Powered by Deep Web Technologies
Note: This page contains sample records for the topic "woodford niobrara-codell spraberry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

2

PREFERRED WATERFLOOD MANAGEMENT PRACTICES FOR THE SPRABERRY TREND AREA  

SciTech Connect (OSTI)

The naturally fractured Spraberry Trend Area is one of the largest reservoirs in the domestic U.S. and is the largest reservoir in area extent in the world. Production from Spraberry sands is found over a 2,500 sq. mile area and Spraberry reservoirs can be found in an eight county area in west Texas. Over 150 operators produce 65,000 barrels of oil per day (bopd) from the Spraberry Trend Area from more than 9,000 production wells. Recovery is poor, on the order of 7-10% due to the profoundly complicated nature of the reservoir, yet billions of barrels of hydrocarbons remain. We estimate over 15% of remaining reserves in domestic Class III reservoirs are in Spraberry Trend Area reservoirs. This tremendous domestic asset is a prime example of an endangered hydrocarbon resource in need of immediate technological advancements before thousands of wells are permanently abandoned. This report describes the final work of the project, ''Preferred Waterflood Management Practices for the Spraberry Trend Area.'' The objective of this project is to significantly increase field-wide production in the Spraberry Trend in a short time frame through the application of preferred practices for managing and optimizing water injection. Our goal is to dispel negative attitudes and lack of confidence in water injection and to document the methodology and results for public dissemination to motivate waterflood expansion in the Spraberry Trend. This objective has been accomplished through research in three areas: (1) detail historical review and extensive reservoir characterization, (2) production data management, and (3) field demonstration. This provides results of the final year of the three-year project for each of the three areas.

David S. Schechter

2004-08-31T23:59:59.000Z

3

PREFERRED WATERFLOOD MANAGEMENT PRACTICES FOR THE SPRABERRY TREND AREA  

SciTech Connect (OSTI)

This report describes the work performed during the second year of the project, ''Preferred Waterflood Management Practices for the Spraberry Trend Area''. The objective of this project is to significantly increase field-wide production in the Spraberry Trend in a short time frame through the application of preferred practices for managing and optimizing water injection. Our goal is to dispel negative attitudes and lack of confidence in water injection and to document the methodology and results for public dissemination to motivate waterflood expansion in the Spraberry Trend. To achieve this objective, in this period we concentrated our effort on characterization of Germania Unit using an analog field ET ODaniel unit and old cased hole neutron. Petrophysical Characterization of the Germania Spraberry units requires a unique approach for a number of reasons--limited core data, lack of modern log data and absence of directed studies within the unit. The need for characterization of the Germania unit has emerged as a first step in the review, understanding and enhancement of the production practices applicable within the unit and the trend area in general. In the absence or lack of the afore mentioned resources, an approach that will rely heavily on previous petrophysical work carried out in the neighboring ET O'Daniel unit (6.2 miles away), and normalization of the old log data prior to conventional interpretation techniques will be used. A log-based rock model has been able to guide successfully the prediction of pay and non-pay intervals within the ET O'Daniel unit, and will be useful if found applicable within the Germania unit. A novel multiple regression technique utilizing non-parametric transformations to achieve better correlations in predicting a dependent variable (permeability) from multiple independent variables (rock type, shale volume and porosity) will also be investigated in this study. A log data base includes digitized formats of Gamma Ray, Cased Hole Neutron, limited Resistivity and Neutron/Density/Sonic porosity logs over a considerable wide area. In addition, a progress report on GSU waterflood pilot is reported for this period. We have seen positive response of water injection on new wells. We believe by proper data acquisition and precise reservoir engineering techniques, any lack of confidence in waterflooding can be overcome. Therefore, we develop field management software to control a vast data from the pilot and to perform precise reservoir engineering techniques such as decline curve analysis, gas and oil material balances, bubble map plot and PVT analysis. The manual for this software is listed in the Appendix-A.

