Sample records for working catalyst print

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

  2. alkene metathesis catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas phase oxidation of alkenes as propene to unsaturated aldehydes or ketones such as acrolein. A 19 Cu20 catalyst was used and periodically reactivated... Billingsley, David...

  3. E-Print Network 3.0 - absorbing catalyst dispersion Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalyst through- out the matrix. The use of catalyst microspheres resulted... syringe filters and the concentration of catalyst in each solution was measured by UV-vis...

  4. Catalyst Working Group Kick-off Meeting: Personal Commentary

    Broader source: Energy.gov [DOE]

    Personal commentary on future directions in fuel cell electrocatalysis, presented by Mark Debe, 3M, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  5. alternative silp-scr catalysts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bioreactors, catalysts 7 Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs) Energy Storage, Conversion and Utilization Websites Summary: Impact of...

  6. E-Print Network 3.0 - anode catalyst pathway Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Polyols 16 Water-Gas Shift Catalysis via Mesoporous Catalysts 20 Pd on ceriasilica aerogel... and ceriasilica xerogel catalysts for WGS 23 Hydrogen Production in...

  7. E-Print Network 3.0 - assisted catalyst system Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 to December 31, 2006 Summary: and F-T Catalysts Supported on CeriaSilica Aerogels 14 Hydrogen production by carbon assisted... catalyst supports for WGS and F-T were...

  8. alkali-resistant denox catalysts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    non-food biomass (lignocellulose Chemistry (C-IIAC), Ruilian Wu and Louis "Pete" Silks of Bioenergy and Environmental Science (B-8) have 23 Multifunctional Catalysts for Singlewall...

  9. aqueous-phase rh-norbos catalysts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on microscopic phenomena at the pore level, and serve as a first step toward future optimization of catalyst layer designs. Schmuck, Markus 2012-01-01 139 Homogenization of a...

  10. alara work practice: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can undermine work-home boundaries and cause stress and home life. Author Keywords Work home boundary management; HCI; work; leisure; personal informatics leisure pursuits...

  11. WORKING PAPER N 2013 22 The long Term Effects of the Printing Press in Sub Saharan Africa

    E-Print Network [OSTI]

    WORKING PAPER N° 2013 ­ 22 The long Term Effects of the Printing Press in Sub Saharan Africa Julia-00844446,version1-15Jul2013 #12;THE LONG-TERM EFFECTS OF THE PRINTING PRESS IN SUB-SAHARAN AFRICA Julia Cag of the newspaper and came to employ it as the chief weapon by which they were to exercise their power

  12. academic reference works: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Get References into RefWorks Engineering Websites Summary: time. Type in your search terms. 5. Import from a text file. This method works for some onlineWorks function is...

  13. attention working memory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and working memory. (more) Mayer, Jamie F. 2010-01-01 30 Working Memory and Dyslexia CiteSeer Summary: Recent research has demonstrated that dyslexic children suffer...

  14. assessment work plan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pushing Working Families into Poverty: Assessing the New Haven Plan to Privatize the Public Schools, Amherst March 2011 12;Pushing Working Families into Poverty: Assessing the...

  15. Researchers hope better catalysts lead to better ways of converting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers hope better catalysts lead to better ways of converting biomass to fuel By Jared Sagoff * August 7, 2013 Tweet EmailPrint ARGONNE, Ill. - Scientists and entrepreneurs...

  16. association bhopal working: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the highest excitation components, and voltige horses, which were the quietest. The horses type of work was decided by the stall managers, Martine Hausberger; Christine...

  17. affects working patterns: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INTRODUCTION We are currently 25 How do Communities Change their Culture Towards more Sustainable Patterns of Living, Working and Learning? Environmental Sciences and Ecology...

  18. aids malignancies working: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Howard 15 Student Awards & Financial Aid Office Applying for AwardsWork Study: Awards Search On-line Physics Websites Summary: : Enter Username and password Click on the...

  19. assessment working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 47 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  20. airp work group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 35 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  1. analysis working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 48 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  2. aer working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 37 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  3. auditory working memory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requires not only attention Sturm, Alexandra Noelle 2013-01-01 9 Working Memory and Dyslexia CiteSeer Summary: Recent research has demonstrated that dyslexic children suffer...

  4. annual working conference: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    139 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA CAS Working Conference Physics Websites Summary: Conference Library and Information...

  5. alternatives study working: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opportunity to work in a "field" that may be of interest and helps prepare students to enter need. THE HIRING PROCESS Process for obtaining a job: 1. Search for available...

  6. anaerobic work capacity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared...

  7. administrative intersectoral working: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16. This work was supported by the National Aeronautics and Space-2199 NASACR-1999-209827 ICASE Report No. 99-50 Efficient Symbolic State-space Construction for...

  8. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09T23:59:59.000Z

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  9. Oxyhydrochlorination catalyst

    DOE Patents [OSTI]

    Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  10. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14T23:59:59.000Z

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  11. Catalyst Characterization

    Broader source: Energy.gov (indexed) [DOE]

    or Ammonia Slip catalyst (ASC) 3 Managed by UT-Battelle for the U.S. Department of Energy * FreedomCar and Vehicle Technologies Program, Multi-Year Program Plan 2011-2015, Dec...

  12. The Challenges for PEMFC Catalysts in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation by Stephen Campbell for the 2013 DOE Catalysis Working Group Meeting on PEMFC catalysts in automotive applications.

  13. 90 Seconds of Discovery: Biofuel Catalyst Life and Plugs

    SciTech Connect (OSTI)

    Zacher, Alan; Olarte, Mariefel

    2014-06-11T23:59:59.000Z

    Scientist at PNNL are working to extend the life of the catalysts used in the production of biomass fuels.

  14. 90 Seconds of Discovery: Biofuel Catalyst Life and Plugs

    ScienceCinema (OSTI)

    Zacher, Alan; Olarte, Mariefel

    2014-06-12T23:59:59.000Z

    Scientist at PNNL are working to extend the life of the catalysts used in the production of biomass fuels.

  15. Argonne National Laboratory Chemical Engineering Division Catalysts for autothermal reforming

    E-Print Network [OSTI]

    ,110,861) awarded Oct 2000: CRADA w/H2Fuel to commercialize reformer Aug 2001: Began work on perovskite catalysts Feb 2002: CRADA w/Süd-Chemie to optimize catalyst performance Oct 2002: Demonstrated conversion

  16. Applications of hydrogenation and dehydrogenation on noble metal catalysts

    E-Print Network [OSTI]

    Wang, Bo

    2009-05-15T23:59:59.000Z

    Hydrogenation and dehydrogenation on Pd- and Pt- catalysts are encountered in many industrial hydrocarbon processes. The present work considers the development of catalysts and their kinetic modeling along a general and rigorous approach. The first...

  17. Weaving a catalyst | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weaving a catalyst Weaving a catalyst Released: November 20, 2014 Popular aluminum oxide created by interlacing different crystal forms Scientists obtained an atomically resolved...

  18. auditory-verbal working memory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memory 4 Percept Result of filtering Memphis, University of 4 Working Memory and Dyslexia CiteSeer Summary: Recent research has demonstrated that dyslexic children suffer...

  19. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30T23:59:59.000Z

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  20. Durable Catalysts for Fuel Cell Protection during Transient Conditions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Meeting: June 2014 DOE's Fuel Cell Catalyst R&D Activities Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports...

  1. Tungsten Cathode Catalyst for PEMFC

    SciTech Connect (OSTI)

    Joel B. Christian; Sean P. E. Smith

    2006-09-22T23:59:59.000Z

    Final report for project to evaluate tungsten-based catalyst as a cathode catalyst for PEM cell applications.

  2. Printing a Car: A Team Effort in Innovation (Text Version) |...

    Broader source: Energy.gov (indexed) [DOE]

    video Printing a Car: A Team Effort in Innovation highlighting the demonstration of 3D printing to create a working electric vehicle, live during the International Manufacturing...

  3. Hydrocarbon in Catalyst in

    E-Print Network [OSTI]

    Ladkin, Peter B.

    Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure #12;#12;#12;#12;#12;#12;#12;#12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer operator

  4. Hydrocarbon in Catalyst in

    E-Print Network [OSTI]

    Ladkin, Peter B.

    #12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer;#12;Vent 1 Vent 2 Product outHydrocarbon in Steam in Catalyst in light Warning Computer controller Tank

  5. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Davis, B.H.

    1998-07-22T23:59:59.000Z

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  6. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

    2010-03-02T23:59:59.000Z

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  7. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  8. High-oxidation-state molybdenum and tungsten monoalkoxide pyrrolide alkylidenes as catalysts for olefin metathesis

    E-Print Network [OSTI]

    Townsend, Erik Matthew

    2014-01-01T23:59:59.000Z

    Chapter 1 describes work toward solid-supported W olefin metathesis catalysts. Attempts to tether derivatives of the known Z-selective catalyst W(NAr)(C?H?)(pyr)(OHIPT) (Ar = 2,6- diisopropylphenyl, pyr = pyrrolide; HIPT ...

  9. Noble metal catalysts for oxidation of mercury in flue gas

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2008-04-01T23:59:59.000Z

    The use of precious metals and platinum group metals as catalysts for oxidation of mercury in flue gas is an active area of study. To date, field studies have recently focused on gold and palladium catalysts installed at pilot-scale. In this work, we introduce bench-scale results for gold, platinum, and palladium catalysts tested in realistic simulated flue gas. Initial results reveal intriguing characteristics of catalytic mercury oxidation and provide insight for future research.

  10. Development of a stable cobalt-ruthenium Fisher-Tropsch catalyst. Final report

    SciTech Connect (OSTI)

    Frame, R.R.; Gala, H.B.

    1995-02-01T23:59:59.000Z

    The reverse micelle catalyst preparation method has been used to prepare catalysts on four supports: magnesium oxide, carbon, alumina- titania and steamed Y zeolite. These catalysts were not as active as a reference catalyst prepared during previous contracts to Union Carbide Corp. This catalyst was supported on steamed Y zerolite support and was impregnated by a pore-filling method using a nonaqueous solvent. Additional catalysts were prepared via pore- filling impregnation of steamed Y zeolites. These catalysts had levels of cobalt two to three and a half times as high as the original Union Carbide catalyst. On a catalyst volume basis they were much more active than the previous catalyst; on an atom by atom basis the cobalt was about of the same activity, i.e., the high cobalt catalysts` cobalt atoms were not extensively covered over and deactivated by other cobalt atoms. The new, high activity, Y zerolite catalysts were not as stable as the earlier Union Carbide catalyst. However, stability enhancement of these catalysts should be possible, for instance, through adjustment of the quantity and/or type of trace metals present. A primary objective of this work was determination whether small amounts of ruthenium could enhance the activity of the cobalt F-T catalyst. The reverse micelle catalysts were not activated by ruthenium, indeed scanning transmission electronic microscopy (STEM) analysis provided some evidence that ruthenium was not present in the cobalt crystallites. Ruthenium did not seem to activate the high cobalt Y zeolite catalyst either, but additional experiments with Y zeolite-supported catalysts are required. Should ruthenium prove not to be an effective promoter under the simple catalyst activation procedure used in this work, more complex activation procedures have been reported which are claimed to enhance the cobalt/ruthenium interaction and result in activity promotion by ruthenium.

  11. Thermodynamic Properties of Supported Catalysts

    SciTech Connect (OSTI)

    Gorte, Raymond J.

    2014-03-26T23:59:59.000Z

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  12. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06T23:59:59.000Z

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  13. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02T23:59:59.000Z

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  14. Hydrocarbon cracking catalyst

    SciTech Connect (OSTI)

    Lochow, C.F.; Kovacs, D.B.

    1988-12-27T23:59:59.000Z

    This patent describes a catalyst composition for cracking hydrocarbons to maximize gasoline comprising: rare earth exchanged ''Y'' crystalline faujasite dispersed in a clay containing matrix material; and which has been subsequently further ion exchanged to contain 0.20 to 3.0 wt% yttrium, calculated as the oxide, whereby the yttrium is chemically combined in the catalyst composition.

  15. Catalyst for dehydrocyclizing alkanes

    SciTech Connect (OSTI)

    Buss, W.C.; Hughes, T.R.

    1987-05-19T23:59:59.000Z

    A catalyst is described comprising a large-pore zeolite containing: at least one Group VIII metal; and an alkaline earth metal selected from the group consisting of barium, strontium and calcium, wherein the Selectivity Index of the catalyst is greater than 60%.

  16. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNXCenter

  17. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG

  18. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUGNanoscale Chemical

  19. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUGNanoscale

  20. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste Forms -Spectrometry

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste Forms

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste FormsNanoscale Chemical

  3. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste FormsNanoscale

  4. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste FormsNanoscaleNanoscale

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-Ceramic Waste

  6. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

    2011-11-15T23:59:59.000Z

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  7. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, R.J.; Gao, H.

    1998-08-04T23:59:59.000Z

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  8. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, Robert J. (Ames, IA); Gao, Hanrong (Ames, IA)

    1998-08-04T23:59:59.000Z

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  9. Catalysts and method

    DOE Patents [OSTI]

    Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

    1991-01-01T23:59:59.000Z

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  10. Molecularly engineering homogenous catalysts

    E-Print Network [OSTI]

    Hughes, Reagan Rebekah

    2013-02-22T23:59:59.000Z

    biphasic catalysts were appealing because water is a "green" solvent. However, there has been growing concern over the contact of organics with process water, which lead to the creation of dilute aqueous organic waste streams. Because these streams...

  11. Epoxidation catalyst and process

    DOE Patents [OSTI]

    Linic, Suljo (Ann Arbor, MI); Christopher, Phillip (Ann Arbor, MI)

    2010-10-26T23:59:59.000Z

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  12. Controlling proton source speeds catalyst | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    speeds catalyst Controlling proton source speeds catalyst Released: April 29, 2013 Nickel-based catalyst three times faster with adjustments to key acid Research showing that...

  13. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Treatment Catalyst Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst Poster presented at the 16th Directions in...

  14. Nanotube/Nanowire Based ORR Catalyst

    Broader source: Energy.gov [DOE]

    Presentation about nanotube or nanowire-based oxygen reduction reaction (ORR) catalysts, presented by Yushan Yan, University of Delaware, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  15. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA); Alexeev, Nikolai (Moscow, RU)

    2007-10-09T23:59:59.000Z

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  16. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, R.G.; Dosch, R.G.

    1993-01-05T23:59:59.000Z

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  17. Catalytic reforming catalyst

    SciTech Connect (OSTI)

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09T23:59:59.000Z

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  18. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect (OSTI)

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I. [Sandia National Labs., Albuquerque, NM (United States). Process Research Dept.

    1993-07-01T23:59:59.000Z

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  19. Supported organoiridium catalysts for alkane dehydrogenation

    DOE Patents [OSTI]

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03T23:59:59.000Z

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  20. Secret Lives of Catalysts Revealed

    SciTech Connect (OSTI)

    Salmeron, Miquel; Somorjai, Gabor

    2008-01-01T23:59:59.000Z

    Miquel Salmeron and Gabor Somorjai of Berkeley Lab's Materials Sciences Division discuss the first-ever glimpse of nanoscale catalysts in action. More information: http://newscenter.lbl.gov/press-releases/2008/10/21/catalysts/

  1. Process of making supported catalyst

    DOE Patents [OSTI]

    Schwarz, James A. (Fayetteville, NY); Subramanian, Somasundaram (Melvindale, MI)

    1992-01-01T23:59:59.000Z

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  2. Aerogel derived catalysts

    SciTech Connect (OSTI)

    Reynolds, J. G., LLNL

    1996-12-11T23:59:59.000Z

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  3. Autothermal reforming catalyst and process

    SciTech Connect (OSTI)

    Setzer, H. J.; Karavolis, S.; Lesieur, R. R.; Wnuck, W. G.

    1984-09-25T23:59:59.000Z

    High activity steam reforming catalysts are described particularly adapted for use in autothermal reforming processes. A rhodium catalyst on a calcium oxide impregnated alumina substrate allow the autothermal reforming process to take place with substantially no carbon plugging at oxygen to carbon ratios below what had been considered critical for avoiding carbon plugging of the catalyst in the past.

  4. Slurry Phase Iron Catalysts for Indirect Coal LIquefaction.

    SciTech Connect (OSTI)

    Datye, A.K.

    1997-08-08T23:59:59.000Z

    This report covers the fourth six month period of this three year grant under the University Coal Research program. During this period, we have begun the synthesis of precipitated catalysts using a bench-top spray dryer. The influence of binders on particle strength was also studied using the ultrasonic fragmentation approach to derive particle breaking stress. A similar approach was used to derive particle strength of catalysts obtained from Mr. Robert Gormley at FETC. Over the next six month period, this work will be continued while the catalysts prepared here will be examined by TPR to determine reducibility and the extent of adverse iron-silica interactions. A fundamental study of Fe/silica interactions has been performed using temperature programmed reaction and TEM to provide understanding of how the silica binders influence the activity of Fe catalysts. To understand differences in the reducibility of the iron phase caused by silica, we have set up a temperature programmed reduction facility. TPR in H, as well as in CO was performed of Fe/ SiO, catalysts prepared by impregnation as well as by precipitation. What is unique about these studies is that high resolution TEM was performed on samples removed from the reactor at various stages of reduction. This helps provide direct evidence for the phase changes that are detected by TPR. We have continued the analysis of catalysts received from slurry reactor runs at Texas A&M university (TAMU) and the University of Kentucky Center for Applied Energy Research (CAER) by x-ray diffraction. The purpose of the XRD analysis was to determine the phase composition of catalysts derived from a slurry reaction run using Fe Fischer-Tropsch catalysts. We had previously described how catalyst removed in the hot wax may oxidize to magnetite if the wax is air-exposed. We have now received catalysts from CAER that were removed under a protective inert blanket, and we are in the process of analyzing them, but preliminary work presented here shows very little oxide by XRD. However, the catalyst that was used in these runs at CAER was a different composition than that used in previous runs, so the protective effect of an inert blanket will need further study. Finally, we point out how the interference by the wax can make it difficult in some cases to analyze the phases in a Fe catalyst. Several approaches have been used to remove the interference from the wax and we come to the surprising conclusion that Fe may be present in a working slurry reactor despite the high CO/ H{sub 2} ratio. Further work is underway to corroborate this finding.

  5. Molybdenum sulfide/carbide catalysts

    SciTech Connect (OSTI)

    Alonso, Gabriel (Chihuahua, MX); Chianelli, Russell R. (El Paso, TX); Fuentes, Sergio (Ensenada, MX); Torres, Brenda (El Paso, TX)

    2007-05-29T23:59:59.000Z

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  6. Zinc sulfide liquefaction catalyst

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA)

    1984-01-01T23:59:59.000Z

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  7. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect (OSTI)

    Grubbs, Robert H

    2013-04-05T23:59:59.000Z

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  8. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31T23:59:59.000Z

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  9. Fluorination process using catalyst

    DOE Patents [OSTI]

    Hochel, Robert C. (Aiken, SC); Saturday, Kathy A. (Aiken, SC)

    1985-01-01T23:59:59.000Z

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  10. Elucidation of the inorganic chemistry of hydrotreating catalysts

    SciTech Connect (OSTI)

    DeCanio, E.C.; Edwards, J.C.; Storm, D.A. [Texaco, Inc., Beacon, NY (United States); Bruno, J.W. [Wesleyan Univ., Middletown, CT (United States)

    1993-12-31T23:59:59.000Z

    New environmental regulations are making it necessary to developed improved hydrotreating catalysts for the removal of sulfur, nitrogen and aromatics from refinery streams. In order to develop better catalysts, the authors must gain a more detailed understanding of the inorganic chemistry of these catalysts. Commercial catalysts typically contain ca. 15 wt% molybdenum or tungsten oxides and ca. 4 wt% nickel or cobalt. Additives, such as phosphate and fluoride, are often added to improve the catalytic activity. However, the role of these additives is not fully understood. The authors have, therefore, carried out studies on alumina supported phosphate and flouride materials using FT-IR, powder x-ray diffraction, and solid-state NMR ({sup 31}P, {sup 27}Al, and {sup 1}H). The results of this work have enabled the authors to determine the structures of the various compounds formed on the alumina system when fluoride or phosphate is present.

