425 129,754 120,282 93,230 57,993 42,213 36,305 46,783

  20. Mountain Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Mountain Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 -32,861 -42,199 -45,053 -42,581 -35,771 -26,278 -21,654 -24,388 -26,437 -26,669 -34,817 -21,557 2015 -6,412 13,374 29,357 34,073 36,475 32,988 31,353 29,400 28,615 27,317 32,540 33,887

  1. Sustainable Design Inspiration at Work | Department of Energy

    Energy Savers [EERE]

    Sustainable Design Inspiration at Work Sustainable Design Inspiration at Work April 5, 2011 - 3:23pm Addthis Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs I recently had the opportunity to get out of my regular work routine in DC to visit picturesque Golden, Colorado. Golden is the site of the National Renewable Energy Laboratory campus-one of ten National Labs across the country. While there I got to learn from scientists, engineers and experts

  2. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  3. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -114 -943 -336 775 774 774 773 -107 103 55 -146 1,291 1991 -410 79 -1,227 -201 487 592 893 913 620 617 807 1,083 1992 -216 381 1,107 542 286 333 304 220 216 189 -18 -13 1993 393 -220 -975 -996 -374 -69 -233 -135 -136 -112 -226 -70 1994 -245 1,036 1,842

  4. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  5. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect (OSTI)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOEs National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETLs 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  6. Rapid gas hydrate formation processes: Will they work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  7. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    4: Oil and Gas Working Group AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis July 25, 2013 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Introduction/Background Office of Petroleum, Gas, and Biofuels Analysis Working Group Presentation for Discussion Purposes Washington, DC, July 25, 2013 DO NOT QUOTE OR CITE as results are

  8. U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 47,455 36,864 41,979 49,646 58,678 56,813 63,882 64,460 70,583 72,447 73,277 69,641 1995 72,965 64,476 58,510 66,025 73,529 78,437 76,026 63,026 80,949 87,711 83,704 71,638 1996 58,880 47,581 37,918 56,995 62,439 71,476 70,906 75,927 84,962 88,061 87,029 85,140 1997 57,054 49,490 55,865 58,039 73,265 79,811 65,589 66,536

  9. New York Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 35,239 28,083 24,437 26,484 32,304 42,192 50,845 59,950 66,681 69,508 68,996 59,183 1991 38,557 30,227 25,695 29,076 35,780 43,534 51,822 60,564 69,005 73,760 68,941 61,246 1992 49,781 35,441 23,732 26,771 36,307 45,716 57,152 66,993 72,724 76,134 72,836 56,289 1993 43,019 26,790 16,578 20,740 30,875 41,858 51,917

  10. New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,085 11,213 10,893 12,718 8,903 13,496 17,077 20,270 21,829 24,996 26,006 23,472 1991 20,026 18,023 15,855 8,701 11,626 14,635 15,689 13,734 16,376 16,270 16,031 16,988 1992 14,969 14,258 13,522 11,923 11,828 12,369 10,270 12,215 13,412 15,976 14,938 15,350 1993 12,704 8,540 8,417 5,490 8,195 9,416 9,685 7,367

  11. Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993 8,285 7,662 9,184 8,305 17,964 25,464 32,121 35,381 24,204 15,997 1991 19,120 11,915 6,118 7,419 9,193 10,977 15,226 20,591 26,089 27,689 23,281 16,335 1992 12,422 11,379 10,289 10,996 13,431 14,981 17,321 20,674 22,548 22,548 24,443 17,445 1993 11,572 6,509 2,846 1,790 6,910 14,321 17,591 21,416 25,209 30,558 28,654

  12. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 184 1999 197 189 118 122 119 262 235 178 169 171 125 68 2000 34 -17 51 68 53 -90 -197 -274 -377 -433 -377 -236 2001 -68 48 38 32 153 266 298 360 407 420 65 -22 2002 24 85 159 228 100 -16 -60 -126 -176

  13. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,315 40,513 43,111 18,628 12,189 2,033 47 -10,549 -21,072 -9,288 -13,355 -8,946 1991 -42,316 -43,449 -37,554 -58,118 -54,100 -46,988 -56,199 -48,651 -34,294 -48,087 -70,444 -48,747 1992 5,209 -1,207 -6,517 -21,448 -17,577 -24,644 -6,465 9,218 -3,044 -2,525

  14. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722

  15. Virginia Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 1,533 1999 210 227 211 187 147 49 88 -64 30 8 -80 -189 2000 -521 -228 69 134 440 435 425 385 -24 236 67 -179 2001 -7 -19 -282 -100 -165 21 46 202 453 58 469 975 2002 1,038 533 436 127 151 30 68 -94 -46

  16. Washington Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -72 452 283 -1,858 -801 699 -1,353 41 108 1,167 -1,339 1991 -2,326 1,196 205 3,977 26,799 5,575 4,775 1,778 703 1,958 2,917 5,687 1992 6,208 3,332 5,695 1,986 1,815 275 -839 679 1,880 -138 -1,840 -5,179 1993 -6,689 -7,057 -5,245 -3,367 -188 -497 627

  17. West Virginia Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,093 -693 -375 128 493 786 2 -447 -512 -333 -99 1,138 1991 6,825 -2,677 -1,109 134 -3,564 -4,731 -6,487 -12,806 -17,650 -17,773 -28,530 -34,101 1992 -15,454 -21,567 -46,663 -52,768 -43,995 -42,430 -35,909 -27,164 -22,183 -12,950 -7,815

  18. U.S. Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 305,000 1974 NA NA NA NA NA NA NA NA NA NA NA 16,000 1975 NA NA NA NA NA NA NA NA NA 196,000 NA 162,000 1976 NA NA NA NA NA NA NA NA 182,000 65,000 -133,000 -286,000 1977 -361,000 -281,000 -111,000 4,000 94,000 122,000 156,000

  19. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -925 -513 -486 -557 -855 -813 -453 -125 98 112 82 297 1991 -381 -716 -999 -1,230 -1,199 -1,333 -1,373 -1,840 -2,119 -2,147 -2,697 -3,134 1992 -1,855 -2,008 -2,040 -1,913 -2,046 -1,875 -1,510 -861 -426 -502 -100 73 1993 100 -170 -256 -297 -803 -1,041

  20. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 701 995 446 26 639 1,368 2,249 3,219 1,102 2,496 892 1991 -1,225 1,811 40 2,493 3,883 3,621 1,685 1,583 1,282 1,616 2,927 2,233 1992 6,816 5,146 5,417 2,679 1,253 -728 -859 310 1,516 2,085 -2,078 -3,827 1993 -4,453 -6,128 -1,947 -1,204 1,853 4,502 3,520

  1. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,275 18,043 13,193 1,851 5,255 9,637 5,108 8,495 9,773 7,534 9,475 11,984 1991 -9,933 -7,259 454 6,145 6,270 3,648 2,744 1,010 -13 7,942 -12,681 -9,742 1992 -9,345 -8,466 -9,599 -19,126 -16,878 -15,372 -13,507 -9,010 -7,228 -7,653 -6,931 -18,707 1993

  2. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,295 -2,048 303 1,673 2,267 2,054 632 690 1,081 1,169 1,343 2,765 1991 2,450 1,002 -617 -1,537 -1,372 -2,052 -995 -41 274 4,477 815 -517 1992 -1,493 -820 -1,663 -1,510 -2,353 -796 1,038 506 1,229 -2,650 -2,283 -922 1993 374 -217 1,229 2,820 2,636 2,160

  3. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2,696 -5,556 -4,018 -2,430 -2,408 3,493 3,414 4,058 11,806 19,414 13,253 13,393 1992 -4,224 -6,407 -6,304 -5,070 -1,061 -3,484 2,536 6,836 6,037 3,618 2,568 -3,773 1993 -49,040 -46,415 -45,078 -43,755 -45,456 -45,569 -46,271 -46,798 -44,848 -48,360 -45,854

  4. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,362 -8,989 -8,480 -6,853 -3,138 -3,221 -2,686 -2,091 824 166 -307 3,561 1991 -6,300 -645 -100 -132 5,625 8,255 -439 -9,003 -13,999 -9,506 -35,041 -11,017 1992 16,928 8,288 4,215 1,589 -2,700 -7,788 -6,391 1,723 1,181 -7,206 -7,569 -20,817 1993 -31,418

  5. New Mexico Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -4,944 -5,851 -5,300 -3,038 -4,576 -4,057 77 1,820 2,686 6,478 7,515 9,209 1991 7,941 6,810 4,962 -4,017 2,723 1,139 -1,388 -6,536 -5,453 -8,726 -9,976 -6,483 1992 -5,057 -3,765 -2,333 3,222 202 -2,266 -5,420 -1,519 -2,964 -294 -1,093 -1,638 1993

  6. New York Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -484 -13 300 294 -712 -349 -288 393 1,101 972 1,011 1,114 1991 3,318 2,144 1,258 2,592 3,476 1,343 977 614 2,324 4,252 -55 2,063 1992 11,224 5,214 -1,963 -2,306 527 2,182 5,330 6,430 3,719 2,374 3,894 -4,958 1993 -6,762 -8,650 -7,154 -6,031 -5,432

  7. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,596 507 381 -2,931 -46 -596 -311 -234 178 167 7,030 9,898 1991 19,571 17,816 10,871 17,001 13,713 16,734 12,252 11,416 8,857 5,742 -6,023 -8,607 1992 -14,527 -26,506 -45,308 -51,996 -46,282 -36,996 -26,224 -22,672 -22,086 -18,888 -11,177 -16,353 1993 -11,967

  8. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,932 5,480 7,289 -2,690 234 1,959 -4,575 -3,502 -6,399 723 4,670 1991 -18,020 -11,848 -7,774 9,453 9,540 10,851 1,058 -1,981 846 -1,053 -36,391 -20,972 1992 4,433 1,077 -7,840 -16,283 -22,923 -22,043 -5,431 -2,118 584 4,227 9,780 -10,318 1993 -69,197

  9. Oregon Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -30,641 13,186 6,384 -1,434 1,227 -3,129 3,399 2,573 2,606 1,953 968 1,423 1991 1,986 2,360 1,291 -869 -1,664 -1,353 -659 -203 99 250 317 582 1992 89 -487 -305 231 1,089 1,075 811 730 509 343 -779 -872 1993 -1,222 -1,079 -221 -204 -131 -374 -387 -356 -231 86

  10. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,772 682 336 86 308 -489 138 -272 -702 -351 130 2,383 1991 21,249 14,278 11,919 15,552 13,179 11,123 8,684 4,865 1,110 -2,624 -4,707 -1,444 1992 4,569 6,818 5,559 -712 -4,310 -6,053 -7,850 -9,429 -8,687 2,440 7,441 7,127 1993 2,921 -6,726 -11,466

  11. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -16,163 -3,291 4,933 5,735 6,541 3,761 1,457 -2,718 333 6,361 22,218 1991 25,998 -7,924 -12,602 -6,752 5,539 14,861 14,428 10,464 17,383 22,644 -158 -24,807 1992 -21,205 -18,174 -17,028 -17,433 -15,973 -21,203 -22,672 -16,614 -16,409 -16,981 -10,425

  12. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133

  13. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -46,336 -12,518 16,386 37,537 39,350 53,475 75,155 66,399 51,354 56,272 78,572 103,458 1991 37,515 32,421 33,438 66,819 45,861 39,009 20,626 -3,335 -36,217 -14,370 -61,674 -66,823 1992 -28,428 -40,296 -82,921 -108,640 -91,199 -80,473 -64,200 -42,476

  14. Montana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437

  15. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3,131 -3,119 -3,529 -3,306 -1,630 -1,017 244 -266 -458 -1,071 -1,072 157 1992 482 508 1,184 660 -762 -277 2,037 3,311 3,592 3,600 1,413 350 1993 -1,474 -2,431 -3,424 -3,068 -1,752 -1,058 -532 116 439 -49,834 -49,012 -47,951 1994 -47,626 -48,394 -47,215

  16. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 11,087 5,754 6,824 6,119 5,428 6,065 5,421 4,685 3,365 1,565 3,028 5,179 2015 4,768 4,958 3,824 3,761 3,574 2,105 2,020 1,381 723 881 189 -679 2016 -515 164 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  17. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Alaska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 123.8 41.4 49.7 42.7 35.5 37.5 31.7 25.2 16.5 7.1 14.3 26.1 2015 23.8 25.2 18.6 18.4 17.3 9.5 9.0 5.9 3.0 3.7 0.8 -2.7 2016 -2.1 0.7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  18. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219

  19. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report (EIA)

    levels. These are estimated from volume data provided by a sample of operators that report on Form EIA-912, "Weekly Underground Natural Gas Storage Report." The EIA first...

