Powered by Deep Web Technologies
Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

2

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

3

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

4

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

5

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

6

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

7

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

8

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

9

Print  

Science Conference Proceedings (OSTI)

His engineering work in industry, government and academia has led to breakthroughs from mathematical modeling of phase transformations with fluid- structure...

10

Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic effects on catalyst activity and selectivity. Working at the ALS, a University of California, Berkeley-Berkeley Lab group has used an ambient-pressure x-ray photoelectron spectroscopy (APXPS) apparatus to demonstrate that bimetallic nanoparticle catalysts can undergo profound structural and chemical changes in response to reactive environments at ambient pressures, thereby opening the way for engineering catalysts with enhanced activity and selectivity.

11

Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic effects on catalyst activity and selectivity. Working at the ALS, a University of California, Berkeley-Berkeley Lab group has used an ambient-pressure x-ray photoelectron spectroscopy (APXPS) apparatus to demonstrate that bimetallic nanoparticle catalysts can undergo profound structural and chemical changes in response to reactive environments at ambient pressures, thereby opening the way for engineering catalysts with enhanced activity and selectivity.

12

Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic effects on catalyst activity and selectivity. Working at the ALS, a University of California, Berkeley-Berkeley Lab group has used an ambient-pressure x-ray photoelectron spectroscopy (APXPS) apparatus to demonstrate that bimetallic nanoparticle catalysts can undergo profound structural and chemical changes in response to reactive environments at ambient pressures, thereby opening the way for engineering catalysts with enhanced activity and selectivity.

13

Printing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employee Services » Printing Employee Services » Printing Printing The Printing Team is the liaison between the U.S. Government Printing Office and the Department of Energy. It consists of an expert group of printing specialists who offer a full range of services from assistance in developing your printing requirements to the final printing, distribution and mailing of products. The printed products range from black and white to full color items. These Services are available through the Working Capital Fund. The Printing Office produces a complete range of high-quality printed products comparable to those available from a full-service commercial enterprise. These include: Reports Books Pamphlets and Brochures Public Information Materials Presentation and Promotional Posters Forms and Letterhead

14

Alternative catalyst and exhaust gas sensor work at Argonne National Laboratory  

DOE Green Energy (OSTI)

Research programs at Argonne National Laboratory in the areas of automobile emissions monitoring and control are described. The mandate to improve automobile efficiency while reducing Pollution requires the development of new catalysts for exhaust emissions control that are capable of functioning efficiently under lean-burn engine operating conditions. It is also desirable that the use of expensive noble metal catalysts be avoided. NO{sub x} emissions will not be efficiently controlled by the current three-way, supported noble metal catalysts under lean-burn conditions. New catalysts are being sought that could effect the selective catalytic reduction (SCR) of NO{sub x} by exhaust hydrocarbons in the presence of oxygen. Molecular sieve zeolites of the ZSM-5 and ferrierite types, ion-exchanged with copper ions, are the best of the catalysts known to effect this chemistry, but the mechanism of the SCR is still not understood. In this project the authors will first undertake the investigation of the SCR of NO using model reactions to test postulated mechanistic pathways. Initial experiments have been devised to investigate the possible participation of metal alkyl complexes, metal oxime complexes, N-alkyl-N-nitroso-alkylaminato-metal complexes, and metal nitrile complexes in the zeolites. ANL will also develop microsensors, based on surface acoustic wave (SAW) chemical sensing techniques, and a micro mass-spectrometer (MS) for tailpipe or engine-out emission monitoring. The sensor configurations and sensing techniques of the proposed SAW and micro-MS are described.

Iton, L.E.; Maroni, V.A.; Dieckman, S.L.; Sheen, S.H.; Raptis, A.C.

1994-12-31T23:59:59.000Z

15

Oxidation catalyst  

DOE Patents (OSTI)

The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

2010-11-09T23:59:59.000Z

16

Project Catalyst | Open Energy Information  

Open Energy Info (EERE)

Project Catalyst Project Catalyst Jump to: navigation, search Name Project Catalyst Agency/Company /Organization ClimateWorks, European Climate Foundation Sector Climate, Energy, Land Focus Area Energy Efficiency, Forestry Website http://www.project-catalyst.in References Project Catalyst[1] Project Catalyst Screenshot Contents 1 About 2 Resources 2.1 Tools 2.2 Programs 3 References About "Project Catalyst is an initiative of the ClimateWorks Foundation. ClimateWorks is a global, nonprofit philanthropic foundation headquartered in San Francisco, California with a network of affiliated foundations in China, India, the US, and the European Union. The ClimateWorks family of organizations focus on enacting policies that reduce greenhouse gas emissions through three general policy areas: energy efficiency standards,

17

Development of an impedance-based sensor for the detection of catalyst coking in fuel-reforming systems.  

E-Print Network (OSTI)

??A novel sensor for detecting the early stages of catalyst coking in fuel reforming systems has been developed. The sensor was manufactured by inkjet printing (more)

Wheeler, Jeffrey L.

2013-01-01T23:59:59.000Z

18

Selective Catalytic Reduction (SCR) Catalyst Reconditioning as Part of Catalyst Management  

Science Conference Proceedings (OSTI)

Previous EPRI work on catalyst reconditioning for selective catalytic reduction (SCR) systems sought to offer guidance to catalyst users as to the expected performance of reconditioned catalysts, both in the short term and long term, as well as to offer guidance as to the actual processes used for catalyst reconditioning. The present work seeks to compile these past efforts into a single document offering maximum utility to catalyst end users. In addition, the report updates previous findings where pract...

2009-12-21T23:59:59.000Z

19

Laser Catalyst  

INLs Laser Catalyst is a method for removing contaminant matter from a porous material. A polymer material is applied to a contaminated surface and ...

20

Offset Printing, Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Printing Printing Our full service print shop provides prepress services, single and multicolor offset printing, and complete bindery. We print Reports Forms Brochures, leaflets and flyers Name tags and meal tickets Newsletters, etc Prepress Electronic files and paper copy prepared for printing. Complete Bindery Apply address labels or tabs to printed material. Machine fold documents and insert into envelopes for mailing. Laminate printed items up to 35" wide. Numbering and perforating. Trimming, drilling, padding and stitching. Special Printing Special reports, full color printing, continuous and carbon forms printed through the U.S. Government Printing Office. Additional Information Printing can be reached on X2953 The supervisor is Rick Backofen who can be reached on X6183

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oxyhydrochlorination catalyst  

DOE Patents (OSTI)

An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

22

Photo-oxidation catalysts  

DOE Patents (OSTI)

Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

2009-07-14T23:59:59.000Z

23

Novel metalloporphyrin catalysts for the oxidation of hydrocarbons  

DOE Green Energy (OSTI)

Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

1996-11-01T23:59:59.000Z

24

Frequently Asked Questions (FAQ) for the E-print Network -- Energy,  

Office of Scientific and Technical Information (OSTI)

Frequently Asked Questions Frequently Asked Questions Table of Contents General Information What are e-prints? Are e-prints and preprints the same thing? What is the E-print Network: Research Communications for Scientists and Engineers? Who uses the E-print Network? How does the E-print Network help the user? How the E-print Network Works What's in the E-print Network? What are the criteria for inclusion in the E-print Network? How does the E-print Network function? What is E-print Network's search architecture? An overview of tools and services A note to site owners General Information Q: What are e-prints? A: E-prints are scholarly and professional works electronically produced and shared by researchers with the intent of communicating research findings to colleagues. They may include preprints, reprints,

25

The three way catalyst efficiency and the gas temperature difference  

Science Conference Proceedings (OSTI)

This work refers to the examination of the three way catalyst efficiency, testing the exhaust gases temperature difference (?T) at the inlet and outlet of the catalyst, using gasoline - ethanol mixtures for fuel, at a catalyst engine functioning ... Keywords: bioethanol, gas emissions, three way catalyst

Charalampos Arapatsakos; Panagiotis Lefakis

2009-02-01T23:59:59.000Z

26

work  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE THE U.S. DEPARTMENT OF ENERGY'S WORKING CAPITAL FUND U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES OCTOBER 1998 AUDIT REPORT CR-B-99-01 MEMORANDUM FOR THE DIRECTOR, BUSINESS MANAGEMENT STAFF FROM: William S. Maharay Acting Manager, Capital Regional Audit Office, Office of Inspector General SUBJECT: INFORMATION : Audit Report on the Department's Working Capital Fund BACKGROUND The Department established the Working Capital Fund (Fund) in January 1996 as a financial management tool for charging the costs of common services provided at Headquarters to Departmental program offices. The objectives in establishing the Fund were to increase efficiency of the Department's operations, improve management of administrative services

27

Catalyst activator  

DOE Patents (OSTI)

A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

McAdon, Mark H. (Midland, MI); Nickias, Peter N. (Midland, MI); Marks, Tobin J. (Evanston, IL); Schwartz, David J. (Lake Jackson, TX)

2001-01-01T23:59:59.000Z

28

Solid Catalyst Alkylation  

This is a method used to reactivate solid/liquid catalysts used in INLs super critical process to produce alkylates. The method brings the catalyst ...

29

Electrochemical catalyst recovery method  

DOE Patents (OSTI)

A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

Silva, Laura J. (Richland, WA); Bray, Lane A. (Richland, WA)

1995-01-01T23:59:59.000Z

30

Electrochemical catalyst recovery method  

DOE Patents (OSTI)

A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

Silva, L.J.; Bray, L.A.

1995-05-30T23:59:59.000Z

31

Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, April 1, 1995--June 30, 1995  

SciTech Connect

Work continued on the development of catalysts for Fischer-Tropsch synthesis. Six catalysts were synthesised. The effects of a calcium oxide promoter were evaluated. Catalysts were characterized for pore size and BET surface area.

Bukur, D.B.; Lang, X.; Wei, G.; Xiao, S.

1995-08-17T23:59:59.000Z

32

Latent Print AFIS Interoperability Working Group  

Science Conference Proceedings (OSTI)

... Future State of Interoperability (.jpg) Enter Once, Search ... between examiner time and search accuracy ... DRAFT Glossary of AFIS Terms (PDF) NEW ...

2013-08-07T23:59:59.000Z

33

Catalysts for improved fuel processing  

DOE Green Energy (OSTI)

This report covers our technical progress on fuel processing catalyst characterization for the specific purpose of hydrogen production for proton-exchange-membrane (PEM) fuel cells. These development efforts support DOE activities in the development of compact, transient capable reformers for on-board hydrogen generation starting from candidate fuels. The long-term objective includes increased durability and lifetime, in addition to smaller volume, improved performance, and other specifications required meeting fuel processor goals. The technical barriers of compact fuel processor size, transient capability, and compact, efficient thermal management all are functions of catalyst performance. Significantly, work at LANL now tests large-scale fuel processors for performance and durability, as influenced by fuels and fuel constituents, and complements that testing with micro-scale catalyst evaluation which is accomplished under well controlled conditions.

Borup, R.L.; Inbody, M.A. [and others

2000-09-01T23:59:59.000Z

34

Taking Cues from Nature to Develop Better Biofuel Catalysts ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Taking Cues from Nature to Develop Better Biofuel Catalysts August 27, 2013 Printer-friendly version Scientists working at the Argonne Leadership Computing Facility (ALCF) are...

35

Tungsten Cathode Catalyst for PEMFC  

DOE Green Energy (OSTI)

Final report for project to evaluate tungsten-based catalyst as a cathode catalyst for PEM cell applications.

Joel B. Christian; Sean P. E. Smith

2006-09-22T23:59:59.000Z

36

Glossary Term - Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Bohr Radius Previous Term (Bohr Radius) Glossary Main Index Next Term (Ceres) Ceres Catalyst A catalyst is a substance that increases the speed of a chemical reaction without being...

37

Catalyst Management Planning  

Science Conference Proceedings (OSTI)

Catalyst used in selective catalytic reduction (SCR) systems for NOx control in coal-fired power plants is susceptible to deactivation over time due to exposure to trace elements contained in the coal. In order to sustain the levels of NOx reduction needed to comply with regulatory requirements, periodic replacement of the catalyst modules with new or regenerated catalyst is an essential element in operating an SCR system. Catalyst management planning is a process whereby decisions are made about when ca...

2010-12-21T23:59:59.000Z

38

System for reactivating catalysts  

DOE Patents (OSTI)

A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

2010-03-02T23:59:59.000Z

39

Model Catalysts: Simulating the Complexities of Heterogeneous Catalysts  

Science Conference Proceedings (OSTI)

Surface-science investigations have contributed significantly to heterogeneous catalysis in the past several decades. Fundamental studies of reactive systems on metal single crystals have aided researchers in understanding the effect of surface structure on catalyst reactivity and selectivity for a number of important reactions. Recently, model systems, consisting of metal clusters deposited on planar oxide surfaces, have facilitated the study of metal particle-size and support effects. These model systems not only are useful for carrying out kinetic investigations, but are also amenable to surface spectroscopic techniques, thus enabling investigations under realistic pressures and at working temperatures. By combining surface-science characterization methods with kinetic measurements under realistic working conditions, researchers are continuing to advance the molecular-level understanding of heterogeneous catalysis and are narrowing he pressure and material gap between model and real-world catalysts.

Gao, Feng; Goodman, D. W.

2012-05-01T23:59:59.000Z

40

Second Printing November 1990  

E-Print Network (OSTI)

Electronic VersionAbout WMRC's Electronic Publications: This document was originally published in a traditional format. It has been transferred to an electronic format to allow faster and broader access to important information and data. While the Center makes every effort to maintain a level of quality during the transfer from print to digital format, it is possible that minor formatting and typographical inconsistencies will still exist in this document. Additionally, due to the constraints of the electronic format chosen, page numbering will vary slightly from the original document. The original, printed version of this document may still be available. Please contact WMRC for more information: WMRC

David Thomas; Lon Carlson; Walt Mikucki; Rachel Baker; John Warren; Doug Maxelner; Eliliott Zimmermann; Claudia Washburn; David Thomas; Lon Carlson; Walt Mikucki; Rachel Baker; John Warren; Doug Maxeiner; Elliott Zimmermann; Claudia Washburn; James R. Thompson

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS  

DOE Green Energy (OSTI)

The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

Davis, B.H.

1998-07-22T23:59:59.000Z

42

Silver Ink for Conductor Printing  

Many applications require the ability to print conductors on devices that cannot tolerate high temperatures. Current methods for making printable ...

43

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

44

Methods of making textured catalysts  

SciTech Connect

A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

Werpy, Todd (West Richland, WA); Frye, Jr., John G. (Richland, WA); Wang, Yong (Richland, WA); Zacher, Alan H. (Kennewick, WA)

2010-08-17T23:59:59.000Z

45

METHOD OF PURIFYING CATALYSTS  

DOE Patents (OSTI)

It has been fuund that the presence of chlorine as an impurity adversely affects the performance of finely divided platinum catalysts such as are used in the isotopic exchange process for the production of beavy water. This chlorine impurity may be removed from these catalysts by treating the catalyst at an elevated temperature with dry hydrogen and then with wet hydrogen, having a hydrogen-water vapor volume of about 8: 1. This alternate treatment by dry hydrogen and wet hydrogen is continued until the chlorine is largely removed from the catalyst.

Joris, G.G.

1958-09-01T23:59:59.000Z

46

Intermittency on catalysts: voter model  

E-Print Network (OSTI)

In this paper we study intermittency for the parabolic Anderson equation with a space-time random potential describing the evolution of a "reactant" under the influence of a "catalyst", where the catalyst is given by the voter model with opinions 0 and 1 that are updated according to a random walk transition kernel starting from either the Bernoulli measure or the equilibrium measure. We show that the annealed Lyapunov exponents of the solution are trivial when the random walk is not strongly transient, but display an interesting dependence on the diffusion constant when the random walk is strongly transient. Compared with our earlier work, the main obstacle is the non-reversibility of the voter model dynamics, since this precludes the application of spectral techniques. The duality with coalescing random walks is key to our analysis, and leads to a representation formula for the Lyapunov exponents that allows for the application of large deviation techniques.

Grtner, J; Maillard, G

2009-01-01T23:59:59.000Z

47

Influence of Ceria and Nickel Addition to Alumina-Supported Rhodium Catalyst for Propane Steam Reforming at Low Temperatures.  

E-Print Network (OSTI)

??This work aims to develop a fundamental understanding of the catalyst composition-structure-activity relationships for propane steam reforming over supported Rh catalysts. The work investigates the (more)

Li, Yan

2009-01-01T23:59:59.000Z

48

Nanostructured catalyst supports  

DOE Patents (OSTI)

The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

2012-10-02T23:59:59.000Z

49

Development of a stable cobalt-ruthenium Fisher-Tropsch catalyst. Final report  

DOE Green Energy (OSTI)

The reverse micelle catalyst preparation method has been used to prepare catalysts on four supports: magnesium oxide, carbon, alumina- titania and steamed Y zeolite. These catalysts were not as active as a reference catalyst prepared during previous contracts to Union Carbide Corp. This catalyst was supported on steamed Y zerolite support and was impregnated by a pore-filling method using a nonaqueous solvent. Additional catalysts were prepared via pore- filling impregnation of steamed Y zeolites. These catalysts had levels of cobalt two to three and a half times as high as the original Union Carbide catalyst. On a catalyst volume basis they were much more active than the previous catalyst; on an atom by atom basis the cobalt was about of the same activity, i.e., the high cobalt catalysts` cobalt atoms were not extensively covered over and deactivated by other cobalt atoms. The new, high activity, Y zerolite catalysts were not as stable as the earlier Union Carbide catalyst. However, stability enhancement of these catalysts should be possible, for instance, through adjustment of the quantity and/or type of trace metals present. A primary objective of this work was determination whether small amounts of ruthenium could enhance the activity of the cobalt F-T catalyst. The reverse micelle catalysts were not activated by ruthenium, indeed scanning transmission electronic microscopy (STEM) analysis provided some evidence that ruthenium was not present in the cobalt crystallites. Ruthenium did not seem to activate the high cobalt Y zeolite catalyst either, but additional experiments with Y zeolite-supported catalysts are required. Should ruthenium prove not to be an effective promoter under the simple catalyst activation procedure used in this work, more complex activation procedures have been reported which are claimed to enhance the cobalt/ruthenium interaction and result in activity promotion by ruthenium.

Frame, R.R.; Gala, H.B.

1995-02-01T23:59:59.000Z

50

Roll Printed Electronics: Development and Scaling of Gravure Printing Techniques  

E-Print Network (OSTI)

gravure printing of indium tin oxide nanoparticle patternsfor the deposition of indium tin oxide nanoparticles forwith and without Indium Zinc Oxide (IZO) conductive layers

de la Fuente Vornbrock, Alejandro

2009-01-01T23:59:59.000Z

51

Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture)  

DOE Green Energy (OSTI)

Catalysts have been used to speed up chemical reactions as long as yeast has been used to make bread rise. Today, catalysts are used everywhere from home kitchens to industrial chemical factories. In the near future, new catalysts being developed at Brookhaven Lab may be used to speed us along our roads and highways as they play a major role in solving the worlds energy challenges. During the lecture, Liu will discuss how theorists and experimentalists at BNL are working together to formulate and test new catalysts that could be used in real-life applications, such as hydrogen-fuel cells that may one day power our cars and trucks.

Liu, Ping (BNL Chemistry Dept)

2010-12-15T23:59:59.000Z

52

NREL: Biomass Research - Chemical and Catalyst Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Catalyst Science Projects Chemical and Catalyst Science Projects A photo of a large white tank the size of a water heater. Several metal fittings stick out of the sides of the tank. Thin tubes are attached to some of the fittings and lead to flow meters and other metal pipes. Researchers use experimental data from this four-inch fluidized bed reactor to develop and validate gasification process models. NREL uses chemical analysis to study biomass-derived products online during the conversion process. Catalysts are used in the thermochemical conversion process to convert tars (a byproduct of gasification) to syngas and to convert syngas to liquid transportation fuels. Among the chemical and catalyst science projects at NREL are: Catalyst Fundamentals NREL is working to develop and understand the performance of catalyst and

53

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

Thomas K. Gale

2005-12-31T23:59:59.000Z

54

Nano-contact printing of DNA monolayers  

E-Print Network (OSTI)

Technology today is directed towards building smaller devices. To accommodate this development, printing methods are needed. Some printing methods that are used include lithography, micro-contact printing, and inkjet ...

Tong, Angela, 1983-

2005-01-01T23:59:59.000Z

55

Catalyst for microelectromechanical systems microreactors  

DOE Patents (OSTI)

A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

2011-11-15T23:59:59.000Z

56

Catalyst for microelectromechanical systems microreactors  

DOE Patents (OSTI)

A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

2010-06-29T23:59:59.000Z

57

Catalysts and method  

DOE Patents (OSTI)

An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

58

Uranium-Based Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium-Based Catalysts S. H. Overbury, Cyrus Riahi-Nezhad, Zongtao Zhang, Sheng Dai, and Jonathan Haire Oak Ridge National Laboratory* P.O. Box 2008 Oak Ridge, Tennessee...

59

Epoxidation catalyst and process  

DOE Patents (OSTI)

Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

Linic, Suljo (Ann Arbor, MI); Christopher, Phillip (Ann Arbor, MI)

2010-10-26T23:59:59.000Z

60

Crystalline titanate catalyst supports  

DOE Patents (OSTI)

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, Rayford G. (Bryan, TX); Dosch, Robert G. (Albuquerque, NM)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Crystalline titanate catalyst supports  

DOE Patents (OSTI)

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, R.G.; Dosch, R.G.

1991-12-31T23:59:59.000Z

62

Crystalline titanate catalyst supports  

DOE Patents (OSTI)

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, R.G.; Dosch, R.G.

1993-01-05T23:59:59.000Z

63

Plasmatron-catalyst system  

DOE Patents (OSTI)

A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA); Alexeev, Nikolai (Moscow, RU)

2007-10-09T23:59:59.000Z

64

Catalytic reforming catalyst  

Science Conference Proceedings (OSTI)

An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

Buss, W.C.; Kluksdahl, H.E.

1980-12-09T23:59:59.000Z

65

Catalyst system comprising a first catalyst system tethered to a supported catalyst  

DOE Patents (OSTI)

The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

Angelici, Robert J. (Ames, IA); Gao, Hanrong (Ames, IA)

1998-08-04T23:59:59.000Z

66

Catalyst Modeling and CLEERS - Emissions & Emission Controls...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalyst Modeling and CLEERS A large part of ORNL's efforts in catalyst research are geared toward model development of catalyst devices and engine systems. Experimental data...

67

CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report  

DOE Green Energy (OSTI)

Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts, development and testing of metal oxide based H2SO4 catalysts, support of the ILS for catalyst studies, conducting a long term catalyst stability test at anticipated operating temperatures and pressures, and developing capabilities for conducting pressurized catalyst tests.

Daniel M. Ginosar

2009-09-01T23:59:59.000Z

68

Public Law 102-392 for Printing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-392 for Printing Public Law 102-392 for Printing Public Law 102-392 for Printing Public Law 102-392 for Printing More Documents & Publications Minutes from the Print and Mail...

69

Hydrous metal oxide catalysts for oxidation of hydrocarbons  

DOE Green Energy (OSTI)

This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

Miller, J.E.; Dosch, R.G.; McLaughlin, L.I. [Sandia National Labs., Albuquerque, NM (United States). Process Research Dept.

1993-07-01T23:59:59.000Z

70

Computational Design of Lignin Depolymerization Catalysts  

Science Conference Proceedings (OSTI)

Lignin is a major component of plant cell walls that is typically underutilized in selective conversion strategies for renewable fuels and chemicals. The mechanisms by which thermal and catalytic treatments deconstruct lignin remain elusive, for which quantum mechanical calculations can offer fundamental insights. In this work, a computational approach has been used to elucidate the reductive deconstruction pathway of a ruthenium-catalyzed system. Transition states have been computed to determine the rate-limiting steps for a catalyst that cleaves arylether linkages. Our calculations are supported by experimental synthesis and kinetic and thermodynamic measurements of the deconstruction of model lignin dimers by a ruthenium catalyst with the ultimate objective of designing new catalysts to eventually utilize lignin in biorefineries.

Kim, S.; Chmely, S. C.; Sturgeon, M.; Katahira, R.; Paton, R. S.; Beckham, G. T.

2012-01-01T23:59:59.000Z

71

Supported organoiridium catalysts for alkane dehydrogenation  

DOE Patents (OSTI)

Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

2013-09-03T23:59:59.000Z

72

Partial oxidation catalyst  

DOE Patents (OSTI)

A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

2000-01-01T23:59:59.000Z

73

Catalyst, method of making, and reactions using the catalyst  

DOE Patents (OSTI)

The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

2002-08-27T23:59:59.000Z

74

Catalyst, method of making, and reactions using the catalyst  

DOE Patents (OSTI)

The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

2009-03-03T23:59:59.000Z

75

Catalyst, Method Of Making, And Reactions Using The Catalyst  

DOE Patents (OSTI)

The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

Tonkovich, Anna Lee Y. (Pasco, WA); Wang, Yong (Richland, WA); Gao, Yufei (Kennewick, WA)

2004-07-13T23:59:59.000Z

76

Intermittency on catalysts  

E-Print Network (OSTI)

The present paper provides an overview of results obtained in four recent papers by the authors. These papers address the problem of intermittency for the Parabolic Anderson Model in a \\emph{time-dependent random medium}, describing the evolution of a ``reactant'' in the presence of a ``catalyst''. Three examples of catalysts are considered: (1) independent simple random walks; (2) symmetric exclusion process; (3) symmetric voter model. The focus is on the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of the reactant. It turns out that these exponents exhibit an interesting dependence on the dimension and on the diffusion constant.

J. Gaertner; F. den Hollander; G. Maillard

2007-06-08T23:59:59.000Z

77

Intermittency on catalysts  

E-Print Network (OSTI)

The present paper provides an overview of results obtained in four recent papers by the authors. These papers address the problem of intermittency for the Parabolic Anderson Model in a \\emph{time-dependent random medium}, describing the evolution of a 'reactant'' in the presence of a ``catalyst''. Three examples of catalysts are considered: (1) independent simple random walks; (2) symmetric exclusion process; (3) symmetric voter model. The focus is on the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of the reactant. It turns out that these exponents exhibit an interesting dependence on the dimension and on the diffusion constant.

Grtner, J; Maillard, G

2007-01-01T23:59:59.000Z

78

Attrition Resistant Iron-Based Fischer-Tropsch Catalysts  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRS) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modem coal gasifiers. This is because in addition to reasonable F-T activity, the FT catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.

Jothimurugesan, K. [Hampton Univ., VA (United States). Dept. of Chemical Engineering; Goodwin, J.G. [Univ. of Pittsburgh, PA (United States). Chemical and Petroleum Engineering Dept.; Spivey, J.J.; Gangwal, S.K. [Research Triangle Inst., NC (United States)

1997-03-26T23:59:59.000Z

79

Process of making supported catalyst  

DOE Patents (OSTI)

Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

Schwarz, James A. (Fayetteville, NY); Subramanian, Somasundaram (Melvindale, MI)

1992-01-01T23:59:59.000Z

80

Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers  

SciTech Connect

Highlights: > This paper presents new and important data on characterization of wastes of electric and electronic equipments. > Copper concentration is increasing in mobile phones and remaining constant in personal computers. > Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.