  11. Catalyst systems and uses thereof

    DOE Patents [OSTI]

    Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

    2012-07-24T23:59:59.000Z

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  12. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

    2011-03-22T23:59:59.000Z

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  13. High Impact Technology (HIT) Catalyst

    Broader source: Energy.gov (indexed) [DOE]

    High Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial...

  14. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

    1981-01-01T23:59:59.000Z

    Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  15. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

    1981-01-01T23:59:59.000Z

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  16. Novel Fischer-Tropsch catalysts

    DOE Patents [OSTI]

    Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

    1980-01-01T23:59:59.000Z

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  17. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  18. Materials - Efficient catalysts... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials - Efficient catalysts... Reduction of pollution from vehicles and power plants relies, in large part, on how effectively catalysts can oxidize nitric oxide (NO)....

  19. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies of Oxidation Catalyst for Diesel Engine Emission Treatment The overlap among theory, structure, and fully formed catalysts form the foundation of this study...

  20. A study of aluminophosphate supported Ni-Mo catalysts for hydrocracking bitumen

    SciTech Connect (OSTI)

    Smith, K.J. [Univ. of British Columbia, Vancouver (Canada). Dept. of Chemical Engineering; Lewkowicz, L. [Alberta Research Council, Edmonton, Alberta (Canada); Oballa, M.C.; Krzywicki, A. [Novacor Research and Technology Corp., Calgary, Alberta (Canada)

    1994-12-31T23:59:59.000Z

    H-Oil and LC-Fining processes utilize a combination of thermal and catalytic hydroprocessing reactions to achieve high yields of distillate in upgrading bitumen or heavy oil residua. The processes are based on a well mixed (ebullated bed) reactor from which deactivated catalyst is continuously withdrawn and fresh catalyst is added to maintain yields. Catalyst activity and lifetime are two key factors controlling the economics of these processes. Catalyst deactivation occurs due to the deposition of coke and metals on the catalyst surface. The choice of catalyst is usually a compromise between two extremes: small pore catalyst with low metals capacity but higher activity that deactivates rapidly because of metals deposition and wide pore catalyst that has high metals deposition capacity but lower activity due to low surface area. Recently, aluminophosphate materials with large pores (< 10 nm--1,000 nm) and high surface areas (100--500 m{sup 2}/g) have been reported. The actual pore size distribution and surface area obtained depend on the Al/P ratio, preparation method and the calcination procedure. These materials are also thermally stable. The purpose of the present work was to determine if such materials, as a result of their pore size distribution and surface area, could decrease the rate of catalyst deactivation, increase catalyst activity and provide sufficient pore volume for high capacity of metals deposition during the upgrading of heavy oil residue.

  1. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18T23:59:59.000Z

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  2. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26T23:59:59.000Z

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  3. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01T23:59:59.000Z

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  4. Modeling of selective catalytic reduction (SCR) of nitric oxide with ammonia using four modern catalysts 

    E-Print Network [OSTI]

    Sharma, Giriraj

    2005-11-01T23:59:59.000Z

    In this work, the steady-state performance of zeolite-based Cu-ZSM-5, vanadium based honeycomb monolith catalysts (V), vanadium-titanium based pillared inter layered clay catalyst (V-Ti PLIC) and vanadium-titanium-tungsten-based ...

  5. Slurry phase iron catalysts for indirect coal liquefaction. First semi-annual progress report, July 5, 1995--January 4, 1996

    SciTech Connect (OSTI)

    Datye, A.K.

    1996-02-08T23:59:59.000Z

    Objectives are to study factors controlling attrition resistance of slurry phase Fe catalysts, synthesize novel precipitated catalysts that overcome some of the limitations of current generation catalysts, and study catalyst-binder interactions using model catalysts. A study of Fe/silica (binder) interactions has been started. Study of effects of Cu on reducibility of Fe catalysts showed that small amounts of Cu can facilitate reduction of Fe{sub 2}O{sub 3} to {alpha}-Fe. Work with Nancy Jackson (Sandia) on carbon deposits in Fe F-T catalysts showed good correlation between peak temperature in TPR and the carbon as seen by TEM. Analyses of samples from Dr. Burtron Davis (U. KY) by XRD and TEM showed that the active catalyst contains small crystallites of iron carbide while the deactivated catalyst had significant transformation into large magnetite crystals. It is felt that improper passivation of these catalysts can lead to mis-identification of the phase in working F-T catalysts.

  6. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect (OSTI)

    Vivek S. Murthi (Primary Contact), Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

    2013-01-08T23:59:59.000Z

    Achieving DOE�¢����s stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  7. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13T23:59:59.000Z

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  8. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, John E. (Pasadena, CA); Herzog, Timothy A. (Pasadena, CA)

    1998-01-01T23:59:59.000Z

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  9. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Alonso-Vante, Nicolas (Buxerolles, FR); Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

    2009-09-15T23:59:59.000Z

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  10. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Alonso-Vante, Nicolas (France, FR); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

    2010-08-24T23:59:59.000Z

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  11. New hydrocracking catalysts increase throughput, run length

    SciTech Connect (OSTI)

    Huizinga, T. [Shell Internationale Petroleum Mij., The Hague (Netherlands); Theunissen, J.M.H. [Rayong Refinery Co. Ltd., Rayong (Thailand); Minderhoud, H.; Veen, R. van [Koninklijke/Shell-Lab., Amsterdam (Netherlands)

    1995-06-26T23:59:59.000Z

    An improved, second-stage hydrocracking catalyst has been developed by combining stabilized Y zeolites with amorphous silica alumina cracking components. A commercial application of this catalyst, along with a new, first-stage zeolitic hydrocracking catalyst, resulted in increased unit throughput and cycle length. The paper discusses the hydrocracking process, first-stage catalysts, second-stage catalysts, hydrogenation process, commercial results, and product properties.

  12. as Catalyst in Public Health

    E-Print Network [OSTI]

    Bushman, Frederic

    Crisis as Catalyst in Public Health Immigration Reform and the Threat of Rhetorical Violence look at immigration reform and the impact of public discourse focused on this topic. The panel

  13. Secret Lives of Catalysts Revealed

    SciTech Connect (OSTI)

    Miquel Salmeron and Gabor Somorjai

    2008-10-15T23:59:59.000Z

    Miquel Salmeron and Gabor Somorjai of Berkeley Lab's Materials Sciences Division discuss the first-ever glimpse of nanoscale catalysts in action. More information: http://newscenter.lbl.gov/press-relea...

  14. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  15. Catalytic Transformation of C7-C9 Methyl Benzenes over USY-based FCC Zeolite Catalyst

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    in the petrochemical market. Most of the currently working isomerization plants are using zeolite based catalysts. One) and the diphenyl methane mechanism. It was shown that toluene disproportionation does not require Brönsted acid

  16. Syntheses and applications of soluble polyisobutylene (PIB)-supported transition metal catalysts

    E-Print Network [OSTI]

    Tian, Jianhua

    2009-05-15T23:59:59.000Z

    catalysts using liquid/liquid biphasic separations after a homogeneous reaction. Our work has shown that PIB-supported Ni(II) and Co(II) ?-diketonates prepared from commercially available vinyl terminated PIB oligomers possess catalytic activity like...

  17. REDUCTION OF NO{sub x} VIA COAL COMBUSTION CATALYSTS

    SciTech Connect (OSTI)

    Jeff Hare; George Ford; Stephanie Black; Bing Zhou; Stan Harding

    2004-02-13T23:59:59.000Z

    Air pollution is a growing concern for both the US government and its citizens. Current legislation is moving in the direction of lower emissions standards for the major pollutants, SO{sub x} and NO{sub x}. The work performed under this DOE grant focused on finding a catalyst that, when added to coal, will effectively reduce the amount of NO{sub x} produced during combustion. The test program was divided into four major tasks: (1) evaluating the impact of a combustion catalyst on nitrogen release; (2) optimizing catalyst formulation; (3) preparing a preliminary economic evaluation; and (4) outlining future test plans, costs and schedule. More than 100 bench-scale, proof-of-concept tests were completed with more than 30 different catalysts, using two different coal types, River Hill Pittsburgh 8 (River Hill) and PRB, under oxidizing and reducing conditions. The results showed that catalysts were effective in increasing, by more than 30%, the nitrogen gas (N{sub 2}) release in River Hill Pittsburgh 8 coal and more than 20% in the PRB coal. Preliminary economics suggest this technology is comparable with current combustion NO{sub x} control technologies such as overfire air addition, SNCR and reburning. Pilot-scale tests are planned in a system with low-NO{sub x} burners to further evaluate the technology.

  18. Hydrocarbon conversion catalysts

    SciTech Connect (OSTI)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15T23:59:59.000Z

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting a hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.35A, a water absorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of at least 8% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; an alumina binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  19. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

    1984-01-01T23:59:59.000Z

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  20. Water+works : a new ecological infrastructure

    E-Print Network [OSTI]

    Hedstrom, Lisa Kristin

    2011-01-01T23:59:59.000Z

    With the global water crisis as catalyst, Water+Works acts as a model for a localized water initiative that will mitigate flooding and provide a freshwater resource in times of crisis, while enriching urban ecosystems and ...

  1. The catalytic oxidation of propylene: investigation of catalyst activity.

    E-Print Network [OSTI]

    Woodham, John Frank

    1953-01-01T23:59:59.000Z

    of closely related olefins over a speoific oxide oatalyst. The efi'sets of the experimental vari. ables - contact times catalyst bed temperature and air-hydrocarbon ratio - on the reaotion prooess were determineds and various possible reaotion meohanisms... conversions of ethylene to aldehydes were obtained in the oxidation of ethylene. Bomewhat higher oonversions to aldehydes were obtained in the oxidation of butenes, Much of the later work of Dunlop (12) was performed oonourrently with the work descri'bed...

  2. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  3. Attrition resistant catalysts for slurry-phase Fischer-Tropsch process

    SciTech Connect (OSTI)

    K. Jothimurugesan

    1999-11-01T23:59:59.000Z

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process low H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.

  4. Combustion Catalysts in Industry- An Update

    E-Print Network [OSTI]

    Merrell, G. A.; Knight, R. S.

    Combustion catalysts improve boiler efficiency by extracting more heat energy from the fuel and by reducing heat losses when operating at minimum excess air. In addition, an effective combustion catalyst may reduce the level of smoke and solid...

  5. Catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

    1985-01-01T23:59:59.000Z

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  6. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04T23:59:59.000Z

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  7. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27T23:59:59.000Z

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  8. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  9. Silver doped catalysts for treatment of exhaust

    DOE Patents [OSTI]

    Park, Paul Worn (Peoria, IL); Hester, Virgil Raymond (Edelstein, IL); Ragle, Christie Susan (Havana, IL); Boyer, Carrie L. (Shiloh, IL)

    2009-06-02T23:59:59.000Z

    A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.

  10. Separation of regenerated catalyst from combustion products

    SciTech Connect (OSTI)

    Benslay, R. M.

    1984-10-16T23:59:59.000Z

    A method and apparatus for separating regenerated catalyst from gaseous combustion products within a regenerator. The apparatus comprises a downcomer within the regenerator vessel through which the catalyst and gaseous combustion products flow. Means are provided at the lower end of the downcomer for utilizing the momentum of the catalyst particles to separate them from the gaseous combustion products.

  11. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 5, October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Singleton, A.H.

    1994-05-31T23:59:59.000Z

    The goal of this project is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. Cobalt-based catalysts have long been known as being active for F-T synthesis. They typically possess greater activity than iron-based catalysts, historically the predominant catalyst being used commercially for the conversion of syngas based on coal, but possess two disadvantages that somewhat lessen its value: (1) cobalt tends to make more methane than iron does, and (2) cobalt is less versatile with low H{sub 2}/CO ratio syngas due to its lack of water-gas shift activity. Therefore, the major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5 %) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. It will be demonstrated that these catalysts have the desired activity, selectivity, and life, and can be made reproducibly. Following this experimental work, a design and a cost estimate will be prepared for a plant to produce sufficient quantities of catalyst for scale-up studies.

  12. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D. (Charleston, WV)

    1991-01-01T23:59:59.000Z

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  13. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, K.D.

    1991-06-25T23:59:59.000Z

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  14. as Catalyst in Public Health

    E-Print Network [OSTI]

    Bushman, Frederic

    Crisis as Catalyst in Public Health Alex's Lemonade Stand and the Fight Against Childhood Cancer, Medical Director, Pediatric Advanced Care Team, Children's Hospital of Philadelphia For more information, survivorship, and palliative care. We will also explore the impact that individuals can make on medical

  15. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, D.

    1986-10-14T23:59:59.000Z

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  16. Autothermal reforming catalyst having perovskite structure

    DOE Patents [OSTI]

    Krumpel, Michael (Naperville, IL); Liu, Di-Jia (Naperville, IL)

    2009-03-24T23:59:59.000Z

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  17. Slurry phase iron catalysts for indirect coal liquefaction. Second semi-annual progress report, January 5, 1996--July 4, 1996

    SciTech Connect (OSTI)

    Datye, A.K.

    1996-08-02T23:59:59.000Z

    During this period, work was continued on understanding the attrition of precipitated iron catalysts and work initiated on synthesizing catalysts containing silica binders. Use of a sedigraph particle size analyzer with an ultrasonic probe provides a simple method to test the strength of catalyst agglomerates, allowing the strength comparison of silica and hematite catalysts (the former is considerably stronger). Study of Fe/silica interactions was continued. Addition of a colloidal silica precursor to calcined Fe{sub 2}O{sub 3} catalyst had no detrimental effect on reducibility of the hematite to {alpha}-Fe. XRD and electron microscopy will be used to analyze the crystal structure and types of C present in samples from long Fischer-Tropsch runs.

  18. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    SciTech Connect (OSTI)

    Schneider, William

    2014-08-29T23:59:59.000Z

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  19. Catalyst for selective conversion of synthesis gas and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Macungie, PA)

    1986-01-01T23:59:59.000Z

    A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  20. Supported fischer-tropsch catalyst and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

    1987-01-01T23:59:59.000Z

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  1. Democratic Republic of Congo-ClimateWorks Low Carbon Growth Planning...

    Open Energy Info (EERE)

    ClimateWorks, Project Catalyst, McKinsey and Company Sector Energy, Land Focus Area Forestry, Greenhouse Gas Topics Background analysis, Low emission development planning, -LEDS,...

  2. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    SciTech Connect (OSTI)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30T23:59:59.000Z

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: • Development of an iron-based catalyst suitable for a circulating fluid-bed reactor • Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production • Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.

  3. Supercritical/Solid Catalyst (SSC)

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  4. Cascading of fluid cracking catalysts

    SciTech Connect (OSTI)

    Kovach, S.M.; Miller, C.B.

    1986-05-27T23:59:59.000Z

    A process is described for conversion of hydrocarbon feedstocks by cascading a cracking catalyst containing zeolite in an acidic matrix from one hydrocarbon processing unit to another, wherein there are at least three different interconnected hydrocarbon processing units comprising a first unit having a regeneration zone and a riser zone, a second unit having having a regeneration zone and a riser zone, and a third unit having a riser zone and a regeneration zone, each unit having different processing conditions.

  5. Hydrocarbon conversion process and catalysts

    SciTech Connect (OSTI)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1990-05-15T23:59:59.000Z

    This patent describes a catalyst composition. It comprises: a modified Y zeolite having a unit cell size below about 24.45 {angstrom}, a degree of crystallinity which is at least retained at increasing SiO{sub 2}/Al{sub 2}O{sub 3} molar ratios, a SiO{sub 2}/Al{sub 2}O{sub 3} molar ratio between about 8 to about 15, a water adsorption capacity at (25{degree}C and a p/p{sub {ital o}} value of 0.2) of between about 10--15% by weight of modified zeolite and a pore volume of at lest about 0.25 ml/g. Between about 10 to about 40% of the total pore volume is made up of pores having a diameter of at least about 8 nm; an amorphous cracking component comprising a silica-alumina containing 50--95% by weight of silica; a binder comprising alumina; from about 0.05 to about 10 percent by weight of nickel and from about 2 to about 40 percent by weight of tungsten, calculated as metals per 100 parts by weight of total catalyst. The modified Y zeolite and amorphous cracking component comprises about 60--85% by weight of the total catalyst, the binder comprises about 15--40% by weight of the total catalyst and the amount of modified Y zeolite ranges between about 10--75% of the combined amount of modified Y zeolite and amorphous cracking component.

  6. Copper-containing zeolite catalysts

    DOE Patents [OSTI]

    Price, G.L.; Kanazirev, V.

    1996-12-10T23:59:59.000Z

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  7. Copper-containing zeolite catalysts

    DOE Patents [OSTI]

    Price, Geoffrey L. (Baton Rouge, LA); Kanazirev, Vladislav (Sofia, BG)

    1996-01-01T23:59:59.000Z

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  8. Supercritical/Solid Catalyst (SSC)

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  9. Attrition Resistant Iron-Based Catalysts For F-T SBCRs

    SciTech Connect (OSTI)

    Adeyinka A. Adeyiga

    2006-01-31T23:59:59.000Z

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+ H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-(FE) based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment; makes the separation of catalyst from the oil/wax product very difficult, if not impossible; and results in a steady loss of catalyst from the reactor. Under a previous Department of Energy (DOE)/University Research Grant (UCR) grant, Hampton University reported, for the first time, the development of demonstrably attrition-resistant Fe F-T synthesis catalysts having good activity, selectivity, and attrition resistance. These catalysts were prepared by spray drying Fe catalysts with potassium (K), copper (Cu), and silica (SiO{sub 2}) as promoters. SiO{sub 2} was also used as a binder for spray drying. These catalysts were tested for activity and selectivity in a laboratory-scale fixed-bed reactor. Fundamental understanding of attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried HPR-43 catalyst having average particle size (aps) of 70 {micro}m with high attrition resistance. This HPR-43 attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5+} selectivity of >78% and methane selectivity of less than 5% at an {alpha} of 0.9. Research is proposed to enable further development and optimization of these catalysts by (1) better understanding the role and interrelationship of various catalyst composition and preparation parameters on attrition resistance, activity, and selectivity of these catalysts, (2) the presence of sulfide ions on a precipitated iron catalyst, and (3) the effect of water on sulfided iron F-T catalysts for its activity, selectivity, and attrition. Catalyst preparations will be based on spray drying. The research employed, among other measurements, attrition testing and F-T synthesis at high pressure. Catalyst activity and selectivity is evaluated using a small fixed-bed reactor and a continuous stirred tank reactor (CSTR). The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1-m-diameter, 2-m-tall spray dryer. The binder silica content was varied from 0 to 20 wt%. The results show that the use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO2 wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than the type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). The two catalysts were also tested at The Center for Applied Energy Research in Lexington, Kentucky of the University of Kentucky. Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and

  10. Pore size of FCC pretreat catalyst important

    SciTech Connect (OSTI)

    Moyse, B.M.; Cooper, B.H.

    1985-03-11T23:59:59.000Z

    Conversion of sulfur, nitrogen, and polynuclear aromatics can be optimized by varying catalyst pore dimensions and/or particle size. Increased workload and more exacting performance are demanded from today's fluid catalytic cracking feed pretreat catalysts. The desire to process heavier crudes and the inclusion of visbreaker gas oil, unsaturated fractions like coker gas oils, and even resid, have placed greater emphasis on the importance of selection of those catalysts. Also, some older plants are limited to process conditions and equipment designed for easier feedstocks. Data show that the optimum catalyst pore size for a given application depends not only on the reactivity of the feed, but also on the catalyst's diffusional properties. These properties are also factors which determine whether or not a change in catalyst particle size would be advantageous.

  11. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  12. ammonia synthesis catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    we are developing and promoting science-based methods 113 Energy Savings from Floating Head Pressure in Ammonia Refrigeration Systems Texas A&M University - TxSpace Summary:...

  13. alloy anode catalysts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dissertations Summary: ??Samples of strained germanium-silicon (Ge-Si) alloy were electrically characterized using resistivity and Hall-mobility measurements. The samples were...