  20. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Assumptions and Expectations for Annual Energy Outlook 2016: Oil and Gas Working Group AEO2016 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis December 1, 2015| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE We welcome feedback on our assumptions and documentation * The AEO Assumptions report http://www.eia.gov/forecasts/aeo/assumptions/

  1. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 43.0 55.3 41.7 61.2 59.6 131.5 70.6 38.1 29.2 25.1 16.0 8.6 2000 5.3 -3.2 12.8 21.0 16.7 -19.5 -34.7 -42.4 -50.4 -50.8 -41.4 -27.6 2001 -9.8 9.3 8.4 8.3 41.3 71.7 80.1 97.0 109.6

  2. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.2 -13.8 -12.2 -16.7 -15.1 -12.7 -14.7 -12.9 -9.1 -12.1 -17.5 -13.3 1992 1.9 -0.4 -2.4 -7.4 -5.8 -7.6 -2.0 2.8 -0.9 -0.7 -2.1 -9.0 1993 -41.9 -44.7 -46.6 -41.3 -35.7 -33.7 -35.4 -35.0 -36.7 -35.5 -35.3 -32.7 1994 -13.0 -30.4 -20.9 -13.7 -8.3 -8.3 -0.1 3.0 15.2 17.2 27.0 21.5 1995 49.9 85.3

  3. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2 -26.2 -3.2 0.1 32.2 -15.2 -19.1 -18.8 -21.7 -3.8 2.1 1992 -35.0 -4.5 68.2 48.2 46.1 36.5 13.8 0.4 -13.6 -18.6 5.0 6.8 1993 -6.8 -42.8 -72.3 -83.7 -48.5 -4.4 1.6 3.6 11.8 35.5 17.2 37.2 1994 66.2 69.4 210.9 497.9 131.8 40.0 34.2 32.4 40.9 25.7 26.4 36.0 1995 28.4 93.2 100.2 78.2 40.9

  4. Virginia Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 16.1 26.9 39.6 25.2 13.9 3.6 5.7 -3.4 1.3 0.3 -3.5 -10.0 2000 -34.3 -21.3 9.2 14.4 36.6 30.7 25.9 21.0 -1.1 10.0 3.1 -10.5 2001 -0.7 -2.3 -34.6 -9.4 -10.1 1.1 2.2 9.1 20.4 2.2 20.9

  5. Washington Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -26.2 22.8 6.2 168.1 -141.5 111.4 60.1 16.3 5.9 16.1 23.8 63.1 1992 94.7 51.6 162.3 31.3 23.1 2.6 -6.6 5.4 14.9 -1.0 -12.1 -35.2 1993 -52.4 -72.1 -57.0 -40.4 -1.9 -4.6 5.3 -1.6 6.7 -4.5 -28.1 18.5 1994 59.2 90.5 20.4 38.4 -0.2 8.5 4.3 2.8 -5.7 11.2 51.1 14.3 1995 11.1 63.9 73.5 23.8

  6. West Virginia Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Percent) Percent) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7.1 -3.2 -1.4 0.2 -3.4 -3.9 -4.7 -8.2 -10.5 -10.3 -16.6 -21.9 1992 -15.1 -26.4 -59.0 -61.0 -43.3 -36.0 -27.0 -19.0 -14.7 -8.4 -5.4 18.6 1993 28.7 15.6 28.7 37.5 46.9 48.1 35.0 30.1 32.3 24.3 19.9 -9.9 1994 -36.1 -44.0 -50.4 -9.9 -20.6 -12.2 -4.3 -1.7 -1.2 -1.0 2.5 8.2 1995

  7. U.S. Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 17.6 1974 NA NA NA NA NA NA NA NA NA NA NA 0.8 1975 NA NA NA NA NA NA NA NA NA 8.2 NA 7.9 1976 NA NA NA NA NA NA NA NA 7.4 2.5 -5.2 -12.9 1977 -21.9 -19.5 -8.4 0.3 5.7 6.4 7.1 6.2 6.6 9.9 17.2 28.5 1978 41.3 12.6 -7.6 -13.7 -13.9 -9.6 -7.8 -3.8 -0.4 1.0 3.8 2.9

  8. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3

  9. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5 8.0 0.2 18.3 29.2 20.6 7.1 5.5 3.8 4.6 8.4 6.4 1992 25.9 21.0 30.9 16.6 7.3 -3.4 -3.4 1.0 4.3 5.7 -5.5 -10.4 1993 -13.5 -20.7 -8.5 -6.4 10.0 22.0 14.3 3.5 -1.4 -12.0 -15.0 -11.5 1994 -15.3 -17.8 -21.0 -34.7 -16.3 -25.8 -16.1 -9.6 -6.1 0.2 7.4 0.2 1995 2.9 10.9 -0.8 5.3 -17.3 7.8

  10. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.2 -4.0 0.3 4.2 3.5 1.7 1.1 0.4 0.0 2.4 -3.8 -3.3 1992 -4.2 -4.8 -6.4 -12.6 -9.2 -7.2 -5.6 -3.3 -2.3 -2.3 -2.2 -6.6 1993 -24.0 -31.6 -36.3 -30.7 -24.7 -20.2 -17.4 -16.7 -14.3 -13.7 -11.6 -12.9 1994 -3.7 -1.1 10.0 6.3 -2.8 -4.3 -2.6 -1.9 -1.2 -0.2 0.0 4.9 1995 13.3 6.3 -0.8 -4.1 -24.0

  11. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 11.0 5.4 -3.6 -8.8 -7.2 -9.9 -4.3 -0.2 0.9 13.4 2.4 -1.7 1992 -6.0 -4.2 -10.1 -9.5 -13.2 -4.2 4.7 1.9 3.9 -7.0 -6.5 -3.1 1993 1.6 -1.2 8.3 19.7 17.1 12.0 6.3 7.0 2.7 -1.9 -0.1 3.1 1994 -0.3 7.7 13.2 1.4 -4.7 -2.3 0.9 -0.1 -0.7 3.7 11.3 11.2 1995 17.4 9.6 8.0 8.6 11.8 7.0 -3.4 -5.3 -3.3

  12. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3.6 -8.4 -6.6 -4.0 -3.7 4.9 4.5 4.9 13.7 21.6 15.1 18.2 1992 -5.9 -10.5 -11.0 -8.6 -1.7 -4.7 3.2 7.9 6.2 3.3 2.5 -4.3 1993 -73.0 -85.1 -88.4 -81.1 -72.8 -64.5 -56.2 -50.3 -43.2 -42.8 -44.2 -51.6 1994 21.3 54.4 61.3 12.0 -0.1 -6.4 -6.3 -3.5 -4.3 1.5 5.3 7.2 1995 3.0 -5.8 -21.7 -39.9 -37.4 -20.3

  13. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.6 -1.2 -0.2 -0.3 11.7 15.5 -0.7 -11.7 -15.1 -9.6 -30.3 -11.8 1992 28.5 15.1 8.5 3.4 -5.0 -12.7 -9.9 2.5 1.5 -8.0 -9.4 -25.3 1993 -41.2 -47.7 -48.5 -45.3 -8.3 9.0 10.7 8.6 12.8 12.5 19.4 24.0 1994 18.1 26.1 43.8 52.2 5.8 -5.9 0.7 2.1 -3.5 -1.6 -3.1 -2.4 1995 11.9 13.5 -4.5 -4.2 -1.5 9.2 0.7

  14. New Mexico Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 65.7 60.7 45.6 -31.6 30.6 8.4 -8.1 -32.2 -25.0 -34.9 -38.4 -27.6 1992 -25.3 -20.9 -14.7 37.0 1.7 -15.5 -34.5 -11.1 -18.1 -1.8 -6.8 -9.6 1993 -15.1 -40.1 -37.8 -54.0 -30.7 -23.9 -5.7 -39.7 -37.7 -34.0 -47.6 -48.4 1994 -61.0 -53.5 -57.4 -40.7 -50.9 -49.9 -47.5 -28.0 4.2 2.7 31.2 23.0

  15. New York Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4 7.6 5.1 9.8 10.8 3.2 1.9 1.0 3.5 6.1 -0.1 3.5 1992 29.1 17.2 -7.6 -7.9 1.5 5.0 10.3 10.6 5.4 3.2 5.6 -8.1 1993 -13.6 -24.4 -30.1 -22.5 -15.0 -8.4 -9.2 -18.9 -12.1 -13.4 -14.1 -5.6 1994 -5.8 -1.8 7.8 29.0 14.9 14.1 9.6 21.1 10.7 9.5 11.2 14.4 1995 15.8 23.8 49.4 1.6 0.9 -1.4 -4.4

  16. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19.5 22.4 15.4 23.1 14.3 14.4 9.1 7.4 5.2 3.1 -3.3 -5.5 1992 -12.1 -27.3 -55.6 -57.4 -42.1 -27.9 -17.8 -13.7 -12.2 -10.0 -6.4 -11.0 1993 -11.3 -30.2 -60.3 -56.1 -31.6 -21.4 -13.8 -8.2 -0.9 -3.4 -7.9 -16.2 1994 -41.7 -61.0 -63.3 24.5 16.2 6.8 8.5 6.1 2.5 4.6 10.6 27.3 1995 67.7 179.6 562.8 43.0

  17. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 -10.0 -6.5 8.1 7.3 7.8 0.7 -1.3 0.5 -0.6 -20.1 -13.6 1992 4.0 1.0 -7.0 -12.9 -16.3 -14.6 -3.6 -1.4 0.4 2.5 6.8 -7.7 1993 -59.8 -75.3 -81.3 -71.8 -58.1 -47.8 -43.7 -38.0 -33.1 -31.7 -34.3 -29.9 1994 20.6 33.2 68.7 60.2 49.2 29.1 25.2 21.3 11.9 8.6 24.6 27.3 1995 54.1 106.0 91.5

  18. Oregon Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -0.1 1991 53.6 99.8 77.4 -30.5 -38.2 -24.2 -10.4 -2.9 1.3 3.3 4.2 8.6 1992 1.6 -10.3 -10.3 11.6 40.4 25.3 14.2 10.7 6.8 4.4 -9.9 -11.9 1993 -21.1 -25.4 -8.3 -9.2 -3.5 -7.0 -5.9 -4.7 -2.9 1.1 6.4 -1.1 1994 12.9 27.1 26.3 -67.7 -49.1 -32.2 -25.7 -21.5 -18.6 -20.3 -18.4 -14.3 1995 -25.9 -14.7

  19. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2

  20. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0

  1. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8

  2. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 12.0 12.8 14.6 30.2 17.0 11.7 5.0 -0.7 -6.8 -2.6 -11.4 -14.2 1992 -8.1 -14.1 -31.6 -37.7 -28.9 -21.6 -14.9 -8.9 1.2 -1.2 1.1 -2.0 1993 -7.5 -20.7 -25.8 -17.2 -1.0 3.7 5.2 7.6 6.1 6.7 6.2 7.4 1994 -4.8 -0.4 22.1 37.4 24.6 15.8 10.2 7.2 6.2 5.4 12.3 21.2 1995 45.7 54.3 51.8 20.6 8.0 3.8

  3. Mississippi Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0

  4. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.1 1.4 -20.3 -2.8 6.8 8.3 12.5 12.3 7.8 7.6 9.9 13.8 1992 -2.8 6.5 23.0 7.8 3.7 4.3 3.8 2.6 2.5 2.2 -0.2 -0.1 1993 5.3 -3.5 -16.4 -13.3 -4.7 -0.9 -2.8 -1.6 -1.6 -1.3 -2.5 -0.8 1994 -3.1 17.2 37.2 -28.6 -19.3 -6.9 -4.2 -4.1 -3.3 -3.3 0.7 -1.0 1995 7.9 12.0 16.0 64.0 35.0 10.4 5.7 6.0

  5. Montana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5

  6. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.7 -5.8 -6.6 -6.0 -2.9 -1.8 0.4 -0.5 -0.8 -1.8 -1.9 0.3 1992 0.9 1.0 2.4 1.3 -1.4 -0.5 3.6 5.9 6.3 6.3 2.5 0.6 1993 -2.8 -4.7 -6.6 -5.9 -3.3 -1.9 -0.9 0.2 0.7 -82.3 -84.6 -88.0 1994 -93.2 -98.5 -98.2 -96.2 -92.3 -91.2 -88.8 -88.5 -85.3 -7.5 12.8 23.1 1995 74.4 582.5 367.3 113.6 15.1

  7. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  8. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6

  9. Western Consuming Region Natural Gas Working Underground Storage (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) West Virginia Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 14 688 2010's 2,491 6,043 9,408 18,078 28,311 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 West Virginia Shale Gas Proved

  10. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  11. Government works with technology to boost gas output/usage

    SciTech Connect (OSTI)

    Nicoll, H.

    1996-10-01

    Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

  12. Overview of SoCalGas/SDG&E System Design & Operations

    Broader source: Energy.gov (indexed) [DOE]

    Design & Operations SoCalGasSDG&E Gas Transmission System with Electric Generation Plants 2 SoCalGasSDG&E Gas Transmission System 24,100 square mile service territory ...

  13. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    5: Oil and Gas Working Group AEO2015 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis August 7, 2014 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Changes in release cycles for EIA's AEO and IEO * To focus more resources on rapidly changing energy markets and how they might evolve over the next few years, the U.S. Energy Information

  14. Ab Initio Rational Design of New MOFs for Separations and Flue Gas Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Ab Initio Rational Design of New MOFs for Separations and Flue Gas Capture

  15. Interim measure work plan/design for Agra, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-18

    This Interim Measure Work Plan/Design (IMWP/D) is supplemental to the Argonne document Interim Measure Conceptual Design for Remediation of Source Area Contamination at Agra, Kansas. The IMWP/D includes information required by Kansas Department of Health and Environment (KDHE) Policy BER-RS-029, Policy and Scope of Work for Interim Measures. Specific to Policy BER-RS-029 is the requirement for several documents that will ensure that an adequate amount and type of data are collected for implementation of the IMWP/D and that data quality and safe conditions are prevailed. Such information is included in the IMWP/D as follows: Appendix A: Data Acquisition Plan--Design Testing Requirements; Appendix B: Basis of Design; Appendix C: Permits; Appendix D: Quality Assurance Project Plan; Appendix E: Health and Safety Plan; and Appendix F: Operations, Maintenance, and Monitoring Schedule. The proposed remedial technology for this project is the installation of five large-diameter boreholes (LDBs) in a source area that has been identified on the property formerly used for grain storage by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The goal of the LDB technology is the remediation of the source area by removal of mass quantities of contaminated soil from the vadose zone and treatment of any remaining contaminated soils that are adjacent to the source area to achieve a carbon tetrachloride concentration below 200 {micro}g/kg. Secondary to the soil remediation is the remediation of groundwater at and adjacent to the source areas. The LDB technology serves the following purposes: (1) The physical removal of contaminated soil from the identified source area. (2) Replacement of less permeable native materials (silty clay, clayey silt, and silty sand) with more permeable materials to facilitate the capture of volatilized contaminants in the vertical borehole. (3) Removal of contaminants volatilized by air sparging (AS) and extracted from the vadose zone by soil vapor extraction (SVE). (4) Volatilization of contaminants from portions of the affected aquifer that can be accessed from the former CCC/USDA property. The primary objective of the proposed removal action is removal of mass quantities of carbon tetrachloride from the vadose zone and treatment of any remaining contaminated soils that are adjacent to the source area, to achieve a carbon tetrachloride concentration below 200 {micro}g/kg. This objective will be the basis for evaluating system performance. The scope of action outlined in the IMWP/D is limited to the five treatment zones defined by the LDB/SVE/AS locations. Surrounding soils and groundwater will benefit; however, remedial benefits to groundwater will be limited to the area of influence associated with the five treatment zones. While treatment should be aggressive in the vicinity of the LDB locations, the heterogeneity, clay content, and low permeability of the soils will place inherent limits on the area of influence.

  16. DOE, RTI to Design and Build Gas Cleanup System for IGCC Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis ...

  17. South Central Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas from Same Month Previous Year (Million Cubic Feet) - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) South Central Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 -281,823 -324,789 -326,968 -286,719 -287,056 -272,324 -254,513 -242,345 -212,206 -137,887 -86,360 54,089 2015 162,728 123,241 237,326 322,874 360,298 336,237 294,425 289,394

  18. Los Alamos National Laboratory to work on nuclear design, plutonium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. ...