Yamane, Luciana Harue, E-mail: lucianayamane@uol.com.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Tavares de Moraes, Viviane, E-mail: tavares.vivi@gmail.com [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Crocce Romano Espinosa, Denise, E-mail: espinosa@usp.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Soares Tenorio, Jorge Alberto, E-mail: jtenorio@usp.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil)

2011-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Zinc sulfide liquefaction catalyst  

DOE Patents (OSTI)

A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

Garg, Diwakar (Macungie, PA)

1984-01-01T23:59:59.000Z

82

Catalysts for hydrocarbon conversion  

Science Conference Proceedings (OSTI)

Catalyst, particularly useful in catalytic reforming and for producing highly pure aromatic hydrocarbons, comprising an alumina carrier and containing, expressed in proportion of the weight of the alumina carrier: 005 to 1% of platinum 01 to 4% of gallium, indium or thallium 01 to 2% of tungsten, and 1 to 10% of halogen.

Le P. J.; Malmaison, R.; Marcilly, C.; Martino, G.; Miquel, J.

1980-08-12T23:59:59.000Z

83

Add your e-prints to the E-print Network -- Energy, science,...  

Office of Scientific and Technical Information (OSTI)

Add E-prints We invite you to submit your e-prints to the network. Having your e-prints in the network increases awareness of them and promotes the dissemination of your...

84

Sulfur condensation in Claus catalyst  

SciTech Connect

The heterogeneous reactions in which catalyst deactivation by pore plugging occur are listed and include: coke formation in petroleum processing, especially hydrocracking and hydrodesulfurization catalysts; steam reforming and methnation catalysts; ammonia synthesis catalyst; and automobile exhause catalysts. The authors explain how the Claus process converts hydrogen sulfide produced by petroleum desulfurization units and gas treatment processes into elemental sulfur and water. More than 15 million tons of sulfur are recovered annually by this process. Commercial Claus plants appear to operate at thermodynamic equilibrium. Depending on the H2S content of the feed and the number of reactors, total H2S conversion to elemental sulfur can exceed 95%.

Schoffs, G.R.

1985-02-01T23:59:59.000Z

85

Molybdenum sulfide/carbide catalysts  

DOE Patents (OSTI)

The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

Alonso, Gabriel (Chihuahua, MX); Chianelli, Russell R. (El Paso, TX); Fuentes, Sergio (Ensenada, MX); Torres, Brenda (El Paso, TX)

2007-05-29T23:59:59.000Z

86

Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, 1 January 1996--31 March 1996  

DOE Green Energy (OSTI)

The overall contract objectives are to: (1) demonstrate repeatability of performance and preparation procedure of two high activity, high alpha iron Fischer-Tropsch catalysts synthesized at Texas A&M University (TAMU); (2) seek potential improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst synthesis; (3) investigate performance of catalysts in a small scale bubble column slurry reactor, and (4) investigate feasibility of producing catalysts on a large scale in collaboration with a catalyst manufacturer. In order to achieve these objectives the work is divided into ten tasks, which are described and their accomplishments are reported.

Bukur, D.B.

1996-06-03T23:59:59.000Z

87

Interagency Working Groups (IWGs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Interagency Working Groups (IWGs) Print E-mail Interagency Working Groups (IWGs) Print E-mail Interagency Working Groups (IWGs) are the primary USGCRP vehicles for implementing and coordinating research activities within and across agencies. These groups are critical to Program integration and in assessing the Program's progress. The working groups span a wide range of interconnected issues of climate and global change, and address major components of the Earth's environmental and human systems, as well as cross-disciplinary approaches for addressing these issues. IWGs correspond to program functions and are designed to bring agencies together to plan and develop coordinated activities, implement joint activities, and identify and fill gaps in the Program's plans. They allow public officials to communicate with each other on emerging directions within their agencies, on their stakeholder needs, and on best practices learned from agency activities. Together, these functions allow the agencies to work in a more coordinated and effective manner.

88

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project - honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. Most experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal will be performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation graph will be developed for each catalyst. The contributions of temperature and later sulfur will be investigated after this is complete. Also, last quarter's tests showed a potential linear relationship between SO3 conversion and mercury oxidation. As a result, SO3 samples will be taken more frequently to investigate each catalyst's ability to selectively oxidize mercury.

Alex J. Berry; Thomas K. Gale

2005-09-30T23:59:59.000Z

89

Thermochemical Equilibrium Modeling of Selective Catalytic Reduction (SRC) Catalyst Poisons  

Science Conference Proceedings (OSTI)

A previous EPRI publication (1022073) provided a detailed literature review on the propensity of the alkali and alkaline earth metals sodium (Na), potassium (K), calcium (Ca) and the Group (V) elements phosphorus (P) and arsenic (As) to deactivate selective catalytic reduction (SCR) catalysts in commercial flue gas cleaning systems. It also listed the conditions under which such deactivation has been reported. This report extends this earlier work to predict the transformation of SCR catalyst ...

2012-11-01T23:59:59.000Z

90

Binary ferrihydrite catalysts  

DOE Patents (OSTI)

A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

Huffman, G.P.; Zhao, J.; Feng, Z.

1996-12-03T23:59:59.000Z

91

Fluorination process using catalysts  

DOE Patents (OSTI)

A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

Hochel, R.C.; Saturday, K.A.

1983-08-25T23:59:59.000Z

92

Binary ferrihydrite catalysts  

DOE Patents (OSTI)

A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

Huffman, Gerald P. (Lexington, KY); Zhao, Jianmin (Lexington, KY); Feng, Zhen (Lexington, KY)

1996-01-01T23:59:59.000Z

93

Fluorination process using catalyst  

DOE Patents (OSTI)

A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

Hochel, Robert C. (Aiken, SC); Saturday, Kathy A. (Aiken, SC)

1985-01-01T23:59:59.000Z

94

ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C5 + selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation. An HPR series of proprietary catalysts was prepared to further improve the attrition resistance. Based on the experience gained, a proprietary HPR-43 catalyst has been successfully spray dried in 500 g quantity. This catalyst showed 95 % CO conversion over 125 h and had less than 4 % methane selectivity. Its attrition resistance was one of the highest among the catalyst tested.

James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan; Santosh K. Gangwal

1999-03-29T23:59:59.000Z

95

Print the Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Print the Fuel Economy Guide Print the Fuel Economy Guide 2014 Fuel Economy Guide 2014 Fuel Economy Guide Adobe Acrobat Icon MPG data updated December 19, 2013 The annual fuel cost estimates in the 2008-2014 electronic fuel economy guides are updated weekly to match EIA's current national average prices for gasoline and diesel fuel. Order a printed copy: Order Note that the published guides may not be as up-to-date at the downloadable version. View vehicles from 1984 to the present: Go to Find-a-Car Unlike the annual guides which cover only one model year, Find-a-Car provides the most up-to-date fuel economy information for vehicles from model year 1984 to the present, along with environmental and safety data. Find a Car Developer Tools 2013 Fuel Economy Guide 2013 Fuel Economy Guide Adobe Acrobat Icon

96

3D printing rises to the occasion | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Features Features 2014 2013 2012 2011 2010 News Home | ORNL | News | Features | 2013 SHARE 3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box produced by an Arcam 3D printer. This detailed "calibration" part illustrates some of the versatility of 3D printing. Photo: Jason Richards (hi-res image) Things have come a long way since the mid-1980s when 3D Systems cofounder Chuck Hull worked out the technology to print objects in three dimensions, one very thin layer at a time. Hull called his new technology "stereolithography." In it, a guided beam of ultraviolet light is focused on a vat of liquid polymer, solidifying areas where it hits. When one layer is complete, the

97

E-Print Network 3.0 - User Login  

Office of Scientific and Technical Information (OSTI)

Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints E-print Network E-print Network Skip to main content FAQ * HELP * SITE MAP *...

98

The generation of efficient supported (Heterogeneous) olefin metathesis catalysts  

Science Conference Proceedings (OSTI)

Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

Grubbs, Robert H

2013-04-05T23:59:59.000Z

99

Dispersion enhanced metal/zeolite catalysts  

DOE Patents (OSTI)

Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

Sachtler, Wolfgang M. H. (Evanston, IL); Tzou, Ming-Shin (Evanston, IL); Jiang, Hui-Jong (Evanston, IL)

1987-01-01T23:59:59.000Z

100

Printed optics: 3D printing of embedded optical elements for interactive devices  

Science Conference Proceedings (OSTI)

We present an approach to 3D printing custom optical elements for interactive devices labelled Printed Optics. Printed Optics enable sensing, display, and illumination elements to be directly embedded in the casing or mechanical structure ... Keywords: 3d printing, additive manufacturing, display, light, optics, projection, rapid prototyping, sensing

Karl Willis; Eric Brockmeyer; Scott Hudson; Ivan Poupyrev

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Catalyst systems and uses thereof  

DOE Patents (OSTI)

A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

2012-07-24T23:59:59.000Z

102

Oxygen-reducing catalyst layer  

DOE Patents (OSTI)

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

103

The role of catalyst activation on the activity and attrition of precipitated iron Fischer-Tropsch catalysts  

DOE Green Energy (OSTI)

The results of this work indicate that magnetite is not catalytically active for Fischer-Tropsch Synthesis (FTS) in precipitated, unsupported iron catalysts, but the formation of the carbide phase is necessary to obtain FTS activity. The transformation of magnetite to carbide, though essential to obtain FTS activity, also causes the catalyst to break down. This can lead to severe problems during operation in a commercial slurry phase reactor. The results presented here imply that activation and attrition are simultaneous and complementary processes. In another study, we show that the catalyst can also under go attrition on a micron scale which is caused by lack of strength of the forces binding the catalyst primary particles in the agglomerates. Both these processes can make wax separation and product recovery extremely difficult. In this study, we have also shown that H{sub 2} reduction of this catalyst to metallic iron is detrimental to subsequent catalyst activity and causes a loss of surface area due to sintering of the iron crystallites. Reduction to metallic Fe also causes impurities such as S to segregate to the surface causing a complete loss of FTS activity. It has been shown that even submonolayer amounts of S can cause a dramatic decrease in FTS activity, hence reduction to metallic Fe should be avoided during activation of these catalysts. We have shown, however, that a mild H{sub 2} reduction to magnetite does not lead to S segregation to the surface, and is therefore acceptable.

Datye, A.K.; Shroff, M.D. [New Mexico Univ., Albuquerque, NM (United States); Harrington, M.S.; Coulter, K.E.; Sault, A.G.; Jackson, N.B. [Sandia National Labs., Albuquerque, NM (United States)

1995-12-31T23:59:59.000Z

104

Novel Fischer-Tropsch catalysts  

DOE Patents (OSTI)

Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

1981-01-01T23:59:59.000Z

105

Novel Fischer-Tropsch catalysts  

DOE Patents (OSTI)

Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

1980-01-01T23:59:59.000Z

106

Novel Fischer-Tropsch catalysts  

DOE Patents (OSTI)

Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

1981-01-01T23:59:59.000Z

107

Catalyst Renewables | Open Energy Information  

Open Energy Info (EERE)

Zip 75204 Product Pursue projects with low technical risk, stable fuel supply and prices, and long-term power purchase agreements References Catalyst Renewables1 LinkedIn...

108

Mixed Alcohol Synthesis Catalyst Screening  

DOE Green Energy (OSTI)

National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

Gerber, Mark A.; White, James F.; Stevens, Don J.

2007-09-03T23:59:59.000Z

109

Printing Tiny Batteries | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Stories of Discovery & Innovation: "Printing" Stories of Discovery & Innovation: "Printing" Tiny Batteries? Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News Observing the Sparks of Life EFRC Events DOE Announcements Publications Contact BES Home 06.26.13 Stories of Discovery & Innovation: "Printing" Tiny Batteries? Print Text Size: A A A Subscribe FeedbackShare Page Researchers use sophisticated 3D printing techniques to create batteries the size of a grain of sand. This work, featured in the Office of Science's Stories of Discovery & Innovation, was supported in part by the Light-Materials Interactions for Energy Conversion (LMI), an EFRC led by Harry Atwater at the California Institute of Technology. Last modified: 6/26/2013 8:53:17

110

Water Uptake in PEMFC Catalyst Layers  

E-Print Network (OSTI)

Water Uptake in PEMFC Catalyst Layers H. P. Gunterman, a A.membrane fuel-cell catalyst layers are characterized in thecurves indicate that the catalyst layers tested are highly

Gunterman, Haluna P.

2013-01-01T23:59:59.000Z

111

Novel Attrition-Resistant Fischer Tropsch Catalyst  

DOE Green Energy (OSTI)

There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance to catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.

Weast, Logan, E.; Staats, William, R.

2009-05-01T23:59:59.000Z

112

Novel Reforming Catalysts  

Science Conference Proceedings (OSTI)

Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

Pfefferle, Lisa D; Haller, Gary L

2012-10-16T23:59:59.000Z

113

Molecular water oxidation catalyst  

DOE Patents (OSTI)

A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

114

Cisco Catalyst 4503-E, Catalyst 4506-E, Catalyst 4507R-E ...  

Science Conference Proceedings (OSTI)

... The following figures illustrate the installation of the opacity shields for each platform. Figure 5: Catalyst 4503-E Opacity Shield Installation Page 23. ...

2013-07-18T23:59:59.000Z

115

Water Uptake in PEMFC Catalyst Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Uptake in PEMFC Catalyst Layers Title Water Uptake in PEMFC Catalyst Layers Publication Type Journal Article LBNL Report Number LBNL-5322E Year of Publication 2011 Authors...

116

Non-Noble Metal Water Electrolysis Catalysts  

This invention comprises an inexpensive catalyst system for water electrolyzers by replacing the noble-metal catalysts that are typically used in ...

117

Transition metal sulfide loaded catalyst  

DOE Patents (OSTI)

A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

1994-01-01T23:59:59.000Z

118

Transition metal sulfide loaded catalyst  

DOE Patents (OSTI)

A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

1994-04-26T23:59:59.000Z

119

Materials - Catalysts for Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing denox monolith Argonne's deNOx catalyst can be prepared as a powder or a monolith. chris marshall Principal investigator Chris Marshall shows the monolith form of the Argonne deNOx catalyst with a sensor inserted for testing. doug longman Mechanical engineer Doug Longman inserts the instrumented deNOx catalyst monolith into the aftertreatment chamber of Argonne's heavy-duty Caterpillar diesel test engine. Background Diesel engines, while efficient, produce many undesirable combustion byproducts in their exhaust. While we tend to think of the sooty exhaust products we see as the bad stuff, it is the less-visible exhaust products such as nitrogen oxides (NOx) that create bigger problems.

120

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE  

DOE Green Energy (OSTI)

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE Lucia M. Petkovic, Harry W. Rollins, Daniel M. Ginosar, and Kyle C. Burch Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-2208 Introduction Anthropogenic emissions of carbon dioxide, a gas often associated with global warming, have increased considerably since the beginning of the industrial age.1 In the U.S., stationary CO2 sources, such as electricity generation plants, produce about one-third of the anthropogenic CO2 generation. Reports2 indicate that the power required to recover 90% of the CO2 from an integrated coal-fired power-plant is about 10% of the power-plant capacity. This energy requirement can be reduced to less than 1% if the recovered CO2 is applied to the production of synthetic fuels. However, the lack of efficient catalysts along with the costs of energy and hydrogen has prevented the development of technologies for direct hydrogenation of CO2.3 Although the cost of hydrogen for hydrogenating CO2 is not economically attractive at present, the future production of hydrogen by nuclear power sources could completely change this scenario.2 Still, an efficient catalyst will be essential for commercial application of those processes. The objective of the work presented here was the development of hybrid catalysts for one-step carbon dioxide hydrogenation to liquid fuels. The hybrid catalysts, which were prepared by two novel techniques, included a copper/zinc oxide catalytic function distributed within an acidic zeolitic matrix. Results of catalyst activity and selectivity studies at atmospheric pressure are presented in this contribution. Experimental Catalysts were prepared by two novel techniques and under several different conditions to produce copper/zinc oxide/zeolite materials. Once synthesized, samples were pelletized and the fraction between 40-60 mesh was utilized for the experiments. Two hundred milligrams of catalyst were loaded in a U-tube stainless steel reactor and a flow of 100 cm3/min of a 10:90 H2:Ar mixture was passed through the catalyst bed while the temperature was increased from room temperature to 513 K at 1.8 K/min and held at 513 K for 15 h. A reactant gas mixture composed by 10 cm3/min of CO2 and 30 cm3/min of H2 was then passed through the catalyst bed and the reaction products monitored by on-line gas chromatographic analyses using an SRI Multiple Gas Analyzer #2 equipped with 3 columns (MoleSieve 13X, Hayesep-D, and MXT-1) and 3 detectors (TCD, FID, and FID-methanizer). This GC system allowed for quantification of inert gases, CO, CO2, methanol, dimethylether, higher alcohols, water, and hydrocarbons up to C20. One hundred milligrams of a commercial syngas-to-methanol catalyst along with the same amount of a commercial zeolite catalyst was utilized under the same reaction conditions for comparison purposes. These catalysts were utilized either in two-layers (Com1) or mixed together (Com2). Results and Discussion Under the conditions applied in this study, the main reaction products were CO, CH3OH, CH3OCH3, and H2O. Methanol and dimethylether production rates and selectivities with respect to CO formation are presented in Figures 1 and 2, respectively. Although the activity of the synthesized catalysts did not surpass the commercial catalysts, the selectivity to oxygenates with respect to CO on most of the synthesized catalysts were better than on the commercial catalysts. For example, cat

Licia M. Petkovic; Harry W. Rollins; Daniel M. Ginosar; Kyle C. Burch

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Highly Dispersed Alloy Catalyst for Durability  

DOE Green Energy (OSTI)

Achieving DOE?¢????s stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

Vivek S. Murthi (Primary Contact), Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

2013-01-08T23:59:59.000Z

122

COMPARISON OF PLASMA-CATALYST AND ACTIVE LEAN NOx CATALYST  

DOE Green Energy (OSTI)

A number of NO{sub x} control systems are being discussed for potential application to diesel engines. Unfortunately, it can be difficult to compare systems on an equal basis because data are run under different conditions, or reported against different test cycles, or not shown over a range of operating conditions. In addition, the fuel consumption penalty associated with the NO{sub x} control technologies is not always reported. In this paper, we compare two diesel NO{sub x} aftertreatment systems: (1) Plasma-Catalyst (PC): a nonthermal plasma followed by a catalyst; and (2) Active Lean NO{sub x} Catalyst (ALNC): a NO{sub x} catalyst designed to selectively reduce NO{sub x} using hydrocarbon (HC) in the form of diesel fuel. Fuel is added to the exhaust to increase HC above normal diesel levels. These systems will be described in more detail in this report.

Hoard, John

2000-08-20T23:59:59.000Z

123

Chalcogen catalysts for polymer electrolyte fuel cell  

DOE Patents (OSTI)

A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Alonso-Vante, Nicolas (France, FR); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

2010-08-24T23:59:59.000Z

124

Textured Metal Catalysts for Heterogeneous Catalysis ...  

Biomass and Biofuels Advanced Materials Textured Metal Catalysts for Heterogeneous Catalysis Pacific Northwest National Laboratory. Contact ...

125

Stabilization of Nickel Metal Catalysts for Aqueous ...  

Biomass and Biofuels Stabilization of Nickel Metal Catalysts for Aqueous Processing Systems Pacific Northwest National Laboratory.

126

Chemical interactions in multimetal/zeolite catalysts  

SciTech Connect

This report treats four subject areas: PtCu/NaY and Pd/Cu/NaY catalysts; reducibility of Ni in PdNi/NaY catalysts; CO hydrogenation over PdNi/NaY catalysts; and PdFe/NaY, Ga/H-ZSM5 and PtGa/H-ZSM5 catalysts.

Sachtler, W.M.H.

1992-02-07T23:59:59.000Z

127

ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C{sub 5}{sup +} selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation.

JAMES G. GOODWIN, JR.; JAMES J. SPIVEY; K. JOTHIMURUGESAN; SANTOSH K. GANGWAL

1998-09-17T23:59:59.000Z

128

Printed optics: 3d printing of embedded optical elements for interactive devices  

E-Print Network (OSTI)

a b c d Figure 1: Custom optical elements are fabricated with 3D printing and embedded in interactive devices, opening up new possibilities for interaction including: unique display surfaces made from 3D printed light pipes (a), novel internal illumination techniques (b), custom optical sensors (c), and embedded optoelectronics (d). We present an approach to 3D printing custom optical elements for interactive devices labelled Printed Optics. Printed Optics enable sensing, display, and illumination elements to be directly embedded in the casing or mechanical structure of an interactive device. Using these elements, unique display surfaces, novel illumination techniques, custom optical sensors, and embedded optoelectronic components can be digitally fabricated for rapid, high fidelity, highly customized interactive devices. Printed Optics is part of our long term vision for interactive devices that are 3D printed in their entirety. In this paper we explore the possibilities for this vision afforded by fabrication of custom optical elements using todays 3D printing technology.

Karl D. D. Willis; Eric Brockmeyer; Scott E. Hudson; Ivan Poupyrev

2012-01-01T23:59:59.000Z

129

High Temperature Membrane & Advanced Cathode Catalyst Development  

DOE Green Energy (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

130

Powerful tools at E-print Network  

Office of Scientific and Technical Information (OSTI)

Energy. These subject-based e-prints reside at institutional repositories, websites and data bases, remote locations worldwide. About two million of these research documents are...

131

All the items fit to print  

Science Conference Proceedings (OSTI)

3D printing has come of age. It promises to revolutionize a wide range of industries and profoundly change the way people buy and consume.

Samuel Greengard

2013-07-01T23:59:59.000Z

132

Organ printing: computer-aided jet-based 3D tissue engineering, Trends in Biotechnology 21  

E-Print Network (OSTI)

Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of blueprints for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as printing paper. Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly. 'Give us the tools and we will finish the job'-Winston Churchill Although the terms tissue engineering and organ printing were introduced only recently (1987 and 1999 respectively), the study of cell coalescence and tissue assembly has a much longer history and is deeply rooted in developmental biology [1]. The classic work

Vladimir Mironov; Thomas Bol; Thomas Trusk; Gabor Forgacs; Roger; R. Markwald

2003-01-01T23:59:59.000Z

133

Necessary conditions on entanglement catalysts  

E-Print Network (OSTI)

Given a pure state transformation $\\psi\\mapsto\\phi$ restricted to entanglement-assisted local operations with classical communication, we determine a lower bound for the dimension of a catalyst allowing that transformation. Our bound is stated in terms of the generalised concurrence monotones (the usual concurrence of two qubits is one such monotone). We further provide tools for deriving further conditions upon catalysts of pure state transformations.

Sanders, Yuval

2009-01-01T23:59:59.000Z

134

Necessary conditions on entanglement catalysts  

E-Print Network (OSTI)

Given a pure state transformation $\\psi\\mapsto\\phi$ restricted to entanglement-assisted local operations with classical communication, we determine a lower bound for the dimension of a catalyst allowing that transformation. Our bound is stated in terms of the generalised concurrence monotones (the usual concurrence of two qubits is one such monotone). We further provide tools for deriving further conditions upon catalysts of pure state transformations.

Yuval Sanders; Gilad Gour

2009-04-14T23:59:59.000Z

135

Water+works : a new ecological infrastructure  

E-Print Network (OSTI)

With the global water crisis as catalyst, Water+Works acts as a model for a localized water initiative that will mitigate flooding and provide a freshwater resource in times of crisis, while enriching urban ecosystems and ...

Hedstrom, Lisa Kristin

2011-01-01T23:59:59.000Z

136

Investigation of syngas interaction in alcohol synthesis catalysts. Quarterly technical progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

Work is described on the investigations of the interaction of syngas in the preparation of alcohols. The analysis of work performed on copper/cobalt/chromium catalysts and the effect of the method of preparation on magnetic properties of the catalysts is discussed.

Akundi, M.A.

1995-10-01T23:59:59.000Z

137

Investigation of syngas interaction in alcohol synthesis catalysts. Quartery technical progress report, July 1, 1995--September 31, 1995  

DOE Green Energy (OSTI)

This report presents the work done on {open_quotes}Investigation of Syngas Interaction in Alcohol Synthesis Catalysts{close_quotes} during the last three months. In this report the results of the work done on the effect of CO adsorption on the magnetic character of cobalt in the Cu/Co/Cr catalysts is discussed.

Akundi, M.A.

1996-02-01T23:59:59.000Z

138

Activation of catalyst for gas-phase combustion by electrochemical pretreatment  

SciTech Connect

The catalytic activity of an IrO{sub 2} catalyst used as an electrode on a YSZ solid electrolyte cell for the gas-phase combustion of ethylene can be increased by electrochemical pretreatment. Thus, the polarization of the IrO{sub 2} electrode during 90 min at 300 {micro}A, relative to a gold electrode, both deposited on YSZ, increases the activity of the IrO{sub 2} catalyst after current interruption by a factor of 3. In situ catalyst work function measurements showed that after the electrochemical pretreatment the IrO{sub 2} catalyst obtains higher work function. The activation of the catalyst is explained through the formation of a higher oxide, IrO{sub 2+{delta}}.

Nicole, J.; Wodiunig, S.; Comninellis, C. [Swiss Federal Inst. of Tech., Lausanne (Switzerland). Inst. of Chemical Engineering; Tsiplakides, D. [Univ. of Patras (Greece). Dept. of Chemical Engineering

1997-12-01T23:59:59.000Z

139

Printed circuit dispersive transmission line  

DOE Patents (OSTI)

A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

1991-08-27T23:59:59.000Z

140

Printed circuit dispersive transmission line  

DOE Patents (OSTI)

A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

Ikezi, Hiroyuki (Rancho Santa Fe, CA); Lin-Liu, Yuh-Ren (San Diego, CA); DeGrassie, John S. (Encinitas, CA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Printed circuit dispersive transmission line  

DOE Patents (OSTI)

A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission lines between two adjacent periodic intersections to be longer than the other. 5 figs.

Ikezi, Hiroyuki; Lin-Liu, Yuh-Ren; deGrassie, J.S.

1990-03-02T23:59:59.000Z

142

Slurry phase synthesis of oxygenates with nanometer particle catalysts  

DOE Green Energy (OSTI)

The purpose of this initiative is to ultimately develop an economically viable route to isobutanol by catalytic conversion of synthesis gas derived from coal or natural gas. This report presents our studies on the review of other work and experiments performed to date utilizing an iron oxide catalyst.

Mahajan, D.; Wegrzyn, J.; Goland, A.