  14. active homogeneous catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of our appraoch is that it also applies to reactions among particles of finite size (so-called inertial particles). Tamas Tel; Takashi Nishikawa; Adilson E. Motter; Celso...

  15. advanced cathode catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overall treatment. The IN wastewater had 22 Condensation in the Cathode of a PEM Fuel Cell M. J. Kermani J. M. Stockie A. G. Gerber Mathematics Websites Summary: @unb.ca....

  16. alcohol synthesis catalysts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    method and by the solution combustion method. These were studied using BET isotherm, powder and single ... Silverwood, Ian P 52 Reactions of M(N-2,6-i-Pr2C6H3)(CHR)(...

  17. acid catalysts synthesized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stirring) or over night. (To get rid of water) 3. Stop the stirring and let DMF bottle stand for a while synthesizer overnight, you should always top up all the bottles with...

  18. advanced heterogeneous catalysts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: Sequential Consistency for Heterogeneous-Race-Free DEREK R. HOWER, BRADFORD M. BECKMANN, BENEDICT R: Sequential Consistency for Data-Race-Free (SC for...

  19. automobile catalyst recycling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 260 The Randomness Recycler Approach to Perfect James Allen Fill...

  20. alloy catalysts aided: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  1. anode catalyst layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  2. aged catalyst extrudates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into...

  3. aged catalysts extrudates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into...

  4. alcohols catalyst names: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    here: Write your TA's name here Mathematics Websites Summary: ), alcohol, tobacco, firearms, explosives, a calculator, other students' tests, anything that has headphones 20 7...

  5. anode catalysts prepared: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    taneous deposition of Pt submonolayers- temperature proton exchange membrane PEM fuel cell have en- tered a field trial stage, moving from technology Brankovic, Stanko R. 2...

  6. aerogel based catalysts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and find application in the characterization of the dielectric properties of aerogels catalytic supports as well as in the problem of the relation between morphology and...

  7. alkane dehydrogenation catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering, University of California, Berkeley, CA 94720-1462, United States b Oak Ridge National is steam cracking of alkanes, naphtha, or gas oil. This process is typically...

  8. aluminum phosphate catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Chair... Balasubramanian, Rajasekaran 1991-01-01 213 The corrosion of aluminum in boric acid solutions Texas A&M University - TxSpace Summary: THE CORROSION OF ALUMINUM IN...

  9. autothermal reformer catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The paper also argues that small developing countries Roger G. Noll 2000-01-01 23 Hydrogen Production from Carbonaceous Solid Wastes by Steam Reforming CiteSeer Summary:...

  10. Catalysts for Dehydrogenation of ammonia boranes

    SciTech Connect (OSTI)

    Heinekey, Dennis M.

    2014-12-19T23:59:59.000Z

    Several effective homogeneous catalysts for the dehydrogenation of amine boranes have been developed. The best catalyst uses an iridium complex, and is capable of dehydrogenating H3NBH3 (AB) and CH3NH2BH3 (MeAB) at comparable rates. Thermodynamic measurements using this catalyst demonstrate that the dehydrogenation of AB and MeAB is substantially exothermic, which has important implications for regeneration.

  11. Steam reforming utilizing high activity catalyst

    SciTech Connect (OSTI)

    Setzer, H. J.

    1985-03-05T23:59:59.000Z

    High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

  12. Windows XP - LPR Printing

    E-Print Network [OSTI]

    dbrown

    2004-07-27T23:59:59.000Z

    Printer Setup in Windows XP. To print to the math department printers in Windows XP, “Print Services for Unix” must be installed. To begin installation of “

  13. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  14. Sandia National Laboratories: fuel cell catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell catalyst ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  15. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

    2010-10-12T23:59:59.000Z

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  16. Building Better Catalysts for Splitting Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Building Better Catalysts for Splitting Water April 1, 2014 Bookmark and Share A schematic of...

  17. Oxidation of propylene over copper oxide catalysts

    E-Print Network [OSTI]

    Billingsley, David Stuart

    1958-01-01T23:59:59.000Z

    results were obtained using an asbestos supported CuO-Cr203 catalyst. Venkataramam and his co-workers (66) studied the catalytic oxidation of ethylene to ethylene oxide by the fluidized bed technique using a static bed of catalyst. Precipitated Ag20... in the air-ethylene ratio to maintain good yields of ethylene oxide. Wan (68) reported the oxidation of ethylene to acetaldehyde by use of a silver catalyst in a 5/16 dnch inner diameter stainless steel tube with a catalyst bed up to 30. 3 centimeters...

  18. Polyfunctional catalyst for processiing benzene fractions

    SciTech Connect (OSTI)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  19. Characterization of Catalysts for Aftertreatment and Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from...

  20. CLEERS Coordination & Development of Catalyst Process Kinetic...

    Broader source: Energy.gov (indexed) [DOE]

    2: ORNL Research on LNT Sulfation & Desulfation (8744, 8746) Jae-Soon Choi Oak Ridge National Laboratory CLEERS Coordination & Development of Catalyst Process Kinetic Data...

  1. New Catalyst Converts CO2 to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a catalyst that improves their system for converting waste carbon dioxide (CO) into syngas, a precursor of gasoline and other energy-rich products, bringing the process closer...

  2. High Impact Technology Catalyst | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies...

  3. CLEERS Coordination & Development of Catalyst Process Kinetic...

    Energy Savers [EERE]

    CLEERS Coordination & Development of Catalyst Process Kinetic Data - Pres. 1: Coordination of CLEERS Project; Pres. 2: ORNL Research on LNT Sulfation & Desulfation CLEERS...

  4. Steam gasification of carbon: Catalyst properties

    SciTech Connect (OSTI)

    Falconer, J.L.

    1993-01-10T23:59:59.000Z

    Coal gasification by steam is of critical importance in converting coal to gaseous products (CO, H[sub 2], CO[sub 2], CH[sub 4]) that can then be further converted to synthetic natural gas and higher hydrocarbon fuels. Alkali and alkaline earth metals (present as oxides) catalyze coal gasification reactions and cause them to occur at significantly lower temperatures. A more fundamental understanding of the mechanism of the steam gasification reaction and catalyst utilization may well lead to better production techniques, increased gasification rates, greater yields, and less waste. We are studying the gasification of carbon by steam in the presence of alkali and alkaline earth oxides, using carbonates as the starting materials. Carbon dioxide gasification (CO[sub 2] + C --> 2CO) has been studied in some detail recently, but much less has been done on the actual steam gasification reaction, which is the main thrust of our work. In particular, the form of the active catalyst compound during reaction is still questioned and the dependence of the concentration of active sites on reaction parameters is not known. Until recently, no measurements of active site concentrations during reaction had been made. We have recently used transient isotope tracing to determine active site concentration during CO[sub 2] gasification. We are investigating the mechanism and the concentration of active sites for steam gasification with transient isotopic tracing. For this technique, the reactant feed is switched from H[sub 2]0 to isotopically-labeled water at the same concentration and tow rate. We can then directly measure, at reaction the concentration of active catalytic sites, their kinetic rate constants, and the presence of more than one rate constant. This procedure allows us to obtain transient kinetic data without perturbing the steady-state surface reactions.

  5. Development of a Catalyst/Sorbent for Methane Reforming

    SciTech Connect (OSTI)

    B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

    2008-12-31T23:59:59.000Z

    This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all conditions tested, the CH{sub 4} conversion was large (>80%) and nearly equal to the predicted thermodynamic equilibrium level as long as CO{sub 2} was being rapidly absorbed. Similar results were obtained with both shell material additives. Limited lifecycle tests of the pellets also produced similar results that were not affected by the choice of additive. However, during each lifecycle test the period during which CO{sub 2} was rapidly absorbed declined from cycle to cycle which directly affected the corresponding period when CH{sub 4} was reformed rapidly. Therefore, the results showed a continuing need for improving the lifecycle performance of the sorbent. Core-in-shell pellets with the improved shell materials were also utilized for conducting the water gas shift reaction in a single step. Three different catalyst formulations were tested. The best results were achieved with a Ni catalyst, which proved capable of catalyzing the reaction whether CO{sub 2} was being absorbed or not. The calcined alumina shell material by itself also proved to be a very good catalyst for the reaction as long as CO{sub 2} was being fully absorbed by the core material. However, neither the alumina nor a third formulation containing Fe{sub 2}O{sub 3} were good catalysts for the reaction when CO{sub 2} was not absorbed by the core material. Furthermore, the Fe{sub 2}O{sub 3}-containing catalyst was not as good as the other two catalysts when CO{sub 2} was being absorbed.

  6. Creating Works-Like Prototypes of Mechanical Objects Bongjin Koo

    E-Print Network [OSTI]

    Agrawala, Maneesh

    of creating works-like prototypes. Designers are increasingly turning to 3D printing as a tool for fab Graphics]: Computational Ge- ometry and Object Modeling--Geometric algorithms. Keywords: fabrication, 3D printing, sketch-based modeling Links: DL PDF WEB VIDEO 1 Introduction Creating physical prototypes

  7. 3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1

    E-Print Network [OSTI]

    Boyer, Edmond

    3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

  8. Hydrogenation of anthraquinone on metal-containing catalysts

    SciTech Connect (OSTI)

    Lunin, V.V.; Markaryan, G.L.; Chetina, O.V.

    1982-12-01T23:59:59.000Z

    The present work studied the reaction of hydrogen activated on metal-containing catalysts (platinum black, Pt/Al/sub 2/O/sub 3/ (AP-15), and the hydride ZrNiH/sub 2.8/ with anthraquinone. The hydrogenation of anthraquinone bound into a strong donor-acceptor complex on the surface of Al/sub 2/O/sub 3/ and AP-15 and physically absorbed on silica gel was investigated. Results indicated that under conditions of mechanical mixing of silica gel with catalysts containing platinum or hydrides of intermetallic compounds in an atmosphere of hydrogen, anthraquinone physically adsorbed on silica gel is able to undergo hydrogenation at temperature above 100/sup 0/ C with formation of anthracene.

  9. Supported Molecular Catalysts: Synthesis, In-Situ Characterization and Performance

    SciTech Connect (OSTI)

    Davis, Mark E.

    2009-03-13T23:59:59.000Z

    The objectives of our work are: (i) to create solid catalysts with active sites that can function in a cooperative manner to enhance reactivity and selectivity, and (ii) to prepare solid catalysts that can perform multiple reactions in a network that in some cases would not be possible in solution due to the incompatibilities of the various catalytic entities (for example an acid and a base). We carried out extensive reactions to test the nature of the cooperative effect caused by thiol/sulfonic acid interactions. The acid/thiol combination provided an example where the two organic groups should be positioned as close to one another as possible. We also studied a system where this is not possible (acid-base). We investigated simultaneously incorporating acid and base groups into the same material. For the case of acid and bases, there is an optimal separation distance (too close allows for neutralization while too far eliminates any cooperative behavior).

  10. Global kinetics for a commercial diesel oxidation catalyst with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons...

  11. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues....

  12. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel Cell...

  13. Enhanced Activity and Stability of Pt catalysts on Functionalized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Activity and Stability of Pt catalysts on Functionalized Graphene Sheets for Electrocatalytic Oxygen Reduction . Enhanced Activity and Stability of Pt catalysts on...

  14. Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Presented at the Department of Energy Fuel Cell...

  15. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anode Catalysts for Direct Methanol Fuel Cells. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells. Abstract: Using the binding energy of OH* and CO* on close-packed...

  16. Nanosegregated Surfaces as Catalysts for Fuel Cells | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanosegregated Surfaces as Catalysts for Fuel Cells Technology available for licensing: A method for creating a new class of platinum multi-metallic catalysts that are not only...

  17. Novel Catalyst Support Materials for PEM Fuel Cells: Current...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst Support Materials for PEM Fuel Cells: Current Status and Future Prospects. Novel Catalyst Support Materials for PEM Fuel Cells: Current Status and Future Prospects....

  18. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  19. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries....

  20. Table I: Technical Targets for Catalyst Coated Membranes (CCMs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Technical targets for fuel cell...

  1. Understanding Automotive Exhaust Catalysts Using a Surface Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx...

  2. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

    2011-03-29T23:59:59.000Z

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  3. Project Catalyst | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister|ProductionProfitCatalyst Jump

  4. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

    2008-08-05T23:59:59.000Z

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  5. Catalyst and method for production of methylamines

    DOE Patents [OSTI]

    Klier, Kamil (Bethlehem, PA); Herman, Richard G. (Whitehall, PA); Vedage, Gamini A. (Bethlehem, PA)

    1987-01-01T23:59:59.000Z

    This invention relates to an improved catalyst and method for the selective production of methylamines. More particularly, it is concerned with the preparation of stable highly active catalysts for producing methylamines by a catalytic reaction of ammonia or substituted amines and binary synthesis gas (CO+H.sub.2).

  6. Novel supports for coal liquefaction catalysts

    SciTech Connect (OSTI)

    Haynes, H.W. Jr.

    1992-01-01T23:59:59.000Z

    This research is divided into three parts: (1) Evaluation of Alkaline-Earth-Promoted CoMo/Alumina Catalysts in a Bench Scale Hydrotreater, (2) Development of a Novel Catalytic Coal Liquefaction Microreactor (CCLM) Unit, and (3) Evaluation of Novel Catalyst Preparations for Direct Coal Liquefaction. (VC)

  7. Vanadium catalysts break down biomass for fuels

    E-Print Network [OSTI]

    - 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. The Department

  8. Fluidizable Catalysts for Hydrogen Production from Biomass

    E-Print Network [OSTI]

    HyOz + H2O(g) H2 + xCO Water gas shift: H2O + CO CO2 + H2 Gasification: C + H2O(g) COx + H2 #12;Steam/Deactivation Mechanisms Add pyrolysis microreactor capability Coking and gasification Water gas shift Reforming.7 Catalyst Improvements: K2O Improves Gasification Milestone: Improve catalyst gasification performance

  9. Improved catalyst can clear the air

    SciTech Connect (OSTI)

    Pritchard, S. [Cormetech Inc. (United States)

    2006-05-15T23:59:59.000Z

    Catalyst technology can make clean coal plants look as clean as they are. This article examines the need and available methods for SO{sub 2} control with a specific focus on a catalyst technology developed by Cormetech. It also presents the results of commercial operating experience. 1 fig., 2 tabs.

  10. Improved catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25T23:59:59.000Z

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  11. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, R.D.

    1993-10-05T23:59:59.000Z

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  12. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, Richard D. (Lisle, IL)

    1993-01-01T23:59:59.000Z

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  13. Nanostructured Basic Catalysts: Opportunities for Renewable Fuels

    SciTech Connect (OSTI)

    Conner, William C; Huber, George; Auerbach, Scott

    2009-06-30T23:59:59.000Z

    This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  14. RefWorks for Business: Basics Ways to Get References into RefWorks

    E-Print Network [OSTI]

    Haykin, Simon

    time. Type in your search terms. 5. Import from a text file. This method works for some onlineWorks function is located along side the print, e-mail, save and download functions. 2. Manually enter references. Search and import from an online catalogue within RefWorks. You can search and import references from

  15. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01T23:59:59.000Z

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  16. Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide. Second semiannual report, 1996

    SciTech Connect (OSTI)

    Yang, R.T.; Li, W.B.; Sirilumpen, M.; Tharapiwattananon, N.

    1997-08-01T23:59:59.000Z

    During the first six months of the program, the work has progressed as planned. We have constructed a reactor system and assembled all laboratory essentials for conducting the three-year project. First, the catalytic activities of the Cu(2+) ion exchanged alumina-pillared clay for the selective catalytic reduction of NO by ethylene were measured. The temperature range was 250-500{degrees}C. The activities of this catalyst were substantially higher than the catalyst that has been extensively studied in the literature, Cu-ZSM-5. Fourier Transform Infrared Spectroscopy (FTIR) was used to study the acidity of the catalyst. The second part of the work was an in-depth FTIR study of the NO decomposition mechanism on the catalyst. This was planned as the first and the key step to obtain an understanding of the reaction mechanism. Key surface intermediates were identified from the FTIR spectra, and a redox type Eley-Rideal mechanism was proposed for the NO decomposition on this catalyst. This report will be divided into two parts. In Part One, we report results on the catalytic activities of the Cu-alumina-pillared clay and a direct comparison with other known catalysts. In Part two, we focus on the FTIR study and from the results, we propose a NO decomposition mechanism on this new catalyst. Plans for the next six months include tests of different pillared clays as well as the catalytic mechanism. The micro reactor will continue to be the key equipment for measuring the catalytic activities. FTIR will continue to be the major technique for identifying surface species and hence understanding the reaction mechanism.

  17. Catalyst for producing lower alcohols

    DOE Patents [OSTI]

    Rathke, Jerome W. (Bolingbrook, IL); Klingler, Robert J. (Woodridge, IL); Heiberger, John J. (Glen Ellyn, IL)

    1987-01-01T23:59:59.000Z

    A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.

  18. Formic acid fuel cells and catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22T23:59:59.000Z

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  19. Steam reforming utilizing iron oxide catalyst

    SciTech Connect (OSTI)

    Setzer, H. T.; Bett, J. A. S.

    1985-06-11T23:59:59.000Z

    High activity steam reforming iron oxide catalysts are described. Such catalysts can be unsupported utilizing at least 90% by weight iron oxide and various modifiers (Ai/sub 2/O/sub 3/, K/sub 2/O, CaO, SiO/sub 2/) or unmodified and supported on such things as alumina, CaO impregnated alumina, and lanthanum stabilized alumina. When used in steam reformers such as autothermal and tubular steam reformers, these catalysts demonstrate much improved resistance to carbon plugging.

  20. Diesel Oxidation Catalyst Combined to Non-Thermal Plasma: Effect on Activation Catalyst Temperature and by-products formation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Diesel Oxidation Catalyst Combined to Non-Thermal Plasma: Effect on Activation Catalyst Temperature efficiency together with the catalyst activation temperature when a Diesel Oxidation Catalyst (DOC) is placed downstream to a multi-plans Dielectric Barrier Discharge (DBD) reactor. In order to simulate Diesel engine

  1. Hydrodenitrification catalyst and a method for improving the activity of the catalyst

    SciTech Connect (OSTI)

    Ryan, R. C.

    1985-03-12T23:59:59.000Z

    Hydroconversion catalysts containing Group VIII and/or Group VIB catalytically active metals on a support, and particularly those containing nickel and molybdenum on alumina, are improved in hydrodenitrification (HDN) activity by impregnation of additional molybdenum and/or tungsten carbonyls onto the catalyst by sublimation. Preferably from about 1 to 5% w molybdenum is added. The carbonyl impregnated catalyst is then dried, calcined and, generally sulfided before use in a hydrocarbon conversion process.

  2. Methanation in catalyst-sprayed tube wall reactors: a review

    SciTech Connect (OSTI)

    Pennline, H. W.; Schehl, R. R.; Haynes, W. P.; Forney, A. J.

    1980-09-01T23:59:59.000Z

    The design and operation of catalyst-sprayed tube wall reactors for methanation are discussed. Reactor tubes were either coated on the inner surface or on the outer surface with a Raney nickel catalyst. A liquid coolant, which was opposite the catalyst-reactant gas-side, removed the heat of methanation. Catalyst performance, reactor operating conditions, spent catalyst analyses, and other results are presented for five PDU tests.

  3. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1985-01-01T23:59:59.000Z

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  4. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03T23:59:59.000Z

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  5. Effect of Fuel Cell System Contaminants on the Pt Catalyst

    SciTech Connect (OSTI)

    Wang, H.; Christ, J.; Macomber, C. S.; O'Neill, K.; Neyerlin, K. C.; O'Leary, K. A.; Reid, R.; Lakshmanan, B.; Das, M.; Ohashi, M.; Van Zee, J. W.; Dinh, H. N.

    2012-01-01T23:59:59.000Z

    The cost of the balance of plant (BOP) fuel cell system has increased in importance with recent decreases in fuel cell stack cost. In order to lower the cost of the BOP system, low cost but relatively clean components must be used. Selection of these materials requires an understanding of potential materials and the contaminants that evolve from them, which have been shown to affect the performance and durability of fuel cells. The present work evaluates the influence of leachable constituents from prospective materials and model compounds on the electrochemical performance of a platinum catalyst.