C. M. Sizemore; David S. Schechter

2003-08-13T23:59:59.000Z

4

Depositional environment and reservoir morphology of Spraberry sandstones, Parks field, Midland County, Texas  

E-Print Network [OSTI]

of equivalent age on the shelf and shelf-margin are largely carbonates. Estimates of oil in place in the Spraberry sandstone range from 8 to 12 billion barrels. However, because of the low permeability and formation pressure associated with the formation..., only 5 percent of this oil has been produced to date. Stratigraphic and structural traps in Spraberry sandstones have been producing oil and gas since the late 1940's. Early field development was without regard to the depositional environment...

Yale, Mark William

2012-06-07T23:59:59.000Z

5

Biomarker and Paleontological Investigations of the Late Devonian Extinctions, Woodford Shale, Southern Oklahoma  

E-Print Network [OSTI]

The Late Devonian extinctions at the Frasnian-Famennian (F-F) boundary and the Devonian-Carboniferous (D-C) boundary were investigated in the Woodford Shale of southcentral Oklahoma with organic geochemical, bulk geochemical, petrographic...

Nowaczewski, Vincent Stephen

2011-12-31T23:59:59.000Z

6

Reservoir characterization, performance monitoring of waterflooding and development opportunities in Germania Spraberry Unit.  

E-Print Network [OSTI]

existing over a regional area have long been known to dominate all aspects of performance in the Spraberry Trend Area. Two stages of depletion have taken place over 46 years of production: Primary production under solution gas drive and secondary recovery...

Hernandez Hernandez, Erwin Enrique

2005-08-29T23:59:59.000Z

7

Advanced reservoir characterization and evaluation of CO2 gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997  

SciTech Connect (OSTI)

The objective of the Spraberry CO{sub 2} pilot project is to determine the technical and economic feasibility of continuous CO{sub 2} injection in the naturally fractured reservoirs of the Spraberry Trend. In order to describe, understand, and model CO{sub 2} flooding in the naturally fractured Spraberry reservoirs, characterization of the fracture system is a must. Additional reservoir characterization was based on horizontal coring in the second year of the project. In addition to characterization of natural fractures, horizontal coring has confirmed a previously developed rock model for describing the Spraberry Trend shaly sands. A better method for identifying Spraberry pay zones has been verified. The authors have completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. The authors have completed extensive imbibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. The authors have also made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. They have completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix.

McDonald, P.

1998-06-01T23:59:59.000Z

8

Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III  

SciTech Connect (OSTI)

The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

Knight, Bill; Schechter, David S.

2002-07-26T23:59:59.000Z

9

Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1995--August 31, 1996  

SciTech Connect (OSTI)

The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding in the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

Schechter, D.S.

1997-12-01T23:59:59.000Z

10

Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. First annual technical progress report, September 1, 1995--August 31, 1996  

SciTech Connect (OSTI)

The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the first year of the five-year project for each of the four areas.

Schechter, D.S.

1996-12-17T23:59:59.000Z

11

Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997  

SciTech Connect (OSTI)

The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the second year of the five-year project for each of the four areas. In the first area, the author has completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. In the second area, the author has completed extensive inhibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. In the third area, the author has made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. In the fourth area, the author has completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix. The final three years of this project involves implementation of the CO{sub 2} pilot. Up to twelve new wells are planned in the pilot area; water injection wells to contain the CO{sub 2}, three production wells to monitor performance of CO{sub 2}, CO{sub 2} injection wells including one horizontal injection well and logging observation wells to monitor CO{sub 2} flood fronts. Results of drilling these wells will be forthcoming.

Schechter, D.S.

1998-07-01T23:59:59.000Z

12

Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III  

SciTech Connect (OSTI)

The goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. The four areas have been completed and reported in the previous annual reports. This report provides the results of the final year of the project including two SPE papers (SPE 71605 and SPE 71635) presented in the 2001 SPE Annual Meeting in New Orleans, two simulation works, analysis of logging observation wells (LOW) and progress of CO{sub 2} injection.