1995-07-01T23:59:59.000Z

143

Berkeley Lab UNIX-based Distributed Printing (DP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab UNIX-based Distributed Printing (DP) Berkeley Lab UNIX-based Distributed Printing (DP) LBNL Computing Services supports a variety of printers located throughout the Laboratory through its UNIX-based Distributed Printing System. Make sure to read the UNIX distributed printing overview. See Novell printing for information on Novell-based printing here. Berkeley Lab UNIX-based Distributed Printing (DP) Information Overview Print commands Print charges Printer lists (by division, etc.) Add a new DP printer name paper sizes (a4, etc.) Fixes for common problems Deleting print jobs on Solaris Printer-specific information Groff (GNU ditroff) on Sun & SGI System Admin Information CUPS printing information CUPS FAQ LINUX test suite of files; etc. Setting default printer using lpoptions Test suite of print files

144

Creating a culture of assessment: A catalyst for organizational change  

E-Print Network (OSTI)

Culture of Assessment: A Catalyst for Organizational ChangeCulture of Assessment: A Catalyst for Organizational ChangeCulture of Assessment: A Catalyst for Organizational Change

Lakos, Amos; Phipps, Shelley

2004-01-01T23:59:59.000Z

145

Catalyst-infiltrated supporting cathode for thin-film SOFCs  

E-Print Network (OSTI)

LBNL-55226 Catalyst-Infiltrated Supporting Cathode for Thin-demonstrate that cobalt catalyst-infiltrated LSM can beinfiltrating nano- sized catalyst particles into its pores

Yamahara, Keiji; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

2004-01-01T23:59:59.000Z

146

Studies of Various Hydrocarbon Conversion Reactions on Pt Catalysts  

E-Print Network (OSTI)

observed after reduction on tetrahedral and cubic catalysts.Prepared catalysts.... ....35reactions on shape controlled catalysts22 3.1.

Kaneko, Shinji

2011-01-01T23:59:59.000Z

147

Business Case Slide 22: High-Value: Catalysts - Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts - Description Graduate student examining candidate DU-bearing catalyst Graduate student examining candidate DU-bearing catalyst Description Use DUO2 to catalyze chemical...

148

Business Case Slide 24: High-Value: Catalysts - Program Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts - Program Focus Program Focus Off-gas cleanup catalysts (ORNL) Best form and substrate, effect of impurities Desulfurization catalyst (Rutgers) Proof-of-principle...

149

Print  

NLE Websites -- All DOE Office Websites (Extended Search)

Fungi play key roles in DOE- Fungi play key roles in DOE- relevant missions of bioenergy production, bioremediation and carbon cycling. In bioenergy proj- ects alone, for example, fungal genome data have been used not only to ensure the health of crops that serve as biomass feedstocks but also provide enzymes that can break down the biomass as well as help convert it to transportation fuel. The DOE JGI has developed a Fungal Genomics Program headed by Igor Grigoriev. The program's first project, launched October 1, is the Genome Encyclopedia of Fungi (GEF). The program aims to explore fungi's ecological diversity and breadth across the Tree of Life for DOE-relevant science and applications. DOE JGI pioneered sequenc- ing and analysis of several fungi important for lignocellu- lose degradation, enzyme pro-

150

Print  

NLE Websites -- All DOE Office Websites (Extended Search)

GFDL GCM Model Output with ARM CMBE Dataset: A First Look GFDL GCM Model Output with ARM CMBE Dataset: A First Look Jean-Christophe Golaz, UCAR VSP, GFDL Leo J. Donner and V. Ramaswamy, Geophysical Fluid Dynamics Laboratory, Princeton, NJ U . S . D E P A R T M E NT O F C O M M E R C E N A TION A L O C E A N I C A N D A T MO S P H E R I C A D M I N I S T R ATIO N What is CMBE? - CMBE (Climate Modeling Best Estimate) is a new ARM dataset specifically designed to evaluate climate models against ARM observations. - CMBE contains best estimates of selected ARM measurements: cloud fraction, surface radiation fluxes, total cloud cover, liquid water path, precipitable water vapor. - For more information on CMBE: http://science.arm.gov/wg/cpm/scm/best_estimate.html GFDL GCM models used in this comparison - AM2.1: current version of the atmospheric model (GFDL Global Atmosphere

151

Print  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore ...

152

Print  

Hydrogen peroxide based explosive systems have become a concern for transportation safety and security, especially because of events such as the 2005 ...

153

Print  

Operated by Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration

154

Print  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

155

Print  

Nondisclosure Agreement (NDA) A Nondisclosure Agreement (NDA), or confidentiality agreement, governs disclosure of non-public business information that the parties to ...

156

Print  

Science Conference Proceedings (OSTI)

... and application of LCA in mining, mineral processing, and metal production. ... of environmental impacts and external costs of production and consumption.

157

Print  

One of my most interesting projects is reviewing the office actions for ... management consulting in ... market and the economic and environmental ...

158

Print  

Science Conference Proceedings (OSTI)

This presentation will cover the basics of fan design. It will give you the understanding of how to read a fan curve and where they come from. It will also cover the...

159

Print  

Science Conference Proceedings (OSTI)

He has lectured at universities and numerous 'schools' regarding neutron and synchrotron radiation. Liss supervises students, gives user support, acts on...

160

Print  

Science Conference Proceedings (OSTI)

Mining and processing are energy intensive and the usage of energy in the industry will ... He chaired the Green Processing 2002 and 2004 conferences of the...

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Print  

Science Conference Proceedings (OSTI)

OVERVIEW. Pot emissions; Environmental regulations and permits; History of GTCs. FLUORIDE EMISSIONS. The Gaseous and Particulate Forms of Fluorides ...

162

Print  

Science Conference Proceedings (OSTI)

For example, uranium dioxide (UO2) is the primary nuclear fuel in light-water reactors. ... He graduated from Ohio Wesleyan University in 1978 (BA in Physics ...

163

Print  

Science Conference Proceedings (OSTI)

Mark has more than 20 years in the metallurgical industry (nickel, ferro-nickel, zinc, copper, magnesium, aluminium and materials) in plant operations, project...

164

Print  

FLC Far West is one of six regions covering the United States and is comprised of 8 western states, Alaska, Arizona, California, Hawaii, Idaho, Nevada, ...

165

Print  

Science Conference Proceedings (OSTI)

Basics of Combustion and Environmental Considerations * Typical Burners Used in Aluminum Cast Houses * Blowers/Exhausters * Dioxin and Furan Issues

166

Print  

Science Conference Proceedings (OSTI)

In addition to his academic research, Reynolds has also served as a consultant to SKB (The Swedish Nuclear Fuel and Waste Management Company) for their...

167

Print  

Virtual reality display techniques developed for glasses free stereoscopic visualization can be connected to remote twin video inputs.

168

Print  

About IPO. The LLNL Industrial Partnerships Office (IPO), with its staff of scientists, engineers, attorneys, and entrepreneurs, is the conduit through which the ...

169

Print  

Students. IPO has successfully collaborated with business schools and entrepreneurial centers in ongoing business plan competitions by offering LLNL technologies that ...

170

Print  

Lawrence Livermore National Laboratory (LLNL) is a national resource, with outstanding scientific and technical capabilities. LLNL has for many years been a leader ...

171

Print  

Science Conference Proceedings (OSTI)

His academic career has been in close collaboration with the aluminium industry, including Alcan Int. Banbury and LSM Rotherham United Kingdom, and led to...

172

Print  

Science Conference Proceedings (OSTI)

... will teach how open top ring furnace(s) should be operated to bake anodes properly and avoid these potential issues while minimizing fuel consumption.

173

Print  

Science Conference Proceedings (OSTI)

Secondly, TOC provides very clear focus for prioritizing variation reduction and the strategic use of inventory and protective capacity to manage and improve...

174

Print  

Science Conference Proceedings (OSTI)

She held a joint postdoctoral appointment in Materials Science at Queen Mary, University of London and Anatomy and Developmental Biology at University...

175

Print  

An LLNL developed laser has been adapted into a process called laser peening for use by industry to provide critical metal components with economical protection ...

176

Print  

This will assist emergency responders and aid in protecting public health. This copolymer and solvent solution is used to bind with airborne hazardous ...

177

High quality offset printing: an evolutionary approach  

Science Conference Proceedings (OSTI)

Print media are still very important for everyone's daily life. Current efforts are concerned with the application of the well-established offset-printing technology to other media, particularly cardboards, which require some substantial adaptations. ... Keywords: evolutionary algorithms, image processing, industrial application

Ralf Joost; Ralf Salomon

2007-07-01T23:59:59.000Z

178

2012, 2012, VII, 127 p. Printed book  

E-Print Network (OSTI)

2012, 2012, VII, 127 p. Printed book Hardcover 99,95 | £90.00 | $129.00 *106,95 (D) | 109,95 (A) | CHF 133.50 eBook Available from libraries offering Springer's eBook Collection.com/ebooks MyCopy Printed eBook exclusively available to patrons whose library offers Springer's eBook

Geest, Harm G. van der

179

Silver lines electrode patterned by transfer printing  

Science Conference Proceedings (OSTI)

This paper reports a novel method for the fabrication of silver electrode with high resolution using transfer printing method. The resolution can reach to 30@mm with high electrical conductivity as we keep a large depth and micro-size particles of the ... Keywords: Transferring printing

Liangjin Ge; L. Jay Guo; Xudi Wang; Shaojun Fu

2012-09-01T23:59:59.000Z

180

Design and development of an automated three axis machine that prints images on top of the foam of certain beverages  

E-Print Network (OSTI)

The goal of this research was to design and develop a working alpha prototype of the flagship product for a local startup called Onlatte, Inc. OnLatte specializes in automated printing of images on top of the foam of ...

Richardson, Jeremy S. H

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Catalyst for coal liquefaction process  

SciTech Connect

An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

1984-01-01T23:59:59.000Z

182

CO HYDROGENATION OVER CLEAN AND OXIDIZED RHODIUM FOIL AND SINGLE CRYSTAL CATALYSTS. CORRELATIONS OF CATALYST ACTIVITY, SELECTIVITY AND SURFACE COMPOSITION  

E-Print Network (OSTI)

AND OXIDIZED RHODIUM FOIL AND SINGLE CRYSTAL CATALYSTS.CORRELATIONS OF CATALYST ACTIVITY, SELECTIVITY AND SURFACEobserved over the clean Rh catalysts during the catalyzed

Castner, D.G.

2012-01-01T23:59:59.000Z

183

Minutes from the May 26, 2010 Printing and Mail Teleconference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2010 26, 2010 Printing and Mail Managers Exchange Forum Teleconference Seventeen individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Update on the FY 2010, Congressional Joint Committee on Printing Commercial Printing Report "JCP Form No. 2" Dallas Woodruff, Headquarters informed the group that Headquarters received responses from all DOE printing and duplicating facilities. The report is due to the Congressional Joint Committee on Printing no later than May 31, 2010.

184

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network (OSTI)

Ink-jet printed carbon supercapacitor electrodes on gold,Ink-jet printed carbon supercapacitor electrodes on gold,Microcapacitors Thin film supercapacitor (TFSC) research has

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

185

Industrial Uses of Vegetable OilsChapter 9 Printing Inks  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 9 Printing Inks Processing eChapters Processing Press Downloadable pdf of Chapter 9 Printing Inks from the book ...

186

E-print Network Alert Service  

Office of Scientific and Technical Information (OSTI)

E-print Web Log E-print Web Log alert image About Search Browse by Discipline Find Scientific Societies Receive E-print Alerts Contact Us Help Home Site Map OSTI DOE Welcome to E-print Alerts! This feature can be used to automatically keep abreast of the latest e-prints posted on ArXiv databases as well as a number of other science and engineering databases and Web sites, based on a search profile you submit to us. You can even receive new postings from a number of sites by submitting a single profile based on your specific area of interest. The Service is free, and you can create as many profiles as you wish. Simply register for the Service and create your search strategies for your profiles. This will be run against all selected databases and Web sites, and you will receive a weekly Alert via e-mail with the results of your automatic profile search.

187

file://\\Bellview\TeamWorks\TRUTeamWorks.htm  

NLE Websites -- All DOE Office Websites (Extended Search)

8/03 TRU TeamWorks will resume printing on January 8, 2004 | Shipments expected this we 8/03 TRU TeamWorks will resume printing on January 8, 2004 | Shipments expected this we December 18, 2003 The Big Story: It's a wrap - 2003 Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e- mail. WIPP Shipments (as of 12/18/03 at 8:14 a.m.) Shipments scheduled to arrive at WIPP this week 23 Total shipments received at WIPP 2,226 In 2003, the WIPP team delivered in every mission-essential area. TRU TeamWorks wraps up the calendar year with 2003's performance highlights. Steve Warren, Washington TRU Solutions (WTS) general manager, says, "I view

188

DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS  

SciTech Connect

Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and the reaction mechanism for the SCR with methane was investigated. Unpromoted and promoted catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than the other metals (Rh, Li, K, Na, Zn, and Sn) for the supported copper oxide-ceria catalysts under study. The effectiveness of the promoter increased with the increase in Ce/Cu ratio. Among the catalysts tested, the Cu1Ce3 catalyst promoted with 1 weight % Mn was found to be the best catalyst for the SCR of NO with methane. This catalyst was subjected to long-term testing at the facilities of our industrial partner TDA Research. TDA report indicated that the performance of this catalyst did not deteriorate during 100 hours of operation and the activity and selectivity of the catalyst was not affected by the presence of SO{sub 2}. The conversions obtained by TDA were significantly lower than those obtained at Hampton University due to the transport limitations on the reaction rate in the TDA reactor, in which 1/8th inch pellets were used while the Hampton University reactor contained 250-425-{micro}m catalyst particles. The selected catalyst was also tested at the TDA facilities with high-sulfur heavy oil as the reducing agent. Depending on the heavy oil flow rate, up to 100% NO conversions were obtained. The temperature programmed desorption studies a strong interaction between manganese and cerium. Presence of manganese not only enhanced the reduction rate of NO by methane, but also significantly improved the N{sub 2} selectivity. To increase the activity of the Mn-promoted catalyst, the manganese content of the catalyst need to be optimized and different methods of catalyst preparation and different reactor types need to be investigated to lower the transport limitations in the reactor.

Ates Akyurtlu; Jale F. Akyurtlu

2003-11-30T23:59:59.000Z

189

Spray drying and attrition behavior of iron catalysts for slurry phase Fischer-Tropsch synthesis  

E-Print Network (OSTI)

This thesis describes results of a study aimed at developing and evaluating attrition resistant iron catalysts prepared by spray drying technique. These catalysts are intended for Fischer-Tropsch (F-T) synthesis in a slurry bubble column reactor (SBCR). One of the major challenges associated with the use of SBCR for this purpose is the problem of catalyst/wax separation. If the catalyst particles break up into smaller ones during the F-T synthesis, these small particles (>5-10 ?m in diameter) will cause problems with the catalyst/wax separation. Several research groups have worked on development of attrition resistant spray-dried iron catalysts, and methodology to measure and predict their attrition behavior. However, these attrition tests were not conducted under conditions representative of those encountered in a SBCR. In this work, the attrition behavior of six spray-dried catalysts and two precipitated catalysts was evaluated under slurry reaction conditions in a stirred tank slurry reactor (STSR). Spray-dried catalysts used in this study were prepared at Texas A&M University (TAMU) and at Hampton University (HU), employing different preparation procedures and silica sources (potassium silicate, tetraethyl orthosilicate or colloidal silica). The attrition properties of F-T catalysts were determined by measuring particle size distribution (PSD) of catalysts before and after F-T synthesis in the STSR. This provides a direct measure of changes in particle size distribution in the STSR, and accounts for both physical and chemical attrition effects. Also, scanning electron microscopy (SEM) was used to investigate the mechanism of attrition - erosion vs. fracture, and to obtain morphological characteristics of catalysts. Spray dried 100Fe/3Cu/5K/16SiO2 catalyst (WCS3516-1), prepared from wet precursors using colloidal silica as the silica source, was the best in terms of its attrition strength. After 337 hours of F-T synthesis in the STSR, the reduction in the average particle size and generation of particles less than 10 ?m in diameter were found to be very small. This indicates that both particle fracture and erosion were insignificant during testing in the STSR. All other catalysts, except one of the spray dried catalysts synthesized at Hampton University, also had a good attrition resistance and would be suitable for use in slurry reactors for F-T synthesis.

Carreto Vazquez, Victor Hugo

2003-08-01T23:59:59.000Z

190

CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS  

DOE Green Energy (OSTI)

At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

Xiang-Dong Peng

2002-05-01T23:59:59.000Z

191

Widget:PrintFullVersionButton | Open Energy Information  

Open Energy Info (EERE)

PrintFullVersionButton PrintFullVersionButton Jump to: navigation, search This widget creates a button, which create a button matching the PrintPDF button style, which will direct the user to the assembled page. This template assumes the existence of the PrintPDFButton widget and template. Parameters page - The wiki address of the assembled page, or full version to be printed. cover - The name of a wiki page to use as a cover page (optional) Dependencies Template:PrintFullVersionButton Template:PrintPDFButton Widget:PrintPDFButton Usage This Widget assumes the existence of HTML elements created by the PrintFullVersionButton template, and is called via that template. {{PrintFullVersionButton}} Example {{PrintFullVersionButton}} (displays in the upper right corner of the page) Retrieved from

192

Clean Cities: Clean Cities Print Products and Templates  

NLE Websites -- All DOE Office Websites (Extended Search)

Print Products and Print Products and Templates to someone by E-mail Share Clean Cities: Clean Cities Print Products and Templates on Facebook Tweet about Clean Cities: Clean Cities Print Products and Templates on Twitter Bookmark Clean Cities: Clean Cities Print Products and Templates on Google Bookmark Clean Cities: Clean Cities Print Products and Templates on Delicious Rank Clean Cities: Clean Cities Print Products and Templates on Digg Find More places to share Clean Cities: Clean Cities Print Products and Templates on AddThis.com... Coordinator Basics Outreach Logos, Graphics, & Photographs Print Products & Templates Exhibit Booths Presentations Videos QR Codes Tips Education & Webinars Meetings Reporting Contacts Clean Cities Print Products and Templates Clean Cities has a wide variety of print products, marketing materials, and

193

E-print Network : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

E-print Network E-print Network Search Powered By Deep Web Technologies New Search Preferences E-print Network E-print Network Skip to main content FAQ * HELP * SITE MAP * CONTACT US Home * About * Advanced Search * Browse by Discipline * Scientific Societies * E-print Alerts * Add E-prints Powered by Deep Web Technologies E-print Network E-print Network Skip to main content FAQ * HELP * SITE MAP * CONTACT US Home * About * Advanced Search * Browse by Discipline * Scientific Societies * E-print Alerts * Add E-prints Main View This view is used for searching all possible sources. Due to the varied configuration and diversity of web pages and databases searched by E-prints, Full Record will search whatever data is searchable at each site. Multiple arXiv sites under one general heading are combined

194

Minutes from the Print and Mail Managers Exchange Forum Teleconferences |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minutes from the Print and Mail Managers Exchange Forum Minutes from the Print and Mail Managers Exchange Forum Teleconferences Minutes from the Print and Mail Managers Exchange Forum Teleconferences Minutes from the Print and Mail Managers Exchange Forum Teleconferences. Contact the Office of Administrative Management and Support at (202) 586-4318 with any questions. Last updated 04/01/13 Minutes from the March 14, 2013 Printing and Mail Teleconference Minutes from the January 10, 2013 Printing and Mail Teleconference Minutes from the November 01, 2012 Printing and Mail Teleconference Minutes from the June 28, 2012 Printing and Mail Teleconference Minutes from the May 03, 2012 Printing and Mail Teleconference Minutes from the February 23, 2012 Printing and Mail Teleconference Minutes from the October 26, 2011 Printing and Mail Teleconference

195

Catalyst Paper No-Carb Strategy for GHG Reduction  

E-Print Network (OSTI)

The Catalyst Paper strategy to manage GHG exposure is a combination of energy reduction initiatives in manufacturing and the effective use of biomass and alternative fuels to produce mill steam and electricity from the powerhouse. The energy reduction initiative reduces waste and energy usage during both the manufacturing and consumption of their product. An example is the very thin carbon neutral no carb print paper targeted for magazines and other publications. For the mill, this thin paper is manufactured with minimal energy because of the low mass sheet in the forming and drying sections. For the consumer, the large sheet surface area with minimal mass permits printing onto a lighter weight low carbon document. The steam and electricity for manufacturing is generated by the powerhouse where 63% of thermal energy is now from biomass and alternative fuels. This strategy reduced gross energy usage by 22% and provided a direct reduction in Green House Gas (GHG) emissions by 71% from 1990 to 2005. This paper will address how the thermal and steam generation is optimized in the powerhouse using an Energy Management and Reporting System (EMRS). Given that virtually all the GHG generation is from fossil fuel usage, this fuel must be minimized with biomass wherever possible. The process units where the EMRS is applied are the boiler combustion systems, steam distribution, and electric generation.

McClain, C.; Robinson, J.

2008-01-01T23:59:59.000Z

196

Catalyst containing oxygen transport membrane  

Science Conference Proceedings (OSTI)

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

197

Final technical report. Bimetallic complexes as methanol oxidation catalysts  

DOE Green Energy (OSTI)

Our work on the electrocatalyzed oxidation of methanol was initially motivated by the interest in methanol as an anodic reactant in fuel cells. The literature on electrochemical oxidation of alcohols can be roughly grouped into two sets: fuel cell studies and inorganic chemistry studies. Work on fuel cells primarily focuses on surface-catalyzed oxidation at bulk metal anodes, usually Pt or Pt/Ru alloys. In the surface science/electrochemistry approach to these studies, single molecule catalysts are generally not considered. In contrast, the inorganic community investigates the electrooxidation of alcohols in homogeneous systems. Ruthenium complexes have been the most common catalysts in these studies. The alcohol substrates are typically either secondary alcohols (e.g., isopropanol) such that the reaction stops after 2 e{sup -} oxidation to the aldehyde and 4 e{sup -} oxidation to the carboxylic acid can be observed. Methanol, which can also undergo 6 e{sup -} oxidation to CO{sub 2}, rarely appears in the homogeneous catalysis studies. Surface studies have shown that two types of metal centers with different functions result in more effective catalysts than a single metal; however, application of this concept to homogeneous systems has not been demonstrated. The major thrust of the work is to apply this insight from the surface studies to homogeneous catalysis. Even though homogeneous systems would not be appropriate models for active sites on Pt/Ru anodes, it is possible that heterobimetallic catalysts could also utilize two metal centers for different roles. Starting from that perspective, this work involves the preparation and investigation of heterobinuclear catalysts for the electrochemical oxidation of methanol.

McElwee-White, Lisa

2002-01-21T23:59:59.000Z

198

Novel platinum/carbon catalysts with cluster size control for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project overview - Cluster chemistry - Catalysts and supports * Experimental - Novel catalyst preparation * Results - Metal cluster size - Electrochemical properties * Summary...

199

Catalysts for carbon and coal gasification  

DOE Patents (OSTI)

Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

1985-01-01T23:59:59.000Z

200

Adsorption studies of gases on Pt-Rh bimetallic catalysts by reversed-flow gas chromatography  

SciTech Connect

In the present work, the relatively new technique of reversed-flow gas chromatography was applied for the study of adsorption of carbon monoxide, oxygen, and carbon dioxide on Pt-Rh bimetallic catalysts. Using suitable mathematical analysis, equations were derived by means of which rate constants for adsorption, desorption, and disproportionation reaction were calculated. From the variation of these rate constants with temperature and the nature of the catalyst (Pt content), as well as from the finding that the CO adsorption is a dissociative process, useful conclusions concerning the mechanism for the CO oxidation reaction over Pt-Rh bimetallic catalysts were extracted. The catalytic fractional conversions for the CO disproportionation reaction were found to be higher for the Pt-RH bimetallic catalysts than those for the pure Pt catalyst, indicating the presence of beneficial Pt-Rh synergism.

Gavril, D.; Koliadima, A.; Karaiskakis, G. [Univ. of Patras (Greece). Dept. of Chemistry

1999-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

On-line regeneration of hydrodesulfurization catalyst  

DOE Patents (OSTI)

A hydrotreating catalyst is regenerated as it concurrently hydrotreats a hydrocarbon fuel by introducing a low concentration of oxygen into the catalyst bed either continuously or periodically. At low oxygen concentrations the carbon deposits on the catalyst are burned off without harming the catalyst and without significantly affecting the hydrotreating process. In a preferred embodiment the hydrotreating process is hydrodesulfurization, and regenerating is done periodically with oxygen concentrations between 0.1 and 0.5 volume percent.

Preston, Jr., John L. (Hebron, CT)

1980-01-01T23:59:59.000Z

202

Nanosegregated Surfaces as Catalysts for Fuel Cells  

limitations for the oxygen reduction reaction. The result is a catalyst particularly advantageous for use in polymer electrolyte fuel cells.

203

Database - Selective Catalytic Reduction Catalyst Deactivation Rates  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) catalyst deactivation is a critical parameter controlling to a large extent achievable catalyst life, as well as overall SCR system performance. Accurate assessment and prediction of catalyst deactivation is required to adequately manage reactor potential. EPRI has on-going efforts underway aimed at better understanding the factors that affect catalyst deactivation, especially as a function of fuel, boiler design, and boiler operating conditions, in hopes of ...

2013-11-06T23:59:59.000Z

204

Catalyst-assisted Probabilistic Entanglement Transformation  

E-Print Network (OSTI)

We are concerned with catalyst-assisted probabilistic entanglement transformations. A necessary and sufficient condition is presented under which there exist partial catalysts that can increase the maximal transforming probability of a given entanglement transformation. We also design an algorithm which leads to an efficient method for finding the most economical partial catalysts with minimal dimension. The mathematical structure of catalyst-assisted probabilistic transformation is carefully investigated.

Yuan Feng; Runyao Duan; Mingsheng Ying

2004-04-27T23:59:59.000Z

205

Biomass Catalyst Characterization Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-07-01T23:59:59.000Z

206

Attrition Resistant Catalyst Materials for Fluid Bed ...  

Biomass and Biofuels Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory. Contact NREL About This ...

207

Nanostructured Water Oxidation Catalysts - Energy Innovation ...  

Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts. Angewandte Chemie International Edition. Vol. 28: ...

208

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, Santosh (Cary, NC); Jothimurugesan, Kandaswamy (Hampton, VA)

1999-01-01T23:59:59.000Z

209

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, S.; Jothimurugesan, K.

1999-07-27T23:59:59.000Z

210

Add your e-prints to the E-print Network -- Energy, science, and technology  

Office of Scientific and Technical Information (OSTI)

Add E-prints Add E-prints We invite you to submit your e-prints to the network. Having your e-prints in the network increases awareness of them and promotes the dissemination of your information to a broader audience. We do not add all submitted e-prints to our collection, and we cannot make any predictions or guarantees about when or if they will appear. See "What are the criteria for inclusion in the E-print Network?" Please enter your full URL, including the http:// prefix. For example: http://www.osti.gov/eprints/. You may also add comments or keywords that describe the content of your page. These are used only for our information and do not affect how your page is indexed or used. Label ID URL (required): Title (required): E-mail address (required): Your Name:

211

Evaluation of fine-particle size catalysts using bituminous and subbituminous coals  

SciTech Connect

The objectives of Sandia`s fine-particle size catalyst testing project are to evaluate and compare the activities of fine-particle size catalysts being developed in DOE/PETC`s Advanced Research Coal Liquefaction Program by using Sandia`s standard coal liquefaction test procedures. The first test procedure uses bituminous coal (DECS-17 Blind Canyon coal), phenanthrene as the reaction solvent, and a factorial experimental design that is used to evaluate catalysts over ranges of temperature, time, and catalyst loading. The best catalyst evaluated to date is West Virginia University`s iron catalyst that was impregnated onto the coal. Current work is aimed at developing a standard test procedure using subbituminous Wyodak coal. Ibis test is being developed using Pacific Northwest Laboratories` 6-line ferrihydrite catalyst and coal samples impregnated with either molybdenum or iron at Argonne National Laboratories. Results of testing catalysts with bituminous coal will be summarized and the development of the subbituminous coal test procedure will be presented.

Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

1996-06-01T23:59:59.000Z

212

Attrition resistant catalysts for slurry-phase Fischer-Tropsch process  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process low H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.

K. Jothimurugesan

1999-11-01T23:59:59.000Z

213

Modeling and optimization of stencil printing operations: A comparison study  

Science Conference Proceedings (OSTI)

This paper presents a comparison study for the optimization of stencil printing operations using hybrid intelligence technique and response surface methodology (RSM). An average 60% of soldering defects are attributed to solder paste stencil printing ... Keywords: DPMO, Fuzzy quality loss function, Genetic algorithms, Neural network, Printed circuit board, Stencil printing, Surface mount technology

Tsung-Nan Tsai

2008-04-01T23:59:59.000Z

214

Catalysts for coal liquefaction processes  

SciTech Connect

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, Diwakar (Macungie, PA)

1986-01-01T23:59:59.000Z

215

Catalysts for coal liquefaction processes  

DOE Patents (OSTI)

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, D.

1986-10-14T23:59:59.000Z

216

Perovskite catalysts for oxidative coupling  

DOE Patents (OSTI)

Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

Campbell, K.D.

1991-06-25T23:59:59.000Z

217

Field Facilities Contacts for Printing and Mail  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Contacts for Printing and Mail Facilities Contacts for Printing and Mail Print and Mail Contacts Site Printing Contact Mail Contact NNSA, Albuquerque Deborah Miller (505) 845-6049 Thomas H. Clinkenbeard NNSA Service Center PO Box 5400 Albuquerque, NM 87185-5400 (505) 845-4602 tclinkenbeard@doeal.gov (mailto:tclinkenbeard@doeal.gov) Argonne National Laboratory Doreen Schoening Argonne National Laboratory U.S. Department of Energy 9700 South Cass Avenue Blvd 340 Lemonmt, IL 60439 (630) 840-6399 dschoening@anl.gov (mailto:dschoening@anl.gov) Bechtel Jacobs James Hughes Bechtel Jacobs - Mail Stop 7294 U.S. Department of Energy PO Box 4699 Oak Ridge, TN 37831 (865) 576-8423 Berkeley Site Office Mercedes Downing Berkeley Site Office U.S. Department of Energy 1 Cyclotron Road Bldg 90

218

E-print Network : User Account  

Office of Scientific and Technical Information (OSTI)

E-print Network Reset your password Enter either your User Name or Email Address to reset your password. User Name: Email Address: Go Some links on this page may take you to...

219

E-print Network : User Account  

Office of Scientific and Technical Information (OSTI)

New Search | My Selections (0) | | | | Alerts | E-print Network Create User Account User Name: Email Address: I want to: Always receive emails Receive emails if there are new...

220

Inkjet printed electronics using copper nanoparticle ink  

E-Print Network (OSTI)

but it had high electrical resistivity of 140 nX m, which isInstruments, USA). An electrical resistivity was calculatedlength, and q is the electrical resistivity of an printed

Kang, Jin Sung; Kim, Hak Sung; Ryu, Jongeun; Thomas Hahn, H.; Jang, Seonhee; Joung, Jae Woo

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

RefWorks for Business: Basics Ways to Get References into RefWorks  

E-Print Network (OSTI)

time. Type in your search terms. 5. Import from a text file. This method works for some onlineWorks function is located along side the print, e-mail, save and download functions. 2. Manually enter references. Search and import from an online catalogue within RefWorks. You can search and import references from

Haykin, Simon

222

Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 5, October 1, 1993--December 31, 1993  

DOE Green Energy (OSTI)

The goal of this project is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. Cobalt-based catalysts have long been known as being active for F-T synthesis. They typically possess greater activity than iron-based catalysts, historically the predominant catalyst being used commercially for the conversion of syngas based on coal, but possess two disadvantages that somewhat lessen its value: (1) cobalt tends to make more methane than iron does, and (2) cobalt is less versatile with low H{sub 2}/CO ratio syngas due to its lack of water-gas shift activity. Therefore, the major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5 %) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. It will be demonstrated that these catalysts have the desired activity, selectivity, and life, and can be made reproducibly. Following this experimental work, a design and a cost estimate will be prepared for a plant to produce sufficient quantities of catalyst for scale-up studies.

Singleton, A.H.

1994-05-31T23:59:59.000Z

223

Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 4, July 1, 1993--September 30, 1993  

DOE Green Energy (OSTI)

The goal of this project is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. Cobalt-based catalysts have long been known as being active for F-T synthesis. They typically possess greater activity than iron-based catalysts, historically the predominant catalyst being used commercially for the conversion of syngas based on coal, but possess two disadvantages that somewhat lessen its value: (1) cobalt tends to make more methane than iron does, and (2) cobalt is less versatile with low H2/CO ratio syngas due to its lack of water-gas shift activity. Therefore, the major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low ( < 5 %) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. It will be demonstrated that these catalysts have the desired activity, selectivity, and life, and can be made reproducibly. Following this experimental work, a design and a cost estimate will be prepared for a plant to produce sufficient quantities of catalyst for scale-up studies.

Singleton, A.H.

1993-12-14T23:59:59.000Z

224

Membrane catalyst layer for fuel cells  

DOE Patents (OSTI)

A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 {mu}m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm{sup 2}. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

Wilson, M.S.

1991-02-19T23:59:59.000Z

225

Autothermal reforming catalyst having perovskite structure  

DOE Patents (OSTI)

The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

Krumpel, Michael (Naperville, IL); Liu, Di-Jia (Naperville, IL)

2009-03-24T23:59:59.000Z

226

Attrition and carbon formation on iron catalysts  

DOE Green Energy (OSTI)

A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attrition of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.

Kohler, S.D.; Harrington, M.S.; Jackson, N.B. [Sandia National Labs., Albuquerque, NM (United States); Shroff, M.; Kalakkad, D.S.; Datye, A.K. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

1994-08-01T23:59:59.000Z

227

Democratic Republic of Congo-ClimateWorks Low Carbon Growth Planning...  

Open Energy Info (EERE)

Growth Planning Support AgencyCompany Organization ClimateWorks, Project Catalyst, McKinsey and Company Sector Energy, Land Topics Background analysis, Low emission development...

228

Poster CATALYST SULPHUR ADDITIVES IN THE GROWTH OF CARBON NANOTUBES  

E-Print Network (OSTI)

Scientific community have recently focused especial attention on carbon nanomaterials, specially on carbon nanotubes (CNTs), because of their fascinating physical properties and potential applications [1]. Some of these applications, such as gas and energy storage, require high yields of well-defined qualities, what makes Chemical Vapor Deposition (CVD) one of the most appropriate methods for the synthesis of carbon nanotubes as it is easily scalable and makes the synthesis economically available. CVD is a versatile and promising method for CNTs synthesis as it offers the possibility of controlling a high yield synthesis of carbon nanotubes (CNTs) with specific properties by only controlling the different parameters taking place in the furnace during the hydrocarbon feedstock decomposition over a metal catalyst [2]. This communication explores the growth of CNTs by chemical vapor deposition (CVD) from methane decomposition over different catalysts prepared by the sol-gel technique, using MgO as support [3, 4] and varying the transition metal (active element in the catalyst). The aim of this work is to study the influence of additives, especially sulphur in different forms, on the activity of this kind of supported catalysts and how do the yield, morphology and physical

C. Valls; M. Prez-mendoza; G. Legac; W. K. Maser; M. T. Martnez; A. M. Benito

2005-01-01T23:59:59.000Z

229

Fast test for the durability of PEM fuel cell catalysts  

SciTech Connect

ETek Pt/C catalyst was used as standard materials to develop a new test protocol for fast screening durable catalyst for PEM fuel cells. Potential step (Pstep) method with the upper potential of 1.4V and the potential-static (Pstat) holding at 1.4 V or 1.2V are used to degrade the catalyst. The degradation in the electrochemical surface area (ESA) for Pt/C under Pstep conditions is greatly accelerated as compared with other conditions. The durability of Pt/Vulcan and Pt/CNT were studied using the new protocol with the electrochemical stressing of Pstep(1.4V/0.6V), which provided the same results as those tested using conventional protocols: Pt/CNT is more durable than Pt/Vulcan. This confirms that the new protocol works well in screening catalyst in terms of durability. The new protocol can differentiate the durability of electrocatalysts by shortening the test time to several hours. It is reliable and time-efficient.

Shao, Yuyan; Kou, Rong; Wang, Jun; Kwak, Ja Hun; Viswanathan, Vilayanur V.; Wang, Yong; Liu, Jun; Lin, Yuehe

2008-10-12T23:59:59.000Z

230

Program on Technology Innovation: Field Evaluations of Entrained Flow NOx Catalyst Concept  

Science Conference Proceedings (OSTI)

EPRI has been actively evaluating and developing advanced catalyst concepts for NOx reduction that are more effective and have potential in achieving near zero emissions. The concept called NOMERCTM involves the entrained flow of pulverized SCR catalyst for NOx reduction combined with activated carbon injection for removing mercury from the flue gas stream at coal-fired utilities. The entrained flow removal process is a novel concept and has been proven to work in a previous proof of concept test. This r...

2006-03-27T23:59:59.000Z

231

Catalyst for selective conversion of synthesis gas and method of making the catalyst  

DOE Patents (OSTI)

A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Macungie, PA)

1986-01-01T23:59:59.000Z

232

Supported fischer-tropsch catalyst and method of making the catalyst  

DOE Patents (OSTI)

A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

1987-01-01T23:59:59.000Z

233

Catalyst for hydrotreating carbonaceous liquids  

DOE Patents (OSTI)

A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

Berg, Lloyd (Bozeman, MT); McCandless, Frank P. (Bozeman, MT); Ramer, Ronald J. (Idaho Falls, ID)

1982-01-01T23:59:59.000Z

234

Catalyst regeneration apparatus with radial flow distribution  

Science Conference Proceedings (OSTI)

Apparatus is described for regenerating spent hydrocarbon conversion catalyst. Catalyst particles in a vertically-elongated movable tapered bed are contacted with a hot oxygen-containing gas stream in order to remove, by means of combustion, coke which accumulated on the catalyst particles while they were used in a hydrocarbon conversion zone. Catalyst moves downward under the influence of gravity. The catalyst bed is tapered such that the thickness of the bed, in a dimension which is transverse to the direction of catalyst movement, varies from a minimum at the top of the tapered bed to a maximum at the bottom of the tapered bed. Gas passes through the tapered bed in a direction which is substantially transverse to the direction of catalyst movement. Substantially, all of the catalyst in the bed is in contact with the flowing gas. The variation in bed thickness causes a varying gas flow rate through the bed, from a maximum flow rate at the top of the tapered bed to a minimum flow rate at the bottom of the tapered bed and reduces the time that catalyst is exposed to high temperature gases. This flow pattern results in the delivery of oxygen in a manner which more closely matches the oxygen requirement for combustion at each point in the tapered bed. Advantages of the invention include increased coke burning capacity and longer catalyst life. Catalytic reforming is an example of a hydrocarbon conversion process in which the invention may be advantageously employed. 9 figs.

Sechrist, P.A.; Koves, W.J.

1994-01-11T23:59:59.000Z

235

Copper-containing zeolite catalysts  

DOE Patents (OSTI)

A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

Price, G.L.; Kanazirev, V.

1996-12-10T23:59:59.000Z

236

Copper-containing zeolite catalysts  

DOE Patents (OSTI)

A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

Price, Geoffrey L. (Baton Rouge, LA); Kanazirev, Vladislav (Sofia, BG)

1996-01-01T23:59:59.000Z

237

Technology development for iron F-T catalysts. Final report  

DOE Green Energy (OSTI)

The objectives of this work were twofold. The first objective was to design and construct a pilot plant for preparing precipitated iron oxide F-T precursors and demonstrate that the rate of production from this plant is equivalent to 100 lbs/day of dried metal oxide. Secondly, these precipitates were to be used to prepare catalysts capable of achieving 88% CO + H{sub 2} conversion with {le} 5 mole percent selectivity to methane + ethane.

Frame, R.R.; Gala, H.B.

1994-08-01T23:59:59.000Z

238

Design of a high activity and selectivity alcohol catalyst  

DOE Green Energy (OSTI)

In order to explore the secondary dehydration of methanol over [gamma]-Al[sub 2]O[sub 3] support and over bimetallic Rh-Mo/[gamma]- Al[sub 2]O[sub 3], a new series of K-doped Rh-Mo/[gamma]-Al[sub 2]O[sub 3] catalysts was synthesized. Work on synthesis of bimetallic Rh-Mo clusters is reported.

Foley, H.C.; Mills, G.A.

1992-06-04T23:59:59.000Z

239

Slurry phase iron catalysts for indirect coal liquefaction. Second semi-annual progress report, January 5, 1996--July 4, 1996  

DOE Green Energy (OSTI)

During this period, work was continued on understanding the attrition of precipitated iron catalysts and work initiated on synthesizing catalysts containing silica binders. Use of a sedigraph particle size analyzer with an ultrasonic probe provides a simple method to test the strength of catalyst agglomerates, allowing the strength comparison of silica and hematite catalysts (the former is considerably stronger). Study of Fe/silica interactions was continued. Addition of a colloidal silica precursor to calcined Fe{sub 2}O{sub 3} catalyst had no detrimental effect on reducibility of the hematite to {alpha}-Fe. XRD and electron microscopy will be used to analyze the crystal structure and types of C present in samples from long Fischer-Tropsch runs.

Datye, A.K.

1996-08-02T23:59:59.000Z

240

How Fuel Cells Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Fuel Cells Work How Fuel Cells Work Diagram: How a PEM fuel cell works. 1. Hydrogen fuel is channeled through field flow plates to the anode on one side of the fuel cell, while oxygen from the air is channeled to the cathode on the other side of the cell. 2. At the anode, a platinum catalyst causes the hydrogen to split into positive hydrogen ions (protons) and negatively charged electrons. 3. The Polymer Electrolyte Membrane (PEM) allows only the positively charged ions to pass through it to the cathode. The negatively charged electrons must travel along an external circuit to the cathode, creating an electrical current. 4. At the cathode, the electrons and positively charged hydrogen ions combine with oxygen to form water, which flows out of the cell.

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Existence of Quantum Entanglement Catalysts  

E-Print Network (OSTI)

Without additional resources, it is often impossible to transform one entangled quantum state into another with local quantum operations and classical communication. Jonathan and Plenio [Phys. Rev. Lett. 83, 3566(1999)] presented an interesting example showing that the presence of another state, called a catalyst, enables such a transformation without changing the catalyst. They also pointed out that in general it is very hard to find an analytical condition under which a catalyst exists. In this paper we study the existence of catalysts for two incomparable quantum states. For the simplest case of $2\\times 2$ catalysts for transformations from one $4\\times 4$ state to another, a necessary and sufficient condition for existence is found. For the general case, we give an efficient polynomial time algorithm to decide whether a $k\\times k$ catalyst exists for two $n\\times n$ incomparable states, where $k$ is treated as a constant.

Xiaoming Sun; Runyao Duan; Mingsheng Ying

2003-11-19T23:59:59.000Z

242

80 HP PLASMA ASSISTED CATALYST SYSTEM  

DOE Green Energy (OSTI)

The US economy is linked to efficient heavy vehicle transportation and diesel remains the fuel of choice for mass transportation of goods and services. Diesel engines remain the most reliable and cost effective system for commerce. Recent deleterious effects of diesel exhaust on health and environment have led to an urgent need for cost effective technologies that would bring about reduction in NOx and PM. CARB estimates on-road diesel mobile source will contribute almost 50% NOx and 78% PM emissions by 2010. As a result recent Federal and State mandates have been adopted to reduce emissions from diesel exhaust to 1 Gm/bhp.-Hr of NOx and 0.05 Gm/bhp-hr of PM by the year 2007. The 2007 standard is to be achieved in a stepwise manner starting with the standards for 2002 namely 2 Gm/bhp-hr NOx and 0.1 Gm/bhp-hr of PM. 2002 standards are likely to be met by most engine manufacturer by some modified form of exhaust gas recirculation (EGR) system or by employing a sophisticated engine control system. Importance of cost effective technology requirement is further exaggerated by the fact that in recent years diesel engine production have increased dramatically see figure 1 and has out stripped the gasoline engine production almost 4:1 see figure 2. Currently gasoline engine employs a 3-way catalytic system for NOx and HC reduction and in order for the 3-way system to work the engine is run near stoichiometric air : fuel ratio so that exhaust has virtually no oxygen. This strategy has resulted in a poorer efficiency and hence less efficient utilization of our natural resources. By contrast diesel engine operate on a lean burn principals i.e. air rich and currently there are no commercial technologies available for treating NOx and PM. Technologies being considered for reducing NOx from lean burn (diesel) exhaust are; Lean NOx catalyst systems, NOx adsorber system, Selective Catalytic Reduction systems and plasma assisted catalyst system. Of all these technologies Plasma assisted catalyst system is probably the most attractive since it can use currently available fuel onboard.

Slone, Ralph

2001-08-05T23:59:59.000Z

243

Regenerated Plate Type SCR Catalyst Performance  

Science Conference Proceedings (OSTI)

Selective Catalytic Reduction (SCR) technology has become the technology of choice for meeting stringent nitrogen oxides (NOX) emission limits for many coal fired electric generating plants. With the aging of the domestic SCR fleet, the average age of catalysts currently in use has increased; and many facilities are now considering replacement or regeneration of the catalyst materials. Facilities planning to integrate SCR catalyst regeneration into their operations need to understand the overall performa...

2009-01-26T23:59:59.000Z

244

SCR Catalyst Management for Mercury Control  

Science Conference Proceedings (OSTI)

A number of EPRI projects conducted over the past several years have examined the effects of SCR catalyst on mercury speciation. These projects have focused on the various factors influencing mercury oxidation, related to both the flue gas conditions and the catalysts themselves. However, the majority of these studies have only examined the speciation at the SCR inlet and outlet. Much less is known about the interlayer speciation, however, which is very important when developing catalyst management ...

2012-11-16T23:59:59.000Z

245

Mercury Oxidation Performance of Advanced SCR Catalyst  

Science Conference Proceedings (OSTI)

The ability of selective catalytic reduction (SCR) catalysts to oxidize mercury is an important aspect of many utilities mercury control strategies. Improved SCR mercury oxidation will facilitate its capture in downstream wetflue gas desulfurization systems and will generally result in lower emission rates. Recently, catalyst manufacturers have attempted to maximize mercury oxidation through advanced catalyst formulations.This study documents the performance of an advanced ...

2012-12-31T23:59:59.000Z

246

SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION  

SciTech Connect

This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force microscopy (AFM) also provided evidence that confirmed the adsorption of the surfactants onto the coal surface. The luminescence measurements showed that the coal and solid surfactants luminescence weakly. No statistically significant influence was observed that resulted from the action of the surfactants or surfactant-molybdenum catalyst. Interestingly, the liquefaction results produced data that indicated the use of surfactants did not significantly improve the liquefaction activity of the coal as had initially been hypothesized. The UV-adsorption tests provided evidence that suggest that this may have been due to oversaturation. Detailed discussions of the results and recommendations for future work are provided.

Dr. Yaw D. Yeboah

1999-09-01T23:59:59.000Z

247

Nano-Structured Nobel Metal Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Nobel Metal Catalysts Nobel Metal Catalysts for Hydrocarbon Reforming Opportunity Research is active on the patent pending technology, titled "Nano- Structured Nobel Metal Catalysts Based on Hexametallate Architecture for the Reforming of Hydrocarbon Fuels." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Methods for generating synthesis gas from hydrocarbon feedstocks routinely involve the use of a catalyst-a material that speeds up the reaction, but itself is not consumed-to make this process economically feasible. Sulfur, higher hydrocarbons, and olefins present a major technical challenge since these components can deactivate conventional

248

Hydrocarbon synthesis catalyst and method of preparation  

DOE Patents (OSTI)

A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

Sapienza, Richard S. (Shoreham, NY); Sansone, Michael J. (Summit, NJ); Slegeir, William A. R. (Hampton Bays, NY)

1983-08-02T23:59:59.000Z

249

Process for coal liquefaction using electrodeposited catalyst  

DOE Patents (OSTI)

A process for the liquefaction of solid hydrocarbonaceous materials is disclosed. Particles of such materials are electroplated with a metal catalyst and are then suspended in a hydrocarbon oil and subjected to hydrogenolysis to liquefy the solid hydrocarbonaceous material. A liquid product oil is separated from residue solid material containing char and the catalyst metal. The catalyst is recovered from the solid material by electrolysis for reuse. A portion of the product oil can be employed as the hydrocarbon oil for suspending additional particles of catalyst coated solid carbonaceous material for hydrogenolysis.

Moore, Raymond H. (Richland, WA)

1978-01-01T23:59:59.000Z

250

Heterogeneous Catalyst for Improved Selectivity of Biomass ...  

Technology Marketing Summary. In todays industrial processes, heterogeneous catalysts are widely used because of their stability and ease of ...

251

Available Technologies: Catalyst Patterning for Scalable CVD ...  

Nano- & Micro-technology; Software and IT ; Licensing Interest Form Receive Customized Tech Alerts. Catalyst Patterning for Scalable CVD Growth of Graphene Nanoribbon.

252

Information Technology Solutions Designer Catalysts for ...  

petroleum industrys workhorse catalysts for upgrading heavy petroleum feed stocks and removing sulfur, nitrogen and other pollutants from fuels.

253

Attrition resistant fluidizable reforming catalyst - Energy ...  

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and ...

254

Polyfunctional catalyst for processiing benzene fractions  

SciTech Connect

A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

255

E-print Network: Research Communications for Scientists and Engineers  

Office of Scientific and Technical Information (OSTI)

E-print Web Log E-print Web Log E-print Network E-print Network About Search Browse by Discipline Find Scientific Societies Receive E-print Alerts Contact Us Help Home Site Map OSTI DOE For Immediate Release January 10, 2005 For more information, contact: Alison Buckholtz, SPARC, alison@arl.org Susan Tackett, OSTI, tacketts@osti.gov DOE/OSTI's E-PRINT NETWORK SELECTED AS SPARC PARTNER Provides Research Communications and Full-Text Searching of Science Websites and Databases Washington, DC -SPARC (the Scholarly Publishing and Academic Resources Coalition) today announced that the E-print Network, a free service of the U.S. Department of Energy (DOE) Office of Scientific and Technical Information (OSTI), has been chosen as a SPARC Scientific Communities partner. The selection recognizes the contribution of the E-print Network to expanded availability and use of open-access scientific and technical research on the Internet.

256

Solid electrolyte cyclic voltammetry for in situ investigation of catalyst surfaces  

SciTech Connect

The technique of cyclic linear potential sweep chronoamperometry, more commonly termed cyclic voltammetry, has been applied for the first time, in conjunction with on-line mass spectrometry, IR spectroscopy, and gas chromatography, to investigate the chemisorptive and catalytic properties of porous metal catalyst films also functioning as electrodes in solid electrolyte cells. The cases of O{sub 2} adsorption and C{sub 2}H{sub 4} oxidation on Pt were examined. It was found that solid electrolyte cyclic voltammetry (SECV), which causes a cyclic variation in catalyst work function, provides useful in situ information about the coverage of adsorbed species and also about the occurrence of non-Faradaic electrochemical modification of catalytic activity (NEMCA effect) on the catalyst surface. The technique also permits estimation of the 'length' of the catalyst-solid electrolyte-gas three-phase boundaries.

Vayenas, C.G.; Iaonnides, A.; Bebelis, S. (University of Patras (Greece))

1991-05-01T23:59:59.000Z

257

Development of a Catalyst/Sorbent for Methane Reforming  

Science Conference Proceedings (OSTI)

This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all conditions tested, the CH{sub 4} conversion was large (>80%) and nearly equal to the predicted thermodynamic equilibrium level as long as CO{sub 2} was being rapidly absorbed. Similar results were obtained with both shell material additives. Limited lifecycle tests of the pellets also produced similar results that were not affected by the choice of additive. However, during each lifecycle test the period during which CO{sub 2} was rapidly absorbed declined from cycle to cycle which directly affected the corresponding period when CH{sub 4} was reformed rapidly. Therefore, the results showed a continuing need for improving the lifecycle performance of the sorbent. Core-in-shell pellets with the improved shell materials were also utilized for conducting the water gas shift reaction in a single step. Three different catalyst formulations were tested. The best results were achieved with a Ni catalyst, which proved capable of catalyzing the reaction whether CO{sub 2} was being absorbed or not. The calcined alumina shell material by itself also proved to be a very good catalyst for the reaction as long as CO{sub 2} was being fully absorbed by the core material. However, neither the alumina nor a third formulation containing Fe{sub 2}O{sub 3} were good catalysts for the reaction when CO{sub 2} was not absorbed by the core material. Furthermore, the Fe{sub 2}O{sub 3}-containing catalyst was not as good as the other two catalysts when CO{sub 2} was being absorbed.

B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

2008-12-31T23:59:59.000Z

258

Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts  

E-Print Network (OSTI)

R. Structure of Metallic Catalysts ; Academic Press: London,pretreatments of the Rh catalysts and analyzing thea Pt(octahedra)/SBA-15 catalyst increased from 0.01 to 28

Coble, Inger M

2008-01-01T23:59:59.000Z

259

Focussing the view on Nature's water-splitting catalyst  

E-Print Network (OSTI)

formation in synthetic Mn-catalyst. Inorg. Chem. 43, 264-Natures water-splitting catalyst Samir Zein 1,2 , Leonid V.Natures water splitting catalyst Abstract About 3 billion

Yano, Junko

2008-01-01T23:59:59.000Z

260

Profile Optimization for Wet-Printed Polymer Films  

E-Print Network (OSTI)

of a spin-coated film. In the next chapter, a dry printing method will be introduced, which has superior

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Attrition resistant fluidizable reforming catalyst  

DOE Patents (OSTI)

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

262

Formation of alcohol conversion catalysts  

DOE Patents (OSTI)

The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

2001-01-01T23:59:59.000Z

263

Catalytic reforming of liquid fuels: Deactivation of catalysts  

Science Conference Proceedings (OSTI)

The catalytic reforming of logistic fuels (e.g., diesel) to provide hydrogen-rich gas for various fuel cells is inevitably accompanied by deactivation. This deactivation can be caused by various mechanisms, such as carbon deposition, sintering, and sulfur poisoning. In general, these mechanisms are, not independente.g., carbon deposition may affect sulfur poisoning. However, they are typically studied in separate experiments, with relatively little work reported on their interaction at conditions typical of liquid fuel reforming. Recent work at the U.S. Dept. of Energy/NETL and Louisiana State University has shown progress in understanding the interaction of these deactivation processes, and catalysts designed to minimize them.

Spivey, J.J.; Haynes, D.J.; Berry, D.A.; Shekhawat, Dushyant; Gardner, T.H.

2007-10-01T23:59:59.000Z

264

The Selected Works of John W. Cahn  

Science Conference Proceedings (OSTI)

Sep 1, 1998 ... Print Book: Lectures on the Theory of Phase Transformations: Second Edition. Print Book: The Science of Complex Alloy Phases. Print Book...