  6. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts

    SciTech Connect (OSTI)

    Mei, Donghai; Lebarbier, Vanessa MC; Rousseau, Roger J.; Glezakou, Vassiliki Alexandra; Albrecht, Karl O.; Kovarik, Libor; Flake, Matthew D.; Dagle, Robert A.

    2013-06-01T23:59:59.000Z

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl2O4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl2O4 spinel support are stable during the BSR in the temperature range of 700-850?C. Compared to the Ir/MgAl2O4 catalyst, the Rh/MgAl2O4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function of the H2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR activity on the supported highly dispersed Rh catalyst can be rationalized by the thermodynamic limitation for the very first C-C bond scission of benzene on the small Ir50 catalyst. The C-C bond scission of benzene on the small Ir50 catalyst is highly endothermic although the barrier is competitive with the barriers of both the C-C and the C-H bond-breakings on the small Rh50 catalyst. The calculations also imply that, for the supported Rh catalysts the C-C and C-H bond scissions are competitive, independently of the Rh cluster sizes. After the initial dissociation step via either the C-C or the C-H bond scission, the C-H bond breaking seems to be more favorable rather than the C-C bond breaking on the larger Rh terrace surface. This work was financially supported by the United States Department of Energy’s Office of Biomass Program’s. Computing time was granted by a user project at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  7. Synthesis and Understanding of Novel Catalysts

    SciTech Connect (OSTI)

    Stair, Peter C. [Northwestern University] [Northwestern University

    2013-07-09T23:59:59.000Z

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supported metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.

  8. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Ag, Fe, Cr, Y - Metal oxides - ZrO 2 , MoO 3 - Zeolites - Mordenite, Ferrierite, - Y, Beta Pioneering Science and Technology Office of Science U.S. Department of Energy Catalyst...

  9. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect (OSTI)

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01T23:59:59.000Z

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  10. Fluoride removal from water with spent catalyst

    SciTech Connect (OSTI)

    Lai, Y.D.; Liu, J.C. [National Taiwan Institute of Technology, Taipei (Taiwan, Province of China)

    1996-12-01T23:59:59.000Z

    The adsorption of fluoride from water with spent catalyst was studied. Adsorption density of fluoride decreased with increasing pH. Linear adsorption isotherm was utilized to describe the adsorption reaction. The adsorption was a first-order reaction, and the rate constant increased with decreasing surface loading. Adsorption reaction of fluoride onto spent catalyst was endothermic, and the reaction rate increased slightly with increasing temperature. Fluoro-alumino complex and free fluoride ion were involved in the adsorption reaction. It is proposed that both the silica and alumina fractions of spent catalyst contribute to the removal of fluoride from aqueous solution. Coulombic interaction is proposed as the major driving force of the adsorption reaction of fluoride onto spent catalyst.

  11. CHARACTERIZATION OF THE DEGRADATION OF HYDRODESULFURIZING CATALYSTS

    E-Print Network [OSTI]

    Whittle, D.P.

    2012-01-01T23:59:59.000Z

    Bakelite, Lucite, and epoxy resins are suitable as mountingof the catalyst and epoxy resins when these are used asdown crack. In the th the epoxy resin mounting llet shown in

  12. Development of FCC catalyst magnetic separation

    SciTech Connect (OSTI)

    Goolsby, T.L.; Moore, H.F. [Ashland Petroleum Co., KY (United States)

    1997-01-01T23:59:59.000Z

    Magnetic separation has been historically active in several different industries, yet has not been utilized in petroleum refining until recently. Development of economical permanent magnets with high magnetic strength has led to a new process known as MagnaCat{reg_sign}. The MagnaCat{reg_sign}. Process separates less active (high metals) particles catalyst from equilibrium Fluid Catalytic Cracking (FCC) catalyst, producing a higher activity/lower metals catalyst for recycle. Pilot FCC studies showed lower hydrogen, dry gas, and coke make with higher wet gas and octane from catalyst separated by MagnaCat{reg_sign}. With the use of a MagnaCat{reg_sign} Process unit, a refiner would produce an economic advantage of $0.20 to $0.40/Barrel of FCC charge and enhance unit operability.

  13. Moderated ruthenium fischer-tropsch synthesis catalyst

    DOE Patents [OSTI]

    Abrevaya, Hayim (Wilmette, IL)

    1991-01-01T23:59:59.000Z

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  14. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for Developing Durable Catalysts. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for...

  15. 340th Catalysis Research Center (CRC) Colloquium NOx Storage Mechanism on NSR Catalysts

    E-Print Network [OSTI]

    Ishii, Hitoshi

    brought about the lean-burn engine technology with high air/fuel ratio for motor vehicles. However of the leading strategies to tackle this issue. The catalyst works with alternatively lean and rich conditions 1996 to 2003. He was a visiting professor at Kyoto University, Japan, Ecole Normale Superieure de Lyon

  16. Operando Raman and Theoretical Vibration Spectroscopy of Non-PGM Catalysts

    Broader source: Energy.gov [DOE]

    Presentation about spectroscopy techniques for non-platinum group metal (PGM) catalysts, presented by Eugene Smotkin, Northeastern University, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  17. Single-layer transition metal sulfide catalysts

    DOE Patents [OSTI]

    Thoma, Steven G. (Albuquerque, NM)

    2011-05-31T23:59:59.000Z

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  18. Catalyst and method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, Douglas C. (Richland, WA); Hart, Todd R. (Kennewick, WA)

    1999-01-01T23:59:59.000Z

    The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  19. Cationic Ruthenium Catalysts for Olefin Hydrovinylation

    E-Print Network [OSTI]

    Sanchez, Richard P., Jr

    2010-01-14T23:59:59.000Z

    CATIONIC RUTHENIUM CATALYSTS FOR OLEFIN HYDROVINYLATION A Thesis by RICHARD P. SANCHEZ, JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 2009 Major Subject: Chemistry CATIONIC RUTHENIUM CATALYSTS FOR OLEFIN HYDROVINYLATION A Thesis by RICHARD P. SANCHEZ, JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  20. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  1. Polypropylene reinvented: Costs of using metallocene catalysts

    SciTech Connect (OSTI)

    Brockmeier, N.F.

    1996-05-01T23:59:59.000Z

    This study develops scoping estimates of the required capital investment and manufacturing costs to make a zirconocene catalyst/cocatalyst system [(F{sub 6}-acen)Zr(CH{sub 2}CMe{sub 3})(NMe{sub 2}Ph)][B(C{sub 6}F{sub 5}){sub 4}] immobilized on a silica support. Costs for this fluorine-based system are compared with estimates for two other metallocene catalysts using methylaluminoxane (MAO)-based cocatalysts. Including wt of support and cocatalyst, each of the production facilities for making the 3 zirconocene catalyst systems is sized at 364--484 tonnes/year. Cost to make the F-based catalyst system is estimated to be $10780/kg, assuming 20% return on capital invested. Costs for the two MAO-based catalyst system fall in the range of $10950--12160/kg, assuming same return. Within the {plus_minus}50% accuracy of these estimates, these differences are not significant. Given a catalyst productivity of 250 kg resin/gram zirconocene, the cost contribution in the finished ethylene-propylene copolymer resin is 4.4 cents/kg, excluding selling, administrative, research costs.

  2. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O'Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

    1986-01-01T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  3. Low Cost Autothermal Diesel Reforming Catalyst Development

    SciTech Connect (OSTI)

    Shihadeh, J.; Liu, D.

    2004-01-01T23:59:59.000Z

    Catalytic autothermal reforming (ATR) represents an important step of converting fossil fuel to hydrogen rich reformate for use in solid oxide fuel cell (SOFC) stacks. The state-of-the-art reforming catalyst, at present, is a Rh based material which is effective but costly. The objective of our current research is to reduce the catalyst cost by finding an efficient ATR catalyst containing no rhodium. A group of perovskite based catalysts have been synthesized and evaluated under the reforming condition of a diesel surrogate fuel. Hydrogen yield, reforming efficiency, and conversion selectivity to carbon oxides of the catalyst ATR reaction are calculated and compared with the benchmark Rh based material. Several catalyst synthesis improvements were carried out including: 1) selectively doping metals on the A-site and B-site of the perovskite structure, 2) changing the support from perovskite to alumina, 3) altering the method of metal addition, and 4) using transition metals instead of noble metals. It was found that the catalytic activity changed little with modification of the A-site metal, while it displayed considerable dependence on the B-site metal. Perovskite supports performed much better than alumina based supports.

  4. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  5. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30T23:59:59.000Z

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  6. Towards a Benign and Viable Rhodium Catalyzed Hydroformylation of Higher Olefins: Economic and Environmental Impact Analyses, Solvent Effects and Membrane-based Catalyst Separation

    E-Print Network [OSTI]

    Fang, Jing

    2009-04-28T23:59:59.000Z

    rhodium catalyst based on economic and environmental assessments. The specific objectives of the current work are therefore to: 8 • Exploit CO 2 -expanded liquids as environmentally green solvents for hydroformylation of higher olefins and benchmark...

  7. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect (OSTI)

    Keicher, David M.; Cook, Adam W.

    2014-09-01T23:59:59.000Z

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  8. Micro-PIXE measurement of Ni distribution over supported nickel oxide catalyst

    SciTech Connect (OSTI)

    Ahmed, M.; Rahman, A.; Nickel, J. [King Fahd Univ., Dhahran (Saudi Arabia)] [and others

    1994-12-31T23:59:59.000Z

    Supported nickel oxide catalysts have a wide range of applications in petrochemical industry. This work reports the results of a micro-PIXE measurement of Ni distribution in a supported nickel oxide catalyst over individual silica base particles, 60-200 {mu}m in size. These catalysts were synthesized with 1% and 5% then calcined at 400 {degrees}C. A 2.5 MeV proton microbeam was used to scan the samples of individual grains. Two dimensional distribution maps of Ni and Si have been measured. This paper discusses the important effects of the process of calcination on the distribution of Ni. The effects of different nickel loading and other synthesis conditions will also be discussed.

  9. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Manos Mavrikakis

    2008-08-31T23:59:59.000Z

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  10. A Cobalt-based Catalyst for CO2 Hydrogenation Under Ambient Conditions

    SciTech Connect (OSTI)

    Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.; Linehan, John C.

    2013-08-07T23:59:59.000Z

    Due to the continually rising levels of CO2 in the atmosphere, research into conversion of CO2 into fuels using carbon-neutral energy is currently an important topic in catalysis. Recent research on molecular catalysts has led to improved rates of CO2 conversion to formate, but unfortunately the resulting catalysts are based on precious metals such as iridium, ruthenium and rhodium and require high temperatures and high pressures for catalytic reactivity. Using established thermodynamic properties, a cobalt-based catalyst system has been designed for the catalytic production of formate from CO2 and H2, even at room temperature and one atmosphere of pressure. Using Co(dmpe)2H (dmpe is bis(dimethylphosphino)ethane) as a catalyst in tetrahydrofuran, room temperature turnover frequencies of 3,400 h-1 at 1 atm of 1:1 CO2:H2 and 74,000 h-1 at 20 atm were obtained. These results highlight the value of basic thermodynamic properties in the rational design of catalysts. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  11. Hydrocarbon conversion process and catalysts

    SciTech Connect (OSTI)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15T23:59:59.000Z

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.40 A, a water adsorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of between 10% and 15% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; am amorphous cracking component, a binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  12. 3D Printing Electronics

    E-Print Network [OSTI]

    Stryk, Oskar von

    Login Register Home Videos Jobs Games 3D Printing Electronics Design Software Designer Edge for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

  13. Process and catalyst for carbonylating olefins

    SciTech Connect (OSTI)

    Zoeller, J.R.

    1998-06-02T23:59:59.000Z

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  14. Inkjet printed electronics using copper nanoparticle ink

    E-Print Network [OSTI]

    Kang, Jin Sung; Kim, Hak Sung; Ryu, Jongeun; Thomas Hahn, H.; Jang, Seonhee; Joung, Jae Woo

    2010-01-01T23:59:59.000Z

    providing printed electronics using copper nanoparticles.0049-3 Inkjet printed electronics using copper nanoparticleand quality of the printed electronics. In this paper, we

  15. Los Alamos catalyst could jumpstart e-cars, green energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in...

  16. Surface spectroscopic studies of mono- and bimetallic model catalysts

    E-Print Network [OSTI]

    Yi, Cheol-Woo

    2007-04-25T23:59:59.000Z

    ), temperature programmed desorption (TPD), and x-ray photoelectron spectroscopy (XPS). Electronic, morphological, and chemical properties of the prepared model catalysts were compared to those observed from monometallic single-crystal model catalysts such as Cu...

  17. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID)

    2010-12-28T23:59:59.000Z

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  18. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia (Idaho Falls, ID)

    2009-09-22T23:59:59.000Z

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  19. Catalysts for oxidation of mercury in flue gas

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2010-08-17T23:59:59.000Z

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  20. The Role of Catalyst Surface Structure in Heterogeneous Catalysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ceria Nanocrystals as Catalyst and Catalyst Support Apr 23 2014 10:00 AM - 11:00 AM Zili Wu, Chemical Science Division and Center for Nanophase Materials Sciences, ORNL Materials...

  1. Method for producing catalysts from coal

    DOE Patents [OSTI]

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24T23:59:59.000Z

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  2. Low temperature catalyst system for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20T23:59:59.000Z

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  3. Method for dispersing catalyst onto particulate material

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  4. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14T23:59:59.000Z

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  5. Ship-in-a-bottle catalysts

    DOE Patents [OSTI]

    Haw, James F.; Song, Weiguo

    2006-07-18T23:59:59.000Z

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  6. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1991-02-12T23:59:59.000Z

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  7. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1990-01-01T23:59:59.000Z

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  8. Thief carbon catalyst for oxidation of mercury in effluent stream

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2011-12-06T23:59:59.000Z

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  9. Tethered catalysts for the hydration of carbon dioxide

    DOE Patents [OSTI]

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04T23:59:59.000Z

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  10. Catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01T23:59:59.000Z

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  11. Catalyst structure and method of Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong; Vanderwiel, David P.; Tonkovich, Anna Lee; Gao, Yufei; Baker, Eddie G.

    2004-06-15T23:59:59.000Z

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  12. Catalyst structure and method of fischer-tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

    2002-12-10T23:59:59.000Z

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  13. Catalysts For Lean Burn Engine Exhaust Abatement

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM); Clark, Noline C. (Jemez Springs, NM); Paffett, Mark T. (Los Alamos, NM)

    2004-04-06T23:59:59.000Z

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  14. Catalysts for lean burn engine exhaust abatement

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM); Clark, Noline C. (Jemez Springs, NM); Paffett, Mark T. (Los Alamos, NM)

    2003-01-01T23:59:59.000Z

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  15. Method for producing iron-based catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Kaufman, Phillip B. (Library, PA); Diehl, J. Rodney (Pittsburgh, PA); Kathrein, Hendrik (McMurray, PA)

    1999-01-01T23:59:59.000Z

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  16. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21T23:59:59.000Z

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  17. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

    1989-01-01T23:59:59.000Z

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  18. Attrition resistant Fischer-Tropsch catalyst and support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25T23:59:59.000Z

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  19. abnormal resistive zones: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NO PRINTING ZONE NO PRINTING ZONE NO PRINTING ZONE NO PRINTING ZONE Kainen, Paul C. 11 Seismic Amplitude Versus Offset (AVO) Character of Geopressured Transition Zones Geosciences...

  20. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    SciTech Connect (OSTI)

    Anthony, R.G.; Akgerman, A.

    1994-05-06T23:59:59.000Z

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

  1. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01T23:59:59.000Z

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  2. Inkjet Printing of UWB Antennas on Paper Based , S. Safavi-Naeini1

    E-Print Network [OSTI]

    Tentzeris, Manos

    . This work is one step further towards the development of low-cost environment- friendly conformal printed research topic due to the ever growing demand for low cost, flexible and power-efficient broadband wireless look at the most common techniques for the fabrication of printed UWB antennas reveals

  3. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers

    SciTech Connect (OSTI)

    Yamane, Luciana Harue, E-mail: lucianayamane@uol.com.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Tavares de Moraes, Viviane, E-mail: tavares.vivi@gmail.com [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Crocce Romano Espinosa, Denise, E-mail: espinosa@usp.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil); Soares Tenorio, Jorge Alberto, E-mail: jtenorio@usp.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo, SP 05508-030 (Brazil)

    2011-12-15T23:59:59.000Z

    Highlights: > This paper presents new and important data on characterization of wastes of electric and electronic equipments. > Copper concentration is increasing in mobile phones and remaining constant in personal computers. > Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.

  4. Process of activation of a palladium catalyst system

    SciTech Connect (OSTI)

    Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

    2011-08-02T23:59:59.000Z

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  5. Catalysts for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

    1987-01-01T23:59:59.000Z

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  6. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01T23:59:59.000Z

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  7. Cationic Ruthenium Catalysts for Olefin Hydrovinylation 

    E-Print Network [OSTI]

    Sanchez, Richard P., Jr

    2010-01-14T23:59:59.000Z

    ............................................... 11 1.5 Specific Aim............................................................................. 13 II INVESTIGATION OF A RUTHENIUM-BASED CATALYST SYSTEM FOR THE HYDROVINYLATION REACTION................ 15 2.1 Initial Study... and Application.................................................... 15 2.2 Mode of Deactivation............................................................... 20 III INTRODUCING CHELATING, BIDENTATE PHOSPHINE LIGANDS TO THE RUTHENIUM METAL CENTER...

  8. Catalyst Activity Comparison of Alcohols over Zeolites

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01T23:59:59.000Z

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  9. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1992-01-01T23:59:59.000Z

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  10. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2010-08-03T23:59:59.000Z

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  11. Fuel cells and fuel cell catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07T23:59:59.000Z

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  12. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18T23:59:59.000Z

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  13. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

    1996-06-18T23:59:59.000Z

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

  14. Catalyst poisoning during tar-sands bitumen upgrading

    SciTech Connect (OSTI)

    Carruthers, J.D.; Brinen, J.S.; Komar, D.A.; Greenhouse, S. [CYTEC Industries, Stamford, CT (United States)

    1994-12-31T23:59:59.000Z

    A number of hydrotreating catalysts are used in commercial heavy oil upgrading facilities. One of these, a CoO/MoO{sub 3}/Al{sub 2}O{sub 3} catalyst has been evaluated in a pilot plant CSTR for Tar-Sands Bitumen upgrading. Following its use in a test of 200 hours duration, the catalyst was removed, de-oiled, regenerated by air-calcination to remove the coke, and then re-tested. Samples of the coked, fresh and regenerated catalyst were each examined using surface analytical techniques. ESCA and SIMS analysis of the coked and regenerated catalyst samples show, as expected, significant contamination of the catalyst with Ni and V. In addition, the SIMS analysis clearly reveals that the edges of the catalyst pellets are rich in Ca, Mg and Fe while the Ni, V and coke are evenly distributed. Regeneration of the catalyst by calcination removes the carbonaceous material but appears not to change the distribution of the metal contaminants. Retesting of the regenerated catalyst shows a performance similar to that of the fresh catalyst. These data serve to support the view that catalyst deactivation during early use is not due to the skin of Ca and Mg on the pellets but rather via the poisoning of active sites by carbonaceous species.

  15. Methane oxidation over dual redox catalysts

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01T23:59:59.000Z

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  16. New catalysts improves heavy feedstock hydro-cracking

    SciTech Connect (OSTI)

    Hoek, A.; Huizinga, T.; Esener, A.A.; Maxwell, I.E.; Stork, W. (Koninklijke/Shell Laboratorium, Amsterdam (NL)); van de Meerakker, F.J. (Shell Internationale Petroleum Maatschappij BV, The Hauge (NL)); Sy, O. (Shell Canada Ltd., Oakville, Ontario (CA))

    1991-04-22T23:59:59.000Z

    A new zeolite-Y-based second-stage hydrocracking catalyst, designated S-703, has been developed by Shell. Laboratory testing and commercial use show it has significantly improved performance with respect to gas make and middle-distillate selectivity in processing heavy feedstocks when compared to a Shell catalyst, S-753, developed earlier. Further, the new catalyst exhibits enhanced stability. Extensive laboratory testing of the S-703 catalyst has been carried out under single-stage, stacked- bed, two-stage-flow, and series-flow conditions. Commercial experience with the new catalyst has now been obtained in several units. To date, the commercial results have confirmed the laboratory results in terms of the superior, heavy- feedstock processing performance of the new catalyst in all respects. Because the trend toward heavier feedstocks is expected to continue, it is likely that catalysts such as S- 703 will find increasing applications in hydrocrackers in the future.