  19. U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 396,950 396,092 2010's 364,228 363,521 367,108 453,054 452,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Working Gas

  20. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Working Gas

  1. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  2. Fiber optic coupled multipass gas minicell, design assembly thereof

    DOE Patents [OSTI]

    Bond, Tiziana C.; Bora, Mihail; Engel, Michael A.; McCarrick, James F.; Moran, Bryan D.

    2016-01-12

    A method directs a gas of interest into a minicell and uses an emitting laser to produce laser emission light that is directed into the minicell and onto the gas of interest. The laser emission light is reflected within the cell to make multipasses through the gas of interest. After the multipasses through the gas of interest the laser light is analyzed to produces gas spectroscopy data. The minicell receives the gas of interest and a transmitting optic connected to the minicell that directs a beam into the minicell and onto the gas of interest. A receiving optic connected to the minicell receives the beam from the gas of interest and directs the beam to an analyzer that produces gas spectroscopy data.

  3. AGA Producing Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas from Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 156,161 158,351 126,677 101,609 72,294 83,427 33,855 -43,870 -34,609 -17,003 -75,285 -121,212 1996 -180,213 -191,939 -220,847

  4. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Trond Bjornard; John Hockert

    2011-08-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

  5. Safety problems of water-development works designed for land reclamation

    SciTech Connect (OSTI)

    Shchedrin, V. N.; Kosichenko, Yu. M.

    2011-11-15

    A safety declaration is a fundamental document assuring the safety of water-development works, their correspondence to safety criteria, the design, and active technical regulations and rules.

  6. Method and apparatus for removing non-condensible gas from a working fluid in a binary power system

    DOE Patents [OSTI]

    Mohr, Charles M.; Mines, Gregory L.; Bloomfield, K. Kit

    2002-01-01

    Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

  7. Limitless Hot Gas Path Cooling Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and innovate the next big trends in these technology areas. I am excited to bring my Gas Turbine Heat Transfer background to the table on these four seemingly unrelated...

  8. U.S. Working Natural Gas Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,583,786 3,659,968 2010's 3,733,993 3,769,113 3,720,980 3,839,852 3,844,927 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  9. AGA Producing Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas from Same Month Previous Year (Percent) Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 -47.60 -43.40 -38.60 -25.20 -18.80 -16.70 -19.80 -15.60 1997 -15.00 -5.60 52.10 45.80 43.50 39.10 22.20 12.30 6.70 10.60 14.30 6.00 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.30 55.40 1999 56.40 52.20 46.30 24.20 18.80

  10. Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel

    SciTech Connect (OSTI)

    Philip Casey Durst; Mark Schanfein

    2012-08-01

    The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC.

  11. FY 95 engineering work plan for the design reconstitution implementation action plan

    SciTech Connect (OSTI)

    Bigbee, J.D.

    1994-11-09

    Design reconstitution work is to be performed as part of an overall effort to upgrade Configuration Management (CM) at TWRS. WHC policy is to implement a program that is compliant with DOE-STD-1073-93, Guide for Operational Configuration Management Program. DOE-STD-1073 requires an adjunct program for reconstituting design information. WHC-SD-WM-CM-009, Design Reconstitution Program Plan for Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System, is the TWRS plan for meeting DOE-STD-1073 design reconstitution requirements. The design reconstitution plan is complex requiring significant time and effort for implementation. In order to control costs, and integrate the work into other TWRS activities, a Design Reconstitution Implementation Action Plan (DR IAP) will be developed, and approved by those organizations having ownership or functional interest in this activity.

  12. Nano Design Works: Industry's contact for emerging tech, leading tools, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experts | Argonne National Laboratory Works: Industry's contact for emerging tech, leading tools, and experts Argonne's Nano Design Works gives companies and entrepreneurs the solutions that enable technological innovations that save money, increase efficiencies, and create products that transform industries. PDF icon NDW_fact_sheet

  13. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect (OSTI)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Strydom, Gerhard

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  14. Vertical borehole design and completion practices used to remove methane gas from mineable coalbeds

    SciTech Connect (OSTI)

    Lambert, S.W.; Trevits, M.A.; Steidl, P.F.

    1980-08-01

    Coalbed gas drainage from the surface in advance of mining has long been the goal of researchers in mine safety. Bureau of Mines efforts to achieve this goal started about 1965 with the initiation of an applied research program designed to test drilling, completion, and production techniques for vertical boreholes. Under this program, over 100 boreholes were completed in 16 different coalbeds. The field methods derived from these tests, together with a basic understanding of the coalbed reservoir, represent an available technology applicable to any gas drainage program whether designed primarily for mine safety or for gas recovery, or both.

  15. Gas turbine based cogeneration facilities: Key issues to be addressed at an early design stage

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Backer, J.

    1998-07-01

    The basic design of a cogeneration facility implies much more than looking for a gas turbine generating set that matches the steam host heat demand, and making an economical evaluation of the project. Tractebel Energy Engineering (TEE) has designed, built and commissioned since the early nineties 350 MW of cogeneration facilities, mainly producing electricity and steam with natural gas fired gas turbines, which is the present most common option for industrial combined heat and power production. A standardized cogeneration design does not exist. Each facility has to be carefully adapted to the steam host's particular situation, and important technical issues have to be addressed at an early stage of plant design. Unexpected problems, expensive modifications, delays during execution of the project and possible long term operational limitations or drawbacks may result if these questions are left unanswered. This paper comments the most frequent questions on design values, required flexibility of the HRSG, reliability and backup, control system, connection to the grid

  16. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect (OSTI)

    Unknown

    2002-01-31

    The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

  17. Impact Of Melter Internal Design On Off-Gas Flammability

    SciTech Connect (OSTI)

    Choi, A. S.; Lee, S. Y.

    2012-05-30

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.

  18. Huge natural gas reserves central to capacity work, construction plans in Iran

    SciTech Connect (OSTI)

    Not Available

    1994-07-11

    Questions about oil production capacity in Iran tend to mask the country's huge potential as a producer of natural gas. Iran is second only to Russia in gas reserves, which National Iranian Gas Co. estimates at 20.7 trillion cu m. Among hurdles to Iran's making greater use of its rich endowment of natural gas are where and how to sell gas not used inside the country. The marketing logistics problem is common to other Middle East holders of gas reserves and a reason behind the recent proliferation of proposals for pipeline and liquefied natural gas schemes targeting Europe and India. But Iran's challenges are greater than most in the region. Political uncertainties and Islamic rules complicate long-term financing of transportation projects and raise questions about security of supply. As a result, Iran has remained mostly in the background of discussions about international trade of Middle Eastern gas. The country's huge gas reserves, strategic location, and existing transport infrastructure nevertheless give it the potential to be a major gas trader if the other issues can be resolved. The paper discusses oil capacity plans, gas development, gas injection for enhanced oil recovery, proposals for exports of gas, and gas pipeline plans.

  19. New facility design and work method for the quantitative fit testing laboratory. Master's thesis

    SciTech Connect (OSTI)

    Ward, G.F.

    1989-05-01

    The United States Air Force School of Aerospace Medicine (USAFSAM) tests the quantitative fit of masks which are worn by military personnel during nuclear, biological, and chemical warfare. Subjects are placed in a Dynatech-Frontier Fit Testing Chamber, salt air is fed into the chamber, and samples of air are drawn from the mask and the chamber. The ratio of salt air outside the mask to salt air inside the mask is called the quantitative fit factor. A motion-time study was conducted to evaluate the efficiency of the layout and work method presently used in the laboratory. A link analysis was done to determine equipment priorities, and the link data and design guidelines were used to develop three proposed laboratory designs. The proposals were evaluated by projecting the time and motion efficiency, and the energy expended working in each design. Also evaluated were the lengths of the equipment links for each proposal, and each proposal's adherence to design guidelines. A mock-up was built of the best design proposal, and a second motion-time study was run. Results showed that with the new laboratory and work procedures, the USAFSAM analyst could test 116 more subjects per year than are currently tested. Finally, the results of a questionnaire given to the analyst indicated that user acceptance of the work area improved with the new design.

  20. Design and construction of liquefied petroleum gas installations (LPG)

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard applies principally to both refrigerated and non-refrigerated installations that are larger in size than or closely associated with operating units, or both. The more complex problems presented by such installations require wider latitude for the designer than installations that are covered by the present National Fire Protection Association standards.

  1. Conceptual design statement of work for the immobilized low-activity waste disposal facility, project W-520

    SciTech Connect (OSTI)

    Pickett, W.W.

    1998-04-30

    This Statement of Work outlines the deliverables and schedule for preparation of the Project W-520 Conceptual Design Report, including, work plans, site development plan, preliminary safety evaluation, and conceptual design.

  2. Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study

    SciTech Connect (OSTI)

    1980-05-01

    First, the comments on May 3, 1979 Notice of Inquiry of DOE relating to the Gas Utility Rate Design Study Required by Section 306 of PURPA are presented. Then, comments on the following are included: (1) ICF Gas Utility Model, Gas Utility Model Data Outputs, Scenario Design; (2) Interim Model Development Report with Example Case Illustrations; (3) Interim Report on Simulation of Seven Rate Forms; (4) Methodology for Assessing the Impacts of Alternative Rate Designs on Industrial Energy Use; (5) Simulation of Marginal-Cost-Based Natural Gas Rates; and (6) Preliminary Discussion Draft of the Gas Rate Design Study. Among the most frequent comments expressed were the following: (a) the public should be given the opportunity to review the final report prior to its submission to Congress; (b) results based on a single computer model of only four hypothetical utility situations cannot be used for policy-making purposes for individual companies or the entire gas industry; (c) there has been an unobjective treatment of traditional and economic cost rate structures; the practical difficulties and potential detrimental consequences of economic cost rates are not fully disclosed; and (d) it is erroneous to assume that end users, particularly residential customers, are influenced by price signals in the rate structure, as opposed to the total bill.

  3. Summary of Working Group on Accelerator Physics and Machine Design and R and D

    SciTech Connect (OSTI)

    Li, D.; Ohmori, C.

    2008-02-21

    Working Group on Accelerator Physics and Machine Design R and D at Nufact-2007 focuses on topics on accelerator physics and technical issues of hardware components associated with a Neutrino Factory or its subsystems. There were 32 presentations given at the working group. A special session was held to discuss collaboration opportunities with the Muon Collider Task Force (MCTF) at Fermilab in consideration of many overlaps in the machine R and D between a Neutrino Factory and a Muon Collider. Two more sessions were held jointly with Working Group 2 on muon collection schemes and other related subjects.

  4. Conceptual design of a gas turbine for PFBC applications

    SciTech Connect (OSTI)

    Bannister, R.L.; McGuigan, A.W.; Risley, T.P.; Smith, O.J.

    1992-01-01

    First generation pressurized fluidized bed (PFBC) technology has potential advantages which include: lower capital cost, Unproved environmental performance, shorter lead times, higher efficiency and enhanced fuel flexibility. Coal firing with combustion turbines experiments have been conducted for over forty years. These efforts have evolved to the point where commercial demonstrations are now feasible. The PFBC is one of these technologies. It will be demonstrated as part of the Clean Coal III initiative. PFBC technology is applicable for new installations, replacement of existing equipment as well as repower and retrofit. Included with these options is the opportunity to reduce dependency on fuel oil and well as enhancing environmental performance and increasing efficiency. The turbo-machinery will require design changes to meet the requirements for PFBC application. The major change to the combustion turbine take place in the center section. This section will include provisions to supply compressed air to the PFBC as well as receive vitiated air from the PFBC. These efforts also have the objective of reducing the degree of change from a standard unit. Under a clean coal program a first generation PFBC demonstration win take place at the Des Moines Energy Center. For this demonstration it will be necessary to remove two stages from the 251B12 compressor. This will make the air supplied by the compressor suitable for the PFBC system. The results from this program will be applicable to the DMEC-1 program.

  5. Conceptual design of a gas turbine for PFBC applications

    SciTech Connect (OSTI)

    Bannister, R.L.; McGuigan, A.W.; Risley, T.P.; Smith, O.J.

    1992-12-31

    First generation pressurized fluidized bed (PFBC) technology has potential advantages which include: lower capital cost, Unproved environmental performance, shorter lead times, higher efficiency and enhanced fuel flexibility. Coal firing with combustion turbines experiments have been conducted for over forty years. These efforts have evolved to the point where commercial demonstrations are now feasible. The PFBC is one of these technologies. It will be demonstrated as part of the Clean Coal III initiative. PFBC technology is applicable for new installations, replacement of existing equipment as well as repower and retrofit. Included with these options is the opportunity to reduce dependency on fuel oil and well as enhancing environmental performance and increasing efficiency. The turbo-machinery will require design changes to meet the requirements for PFBC application. The major change to the combustion turbine take place in the center section. This section will include provisions to supply compressed air to the PFBC as well as receive vitiated air from the PFBC. These efforts also have the objective of reducing the degree of change from a standard unit. Under a clean coal program a first generation PFBC demonstration win take place at the Des Moines Energy Center. For this demonstration it will be necessary to remove two stages from the 251B12 compressor. This will make the air supplied by the compressor suitable for the PFBC system. The results from this program will be applicable to the DMEC-1 program.

  6. Optimal integrated design of air separation unit and gas turbine block for IGCC systems

    SciTech Connect (OSTI)

    Kamath, R.; Grossman, I.; Biegler, L.; Zitney, S.

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine, US (stand-alone). However, there is very little information on systematic assessment of air extraction, nitrogen injection and configuration and operating conditions of the ASU and it is not clear which scheme is optimal for a given IGCC application. In this work, we address the above mentioned problem systematically using mixed-integer optimization. This approach allows the use of various objectives such as minimizing the investment and operating cost or SOx and NOx emissions, maximizing power output or overall efficiency or a weighted combination of these factors. A superstructure is proposed which incorporates all the integration schemes described above. Simplified models for ASU, gas turbine system and steam cycle are used which provide reasonable estimates for performance and cost (Frey and Zhu, 2006). The optimal structural configuration and operating conditions are presented for several case studies and it is observed that the optimal solution changes significantly depending on the specified objective.

  7. Optimal Integrated Design of Air Separation Unit and Gas Turbine Block for IGCC Systems

    SciTech Connect (OSTI)

    Ravindra S. Kamath; Ignacio E. Grossmann; Lorenz T. Biegler; Stephen E. Zitney

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine, US (stand-alone). However, there is very little information on systematic assessment of air extraction, nitrogen injection and configuration and operating conditions of the ASU and it is not clear which scheme is optimal for a given IGCC application. In this work, we address the above mentioned problem systematically using mixed-integer optimization. This approach allows the use of various objectives such as minimizing the investment and operating cost or SOx and NOx emissions, maximizing power output or overall efficiency or a weighted combination of these factors. A superstructure is proposed which incorporates all the integration schemes described above. Simplified models for ASU, gas turbine system and steam cycle are used which provide reasonable estimates for performance and cost (Frey and Zhu, 2006). The optimal structural configuration and operating conditions are presented for several case studies and it is observed that the optimal solution changes significantly depending on the specified objective.