265

Conductive inkjet printed DIY music control surface  

Science Conference Proceedings (OSTI)

We developed a novel music control sensate surface, which enables retrofit integration between any musical instruments with a versatile, customizable, and essentially cost-effective user interface. Our project presents new opportunities in customizable, ... Keywords: conductive inkjet printing, music interfaces, rapid ui prototyping

Nan-Wei Gong; Nan Zhao; Joseph A. Paradiso

2013-04-01T23:59:59.000Z

266

Print this Page Close The nuclear deal  

E-Print Network (OSTI)

that the US will adopt to the demands of Pakistan and Israel, which will also claim to be responsible nuclearPrint this Page Close The nuclear deal July 20, 2005 | 19:05 ISTT P Sreenivasan | y assuming the same responsibilities and practices as leading countries with nuclear technologies 'such as the United

267

Federal Recycling Program Printed on recycled paper.  

E-Print Network (OSTI)

#12;Federal Recycling Program Printed on recycled paper. The Forest Health Technology Enterprise. This book was pub- lished by FHTET as part of the technology transfer series. http.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis

Hoddle, Mark S.

268

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells A direct methanol fuel cell...

269

A Goldilocks Catalyst: Nanocluster 'just right' for Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Goldilocks Catalyst A Goldilocks Catalyst Nanocluster 'just right' for recycling carbon dioxide February 21, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John...

270

Self-oscillations on a partially wetted catalyst pellet in ? ...  

Science Conference Proceedings (OSTI)

and the vaporgas phases on wetted and dry catalyst pellets, respectively. ... perature and flooding states of the catalyst pellet was first observed, which were...

271

Catalysts for Oxidation of Mercury in Flue Gas  

Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), ...

272

Piezoelectric Drop-on-Demand Inkjet Printing of Rat Fibroblast Cells: Survivability Study and Pattern Printing  

E-Print Network (OSTI)

A novel piezoelectric, drop-on-demand (DOD) inkjet system has been developed and used to print L929 rat fibroblast cells. We investigate the survivability of the cells subjected to the large stresses during the printing process. These stresses are varied by changing the diameter of the orifice (36 to 119 microns) through which the cells are dispensed, as well as changing the electrical pulse used to drive the piezoelectric element. It is shown that for the smallest 36 microns diameter orifice, cell survival rates fall from 95% to approximately 76% when the ejection velocity is increased from 2 to 16 m/s. This decrease in survival rates is less significant when the larger orifice diameters of 81 microns and 119 microns are used. Analysis shows that there is a clear inverse relationship between cell survival rates and the mean shear rates during drop formation. By using the same printing set-up, fibroblast cells are printed onto alginate and collagen into patterns. Printed cells are cultured over a period of days to verify their long-term viability. Fibroblasts printed onto the collagen are found to successfully adhere, spread and proliferate, subsequently forming a denser patterns after 5 days in culture. Cell agglomeration is found to affect the printing performance, especially for the printhead with the smallest orifice, leading to frequent clogging of the nozzle. We also study the number of cells in each droplet, when printed under optimal conditions. The probability density of this number follows a binomial distribution, which consistent with a uniform distribution of cells in the medium and within the printhead.

Er Qiang Li; Eng Khoon Tan; Sigurdur Tryggvi Thoroddsen

2013-10-02T23:59:59.000Z

273

Membrane catalyst layer for fuel cells  

DOE Patents (OSTI)

A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

Wilson, Mahlon S. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

274

Integrated current collector and catalyst support  

DOE Patents (OSTI)

An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

Bregoli, Lawrence J. (Southwick, MA)

1985-10-22T23:59:59.000Z

275

Improved catalysts for carbon and coal gasification  

DOE Patents (OSTI)

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25T23:59:59.000Z

276

Ligand iron catalysts for selective hydrogenation  

SciTech Connect

Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

Casey, Charles P. (Madison, WI); Guan, Hairong (Cincinnati, OH)

2010-11-16T23:59:59.000Z

277

Process for magnetic beneficiating petroleum cracking catalyst  

DOE Patents (OSTI)

A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

Doctor, Richard D. (Lisle, IL)

1993-01-01T23:59:59.000Z

278

Nanostructured Basic Catalysts: Opportunities for Renewable Fuels  

SciTech Connect

This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

Conner, William C; Huber, George; Auerbach, Scott

2009-06-30T23:59:59.000Z

279

Process for magnetic beneficiating petroleum cracking catalyst  

DOE Patents (OSTI)

A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

Doctor, R.D.

1993-10-05T23:59:59.000Z

280

Porosimetric study of catalyst layer of polymer electrolyte fuel cells.  

DOE Green Energy (OSTI)

The porosimetry of the catalyst layer made by the 'decal process' was studied using mercury porosirnetry. The comparison of the porosimetric profiles between the carbon powder and the catalyst supported on carbon suggests that the loading of the catalyst onto the Vulcan XC-72 carbon changes the porosimetry of the catalyst/carbon. The porosimetry of the catalyst layer depends on the catalyst used and the Nafion content. Boiling the catalyst layer effectively increases the pore area and the porosity of the catalyst layer. The correlation of porosimetric data with performance of catalyst layers suggests that the Nafion content in catalyst layers plays a vital role on the structure of catalyst layer such as pore size and pore distribution and further influences the performance of PE:FC.

Xie, J. (Jian); Wilson, K. V. (Kennard V.); Zawodzinski, T. A. (Thomas A.), Jr.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ISSN 0104-6632 Printed in Brazil  

E-Print Network (OSTI)

. Available data: technical data presented by Cai et al. (1995); (k) Fisher-Tropsch (FT) synthesis: the FT Fischer­Tropsch GC glycerol carbonate i process index ISBL installed cost of equipments inside battery loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer­Tropsch

Grossmann, Ignacio E.

282

The Use of Soluble Polyolefins as Supports for Transition Metal Catalysts  

E-Print Network (OSTI)

The use of polymer supports for transition metal catalysts are very important and useful in synthetic organic chemistry as they make possible the separation and isolation of catalysts and products quite easy. These polymer-bound ligands/catalysts/reagents can, often, be recovered and recycled numerous times and typically yield products in high purity, negating the need for further purification steps (i.e. column chromatography). Because of this, interest in these systems has garnered international attention in the scientific community as being Green. Historically, insoluble, polymer-supports (i.e. Merrifield resin) were used to develop recoverable catalysts. This has the advantage of easy separation and isolation from products after a reaction; because of their insolubility, such supported catalysts can be easily removed by gravity filtration. However, these catalysts often have relatively poor reactivity and selectivity when compared to homogeneous catalysts. Because of this disadvantage, our lab has had interest in the development of soluble polymer-supports for transition metal catalysts. We have developed several separation methods for these soluble polymer-bound catalysts. These include thermomorphic liquid/liquid and solid/liquid as well as latent biphasic liquid/liquid separation techniques. This dissertation describes the use of both, latent biphasic liquid/liquid separation systems and thermomorphic solid/liquid separation systems. In order to perform a latent biphasic iii liquid/liquid separation, a polymer-bound catalyst must have a very high selectivity for one liquid phase over the other. Our lab has pioneered the use of polyisobutylene (PIB) oligomers as supports for transition metal catalysts. Previous work has shown that these oligomers are > 99.96 % phase selectively soluble in nonpolar solvents. This has allowed us to prepare PIB-supported salen Cr(III) complexes that can be used in a latent biphasic liquid/liquid solvent system. The synthesis of these complexes is quite straightforward and such species can be characterized using solution state 1H and 13C NMR spectroscopy. Also, these complexes can be used to catalyze the ring opening of meso epoxides with azidotrimethylsilane (TMS-N3) and can be recovered and recycled up to 6 times, with no loss in catalytic activity. To perform a thermomorphic solid/liquid separation, a polymer-bound catalyst that is completely insoluble at room temperature but soluble upon heating must be used. Our lab has pioneered the use of polyethylene oligomers (PEOlig) as supports for transition metal catalysts. Such PEOlig-supported catalysts are able perform homogeneous catalytic reactions at elevated temperatures (ca. 65 ?C), but, upon cooling, precipitate out of solution as solids while the products stay in solution. This process allows for the easy separation of a solid catalyst from the product solution. Described herein, is the development of PEOlig-supported salen-Cr(III) complexes and PEOlig-supported NHC-Ru complexes. The preparation of these complexes is also straightforward and such species can be characterized using solution state variable temperature (VT) 1H and 13C NMR spectroscopy. In the case of the PEOlig-supported salen-Cr(III) complex, it was found to be a recoverable/recyclable catalyst for the ring opening of epoxides with TMS-N3 and could be reused 6 times with no loss in activity. The PE-supported NHC-Ru complex was able to be used as a recyclable ring closing metathesis (RCM) catalyst and could be used up to 10 times.

Hobbs, Christopher Eugene

2011-08-01T23:59:59.000Z

283

Department of Energy Strategic Plan, May 2011, Print Quality | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Strategic Plan, May 2011, Print Quality Department of Energy Strategic Plan, May 2011, Print Quality Department of Energy Strategic Plan, May 2011, Print Quality Posted here are publication materials related to the Department of Energy's Strategic Plan of 2011. DOE_2011-Strategic-Plan_High-Resolution_Print-Quality is a full-data, high-resolution version of the document. This will print/reproduce with the maximum resolution available from your output device (printer). This is a 15.7 Mb file. DOE_2011-Strategic-Plan_Medium-Resolution_Print-Quality is a medium-resolution version of the document. The images have been slightly downsampled and compressed so the file can be easier transmitted. This will print/reproduce at medium resolution on your output device (printer). This is a 3.6 Mb file.

284

DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST  

DOE Green Energy (OSTI)

The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

2005-08-01T23:59:59.000Z

285

Excellent Sulfur Resistance of Pt/BaO/CeO2 Lean NOx Trap Catalysts  

SciTech Connect

In this work, we investigated the NOx storage behavior of Pt-BaO/CeO2 catalysts, especially in the presence of SO2. High surface area CeO2 (~ 110 m2/g) with a rod like morphology was synthesized and used as a support. The Pt-BaO/CeO2 sample demonstrated slightly higher NOx conversion in the entire temperature range studied compared with Pt-BaO/?-Al2O3. More importantly, this ceria-based catalyst showed higher sulfur tolerance than the alumina-based one. The time of complete NOx uptake was maintained even after exposing the sample to ~3 g/L of SO2. The same sulfur exposure, on the other hand, eliminated the complete NOx uptake time on the alumina-based NOx storage catalysts. TEM images show no evidence of either Pt sintering or BaS phase formation during reductive de-sulfation up to 600C on the ceria based catalyst, while the same process over the alumina-based catalyst resulted in both a significant increase in the average Pt cluster size and the agglomeration of a newly-formed BaS phase into large crystallites. XPS results revealed the presence of about 5 times more residual sulfur after reductive de-sulfation at 600C on the alumina based catalysts in comparison with the ceria-based ones. All of these results strongly support that, besides their superior intrinsic NOx uptake properties, ceria based catalysts have a) much higher sulfur tolerance and b) excellent resistance against Pt sintering when they are compared to the widely used alumina based catalysts.

Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF

2008-10-21T23:59:59.000Z

286

Improving and inventing catalysts with computers  

Science Conference Proceedings (OSTI)

Catalytic aftertreatment emerged as the only promising technology. As no catalyst existed at that time, a new catalyst-process had to be developed. A major industry-wide research effort was mounted which, in the case of General Motors alone involved testing of over 1,500 catalyst formulations, submitted by some 82 prospective catalyst manufacturers, involving over 5,000 General Motors employees, and 22 million test miles before the catalyst was commercialized in the fall of 1974. Computational methods can provide major inroads. Deterministic modeling of kinetics and transport can be carried out with increasingly more detail as computational speed increases. At present, new catalyst design still must proceed through a stage of conceptualization and invention that is not readily modeled. It is driven by experts who successfully employ heuristics (a set of empirical rules gained through time and experience). Through inherently nondeterministic and provisional, heuristics can be addressed computationally with expert or knowledge-based systems. This is one way for the computer to help solve catalyst design problems.

Foley, H.C.; Lowenthal, E.E. (Univ. of Delaware, Newark, DE (United States). Center for Catalytic Science and Technology)

1994-08-01T23:59:59.000Z

287

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Principal accomplishments have been achieved in all three areas of selective catalytic oxidation of methane that have been pursued in this research project. These accomplishments are centered on the development of catalyst systems that produce high space time yields of C{sub 2} hydrocarbon products, formaldehyde, and methanol from methane/air mixtures at moderate temperatures and at ambient pressure. The accomplishments can be summarized as the following: the SO{sub 4}{sup 2{minus}}/SrO/La{sub 2}O{sub 3} catalyst developed here has been further optimized to produce 2 kg of C{sub 2} hydrocarbons/kg catalyst/hr at 550C; V{sub 2}O{sub 5}SiO{sub 2} catalysts have been prepared that produce up to 1.5 kg formaldehyde/kg catalyst/hr at 630C with CO{sub 2} selectivities; and a novel dual bed catalyst system has been designed and tested that produces over 100 g methanol/kg catalyst/hr at 600C.

Klier, K.; Herman, R.G.

1995-06-01T23:59:59.000Z

288

E-print Network : User Login  

Office of Scientific and Technical Information (OSTI)

New Search | New Search | My Selections (0) | | | | Alerts | E-print Network Login The E-print Network ALERTS feature will automatically update you regarding newly available information in your specific area(s) of interest. Simply register for the service, then create a search strategy which will be run against information added to . Select a schedule (weekly, monthly, etc.) for receiving the email Alerts. If you are a new patron, Register to learn how to set up Alerts to meet your needs. If you are an existing patron, enter your user name and password in the boxes to login. Once logged in, you may review or modify your search, add a new search and see recent Alerts results. User Name: Password: Remember Me Remember me on this computer. Login Don't have a user name? Register!

289

Modified MTS MRB500 CATALYST PERFORMANCE TEST  

DOE Green Energy (OSTI)

An experiment was conducted to determine if the oxygen supply in a CuO catalyst considered for use in the TMIST-2 irradiation test would be sufficient to convert all the hydrogen isotopes coming from the irradiation test to water. A mixture of 2% H2 in Ar was supplied to a modified MRB 500 stack m onitor from Mound Techology Solutions, Miamisburg, OH. It was found that the catalyst could convert 3.75E-03 moles of H2 before losing its effectiveness. Conversion was found to begin at a catalyst temperature of about 220 deg C and to be fully effective at about 300 deg C.

Glen R. Longhurst; Robert J. Pawelko

2008-10-01T23:59:59.000Z

290

Reducing fischer-tropsch catalyst attrition losses in high ...  

Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems United States Patent

291

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

Benedek, K. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Flytzani-Stephanopoulos, M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

1992-01-01T23:59:59.000Z

292

Studying Fischer-Tropsch catalysts using transmission electron microscopy and model systems of nanoparticles on planar supports.  

SciTech Connect

Nanoparticle model systems on planar supports form a versatile platform for studying morphological and compositional changes of catalysts due to exposure to realistic reaction conditions. We review examples from our work on iron and cobalt catalysts, which can undergo significant rearrangement in the reactive environment of the Fischer-Tropsch synthesis. The use of specially designed, silicon based supports with thin film SiO{sub 2} enables the application of transmission electron microscopy, which has furnished important insight into e.g. the mechanisms of catalyst regeneration.

Thune, P. C.; Weststrate, C. J.; Moodley, P.; Saib, A. M.; van de Loosdrecht, J.; Miller, J. T.; Niemantsverdriet, J. W. (Chemical Sciences and Engineering Division); (Eindhoven Univ. of Technology); (Sasol Technology)

2011-01-01T23:59:59.000Z

293

Piezoelectric Drop-on-Demand Inkjet Printing of Rat Fibroblast Cells: Survivability Study and Pattern Printing  

E-Print Network (OSTI)

A novel piezoelectric, drop-on-demand (DOD) inkjet system has been developed and used to print L929 rat fibroblast cells. We investigate the survivability of the cells subjected to the large stresses during the printing process. These stresses are varied by changing the diameter of the orifice (36 to 119 microns) through which the cells are dispensed, as well as changing the electrical pulse used to drive the piezoelectric element. It is shown that for the smallest 36 microns diameter orifice, cell survival rates fall from 95% to approximately 76% when the ejection velocity is increased from 2 to 16 m/s. This decrease in survival rates is less significant when the larger orifice diameters of 81 microns and 119 microns are used. Analysis shows that there is a clear inverse relationship between cell survival rates and the mean shear rates during drop formation. By using the same printing set-up, fibroblast cells are printed onto alginate and collagen into patterns. Printed cells are cultured over a period of da...

Li, Er Qiang; Thoroddsen, Sigurdur Tryggvi

2013-01-01T23:59:59.000Z

294

Investigation of syngas interaction in alcohol synthesis catalysts. Quarterly technical progress report, February 1, 1994--April 30, 1994  

DOE Green Energy (OSTI)

This work presents the progress of the work done during the second quarter on {open_quotes}Investigation of syngas interaction in Alcohol Synthesis Catalysts.{close_quotes} The essential results have been presented at the second annual Historically Black Colleges and Universities/Private Sector/Energy Research and Development Technology Transfer Symposium. The primary objective of this project is to examine the relations between the catalytic and magnetic properties of the copper-cobalt higher alcohol synthesis catalysts. Since extensive catalytic results are available from the studies of the IFP group, the authors have undertaken to investigate the magnetic character by studying the Zero Field Nuclear Magnetic Resonance (ZFNMR) of cobalt and hysterisis character of the Cu/Co catalysts. The authors have examined three different aspects of these catalysts. (a) effect of metal ratio, (b) effect of method of preparation, and (c) effect of selectivity.

Not Available

1994-09-01T23:59:59.000Z

295

Protocol for Laboratory Testing of SCR Catalyst: 2nd Edition  

Science Conference Proceedings (OSTI)

With the widespread deployment of selective catalytic NOx reduction (SCR) throughout the U.S. fleet of coal fired utility boilers, there was a need to establish standardized protocols to test catalyst. In 2006, EPRI issued a protocol that provided a uniform basis for testing SCR catalyst. In 2007, a wide range of industry representatives, including members of the Post-Combustion NOx Control Program, catalyst vendors, an independent catalyst testing laboratory, a catalyst reconditioner, and a provider of ...

2007-12-21T23:59:59.000Z

296

Catalyst Reaction (CatReact) Version 1.2  

Science Conference Proceedings (OSTI)

Catalyst Reaction (CatReact) is a spreadsheet-based software tool that helps operators of Selective Catalytic Reduction (SCR) Systems in coal-fired power plants make catalyst management decisions throughout the lifetime of the plant. The program determines when future catalyst additions or replacements will be necessary and calculates the operations and maintenance costs of the SCR system. Cost elements include 1) catalyst purchases, 2) labor to add or replace catalyst, 3) reagent usage, ...

2012-12-04T23:59:59.000Z

297

Enhanced catalyst for conversion of syngas to liquid motor fuels  

DOE Patents (OSTI)

Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

Coughlin, P.K.; Rabo, J.A.

1985-12-03T23:59:59.000Z

298

Enhanced catalyst for conversion of syngas to liquid motor fuels  

DOE Patents (OSTI)

Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

1985-01-01T23:59:59.000Z

299

PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS  

DOE Green Energy (OSTI)

Work during the report period was concentrated on developing analytical techniques. Thin-layer chromatography (TLC) was used in an attempt to define the best mobile phase to separate the components of ''spent'' tetrahydroquinoline by liquid chromatography in a silica gel column. Conditions have been defined for separating the light gases produced by the reaction of carbon monoxide (CO) and hydrogen (H{sub 2}) over promoted ''zinc chromite'' catalysts. This will be done with a temperature-programmed Carboxen-1000 column, using a thermal conductivity detector for analysis. A Petrocol DM 150 capillary column will be purchased to separate the heavier products, which will be analyzed using a flame ionization detector.

Ms. Xiaolei Sun; Professor George W. Roberts

2000-06-21T23:59:59.000Z

300

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oxford Catalysts Group plc | Open Energy Information  

Open Energy Info (EERE)

Oxford Catalysts Group plc Oxford Catalysts Group plc Jump to: navigation, search Name Oxford Catalysts Group plc Place Oxford, United Kingdom Zip OX2 6UD Sector Hydro, Hydrogen Product Developer of catalysts for room-temperature hydrogen production, hot steam production and Fischer-Tropsch processes. Coordinates 43.781517°, -89.571699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.781517,"lon":-89.571699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Catalysts for Destruction of Air Pollutants  

NLE Websites -- All DOE Office Websites (Extended Search)

Destruction of Air Pollutants Catalysts for Destruction of Air Pollutants U.S. industries and the U.S. Department of Energy must manage a variety of off-gas wastes consisting of...

303

Catalyst regeneration process including metal contaminants removal  

DOE Patents (OSTI)

Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

Ganguli, Partha S. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

304

Clean gasoline reforming with superacid catalysts  

DOE Green Energy (OSTI)

The objectives of this project are to: (a) determine if a coal-derived naphtha can be hydrotreated to produce a product with a sufficiently low heteroatom content that can be used for reforming, (b) identify hydrocarbon compounds in the naphtha with concentrations greater than 0.5 wt %, (c) develop a Pt/Al[sub 2]O[sub 3] heavily chlorided catalyst and determine the activity, selectivity and deactivation of this catalyst using model compounds and the hydrotreated naphtha, and (d) develop both a sulfated Pt/ZrO[sub 2] and Fe/Mn/ZrO[sub 2] catalyst formulations and determine the activity, selectivity and deactivation of these catalysts using model compounds and d warranted, the hydrotreated naphtha.

Davis, B.H.

1992-01-01T23:59:59.000Z

305

Moderated ruthenium fischer-tropsch synthesis catalyst  

DOE Patents (OSTI)

The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

Abrevaya, Hayim (Wilmette, IL)

1991-01-01T23:59:59.000Z

306

SLAC National Accelerator Laboratory - Designing Chemical Catalysts...  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing Chemical Catalysts: There's an App for That By Mike Ross January 19, 2012 A big reason for publishing scientific results is to inform others who can then use your data...

307

Pf/Zeolite Catalyst for Tritium Stripping  

DOE Green Energy (OSTI)

This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

Hsu, R.H.

2001-03-26T23:59:59.000Z

308

Single-layer transition metal sulfide catalysts  

SciTech Connect

Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

Thoma, Steven G. (Albuquerque, NM)

2011-05-31T23:59:59.000Z

309

Single-layer transition metal sulfide catalysts  

DOE Patents (OSTI)

Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

Thoma, Steven G. (Albuquerque, NM)

2011-05-31T23:59:59.000Z

310

Catalyst and method for aqueous phase reactions  

DOE Patents (OSTI)

The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

Elliott, Douglas C. (Richland, WA); Hart, Todd R. (Kennewick, WA)

1999-01-01T23:59:59.000Z

311

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

312

Minutes from the March 17, 2010 Printing and Mail Teleconference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2010 March 17, 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-eight individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Upcoming Congressional Joint Committee on Printing Commercial Printing Report "JCP Form No. 2" Dallas Woodruff, Headquarters informed the group that sites should receive the call letter for the report on or around March 30, 2010. The report is due back to Headquarters by May 3, 2009. Mr. Woodruff reminded the group that they must report negative responses as well.

313

Minutes from the November 17, 2010 Printing and Mail Teleconference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 17, 2010 November 17, 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty seven individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors Comments/Additions to last Months Minutes No comments. Printing Agenda Items......... Update on the Department-wide "Three-Year Plan" Dallas Woodruff, Headquarters opened the meeting by thanking everyone for providing their sites Three-Year Plan data to Headquarters in timely manner. Mr. Woodruff went on to say a number of individuals indentified a problem with the narrative section of the PPAFI Spreadsheets (unable to print the narratives). Mr. Woodruff notified the programmer of the narrative section printing glitch.

314

Minutes from the January 20, 2010 Printing and Mail Teleconference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 , 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-one individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Update on the Department-wide Printing and Publishing Activities Report Three-Year Plan. Dallas Woodruff, Headquarters thanked the group for their contributions made to the Department-wide printing program during FY 2009. Mr Woodruff also thanked the group for providing data for the FY 2009 Three-Year Plan in a timely manner. The Three-Year Plan is in track for completion before the February

315

Low temperature catalysts for methanol production  

DOE Patents (OSTI)

A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O' Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

1986-01-01T23:59:59.000Z

316

Low temperature catalysts for methanol production  

DOE Patents (OSTI)

A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, R.S.; Slegeir, W.A.; O' Hare, T.E.; Mahajan, D.

1985-03-12T23:59:59.000Z

317

Catalyst and process development for the H/sub 2/ preparation from future fuel cell feedstocks. Quarterly progress report, April 1-June 30, 1979  

DOE Green Energy (OSTI)

Phase I of this contract, which involved preliminary catalyst and process evaluations, has been completed. A decision has been made to pursue the autothermal reforming process during the remainder of this contract as the most likely process for producing hydrogen for fuel cells from No. 2 oil. The basis for this decision is presented in this report. Work on Phase II of this contract, which involves catalyst preparation and development, was started during the quarter. As part of an Engelhard cost contribution, catalyst samples were prepared for potential use in the steam reforming section of the ATR. These catalysts, after steam treatment at high temperatures, are being screened for steam reforming activity using ethane as a model compound. Those samples passing this screening test will be evaluated in an ATR catalyst screening unit which was assembled during the quarter. Preliminary work on supporting studies was started with the use of a thermogravimetric apparatus to measure coke laydown using ethylene as a model compound.

Yarrington, R M; Feins, I R; Hwang, H S; Mayer, C P

1979-07-01T23:59:59.000Z

318

Power Electronics in the Printing and Publishing Industry  

Science Conference Proceedings (OSTI)

This report provides utility marketing and account executives and engineering staff with basic information about the use of power electronics systems and technologies in the printing and publishing industry. The report first describes the printing and publication industry. Then it outlines how power electronics may provide equipment designers with the power electronics topologies required to design and manufacturer future equipment used in the printing and publishing industry.

1999-12-16T23:59:59.000Z

319

Intermittency on catalysts: symmetric exclusion  

E-Print Network (OSTI)

We continue our study of intermittency for the parabolic Anderson equation $\\partial u/\\partial t = \\kappa\\Delta u + \\xi u$, where $u\\colon \\Z^d\\times [0,\\infty)\\to\\R$, $\\kappa$ is the diffusion constant, $\\Delta$ is the discrete Laplacian, and $\\xi\\colon \\Z^d\\times [0,\\infty)\\to\\R$ is a space-time random medium. The solution of the equation describes the evolution of a ``reactant'' $u$ under the influence of a ``catalyst'' $\\xi$. In this paper we focus on the case where $\\xi$ is exclusion with a symmetric random walk transition kernel, starting from equilibrium with density $\\rho\\in (0,1)$. We consider the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of $u$. We show that these exponents are trivial when the random walk is recurrent, but display an interesting dependence on the diffusion constant $\\kappa$ when the random walk is transient, with qualitatively different behavior in different dimensions. Special attention is given to the asymptotics of the exponents for $\\kappa\\to\\infty$, which is controlled by moderate deviations of $\\xi$ requiring a delicate expansion argument. In G\\"artner and den Hollander \\cite{garhol04} the case where $\\xi$ is a Poisson field of independent (simple) random walks was studied. The two cases show interesting differences and similarities. Throughout the paper, a comparison of the two cases plays a crucial role.