Knight, Bill; Schechter, David S.

2001-11-19T23:59:59.000Z

13

Woodford County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9.1705998° 9.1705998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7128889,"lon":-89.1705998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

Woodford County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -84.7315563° °, -84.7315563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0721662,"lon":-84.7315563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford shale.  

E-Print Network [OSTI]

??Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is (more)

Lu, Rong

2014-01-01T23:59:59.000Z

16

Characterization of the Germania Spraberry unit from analog studies and cased-hole neutron log data  

E-Print Network [OSTI]

a dependent variable (permeability) from multiple independent variables (rock type, shale volume and porosity) will also be investigated in this study. A log data base includes digitized formats of gamma ray, cased hole neutron, limited resistivity...

Olumide, Babajide Adelekan

2005-11-01T23:59:59.000Z

17

Analyses of azimuthal seismic anisotrophy in the vertically fractured Spraberry and Dean formations, Midland County, Texas  

E-Print Network [OSTI]

The configuration of a CDP gather from 3-D seismic reflection has source-receiver pairs located at different azimuths. This can be exploited to observe azimuthal variations of P- wave velocity related to azimuthal anisotropy in fractured media...

Sudarmo, Bernadus Supraptomo

2012-06-07T23:59:59.000Z

18

Assessing the influence of diagenesis on reservoir quality: Happy Spraberry Field, Garza County, Texas  

E-Print Network [OSTI]

Formation (Lower Leonardian) on the Eastern Shelf of the Midland Basin. Reservoir facies include oolitic- to-skeletal grainstones and packstones, rudstones and in situ Tubiphytes bindstones. Depositional environments vary from open marine reefs to shallow...

Mazingue-Desailly, Vincent Philippe Guillaume

2004-09-30T23:59:59.000Z

19

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

6. Attributes of unproved technically recoverable tight oil resources as of January 1, 2010 6. Attributes of unproved technically recoverable tight oil resources as of January 1, 2010 Basin/Play Area (square miles) Average well spacing (wells per square mile) Percent of area untested Percent of area with potential Average EUR (million barrels per well) Number of potential wells TRR (million barrels) Western Gulf Austin Chalk 16,078 3 72 61 0.13 21,165 2,688 Eagle Ford 3,200 5 100 54 0.28 8,665 2,461 Anadarko Woodford 3,120 6 100 88 0.02 16,375 393 Permian Avalon/Bone Springs 1,313 4 100 78 0.39 4,085 1,593 Spraberry 1,085 6 99 72 0.11 4,636 510 Rocky Mountain basins Niobrara 20,385 8 97 80 0.05 127,451 6,500 Williston Bakkena 6,522 2 77 97 0.55 9,767 5,372

20

Applications of artificial neural networks in the identification of flow units, Happy Spraberry Field, Garza County, Texas  

E-Print Network [OSTI]

and foraminifera. Lime mud is also present but rare (Hammel, 1996). The ooids, peloids and skeletal fragments are well rounded and well sorted with average ooid grain diameter between 200 and 300 microns (Layman 2002). The presence of coated grains... and foraminifera. Lime mud is also present but rare (Hammel, 1996). The ooids, peloids and skeletal fragments are well rounded and well sorted with average ooid grain diameter between 200 and 300 microns (Layman 2002). The presence of coated grains...

Gentry, Matthew David

2005-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "woodford niobrara-codell spraberry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

WHO ARE WE? We're writing from Wadham  

E-Print Network [OSTI]

, Woodford County, Wanstead High, Valentine's High, Barking Abbey, Longsands, Seven Kings and Stantonbury

Wallace, Mark

22

E-Print Network 3.0 - area saturated zone Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from the Spraberry Trend Area. Experimental details were presented... with decreasing rock permeability and increasing water saturation. There exists an argument that matrix...