  8. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications (EIA)

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  9. A GCxGC Design for Fieldable Microfabricated Gas Analyzers. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: A GCxGC Design for Fieldable Microfabricated Gas Analyzers. Citation Details In-Document Search Title: A GCxGC Design for Fieldable Microfabricated Gas Analyzers. Abstract not provided. Authors: Simonson, Robert J. ; Galambos, Paul C. ; Read, Douglas ; Moorman, Matthew Wallace ; Staton, Alan W. ; Joshua J. Whiting ; J.W. Lantz Publication Date: 2011-06-01 OSTI Identifier: 1107750 Report Number(s): SAND2011-3764C 466133 DOE Contract Number: AC04-94AL85000 Resource

  10. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  11. Project W-236A, work plan for preparation of a design requirements document

    SciTech Connect (OSTI)

    Groth, B.D.

    1995-01-30

    This work plan outlines the tasks necessary, and defines the organizational responsibilities for preparing a Design Requirements Document (DRD) for project W-236A, Multi-Function Waste Tank Facility (MWTF). A DRD is a Systems Engineering document which bounds, at a high level, the requirements of a discrete system element of the Tank Waste Remediation System (TWRS) Program. This system element is usually assigned to a specific project, in this case the MWTF. The DRD is the document that connects the TWRS program requirements with the highest level projects requirements and provides the project`s link to the overall TWRS mission. The MWTF DRD effort is somewhat unique in that the project is already in detailed design, whereas a DRO is normally prepared prior to preliminary design. The MWTF design effort was initiated with a Functional Design Criteria (FDC) and a Supplemental Design Requirements Document (SDRD) bounding the high level requirements. Another unique aspect of this effort is that some of the TWRS program requirements are still in development. Because of these unique aspects of the MWTF DRD development, the MWTF will be developed from existing TWRS Program requirements and project specific requirements contained in the FDC and SDRD. The following list describes the objectives of the MWTF DRD: determine the primary functions of the tanks through a functional decomposition of the TWRS Program high level functions; allocate the primary functions to a sub-system architecture for the tanks; define the fundamental design features in terms of performance requirements for the system and subsystems; identify system interfaces and design constraints; and document the results in a DRD.

  12. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  13. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  14. Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report

    SciTech Connect (OSTI)

    Not Available

    1994-05-24

    This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

  15. Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems

    SciTech Connect (OSTI)

    Ballinger, Ronald G.; Wang, Chun Yun; Kadak, Andrew; Todreas, Neil; Mirick, Bradley; Demetri, Eli; Koronowski, Martin

    2004-08-30

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

  16. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications (EIA)

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  17. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    SciTech Connect (OSTI)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

  18. Gary Works No. 13 blast furnace: A new removable trough design

    SciTech Connect (OSTI)

    Schuett, K.J.; Pawlak, J.P.; Traina, L.; Brenneman, R.G.

    1995-12-01

    No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

  19. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  20. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    SciTech Connect (OSTI)

    Lee C. Cadwallader

    2013-10-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  1. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D.; Lee, D.S.; Paik, S.C.; Chung, J.S.

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  2. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  3. U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    586,953 575,601 549,151 489,505 505,318 514,809 1978-2014 From Gas Wells 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 From Oil Wells 327,105 341,365 340,182 284,838 318,431 355,472 1978

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's NA NA NA NA NA NA NA 1980's 155 176 145 132 110 126 113 101 101 107 1990's 123 113 118 119 111 110 109 103 102 98 2000's 90 86 68 68 60 64 66 63 61 65 2010's 65 60 61 55 60 60 - = No Data Reported; -- = Not

  4. The Design, Construction, and Initial Characterization of an Ultra-Low-Background Gas-Proportional Counting System

    SciTech Connect (OSTI)

    Seifert, Allen; Aalseth, Craig E.; Day, Anthony R.; Fuller, Erin S.; Hoppe, Eric W.; Keillor, Martin E.; Mace, Emily K.; Overman, Cory T.; Warren, Glen A.

    2013-05-01

    ABSTRACT Over the past several years, the Pacific Northwest National Laboratory (PNNL) has developed an ultra-low background proportional counter (ULBPC) technology. The resulting detector is the product of an effort to produce a low-background, physically robust gas proportional counter for applications like radon emanation measurements, groundwater tritium, and 37Ar. In order to fully take advantage of the inherent low-background properties designed into the ULBPC, a comparably low-background dedicated counting system is required. An ultra-low-background counting system (ULBCS) was recently built in the new shallow underground laboratory at PNNL. With a design depth of 30 meters water-equivalent, the shallow underground laboratory provides approximately 100x fewer fast neutrons and 6x fewer muons than a surface location. The ULBCS itself provides additional shielding in the form of active anti-cosmic veto (via 2-in. thick plastic scintillator paddles) and passive borated poly (1 in.), lead (6 in.), and copper (~3 in.) shielding. This work will provide details on PNNLs new shallow underground laboratory, examine the motivation for the design of the counting system, and provide results from the characterization of the ULBCS, including initial detector background.

  5. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect (OSTI)

    J.H. Frantz Jr; K.G. Brown; W.K. Sawyer; P.A. Zyglowicz; P.M. Halleck; J.P. Spivey

    2004-12-01

    The underground gas storage (UGS) industry uses over 400 reservoirs and 17,000 wells to store and withdrawal gas. As such, it is a significant contributor to gas supply in the United States. It has been demonstrated that many UGS wells show a loss of deliverability each year due to numerous damage mechanisms. Previous studies estimate that up to one hundred million dollars are spent each year to recover or replace a deliverability loss of approximately 3.2 Bscf/D per year in the storage industry. Clearly, there is a great potential for developing technology to prevent, mitigate, or eliminate the damage causing deliverability losses in UGS wells. Prior studies have also identified the presence of several potential damage mechanisms in storage wells, developed damage diagnostic procedures, and discussed, in general terms, the possible reactions that need to occur to create the damage. However, few studies address how to prevent or mitigate specific damage types, and/or how to eliminate the damage from occurring in the future. This study seeks to increase our understanding of two specific damage mechanisms, inorganic precipitates (specifically siderite), and non-darcy damage, and thus serves to expand prior efforts as well as complement ongoing gas storage projects. Specifically, this study has resulted in: (1) An effective lab protocol designed to assess the extent of damage due to inorganic precipitates; (2) An increased understanding of how inorganic precipitates (specifically siderite) develop; (3) Identification of potential sources of chemical components necessary for siderite formation; (4) A remediation technique that has successfully restored deliverability to storage wells damaged by the inorganic precipitate siderite (one well had nearly a tenfold increase in deliverability); (5) Identification of the types of treatments that have historically been successful at reducing the amount of non-darcy pressure drop in a well, and (6) Development of a tool that can be used by operators to guide treatment selection in wells with significant non-darcy damage component. In addition, the effectiveness of the remediation treatment designed to reduce damage caused by the inorganic precipitate siderite was measured, and the benefits of this work are extrapolated to the entire U.S. storage industry. Similarly the potential benefits realized from more effective identification and treatment of wells with significant nondarcy damage component are also presented, and these benefits are also extrapolated to the entire U.S. storage industry.

  6. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect (OSTI)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

  7. Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation

    SciTech Connect (OSTI)

    Restrepo, Bernardo; Banta, Larry E.; Tucker, David

    2012-10-01

    A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

  8. Total Working Gas Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. 4,327,844 4,410,224 4,483,650 4,576,356 4,748,636 4,785,669 2008-2014 Alaska 67,915 67,915 2013-2014 Alabama 20,900 25,150 27,350 27,350 27,350 33,150 2008-2014 Arkansas 13,898 13,898 12,036 12,178 12,178 12,178 2008-2014 California 296,096 311,096 335,396 349,296 374,296 374,296 2008-2014

  9. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  10. Design and fabrication of a CMOS-compatible MHP gas sensor

    SciTech Connect (OSTI)

    Li, Ying; Yu, Jun Wu, Hao; Tang, Zhenan

    2014-03-15

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ?19 mW and a rapid thermal response of 8 ms for heating up to 300 C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9/C.

  11. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  12. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  13. A Robust Infrastructure Design for Gas Centrifuge Enrichment Plant Unattended Online Enrichment Monitoring

    SciTech Connect (OSTI)

    Younkin, James R; Rowe, Nathan C; Garner, James R

    2012-01-01

    An online enrichment monitor (OLEM) is being developed to continuously measure the relative isotopic composition of UF6 in the unit header pipes of a gas centrifuge enrichment plant (GCEP). From a safeguards perspective, OLEM will provide early detection of a facility being misused for production of highly enriched uranium. OLEM may also reduce the number of samples collected for destructive assay and if coupled with load cell monitoring can provide isotope mass balance verification. The OLEM design includes power and network connections for continuous monitoring of the UF6 enrichment and state of health of the instrument. Monitoring the enrichment on all header pipes at a typical GCEP could require OLEM detectors on each of the product, tails, and feed header pipes. If there are eight process units, up to 24 detectors may be required at a modern GCEP. Distant locations, harsh industrial environments, and safeguards continuity of knowledge requirements all place certain demands on the network robustness and power reliability. This paper describes the infrastructure and architecture of an OLEM system based on OLEM collection nodes on the unit header pipes and power and network support nodes for groupings of the collection nodes. A redundant, self-healing communications network, distributed backup power, and a secure communications methodology. Two candidate technologies being considered for secure communications are the Object Linking and Embedding for Process Control Unified Architecture cross-platform, service-oriented architecture model for process control communications and the emerging IAEA Real-time And INtegrated STream-Oriented Remote Monitoring (RAINSTORM) framework to provide the common secure communication infrastructure for remote, unattended monitoring systems. The proposed infrastructure design offers modular, commercial components, plug-and-play extensibility for GCEP deployments, and is intended to meet the guidelines and requirements for unattended and remotely monitored safeguards systems.

  14. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Oxstrand, Johanna Helene; Ahmad Al Rashdan; Le Blanc, Katya Lee; Bly, Aaron Douglas; Agarwal, Vivek

    2015-07-01

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, then two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.

  15. Initial Requirements for Gas-Cooled Fast Reactor (GFR) System Design, Performance, and Safety Analysis Models

    SciTech Connect (OSTI)

    Kevan D. Weaver; Thomas Y. C. Wei

    2004-08-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  16. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000C in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  17. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  18. Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect (OSTI)

    Raj, P.K.; Hathaway, W.T.; Kangas, R.

    1996-09-01

    The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  19. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  20. Design Calculations for Gas Flow & Diffusion Behavior in the large Diameter Container & Cask

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    2003-10-21

    This report describes the calculations for the gas behavior in the void volumes or gas spaces of the sludge Large Diameter Container (LDC) and Cask. The objective is to prevent flammable gas conditions in the LDC and Cask gas spaces. This is achieved by the Active Inert Ventilation System (AIVS), which uses argon gas for dilution purposes. With AIVS, the oxygen content is kept below 5 vol% in the LDC, and the hydrogen content is kept below 4 vol% in the Cask before its purge at the KE Basin. After the Cask sweep-through purge with argon at the KE Basin, oxygen is kept below 5% in both the Cask and the LDC. The analysis here assumes that any oxygen generated in the sludge is consumed by the uranium and uranium dioxide (SNF-18133, ''Gas Behavior in Large Diameter Containers (LDCs) During and Following Loading with 105K East Sludge''). Thus, oxygen production from radiolysis is intentionally not included in this report, but hydrogen from radiolysis and from chemical reactions between uranium and water are considered, depending on the scenario being analyzed. The analysis starts immediately after the final decant at K Basin, when argon is assumed to be the only gas in the LDC gas space, except for the normal water vapor. The oxygen ingress is calculated during the disconnecting of the lines hoses from the LDC, during the time that air is surrounding the LDC with two NucFil-type filters in place after the disconnect, before the Cask is sealed, and, finally, during the sweep-through Cask purge. Dissolution of oxygen from water due to increasing sludge temperatures (mainly during hot transport to the T Plant) is also included.

  1. Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works

    SciTech Connect (OSTI)

    Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M.

    1995-12-01

    The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

  2. Statement of work for conceptual design of solidified high-level waste interim storage system project (phase I)

    SciTech Connect (OSTI)

    Calmus, R.B., Westinghouse Hanford

    1996-12-17

    The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities. This plan contains a two phased approach. Phase I is a ``proof-of-principle/commercial demonstration- scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage (IS) and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidification HLW IS entails use of Vaults 2 and 3 in the Spent Nuclear Fuel Canister Storage Building, to be located in the Hanford Site 200 East Area. This Statement of Work describes the work scope to be performed by the Architect-Engineer to prepare a conceptual design for the solidified HLW IS System.

  3. Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems

    SciTech Connect (OSTI)

    Golshani, A.; Chen, F.C.

    1980-10-01

    Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

  4. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect (OSTI)

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  5. Design Calculations for Gas Flow & Diffusion Behavior in the Large Diameter Container & Cask

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    2003-11-06

    This report describes the calculations for the gas behavior in the void volumes or gas spaces of the sludge Large Diameter Container (LDC) and Cask. The objective is to prevent flammable gas conditions in the LDC and Cask gas spaces. This is achieved by the Active Inert Ventilation System (AIVS), which uses argon gas for dilution purposes. With AIVS, the oxygen content is kept below 4 to 5 vol% in the LDC, and the hydrogen content is kept below 4 vol% in the Cask before its purge at the KE Basin. After the Cask sweep-through purge with argon at the KE Basin, oxygen stays below 4 to 5% in the LDC until two LDC ports are opened at T Plant. The oxygen content stays below 4% in the Cask until the Cask lid is opened at T Plant. The analysis here assumes that any oxygen generated in the sludge is consumed by the uranium and uranium dioxide (SNF-18133, ''Gas Behavior in Large Diameter Containers (LDCs) During and Following Loading with 105K East Sludge''). Thus, oxygen production from radiolysis is not included in this report, but hydrogen from radiolysis and from chemical reactions between uranium and water are considered, depending on the scenario being analyzed. The analysis starts immediately after the final decant at K Basin, when argon is assumed to be the only gas in the LDC gas space, except for the normal water vapor. The oxygen ingress is calculated during the disconnecting of the lined hoses from the LDC, during the time that air is surrounding the LDC with two NucFil-type filters in place after the disconnect, before the Cask is sealed, and, finally, during the sweep-through Cask purge at the KE Basin. Dissolution of oxygen from water due to increasing sludge temperatures (mainly during hot transport to the T Plant) is also included. The analysis includes the gas behavior during the T-Plant operations, which include the venting after the LDC/Cask are received at T Plant, the Cask sweep-through purge, the LDC purge with forced argon delivery into the LDC with 1 open port, followed by the natural sweep-through purge with two open LDC ports.