J. Gaertner; F. den Hollander; G. Maillard

2006-05-24T23:59:59.000Z

320

QuarkNet at Work  

NLE Websites -- All DOE Office Websites (Extended Search)

QuarkNet at Work Information for Active Mentors & Teachers     QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Information Active Centers Calendar Contacts Expectations: for Teachers, for Mentors Information on Other Funding Sources Program Overview Support: for Teachers, for Centers Staff Job Description Activities Essential Practices - Teaching with Inquiry (word.doc) Classroom Activities e-Labs: CMS - Cosmic Ray Boot Camp Project Activities Databases: Data Entry (password only) 2012 Center Reporting Resources Important Findings from Previous Years Mentor Tips Associate Teacher Institute Toolkit Print Bibliography - Online Resources Imaging Detector Principles of Professionalism for Science Educators - NSTA position

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Enhanced High Temperature Performance of NOx Reduction Catalyst Materials  

Science Conference Proceedings (OSTI)

Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

2012-12-31T23:59:59.000Z

322

Applications of hydrogenation and dehydrogenation on noble metal catalysts  

E-Print Network (OSTI)

Hydrogenation and dehydrogenation on Pd- and Pt- catalysts are encountered in many industrial hydrocarbon processes. The present work considers the development of catalysts and their kinetic modeling along a general and rigorous approach. The first part deals with the kinetics of selective hydrogenation, more particularly of the C3 cut of a thermal cracking unit for olefins production. The kinetics of the gas phase selective hydrogenation of methyl-acetylene (MA) and propadiene (PD) over a Pd/?-alumina catalyst were investigated in a fixed bed tubular reactor at temperatures 60 - 80 oC and a pressure of 20 bara. Hougen-Watson type kinetic equations were derived. The formation of higher oligomers slowly deactivated the catalyst. The effect of the deactivating agent on the rates of the main reactions as well as on the deactivating agent formation itself was expressed in terms of a deactivation function multiplying the corresponding rates at zero deactivation. Then, the kinetic model was plugged into the reactor model to simulate an industrial adiabatic reactor. In the second part the production of hydrogen from hydrocarbons was investigated. In both cyclohexane and decalin dehydrogenations, conversions higher than 98% could be obtained over Pt/?-alumina catalyst at temperature of 320 and 340 oC, respectively, with no apparent deactivation for 30 h and with co-feed of H2 in the feed. Except for H2 and trace amounts of side cracking products, less than 0.01%, benzene was the only dehydrogenated product in cyclohexane dehydrogenation. In the case of decalin dehydrogenation, partially dehydrogenated product, tetralin, was also formed with selectivity lower than 5%, depending on operating conditions. A rigorous Hougen-Watson type kinetic model was derived, which accounted for both the dehydrogenation of cis- and trans- decalin in the feed and also the isomerization of the two isomers. Jet A is the logic fuel in the battlefields. The dehydrogenation of Jet A can produce H2 for military fuel cell application. Although the H2 production is lower than that of steam/autothermal reforming, it eliminates the needs of high temperature and product separation operation.

Wang, Bo

2007-08-01T23:59:59.000Z

323

Optical systems fabricated by printing-based assembly - Energy ...  

Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the ...

324

Physics form at arxiv.org e-Print archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Full text Help pages Go Automated e-print archives Computer Science Mathematics Physics Quantitative Biology Quantitative Finance Statistics Search Form Interface Catchup...

325

PRINT, WEB, AND e-NEWS ADVERTISING INSERTION ORDER  

Science Conference Proceedings (OSTI)

PRINT, WEB, AND e-NEWS. ADVERTISING INSERTION ORDER. FAX. Fax this form to: TMS Advertising Sales. Fax: (724) 814-3141. MAIL. Mail this form to:.

326

DOE fundamentals handbook: Engineering symbology, prints, and drawings  

Science Conference Proceedings (OSTI)

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

327

DOE fundamentals handbook: Engineering symbology, prints, and drawings. Volume 1  

Science Conference Proceedings (OSTI)

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

328

DOE fundamentals handbook: Engineering symbology, prints, and drawings. Volume 2  

SciTech Connect

The Engineering Symbology, Prints, and Drawings Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and technical staff with the necessary fundamentals training to ensure a basic understanding of engineering prints, their use, and their function. The handbook includes information on engineering fluid drawings and prints; piping and instrument drawings; major symbols and conventions; electronic diagrams and schematics; logic circuits and diagrams; and fabrication, construction, and architectural drawings. This information will provide personnel with a foundation for reading, interpreting, and using the engineering prints and drawings that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

329

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network (OSTI)

the electrodes determine a batterys capacity and power. Inthe printed batterys discharge capacity increased more thanrates, the battery will exhibit reduced capacities due to

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

330

Aerosol Jet Material Deposition for High Resolution Printed ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Aerosol Jet printing, is finding wide use in a number of ... The Aerosol Jet systems deposit a wide variety of functional materials onto a wide...

331

Monte carlo simulations of segregation in Pt-Re catalyst nanoparticles  

E-Print Network (OSTI)

and design of Pt-Re catalyst nanoparticles. ACKNOWLEDGMENTSJ.H. Sinfelt, Bimetallic Catalysts: Discoveries, concepts,of segregation in Pt-Re catalyst nanoparticles Guofeng Wang

Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

2004-01-01T23:59:59.000Z

332

Effects of Membrane- and Catalyst-layer-thickness Nonuniformities in Polymer-electrolyte Fuel Cells  

E-Print Network (OSTI)

thicknesses for the membrane and catalyst layer. Figure 2.of dry membrane (a) and catalyst-layer (b) thickness (andhollow symbols) and catalyst-layer (filled symbols)

Weber, Adam Z.; Newman, John

2006-01-01T23:59:59.000Z

333

One-Pot Formation of Functionalized Indole and Benzofuran Derivatives Using a Single Bifunctional Ruthenium Catalyst  

E-Print Network (OSTI)

Bifunctional Ruthenium Catalyst Reji N. Nair Paul J. Lee bifunctional ruthenium catalyst for cyclization of terminalof transi- tion metal based catalysts have been reported to

Nair, Reji N.; Lee, Paul J.; Grotjahn, Douglas B.

2010-01-01T23:59:59.000Z

334

A Well-Defined, Silica-Supported Tungsten Imido Alkylidene Olefin Metathesis Catalyst  

E-Print Network (OSTI)

olefin metathesis catalyst. Bouchra Rhers, a Alain Salameh,active propene metathesis catalyst, which can achieve 16000W-based olefin metathesis catalyst through the reaction of [

2006-01-01T23:59:59.000Z

335

Extended Two Dimensional Nanotube and Nanowire Surfaces as Fuel Cell Catalysts  

E-Print Network (OSTI)

for a thinner electrode catalyst layer, thereby improvingmass transport and catalyst utilization. ReferencesSurfaces as Fuel Cell Catalysts A Dissertation submitted in

Alia, Shaun Michael

2011-01-01T23:59:59.000Z

336

Nanolithographic Fabrication and Heterogeneous Reaction Studies of Two-Dimensional Platinum Model Catalyst Systems  

E-Print Network (OSTI)

and truly tune the catalyst to the reaction. References 1.Gavriilidis, A. Varma, Catalyst Design, Cambridge UniversityStructure of Metallic Catalysts, Academic Press, London,

Contreras, A.M.

2006-01-01T23:59:59.000Z

337

Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays  

E-Print Network (OSTI)

Structure of Metallic Catalysts. Academic Press, London,R. Structure of Metallic Catalysts. Academic Press, London,Ethylene on Metallic Catalysts, National Standard Reference

Grunes, Jeffrey Benjamin

2004-01-01T23:59:59.000Z

338

Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts  

E-Print Network (OSTI)

as Efficient Oxygen- Evolving Catalysts Feng Jiao and Heinzof efficient and robust catalysts for the chemicaltransformations. Catalysts need to exhibit turnover

Jiao, Feng

2010-01-01T23:59:59.000Z

339

Bifunctional Solid Catalysts for the Selective Conversion of Fructose to 5-Hydroxymethylfurfural  

E-Print Network (OSTI)

Bifunctional Solid Catalysts for the Selective Conversion ofat Springerlink.com Abstract Solid catalysts based on SBA-15methylfurfural (HMF). The catalysts incorporate thioether

Crisci, Anthony J.; Tucker, Mark H.; Dumesic, James A.; Scott, Susannah L.

2010-01-01T23:59:59.000Z

340

Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations  

E-Print Network (OSTI)

of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Montefuel cells, new electrode catalysts that have less preciousto designing Pt bimetallic catalysts is knowledge of the

Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cyclohexene Photo-oxidation over Vanadia Catalyst Analyzed by Time Resolved ATR-FT-IR Spectroscopy  

E-Print Network (OSTI)

oxidation over Vanadia Catalyst Analyzed by Time Resolvedperformance of vanadia catalysts [5] even though hydrationabsorption spectrum of these catalysts into the visible [

Mul, Guido

2008-01-01T23:59:59.000Z

342

THE MECHANISM AND KINETICS OF FISCHER-TROPSCH SYNTHESIS OVER SUPPORTED RUTHENIUM CATALYSTS  

E-Print Network (OSTI)

Structure of Metallic Catalysts", Academic Press Inc. , Newselectivity of these catalysts. Several appendices dealingOver Supported Ruthenium Catalysts ABSTRACT The effects of

Kellner, Carl Stephen

2013-01-01T23:59:59.000Z

343

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Quarterly technical report No. 13, April 1, 1994--June 30, 1994  

DOE Green Energy (OSTI)

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. The research will identify and optimize key catalyst and process characteristics. In addition, the commercial potential of the new process will be evaluated by an economic analysis. This report describes the preparation and testing of a variety of potential higher alcohols synthesis catalysts based on a bifunctional formulation consisting of a noble metal dehydrogenation function on a basic mixed metal oxide support. A pilot plant catalyst screening test using a 10/1 methanol/ethanol feed blend has been used to identify a new class of catalysts that afford higher selectivities and productivities. of the desired isobutanol and other C{sub 4+}, products than the Cu/Zn/Al oxide methanol synthesis catalyst that is being used as a baseline for this work. 2% Pd or Pt on a Zn/Mn/Zr oxide support and 2% Pd on a Zn/Mn/Cr support have given the best performances to date. In addition to isobutanol, these catalysts afford significant quantities of isobutyraldehyde and methyl isobutyrate. In order to elucidate the reaction pathway occurring with this class of catalyst, the 2%Pd on Zn/Mn/Zr oxide catalyst has been evaluated over a range of space velocities. It has been found that isobutanol and higher oxygenates yields increase with decreasing space velocity at ethanol conversions greater than 90%. This suggests that this catalyst is capable of converting methanol alone to higher alcohols. This is different from the result obtained with the Cu/Zn/Al oxide baseline catalyst, which showed no change in product yields at high ethanol conversions. Therefore, further effort will be focussed on the development of these noble metal/basic metal oxide catalysts for this application.

Barger, P.T.

1994-12-31T23:59:59.000Z

344

Catalysts for Lean Engine Emission Control - Emissions & Emission Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts for Lean Engine Emission Control Catalysts for Lean Engine Emission Control Catalysts for controlling NOx from lean engines are studied in great detail at FEERC. Lean NOx Traps (LNTs) and Selective Catalytic Reduction (SCR) are two catalyst technologies of interest. Catalysts are studied from the nanoscale to full scale. On the nanoscale, catalyst powders are analyzed with chemisorptions techniques to determine the active metal surface area where catalysis occurs. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is used to observe the chemical reactions occurring on the catalyst surface during catalyst operation. Both powder and coated catalyst samples are analyzed on bench flow reactors in controlled simulated exhaust environments to better characterize the chemical

345

Method of depositing a catalyst on a fuel cell electrode  

DOE Patents (OSTI)

Fuel cell electrodes comprising a minimal load of catalyst having maximum catalytic activity and a method of forming such fuel cell electrodes. The method comprises vaporizing a catalyst, preferably platinum, in a vacuum to form a catalyst vapor. A catalytically effective amount of the catalyst vapor is deposited onto a carbon catalyst support on the fuel cell electrode. The electrode preferably is carbon cloth. The method reduces the amount of catalyst needed for a high performance fuel cell electrode to about 0.3 mg/cm.sup.2 or less.

Dearnaley, Geoffrey (San Antonio, TX); Arps, James H. (San Antonio, TX)

2000-01-01T23:59:59.000Z

346

Stepwise method determines source of FCC catalyst losses  

Science Conference Proceedings (OSTI)

A set of guidelines for fluid catalytic cracking unit (FCCU) monitoring and a logical, stepwise approach to troubleshooting FCC catalyst losses is discussed. This will help process or operations engineers find the causes of such losses. A thorough understanding of the entire catalyst stem during normal operations establishes the base line data necessary for troubleshooting. A comprehensive, ongoing analysis of catalyst losses include: catalyst balance, fresh catalyst physical properties, equilibrium catalyst properties, fine particle size distribution, pressure surveys, and line and restriction orifice records. The paper goes on to identify each step in monitoring these operations and properties.

Fletcher, R. [Akzo-Nobel Chemicals Inc., Houston, TX (United States)

1995-08-28T23:59:59.000Z

347

Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, October 1, 1994--December 31, 1994  

DOE Green Energy (OSTI)

The work on Task 3. Testing of Previously Synthesized Catalysts was initiated in early October as scheduled. Two initial tests were not successful (runs SB-2764 and SB-3064). It took us a great deal of time and effort to overcome these problems, which included conducting a blank test (run SB-3184) and a test of commercial Ruhrchemie catalyst (run SB-3254). Finally, a successful test of catalyst with nominal composition 100 Fe/5 Cu/6 K/24 SiO{sub 2} (run SB-3354) was completed using a different slurry medium (Ethylflo 164 oil). Low activities in unsuccessful tests SB-2764 and SB-3064 may be due to catalyst poisoning by impurities in the initial slurry medium (purified n-octacosane from Humphrey Chemical Co.).

Bukur, D.B.

1995-03-01T23:59:59.000Z

348

How Do I Get Authorization to Work with Lasers at the ALS?  

NLE Websites -- All DOE Office Websites (Extended Search)

Authorization to Work with Lasers at the ALS? Print Authorization for laser use depends on whether users will be bringing their own system to the ALS, whether they intend to use an...

349

How Do I Get Authorization to Work with Lasers at the ALS?  

NLE Websites -- All DOE Office Websites (Extended Search)

Get Authorization to Work with Lasers at the ALS? Print Authorization for laser use depends on whether users will be bringing their own system to the ALS, whether they intend to...

350

Process and catalyst for carbonylating olefins  

DOE Patents (OSTI)

Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

Zoeller, Joseph Robert (Kingsport, TN)

1998-06-02T23:59:59.000Z

351

Modeling of selective catalytic reduction (SCR) of nitric oxide with ammonia using four modern catalysts  

E-Print Network (OSTI)

In this work, the steady-state performance of zeolite-based Cu-ZSM-5, vanadium based honeycomb monolith catalysts (V), vanadium-titanium based pillared inter layered clay catalyst (V-Ti PLIC) and vanadium-titanium-tungsten-based honeycomb monolith catalysts (V-Ti-W) was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3 in presence of oxygen. The objective is to obtain the expression that would predict the conversion performance of the catalysts for different values of the SCR process parameters, namely temperature, inlet oxygen concentration and inlet ammonia concentration. The NOx emission, its formation and control methods are discussed briefly and then the fundamentals of the SCR process are described. Heat transfer based and chemical kinetics based SCR process models are discussed and widely used rate order based model are reviewed. Based on the experimental data, regression analysis was performed that gives an expression for predicting the SCR rate for the complete temperature range and the rate order with respect to inlet oxygen and ammonia concentration. The average activation energy for the SCR process was calculated and optimum operating conditions were determined for each of the catalyst. The applicable operating range for the catalyst depends on the NO conversion as well as on the ammonia slip and the N2O and NO2 emission. The regression analysis was repeated for the applicable range and an expression was obtained that can be used to estimate the catalyst performance. For the Cu-ZSM-5, the best performance was observed for 400oC, 660 ppm inlet ammonia concentration and 0.1% inlet oxygen concentration. For the V based honeycomb monolith catalyst, the best performance was observed for 300oC, 264 ppm inlet ammonia concentration and 3% inlet oxygen concentration. For the V-Ti based PLIC catalyst, the best performance was observed for 350oC, 330 ppm inlet ammonia concentration and 3% inlet oxygen concentration. For the V-Ti-W based honeycomb monolith catalyst, the best performance was observed for 300oC, 330 ppm inlet ammonia concentration and 3% inlet oxygen concentration. The conversion performance of all of these catalysts is satisfactory for the industrial application. At the operating conditions listed above, the N2O emission is less than 20 ppm and the NO2 emission is less than 10 ppm. The results were validated by comparing the findings with the similar work by other research groups. The mechanism of SCR process is discussed for each of the catalyst. The probable reactions are listed and adsorption and desorption process are studied. The various mechanisms proposed by the researchers are discussed briefly. It is concluded that V-Ti-W and Cu-ZSM-5 catalyst are very promising for SCR of NOx. The expressions can be used to estimate the conversion performance and can be utilized for optimal design and operation. The expressions relate the SCR rate to the input parameters such as temperature and inlet oxygen and ammonia concentration hence by controlling these parameters desired NOx reduction can be achieved with minimal cost and emission.

Sharma, Giriraj

2004-08-01T23:59:59.000Z

352

Review and Understanding of Screen-Printed Contacts and Selective-Emitter Formation: Preprint  

DOE Green Energy (OSTI)

A comparison of the loss mechanisms in screen-printed solar cells relative to buried contact cells and cells with photolithography-defined contacts is presented in this paper. Model calculations show that emitter recombination accounts for about 0.5% absolute efficiency loss in conventional screen-printed cells with low-sheet-resistance emitters. Ohmic contact to high-sheet-resistance emitters by screen-printing has been investigated to regain this efficiency loss. Our work shows that good quality ohmic contacts to high sheet-resistance emitters can be achieved if the glass frit chemistry and Ag particle size are carefully tailored. The melting characteristics of the glass frit determine the firing scheme suitable for low contact resistance and high fill factors. In addition, small to regular Ag particles were found to help achieve a higher open-circuit voltage and maintain a low contact resistance. This work has resulted in cells with high fill factors (0.782) on high sheet-resistance emitters and efficiencies of 17.4% on planar float zone Si substrates, without the need for a selective emitter.

Hilali, M. M.; Rohatgi, A.; To, B.

2004-08-01T23:59:59.000Z

353

Internet Printing Protocol/1.1: Model and Semantics  

Science Conference Proceedings (OSTI)

This document is one of a set of documents, which together describe all aspects of a new Internet Printing Protocol (IPP). IPP is an application level protocol that can be used for distributed printing using Internet tools and technologies. This document ...

R. Herriot; R. deBry; S. Isaacson; P. Powell / T. Hastings

2000-09-01T23:59:59.000Z

354

Printed Circuit Board Maintenance, Repair, and Testing Guide  

Science Conference Proceedings (OSTI)

Printed circuit boards (PCBs) are an assembly of electronic and electro-mechanical components, such as relays and switches. The printed circuit (PC) board assembly provides multiple functions based on its application and intended service. It is an integral part of many instruments and/or instrumentation systems.

2003-10-30T23:59:59.000Z

355

Browse by Discipline -- E-print Network Subject Pathways: Plasma...  

Office of Scientific and Technical Information (OSTI)

E-print Network E-print Network Skip to main content Plasma Physics and Fusion Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q...

356

Diesel Fuel Sulfur Effects on the Performance of Diesel Oxidation Catalysts  

DOE Green Energy (OSTI)

Research focus: - Impact of sulfur on: Catalyst performance; Short term catalyst durability. This presentation summarizes results from fresh catalyst performance evaluations - WVU contracted to conduct DOC and Lean NOx catalyst testing for DECSE DECSE program. (experimental details discussed previously)

Whitacre, Shawn D.

2000-08-20T23:59:59.000Z

357

About the E-print Network -- Energy, science, and technology for the  

Office of Scientific and Technical Information (OSTI)

About About General Information E-prints are scholarly and professional works electronically produced and shared by researchers with the intent of communicating research findings to colleagues. They may include preprints, reprints, technical reports, conference publications or other means of electronic communication. Preprints, those selectively shared pre-published documents or articles going through the publication process, have long been recognized and utilized by peer groups throughout the scientific community. Recent technological advances, however, have incorporated preprints with other forms of peer communications to establish an information genre in its own right. Therefore, the more inclusive term e-prints is more appropriate to use currently in describing this rich and valuable source of scientific and

358

Clean Cities: Clean Cities Print Products and Templates  

NLE Websites -- All DOE Office Websites (Extended Search)

Print Products and Templates Print Products and Templates Clean Cities has a wide variety of print products, marketing materials, and templates to support your coalition's education and outreach activities. See also logos, graphics, and photos. IdleBox The IdleBox toolkit contains outreach materials and templates to help with your idle-reduction projects. Print Publications Available print materials include the biannual newsletter-Clean Cities Now-and a variety of fact sheets and brochures about the Clean Cities initiative and the technologies in its portfolio. Browse Clean Cities-branded publications Find alternative fuels and advanced vehicle documents on the Alternative Fuels Data Center The Clean Cities Technical Response Service can also help you find the publications you need.

359

Minutes from the March 14, 2013 Printing and Mail Teleconference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 14, 2013 March 14, 2013 Mail discussion Al Majors is on leave today. Ellsworth Howell Jr. and Tony Nellums are sitting for Al. There are no agenda items for the Mail portion. A discussion period for questions, comments, or suggestions was opened without response Printing discussion Discussed suggestions for reducing printing expenses Presidential Executive Order 13589 and reducing hard copy printing in favor of electronic publishing Sec. 5. Printing. Agencies are encouraged to limit the publication and printing of hard copy documents and to presume that information should be provided in an electronic form, whenever practicable, permitted by law, and consistent with applicable records retention requirements. Agencies should consider using acquisition vehicles developed by the

360

Minutes from the September 15, 2010 Printing and Mail Teleconference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 15, 2010 Printing and Mail Managers Exchange Forum Teleconference September 15, 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-four individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors. Comments/Additions to last Months Minutes Dallas Woodruff, Headquarters opened the meeting by thanking everyone for participating in the today's teleconference. Printing Agenda Items... Upcoming FY 2010 Department-wide Three-Year Plan Dallas Woodruff, Headquarters informed the group that the programmer has been making modifications to the spreadsheets such as the narrative section, equipment installed year, sites data consolidation etc. The enhancement to the narrative section will allow sites to enter data into the four narrative sections, which allow

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Minutes from the January 19, 2011 Printing and Mail Teleconference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2010 January 2010 Printing and Mail Managers Exchange Forum Teleconference Twenty-one individuals participated in the Printing and Mail Managers Exchange Forum, which included Printing and Mail Managers and Contractors Comments/Additions to last Months Minutes No comments. Printing Agenda Items......... Update on the Department-wide FY-2010 Three-Year Plan Dallas Woodruff, Headquarters in formed the group that the Department-wide Printing and Publishing Activities is currently in the concurrence process. The report is due to congress by February 11, 2011. Mr. Woodruff thanks those that assisted in development of the report and he asked for recommendations on how to make the data submission more users friendly. Mr Woodruff also asked members to share any concern or problems they experienced regarding to using the Excel

362

Pennsylvania Company Develops Solar Cell Printing Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology April 15, 2010 - 4:20pm Addthis Joshua DeLung What does this project do? The technology uses Plextronics' conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper. This method is much less expensive than many others in terms of raw materials and manufacturing costs. Pittsburgh-based Plextronics, plans to commercialize low-cost solar power globally with its conductive ink technologies, a goal that has been helped by a government incubator program focused on finding marketable prototypes by 2012. "For any technology to be truly successful, you have to enable a new

363

Multi-Layer Inkjet Printed Contacts to Si  

DOE Green Energy (OSTI)

Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200 deg C in air and N2 respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850 deg C, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.

Curtis, C. J.; van Hest, M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

2005-11-01T23:59:59.000Z

364

Method for dispersing catalyst onto particulate material  

DOE Patents (OSTI)

A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

365

Homogeneous catalyst formulations for methanol production  

DOE Patents (OSTI)

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O' Hare, Thomas E. (Huntington Station, NY)

1991-02-12T23:59:59.000Z

366

Homogeneous catalyst formulations for methanol production  

DOE Patents (OSTI)

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O' Hare, Thomas E. (Huntington Station, NY)

1990-01-01T23:59:59.000Z

367

Catalyst dispersion and activity under conditions of temperature- staged liquefaction. [Catalyst precursors for molybdenum-based catalyst and iron-based catalyst  

DOE Green Energy (OSTI)

Two coals, a Texas subbituminous C and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling and catalyst impregnation on liquefaction conversion behavior in temperature staged reactions for 30 minutes each at 275{degree} and 425{degree}C in H{sub 2} and 95:5 H{sub 2}:H{sub 2}S atmospheres. Methanol, pyridine, tetrahydrofuran, and tetrabutylammonium hydroxide were used as swelling agents. Molybdenum-based catalyst precursors were ammonium tetrathiomolybdate, molybdenum trisulfide, molybdenum hexacarbonyl, and bis(tricarbonylcyclopentadienyl-molybdenum). Ferrous sulfate and bis(dicarbonylcyclo-pentadienyliron) served as iron-based catalyst precursors. In addition, ion exchange was used for loading iron onto the subbituminous coal. For most experiments, liquefaction in H{sub 2}:H{sub 2}S was superior to that in H{sub 2}, regardless of the catalyst precursor. The benefit of the H{sub 2}S was greater for the subbituminous, presumably because of its higher iron content relative to the hvab coal. Tetrabutylammonium hydroxide was the only swelling agent to enhance conversion of the hvab coal significantly; it also caused a remarkable increase in conversion of the subbituminous coal. The combined application of solvent swelling and catalyst impregnation also improves liquefaction, mainly through increased oil yields from the hvab coal and increased asphaltenes from the subbituminous. A remarkable effect from use of ammonium tetrathiomolybdate as a catalyst precursor is substantial increase in pristane and phytane yields. Our findings suggest that these compounds are, at least in part, bound to the coal matrix.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1992-07-01T23:59:59.000Z

368

Enhancement of alkylation catalysts for improved supercritical fluid regeneration  

DOE Patents (OSTI)

A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID)

2010-12-28T23:59:59.000Z

369

Method of performing sugar dehydration and catalyst treatment  

Science Conference Proceedings (OSTI)

The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

2010-06-01T23:59:59.000Z

370

Enhancement of alkylation catalysts for improved supercritical fluid regeneration  

DOE Patents (OSTI)

A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia (Idaho Falls, ID)

2009-09-22T23:59:59.000Z

371

Los Alamos catalyst could jumpstart e-cars, green energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in...

372

Water Uptake of Fuel-Cell Catalyst Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Uptake of Fuel-Cell Catalyst Layers Title Water Uptake of Fuel-Cell Catalyst Layers Publication Type Journal Article Year of Publication 2012 Authors Kusoglu, Ahmet, Anthony...

373

BSA 02-27: Catalysts for Hydrogenation and Hydrosilylation of ...  

... (30 mM) at 23 C and 4 atm H 2 in CD 2 Cl 2. Homogeneous catalysts are usually more selective than heterogeneous catalysts, but they are often difficult to recycle.