23

2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE/BRINE/ROCK INTERACTION AT  

E-Print Network [OSTI]

INTERACTION AT RESERVOIR CONDITIONS 2.1.1 Introduction In the previous section, the fluid/rock interactions in this section and expand the understanding of the interactions of the Spraberry reservoir rock, oil and brine, brine displacement and rock wettability using low permeability Spraberry cores. A schematic

Schechter, David S.

24

Stephen C. Ruppel Principal Investigator  

E-Print Network [OSTI]

. Worth Basin ·Barnett, Permian Basin ·Woodford, Permian Basin ·New Albany, Illinois Basin ·Haynesville", "Wolfbone", Permian Basin New and Planned Research Focus ·Floyd Shale, Black Warrior Basin ·Woodford at Austin Scott Tinker, Director #12;·The Bureau of Economic Geology has begun a new industrial consortium

Texas at Austin, University of

25

Ketone Enolization with Lithium Dialkylamides:? The Effects of Structure, Solvation, and Mixed Aggregates with Excess Butyllithium  

Science Journals Connector (OSTI)

Lawrence M. Pratt ,* Anthony Newman , Jason St. Cyr , Harry Johnson , Benjamin Miles , April Lattier , Elizabeth Austin , Susan Henderson , Brad Hershey , Ming Lin , Yuvaraju Balamraju , Laurel Sammonds , Jeffery Cheramie , Jonathan Karnes , Ellen Hymel , Brittini Woodford , and Carl Carter ...

Lawrence M. Pratt; Anthony Newman; Jason St. Cyr; Harry Johnson; Benjamin Miles; April Lattier; Elizabeth Austin; Susan Henderson; Brad Hershey; Ming Lin; Yuvaraju Balamraju; Laurel Sammonds; Jeffery Cheramie; Jonathan Karnes; Ellen Hymel; Brittini Woodford; Carl Carter

2003-07-17T23:59:59.000Z

26

Evaluation of Lower Cambrian Shale in Northern Guizhou Province, South China: Implications for Shale Gas Potential  

Science Journals Connector (OSTI)

The overall minerals are similar to those present in the Ohio and Woodford/Barnett shales (west Texas), which have successfully produced commercial shale gas. ... Adsorption of gases in multimolecular layers ...

Shuangbiao Han; Jinchuan Zhang; Yuxi Li; Brian Horsfield; Xuan Tang; Wenli Jiang; Qian Chen

2013-05-07T23:59:59.000Z

27

3 RESERVOIR PERFORMANCE ANALYSIS 3.1 ANALYSIS OF IMBIBITION MECHANISM IN THE NATURALLY FRACTURED  

E-Print Network [OSTI]

these parameters and other key parameters in the oil recovery mechanism (i.e., matrix permeability, fracture.1.2 Concept of Process In the Spraberry reservoir, oil is stored in a very tight matrix, with virtually all permeability concentrated in a large number of natural fractures. Due to these fractures, oil cannot

Schechter, David S.

28

2. INVESTIGATION OF CO2 GRAVITY DRAINAGE AFTER WATER INJECTION IN FRACTURED SYSTEMS  

E-Print Network [OSTI]

using gas chromatography to aid in understanding the mechanism of CO2-improved oil production from tight and pressures above the MMP of Spraberry crude oil and CO2. The experiments were designed to simulate, pressure, injection rate, injection pattern, rock permeability and initial water saturation) on CO2 gravity

Schechter, David S.