  17. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

    2013-01-01T23:59:59.000Z

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  18. The role of surface structure in carbon-monoxide hydrogenation on cobalt catalysts

    SciTech Connect (OSTI)

    Johnson, B.G.

    1989-01-01T23:59:59.000Z

    The effects of surface structure on the CO hydrogenation reaction were investigated by comparing the activity and selectivity of submonolayer cobalt deposited on W(110) and W(100) with that of carbonyl-derived Co/alumina catalysts of varying dispersion. The structure, stability, surface electronic properties, and chemisorptive properties of vapor deposited cobalt overlayers (0-4 ML) on W(110) and W(100) were studied by Auger electron spectroscopy, low electron diffraction, work function changes, and temperature programmed desorption of cobalt, hydrogen, and carbon monoxide. The chemisorptive properties of the cobalt overlayers are quite different from those of bulk cobalt surfaces. The Co/W surface have highly strained and different geometries but have similar CO hydrogenation activity. The activity nearly matches that of the highly active, highly reduced Co/alumina catalysts, showing that the activity of cobalt surfaces is independent of surface structure. The specific activity of carbonyl-derived catalysts appears to be more closely related to the extent of reduction and the support dehydroxylation temperatures than to the dispersion. Thus, the chemical nature of the support surface is the controlling factor in determining the specific activity of supported cobalt catalysts. CO hydrogenation on cobalt is neither primary nor secondary structure sensitive.

  19. Graphdiyne as a Promising Substrate for Stabilizing Pt Nanoparticle Catalyst

    E-Print Network [OSTI]

    Lin, Zheng-Zhe

    2015-01-01T23:59:59.000Z

    At present, Pt nanoparticle catalysts in fuel cells suffer from aggregation and loss of chemical activity. In this work, graphdiyne, which has natural porous structure, was proposed as substrate with high adsorption ability to stabilize Pt nanoparticles. Using multiscale calculations by ab initio method and the ReaxFF potential, geometry optimizations, molecular dynamics simulations, Metropolis Monte Carlo simulations and minimum energy paths calculations were performed to investigate the adsorption energy and the rates of desorption and migration of Pt nanoparticles on graphdiyne and graphene. According to the comparison between graphdiyne and graphene, it was found that the high adsorption ability of graphdiyne can avoid Pt nanoparticle migration and aggregation on substrate. Then, simulations indicated the potential catalytic ability of graphdiyne-Pt-nanoparticle system to the oxygen reduction reaction in fuel cells. In summary, graphdiyne should be an excellent material to replace graphite or amorphous ca...

  20. Evaluation of Regenerated Catalyst for Mercury Speciation

    SciTech Connect (OSTI)

    Dennis Laudal

    2007-06-01T23:59:59.000Z

    In March of 2005, U.S. Environmental Protection Agency (EPA) promulgated the Clean Air Mercury Rule (CAMR). Mercury from coal-fired power plants was to be reduced from the current 48 to 38 tons/yr by 2010 and then 15 tons/yr by 2018. It is expected that the first phase reduction of {approx}21% will be achieved by cobenefits that will occur as a result of installing additional selective catalytic reduction (SCR) and flue gas desulfurization (FGD) systems to meet the new Clean Air Interstate Rule (CAIR). Detroit Edison (DTE) is installing SCR at all four units at its Monroe Station and will eventually install wet-FGD systems. As such, the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and DTE have contracted with the Energy & Environmental Research Center (EERC) to determine the extent of mercury oxidation that occurs at Monroe Station. The EERC originally did mercury speciation sampling at Monroe Station in 2004 and then went back in 2005 to determine if any changes occurred as a result of catalyst aging. During the second test, in addition to measuring the mercury speciation at the inlet and outlet of the SCR, the EERC also completed sampling at a location between the catalyst layers. The results are shown in Table 1. In Table 1, the results show that {approx}40% of the Hg was in oxidized form (Hg{sup 2+}) at the inlet and nearly 100% Hg{sup 2+} at the outlet. The results at the midpoint were between 40% and 100%. As part of their overall strategy to reduce SCR costs, utilities and SCR vendors are attempting to regenerate catalyst layers that have degenerated over time. If these regenerated catalysts are used, the question remains as to the effect this process will have on the ability of these catalysts to oxidize mercury as well as reduce NO{sub x}. The current project is designed to measure the Hg speciation across an SCR using a regenerated catalyst. The results were compared to previous results to determine what, if any, changes occurred. Two series of tests were completed: one early in the ozone season (July 2006) and the second near the end (September 2006). The goal of this project is to determine the effect SCR catalyst regeneration has on Hg speciation and emissions from combustion of a blend of eastern bituminous and Powder River Basin (PRB) coal at DTE's Monroe Station. Specific objectives include the following: (1) Compare the Hg speciation results at the inlet and outlet of the SCR. Determine the change in the concentration of oxidized Hg across the SCR. In addition, determine if the number of catalyst layers has any effect. (2) Compare results from previous testing to determine if there are changes in mercury speciation as a result of catalyst regeneration. (3) Determine the overall speciated Hg emissions (from a separate project funded by DTE).

  1. Compact organic vapor jet printing print head

    DOE Patents [OSTI]

    Forrest, Stephen R; McGraw, Gregory

    2013-12-24T23:59:59.000Z

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  2. Active Oxygen on Au/TiO2 Catalysts DOI: 10.1002/anie.201102062 Active oxygen on a Au/TiO2 catalyst Formation, stability and CO

    E-Print Network [OSTI]

    Pfeifer, Holger

    1 Active Oxygen on Au/TiO2 Catalysts DOI: 10.1002/anie.201102062 Active oxygen on a Au/TiO2 are the activation of molecular oxygen, the active site for this reaction step, and the nature of the catalytically active oxygen species present under working conditions.[3;9-15] Stiehl et al. had shown that molecularly

  3. Engraving Print Classification

    SciTech Connect (OSTI)

    Hoelck, Daniel [Instituto de Fisica, P. Universidad Catolica de Valparaiso, Av. Brasil 2905, Valparaiso (Chile); Barbe, Joaquim [Grupo Felix Klein, Facultad de Ciencias, Universidad de Santiago de Chile, Av. Lib. Bernardo O'Higgins 3363 (Chile)

    2008-04-15T23:59:59.000Z

    A print is a mark, or drawing, made in or upon a plate, stone, woodblock or other material which is cover with ink and then is press usually into a paper reproducing the image on the paper. Engraving prints usually are image composed of a group of binary lines, specially those are made with relief and intaglio techniques. Varying the number and the orientation of lines, the drawing of the engraving print is conformed. For this reason we propose an application based on image processing methods to classify engraving prints.

  4. In Situ Generation of Pd/PdO Nanoparticle Methane Combustion Catalyst: Correlation of Particle Surface Chemistry with Ignition

    E-Print Network [OSTI]

    Anderson, Scott L.

    supported in fixed-bed reactors. The extensive work on the kinetics of Pd oxidation and its relation applications, the typical fixed-bed catalytic reactor approach is not possible because of the high flow performance of propulsion platforms. Catalysts are needed both to enhance and control endothermic reactions

  5. Selective Catalytic Reduction (SCR) of nitric oxide with ammonia using Cu-ZSM-5 and Va-based honeycomb monolith catalysts: effect of H2 pretreatment, NH3-to-NO ratio, O2, and space velocity 

    E-Print Network [OSTI]

    Gupta, Saurabh

    2004-09-30T23:59:59.000Z

    In this work, the steady-state performance of zeolite-based (Cu-ZSM-5) and vanadium-based honeycomb monolith catalysts was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3. The aim ...

  6. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01T23:59:59.000Z

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  7. Zeolite catalyst composition and synthesis method

    SciTech Connect (OSTI)

    Chu, P.; Schwartz, A.B.

    1989-09-19T23:59:59.000Z

    This patent describes a catalyst. It comprises an inner portion and an outer portion disposed as a porous shell around the inner portion, the inner portion comprising a shape-selective tetrahedrally coordinated crystalline acidic aluminosilicate, having a silica:alumina molar ratio of about 20 to 300, and the outer portion comprising a fluoride-containing crystalline silica shell substantially free of acid sites.

  8. Autothermal hydrodesulfurizing reforming method and catalyst

    SciTech Connect (OSTI)

    Krumpelt, Michael; Kopasz, John P.; Ahmed, Shabbir; Kao, Richard Li-chih; Randhava, Sarabjit Singh

    2005-11-22T23:59:59.000Z

    A method for reforming a sulfur-containing carbonaceous fuel in which the sulfur-containing carbonaceous fuel is mixed with H.sub.2 O and an oxidant, forming a fuel/H.sub.2 O/oxidant mixture. The fuel H.sub.2 O/oxidant mixture is brought into contact with a catalyst composition comprising a dehydrogenation portion, an oxidation portion and a hydrodesulfurization portion, resulting in formation of a hydrogen-containing gas stream.

  9. Catalyst material and method of making

    DOE Patents [OSTI]

    Matson, Dean W. (Kennewick, WA); Fulton, John L. (Richland, WA); Linehan, John C. (Richland, WA); Bean, Roger M. (Richland, WA); Brewer, Thomas D. (Richland, WA); Werpy, Todd A. (Richland, WA); Darab, John G. (Richland, WA)

    1997-01-01T23:59:59.000Z

    The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation.

  10. Nanoporous Au: an unsupported pure gold catalyst?

    SciTech Connect (OSTI)

    Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M

    2008-09-04T23:59:59.000Z

    The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.

  11. Argonne named a 'Best Place' to work for postdocs in 2010 | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    postdocs in 2010 February 25, 2010 Tweet EmailPrint The Department of Energy's (DOE) Argonne National Laboratory is one of the best places in the country for postdocs to work,...

  12. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    thermoelectric generators (TEG) [14-15] and rechargeable,In the previous work, a 50-couple TEG printed on a flexiblecurrent output (µA~mA) from TEGs are sufficient for slowly

  13. Method For Reactivating Solid Catalysts Used For Alklation Reactions

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Coates, Kyle (Shelley, ID); Zalewski, David J. (Proctorville, OH); Fox, Robert V. (Idaho Falls, ID)

    2005-05-03T23:59:59.000Z

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  14. Method for reactivating solid catalysts used in alkylation reactions

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17T23:59:59.000Z

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  15. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    SciTech Connect (OSTI)

    A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

    2011-07-01T23:59:59.000Z

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  16. Protocol development for evaluation of commercial catalytic cracking catalysts

    SciTech Connect (OSTI)

    Mitchell, M.M. Jr.; Moore, H.F. (Ashland Petroleum Co., KY (USA))

    1988-09-01T23:59:59.000Z

    A complete, new set of testing protocols has been developed for qualification of catalysts for Ashland's commercial catalytic cracking units. The objective of this test development is to identify new generations of improved cracking catalysts. Prior test protocols have classically utilized microactivity (MAT) testing of steamed virgin catalysts, while more advanced methods have utilized fixed fluid bed and/or circulating pilot units. Each of these techniques, however, have been limited by their correlation to commercial operations, weaknesses in metallation and preparation of pseudo-equilibrium catalysts, and mechanical constraints on the use of heavy, vacuum bottoms-containing feedstocks. These new protocols have been baselined, compared to commercial Ashland results on known catalytic cracking catalysts, and utilized to evaluate a range of potentially new catalyst samples.

  17. Method for regeneration and activity improvement of syngas conversion catalyst

    DOE Patents [OSTI]

    Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

    1980-01-01T23:59:59.000Z

    A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

  18. DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING

    SciTech Connect (OSTI)

    B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

    2004-09-27T23:59:59.000Z

    This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

  19. Activation of catalysts for synthesizing methanol from synthesis gas

    DOE Patents [OSTI]

    Blum, David B. (108 Tall Oaks Dr., Wayne, NJ 07470); Gelbein, Abraham P. (45 Headley Rd., Morristown, NJ 07960)

    1985-01-01T23:59:59.000Z

    A method for activating a methanol synthesis catalyst is disclosed. In this method, the catalyst is slurried in an inert liquid and is activated by a reducing gas stream. The activation step occurs in-situ. That is, it is conducted in the same reactor as is the subsequent step of synthesizing methanol from a methanol gas stream catalyzed by the activated catalyst still dispersed in a slurry.

  20. Metal-Oxo Catalysts for Generating Hydrogen from Water

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-06-23T23:59:59.000Z

    Scientists at Berkeley Lab have developed an inexpensive, highly efficient catalyst that can be used in the electrolysis of water to generate H2—a source of clean fuel, a reducing agent for metal ores, and a reactant used to produce hydrochloric acid and other chemicals. The catalyst is a metal-oxo complex in which modified pyridine rings surround an earth-abundant, low cost metal, such as molybdenum. Compared to other molecular catalysts, the Berkeley Lab compound has a longer life,...

  1. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    1996-01-01T23:59:59.000Z

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  2. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01T23:59:59.000Z

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  3. NREL: Biomass Research - Chemical and Catalyst Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop and validate gasification process models. NREL uses chemical analysis to study biomass-derived products online during the conversion process. Catalysts are used in the...

  4. Catalyst Structure-Performance Relationship Identified by High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This reactor, consisting of six parallel reaction channels, is demonstrated for methanol oxidation using silica supported vanadium oxide catalysts at various reaction...

  5. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more...

  6. Multi-stage catalyst systems and uses thereof

    DOE Patents [OSTI]

    Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

    2009-02-10T23:59:59.000Z

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  7. Catalyst for Improving the Combustion Efficiency of Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel...

  8. Catalyst-Assisted Production of Olefins from Natural Gas Liquids...

    Broader source: Energy.gov (indexed) [DOE]

    catalyst-assistedproductionolefins.pdf More Documents & Publications CX-009019: Categorical Exclusion Determination AMO Peer Review, May 6-7, 2014 ITP Petroleum Refining: Impacts...

  9. DOE's Fuel Cell Catalyst R&D Activities

    Broader source: Energy.gov (indexed) [DOE]

    for Fuel Cell Protection During Transient Conditions * Develop supports with reduced corrosion, lower cost, and increased non-PGM catalyst loading ANL: Polymer Electrolyte Fuel...

  10. Combined catalysts for the combustion of fuel in gas turbines

    DOE Patents [OSTI]

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13T23:59:59.000Z

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  11. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - The new material has the highest oxygen reduction reaction (ORR) activity in alkaline media of any non-precious metal catalyst developed to date. Los Alamos research better...

  12. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of the AT Research Capabilities: Investigation of Diesel Soot Oxidation and of the Catalysts Degradation Efficient Emissions Control for Multi-Mode Lean DI Engines...

  13. Effectiveness of a Diesel Oxidation Catalyst (DOC) to control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Effectiveness of a...

  14. Supercomputers Help a Catalyst Reach its Full Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    510 495 2402 protondeliverystory.jpg While one configuration (endoendo) of a popular nickel catalyst can produce thousands of hydrogen molecules a second, the other forms that...

  15. Method of making chalcogen catalysts for polymer electrolyte fuel cells

    DOE Patents [OSTI]

    Choi, Jong-Ho (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Harabin, CN)

    2010-12-14T23:59:59.000Z

    A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.

  16. Regeneration of field-spent activated carbon catalysts for low...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The spent carbon catalysts were regenerated by washing with a surfactant followed by drying and calcination. The physicochemical properties before and after the regeneration were...

  17. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop alternatives to the precious metal catalysts by using relatively inexpensive, earth-abundant metals. The chemical complexities of the more common metals have made this...

  18. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    Dynamometer Evaluation of Plasma- Catalyst for Diesel NOx Reduction February 20, 2003 CRADA Protected Document and Data 2 Introduction * Engine dynamometer evaluation of...

  19. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company 2003deerhoard.pdf More Documents & Publications Plasma Assisted Catalysis...

  20. Catalysts and process for liquid hydrocarbon fuel production

    DOE Patents [OSTI]

    White, Mark G; Liu, Shetian

    2014-12-09T23:59:59.000Z

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  1. Stereoscopic PIV measurements of swirling flow entering a catalyst substrate

    SciTech Connect (OSTI)

    Persoons, T. [Trinity College Dublin, Mechanical Engineering Department, Parsons Building, Dublin 2 (Ireland); Vanierschot, M.; Van den Bulck, E. [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium)

    2008-09-15T23:59:59.000Z

    This experimental study investigates the stagnation region of a swirling flow entering an automotive catalyst substrate. A methodology is established using stereoscopic particle image velocimetry (PIV) to determine three-component velocity distributions up to 0.2 mm from the catalyst entrance face. In adverse conditions of strong out-of-plane velocity, PIV operating parameters are adjusted for maximum spatial correlation strength. The measurement distance to the catalyst is sufficiently small to observe radial flow spreading. A scaling analysis of the stagnation flow region provides a model for the flow uniformization as a function of the catalyst pressure drop. (author)

  2. Activation of molecular catalysts using semiconductor quantum dots

    DOE Patents [OSTI]

    Meyer, Thomas J. (Chapel Hill, NC); Sykora, Milan (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM)

    2011-10-04T23:59:59.000Z

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  3. NOx Uptake Mechanism on Pt/BaO/Al2O3 Catalysts. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Al2O3 Catalysts. NOx Uptake Mechanism on PtBaOAl2O3 Catalysts. Abstract: The NOx adsorption mechanism on PtBaOAl2O3 catalysts was investigated by performing NOx storage...

  4. Novel Solid Base Catalysts for the Production of Biodiesel from Lipids

    E-Print Network [OSTI]

    Zhao, Lina

    2010-12-17T23:59:59.000Z

    The primary commercial biodiesel production processes use homogeneous base catalysts which cause separation and wastewater discharge problems. Solid base catalysts can overcome these drawbacks. However, a solid base catalyst with high activity...

  5. Working Paper

    E-Print Network [OSTI]

    2010-07-16T23:59:59.000Z

    Jul 2, 2010 ... Working Paper. Branch and Bound Algorithms for ...... interest when evaluating the performance. First, each derived subproblem means usage ...

  6. Low-cost and durable catalyst support for fuel cells: graphite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost and durable catalyst support for fuel cells: graphite submicronparticles. Low-cost and durable catalyst support for fuel cells: graphite submicronparticles. Abstract: Low-cost...

  7. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOE Patents [OSTI]

    Vajda, Stefan (Lisle, IL), Pellin, Michael J. (Naperville, IL); Elam, Jeffrey W. (Elmhurst, IL); Marshall, Christopher L. (Naperville, IL); Winans, Randall A. (Downers Grove, IL); Meiwes-Broer, Karl-Heinz (Roggentin, GR)

    2012-04-03T23:59:59.000Z

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  8. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOE Patents [OSTI]

    Vajda, Stefan (Lisle, IL); Pellin, Michael J. (Naperville, IL); Elam, Jeffrey W. (Elmhurst, IL); Marshall, Christopher L. (Naperville, IL); Winans, Randall A. (Downers Grove, IL); Meiwes-Broer, Karl-Heinz (Roggentin, GR)

    2012-03-27T23:59:59.000Z

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  9. Selective catalyst reduction light-off strategy

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-10-18T23:59:59.000Z

    An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.