374

Catalysts for oxidation of mercury in flue gas  

DOE Patents (OSTI)

Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2010-08-17T23:59:59.000Z

375

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 11, October--December 1995  

DOE Green Energy (OSTI)

Activities during this report period focused on testing of additional modified and promoted catalysts and characterization of these materials. Methanol oxidation studies were performed as a method of acid site characterization. Improvements to the product gas analysis system continued to be developed. These results are reported. Specific accomplishments include: (1) Obtaining and interpreting infrared spectra of modified catalysts prepared to enhance surface acidity. (2) Testing of these catalysts in methanol oxidation as a method of acid site characterization and to determine catalytic activity for conversion of this desired product. Catalysts were quite active for methanol conversion to dimethyl ether. Two of the modified catalysts prepared in this work exhibited the highest activity for this reaction, presumably because of their higher surface areas. (3) Determination that acidity modifications had no effect on activity for methane conversion.

McCormick, R.L.

1996-04-16T23:59:59.000Z

376

Materials Design of Advanced Performance Metal Catalysts  

SciTech Connect

The contribution of materials design to the fabrication of advanced metal catalysts is highlighted, with particular emphasis on the construction of relatively complex contact structures surrounding metal nanoparticles. Novel advanced metal catalysts can be synthesized via encapsulation of metal nanoparticles into oxide shells, immobilization of metal oxide core-shell structures on solid supports, post-modification of supported metal nanoparticles by surface coating, and premodification of supports before loading metal nanoparticles. Examples on how these materials structures lead to enhanced catalytic performance are illustrated, and a few future prospects are presented.

Ma, Zhen [ORNL; Dai, Sheng [ORNL

2008-01-01T23:59:59.000Z

377

Catalysts for lean burn engine exhaust abatement  

DOE Patents (OSTI)

The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

Ott, Kevin C. (Los Alamos, NM); Clark, Noline C. (Jemez Springs, NM); Paffett, Mark T. (Los Alamos, NM)

2003-01-01T23:59:59.000Z

378

Catalysts For Lean Burn Engine Exhaust Abatement  

DOE Patents (OSTI)

The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

Ott, Kevin C. (Los Alamos, NM); Clark, Noline C. (Jemez Springs, NM); Paffett, Mark T. (Los Alamos, NM)

2004-04-06T23:59:59.000Z

379

Method for producing iron-based catalysts  

DOE Patents (OSTI)

A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

Farcasiu, Malvina (Pittsburgh, PA); Kaufman, Phillip B. (Library, PA); Diehl, J. Rodney (Pittsburgh, PA); Kathrein, Hendrik (McMurray, PA)

1999-01-01T23:59:59.000Z

380

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

NWP subcontractor personnel work at a number of DOE generator sites where NWP has no direct contractual authority for overall site operations. NWP has therefore negotiated...

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thief Carbon Catalyst for Oxidation of Mercury in Effluent Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Catalyst for Oxidation of Mercury in Effluent Carbon Catalyst for Oxidation of Mercury in Effluent Stream Contact NETL Technology Transfer Group techtransfer@netl.doe.gov January 2012 Significance * Oxidizes heavy metal contaminants, especially mercury, in gas streams * Uses partially combusted coal ("Thief" carbon) * Yields an inexpensive catalyst * Cheap enough to be a disposable catalyst * Cuts long-term costs * Simultaneously addresses oxidation and adsorption issues Applications * Any process requiring removal of heavy

382

Stabilization of Nickel Metal Catalysts for Aqueous Processing ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Stabilization of Nickel Metal Catalysts for Aqueous Processing Systems. ...

383

Substituted pyridine ligands and related water-soluble catalysts  

SciTech Connect

Versatile Group VIII metathesis catalysts, as can be used in a range of polymerization reactions and other chemical methodologies.

Emrick, Todd S. (Deerfield, MA)

2011-06-14T23:59:59.000Z

384

Thief carbon catalyst for oxidation of mercury in effluent stream  

DOE Patents (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

385

Numerical study of reaction in porous catalysts under composition modulation  

E-Print Network (OSTI)

in monolithic NOx storage and reduction catalyst." Topics in2007). "Model for NOx storage/reduction in the presence of

Hsiao, Hsu-Wen

2010-01-01T23:59:59.000Z

386

Catalyst structure and method of fischer-tropsch synthesis  

Science Conference Proceedings (OSTI)

The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

2002-12-10T23:59:59.000Z

387

Catalyst for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1986-01-01T23:59:59.000Z

388

Supercritical/Solid Catalyst (SSC) - Energy Innovation Portal  

Idaho National Laboratory. Contact INL About This Technology Technology Marketing Summary Supercritical/Solid Catalyst (SSC) is a tested ...

389

Nano Catalysts for Diesel Engine Emission Remediation  

DOE Green Energy (OSTI)

The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

2012-06-01T23:59:59.000Z

390

Recycling and Disposal of Spent Selective Catalytic Reduction Catalyst  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) technology has become widespread within the utility industry as a means of controlling emissions of nitrogen oxides (NOx). The technology uses a solid catalyst that deactivates over time; and thus significant volumes of catalyst will need regeneration, recycle, or disposal. This study examined issues related to spent catalyst recycle and disposal.

2003-11-12T23:59:59.000Z

391

Cobalt Fischer-Tropsch catalysts having improved selectivity  

DOE Patents (OSTI)

The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

1989-01-01T23:59:59.000Z

392

Support Defined Novel Catalyst for Enhanced Fischer-Tropsch Activity.  

E-Print Network (OSTI)

??Four distinct Fisher-Tropsch catalysts were prepared through the incipient wetness technique. These catalysts were Fe-Zn-Ru/alumina, Fe-Zn-Ru/K/alumina, Fe-Zn-Ru/silica, and Fe-Zn-Ru/K/silica. The physical characterization of the catalysts (more)

Lievers, Ashley Ann

2009-01-01T23:59:59.000Z

393

Separation of catalyst from Fischer-Tropsch slurry  

DOE Patents (OSTI)

This paper describes a process for the separation of catalysts used in Fischer-Tropsch synthesis. The separation is accomplished by extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic. The purified catalyst can be upgraded by various methods.

White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

1998-04-01T23:59:59.000Z

394

E-print Network : Your Selections  

Office of Scientific and Technical Information (OSTI)

Your Selections Back To Previous Page Selections - of First Page Previous Page Next Page Last Page Back To Previous Page You have 0 selections. Click the checkboxes clipping.addClipping on the results or alert results pages to add to your selections. Some links on this page may take you to non-federal websites. Their policies may differ from this site. U.S. Department of Energy U.S. Department of Energy Office of Science Office of Scientific and Technical Information Website Policies/Important Links Science Accelerator science.gov WorldWideScience.org Deep Web Technologies Email Results Use this form to email your search results * Email this to: * Your Name: Comments: URL only?: Number of results: 10 20 50 100 200 All Email Format: HTML TEXT * Required field Print Results

395

Deactivation Mechanisms of Pt/Pd-based Diesel Oxidation Catalysts  

Science Conference Proceedings (OSTI)

Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for the oxidation of hydrocarbon and NO in diesel exhaust hydrocarbon oxidation. The present work has been carried out to investigate the deactivation mechanisms of the DOC from its real-world vehicle operation by coupling its catalytic activity measurements with surface characterization including x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectroscopy. A production Pt-Pd DOC was obtained after being aged on a vehicle driven for 135,000 miles in order to study its deactivation behavior. The performance of the vehicle-aged part was correlated with that of the simulated hydrothermal lab aged sample assuming that Pt-Pd sintering plays a major role in irreversible catalyst deactivation. In addition to the hydrothermal sintering, the deterioration of hydrocarbon and NO oxidation performance was caused by surface poisoning. The role of the various aging factors in determining long-term performance in mobile applications will be discussed.

Wiebenga, Michelle H.; Kim, Chang H.; Schmieg, Steven J.; Oh, Se H.; Brown, David B.; Kim, Do Heui; Lee, Jong H.; Peden, Charles HF

2012-04-30T23:59:59.000Z

396

Syntheses and applications of soluble polyisobutylene (PIB)-supported transition metal catalysts  

E-Print Network (OSTI)

Soluble polymer supports facilitate the recovery and recycling of expensive transition metal complexes. Recently, polyisobutylene (PIB) oligomers have been found to be suitable polymer supports for the recovery of a variety of transition metal catalysts using liquid/liquid biphasic separations after a homogeneous reaction. Our work has shown that PIB-supported Ni(II) and Co(II) ?-diketonates prepared from commercially available vinyl terminated PIB oligomers possess catalytic activity like that of their low molecular weight analogs in Mukaiyama epoxidation of olefins. Carboxylic acid terminated PIB derivatives can act as carboxylate ligands for Rh(II) cyclopropanation catalysts. An achiral PIB-supported Rh(II) carboxylate catalyst showed good activity in cyclopropanation of styrene in hydrocarbon solvents, and could be easily recycled nine times by a post reaction extraction. Further application of PIB supports in asymmetric cyclopropanation reactions were investigated using PIBsupported arenesulfonyl Rh(II) prolinates derived from L-proline as examples. The PIBsupported chiral Rh carboxylates demonstrated moderate activity and were recovered and reused for four to five cycles. The prolinate catalyst prepared from PIB-anisole also showed encouraging enantioselectivity and about 8% ee and 13% ee were observed on trans- and cis-cyclopropanation product respectively. Finally, PIB oligomers can be modified in a multi step sequence to prepare PIBsupported chiral bisoxazolines that can in turn be used to prepare active, recyclable PIBsupported Cu(I) bisoxazoline complexes for olefin cyclopropanation. These chiral copper catalysts showed moderate catalytic activity and good stereoselectivity in cyclopropanation of styrene. A chiral ligand prepared from D-phenylglycinol provided the most effective stereo control and gave the trans- and cis-cyclopropanation product in 94% ee and 68% ee respectively. All three PIB-supported chiral bisoxazoline-Cu(I) catalysts could be reused five to six times.

Tian, Jianhua

2008-12-01T23:59:59.000Z

397

Selective methane oxidation over promoted oxide catalysts. Quarterly report, September--November, 1994  

DOE Green Energy (OSTI)

Experimental research in the direct conversion of methane to methanol using a double bed reactor and with gaseous steam as cofeed with the CH{sub 4}/air reactant mixture continued during this quarter in order to improve the methanol space time yield. Work was carried out along several pathways that included a stability test of the second bed catalyst 1%V{sub 2}O{sub 5}/SiO{sub 2} that yielded up to 100 g methanol/kg cat/hr and investigation of the effect of pressure on methanol yields. Redox dopants were put onto several metal oxide supports in an attempt to find better second bed catalysts. A catalyst that was reasonably selective towards oxygenates was obtained when SiO{sub 2} was used as the support and low quantities of Fe or Cu were utilized. Attempts were also made to incorporate alkali ions into the catalysts to improve the surface hydrolyzability. Experiments were carried out to examine the effect of pressure and temperature on the oxygenate productivity over a double-layered catalyst bed of 0.1 g 1 wt% SO{sub 4}{sup 2{minus}}/Sr/La{sub 2}O{sub 3} as the first bed and 0.1 g 1 wt% V{sub 2}O{sub 5}/SiO{sub 2} as the second bed without H{sub 2}O cofeed in a glass-lined tubular down-flow reactor at pressures of 0.1--3.2 MPa (14.7--460 psig), temperatures of 450--500 C, and with a reactant flow rate having a ratio of CH{sub 4}/air = 150/50 ml/min. Reaction products observed were methanol, formaldehyde, carbon dioxide, acetylene, ethylene, and ethane. The overall activity of the catalyst increased at low pressures and high temperature. However, testing at low temperature and high pressure was found to favor methanol production.

Klier, K.; Herman, R.G.; Shi, C.; Wang, C.B.; Sun, Q.

1994-12-01T23:59:59.000Z

398

Water Uptake in PEMFC Catalyst Layers  

SciTech Connect

Water uptake profiles of proton-exchange-membrane fuel-cell catalyst layers are characterized in the form of capillary-pressure saturation (Pc-S) curves. The curves indicate that the catalyst layers tested are highly hydrophilic and require capillary pressures as low as -80 kPa to eject imbibed water. Comparison of materials made with and without Pt indicates a difference in water ejection and uptake phenomena due to the presence of Pt. The addition of Pt increases the tendency of the catalyst layer to retain water. Dynamic vapor sorption (DVS) is used to characterize the water-vapor sorption onto Nafion, Pt/C, and C surfaces. The DVS results align with the trends found from the Pc-S curves and show an increased propensity for water uptake in the presence of Pt. The effect of the ion in Nafion, sodium or protonated form, is also compared and demonstrates that although the protonation of the Nafion in the catalyst layer also increases hydrophilicity, the effect is not as great as that caused by Pt.

Gunterman, Haluna P.; Kwong, Anthony H.; Gostick, Jeffrey T.; Kusoglu, Ahmet; Weber, Adam Z.

2011-07-01T23:59:59.000Z

399

Nitrated metalloporphyrins as catalysts for alkane oxidation  

DOE Patents (OSTI)

Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

Ellis, P.E. Jr.; Lyons, J.E.

1994-01-18T23:59:59.000Z

400

Nitrated metalloporphyrins as catalysts for alkane oxidation  

DOE Patents (OSTI)

Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nitrated metalloporphyrins as catalysts for alkane oxidation  

DOE Patents (OSTI)

Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

1994-01-01T23:59:59.000Z

402

Prealloyed catalyst for growing silicon carbide whiskers  

DOE Patents (OSTI)

A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

Shalek, Peter D. (Los Alamos, NM); Katz, Joel D. (Niagara Falls, NY); Hurley, George F. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

403

Development of improved iron Fischer-Tropsch catalysts. [Iron catalyst with nominal composition 100Fe/0. 3Cu/0. 8K  

SciTech Connect

Three tests (two fixed bed and one stirred tank slurry reactor) were completed during the reporting period. Also, the work on catalyst characterization by different techniques (atomic absorption, BET surface area and pore size distribution and x-ray powder diffraction).The performance of a precipitated iron catalyst with nominal composition lOOFe/0.3Cu/0.8K has been evaluated in two fixed bed reactor tests designated FB-0142 and FB-0352 following pretreatment with syngas (H{sub 2}/CO=0.67) at 280{degree}C, 3Nl/g-cat/h and atomspheric pressure for 8 hours. Flow interruption occurred in the first test (FB-0142) at about 72h on stream, and the second test (FB-0352) was to assess any potential adverse effects of this flow interruption on performance of the catalyst. The catalyst was tested at 250{degree}C, 200 psig, 2Nl/g-cat/h using syngas of the same composition as that employed during the pretreatment. Initial conversions in both tests were high (about 84%) but the catalyst deactivated fairly rapidly. The (H{sub 2} + CO) conversion at the end of the first test (120h on stream) was about 52%, whereas the syngas conversion at the end of the second test (150h) was about 55%, indicating that the brief flow interruption during test FB-0142 had resulted in higher deactivation rate. Hydrocarbon selectivities in both tests were similar and their average values werr: (CH{sub 4})=4.7, (C{sub 2}{minus}C{sub 4})=19.5, (C{sub 5}{minus}C{sub 11})=25.3 and C{sub 12}{sup +}=50.5 wt%.

Bukur, D.B.

1992-04-24T23:59:59.000Z

404

Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994  

DOE Green Energy (OSTI)

Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

Anthony, R.G.; Akgerman, A.

1994-05-06T23:59:59.000Z

405

Work Manager  

Science Conference Proceedings (OSTI)

A real-time control system has been developed and deployed nationally to support BTs work management programme. This paper traces the history, system architecture, development, deployment and service aspects of this very large programme. Many ...

G. J. Garwood

1997-01-01T23:59:59.000Z

406

Minutes from the February 23, 2012 Printing and Mail Teleconference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Printing and Mail Managers Exchange Forum Teleconference February 23, 2012 Participants: Headquarters (5) National Energy Technology Laboratory, PA National Security Complex Y-12 (2) Oak Ridge National Laboratory Y-12 Site Office (2) Hanford Site Office Oak Ridge Association University Oak Ridge Operations Office BWXT Pantex Site Office JanTec Corporation, Richland, Washington Los Alamos National Laboratory Chicago Office Bettis Atomic Power Laboratory National Security Technology C1, Las Vegas SLAC National Accelerator Laboratory Comments/Additions to minutes from last meeting. There were no comments. Printing Agenda Items......... Update on the Department-wide Printing and Publishing Activities Three-Year Plan (2013-2015).

407

Ink Jet Printing Approaches to Solar Cell Contacts  

DOE Green Energy (OSTI)

We are developing inkjet printing as a low cost, high through-put approach to the deposition of front contacts for Si solar cells. High deposition rates of 1m per printing pass were achieved with a new metalorganic ink composed of silver (trifluoroacetate) in ethylene glycol. The printing conditions were optimized to achieve a relatively high line resolution of 120 m. The optimal parameters for the piezoelectric inkjet were a pulse frequency of 50 Hz and pulse amplitude of 25 V. The best resolution and the line quality were achieved at a substrate temperature of 180 C and drop separation of 40 m.

Kaydanova, T.; Miedaner, A.; Curtis, C.; Perkins, J.; Alleman, J.; Ginley, D.

2003-05-01T23:59:59.000Z

408

E-print Network Web Log News: Research Communications for Scientists and  

Office of Scientific and Technical Information (OSTI)

Archive Archive Search Archive August 11, 2006 We’ve had a number of inquiries about how to best search our E-prints on Web-sites feature for individual authors. Here’s what you do. First be sure that the E-prints on Web sites box is checked then go down to the Creator/Author search box and enter the researcher’s last name followed by the first name but use no punctuation between the names. For instance if you were looking for John Brown you would enter in the Creator/Author Box Brown John Then start the search by clicking black search button near the bottom of the page. Please note that the author searching in the E-prints on Web-sites works only for authors who have provided eprints on their web sites. This means that searching for any other author will not return useful results. Also you should find that when multiple authors provide the same eprint, searching for any of the providing authors will retrieve the paper.

409

Process of activation of a palladium catalyst system  

Science Conference Proceedings (OSTI)

Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

2011-08-02T23:59:59.000Z

410

Catalysts for conversion of syngas to liquid motor fuels  

DOE Patents (OSTI)

Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

1987-01-01T23:59:59.000Z

411

Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, 1 July 1995--30 September 1995  

DOE Green Energy (OSTI)

The following accomplishments were made on task 4. Reproducibility of Catalyst Preparation: (1) Five slurry reactor tests were completed. Three tests were conducted using catalyst C (100 Fe/3 Cu/4 K/16 SiO{sub 2}) from three different batches (runs SB-2695, SB-2145 and SA-2715), and two tests were conducted with catalyst B (100 Fe/5 Cu/6 K/24 SiO{sub 2}) from two different preparation batches (runs SA-2615 and SB-2585). Performance of catalysts from different batches (activity, selectivity and deactivation rates) was similar to that of catalysts from the original batch (synthesized during DOE Contract DE- AC22-89PC89868). Thus, another major objective of the present contract, demonstration of reproducibility of catalyst preparation procedure and performance, has been accomplished. With these tests the work on Task 4 has been successfully completed. Two fixed bed reactor tests of catalysts B and C synthesized using potassium silicate solution as the source of potassium promoter were completed during this period (Task 5. The Effect of Source of Potassium and Basic Oxide Promoter). Activity of catalysts prepared using potassium silicate as the source of potassium promotion was somewhat higher, and their methane selectivities were higher than those of the corresponding catalysts prepared by incipient wetness impregnation using KHCO{sub 3} as the source of potassium promoter. However, these differences were not large, and may have been caused by experimental artifacts (e.g. existence of local hot spots in a reactor). A slurry reactor test (SA-2405) of catalyst with nominal composition 100 Fe/5 Cu/2 Ca/24 SiO{sub 2} was completed (Task 5). In general, the catalyst activity, space-time-yield, and hydrocarbon selectivities in this run during testing at:260{degrees}C, 2.17 MPa (300 psig), 2-2.6 Nl/g-cat/h and H{sub 2}CO=0.67 were quite good, and comparable to the best results obtained in our Laboratory.

Bukur, D.B.

1995-12-20T23:59:59.000Z

412

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. Three different SCR catalysts are being studied. These are honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts are manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Test methods and experimental procedures were developed for current and future testing. The methods and procedures equalize factors influencing mercury adsorption and oxidation (surface area, catalyst activity, and pore structure) that normally differ for each catalyst type. Initial testing was performed to determine the time necessary for each catalyst to reach surface-adsorption equilibrium. In addition, the fraction of Hg oxidized by each of the SCR catalyst types is being investigated, for a given amount of catalyst and flow rate of mercury and flue gas. The next major effort will be to examine the kinetics of mercury oxidation across the SCR catalysts with respect to changes in mercury concentration and with respect to HCl concentration. Hg-sorption equilibrium times will also be investigated with respect to ammonia concentration in the simulated flue gas.

Jared W. Cannon; Thomas K. Gale

2004-12-31T23:59:59.000Z

413

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

1996-06-18T23:59:59.000Z

414

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

Singh, Prabhakar (Export, PA); Shockling, Larry A. (Plum Borough, PA); George, Raymond A. (Pittsburgh, PA); Basel, Richard A. (Plub Borough, PA)

1996-01-01T23:59:59.000Z

415

DOE Hydrogen Analysis Repository: Novel Non-Precious Metal Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Non-Precious Metal Catalysts Novel Non-Precious Metal Catalysts Project Summary Full Title: Novel Non-Precious Metal Catalysts for PEMFC: Catalyst Selection through Molecular Modeling and Durability Studies Project ID: 147 Principal Investigator: Branko Popov Brief Description: The University of South Carolina is synthesizing novel non-precious metal electrocatalysts with similar activity and stability as Pt for oxygen reduction reaction (ORR). Keywords: Catalyst; oxygen reduction; non precious metals; molecular modeling; durability Purpose Develop highly active and stable carbon-based metal-free catalysts and carbon composite catalysts with strong Lewis basicity to facilitate the ORR. Performer Principal Investigator: Branko Popov Organization: University of South Carolina Address: 2C19 Swearingen, Chemical Engineering, 301 Main Street

416

Near Critical Catalyst Reactant Branching Processes with Controlled Immigration  

E-Print Network (OSTI)

Near critical catalyst-reactant branching processes with controlled immigration are studied. The reactant population evolves according to a branching process whose branching rate is proportional to the total mass of the catalyst. The bulk catalyst evolution is that of a classical continuous time branching process; in addition there is a specific form of immigration. Immigration takes place exactly when the catalyst population falls below a certain threshold, in which case the population is instantaneously replenished to the threshold. Such models are motivated by problems in chemical kinetics where one wants to keep the level of a catalyst above a certain threshold in order to maintain a desired level of reaction activity. A diffusion limit theorem for the scaled processes is presented, in which the catalyst limit is described through a reflected diffusion, while the reactant limit is a diffusion with coefficients that are functions of both the reactant and the catalyst. Stochastic averaging principles under ...

Budhiraja, Amarjit

2012-01-01T23:59:59.000Z

417

Refiner details ``best practices`` approach to catalyst selection  

Science Conference Proceedings (OSTI)

Catalysts are critical to hydrocarbon processing in refineries. Refiners spend millions of dollars per year on catalysts. This cost, however, pales in comparison to the impact that catalysts can have. The lost opportunity from not using the right catalyst, or an unscheduled shutdown caused by a catalyst-related problem, can be an order of magnitude higher than the cost of the catalyst itself. Chevron Products Co. has adopted a best practices approach to addressing technical and operational issues in refining. A subset of the best-practices program includes the testing, selection, and monitoring of catalysts for Chevron`s fluid catalytic cracking (FCC), catalytic reforming, and hydroprocessing units. The paper discusses these practices.

Krishna, A.S. [Chevron Products Co., El Segundo, CA (United States); Arndt, J.H. [Chevron Products Co., Richmond, CA (United States); Kuehler, C.W.; Kramer, D.C. [Chevron Research and Technology Co., Richmond, CA (United States)

1996-10-14T23:59:59.000Z

418

Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques  

SciTech Connect

This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the final year will focus on continued discovery and identity of candidate materials, and also on refining the engine operating strategies to increase NOx reduction over a full engine cycle.

Blint, Richard J

2005-08-15T23:59:59.000Z

419

Surface modified coals for enhanced catalyst dispersion and liquefaction. Semiannual progress report, September 1, 1995--February 29, 1996  

SciTech Connect

The aim of this work is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants onto coal. The application of surfactants to coal beneficiation and coal-water slurry preparation is well known. However, the effects of surfactants on catalyst loading and dispersion prior to coal liquefaction have not been investigated. The current work is focused on the influence of the cationic surfactant dodecyl dimethyl ethyl ammonium bromide (DDAB) and sodium dodecyl sulfate (SDS, anionic) on the surface properties of a bituminous coal and its molybdenum uptake from solution. The results show that DDAB created positively charged sites on the coal and increased molybdenum loading compared to the original coal. In contrast, SDS rendered the coal surface negative and reduced molybdenum uptake. The results show that efficient loading of molybdenum catalyst onto coal can be achieved by pretreatment of the coal with dodecyl dimethyl ethyl ammonium bromide.

Abotsi, G.M.K.

1996-10-01T23:59:59.000Z

420

Dai Nippon Printing Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dai Nippon Printing Co Ltd Dai Nippon Printing Co Ltd Jump to: navigation, search Name Dai Nippon Printing Co Ltd Place Shinjuku-ku, Tokyo, Japan Zip 162-8001 Sector Solar Product Print conglomerate which is involved with manufacturing components for fuel cells and solar sectors. Coordinates 35.7015°, 139.709244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7015,"lon":139.709244,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Character Segmentation in Highly Blurred Ancient Printed Documents  

Science Conference Proceedings (OSTI)

Character segmentation, which is a fundamental preliminary step for character recognition, is particularly critic in the case of ancient printed documents, where several degradation processes may cause the characters to touch and merge one another. In ...

Anna Tonazzini; Luigi Bedini

1999-09-01T23:59:59.000Z

422

Browse by Discipline -- E-print Network Subject Pathways: Fission...  

Office of Scientific and Technical Information (OSTI)

Fission and Nuclear Technologies A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z Go to Research Collections E-prints Provided...

423

Browse by Discipline -- E-print Network Subject Pathways: Renewable...  

Office of Scientific and Technical Information (OSTI)

Fission and Nuclear Technologies A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z Go to Research Collections E-prints Provided...

424

Browse by Discipline -- E-print Network Subject Pathways: Plasma...  

Office of Scientific and Technical Information (OSTI)

Plasma Physics and Fusion A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z Go to Research Collections E-prints Provided by...

425

Metallizations by Direct-Write Inkjet Printing: Preprint  

DOE Green Energy (OSTI)

Presented at the 2001 NCPV Program Review Meeting: Direct-write technologies offer the potential for low-cost, materials-efficient deposition of contact metallizations for PV. Direct-write technologies offer the potential for low-cost materials-efficient deposition of contact metallizations for photovoltaics. We report on the inkjet printing of metal organic decomposition (MOD) inks with and without nanoparticle additions. Near-bulk conductivity of printed and sprayed metal films has been achieved for Ag and Ag nanocomposites. Good adhesion and ohmic contacts with a measured contact resistance of 400 {mu}{Omega} {center_dot} cm{sup 2} have been observed between the sprayed silver films and a heavily doped n-type layer of Si. Inkjet printed films show adhesion differences as a function of the process temperature and solvent. Silver lines with good adhesion and conductivity have been printed on glass with 100 {micro}m resolution.

Curtis, C. J.; Rivkin, T.; Miedaner, A.; Alleman, J.; Perkins, J.; Smith, L.; Ginley, D.