  6. Statement of work for sytem design and engineering of the spent nuclear fuel multi-cansiter overpack

    SciTech Connect (OSTI)

    Smith, K.E., Fluor Daniel Hanford

    1997-03-03

    This Statement of Work (SOW) describes the work scope for the preparation of the Phase 2 (final) design for the Multiple Canister Overpack (MCO) equipment. The MCO is to be used as the radiological containment device for the Spent Nuclear Fuel (SNF) assemblies, currently in wet storage in K East and West Basins, to be transported and stored in the Canister Storage Building (CSB) until final disposal facilities are made available. The engineering services contractor will be requested to provide reports, studies, analyses, engineering, drawings, specifications, estimates and schedules. The overall goal of this task order is to do the following: 1. Prepare a fabrication specification, ASME Code exception report, a packaging, shipping and warehouse plan, and detailed fabrication drawings of the MCO in accordance with the MCO Performance Specification (HNF-S-0426, Rev. 3) for procurement activities by the SNF MCO Subproject. 2. Establish and maintain a comment data base on the comments, resolutions, changes to the design of the MCO. 3. Support fabrication activities through the review of vendor fabrication drawings and shop test reports.

  7. Symmetry-Guided Design of Highly Porous MOFs | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Symmetry-Guided Design of Highly Porous MOFs

  8. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  9. Pre-Designed Single-Molecule Traps for CO2 Capture | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Pre-Designed Single-Molecule Traps for CO2 Capture

  10. Customer Incentives for Energy Efficiency Through Electric and Natural Gas Rate Design

    SciTech Connect (OSTI)

    none,

    2009-09-01

    Summarizes the issues and approaches involved in motivating customers to reduce the total energy they consume through energy prices and rate design.

  11. CONCEPTUAL DESIGN FOR A RADICALLY SMALLER, HIGHLY ADAPTIVE AND APPLICATION-FLEXIBLE MINING MACHINE FOR UTILITY AND DEVELOPMENT WORK

    SciTech Connect (OSTI)

    Andrew H. Stern

    2004-12-20

    The aim of this research project was to develop a preliminary ''conceptual design'' for a radically smaller, highly adaptive and application-flexible underground coal mining machine, for performing non-production utility work and/or also undertake limited production mining for the recovery of reserves that would otherwise be lost. Whereas historically, mining philosophies have reflected a shift to increasing larger mechanized systems [such as the continuous miner (CM)], specific mining operations that do not benefit from the economy of the large mining equipment are often ignored or addressed with significant inefficiencies. Developing this prototype concept will create a new class of equipment that can provide opportunities to re-think the very structure of the mining system across a broad range of possibilities, not able to be met by existing machinery. The approach involved pooling the collective input from mining professionals, using a structured listing of desired inputs in the form of a questionnaire, which was used to define the range of desired design specifications. From these inputs, a conceptual specification was blended, by the author, to embody the general concurrence of mission concepts for this machine.

  12. Underwater robotic work systems for Russian arctic offshore oil/gas industry: Final report. Export trade information

    SciTech Connect (OSTI)

    1997-12-15

    The study was performed in association with Rosshelf, a shelf developing company located in Moscow. This volume involves developing an underwater robotic work system for oil exploration in Russia`s Arctic waters, Sea of Okhotsk and the Caspian Sea. The contents include: (1) Executive Summary; (2) Study Background; (3) Study Outline and Results; (4) Conclusions; (5) Separately Published Elements; (6) List of Subcontractors.

  13. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  14. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    SciTech Connect (OSTI)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    2014-01-29

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  15. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  16. Nuclear design of small-sized high temperature gas-cooled reactor for developing countries

    SciTech Connect (OSTI)

    Goto, M.; Seki, Y.; Inaba, Y.; Ohashi, H.; Sato, H.; Fukaya, Y.; Tachibana, Y.

    2012-07-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries such as Kazakhstan in the 2020's. The nuclear design of the HTR50S is performed by upgrading the proven technology of the High Temperature Engineering Test Reactor (HTTR) to reduce the cost for the construction. In the HTTR design, twelve kinds of fuel enrichment was used to optimize the power distribution, which is required to make the maximum fuel temperature below the thermal limitation during the burn-up period. However, manufacture of many kinds of fuel enrichment causes increase of the construction cost. To solve this problem, the present study challenges the nuclear design by reducing the number of fuel enrichment to as few as possible. The nuclear calculations were performed with SRAC code system whose validity was proven by the HTTR burn-up data. The calculation results suggested that the optimization of the power distribution was reasonably achieved and the maximum fuel temperature was kept below the limitation by using three kinds of fuel enrichment. (authors)

  17. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    SciTech Connect (OSTI)

    R. P. Wells

    2006-11-14

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  18. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  19. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  20. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-23

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  1. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-16

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  2. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    SciTech Connect (OSTI)

    G.E. Fuchs

    2007-12-31

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a useful tool to help reduce the number of iterations necessary to perform laboratory experiments or alloy development. However, we clearly are not able to rely solely on computational techniques in the development of high temperature materials for IGT applications. A significant amount of experimentation will continue to be required.

  3. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  4. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2001-10-30

    This report presents a brief overview of the activities and tasks accomplished during the second half year (April 1, 2001-September 30, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

  5. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect (OSTI)

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2001-04-30

    This report presents a brief overview of the activities and tasks accomplished during the first half year (October 1, 2000-March 31, 2001) of the fourth project year budget period (October 1, 2000-September 30, 2001). An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The fourth project year activities are divided into three main parts, which are carried out in parallel. The first part is continuation of the experimental program that includes a study of the oil/water two-phase behavior at high pressures and control system development for the three-phase GLCC{copyright}. This investigation will be eventually extended for three-phase flow. The second part consists of the development of a simplified mechanistic model incorporating the experimental results and behavior of dispersion of oil in water and water in oil. This will provide an insight into the hydrodynamic flow behavior and serve as the design tool for the industry. Although useful for sizing GLCC{copyright} for proven applications, the mechanistic model will not provide detailed hydrodynamic flow behavior information needed to screen new geometric variations or to study the effect of fluid property variations. Therefore, in the third part, the more rigorous approach of computational fluid dynamics (CFD) will be utilized. Multidimensional multiphase flow simulation at high pressures and for real crude conditions will provide much greater depth into the understanding of the physical phenomena and the mathematical analysis of three-phase GLCC{copyright} design and performance.

  6. Working Gas Capacity of Aquifers

    Gasoline and Diesel Fuel Update (EIA)

    3,274,385 3,074,251 2,818,148 3,701,510 3,585,867 3,100,219 1944-2015 Alaska 7,259 6,523 9,943 2013-2015 Lower 48 States 3,074,251 2,818,148 3,694,251 3,579,344 3,090,276 2011-2015 Alabama 16,740 15,408 23,651 22,968 28,683 29,187 1968-2015 Arkansas 4,368 4,409 2,960 3,964 3,866 2,272 1967-2015 California 203,653 242,477 170,586 268,548 235,181 204,077 1967-2015 Colorado 45,010 48,341 56,525 63,531 70,692 64,053 1967-2015 Connecticut 1973-1996 Delaware 1967-1975 Georgia 1974-1975 Illinois

  7. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2006-03-31

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rate, selectivity for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During this fifth reporting period, we have studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C{sub 5+} selectivities of the Fe-based catalysts that we have developed as part of this project. During this fifth reporting period, we have also continued our studies of optimal activation procedures, involving reduction and carburization of oxide precursors during the early stages of contact with synthesis gas. We have completed the analysis of the evolution of oxide, carbide, and metal phases of the active iron components during initial contact with synthesis gas using advanced synchrotron techniques based on X-ray absorption spectroscopy. We have confirmed that the Cu or Ru compensates for inhibitory effects of Zn, a surface area promoter. The kinetic behavior of these materials, specifically the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch synthesis reactions has led to a new proposal for the nature of rate-determining steps on Fe and Co Fischer-Tropsch catalysts, and more specifically to the roles of hydrogen-assisted and alkali-assisted dissociation of CO in determining rates and CO{sub 2} selectivities. Finally, we have started an exploratory study of the use of colloidal precipitation methods for the synthesis of small Fe and Co clusters using recently developed methods. During this period, we have had to restrict manpower assigned to this project because some irregularities in reporting and communications have led to the interruption of funding during this period. This has led to less than optimal productivity and to significant disruptions of the technical work. These issues have also led to significant underspending of project funds during this reporting period and to our consequent request for a no-cost extension of one year, which we understand has been granted.

  8. Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Future of Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts * ...

  10. Total Natural Gas Underground Storage Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  11. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Design Schematic Generalized Design Schematic About U.S. Natural Gas Pipelines- Transporting Natural Gas based on data through 2007/2008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic

  12. Working Together | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Address Natural Gas Storage Safety Working Together to Address Natural Gas Storage Safety April 1, 2016 - 11:15am Addthis Working Together to Address Natural Gas Storage Safety Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese Dominguez Administrator, U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration As a part of the Administration's ongoing commitment to support state and

  13. Design, Synthesis and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2007-03-31

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based materials with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth and sixth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials during the sixth reporting period. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. Finally, we also started a study of the use of colloidal precipitation methods for the synthesis small Co clusters using recently developed methods to explore possible further improvements in FTS rates and selectivities. We found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, were formed. During this seventh reporting period, we have explored several methods to modify the silanol groups on SiO{sub 2} by using either a homogeneous deposition-precipitation method or surface titration of Si-OH on SiO{sub 2} with zirconium (IV) ethoxide to prevent the formation of unreducible and unreactive CoO{sub x} species during synthesis and FTS catalysis. We have synthesized monometallic Co/ZrO{sub 2}/SiO{sub 2} catalysts with different Co loadings (11-20 wt%) by incipient wetness impregnation methods and characterized the prepared Co supported catalysts by H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and H{sub 2}-chemisorption. We have measured the catalytic performance in FTS reactions and shown that although the hydroxyl groups on the SiO{sub 2} surface are difficult to be fully titrated by ZrO{sub 2}, modification of ZrO{sub 2} on SiO{sub 2} surface can improve the Co clusters dispersion and lead to a larger number of exposed Co surface atoms after reduction and during FTS reactions. During this seventh reporting period, we have also advanced our development of the reaction mechanism proposed in the previous reporting period. Specifically, we have shown that our novel proposal for the pathways involved in CO activation on Fe and Co catalysts is consistent with state-of-the-art theoretical calculations carried out in collaboration with Prof. Manos Mavrikakis (University of Wisconsin-Madison). Finally, we have also worked on the preparation of several manuscripts describing our findings about the preparation, activation and mechanism of the FTS with Fe-based catalysts and we have started redacting the final report for this project.

  14. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  15. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    SciTech Connect (OSTI)

    Moridis, G.; Reagan, M.T.

    2011-01-15

    In the second paper of this series, we evaluate two additional well designs for production from permafrost-associated (PA) hydrate deposits. Both designs are within the capabilities of conventional technology. We determine that large volumes of gas can be produced at high rates (several MMSCFD) for long times using either well design. The production approach involves initial fluid withdrawal from the water zone underneath the hydrate-bearing layer (HBL). The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, and a short stage (days to weeks) that involves destruction of the secondary hydrate (mainly through warm water injection) that evolves during the first stage, and is followed by a reduction in the fluid withdrawal rate. A well configuration with completion throughout the HBL leads to high production rates, but also the creation of a secondary hydrate barrier around the well that needs to be destroyed regularly by water injection. However, a configuration that initially involves heating of the outer surface of the wellbore and later continuous injection of warm water at low rates (Case C) appears to deliver optimum performance over the period it takes for the exhaustion of the hydrate deposit. Using Case C as the standard, we determine that gas production from PA hydrate deposits increases with the fluid withdrawal rate, the initial hydrate saturation and temperature, and with the formation permeability.

  16. DESIGN, SYNTHESIS, AND MECHANISTIC EVALUATION OF IRON-BASED CATALYSIS FOR SYNTHESIS GAS CONVERSION TO FUELS AND CHEMICALS

    SciTech Connect (OSTI)

    Jian Xu; Enrique Iglesia

    2004-03-31

    This project explores the extension of previously discovered Fe-based catalysts with unprecedented Fischer-Tropsch synthesis rate, selectivity, and ability to convert hydrogen-poor synthesis gas streams typical of those produced from coal and biomass sources. Contract negotiations between the U.S. Department of Energy and the University of California were completed on December 9, 2004. During this first reporting period, we have modified and certified a previously decommissioned microreactor, ordered and installed a budgeted gas chromatograph, developed and reviewed safe operating procedures and data analysis methods, and reproduced successfully previous synthetic protocols and catalytic performance of catalytic materials based on Fe-Zn-Cu-K oxide precursors synthesized using precipitation methods, drying using surface-active agents, and activated in synthesis gas within Fischer-Tropsch synthesis tubular reactors.

  17. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 17. Plant section 2500 - Plant and Instrument Air

    SciTech Connect (OSTI)

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 17 which reports the design of Plant Section 2500 - Plant and Instrument Air. The plant and instrument air system is designed to provide dry, compressed air for a multitude of uses in plant operations and maintenance. A single centrifugal air compressor provides the total plant and instrument air requirements. An air drying system reduces the dew point of the plant and instrument air. Plant Section 2500 is designed to provide air at 100/sup 0/F and 100 psig. Both plant and instrument air are dried to a -40/sup 0/F dew point. Normal plant and instrument air requirements total 1430 standard cubic feet per minute.

  18. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  19. Commercial national accounts program is a gas industry revenue builder

    SciTech Connect (OSTI)

    Moskitis, T.L.

    1984-04-01

    The need for gas distributors to implement revenue-generating strategies is clearly evident in the commercial sector - their fastest growing market. One strategy is A.G.A.'s commercial national accounts marketing program, designed to establish working relationships with national and regional food, hotel, and retail chains and with the firms that design energy systems for them. The program supplies these chains with information on gas industry services and research aimed at increasing energy utilization efficiency. Regular communications and coordinated sales calls by gas utility executives on chain headquarters often produce increased gas sales, even of traditionally all-electric chains, as illustrated by several case histories.