  10. Electrically heated particulate filter using catalyst striping

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

    2013-07-16T23:59:59.000Z

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

  11. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24T23:59:59.000Z

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  12. Catalyst Regeneration Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst Regeneration Market Home

  13. Catalyst Regeneration | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst Regeneration Market

  14. Oxford Catalysts Group plc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany OilInformationPre-TaxShelfOxford Catalysts Group

  15. Development of Silica/Vanadia/ Titania Catalysts for Removal of

    E-Print Network [OSTI]

    Li, Ying

    mercury (Hg0) from simulated coal-combustion flue gas. Experiments were carried out in fixed-bed reactorsDevelopment of Silica/Vanadia/ Titania Catalysts for Removal of Elemental Mercury from Coal-Combustion the composition and microstructures of SCR (selective catalytic reduction) catalysts for Hg0 oxidation in coal-combustion

  16. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Ahn, Hongsang (Evanston, IL)

    2001-01-01T23:59:59.000Z

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  17. SOLUBLE POLYMER-SUPPORTED CATALYSTS AND INITIATORS A Dissertation Presented

    E-Print Network [OSTI]

    Venkataraman, Dhandapani "DV"

    SOLUBLE POLYMER-SUPPORTED CATALYSTS AND INITIATORS A Dissertation Presented by UCHE K. ANYANWU. Anyanwu 2005 All Rights Reserved #12;SOLUBLE POLYMER-SUPPORTED CATALYSTS AND INITIATORS A Dissertation the years: my dissertation committee (Prof. Coughlin, Prof. Lillya and Prof. Bianconi) for their guidance

  18. A New Instrument For Characterizing Solid Oxide Fuel Cell Catalysts

    E-Print Network [OSTI]

    RESEARCH HIGHLIGHTS A New Instrument For Characterizing Solid Oxide Fuel Cell Catalysts From fuels to renewable energy sources. Solid oxide fuel cells (SOFCs) have enormous potential in this area A New Instrument For Characterizing Solid Oxide Fuel Cell Catalysts Rob Usiskin In partnership

  19. Catalyst and process development for synthesis gas conversion to isobutylene

    SciTech Connect (OSTI)

    Anthony, R.G.; Akgerman, A.

    1992-05-26T23:59:59.000Z

    The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene.

  20. Fine particle clay catalysts for coal liquefaction. Final technical report

    SciTech Connect (OSTI)

    Olson, E.S.

    1995-08-01T23:59:59.000Z

    In an effort to develop new disposable catalysts for direct coal liquefaction, several types of clay-supported pyrrhotite catalysts were prepared and tested. These included iron-pillared montmorillonite, mixed iron/alumina-pillared montmorillonite, iron-impregnated montmorillonite, and iron oxometallate-impregnated montmorillonite.

  1. Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

  2. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

    1989-01-01T23:59:59.000Z

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  3. The Use of Catalysts in Near-Critical Water Processing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2005-06-26T23:59:59.000Z

    The use of heterogeneous catalysts in near-critical water processing provides many challenges of material stability in addition to the normal questions of chemical activity. Conventional catalyst materials developed in traditional organic chemistry or petroleum chemistry applications provide a source of information of materials with the required activities but often without the required stability when used in hot liquid water. The importance of the use of catalysts in near-critical water processing plays a particularly crucial role for the development of renewable fuels and chemicals based on biomass feedstocks. Stability issues include both those related to the catalytic metal and also to the catalyst support material. In fact, the stability of the support is the most likely concern when using conventional catalyst formulations in near-critical water processing. Processing test results are used to show important design parameters for catalyst formulations for use in wet biomass gasification in high-pressure water and in catalytic hydrogenations in water for production of value-added chemical products from biomass in the biorefinery concept. Analytical methods including powder x-ray diffraction for crystallite size and composition determination, surface area and porosity measurements, and elemental analysis have all been used to quantify differences in catalyst materials before and after use. By these methods both the chemical and physical stability of heterogeneous catalysts can be verified.

  4. Content-adaptive lenticular prints

    E-Print Network [OSTI]

    Tompkin, James

    Lenticular prints are a popular medium for producing automultiscopic glasses-free 3D images. The light field emitted by such prints has a fixed spatial and angular resolution. We increase both perceived angular and spatial ...

  5. Idea Generation 3D printing

    E-Print Network [OSTI]

    Papadopouli, Maria

    2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

  6. Development of a Novel Catalyst for No Decomposition

    SciTech Connect (OSTI)

    Ates Akyurtlu; Jale Akyurtlu

    2007-06-22T23:59:59.000Z

    Air pollution arising from the emission of nitrogen oxides as a result of combustion taking place in boilers, furnaces and engines, has increasingly been recognized as a problem. New methods to remove NO{sub x} emissions significantly and economically must be developed. The current technology for post-combustion removal of NO is the selective catalytic reduction (SCR) of NO by ammonia or possibly by a hydrocarbon such as methane. The catalytic decomposition of NO to give N{sub 2} will be preferable to the SCR process because it will eliminate the costs and operating problems associated with the use of an external reducing species. The most promising decomposition catalysts are transition metal (especially copper)-exchanged zeolites, perovskites, and noble metals supported on metal oxides such as alumina, silica, and ceria. The main shortcoming of the noble metal reducible oxide (NMRO) catalysts is that they are prone to deactivation by oxygen. It has been reported that catalysts containing tin oxide show oxygen adsorption behavior that may involve hydroxyl groups attached to the tin oxide. This is different than that observed with other noble metal-metal oxide combinations, which have the oxygen adsorbing on the noble metal and subsequently spilling over to the metal oxide. This observation leads one to believe that the Pt/SnO{sub 2} catalysts may have a potential as NO decomposition catalysts in the presence of oxygen. This prediction is also supported by some preliminary data obtained for NO decomposition on a Pt/SnO{sub 2} catalyst in the PI's laboratory. The main objective of the research that is being undertaken is the evaluation of the Pt/SnO{sub 2} catalysts for the decomposition of NO in simulated power plant stack gases with particular attention to the resistance to deactivation by O{sub 2}, H{sub 2}O, and elevated temperatures. Temperature programmed desorption (TPD) and temperature programmed reaction (TPRx) studies on Pt/SnO{sub 2} catalysts having different noble metal concentrations and pretreated under different conditions were done. It is also planned to perform NO decomposition tests in a laboratory-size packed-bed reactor to obtain long-term deactivation data. Temperature programmed desorption and temperature controlled reaction runs were made with catalysts containing 15% Pt and 10% Pt on SnO{sub 2}. Catalysts containing 10% Pt resulted in significantly lower activities than 15% PT catalysts. Therefore, in the remainder of the tests 15% Pt/SnO{sub 2} catalysts were used. Isothermal reaction studies were made to elucidate the effects of temperature, oxygen, water vapor, pretreatment temperature, and space velocity on NO dissociation. It was found that the presence of oxygen and water vapor did not affect the activation energy of the NO dissociation reaction indicating the presence of the same rate controlling step for all feed compositions. Activation energy was higher for higher gas velocities suggesting the presence of mass transfer limitations at lower velocities. Presence of oxygen in the feed inhibited the NO decomposition. Having water vapor in the feed did not significantly affect the catalyst activity for catalysts pretreated at 373 K, but significantly reduced catalyst activity for catalysts pretreated at 900 K. Long-term deactivation studies indicated that the catalyst deactivated slowly both with and without the presence of added oxygen in the feed, Deactivation started later in the presence of oxygen. The activities of the catalysts investigated were too low below 1000 K for commercial applications. Their selectivity towards N{sub 2} was good at temperatures above 700 K. A different method for catalyst preparation is needed to improve the catalyst performance.

  7. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23T23:59:59.000Z

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  8. Ceramic wash-coat for catalyst support

    SciTech Connect (OSTI)

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14T23:59:59.000Z

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al2O3-0-3 wt % La2O3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO2), zirconia silicate (2-30 wt % ZrSiO4), neodymium oxide (0-4 wt %), titania (Al2O3-3-40% TiO2) or alumina-based magnesium aluminate spinel (Al2O3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  9. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peña Doll, Mateo

    2014-01-01T23:59:59.000Z

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  10. How ISO-Standards Affect Graphic-Arts Work

    E-Print Network [OSTI]

    Zanibbi, Richard

    How ISO-Standards Affect Graphic-Arts Work Andreas Kraushaar Head, Prepress Division Fogra Munich, Germany 4pm, Wed., Jan. 10, 2007 Auditorium of the Center for Imaging Science ISO TC 130 (graphic. Important standards with respect to the printing industry such as the ISO 2846 and ISO 12647-X

  11. Poster Printing Instructions As specified on our website,

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Services with your saved presentation on a flash drive. Thereafter, you and Media Services will discuss to print an accurate account of your work, this must be saved both as a PDF and JPEG file. How to save as a PDF: -Open document -Once the document has been saved as a PDF (not PPT), How to save as a JPEG

  12. COPLANAR DIGITAL MICROFLUIDICS USING STANDARD PRINTED CIRCUIT BOARD PROCESSES

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    COPLANAR DIGITAL MICROFLUIDICS USING STANDARD PRINTED CIRCUIT BOARD PROCESSES P.Y. Paik1 , V circuit board (PCB) and 3. Transport and mixing in an "open" microfluidic substrate. Similar to "soft-flow microfluidics, this work allows researchers to easily experiment with discrete-flow microfluidics (digital

  13. Staging Display in the Sculptural Work of Yinka Shonibare MBE

    E-Print Network [OSTI]

    Wilder, Courtney Tanner

    2011-01-01T23:59:59.000Z

    life-size mannequins, Dutch wax printed cotton, accessories.life-size mannequins, Dutch wax printed cotton, accessories.life-size mannequins, Dutch wax printed cotton, accessories.

  14. Demetallization of asphaltenes: Thermal and catalytic effects with small-pore catalysts

    SciTech Connect (OSTI)

    Adarme, R. (Oklahoma State Univ., Stillwater, OK (United States)); Sughrue, E.L.; Johnson, M.M.; Kidd, D.R.; Phillips, M.D.; Shaw, J.E. (Phillips Petroleum Co., Bartlesville, OK (United States))

    1990-08-01T23:59:59.000Z

    Residual oil hydrotreating has become an important front end process in commercial oil upgrading schemes because of tighter environmental regulations and a continuing trend toward processing heavier crudes. At Phillips Petroleum, residual oil hydrotreating pretreates feed for heavy oil cracking (HOC) by removing sulfur, a pollutant in the HOC stack gas, and metals such as nickel and vanadium, which adversely affect the cracking catalyst and gasoline yield in the HOC. Metals in residual oil are found almost exclusively in the resin and asphaltene fractions. Research has showed that metals in the resin fraction react more rapidly than metals in the asphaltene fraction. The hydrodemetallization (HDM) reaction is known to be diffusion limited and the larger molecular size of the asphaltene molecules may explain the slower reaction rates. Richardson and Alley and Asaoka, et al. have shown a reduction in asphaltene molecular weights with thermal and catalytic processing. Reynolds and Biggs demonstrated shifts in vanadium size distributions from thermally and catalytically treated residual. Recently Savage and Javanmaridian showed theoretically that reduction in molecular sizes external to catalyst pellets increases the reaction rate by as much as the inverse of the effectiveness factor. This work attempts to extend information on how metals are removed from asphaltenes and the interaction with small-pore catalysts generally found at the back end of residual oil hydrotreaters, where they are protected from deactivation by metal deposition. The small-pore catalysts are generally high in hydrodesulfurization (HDS) activity and generally restrict the large asphaltene molecules from entering their pores and depositing metals.

  15. Intense pulsed light sintering of copper nanoink for printed electronics

    E-Print Network [OSTI]

    Kim, Hak-Sung; Dhage, Sanjay R.; Shim, Dong-Eun; Hahn, H. Thomas

    2009-01-01T23:59:59.000Z

    copper nanoink for printed electronics Hak-Sung Kim · Sanjay1 Introduction Printed electronics techniques such as inkjetcomponents of printed electronics are conducting lines and ?

  16. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Thomas K. Gale

    2006-06-30T23:59:59.000Z

    Catalysis is the key fundamental ingredient to convert elemental mercury in coal-fired power stations into its oxidized forms that are more easily captured by sorbents, ESPs, baghouses, and wet scrubbers, whether the catalyst be unburned carbon (UBC) in the ash or vanadium pentoxide in SCR catalysts. This project has investigated several different types of catalysts that enhance mercury oxidation in several different ways. The stated objective of this project in the Statement of Objectives included testing duct-injection catalysts, catalyst-sorbent hybrids, and coated low-pressure-drop screens. Several different types of catalysts were considered for duct injection, including different forms of iron and carbon. Duct-injection catalysts would have to be inexpensive catalysts, as they would not be recycled. Iron and calcium had been shown to catalyze mercury oxidation in published bench-scale tests. However, as determined from results of an on-going EPRI/EPA project at Southern Research, while iron and calcium did catalyze mercury oxidation, the activity of these catalysts was orders of magnitude below that of carbon and had little impact in the short residence times available for duct-injected catalysts or catalyst-sorbent hybrids. In fact, the only catalyst found to be effective enough for duct injection was carbon, which is also used to capture mercury and remove it from the flue gas. It was discovered that carbon itself is an effective catalyst-sorbent hybrid. Bench-scale carbon-catalyst tests were conducted, to obtain kinetic rates of mercury adsorption (a key step in the catalytic oxidation of mercury by carbon) for different forms of carbon. All carbon types investigated behaved in a similar manner with respect to mercury sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at adsorbing mercury than carbon black and unburned carbon (UBC), because their internal surface area of activated carbon was greater. Catalyst coating of low-pressure-drop screens was of particular interest as this project was being developed. However, it was discovered that URS was already heavily involved in the pursuit of this same technology, being funded by DOE, and reporting significant success. Hence, testing of SCR catalysts became a major focus of the project. Three different commercial SCR catalysts were examined for their ability to oxidize mercury in simulated flue-gas. Similar performance was observed from each of the three commercial catalysts, both in terms of mercury oxidation and SO{sub 3} generation. Ammonia injection hindered mercury oxidation at low HCl concentrations (i.e., {approx}2 ppmv), yet had little impact on mercury oxidation at higher HCl concentrations. On the other hand, SO{sub 2} oxidation was significantly reduced by the presence of ammonia at both low and high concentrations of HCl.

  17. FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS

    E-Print Network [OSTI]

    , and gasification reactions. Our fixed-bed experiments showed that the carbohydrate-derived fraction of poplar-fluidizable (fixed-bed) commercial catalysts.1 These multicomponent catalysts, which generally contain Ni, K, Ca-Chemie manufactured the fixed-bed catalyst from which the ground and sieved catalyst was made. This material consisted

  18. ORIGINAL ARTICLES Silica-Supported AuNi Catalysts for the Dehydrogenation

    E-Print Network [OSTI]

    Goodman, Wayne

    . The dehydrogenation of propane to propylene was observed on the Au­Ni bime- tallic catalysts, whereas only hydrogenolysis products were observed on the monometallic Ni catalyst. The selectivity to propylene was found catalysts. Keywords Bimetallic catalyst Á Nickel Á Gold Á Dehydrogenation of propane Á Propylene 1

  19. Z. B. He et al., Nickel catalyst shape Etchant-induced shaping of nanoparticle

    E-Print Network [OSTI]

    Boyer, Edmond

    Z. B. He et al., Nickel catalyst shape - 1 - Etchant-induced shaping of nanoparticle catalysts al., Nickel catalyst shape - 2 - Abstract Carbon nanofibres (CNFs) obtained by plasma-00525194,version1-11Oct2010 #12;Z. B. He et al., Nickel catalyst shape - 3 - 1 Introduction Vertically

  20. FischerTropsch synthesis on a model Co/SiO2 catalyst , Zhoujun Wang a

    E-Print Network [OSTI]

    Goodman, Wayne

    Fischer­Tropsch synthesis on a model Co/SiO2 catalyst Zhen Yan a , Zhoujun Wang a , Dragomir B Keywords: Model catalyst Cobalt catalyst Silica Fischer­Tropsch synthesis a b s t r a c t A model Co/SiO2 catalyst was prepared by depositing cobalt on silica films in ultrahigh vacuum condi- tions. Fischer­Tropsch

  1. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    K. Jothimurugesan; James G. Goodwin, Jr.; Santosh K. Gangwal

    1999-10-01T23:59:59.000Z

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of FeFT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction.

  2. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

    2000-08-08T23:59:59.000Z

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  3. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31T23:59:59.000Z

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  4. Design and development of an automated three axis machine that prints images on top of the foam of certain beverages

    E-Print Network [OSTI]

    Richardson, Jeremy S. H

    2009-01-01T23:59:59.000Z

    The goal of this research was to design and develop a working alpha prototype of the flagship product for a local startup called Onlatte, Inc. OnLatte specializes in automated printing of images on top of the foam of ...

  5. Pennsylvania Company Develops Solar Cell Printing Technology

    Broader source: Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  6. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    4 Inkjet Printed Electronics Using Copper Nanoparticle29 Inkjet Printed Electronics For Multifunctional Compositenanocrystals toward printed electronics,” Nanotechnology,

  7. Octahedral molecular sieve sorbents and catalysts

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20T23:59:59.000Z

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  8. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27T23:59:59.000Z

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  9. Method of making metal-polymer composite catalysts

    DOE Patents [OSTI]

    Zelena, Piotr (Los Alamos, NM); Bashyam, Rajesh (Los Alamos, NM)

    2009-06-23T23:59:59.000Z

    A metal-polymer-carbon composite catalyst for use as a cathode electrocatalyst in fuel cells. The catalyst includes a heteroatomic polymer; a transition metal linked to the heteroatomic polymer by one of nitrogen, sulfur, and phosphorus, and a recast ionomer dispersed throughout the heteroatomic polymer-carbon composite. The method includes forming a heteroatomic polymer-carbon composite and loading the transition metal onto the composite. The invention also provides a method of making a membrane electrode assembly for a fuel cell that includes the metal-polymer-carbon composite catalyst.

  10. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOE Patents [OSTI]

    Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

    2009-11-10T23:59:59.000Z

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  11. In Situ XAS of Ni-W Hydrocracking Catalysts

    SciTech Connect (OSTI)

    Yang, N. [Argonne National Laboratory, Argonne, IL 60439 (United States); Mickelson, G. E.; Greenlay, N.; Bare, Simon R. [UOP LLC, Des Plaines, IL 60016 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, IL 60440 (United States)

    2007-02-02T23:59:59.000Z

    Ni-W based catalysts are very attractive in hydrotreating of heavy oil due to their high hydrogenation activity. In the present research, two catalyst samples, prepared by different methods, that exhibit significant differences in activity were sulfided in situ, and the local structure of the Ni and W were studied using X-ray absorption spectroscopy (XAS). The Ni XANES spectra were analyzed using a linear component fitting, and the EXAFS spectra of the WS2 platelets in the sulfided catalysts were modeled. The Ni and W are fully sulfided in the higher activity sample, and there are both unsulfided Ni ({approx}25%) and W (<10%) in the lower activity sample.

  12. A review of "Print Culture and the Early Quakers." by Kate Peters

    E-Print Network [OSTI]

    Susanna Calkins

    2006-01-01T23:59:59.000Z

    previously established bound- aries. Kate Peters. Print Culture and the Early Quakers. Cambridge: Cambridge University Press, 2005. xiii + 273 pp. $75.00. Review by SUSANNA CALKINS, NORTHWESTERN UNIVERSITY. By expressing their ideas in print, Quaker... and sustained the growing movement. Such is the premise of Kate Peters in her assiduous and well-researched study of several thousand Quaker tracts published in the early 1650s. Peters divides her work into three parts. In the first section, she focuses...

  13. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17T23:59:59.000Z

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  14. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, Alan H. (Marshall Township, Allegheny County, PA); Oukaci, Rachid (Allison Park, PA); Goodwin, James G. (Cranberry Township, PA)

    1999-01-01T23:59:59.000Z

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  15. Development of Ultra-low Platinum Alloy Cathode Catalyst for...

    Energy Savers [EERE]

    Alloy Cathode Catalyst for PEM Fuel Cells These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. 7uscpopov.pdf More Documents &...

  16. Catalyst Paper No-Carb Strategy for GHG Reduction

    E-Print Network [OSTI]

    McClain, C.; Robinson, J.

    2008-01-01T23:59:59.000Z

    The Catalyst Paper strategy to manage GHG exposure is a combination of energy reduction initiatives in manufacturing and the effective use of biomass and alternative fuels to produce mill steam and electricity from the powerhouse. The energy...

  17. Proposals for Non-PGM Catalyst Target and Test Protocols

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Tech Team Proposals for Non-PGM catalyst target and test protocols FCTT (USCAR) Shinichi Hirano (co-chair), Tarek Abdel-Baset, Balsu Lakshmanan, David Masten, Mark...