2001-10-01T23:59:59.000Z

426

Browse by Discipline -- E-print Network Subject Pathways: Mathematics...  

Office of Scientific and Technical Information (OSTI)

Energy Storage, Conversion and Utilization A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z Go to Research Collections E-prints...

427

Web-Based Integration of Printed and Digital Information  

Science Conference Proceedings (OSTI)

The affordances of paper have ensured its retention as a key information medium, in spite of dramatic increases in the use of digital technologies for information storage, processing and delivery. Recent developments in paper, printing and wand technologies ...

Moira C. Norrie; Beat Signer

2003-01-01T23:59:59.000Z

428

Direct printing of lead zirconate titanate thin films  

E-Print Network (OSTI)

Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

Bathurst, Stephen, 1980-

2008-01-01T23:59:59.000Z

429

Tungsten carbide-cobalt by Three Dimensional Printing  

E-Print Network (OSTI)

Three Dimensional Printing is an additive manufacturing process for rapid prototyping ceramic and metallic parts [Sachs, et al, 1990]. Green (not sintered) tungsten carbide-cobalt parts must have a density greater than 50% ...

Kelley, Andrew, III

1998-01-01T23:59:59.000Z

430

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

431

Catalytic Partial Oxidation of CH4 Over Ni-Substituted Hexaaluminate Catalysts  

DOE Green Energy (OSTI)

The catalytic partial oxidation (CPOx) of methane is an attractive source of H2 and CO for fuel cell applications. However, the deposition of carbon onto the surface of the catalyst and the migration and loss of active metals remain the principal issues in the development of a suitable catalyst. The formation of elemental carbon onto the surface of a catalyst has been shown to be related to both the size of the active metal cluster [1] and its coordination [2]. The substitution of a catalytic metal into the lattice of hexaaluminate compounds may serve to reduce the size of active metal clusters and to increase their dispersion thereby reducing their susceptibility toward carbon deposition. Interactions between neighboring substituted metals and the hexaaluminate lattice may serve to suppress active metal mobility. In the present work, a series of barium hexaaluminate catalysts with Ni substituted into the lattice were prepared with the general formula, BaNiyAl12-yO19-? (y = 0.2, 0.4, 0.6, 0.8 and 1.0). The temperature programmed activity and selectivity for this series were investigated.

Gardner, T.H.; Shekhawat, D.; Berry, D.A.; Salazar, M.D.; Smith, M.W.; Kugler, E.L.; Haynes, D.J.; Spivey, J.J.

2007-06-01T23:59:59.000Z

432

CATALYSIS SCIENCE INITIATIVE: From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity  

DOE Green Energy (OSTI)

In this project, we have integrated state-of-the-art Density Functional Theory (DFT) models of heterogeneous catalytic processes with high-throughput screening of bimetallic catalytic candidates for important industrial problems. We have studied a new class of alloys characterized by a surface composition different from the bulk composition, and investigated their stability and activity for the water-gas shift reaction and the oxygen reduction reaction. The former reaction is an essential part of hydrogen production; the latter is the rate-limiting step in low temperature H2 fuel cells. We have identified alloys that have remarkable stability and activity, while having a much lower material cost for both of these reactions. Using this knowledge of bimetallic interactions, we have also made progress in the industrially relevant areas of carbohydrate reforming and conversion of biomass to liquid alkanes. One aspect of this work is the conversion of glycerol (a byproduct of biodiesel production) to synthesis gas. We have developed a bifunctional supported Pt catalyst that can cleave the carbon-carbon bond while also performing the water-gas shift reaction, which allows us to better control the H2:CO ratio. Knowledge gained from the theoretical metal-metal interactions was used to develop bimetallic catalysts that perform this reaction at low temperature, allowing for an efficient coupling of this endothermic reaction with other reactions, such as Fischer-Tropsch or methanol synthesis. In our work on liquid alkane production from biomass, we have studied deactivation and selectivity in these areas as a function of metal-support interactions and reaction conditions, with an emphasis on the bifunctionality of the catalysts studied. We have identified a stable, active catalyst for this process, where the selectivity and yield can be controlled by the reaction conditions. While complete rational design of catalysts is still elusive, this work demonstrates the power of combining the insights gained from theoretical models and the work of experiments to develop new catalysts for current and future industrial challenges.

MAVRIKAKIS, MANOS

2007-05-03T23:59:59.000Z

433

Catalyst vendors take aim at emissions  

Science Conference Proceedings (OSTI)

Standards for emissions of air pollutants from stationary sources are expected to become more stringent under the 1990 U.S. Clean Air Act (CAA). For years, scrubbing, incineration and other end-of-pipe methods have been used to reduce nitrogen oxides (NO{sub x}) and volatile organic compounds (VOCs) from chemical and hydrocarbon processes. This paper reports that operating companies are now looking to catalyst manufacturers for technologies to meet higher standards. For the most part, development efforts have been centered on reducing emissions of carbon monoxide (CO) and VOCs for attainment of national ambient air quality standards for ozone under CAA's Title I. Now though, catalyst manufacturers are setting their sights on NO{sub x}.

Matthey, J.

1992-03-01T23:59:59.000Z

434

Intermediate Ethanol Blends Catalyst Durability Program  

Science Conference Proceedings (OSTI)

In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

2012-02-01T23:59:59.000Z

435

Fuel cell applications for novel metalloporphyrin catalysts  

DOE Green Energy (OSTI)

This project utilized Computer-Aided Molecular Design (CAMD) to develop a new class of metalloporphyrin materials for use as catalysts for two fuel cell reactions. The first reaction is the reduction of oxygen at the fuel cell cathode, and this reaction was the main focus of the research. The second reaction we attempted to catalyze was the oxidation of methanol at the anode. Two classes of novel metalloporphyrins were developed. The first class comprised the dodecaphenylporphyrins whose steric bulk forces them into a non-planar geometry having a pocket where oxygen or methanol is more tightly bound to the porphyrin than it is in the case of planar porphyrins. Significant improvements in the catalytic reduction of oxygen by the dodecaphenyl porphyrins were measured in electrochemical cells. The dodecaphenylporphyrins were further modified by fluorinating the peripheral phenyl groups to varying degrees. The fluorination strongly affected their redox potential, but no effect on their catalytic activity towards oxygen was observed. The second class of porphyrin catalysts was a series of hydrogen-bonding porphyrins whose interaction with oxygen is enhanced. Enhancements in the interaction of oxygen with the porphyrins having hydrogen bonding groups were observed spectroscopically. Computer modeling was performed using Molecular Simulations new CERIUS2 Version 1.6 and a research version of POLYGRAF from Bill Goddard`s research group at the California Institute of Technology. We reoptimized the force field because of an error that was in POLYGRAF and corrected a problem in treatment of the metal in early versions of the program. This improved force field was reported in a J. Am. Chem. Soc. manuscript. Experimental measurements made on the newly developed catalysts included the electrochemical testing in a fuel cell configuration and spectroscopic measurements (UV-Vis, Raman and XPS) to characterize the catalysts.

Ryba, G.; Shelnutt, J.; Doddapaneni, N.; Zavadil, K.

1997-04-01T23:59:59.000Z

436

Hydroprocessing of solvent-refined coal: catalyst-screening results  

SciTech Connect

This report presents the results of screening four catalysts for hydroprocessing a 50 wt% mixture of SRC-I in a prehydrogenated creosote oil using a continuous flow unit. All catalysts employed were nickel-molybdates with varying properties. Reaction conditions were 2000 psi, 8 SCFH of hydrogen, volume hourly space velocity of 0.6 to 1.0 cc of SRC-I/hr/cc of catalyst, and 48 hours at 750/sup 0/F followed by 72 hours at 780/sup 0/F. The results indicate that the Shell 324 catalyst is best for hydrogenation of the feedstock but only marginally better than CB 81-44 for denitrogenation. The CB 81-44 catalyst may be slightly better than Shell 324 for the conversion of the +850/sup 0/F fraction of the feedstock. Desulfurization was uniformly high for all catalysts. Catalysts with a bimodal pore size distribution (i.e., SMR7-6137(1)) appear to be better for denitrogenation than unimodal catalysts (i.e., SMR7-6137(4)) containing the same metals loading. Unimodal catalysts (i.e., Shell 324) with higher metals loadings are comparable to bimodal catalysts (i.e., CB 81-44) containing less metals. The results indicate that pore size distribution and metals loading are important parameters for high activity. Catalysts with a unimodal pore volume distribution are capable of being restored to their original state, while bimodal ones experience a loss in surface area and pore volume and an increase in pellet density. This is attributed to the more efficient use of the interior surface area of the catalyst, which results in higher accumulation of coke and metals. Since coke can be removed via controlled oxidation, the irreversible loss is due to the higher concentrations of metals in the catalyst.

Stiegel, G.J.; Tischer, R.E.; Polinski, L.M.

1982-03-01T23:59:59.000Z

437

STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION  

SciTech Connect

Major objectives of the present project are to develop a better understanding of the roles of the catalyst and the liquefaction solvent in the coal liquefaction process. An open question concerning the role of the catalyst is whether intimate contact between the catalyst and the coal particles is important or required. To answer this question, it had been planned to coat an active catalyst with a porous silica coating which was found to retain catalyst activity while preventing actual contact between catalyst and coal. Consultation with people in DuPont who coat catalysts for increasing abrasion resistance have indicated that only portions of the catalyst are coated by their process (spray drying) and that sections of uncoated catalyst remain. For that reason, it was decided to suspend the catalyst in a basket separated from the coal in the reactor. The basket walls were to be permeable to the liquefaction solvent but not to the coal particles. Several such baskets were constructed of stainless steel with holes which would not permit passage of coal particles larger than 30 mesh. Liquefactions run with the coal of greater than 30 mesh size gave normal conversion of coal to liquid in the absence of catalyst in the basket, but substantially increased conversion when Ni/Mo on alumina catalyst was in the basket. While this result is interesting and suggestive of some kind of mass transfer of soluble material occurring between the catalyst and the coal, it does not eliminate the possibility of breakdown of the coal particle into particle sizes permeable to the basket. Indeed, a small amount of fine coal has been found inside the basket. To determine whether fine coal from breakdown of the coal particles is responsible for the conversion, a new basket is being prepared with 0.5{micro}m pore size.

Michael T. Klein

1998-10-01T23:59:59.000Z

438

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/WIPP-99-2286 Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan Revision 7 U.S. Department of Energy December 2013 This document supersedes DOE/WIPP-99-2286, Rev. 6. Working Copy Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan DOE/WIPP-99-2286, Rev. 7 2 TABLE OF CONTENTSCHANGE HISTORY SUMMARY .............................................. 3 ACRONYMS AND ABBREVIATIONS ............................................................................ 4 1.0 INTRODUCTION .................................................................................................. 6 2.0 NOTIFICATION OR REPORTING REQUIREMENTS AND COMMITMENTS ..... 7

439

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Effective Date: 11/05/13 WP 12-IS.01-6 Revision 10 Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls Cognizant Section: Industrial Safety/Industrial Hygiene Approved By: Tom Ferguson Working Copy Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls WP 12-IS.01-6, Rev. 10 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 7 ACRONYMS AND ABBREVIATIONS ............................................................................. 8 1.0 INTRODUCTION 1 ............................................................................................... 10 2.0 VISITORS ........................................................................................................... 11

440

Cationic Ruthenium Catalysts for Olefin Hydrovinylation  

E-Print Network (OSTI)

Stereoselective carbon?carbon bond formation is one of the most important types of bond construction in organic chemistry. A mild and acid free catalyst system for the hydrovinylation reaction utilizing a cationic, ruthenium center is described. A catalytic amount of RuHCl(CO)(PCy3)2 (2) activated with AgOTF or AgSbF6 at room temperature was found to be an effective catalyst system for the hydrovinylation of vinylarenes and the intramolecular hydrovinylation (IHV) of 1,6-dienes. Vinylarenes with both electron-donating and electron-withdrawing substituents reacted with ethylene at room temperature to provide the desired 3-arylbutenes in moderate to excellent yield (60-99%) under mild reaction conditions, while the IHV reaction of 1, 6 dienes provided greater than 90% of product conversion. We also developed the first hydrovinylation catalyst containing a chelating, bidentate phosphine ligand that provides the desired product. Our ruthenium-based catalytic system has also proven to give an appealing reactivity profile in favor of the desired arylbutenes without promoting undesirable oligomerization and isomerization.

Sanchez, Richard P., Jr

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Characterization of active sites in zeolite catalysts  

DOE Green Energy (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Atomic-level details of the interaction of adsorbed molecules with active sites in catalysts are urgently needed to facilitate development of more effective and/or environmentally benign catalysts. To this end the authors have carried out neutron scattering studies combined with theoretical calculations of the dynamics of small molecules inside the cavities of zeolite catalysts. The authors have developed the use of H{sub 2} as a probe of adsorption sites by observing the hindered rotations of the adsorbed H{sub 2} molecule, and they were able to show that an area near the four-rings is the most likely adsorption site for H{sub 2} in zeolite A while adsorption of H{sub 2} near cations located on six-ring sites decreases in strength as Ni {approximately} Co > Ca > Zn {approximately} Na. Vibrational and rotational motions of ethylene and cyclopropane adsorption complexes were used as a measure for zeolite-adsorbate interactions. Preliminary studies of the binding of water, ammonia, and methylamines were carried out in a number of related guest-host materials.

Eckert, J. [Los Alamos National Lab., NM (United States); Bug, A. [Swarthmore Coll., PA (United States); Nicol, J.M. [MOLTECH (United States)] [and others

1997-11-01T23:59:59.000Z

442

Nanoporous Au: an unsupported pure gold catalyst?  

Science Conference Proceedings (OSTI)

The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.

Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M

2008-09-04T23:59:59.000Z

443

Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and Co Catalysts  

E-Print Network (OSTI)

of synthesis gas, Fischer-Tropsch synthesis, and dehydrogenation of C2- C4 alkanes. The work is carried out. Rytter, A. Holmen, Deactivation of cobalt based Fischer-Tropsch catalysts: A review, Catal. Today, 154-oil upgrading, syngas cleaning and composition adjustment, residual hydrocarbon reforming and Fischer-Tropsch

Iglesia, Enrique

444

Lloyd Crossing Sustainable Urban Design Plan and Catalyst Project - Portland, Oregon [2005 EDRA/Places Award -- Planning  

E-Print Network (OSTI)

Urban Design Plan and Catalyst ProjectPortland, Oregonsensitivity. The associated Catalyst Project attempts toUrban Design Plan and Catalyst ProjectJury Comments Brager:

Hayter, Jason Alexander

2005-01-01T23:59:59.000Z

445

Rhodium Catalysts in the Oxidation of CO by O2 and NO: Shape, Composition, and Hot Electron Generation  

E-Print Network (OSTI)

ACTIVITY OF PLATINUM CATALYSTS. Journal of Catalysis 1966,SUPPORTED BIMETALLIC-CLUSTER CATALYSTS. Journal of Catalysisnanoparticle heterogeneous catalyst. Chem. Commun. 1999, (

Renzas, James Russell

2010-01-01T23:59:59.000Z

446

REDUCTION OF NITRIC OXIDE BY CARBON MONOXIDE OVER A SILICA SUPPORTED PLATINUM CATALYST: INFRARED AND KINETIC STUDIES  

E-Print Network (OSTI)

System. B. Procedures. Catalyst Preparation Infrared DiskPreparation. Catalyst Characterization. PreliminaryReduction by CO Over a Pt Catalyst," M.S. thesis, Department

Lorimer, D.H.

2011-01-01T23:59:59.000Z

447

Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol  

E-Print Network (OSTI)

a cyanobacterium as the catalyst for the photosynthetica cyanobacterium as the catalyst for the photosyntheticcan be engineered as a catalyst for the photosynthetic

Li, Han; Liao, James C

2013-01-01T23:59:59.000Z

448

Integrated model-based control and diagnostic monitoring for automotive catalyst systems  

Science Conference Proceedings (OSTI)

An integrated model-based automotive catalyst control and diagnostic monitoring system is presented. This system incorporates a simplified dynamic catalyst model that describes oxygen storage and release in the catalyst and predicts the post-catalyst ... Keywords: automotive catalyst, model predictive control, on-board diagnostic monitoring

Kenneth R. Muske; James C. Peyton Jones

2007-11-01T23:59:59.000Z

449

Work Address:  

NLE Websites -- All DOE Office Websites (Extended Search)

BO SAULSBURY BO SAULSBURY Work Address: Home Address: Oak Ridge National Laboratory 12952 Buckley Road National Transportation Research Center Knoxville, TN 37934 Building NTRC-2, Room 118 (865) 288-0750 Oak Ridge, TN 37831-6479 (865) 574-4694 saulsburyjw@ornl.gov Technical Specialties: Land use planning Environmental and socioeconomic impact assessment National Environmental Policy Act (NEPA) project management Vehicle fuel economy Education: 1986 B. A., History (minors in English and Business), The University of Tennessee 1989 M. S., Planning, The University of Tennessee (Thesis title: Land Use Compatibility Planning for Airfield Environs: Intergovernmental Cooperation to Protect Land Users From the Effects of Aircraft Operations)

450

Los Alamos catalyst could jumpstart e-cars, green energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalyst could jumpstart e-cars, green energy Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in alkaline media of any non-precious metal catalyst developed to date. June 4, 2013 A high-resolution microscopic image of a new type of nanostructured-carbon-based catalyst developed at Los Alamos National Laboratory that could pave the way for reliable, economical next-generation batteries and alkaline fuel cells. (Photo credit: Los Alamos National Laboratory) A high-resolution microscopic image of a new type of nanostructured-carbon-based catalyst developed at Los Alamos National Laboratory that could pave the way for reliable, economical next-generation batteries and alkaline fuel cells. (Photo credit: Los Alamos National

451

Catalysts for Oxidation of Mercury in Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts for Oxidation of Mercury in Flue Gas Catalysts for Oxidation of Mercury in Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,776,780 entitled "Catalysts for Oxidation of Mercury in Flue Gas." Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), platinum/iridium (Pt/Ir), and Thief carbons. The catalyst materials will adsorb the oxidizing agents HCl, Cl 2 , and other halogen species in the flue gas stream that are produced when fuel is combusted. These adsorbed oxidizing agents can then react with elemental mercury in the stream, which is difficult to capture, and oxidize it to form Hg (II) species,

452

Los Alamos catalyst could jumpstart e-cars, green energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalyst could jumpstart e-cars, green energy Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in alkaline media of any non-precious metal catalyst developed to date. June 4, 2013 A high-resolution microscopic image of a new type of nanostructured-carbon-based catalyst developed at Los Alamos National Laboratory that could pave the way for reliable, economical next-generation batteries and alkaline fuel cells. (Photo credit: Los Alamos National Laboratory) A high-resolution microscopic image of a new type of nanostructured-carbon-based catalyst developed at Los Alamos National Laboratory that could pave the way for reliable, economical next-generation batteries and alkaline fuel cells. (Photo credit: Los Alamos National

453

Effect of Graphitic Content on Carbon Supported Catalyst Performance  

DOE Green Energy (OSTI)

The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

2011-07-01T23:59:59.000Z

454

Method for regeneration and activity improvement of syngas conversion catalyst  

DOE Patents (OSTI)

A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

1980-01-01T23:59:59.000Z

455

Reforming with an improved platinum-containing catalyst  

Science Conference Proceedings (OSTI)

There is disclosed a catalyst, which catalyst comprises a physical particle-form mixture of a component A and a component B , said component A comprising one or more group VIII noble metals and a combined halogen deposed on a refractory inorganic oxide and said component B comprising a metal from group IVB or group VB of the periodic table of elements and a combined halogen deposed on a refractory inorganic oxide. Such catalyst is suitable for use in a hydrocarbon conversion reaction zone. The catalyst can be employed in a process for the reforming of a hydrocarbon stream, which process comprises contacting said stream in a reaction zone under reforming conditions and in the presence of hydrogen with said catalyst. The catalyst is not presulfided. A preferred process comprises contacting a hydrocarbon stream that contains a substantial amount of sulfur.

Bertolacini, R.J.; Lysholm, D.L.; Pellet, R.J.

1982-10-12T23:59:59.000Z

456

DYNAMOMETER EVALUATION OF PLASMA-CATALYST FOR DIESEL NOX REDUCTION  

DOE Green Energy (OSTI)

A three-stage plasma-catalyst system was developed and tested on an engine dynamometer. Previous laboratory testing suggested high NOx efficiency could be obtained. With hexene reductant added to the exhaust, over 90% NOx reduction was observed. However, with diesel or Fischer-Tropsch reductant the catalyst efficiency rapidly dropped off. Heating the catalyst in air removed brown deposit from the surface and restored conversion efficiency. Following the engine tests, the used catalysts were evaluated. BET surface area decreased, and TPD revealed significant storage. This storage appears to be partly unburned diesel fuel that can be removed by heating to around 250-300 C, and partly hydrocarbons bonded to the surface that remain in place until 450-500 C. Laboratory testing with propene reductant demonstrated that the catalyst regains efficiency slowly even when operating temperature does not exceed 300 C. This suggests that control strategies may be able to regenerate the catalyst by occasional moderate heating.

Hoard, J; Schmieg, S; Brooks, D; Peden, C; Barlow, S; Tonkyn, R

2003-08-24T23:59:59.000Z

457

DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING  

DOE Green Energy (OSTI)

This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

2004-09-27T23:59:59.000Z

458

Status of the Development and Assessment of Advanced NOx Catalysts  

Science Conference Proceedings (OSTI)

This is an interim report summarizing the status of EPRI's advanced nitrogen oxides (NOx) reduction catalyst development efforts in 2000. Concepts for that are more effective, lower cost, and may not have the problems associated with the standard vanadium pentoxide - titanium dioxide (V2O5-TiO2) NOx selective catalytic reduction (SCR) catalysts that have been assessed under this program. The primary efforts in 2000 included further development of an ultra-high efficiency (UHE) catalyst, determining wheth...

2000-11-27T23:59:59.000Z

459

Enhanced catalyst for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1986-01-01T23:59:59.000Z

460

Enhanced catalyst stability for cyclic co methanation operations  

DOE Green Energy (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

Risch, Alan P. (New Fairfield, CT); Rabo, Jule A. (Armonk, NY)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "working catalyst print" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Diesel Emission Control-- Sulfur Effects (DECSE) Program-- Phase II Summary Report: NOx Adsorber Catalysts  

DOE Green Energy (OSTI)

The investigations performed in this project demonstrated the ability to develop a NO{sub x} regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO{sub x} conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO{sub x} absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO{sub x} conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO{sub x} conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO{sub x} conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be necessary to identify the cause of this performance decline. (5) The rate of sulfur contamination during aging with 78-ppm sulfur fuel increased with repeated aging/desulfurization cycles (from 10% per ten hours to 18% per ten hours). This was not observed with the 3-ppm fuel, where the rate of decline during aging was fairly constant at approximately 2% per ten hours.

None

2000-10-01T23:59:59.000Z

462

Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports  

SciTech Connect

Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

Adeyinka Adeyiga

2010-02-05T23:59:59.000Z

463

Table III: Technical Targets for Catalyst Coated Membranes ...  

NLE Websites -- All DOE Office Websites (Extended Search)

III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary All targets must be achieved simultaneously Characteristics Units Calendar year 2002 status a 2005 2010...

464

Hollow Nanoparticles as Active and Durable Catalysts - Energy ...  

Platinum is an excellent catalyst for many reactions. However, it is also very expensive. The catalytic activity per gram of platinum can be increased by using a ...

465

Table I: Technical Targets for Catalyst Coated Membranes (CCMs...  

NLE Websites -- All DOE Office Websites (Extended Search)

I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive All targets must be achieved simultaneously Characteristics Units Calendar year 2002 status a 2005 2010...

466

Development of Ni-Fe Hydrogenation Catalyst from D. Gigas ...  

Development of Ni-Fe Hydrogenation Catalyst from D. Gigas Hydrogenase Note: The technology described above is an early stage opportunity. Licensing rights to this ...

467

TransForum v4n1 - Bifunctional Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

NEW BIFUNCTIONAL CATALYSTS PROMISE DRAMATIC NOx REDUCTIONS FOR HEAVY-DUTY DIESEL VEHICLES Truck manufacturers will need new technologies to help them meet EPA regulations that...

468

Heterogenization of Homogeneous Catalysts: the Effect of the Support  

DOE Green Energy (OSTI)

We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

1999-06-29T23:59:59.000Z

469

Mercury Oxidation and Capture over SCR Catalysts in Simulated ...  

Science Conference Proceedings (OSTI)

The SCR catalysts were tested for oxidation and capture of elemental mercury ... EBSD Analysis of Complex Microstructures of CSP? Processed Low Carbon...

470

Combined catalysts for the combustion of fuel in gas turbines  

Science Conference Proceedings (OSTI)

A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

Anoshkina, Elvira V.; Laster, Walter R.

2012-11-13T23:59:59.000Z

471

Synthesis of Ni-Al Intermetallic Nanoparticle Catalysts by Vacuum ...  

Science Conference Proceedings (OSTI)

... methanol decomposition and methane steam reforming, indicating a possibility to develop Ni-Al intermetallic compounds as catalysts for hydrogen production.

472

Catalyst for selective NO.sub.x reduction using ...  

A method of preparing the two phase catalyst and using same to remediate NO.sub.x in combustion gases is also described. Skip to Content. Skip to ...

473

Biomass-derived Hydrogen-evolution catalyst and electrode  

combination of biomass and earth-abundant metals has resulted in a durable catalyst for splitting water into oxygen and hydrogen, which can be used as ...

474

Novel catalyst for selective NOx reduction using hydrocarbons ...  

This invention discloses a catalyst and process for removing nitrogen oxides from exhaust streams under lean burn conditions using hydrocarbons as the reductant.

475

Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis  

gas, coal, or biomass Enhances the potential use of oxygenates as neat fuels or fuel additives Develops a catalyst with high selectivity for ...

476

Multi-stage catalyst systems and uses thereof  

DOE Patents (OSTI)

Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

2009-02-10T23:59:59.000Z

477

ORNL-grown oxygen 'sponge' presents path to better catalysts...  

NLE Websites -- All DOE Office Websites (Extended Search)

presents path to better catalysts, energy materials This schematic depicts a new ORNL-developed material that can easily absorb or shed oxygen atoms. This schematic depicts...

478

Method of distributing liquefaction catalysts in solid carbonaceous material  

DOE Patents (OSTI)

A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material. 2 tables.

Weller, S.W.

1984-05-23T23:59:59.000Z

479

Supercomputers Help a Catalyst Reach its Full Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

by catalysts are crucial to many industrial processes. In fertilizer production, chemical companies combine copious amounts of molecular hydrogen with nitrogen to produce...

480

PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS  

SciTech Connect

During this reporting period, a ''zinc chromite'' catalyst promoted with 6 wt.% cesium (Cs) was evaluated at the following operating conditions: Temperature - 375 C and 400 C; Total Pressure--13.6 MPa (2000 psig); Gas Hourly Space Velocity (GHSV) - 5000 standard liters/kg(cat)-hr; and H{sub 2}/CO feed ratio--0.5, 1.0 and 2.0 mole/mole. Decahydronaphthalene (DHN) was used as the slurry liquid. The experiment lasted for twelve days of continuous operation. Unpromoted zinc chromite