  20. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  3. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  7. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  8. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of natural gas into storage, despite robust inventories. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,258 Bcf as of...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories...

  12. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    withdrawal from working gas storage reported last Thursday. A contributing factor to the run-up in natural gas prices could be climbing crude oil prices, which rallied late last...

  14. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect (OSTI)

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  15. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect (OSTI)

    1994-12-01

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  16. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Akio Ishikawa; Manuel Ojeda; Enrique Iglesia

    2005-09-30

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rate, selectivity for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third reporting period, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During this fourth reporting period, we have determined the effects of different promoters on catalytic performance. More specifically, we have found that the sequence in which promoters are introduced has a marked positive impact on rates and selectivities. Cu or Ru chemical promoters should be impregnated before K to achieve higher Fischer-Tropsch synthesis rates. The catalyst prepared in this way was evaluated for 240 h, showing a high catalytic activity and stability after an initial period of time necessary for the formation of the active phases. Concurrently, we are studying optimal activation procedures, which involve the reduction and carburization of oxide precursors during the early stages of contact with synthesis gas. Activation at low temperatures (523 K), made possible by optimal introduction of Cu or Ru, leads to lower catalyst surface area than higher activation temperatures, but to higher reaction rates, because such low temperatures avoid concurrent deactivation during the reduction-carburization processes. In this reporting period, we have measured the evolution of oxide, carbide, and metal phases of the active iron components using advanced synchrotron techniques based on X-ray absorption spectroscopy. These studies have revealed that Zn inhibits the isothermal reduction and carburization of iron oxide precursors. The concurrent presence of Cu or Ru compensates for these inhibitory effects and lead to the formation of active carbide phases at the low temperatures required to avoid deactivation via carbon deposition or sintering. Finally, we have also examined the kinetic behavior of these materials, specifically the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch synthesis reactions. This has led to a rigorous rate expressions that allows the incorporation of these novel materials into larger scale reactors and to predictions of performance based on the coupling of hydrodynamic and kinetic effects ubiquitous in such reactors.

  17. DESIGN, SYNTHESIS, AND MECHANISTIC EVALUATION OF IRON-BASED CATALYSIS FOR SYNTHESIS GAS CONVERSION TO FUELS AND CHEMICALS

    SciTech Connect (OSTI)

    Akio Ishikawa; Manuel Ojeda; Enrique Iglesia

    2005-03-31

    This project explores the extension of previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have previously shown unprecedented Fischer-Tropsch synthesis rate, selectivity with synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic performance previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During this third reporting period, we have prepared a large number of Fe-based catalyst compositions using precipitation and impregnations methods with both supercritical and subcritical drying and with the systematic use of surface active agents to prevent pore collapse during drying steps required in synthetic protocols. These samples were characterized during this period using X-ray diffraction, surface area, and temperature-programmed reduction measurements. These studies have shown that these synthesis methods lead to even higher surface areas than in our previous studies and confirm the crystalline structures of these materials and their reactivity in both oxide-carbide interconversions and in Fischer-Tropsch synthesis catalysis. Fischer-Tropsch synthesis reaction rates and selectivities with low H{sub 2}/CO ratio feeds (H{sub 2}/CO = 1) were the highest reported in the literature at the low-temperature and relatively low pressure in our measurements. Current studies are exploring the optimization of the sequence of impregnation of Cu, K, and Ru promoters, of the activation and reaction conditions, and of the co-addition of light hydrocarbons to increase diffusion rates of primary olefin products so as to increase the selectivity to unsaturated products. Finally, we are also addressing the detailed kinetic response of optimized catalysts to reaction conditions (temperature, partial pressures of H{sub 2}, CO, H{sub 2}O, CO{sub 2}, olefins) in an effort to further increase rates and olefin and C{sub 5+} selectivities.

  18. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Enrique Iglesia; Akio Ishikawa; Manual Ojeda; Nan Yao

    2007-09-30

    A detailed study of the catalyst composition, preparation and activation protocol of Fe-based catalysts for the Fischer-Tropsch Synthesis (FTS) have been carried out in this project. We have studied the effects of different promoters on the catalytic performance of Fe-based catalysts. Specifically, we have focused on how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C{sub 5+} selectivities of the Fe-based catalysts that we have developed as part of this project. Selectivity to C{sub 5+} hydrocarbon was close to 90 % (CO{sub 2}-free basis) and CO conversion rate was about 6.7 mol h{sup -1} g-at Fe{sup -1} at 2.14 MPa, 508 K and with substoichiometric synthesis gas; these rates were larger than any reported previously for Fe-based FTS catalysts at these conditions. We also tested the stability of Fe-based catalysts during FTS reaction (10 days); as a result, the high hydrocarbon formation rates were maintained during 10 days, though the gradual deactivation was observed. Our investigation has also focused on the evaluation of Fe-based catalysts with hydrogen-poor synthesis gas streams (H{sub 2}/CO=1). We have observed that the Fe-based catalysts prepared in this project display also a high hydrocarbon synthesis rate with substoichiometric synthesis gas (H{sub 2}/CO=1) stream, which is a less desirable reactant mixture than stoichiometric synthesis gas (H{sub 2}/CO=2). We have improved the catalyst preparation protocols and achieved the highest FTS reaction rates and selectivities so far reported at the low temperatures required for selectivity and stability. Also, we have characterized the catalyst structural change and active phases formed, and their catalytic behavior during the activation process to evaluate their influences on FTS reaction. The efforts of this project led to (i) structural evolution of Fe-Zn oxide promoted with K and Cu, and (ii) evaluation of hydrocarbon and CH{sub 4} formation rates during activation procedures at various temperature and H{sub 2}/CO ratios. On the basis of the obtained results, we suggest that lower reactor temperature can be sufficient to activate catalysts and lead to the high FTS performance. In this project, we have also carried out a detailed kinetic and mechanistic study of the Fischer-Tropsch Synthesis with Fe-based catalysts. We have proposed a reaction mechanism with two CO activation pathways: unassisted and H-assisted. Both routes lead to the formation of the same surface monomers (CH{sub 2}). However, the oxygen removal mechanism is different. In the H-assisted route, oxygen is removed exclusively as water, while oxygen is rejected as carbon dioxide in the unassisted CO dissociation. The validity of the mechanism here proposed has been found to be in agreement with the experimental observation and with theoretical calculations over a Fe(110) surface. Also, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by two CO activation pathways. We have also explored the catalytic performance of Co-based catalysts prepared by using inverse micelles techniques. We have studied several methods in order to terminate the silanol groups on SiO{sub 2} support including impregnation, urea homogeneous deposition-precipitation, or zirconium (IV) ethoxide titration. Although hydroxyl groups on the SiO{sub 2} surface are difficult to be stoichiometrically titrated by ZrO{sub 2}, a requirement to prevent the formation of strongly-interacting Co oxide species on SiO{sub 2}, modification of ZrO{sub 2} on SiO{sub 2} surface can improve the Co clusters dispersion leading to a marked increase in the number of accessible Co sites. Inverse micelle method allowed the synthesis of small Co clusters on SiO{sub 2}, but the required surfactant removal steps led to the re-oxidation of Co metal clusters and to the formation of difficult to reduce CoO{sub x} species.

  19. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Enrique Iglesia

    2004-09-30

    This project explores the extension of previously discovered Fe-based catalysts with unprecedented Fischer-Tropsch synthesis rate, selectivity, and ability to convert hydrogen-poor synthesis gas streams typical of those produced from coal and biomass sources. Contract negotiations were completed on December 9, 2004. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic performance previously reported. During this second reporting period, we have prepared and tested several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. These studies established modest improvements in rates and selectivities with light hydrocarbon recycle without any observed deleterious effects, opening up the opportunities for using of recycle strategies to control temperature profiles in fixed-bed Fe-based Fischer-Tropsch synthesis reactors without any detectable kinetic detriment. In a parallel study, we examined similar effects of recycle for cobalt-based catalysts; marked selectivity improvements were observed as a result of the removal of significant transport restrictions on these catalysts. Finally, we have re-examined some previously unanalyzed data dealing with the mechanism of the Fischer-Tropsch synthesis, specifically kinetic isotope effects on the rate and selectivity of chain growth reactions on Fe-based catalysts.

  20. Breathable gas distribution apparatus

    DOE Patents [OSTI]

    Garcia, Elmer D.

    1985-01-01

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  1. Breathable gas distribution apparatus

    DOE Patents [OSTI]

    Garcia, E.D.

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on December 9, falling from somewhat higher intraweek levels. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage dropped 64 Bcf during the...

  3. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    and October 2010 contracts all fell by less than 1 cent. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas inventories set a new record,...

  4. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  5. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    SciTech Connect (OSTI)

    Akio; Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2006-09-30

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. More specifically, we were focused on the roles of hydrogen-assisted and alkali-assisted dissociation of CO in determining rates and CO{sub 2} selectivities. During this sixth reporting period, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by the two CO activation pathways we propose. During this reporting period, the experimental kinetic study has been also complemented with periodic, self-consistent, DFT-GGA investigations in a parallel collaboration with the group of Manos Mavrikakis at the University of Wisconsin-Madison. These DFT calculations suggest minimal energy paths for proposed elementary steps on Fe(110) and Co(0001) surfaces. These calculations support our novel conclusions about the preferential dissociation of CO dissociation via H-assisted pathways on Fe-based catalysts. Unassisted CO dissociation also occurs and lead to the formation of CO{sub 2} as a primary oxygen scavenging mechanism after CO dissociation on Fe-based catalysts. Simulations and our experimental data show also that unassisted CO dissociation route is much less likely on Co surfaces and that hydrocarbons form exclusively via H-assisted pathways with the formation of H{sub 2}O as the sole oxygen rejection product. We have also started a study of the use of colloidal precipitation methods for the synthesis of small Fe and Co clusters using recently developed methods to explore possible further improvements in Fischer-Tropsch synthesis rates and selectivities. We have found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, are formed. The nature of the cobalt precursor and the modification of the support seem to be critical parameters in order to obtain highly dispersed and reducible Co nanoparticles.

  6. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation PDF icon RCC Workplan NGV.PDF More Documents & Publications REGULATORY COOPERATION COUNCIL - WORK PLANNING ...

  7. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  8. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.W.

    1995-06-01

    In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

  9. Multiple complementary gas distribution assemblies

    DOE Patents [OSTI]

    Ng, Tuoh-Bin; Melnik, Yuriy; Pang, Lily L; Tuncel, Eda; Nguyen, Son T; Chen, Lu

    2016-04-05

    In one embodiment, an apparatus includes a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber and a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber. The first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber. The first gas passage is shaped as a first ring positioned within the processing chamber above the second gas passage that is shaped as a second ring positioned within the processing chamber. The gas distribution assemblies may be designed to have complementary characteristic radial film growth rate profiles.

  10. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S. Department of Energy (DOE) approved work plan. FY 2016 Work Plan Work plan items focus on providing recommendations to the DOE regarding the following subjects: soil contamination from historic atmospheric nuclear testing, remediation of contaminated facilities used to support historic testing, groundwater studies

  11. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  12. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  13. Short-Term Energy Outlook Model Documentation: Natural Gas Consumption and Prices

    Reports and Publications (EIA)

    2015-01-01

    The natural gas consumption and price modules of the Short-Term Energy Outlook (STEO) model are designed to provide consumption and end-use retail price forecasts for the residential, commercial, and industrial sectors in the nine Census districts and natural gas working inventories in three regions. Natural gas consumption shares and prices in each Census district are used to calculate an average U.S. retail price for each end-use sector.

  14. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  15. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  16. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  17. Working Gas Capacity of Salt Caverns

    Gasoline and Diesel Fuel Update (EIA)

    271,785 312,003 351,017 488,268 455,729 488,698 2008-2014 Alabama 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Arkansas 0 0 2012-2014 California 0 0 2012-2014 Colorado 0 0 2012-2014 Illinois 0 0 2012-2014 Indiana 0 0 2012-2014 Kansas 375 375 375 375 0 2008-2014 Kentucky 0 0 2012-2014 Louisiana 84,487 100,320 111,849 200,702 154,333 161,260 2008-2014 Maryland 0 0 2012-2014 Michigan 2,150 2,159 2,159 2,159 2,159 2,159 2008-2014 Mississippi 43,758 56,928 62,932 100,443 109,495 130,333

  18. Working Gas Capacity of Depleted Fields

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    296,096 311,096 335,396 349,296 364,296 364,296 2008-2014 Colorado 48,129 49,119 48,709 60,582 60,582 63,774 2008-2014 Illinois 51,418 87,368 87,368 87,368 11,768 11,768...

  19. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly...

  20. Weekly Working Gas in Underground Storage

    Gasoline and Diesel Fuel Update (EIA)

    Storage-test (Billion Cubic Feet) Period: Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Region 031816 032516 ...

  1. Philadelphia Gas Works- Home Rebates Program

    Broader source: Energy.gov [DOE]

    PGW’s Home Rebate program is available for residential customers within the PGW service territory. To participate in the program, the homeowner must first obtain a discounted home energy audit from...

  2. Working Natural Gas in Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    3,624,564 3,953,070 3,937,654 3,677,200 2,948,141 2,545,141 1973-2016 Alabama 22,861 23,276 24,493 24,742 19,955 20,669 1995-2016 Alaska 24,543 24,595 24,461 24,319 24,295 24,790 2013-2016 Arkansas 2,694 2,222 2,132 1,808 1,374 1,057 1990-2016 California 319,349 337,762 332,064 287,977 247,760 240,467 1990-2016 Colorado 48,622 52,772 50,980 41,561 31,772 29,368 1990-2016 Illinois 216,934 253,690 254,824 209,121 139,517 89,243 1990-2016 Indiana 24,897 26,944 28,208 26,638 20,553 15,277 1990-2016

  3. Working Gas % Change from Year Ago

    U.S. Energy Information Administration (EIA) Indexed Site

    13.7 10.2 14.9 17.1 22.0 51.8 1973-2016 Alaska 3.0 3.7 0.8 -2.7 -2.1 0.7 2013-2016 Lower 48 States 13.8 10.2 15.0 17.2 22.2 52.6 2011-2016 Alabama 44.1 21.9 30.5 23.0 30.1 199.5 1996-2016 Arkansas -0.4 -18.2 -13.2 -20.3 -25.3 -16.8 1991-2016 California 15.5 11.3 10.5 0.8 0.4 -3.6 1991-2016 Colorado 4.6 4.6 7.4 9.0 -1.3 10.3 1991-2016 Illinois -1.9 -2.7 2.2 5.5 3.5 16.4 1991-2016 Indiana 8.9 6.0 11.9 17.6 22.2 34.9 1991-2016 Iowa -2.6 1.1 9.0 9.3 0.2 1.9 1991-2016 Kansas 14.3 9.9 15.3 13.6 5.1

  4. Working Gas Volume Change from Year Ago

    U.S. Energy Information Administration (EIA) Indexed Site

    37,548 365,799 510,786 535,977 531,471 868,571 1973-2016 Alaska 723 881 189 -679 -515 164 2013-2016 Lower 48 States 436,825 364,919 510,597 536,656 531,986 868,407 2011-2016 Alabama 6,998 4,187 5,725 4,628 4,615 13,768 1996-2016 Arkansas -10 -494 -325 -461 -464 -214 1990-2016 California 42,845 34,374 31,566 2,217 916 -8,951 1990-2016 Colorado 2,152 2,342 3,520 3,415 -434 2,740 1990-2016 Illinois -4,131 -6,939 5,451 10,834 4,759 12,589 1990-2016 Indiana 2,031 1,518 3,001 3,981 3,736 3,953

  5. California Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) California Natural ...

  6. Annual Energy Outlook 2016 2nd Coal Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas-AEO2015 Reference Gas-2015 EIA Clean Power Plan Study WORKING GROUP ...issues - Need for a 111b compliant coal technology - Lack of differentiation between ...