29

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Devonian Woodford Formation of the Permian Basin Devonian Woodford Formation of the Permian Basin The Devonian Woodford Formation of the Permian Basin: Complex Depositional and Temporal Variations Across an Anaerobic Marine Basin Authors: S. C. Ruppel and R. G. Loucks Venue: 2008 American Association of Petroleum Geologists (AAPG) Annual Convention and Exhibition, San Antonio, TX, April 19-24, 2008 “The Geology of Mudrocks”, session chaired by S. C. Ruppel and R. G. Loucks (http://www.aapg.org) Abstract: The Woodford Formation, a key oil and gas source rock in the Permian Basin of Texas and New Mexico, is part of an extensive, platform marginal, organic-rich, mudrock succession that formed along the southern and western margins of Laurussia during the Devonian and Mississippian. Studies of >35 Woodford cores reveal wide variability in facies, organic content, and mineralogy that can be related to age and paleogeographic setting. Woodford facies include silt-rich mudstones (detrital silica), siliceous mudstones (biogenic silica), calcareous mudstones, and claystones. Recent studies show that facies are partitioned between two temporally distinct successions: a Middle Devonian silt- and carbonate-rich section that is irregularly distributed across the basin, and an Upper Devonian siliceous claystone/mudstone section that is widespread and separated from underlying successions by a significant hiatus. All Woodford rocks contain mixtures of illite, kaolinite, chlorite, and mixed layer clays; total clay and chlorite abundance is lowest in distal Upper Devonian rocks. Although silica content is variable, Upper Devonian mudrocks typically contain more abundant biogenic silica, especially in distal parts of the basin, whereas Middle Devonian rocks are dominated by detrital silica. The two successions display consistent differences in depositional facies. The silt-rich Middle Devonian section is cross-laminated, locally graded, and commonly bioturbated. Upper Devonian mudrocks, by contrast, are dominated by fine-scale, parallel laminations and show no evidence of infaunal activity. These rocks also contain common conodonts, radiolarians, spore bodies, and deep-water brachiopods. The data suggest that the lower Woodford was deposited by deep water, turbid flow, whereas the upper Woodford accumulated under more distal, low energy, poorly oxygenated, hemipelagic conditions

30

Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Grande Rio Grande Embayment Texas- Louisiana- Mississippi Salt Basin Uinta Basin Appa lachia n Basin Utica Marcellus Devonian (Ohio) Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville Hermosa Mancos Pierre Conasauga Woodford- Caney Pearsall- Eagle Ford Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Maverick Sub-Basin Montana Thrust Belt Marfa Basin Valley and Ridge Province Arkoma Basin Forest City Basin Piceance Basin Shale Gas Plays, Lower 48 States 0 200 400 100 300 Miles ± Source: Energy Information Administration based on data from various published studies

31

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project  

Broader source: Energy.gov (indexed) [DOE]

Oahu Wind Integration and Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada Subcontract Report NREL/SR-5500-50411 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada NREL Technical Monitor: David Corbus

32

Titel / Title Publisher Jahr / Year Class Mark Lectures Bemerkungen  

E-Print Network [OSTI]

Behzad, Diba Friedman, B. and Woodford, M. Handbook of Monetary Economics, Volume 3B Elsevier North Press2003 S3176 International Monetary Economics M Bochet, O. Laffont, J.J. Fundamentals of Public) Economics I. Blockseminar B Bochet, O. Laffont, J.J. Fundamentals of Public Economics MIT Press 1988 G

Richner, Heinz

33

Fatty Acids in Eleven Species of Blue-Green Algae: Geochemical Significance  

Science Journals Connector (OSTI)

...FATTY ACID ESTERS FOR GAS CHROMATOGRAPHIC ANALYSIS...WOODFORD, F.P., GAS-LIQUID CHROMATOGRAPHY...48 km) south of Corpus Christi, Texas. The isolation...per milliliter. t Natural.: Ob-tained from...identified and measured by gas chromatography on...

Patrick L. Parker; Chase Van Baalen; Larry Maurer

1967-02-10T23:59:59.000Z

34

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

35

Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project  

Broader source: Energy.gov (indexed) [DOE]

Phase 2 Report: Oahu Wind Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada Subcontract Report NREL/SR-5500-50414 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada

36

File:EIA-shaleusa6.pdf | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit with form History Facebook icon Twitter icon » File:EIA-shaleusa6.pdf Jump to: navigation, search File File history File usage Woodford Shale Play, Arkoma Basin, Oklahoma Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 2.06 MB, MIME type: application/pdf) Description Woodford Shale Play, Arkoma Basin, Oklahoma Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2010-03-30 Extent Regional Countries United States UN Region Northern America States Oklahoma File history Click on a date/time to view the file as it appeared at that time.