  18. Process studies with a promoted transition metal-zeolite catalyst

    SciTech Connect (OSTI)

    Pennline, H.W.; Gormley, R.J.; Schehl, R.R.

    1984-09-01T23:59:59.000Z

    The conversion of synthesis gas to gasoline-range hydrocarbons was investigated with a cobalt-thoria-zeolite catalyst. The coprecipitated transition metal and promoter were intimately mixed with ZSM-5 zeolite and then extruded with an alumina binder. Tests were conducted in a gradientless reactor, where initial results of high yields of gasoline-range hydrocarbons with a low ratio synthesis gas led to an extensive study of the catalyst. The effects of support, temperature (220-320C), pressure (1.14-2.17 MPa), and feed gas composition (1H2/1CO-3H2/1CO) on catalyst activity, stability, and product selectivity are discussed. Analyses of the deactivated bifunctional catalyst are also reported.

  19. Synthesis gas conversion with a transition metal-zeolite catalyst

    SciTech Connect (OSTI)

    Pennline, H.W.; Rao, V.U.S.; Gormley, R.J.; Schehl, R.R.

    1983-01-01T23:59:59.000Z

    A study on the reactions of carbon monoxide and hydrogen on zeolite catalysts with cobalt and thorium was presented. The zeolite catalyst used was ZSM-5 with a Si/Al ratio of 30 and 12.5 wt % cobalt and 1.2 wt % thoria. Reaction parameters ranged from a temperature of 260/sup 0/C to 320/sup 0/C, space velocities of 1000 and 4000 1/h, and a pressure of 300 psig. A table of reaction products was presented. Reactions were also run with catalysts with no thorium and catalysts with differing calcination temperatures. In general, as a higher optimum temperature for the catalytic activity of the zeolite component is approached, a high fraction of aromatics is formed in the liquid products. Also, the effect of the addition of thorium is to increase olefin production and to increase the amount of liquid hydrocarbon formation.

  20. ALKYNE METATHESIS CATALYSTS: SCOPE AND FUTURE. Andr Mortreux*, Olivier Coutelier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .1. Heterogeneous catalysts Following their discovery related to the Triolefin Process using molybdenum carbonyl metathesis in 1968, applying tungsten oxide on silica at 350°C for pent-2-yne metathesis with a 55

  1. Catalysts and materials development for fuel cell power generation

    E-Print Network [OSTI]

    Weiss, Steven E

    2005-01-01T23:59:59.000Z

    Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

  2. Nanocomposite catalysts for soot combustion and propane steam reforming

    E-Print Network [OSTI]

    He, Hong, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    A nanocomposite system, CuO-Ag/CeO 2, has been successfully developed to complete carbon black combustion by 400*C. This novel catalyst has excellent potential for application in the emission control of soot particulates ...

  3. Deactivation Mechanisms of Pt/Pd-based Diesel Oxidation Catalysts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oh, DB Brown, DH Kim, JH Lee, and CHF Peden.2012."Deactivation Mechanisms of PtPd-based Diesel Oxidation Catalysts."Catalysis Today 184(1):197-204. doi:10.1016...

  4. Polyoxometalate water oxidation catalysts and methods of use thereof

    DOE Patents [OSTI]

    Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan

    2014-09-02T23:59:59.000Z

    Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.

  5. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Rodriguez, Brandon A. (Evanston, IL); Delferro, Massimiliano (Chicago, IL)

    2012-08-07T23:59:59.000Z

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  6. Carbon Nanotube Growth Using Ni Catalyst in Different Layouts

    E-Print Network [OSTI]

    Nguyen, H. Q.

    Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates ...

  7. Catalytic studies of supported Pd-Au catalysts 

    E-Print Network [OSTI]

    Boopalachandran, Praveenkumar

    2006-08-16T23:59:59.000Z

    Although Pd-Au high-surface area catalysts are used in industry to improve activity and selectivity, a thorough understanding of the nature of these enhancements is lacking. A molecular-level understanding of catalytic ...

  8. Down-flow moving-bed gasifier with catalyst recycle

    DOE Patents [OSTI]

    Halow, John S. (Waynesburg, PA)

    1999-01-01T23:59:59.000Z

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

  9. Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts

    Broader source: Energy.gov (indexed) [DOE]

    Alliance for Sustainable Energy, LLC Approach * Aged catalysts from a Ford F250 with biodiesel fuel containing Na, K and Ca. * Emissions measurement conducted after 150,000 miles...

  10. Pt-free, Perovskite-based Lean NOx Trap Catalysts

    Broader source: Energy.gov (indexed) [DOE]

    SV50,000 h -1 , ramp rate 10 Cmin, catalyst degreened at 700 o C for 2.5 hrs Absorption Desorption 2010 DEER Conference -20 80 180 280 380 480 580 680 780 2000 2050 2100...

  11. Down-flow moving-bed gasifier with catalyst recycle

    DOE Patents [OSTI]

    Halow, J.S.

    1999-04-20T23:59:59.000Z

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction. 1 fig.

  12. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to &83 3.3At DOE Working At

  13. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to &83 3.3At DOE Working

  14. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWork & Life

  15. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    SciTech Connect (OSTI)

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T. (Chemical Sciences and Engineering Division); ( ES)

    2012-08-27T23:59:59.000Z

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The products recovered from both the ALD and other processes were water-white (even those from the low temperature, low residence time (high space velocity), low conversion runs). These results indicate that highly upgraded recycle lube oils can be produced using ALD-deposited active metal catalysts. The use of H{sup 1} and C{sup 13} NMR for the characterization of the treated lube oils has been shown to be effective.

  16. E-print Network: Research Communications for Scientists and Engineers

    Office of Scientific and Technical Information (OSTI)

    E-print Web Log E-print Network E-print Network About Search Browse by Discipline Find Scientific Societies Receive E-print Alerts Contact Us Help Home Site Map OSTI DOE For...

  17. Slurry Phase Iron Catalysts for Indirect Coal Liquefaction

    SciTech Connect (OSTI)

    Abhaya K. Datye

    1998-09-10T23:59:59.000Z

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, we have studied the attrition behavior of Iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for the conversion of coal-derived synthesis gas into liquid fuels.

  18. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman

    2005-11-30T23:59:59.000Z

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  19. Catalyst for selective NO.sub.x reduction using hydrocarbons

    DOE Patents [OSTI]

    Marshall, Christopher L. (Naperville, IL); Neylon, Michael K. (Naperville, IL)

    2007-05-22T23:59:59.000Z

    A two phase catalyst is disclosed with one or more transition metals such as Cu, Co, Fe, Ag and Mo supported on a molecular sieve having a pore size not greater than 8 .ANG. along with a stabilizing oxide of one or more of the oxides of Zr, Mo, V, Nb or the rare earths coating the molecular sieve. A method of preparing the two phase catalyst and using same to remediate NO.sub.x in combustion gases is also described.

  20. The selective hydrogenation of crotonaldehyde over bimetallic catalysts

    SciTech Connect (OSTI)

    Schoeb, A.M.

    1997-02-01T23:59:59.000Z

    The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO{sub 2} catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO{sub 2} system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, {sup 1}H NMR and microcalorimetry. The Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO{sub 2} catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO{sub 2} catalysts for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO{sub 2}, Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts produced only butyraldehyde. Initial heats of adsorption ({approximately}90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the {sup 1}H NMR Knight shift.

  1. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, Douglas C. (Richland, WA); Sealock, John L. (West Richland, WA)

    1998-01-01T23:59:59.000Z

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  2. Carbo-metallic oil-conversion process and catalysts

    SciTech Connect (OSTI)

    Hettinger, W.P.; Beck, W.

    1989-10-31T23:59:59.000Z

    This patent describes a continuous process for cracking of a residual hydrocarbon feedstock into lower molecular weight hydrocarbon transportation fuels. The cracking being carried out in the presence of a catalyst having catalyst parameters comprising porosity, metals content, rare earth content, and zeolite content. The residual hydrocarbon feedstock comprising metal contaminants, fractions boiling above 1025{degrees}F. comprising asphaltenes, polynuclear aromatics, naphthenes and prophyrins.

  3. CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman; Heock-Hoi Kwon; James G. C. Shen; Qisheng Ma; Robert A. Hunsicker; Andrew P. Butler; Scott J. Bollinger

    2003-03-01T23:59:59.000Z

    A tungstena-zirconia (WZ) catalyst has been investigated for coupling methanol and isobutanol to unsymmetrical ethers, i.e. methyl isobutyl ether (MIBE) and compared with earlier studied sulfated-zirconia (SZ) and Nafion-H catalysts. In all cases, the ether synthesis mechanism is a dual site S{sub N}2 process involving competitive adsorption of reactants on proximal acid sites. At low reaction temperatures, methylisobutylether (MIBE) is the predominant product. However, at temperatures >135 C the WZ catalyst is very good for dehydration of isobutanol to isobutene. The surface acid sites of the WZ catalyst and a Nafion-H catalyst were diagnosed by high resolution X-ray photoelectron spectroscopy (XPS) of N 1s shifts after adsorption of amines. Using pyridine, ethylenediamine, and triethylamine, it is shown that WZ has heterogeneous strong Broensted acid sites. Theoretical study located the transition state of the alcohol coupling reaction on proximal Broensted acid sites and accounted well for XPS core-level shifts upon surface acid-base interactions. While computations have not been carried out with WZ, it is shown that the SZ catalyst is a slightly stronger acid than CF{sub 3}SO{sub 3}H (a model for Nafion-H) by 1.3-1.4 kcal/mol. A novel sulfated zirconia catalyst having proximal strong Broensted acid sites was synthesized and shown to have significantly enhanced activity and high selectivity in producing MIBE or isobutene from methanol/isobutanol mixtures. The catalyst was prepared by anchoring 1,2-ethanediol bis(hydrogen sulfate) salt precursor onto zirconium hydroxide, followed by calcination to remove the -(CH{sub 2}CH{sub 2})- bridging residues.

  4. Interdependency of Subsurface Carbon Distribution and Graphene-Catalyst Interaction

    E-Print Network [OSTI]

    Weatherup, Robert S.; Amara, Hakim; Blume, Raoul; Dlubak, Bruno; Bayer, Bernhard C.; Diarra, Mamadou; Bahri, Mounib; Cabrero-Vilatela, Andrea; Caneva, Sabina; Kidambi, Piran R.; Martin, Marie-Blandine; Deranlot, Cyrile; Seneor, Pierre; Schloegl, Robert; Ducastelle, François; Bichara, Christophe; Hofmann, Stephan

    2014-09-04T23:59:59.000Z

    Interdependency of Subsurface Carbon Distribution and Graphene? Catalyst Interaction Robert S. Weatherup,*,† Hakim Amara,‡ Raoul Blume,§ Bruno Dlubak,?,? Bernhard C. Bayer,† Mamadou Diarra,?,# Mounib Bahri,‡ Andrea Cabrero-Vilatela,† Sabina Caneva... , France * S Supporting Information ABSTRACT: The dynamics of the graphene?catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth- resolved X-ray photoelectron spectroscopy, and complementary grand canonical...

  5. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    SciTech Connect (OSTI)

    Abhaya K. Datye

    1998-11-19T23:59:59.000Z

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  6. Method of forming supported doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-04-22T23:59:59.000Z

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  7. Activation studies with promoted precipitated iron Fischer-Tropsch catalysts

    E-Print Network [OSTI]

    Manne, Rama Krishna

    1991-01-01T23:59:59.000Z

    ACTIVATION STUDIES WITH PROMOTED PRECIPITATED IRON FISCHER ? TROPSCH CATALYSTS A Thesis by RAMA KRISHNA MANNE Submitted to the Oflice of Graduate Studies of Texas A@M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1991 Major Subject: Chemical Engineering ACTIVATION STUDIES WITH PROMOTED PRECIPITATED IRON FISCHER ? TROPSCH CATALYSTS A Thesis by RAMA KRISHNA MANNE Approved as to style and content by: Dragomir B. Bukur (Charr...

  8. Decomposition of Perfluorocompounds on Alumina-Based Catalyst

    SciTech Connect (OSTI)

    Kanno, Shuichi; Tamata, Shin; Kurokawa, Hideaki

    2004-03-31T23:59:59.000Z

    The control of the atmospheric release of PFCs (perfluorocompounds) is an important environmental problem worldwide. PFCs are powerful greenhouse gases used by the semiconductor and liquid crystal industries as etching and cleaning agents. We developed a catalyst that decomposes PFCs with only water. Al2O3 was selected from the survey of some single metal-oxide catalysts. Addition of another metal-oxide improved the decomposition ratio and durability. The Al2O3-based catalyst decomposed CF4, C2F6, C3F8, C4F8, NF3 and SF6 by more than 99% at 750 degrees Celsius. Furthermore, our catalyst retained a high decomposition ratio as demonstrated by a continuous run for about 4000 hours at 700-750 degrees Celsius. The influence of chlorine as an impurity with regard to the SF6 decomposition ratio on the catalyst was examined. SF6 was decomposed at more than 99% during 8 hours in the presence of 400 ppm chlorine. Chlorine concentration in the outlet gas was less than TLV. No chlorine compounds were found by X-ray diffraction analysis of the used catalyst. That is, the hydrogenation of chlorine did not inhibit the surface catalytic reaction for PFC. Also, CF4 was decomposed at the condition of 1.4% of high concentration. The conversion remained higher than 99% throughout during a durability test. Furthermore, we investigated a large-scale decomposition system in the paper.

  9. Investigation of Mixed Oxide Catalysts for NO Oxidation

    SciTech Connect (OSTI)

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09T23:59:59.000Z

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  10. Separation of catalyst from Fischer-Tropsch slurry

    DOE Patents [OSTI]

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-10-27T23:59:59.000Z

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

  11. Separation of catalyst from Fischer-Tropsch slurry

    DOE Patents [OSTI]

    White, Curt M. (Pittsburgh, PA); Quiring, Michael S. (Katy, TX); Jensen, Karen L. (Pittsburgh, PA); Hickey, Richard F. (Bethel Park, PA); Gillham, Larry D. (Bartlesville, OK)

    1998-10-27T23:59:59.000Z

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

  12. ATTACHMENT IX Review of Air Products Fischer-Tropsch Synthesis Work

    E-Print Network [OSTI]

    Kentucky, University of

    IX.1-Draft ATTACHMENT IX Review of Air Products Fischer-Tropsch Synthesis Work During the 1980s, Air Products & Chemicals worked on several aspects of the Fischer-Tropsch synthesis. These included the development of novel Fischer-Tropsch slurry catalysts and process concepts, the design of a Fischer-Tropsch

  13. OVERVIEW OF FISCHER-TROPSCH SYNTHESIS WITH COBALT CATALYSTS This review of the use of cobalt catalysts for the Fischer-Tropsch synthesis

    E-Print Network [OSTI]

    Kentucky, University of

    1-Draft OVERVIEW OF FISCHER-TROPSCH SYNTHESIS WITH COBALT CATALYSTS SUMMARY This review of the use of cobalt catalysts for the Fischer-Tropsch synthesis emphasizes results of the past thirty years for cobalt catalyst for the Fischer-Tropsch synthesis. It was demonstrated that the presence of copper, up

  14. Fermilab at Work | Work Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:Job Opportunities JoinWork Resources

  15. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process

    DOE Patents [OSTI]

    Peng, Xiang-Dong (Allentown, PA); Parris, Gene E. (Coopersburg, PA); Toseland, Bernard A. (Allentown, PA); Battavio, Paula J. (Allentown, PA)

    1998-01-01T23:59:59.000Z

    The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

  16. 3D Printing Prof. Hank Dietz

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer #12;3D With Glue Layers of paper: printed with glue & cut Layers of powder: printed with glue Can also be printed in full color #12;3D Extrusion (RepRaps) FDM: Fused Deposition Modeling FFF: Fused

  17. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.

    1990-05-15T23:59:59.000Z

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  18. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    DOE Patents [OSTI]

    Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946)

    1990-01-01T23:59:59.000Z

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  19. This document is produced by the University Print Management Team

    E-Print Network [OSTI]

    Li, Yi

    University Print Management Team. A Guide To Best Practice Printing #12;This document is produced by the University Print Management Team (UPMT) to raise awareness of printing on campus, and to demonstrate how we managing the print process to reduce cost, waste and to improve the functionality and availability of print

  20. DEVELOPMENT OF A NOVEL CATALYST FOR NO DECOMPOSITION

    SciTech Connect (OSTI)

    Ates Akyurtlu; Jale F. Akyurtlu

    2005-09-29T23:59:59.000Z

    Air pollution arising from the emission of nitrogen oxides as a result of combustion taking place in boilers, furnaces and engines, has increasingly been recognized as a problem. New methods to remove NOx emissions significantly and economically must be developed. The current technology for post-combustion removal of NO is the selective catalytic reduction (SCR) of NO by ammonia or possibly by a hydrocarbon such as methane. The catalytic decomposition of NO to give N{sub 2} will be preferable to the SCR process because it will eliminate the costs and operating problems associated with the use of an external reducing species. The most promising decomposition catalysts are transition metal (especially copper)-exchanged zeolites, perovskites, and noble metals supported on metal oxides such as alumina, silica, and ceria. The main shortcoming of the noble metal reducible oxide (NMRO) catalysts is that they are prone to deactivation by oxygen. It has been reported that catalysts containing tin oxide show oxygen adsorption behavior that may involve hydroxyl groups attached to the tin oxide. This is different than that observed with other noble metal-metal oxide combinations, which have the oxygen adsorbing on the noble metal and subsequently spilling over to the metal oxide. This observation leads one to believe that the Pt/SnO{sub 2} catalysts may have a potential as NO decomposition catalysts in the presence of oxygen. This prediction is also supported by some preliminary data obtained for NO decomposition on a Pt/SnO{sub 2} catalyst in the PI's laboratory. The main objective of the proposed research is the evaluation of the Pt/SnO{sub 2} catalysts for the decomposition of NO in simulated power plant stack gases with particular attention to the resistance to deactivation by O{sub 2}, CO{sub 2}, and elevated temperatures. Therefore, it is proposed to perform temperature programmed desorption (TPD) and temperature programmed reaction (TPRx) studies on Pt/SnO{sub 2} catalysts having different noble metal concentrations and pretreated under different conditions. It is also proposed to perform NO decomposition tests in a laboratory-size packed-bed reactor to obtain long-term deactivation data. In the previous reporting period some TPRx runs with the catalysts containing 15% and 10% Pt were repeated due to the uncertainty of the oxygen content of the feed. In this reporting period runs were made with feed gas mixtures containing water vapor. Two reaction regimes, one below and the other above 750 K were observed. Presence of water vapor slightly enhanced the catalyst activity, but decreased the selectivity towards N{sub 2} at low temperatures.

  1. alteration print gap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elihu, David Morad 2006-01-01 2 Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas Computer Technologies and Information Sciences Websites Summary:...

  2. Transition metal-free olefin polymerization catalyst

    DOE Patents [OSTI]

    Sen, Ayusman (State College, PA); Wojcinski, II, Louis M. (State College, PA); Liu, Shengsheng (State College, PA)

    2001-01-01T23:59:59.000Z

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  3. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01T23:59:59.000Z

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  4. Methods of producing epoxides from alkenes using a two-component catalyst system

    DOE Patents [OSTI]

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09T23:59:59.000Z

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  5. E-print Network : User Account

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with Jefferson LabDyneinestimatesE-print Network

  6. E-print Network : User Account

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with Jefferson LabDyneinestimatesE-print Network New

  7. E-print Network : Your Selections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with Jefferson LabDyneinestimatesE-print Network New

  8. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOE Patents [OSTI]

    Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.

    1987-12-29T23:59:59.000Z

    A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.

  9. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOE Patents [OSTI]

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Cranberry Township, PA)

    2001-01-01T23:59:59.000Z

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous solution effective for increasing the attrition resistance of the .gamma.-alumina.