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  8. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  9. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  10. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  11. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  12. Morphology of Gas Release in Physical Simulants

    SciTech Connect (OSTI)

    Daniel, Richard C.; Burns, Carolyn A.; Crawford, Amanda D.; Hylden, Laura R.; Bryan, Samuel A.; MacFarlan, Paul J.; Gauglitz, Phillip A.

    2014-07-03

    This report documents testing activities conducted as part of the Deep Sludge Gas Release Event Project (DSGREP). The testing described in this report focused on evaluating the potential retention and release mechanisms of hydrogen bubbles in underground radioactive waste storage tanks at Hanford. The goal of the testing was to evaluate the rate, extent, and morphology of gas release events in simulant materials. Previous, undocumented scoping tests have evidenced dramatically different gas release behavior from simulants with similar physical properties. Specifically, previous gas release tests have evaluated the extent of release of 30 Pa kaolin and 30 Pa bentonite clay slurries. While both materials are clays and both have equivalent material shear strength using a shear vane, it was found that upon stirring, gas was released immediately and completely from bentonite clay slurry while little if any gas was released from the kaolin slurry. The motivation for the current work is to replicate these tests in a controlled quality test environment and to evaluate the release behavior for another simulant used in DSGREP testing. Three simulant materials were evaluated: 1) a 30 Pa kaolin clay slurry, 2) a 30 Pa bentonite clay slurry, and 3) Rayleigh-Taylor (RT) Simulant (a simulant designed to support DSGREP RT instability testing. Entrained gas was generated in these simulant materials using two methods: 1) application of vacuum over about a 1-minute period to nucleate dissolved gas within the simulant and 2) addition of hydrogen peroxide to generate gas by peroxide decomposition in the simulants over about a 16-hour period. Bubble release was effected by vibrating the test material using an external vibrating table. When testing with hydrogen peroxide, gas release was also accomplished by stirring of the simulant.

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9.34 per MMBtu, a decrease of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,517 Bcf as of...

  14. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    since last Wednesday in every region of the country except in the West. Working gas in storage was 623 Bcf as of April 11, which was 49 percent below the previous 5-year...

  15. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    response was somewhat more pronounced (down 5.3 percent) with the September 2011 natural gas contract losing ground over the week, closing at 4.090 per MMBtu on Wednesday. Working...

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    a decrease of about 0.36, or 6.9 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage totaled 2,213 Bcf as...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    by 0.409 or 8 percent per MMBtu to 4.850 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,796 Bcf as of...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    supply disruptions during the remainder of the hurricane season. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage was 2,461 Bcf as of Friday,...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    (August 5) and the low price of 2.804 (August 21) per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,323 Bcf as of...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2009 contract, which closed at 12.987 per MMBtu on May 28. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 1,701 Bcf as of...

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7.02 per MMBtu, an increase of about 0.24 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 3,488 Bcf as of...

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    5.06 per MMBtu, a decrease of only 0.01 per MMBtu on the week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,762...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a decrease of about 0.09, or 1.7 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,737 Bcf as of...

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    decreasing about 0.23, or 4.4 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,840...

  5. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    MMBtu lower than the final price of the November 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage As of Friday, September 24, working natural gas in...

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    fell 31 cents, from 5.554 last Wednesday to 5.239 yesterday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,165...

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    expectations of robust storage inventories in the coming months. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,886 Bcf as of...

  8. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    38 cents per MMBtu, or about 7 percent, during the report week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,996 Bcf as of...

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    January 2009 contract, which closed at 12.74 per MMBtu on May 14. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 1,529 Bcf as of...

  10. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 to September 2009 posting declines of more than 30 cents. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,116 Bcf as of...

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    a decrease of about 0.25, or 5.1 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 1,823 Bcf as of...

  12. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    since last week, ending trading yesterday at 5.084 per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 2,089 Bcf as of...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    was 62 percent below the level reported last year at this time. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,013 Bcf as of...

  14. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    at 7.39 per MMBtu, which is 76 cents lower than last week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,198 Bcf as of...

  15. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9.08 per MMBtu, an increase of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,757 Bcf as of...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    per MMBtu, 22 cents or 4.3 percent lower than last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,615 Bcf as of...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2009 contract, which closed at 13.84 per MMBtu on June 25. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,033 Bcf as of...

  18. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    a large estimate of net injections of working gas into storage put downward pressure on spot and futures prices. Some parts of New England saw high temperatures only in the 70s for...

  19. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  20. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At DOE Working At DOE Working At DOE Only Here...Will you Define the Future of Energy The people of DOE are engaged in a wide range of challenging and innovative work - from participating in groundbreaking international initiatives like the Global Nuclear Partnership, to solar power demonstration projects, to projects that convert captured carbon dioxide (CO2) emissions from industrial sources into fuel, plastics, and fertilizers. Only here can the diversity of activities throughout our

  1. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And fossil fuels also account for almost...

  2. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  3. UFD Working Group 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group 2015 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. Solving the Big Data (BD) Problem in Advanced Manufacturing (Subcategory for work done at Georgia Tech. Study Process and Design Factors for Additive Manufacturing Improvement)

    SciTech Connect (OSTI)

    Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene; Paynabar, Kamran

    2015-09-01

    3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure the amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.

  5. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-01-06

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  6. Natural gas monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  7. Natural gas monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  8. Natural gas monthly, April 1999

    SciTech Connect (OSTI)

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  9. Natural gas monthly, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-22

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  10. Natural gas monthly, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-27

    The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Natural gas monthly, September 1995

    SciTech Connect (OSTI)

    1995-09-27

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  12. Natural gas monthly, April 1995

    SciTech Connect (OSTI)

    1995-04-27

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

  13. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  14. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, John E.

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  15. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-08-26

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  16. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R.; Wollan, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

  17. Water-saving liquid-gas conditioning system

    DOE Patents [OSTI]

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  18. Gas ampoule-syringe

    DOE Patents [OSTI]

    Gay, Don D.

    1986-01-01

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one end and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  19. Gas ampoule-syringe

    DOE Patents [OSTI]

    Gay, D.D.

    1985-02-02

    A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

  20. Conversion of forest residues to a methane-rich gas in a high-throughput gasifier. Summary report

    SciTech Connect (OSTI)

    Feldmann, H.F.; Paisley, M.A.; Folsom, D.W.; Kim, B.C.

    1981-10-31

    Results of the experimental work conducted thus far have shown that wood can be readily gasified in a steam environment into a hydrocarbon rich fuel gas that can be used as a replacement for petroleum-based fuels or natural gas with minimal boiler retrofit. Further, this conversion can be achieved in a compact gasification reactor with heat supplied by a circulating entrained phase, thereby eliminating the need for an oxygen plant. Tars have not been found except at the lowest gasifier temperatures employed, and therefore heat recovery from the product gas should be much simpler than that from commercially available fixed-bed gasification systems where product gas contains significant quantities of tar. The data generated have been used in a preliminary conceptual design. Evaluation of this design has shown that a medium-Btu gas can be produced from wood at a cost competitive with natural gas or petroleum-based fuels.

  1. DOE - Office of Legacy Management -- ANC Gas Hills Site - 040

    Office of Legacy Management (LM)

    ANC Gas Hills Site - 040 FUSRAP Considered Sites Site: ANC Gas Hills Site (040) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

  2. Tennessee Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    340 340 340 340 340 340 1997-2016 Base Gas 340 340 340 340 340 340 1997-2016 Working Gas 1997-2011 Net Withdrawals 1998-2006 Injections 1997-2005 Withdrawals 1997-2006 Change in Working Gas from Same Period Previous Year Volume 1997-2011 Percent 1997-2011

  3. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  4. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  5. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  6. Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Los Angeles Public Works Fleet Converts to Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to Natural Gas on Google Bookmark Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to Natural

  7. Natural gas monthly, March 1997

    SciTech Connect (OSTI)

    1997-03-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

  8. Natural gas monthly, August 1995

    SciTech Connect (OSTI)

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  9. Natural Gas Monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  10. Natural gas monthly, May 1997

    SciTech Connect (OSTI)

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  11. Natural gas monthly, December 1997

    SciTech Connect (OSTI)

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  12. Natural gas monthly, November 1996

    SciTech Connect (OSTI)

    1996-11-01

    The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

  13. Natural gas monthly, April 1997

    SciTech Connect (OSTI)

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  14. Natural gas monthly, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

  15. Fundamentals of gas measurement II

    SciTech Connect (OSTI)

    Smith, J.P.

    1995-12-01

    A knowledge of the Fundamentals of Gas Measurement is essential for all technicians and engineers that are called upon to perform gas volume calculations. These same people must have at least a working knowledge of the fundamentals to perform their everyday jobs including equipment calibrations, specific gravity tests, collecting gas samples, etc. To understand the fundamentals, one must be familiar with the definitions of the terms that are used in day-to- day gas measurement operations. They also must know how to convert some values from one quantity as measured to another quantity that is called for in the gas purchase or sales contracts or transportation agreements.

  16. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  17. Safeguards Guidance for Prismatic Fueled High Temperature Gas Reactors (HTGR)

    National Nuclear Security Administration (NNSA)

    5) August 2012 Guidance for High Temperature Gas Reactors (HTGRs) with Prismatic Fuel INL/CON-12-26130 Revision 0 Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel Philip Casey Durst (INL Consultant) August 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes

  18. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  20. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  1. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  3. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Gas Swimming Pool Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and pool use, they may not be the most energy-efficient option when compared to heat pump and solar pool heaters. How They Work Gas pool heaters use either natural gas or...

  6. DOE - Office of Legacy Management -- Armour Fertilizer Works...

    Office of Legacy Management (LM)

    Fertilizer Works - FL 01 FUSRAP Considered Sites Site: Armour Fertilizer Works (FL.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name:...

  7. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect (OSTI)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

  8. Natural Gas Transmission and Distribution Module

    U.S. Energy Information Administration (EIA) Indexed Site

    www.eia.gov Joe Benneche July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT QUOTE OR CITE Overview 2 Joe Benneche, Washington, DC, July 31, 2012 * Replace regional natural gas wellhead price projections with regional spot price projections * Pricing of natural gas vehicles fuels (CNG and LNG) * Methodology for modeling exports of LNG * Assumptions on charges related

  9. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  10. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  11. Method of Liquifying a gas

    DOE Patents [OSTI]

    Zollinger, William T.; Bingham, Dennis N.; McKellar, Michael G.; Wilding, Bruce M.; Klingler, Kerry M.

    2006-02-14

    A method of liquefying a gas is disclosed and which includes the steps of pressurizing a liquid; mixing a reactant composition with the pressurized liquid to generate a high pressure gas; supplying the high pressure gas to an expansion engine which produces a gas having a reduced pressure and temperature, and which further generates a power and/or work output; coupling the expansion engine in fluid flowing relation relative to a refrigeration assembly, and wherein the gas having the reduced temperature is provided to the refrigeration assembly; and energizing and/or actuating the refrigeration assembly, at least in part, by supplying the power and/or work output generated by the expansion engine to the refrigeration assembly, the refrigeration assembly further reducing the temperature of the gas to liquefy same.

  12. Natural gas monthly, August 1996

    SciTech Connect (OSTI)

    1996-08-01

    This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

  13. The Research Path to Determining the Natural Gas Supply Potential of Marine Gas Hydrates

    SciTech Connect (OSTI)

    Boswell, R.M.; Rose, K.K.; Baker, R.C.

    2008-06-01

    A primary goal of the U.S. National Interagency Gas Hydrates R&D program is to determine the natural gas production potential of marine gas hydrates. In pursuing this goal, four primary areas of effort are being conducted in parallel. First, are wide-ranging basic scientific investigations in both the laboratory and in the field designed to advance the understanding of the nature and behavior of gas hydrate bearing sediments (GHBS). This multi-disciplinary work has wide-ranging direct applications to resource recovery, including assisting the development of exploration and production technologies through better rock physics models for GHBS and also in providing key data for numerical simulations of productivity, reservoir geomechanical response, and other phenomena. In addition, fundamental science efforts are essential to developing a fuller understanding of the role gas hydrates play in the natural environment and the potential environmental implications of gas hydrate production, a critical precursor to commercial extraction. A second area of effort is the confirmation of resource presence and viability via a series of multi-well marine drilling expeditions. The collection of data in the field is essential to further clarifying what proportion of the likely immense in-place marine gas hydrate resource exists in accumulations of sufficient quality to represent potential commercial production prospects. A third research focus area is the integration of geologic, geophysical, and geochemical field data into an effective suite of exploration tools that can support the delineation and characterization commercial gas hydrate prospects prior to drilling. The fourth primary research focus is the development and testing of well-based extraction technologies (including drilling, completion, stimulation and production) that can safely deliver commercial gas production rates from gas hydrate reservoirs in a variety of settings. Initial efforts will take advantage of the relatively favorable economics of conducting production tests in Arctic gas-hydrate bearing sandstones with the intent of translating the knowledge gained to later testing in marine sandstone reservoirs. The full and concurrent pusuit of each of these research topics is essential to the determining the future production potential of naturally-occuring gas hydrates.

  14. Gas turbine engine

    DOE Patents [OSTI]

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  15. Natural gas monthly, February 1996

    SciTech Connect (OSTI)

    1996-03-01

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  16. Natural gas monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  17. Natural gas monthly, May 1995

    SciTech Connect (OSTI)

    1995-05-24

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  18. Eastport, ID Natural Gas Exports to Canada

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas from Same Month Previous Year (Percent) East Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) East Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 18.70 25.80 44.60 46.20 30.10 21.40 13.70 11.10 6.70 2.90 9.90 15.30 2016 17.50 41.40 - = No Data Reported; -- = Not Applicable; NA = Not

  19. NM, East Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -4.70 13.00 35.00 41.50 36.90 27.10 22.30 18.60 16.40 14.60 18.60 22.30 2016 19.40 24.20 - = No Data Reported; -- = Not Applicable; NA =

  20. Penitas, TX Natural Gas Exports to Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Pacific Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 39.40 137.00 162.70 103.50 62.40 34.80 25.30 14.90 12.90 9.80 8.70 -0.90 2016 0.10 -3.90 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  2. Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... Analysis of Technology and Policy Tradeoffs, Energy Policy, ...

  3. Gas magnetometer

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  4. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  5. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

    DOE Patents [OSTI]

    Yaghi, Omar M.; Eddaoudi, Mohamed; Li, Hailian; Kim, Jaheon; Rosi, Nathaniel

    2007-03-27

    The ability to design and construct solid-state materials with pre-determined structures is a grand challenge in chemistry. An inventive strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that has allowed the design of porous structures in which pore size and functionality can be varied systematically. MOF-5, a prototype of a new class of porous materials and one that is constructed from octahedral Zn--O--C clusters and benzene links, was used to demonstrate that its 3-D porous system can be functionalized with the organic groups, --Br, --NH2, --OC3H7, --OC5H11, --H4C2, and --H4C4, and its pore size expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. The ability to direct the formation of the octahedral clusters in the presence of a desired carboxylate link is an essential feature of this strategy, which resulted in the design of an isoreticular (having the same framework topology) series of sixteen well-defined materials whose crystals have open space representing up to 91.1% of the crystal volume, and homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. Unlike the unpredictable nature of zeolite and other molecular sieve syntheses, the deliberate control exercised at the molecular level in the design of these crystals is expected to have tremendous implications on materials properties and future technologies. Indeed, data indicate that members of this series represent the first monocrystalline mesoporous organic/inorganic frameworks, and exhibit the highest capacity for methane storage (155 cm3/cm3 at 36 atm) and the lowest densities (0.41 to 0.21 g/cm3) attained to date for any crystalline material at room temperature.

  6. NGNP Point Design - Results of the Initial Neutronics and Thermal-Hydraulic Assessments During FY-03, Rev. 1

    SciTech Connect (OSTI)

    Philip E. MacDonald; James W. Sterbentz; Robert L. Sant; P. Bayless; H. D. Gougar; R. L. Moore; A. M. Ougouag; W. K. Terry

    2003-09-01

    This report presents the preliminary preconceptual designs for two possible versions of the Next Generation Nuclear Plant (NGNP), one for a prismatic fuel type helium gas-cooled reactor and one for a pebble bed fuel helium gas reactor. Both designs are to meet three basic requirements: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors. The two efforts are discussed separately below. The analytical results presented in this report are very promising, however, we wish to caution the reader that future, more detailed, design work will be needed to provide final answers to a number of key questions including the allowable power level, the inlet temperature, the power density, the optimum fuel form, and others. The point design work presented in this report provides a starting point for other evaluations, and directions for the detailed design, but not final answers.

  7. EFM units monitor gas flow

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This paper describes the radio-controlled pipeline monitoring system established by Transcontinental Gas Pipe Line Corp. which was designed to equip all its natural gas purchasing metering facilities with electronic flow measurement computers. The paper describes the actual radio equipment used and the features and reliability of the equipment.

  8. Solvent-refined-coal (SRC) process. Determination of trace hydrocarbon, sulfur, and nitrogen compounds in SRC-II process development Unit P-99 gas streams. [Impure hydrogen in recycle gas and low pressure gas processing

    SciTech Connect (OSTI)

    Gray, J.A.; Galli, R.D.; McCracken, J.H.

    1982-02-01

    A knowledge of the identity and concentration of trace hydrocarbon, sulfur, and nitrogen compounds in the various gas streams of the SRC-II Coal Liquefaction Process is needed in order to design the recycle gas purification and low pressure gas processing systems in large-scale plants. This report discusses the results of an experimental study to identify and quantify trace compounds in the various high and low pressure gas streams of SRC-II Process Development Unit P-99. A capillary column trace hydrocarbon analysis has been developed which can quantify 41 hydrocarbons from methane to xylenes in SRC-II gas streams. With more work a number of other hydrocarbons could be quantified. A fixed gas analysis was also developed which can be integrated with the hydrocarbon analysis to yield a complete stream analysis. A gas chromatographic procedure using a flame photometric detector was developed for trace sulfur compounds, and six sulfur compounds were identified and quantified. A chemiluminescence method was developed for determination of NO and NO/sub 2/ down to 10 ppB in concentration. A gas chromatographic procedure using an electron capture detector was developed for HCN analysis down to 5 ppM. Drager tube analyses gave semiquantitative data on HCl and NH/sub 3/ content of the gas streams.

  9. Gas-phase chemical dynamics

    SciTech Connect (OSTI)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  10. BEDES Strategic Working Group Recommendations

    Broader source: Energy.gov [DOE]

    The BEDES Strategic Working Group Recommendations document is a guide to how the BEDES Dictionary can be brought to market and provide the services for which it was designed.

  11. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  12. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  13. Vermont Gas- Commercial Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Vermont Gas (VGS) offers rebates for commercial customers who install high efficiency equipment in existing buildings. The Commercial Equipment Replacement Program is designed for commercial and...

  14. How NIF Works

    ScienceCinema (OSTI)

    None

    2010-09-01

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  15. Natural gas monthly, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

  16. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  17. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  18. Power control system for a hot gas engine

    DOE Patents [OSTI]

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  19. DOE - Office of Legacy Management -- Morgantown Ordnance Works...

    Office of Legacy Management (LM)

    (NETL). NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Morgantown Ordnance Works

  20. How it works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How it works MINERvA is a particle physics experiment, located at Fermi National Accelerator Laboratory in Batavia, Illinois. MINERvA was designed to perform high-precision measurements of neutrino interactions on a wide variety of materials, including water, helium, carbon, iron, lead, and plastic. MINERvA is located 100 meters underground, and sits directly in front of the MINOS near detector. The source of MINERvA's neutrino beam is the Neutrinos at the Main Injector beamline, or NuMI. NuMI

  1. GAS COOLED NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Rodwell, W.

    1958-06-10

    A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

  2. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  3. Rock matrix and fracture analysis of flow in western tight gas sands: Annual report, Phase 3

    SciTech Connect (OSTI)

    Dandge, V.; Graham, M.; Gonzales, B.; Coker, D.

    1987-12-01

    Tight gas sands are a vast future source of natural gas. These sands are characterized as having very low porosity and permeability. The main resource development problem is efficiently extracting the gas from the reservoir. Future production depends on a combination of gas price and technological advances. Gas production can be enhanced by fracturing. Studies have shown that many aspects of fracture design and gas production are influenced by properties of the rock matrix. Computer models for stimulation procedures require accurate knowledge of flow properties of both the rock matrix and the fractured regions. In the proposed work, these properties will be measured along with advanced core analysis procedure aimed at understanding the relationship between pore structure and properties. The objective of this project is to develop reliable core analysis techniques for measuring the petrophysical properties of tight gas sands. Recent research has indicated that the flow conditions in the reservoir can be greatly enhanced by the presence of natural fractures, which serve as a transport path for gas from the less permeable matrix. The study is mainly concerned with the dependence of flow in tight gas matrix and healed tectonic fractures on water saturation and confining pressure. This dependency is to be related to the detailed pore structure of tight sands as typified by cores recovered in the Multi-Well experiment. 22 refs., 34 figs., 9 tabs.

  4. Hydrogen gas relief valve

    DOE Patents [OSTI]

    Whittlesey, Curtis C.

    1985-01-01

    An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

  5. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  6. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  7. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  8. James Madison University: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Each design was modeled analytically using SolidWorks and mathematically analyzed using ... wind turbine design was modeled using SolidWorks 2012. In addition, technical documents ...

  9. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  10. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  11. Unconventional Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Impacts of Unconventional Natural Gas Development and Production May 29, 2014 DOE/NETL-2014/1651 OFFICE OF FOSSIL ENERGY National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  12. Conceptual Safety Design RM

    Broader source: Energy.gov [DOE]

    The Conceptual Safety Design (CSD) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the Conceptual Safety Design work, processes and...

  13. Natural Gas Regulation

    Broader source: Energy.gov [DOE]

    The Natural Gas Act of 1938, as amended, requires any person who wishes to import and/or export natural gas, (including liquefied natural gas, compressed natural gas, compressed gas liquids, etc.)...

  14. Gas Generation from Actinide Oxide Materials

    SciTech Connect (OSTI)

    George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

    2000-12-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

  15. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  16. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  17. Venice Park landfill: Working with the community

    SciTech Connect (OSTI)

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  18. Commerce RISE Program Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commerce RISE Program Design Commerce RISE Program Design Community Power Works program design, a document posted on the U.S. Department of Energy's Better Buildings Neighborhood ...

  19. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-12-31

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe`s working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  20. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-01-01

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe's working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  1. Interagency Working Groups

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) works closely with agencies and partner organizations to coordinate interagency working groups

  2. GAS SEAL

    DOE Patents [OSTI]

    Monson, H.; Hutter, E.

    1961-07-11

    A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  4. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  5. ILDG Middleware Working Group Status Report

    SciTech Connect (OSTI)

    B. Joo; W. Watson

    2004-09-01

    We report on the status of the ILDG Middleware Working Group. The Middleware Working Group was formed with the aim of designing standard middleware to allow the interoperation of the data grids of ILDG member collaborations. Details of the working group are given. In this contribution we outline the role of middleware in the ILDG, present our proposed middleware architecture and discuss our current status and future work within the working group.

  6. Sandia National Laboratories: Working with Sandia: Procurement:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction and Facilities Construction and Facilities iSupplier Account Accounts Payable Contract Information Construction and Facilities Contract Audit Working with Sandia Construction and Facilities Sandia establishes contracts to support design and construction, including contracts for leased space, decontamination and demolition work, and infrastructure maintenance. AE & Construction Partnerships Design Management Partnerships Error/Omission Process (PDF) Sandia completes

  7. An analytical model of axial compressor off-design performance

    SciTech Connect (OSTI)

    Camp, T.R.; Horlock, J.H. . Whittle Lab.)

    1994-07-01

    An analysis is presented of the off-design performance of multistage axial-flow compressors. It is based on an analytical solution, valid for small perturbations in operating conditions from the design point, and provides an insight into the effects of choices made during the compressor design process on performance and off-design stage matching. It is shown that the mean design value of stage loading coefficient ([psi] = [Delta]h[sub 0]/U[sup 2]) has a dominant effect on off-design performance, whereas the stage-wise distribution of stage loading coefficient and the design value of flow coefficient have little influence. The powerful effects of variable stator vanes on stage-matching are also demonstrated and these results are shown to agree well with previous work. The slope of the working line of a gas turbine engine, overlaid on overall compressor characteristics, is shown to have a strong effect on the off-design stage-matching through the compressor. The model is also used to analyze design changes to the compressor geometry and to show how errors in estimates of annulus blockage, decided during the design process, have less effect on compressor performance than has previously been thought.

  8. Control of gas contaminants in air streams through biofiltration

    SciTech Connect (OSTI)

    Holt, T.; Lackey, L.

    1996-11-01

    According to the National Institute for Occupational Safety and Health (NIOSH), the maximum styrene concentration allowed in the work place is 50 ppm for up to a 10-hour work day during a 40-hour work week. The US EPA has classified styrene as one of the 189 hazardous air pollutants listed under Title 3 of the Clean Air Act Amendments to be reduced by a factor of 90% by the year 2000. Significant quantities of styrene are emitted to the atmosphere each year by boat manufacturers. A typical fiberglass boat manufacturing facility can emit over 273 metric tons/year of styrene. The concentration of styrene in the industrial exhaust gas ranges from 20 to 100 ppmv. Such dilute, high volume organically tainted air streams can make conventional abatement technologies such as thermal incineration, adsorption, or absorption technically incompetent or prohibitively expensive. An efficient, innovative, and economical means of remediating styrene vapors would be of value to industries and to the environment. Biofilter technology depends on microorganisms that are immobilized on the packing material in a solid phase reactor to remove or degrade environmentally undesirable compounds contaminating gas streams. The technology is especially successful for treating large volumes of air containing low concentrations of contaminants. The objective of this study was to investigate the feasibility of using biofiltration to treat waste gas streams containing styrene and to determine the critical design and operating parameters for such a system.

  9. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  10. Maintaining gas cooling equipment

    SciTech Connect (OSTI)

    Rector, J.D.

    1997-05-01

    An often overlooked key to satisfactory operation and longevity of any mechanical device is proper operation and maintenance in accordance with the manufacturer`s written instructions. Absorption chillers, although they use a different technology than the more familiar vapor compression cycle to produce chilled water, operate successfully in a variety of applications if operated and maintained properly. Maintenance procedures may be more frequent than those required for vapor compression chillers, but they are also typically less complex. The goal of this article is to describe the basic operation of an absorption chiller to provide an understanding of the relatively simple tasks required to keep the machine operating at maximum efficiency for its design life and beyond. A good starting point is definitions. Gas cooling equipment is generally defined as alternative energy, non-electric cooling products. This includes absorption chillers, engine-drive chillers and packaged desiccant units, among others. Natural gas combustion drives the equipment.

  11. Development of a Small-Scale Natural Gas Liquefier. Final Report

    SciTech Connect (OSTI)

    Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

    2003-04-30

    This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

  12. Western gas sands project. Status report, 1 June-30 June 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress of the government-sponsored projects during June 1980, that are directed towards increasing gas production from the low permeability gas sands of the western United States, is summarized. Northwest Exploration declined use of their site for the multi-well experiment; additional sites are being contemplated. Experiments began at Bartlesville Energy Technology Center designed to examine fracture closure and crushing strength of bauxite. At Lawrence Livermore Laboratory, work is progressing on the code to calculate fluid motion in an expanding propagation crack.

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    working gas stocks are at their second-highest level for the report week in the 11-year history of the weekly natural gas storage database. The implied net injection during the...

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage increased to 3,254 Bcf as of Friday,...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  16. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in underground storage was 2,521 Bcf as of June...

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage totaled 2,347 Bcf as of Friday,...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories increased to 1,904 Bcf as of Friday,...