  10. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruijun, Hou [Tsinghua Univ., Beijing (China). Beijing Key Lab. of Green Chemical Reaction Engineering and Technology; Columbia Univ., New York, NY (United States); Chen, Jingguang G. [Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Chang, Kuan [Tsinghua Univ., Beijing (China). Beijing Key Lab. of Green Chemical Reaction Engineering and Technology; Wang, Tiefeng [Tsinghua Univ., Beijing (China). Beijing Key Lab. of Green Chemical Reaction Engineering and Technology

    2015-04-01T23:59:59.000Z

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  11. Integrated process and dual-function catalyst for olefin epoxidation

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Rueter, Michael (Plymouth Meeting, PA)

    2003-01-01T23:59:59.000Z

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  12. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-04-01T23:59:59.000Z

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore »modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  13. Bifunctional Nanostructured Base Catalysts: Opportunities for BioFuels

    SciTech Connect (OSTI)

    Connor, William

    2010-12-30T23:59:59.000Z

    ABSTRACT This research studied and develop novel basic catalysts for production of renewable chemicals and fuels from biomass. We will focus on the development of unique porous structural-base catalysts formed by two techniques: from (mixed) metal-oxide bases and by nitrogen substitution for oxygen in zeolites. These catalysts will be compared to conventional solid base materials for aldol condensation, catalytic fast pyrolysis, and transesterification reactions. These reactions are important in processes that are currently being commercialized for production of fuels from biomass and will be pivotal in future biomass conversion to fuels and chemicals. Specifically, we have studied the aldol-condensation of acetone with furfural over oxides and zeolites, the conversion of sugars by rapid pyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our previous research has indicated that the base strength of framework nitrogen in nitrogen-substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  14. The development of precipitated iron catalysts with improved stability

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. This report covers testing an iron catalyst. During the last quarter, a new precipitated iron catalyst was prepared and tested in the slurry autoclave reactor at various conditions. This catalyst did not noticeably deactivate during 1250 hours of testing. This quarter, the test was extended to include performance evaluations at different conversion levels ranging from 35 to 88% at 265 and 275{degree}C. The conversion levels were varied by changing the feed rate. The catalytic performance at different conversion intervals was then integrated to approximately predict performance in a bubble column reactor. The run was shut down at the end of 1996 hours because of a 24-hour-power outage. When the power was back on, the run was restarted from room temperature. Catalytic performance during the first 300 hours after the restart-up was monitored. Overall product distributions are being tabulated as analytical laboratory data are obtained. 34 figs., 3 tabs.

  15. Method of making maximally dispersed heterogeneous catalysts

    DOE Patents [OSTI]

    Jennison, Dwight R. (Albuquerque, NM)

    2005-11-15T23:59:59.000Z

    A method of making a catalyst with monolayer or sub-monolayer metal by controlling the wetting characteristics on the support surface and increasing the adhesion between the catalytic metal and an oxide layer. There are two methods that have been demonstrated by experiment and supported by theory. In the first method, which is useful for noble metals as well as others, a negatively-charged species is introduced to the surface of a support in sub-ML coverage. The layer-by-layer growth of metal deposited onto the oxide surface is promoted because the adhesion strength of the metal-oxide interface is increased. This method can also be used to achieve nanoislands of metal upon sub-ML deposition. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface. Thus the negatively-charged species serve as anchors for the metal. In the second method, a chemical reaction that occurs when most metals are deposited on a fully hydroxylated oxide surface is used to create cationic metal species that bind strongly both to the substrate and to metallic metal atoms. These are incorporated into the top layer of the substrate and bind strongly both to the substrate and to metallic metal atoms. In this case, these oxidized metal atoms serve as the anchors. Here, as in the previous method, nanoislands of catalytic metal can be achieved to increase catalytic activity, or monolayers or bilayers of reactive metal can also be made.

  16. INTERNSHIP AGREEMENT (Please Print)

    E-Print Network [OSTI]

    Bogaerts, Steven

    Rev. 5/12 INTERNSHIP AGREEMENT (Please Print) STUDENT MUST HAVE A GPA OF 2.0+ AND A MINIMUM OF 64 COMPLETED CREDIT HOURS TO REGISTER FOR AN INTERNSHIP. ALL INTERNSHIPS DONE FOR CREDIT ARE PASS/FAIL. A MAXIMUM OF 10 SEMESTER HOURS OF INTERNSHIP CREDIT IS POSSIBLE. THROUGH A COMBINATION OF INTERNSHIPS

  17. Proton management as a design principle for hydrogenase-inspired catalysts

    SciTech Connect (OSTI)

    Small, Yolanda A.; DuBois, Daniel L.; Fujita, Etsuko; Muckerman, J. T.

    2011-06-01T23:59:59.000Z

    The properties of the hydrogenase-inspired [Ni(PNP)2]2+ (PNP ¼ Et2PCH2NMeCH2PEt2) catalyst for homogeneous hydrogen oxidation in acetonitrile solution are explored from a theoretical perspective for hydrogen production. The defining characteristic of this catalyst is the presence of pendent bases in the second coordination sphere that function as proton relays between the solution and the metal center. DFT calculations of the possible intermediates along proposed catalytic pathways are carried out and used to construct coupled Pourbaix diagrams of the redox processes and free-energy profiles along the reaction pathways. Analysis of the coupled Pourbaix diagrams reveals insights into the intermediate species and the mechanisms favored at different pH values of the solution. Consideration of the acid-base behavior of the metal hydride and H2 adduct species imposes additional constraints on the reaction mechanism, which can involve intramolecular as well as intermolecular proton-coupled electron-transfer steps. The efficacy of the catalyst is shown to depend critically on the pKa values of these potential intermediates, as they control both the species in solution at a given pH and the freeenergy profile of reaction pathways. Optimal relationships among these pKa values can be identified, and it is demonstrated that ‘‘proton management’’, i.e., the manipulation of these pKa values (e.g., through choice of metal or substituents on ligands), can serve as a design principle for improved catalytic behavior. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  18. Looking into the Atomic World of Fuel-Cell Catalysts | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the Atomic World of Fuel-Cell Catalysts Looking into the Atomic World of Fuel-Cell Catalysts Released: October 05, 2011 Making fuel cells practical for large-scale commercial...

  19. New York: EERE-Supported Catalyst Licensed for Use in Fuel Cell...

    Office of Environmental Management (EM)

    Supported Catalyst Licensed for Use in Fuel Cell Hybrid Advanced Vehicles New York: EERE-Supported Catalyst Licensed for Use in Fuel Cell Hybrid Advanced Vehicles January 24, 2014...

  20. A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts

    E-Print Network [OSTI]

    Tang, Hairong

    2005-01-01T23:59:59.000Z

    Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

  1. Development of a Durable Low-Temperature Urea-SCR Catalyst for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines Development of a Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines 2004 Diesel Engine Emissions Reduction (DEER)...

  2. Characterization of Cu-SSZ-13 NH3 SCR Catalysts: an in situ FTIR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cu-SSZ-13 NH3 SCR Catalysts: an in situ FTIR Study. Abstract: The adsorption of CO and NO over Cu-SSZ-13 zeolite catalysts, highly active in the selective...

  3. CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Supported RuAl2O3 Catalysts: Cluster Size Dependence of Product Selectivity. CO2 Reduction on Supported RuAl2O3 Catalysts: Cluster Size Dependence of Product...

  4. Nickel-Borate Oxygen-Evolving Catalyst that Functions under Benign Conditions

    E-Print Network [OSTI]

    Nocera, Daniel G.

    Thin catalyst films with electrocatalytic water oxidation properties similar to those of a recently reported Co-based catalyst can be electrodeposited from dilute Ni2+ solutions in borate electrolyte at pH 9.2 (Bi). The ...

  5. Design of graphene sheets-supported Pt catalyst layer in PEM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graphene sheets-supported Pt catalyst layer in PEM fuel cells. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Abstract: A series of cathodes using Pt...

  6. Development and Applications of Pd Catalysts for C-N Cross-Coupling Reactions

    E-Print Network [OSTI]

    Fors, Brett P

    2011-01-01T23:59:59.000Z

    Chapter 1 A procedure for forming a highly active Pd(0) catalyst from Pd(OAc) 2, water, and biarylphosphine ligands has been developed. This protocol generates a catalyst system, which exhibits excellent reactivity and ...

  7. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction. Abstract: Multiple catalytic functions...

  8. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report October 1 for Fischer Tropsch synthesis with a cobalt catalyst. There was an important increase in conversion due

  9. Spray drying and attrition behavior of iron catalysts for slurry phase Fischer-Tropsch synthesis

    E-Print Network [OSTI]

    Carreto Vazquez, Victor Hugo

    2004-11-15T23:59:59.000Z

    This thesis describes results of a study aimed at developing and evaluating attrition resistant iron catalysts prepared by spray drying technique. These catalysts are intended for Fischer-Tropsch (F-T) synthesis in a slurry bubble column reactor...

  10. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phasehydrodeoxy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of...

  11. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    synthesis from syngas over Rh-basedSiO2 catalysts: A combined experimental and theoretical modeling study. Ethanol synthesis from syngas over Rh-basedSiO2 catalysts: A combined...

  12. The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C2+ Oxygenates. The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C2+ Oxygenates....

  13. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam...

  14. CO/FTIR Spectroscopic Characterization of Pd/ZnO/Al2O3 Catalysts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COFTIR Spectroscopic Characterization of PdZnOAl2O3 Catalysts for Methanol Steam Reforming. COFTIR Spectroscopic Characterization of PdZnOAl2O3 Catalysts for Methanol Steam...

  15. au-pd bimetallic catalysts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Given a pure state transformation psimapstophi restricted to entanglement-assisted local operations with classical communication, we determine a lower bound for the...

  16. arc plasma-catalyst reformer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Private Insurance Market Renewable Energy Websites Summary: SUMMARY s national health care reform efforts go forward, it is instructive to review states' experience INTRODUCTION...

  17. Phenolate constrained geometry polymerization catalyst and method for preparing

    DOE Patents [OSTI]

    Marks, T.J.; Chen, Y.X.

    1999-01-05T23:59:59.000Z

    The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar{prime}R4(O)Ar{double_prime}R{prime}{sub 4}M(CH{sub 2}Ph){sub 2} where Ar{prime} is a phenyl or naphthyl group; Ar{double_prime} is a cyclopentadienyl or indenyl group, R and R{prime} are H or alkyl substituents (C{<=}10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a ``one-pot`` procedure. The catalyst, when combined with a cocatalyst such as Pb{sub 3}C{sup +}B(Ar{sub 3}{sup F}){sub 4}BAr{sub 3}{sup F} or methyl alumoxane where Ar{sup F} is a fluoroaryl group, is an effective catalyst for the polymerization of {alpha}-olefins such as ethylene, propylene and styrene. 1 fig.

  18. Phenolate constrained geometry polymerization catalyst and method for preparing

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Chicago, IL)

    1999-01-01T23:59:59.000Z

    The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar'R4(O)Ar"R'.sub.4 M(CH.sub.2 Ph).sub.2 where Ar' is a phenyl or naphthyl group; Ar" is a cyclopentadienyl or indenyl group, R and R' are H or alkyl substituents (C.ltoreq.10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a "one-pot" procedure. The catalyst, when combined with a cocatalyst such as Pb.sub.3 C.sup.+ B(Ar.sub.3.sup.F).sub.4 BAr.sub.3.sup.F or methyl alumoxane where Ar.sup.F is a fluoroaryl group, is an effective catalyst for the polymerization of .alpha.-olefins such as ethylene, propylene and styrene.

  19. Method for dispersing catalyst onto particulate material and product thereof

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  20. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14T23:59:59.000Z

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  1. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

    2012-03-13T23:59:59.000Z

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  2. Catalysts and process for hydrogenolysis of sugar alcohols to polyols

    DOE Patents [OSTI]

    Chopade, Shubham P. (East Lansing, MI) [East Lansing, MI; Miller, Dennis J. (Okemos, MI) [Okemos, MI; Jackson, James E. (Haslett, MI) [Haslett, MI; Werpy, Todd A. (West Richland, WA) [West Richland, WA; Frye, Jr., John G [Richland, WA; Zacher, Alan H. (Richland, WA) [Richland, WA

    2001-09-18T23:59:59.000Z

    The present invention provides a process for preparation of low molecular weight polyols from high molecular weight polyols in a hydrogenolysis reaction under elevated temperature and hydrogen pressure. The process comprises providing in a reaction mixture the polyols, a base, and a metal catalyst prepared by depositing a transition metal salt on an inert support, reducing the metal salt to the metal with hydrogen, and passivating the metal with oxygen, and wherein the catalyst is reduced with hydrogen prior to the reaction. In particular, the process provides for the preparation of glycerol, propylene glycol, and ethylene glycol from sugar alcohols such as sorbitol or xylitol. In a preferred process, the metal catalyst comprises ruthenium which is deposited on an alumina, titania, or carbon support, and the dispersion of the ruthenium on the support increases during the hydrogenolysis reaction.

  3. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)

    SciTech Connect (OSTI)

    Dinh, H.; Gennett, T.

    2010-06-11T23:59:59.000Z

    This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

  4. Quinone tailored selective oxidation of methane over palladium catalyst with molecular oxygen as an oxidantw

    E-Print Network [OSTI]

    Bao, Xinhe

    quinones such as 2-alkyl anthraquinone, together with Pd catalyst, are used for industrial production of H2

  5. Catalyst and process for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1987-01-01T23:59:59.000Z

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  6. Liquefaction of solid carbonaceous material with catalyst recycle

    DOE Patents [OSTI]

    Gupta, Avinash (Bloomfield, NJ); Greene, Marvin I. (Oradell, NJ)

    1992-01-01T23:59:59.000Z

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  7. Supported catalysts using nanoparticles as the support material

    DOE Patents [OSTI]

    Wong, Michael S. (Houston, TX); Wachs, Israel E. (Bethlehem, PA); Knowles, William V. (Pearland, TX)

    2010-11-02T23:59:59.000Z

    A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.

  8. Thermally Stable Ultra-Low Temperature Oxidation Catalysts

    SciTech Connect (OSTI)

    Szanyi, Janos; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.

    2014-12-09T23:59:59.000Z

    This annual reports describes recent results of a CRADA between General Motors Company (GM) and Battelle/Pacific Northwest National Laboratory (PNNL). In the CRADA, we are investigating a number of candidate low temperature oxidation catalysts as fresh materials, and after realistic laboratory- and engine-aging. These studies will lead to a better understanding of fundamental characteristics and various aging factors that impact the long-term performance of catalysts, while also providing an assessment of the appropriateness of the laboratory conditions in realistically reproducing the effects of actual engine aging conditions.

  9. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, D.C.; Sealock, J.L.

    1998-09-29T23:59:59.000Z

    A method of hydrogenation is described using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions. 2 figs.

  10. Continuous wasteless ecologically safe technology of propylenecarbonate production in presence of phthalocyanine catalysts

    DOE Patents [OSTI]

    Afanasiev, Vladimir Vasilievich (Moscow, RU); Zefirov, Nikolai Serafimovich (Moscow, RU); Zalepugin, Dmitry Yurievich (Moscow, RU); Polyakov, Victor Stanislavovich (Moscow, RU); Tilkunova,Nataliya Alexandrovna (Moscow, RU); Tomilova, Larisa Godvigovna (Moscow, RU)

    2009-09-08T23:59:59.000Z

    A continuous method of producing propylenecarbonate includes carboxylation of propylene oxide with carbon dioxide in presence of phthalocyanine catalyst on an inert carrier, using as the phthalocyanine catalyst at least one catalyst selected from the group consisting of not-substituted, methyl, ethyl, butyl, and tret butyl-substituted phthalocyanines of metals, including those containing counterions, and using as the carrier a hydrophobic carrier.

  11. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    E-Print Network [OSTI]

    Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes) was tested as a catalyst binder in a microbial fuel cell. 2012 Keywords: Microbial fuel cell Poly(dimethylsiloxane) Anti-flooding Catalyst binder a b s t r a c

  12. A novel "Kabuto-like" nickel catalyst forms bioactive frameworks from low-cost phenol derivatives

    E-Print Network [OSTI]

    Takahashi, Ryo

    1 A novel "Kabuto-like" nickel catalyst forms bioactive developed a new nickel catalyst with a "Kabuto-like" structure that was found to catalyze the cross nickel catalyst to catalyze the cross-coupling reaction between carbonyl compounds and phenol derivatives

  13. Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts

    SciTech Connect (OSTI)

    Bhatia, S.

    1993-12-07T23:59:59.000Z

    The thesis is divided into 3 parts: interaction of H with silica supported Ru catalysts (high pressure in situ NMR), in situ NMR study of H interaction with supported Ru-group IB bimetallic catalysts, and in-situ NMR study of H effects on silica-supported Pt, Rh and Ru catalysts.

  14. Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report

    E-Print Network [OSTI]

    Kentucky, University of

    Technology Development for Iron and Cobalt Fischer-Tropsch Catalysts Quarterly Report January1 composition of precipitated iron Fischer- Tropsch (FT) catalysts has been studied. Catalyst samples taken-edge and fine structure regions while increasing the carburization temperature up to 500 C. The Fischer-Tropsch

  15. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOE Patents [OSTI]

    Jothimurugesan, Kandaswamy (Ponca City, OK); Goodwin, Jr., James G. (Clemson, SC); Gangwal, Santosh K. (Cary, NC)

    2007-08-21T23:59:59.000Z

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  16. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    DOE Patents [OSTI]

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26T23:59:59.000Z

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  17. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor

    DOE Patents [OSTI]

    Dhooge, Patrick M. (Corrales, NM)

    1987-10-13T23:59:59.000Z

    A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

  18. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    SciTech Connect (OSTI)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30T23:59:59.000Z

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special interest is that the flux is highest at the start of each e

  19. The Role of a Dipeptide Outer-Coordination Sphere on H2 -Production Catalysts: Influence on Catalytic Rates and Electron Transfer

    SciTech Connect (OSTI)

    Reback, Matthew L.; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Jain, Avijita; Squier, Thomas C.; Raugei, Simone; Roberts, John A.; Shaw, Wendy J.

    2013-02-04T23:59:59.000Z

    The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(PPh2NPh-R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides were prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ~1000 s-1, 40% faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts.

  20. POISON RESISTANT CATALYST DEVELOPMENT AND TESTING

    SciTech Connect (OSTI)

    Andrew W. Wang

    2001-03-29T23:59:59.000Z

    The Alternative Fuels Field Test Unit (AFFTU) is a portable laboratory designed specifically to provide on-site evaluation of potential feedstocks for processes that produce alternative fuels from indigenous raw materials such as coal, natural gas or environmentally disadvantaged carbonaceous feedstocks. Since conversion of these raw materials into feed gas streams can produce a variety of bulk gas compositions, which furthermore can contain a myriad of trace components, it is necessary to evaluate each new feedstock on an individual basis. While it is possible to prepare blended gas mixtures to simulate the bulk composition of a known feedstock, it is neither possible nor cost-effective to simulate adequately the variety of trace chemicals present in that feedstock--some of which may not even be detected by routine analysis. Additionally, the transient composition of the gas during upsets or routine process changes may have an impact on the proposed process that is not foreseen in standard design. To address these concerns, the AFFTU was constructed with the following experimental capabilities: (1) A state-of-the-art gas chromatograph system to perform semi-continuous monitoring of both bulk composition and the concentration of key trace poisons down to one part per billion (ppb). (2) A 30-mL reactor system that can accept up to two feed streams from the customer, allowing a true life test with the actual gas projected for use in the proposed facility. (3) A manifold of four adsorbent beds, located upstream of the reactor, which permits the testing of adsorbents for the removal of contaminants from the feed stream. The effectiveness of these adsorbents may be evaluated either by analysis of the gas upstream and downstream of the bed (or at an intermediate point within the bed) or by observing the impact of the presence or absence of that bed on the actual stability of the catalyst activity. To achieve portability, the AFFTU was constructed in a commercial 48-foot trailer. Roughly half of the trailer is dedicated as ''office'' space, and it contains three personal computers that serve as an interface to the process control and handles data acquisition and analysis. The other half houses the laboratory, which is highly automated and designed for unattended operation. When not in use at a customer's site, the AFFTU is located at Air Products' Iron Run research facility, where it becomes an effective extension of the Alternative Fuels research laboratories.