37

File:EIA-shaleusa7.pdf | Open Energy Information  

Open Energy Info (EERE)

shaleusa7.pdf shaleusa7.pdf Jump to: navigation, search File File history File usage Woodford Shale Play, Anadarko Basin, Oklahoma and Texas Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 1.43 MB, MIME type: application/pdf) Description Woodford Shale Play, Anadarko Basin, Oklahoma and Texas Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2010-03-30 Extent Regional Countries United States UN Region Northern America States Oklahoma, Texas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:42, 20 December 2010 Thumbnail for version as of 18:42, 20 December 2010 1,650 × 1,275 (1.43 MB) MapBot (Talk | contribs) Automated bot upload

38

File:EIA-shaleusa8.pdf | Open Energy Information  

Open Energy Info (EERE)

shaleusa8.pdf shaleusa8.pdf Jump to: navigation, search File File history File usage Woodford Shale Play, Ardmore Basin, Oklahoma and Texas Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 1.57 MB, MIME type: application/pdf) Description Woodford Shale Play, Ardmore Basin, Oklahoma and Texas Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2010-03-30 Extent Regional Countries United States UN Region Northern America States Oklahoma, Texas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:43, 20 December 2010 Thumbnail for version as of 18:43, 20 December 2010 1,650 × 1,275 (1.57 MB) MapBot (Talk | contribs) Automated bot upload

39

Review Meeting Mudrock Systems Research Laboratory  

E-Print Network [OSTI]

:10 ­ 9:40 AM Devonian mudrock pore systems: Bakken, Woodford, New Albany; Reed 9:40 ­ 10:10 AM and Future: Ruppel Paleozoic Mudrock Systems 8:40 ­ 9:10 AM Natural fractures in the Marcellus Shale; Gale 9 properties from 3D seismic data; Zeng 2:30 ­ 3:00 PM Preliminary characterization of the Tuscaloosa shale; Lu

Texas at Austin, University of

40

Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma  

SciTech Connect (OSTI)

The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

NONE

1991-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "woodford niobrara-codell spraberry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Role of kerogen in the origin and evolution of nickel and vanadyl geoporphyrins  

SciTech Connect (OSTI)

The role of petroleum source rock kerogen in the origin and evolution of the geoporphyrins was investigated by measuring the Ni and V content of four oil shale kerogens and comparing the Ni(II) and VO(II) porphyrins in the bitumen of two oil shales with the Ni(II) and VO(II) porphyrins generated from the associated kerogens during simulated catagenesis. A method for determining the organically-bound Ni and V content of kerogen by instrumental neutron activation analysis (INAA) was used to measure the Ni and V content of four oil shale kerogens Green River (Colorado); New Albany (Clark County, IN); Sunbury (Powell County, KY); Woodford (Carter County, OK). Sequential pyrolysis at temperatures ranging from 100-450/sup 0/C generated organically-bound Ni and V complexes from the New Albany and Woodford kerogens (determined by INAA), including Ni(II) and VO(II) porphyrins (determined by uv-visible spectrometry and high performance liquid chromatography). Nickel and vanadyl porphyrins are associated with the kerogen in a similar manner providing direct evidence that kerogen is involved in the geochemical evolution of both metalloporphyrins. The Ni(II) and VO(II) porphyrins in New Albany shale bitumen-I and kerogen pyrolysates were investigated using liquid chromatography, thin-layer chromatography, and electron impact-mass spectrometry. Alternate porphyrin series are generated form the kerogen, but the mineral matrix may also be involved in their formation and association in source rocks.

Van Berkel, G.J.

1987-01-01T23:59:59.000Z

42

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Washington Association of Money Managers Washington Association of Money Managers April 18, 2013 | Washington, DC By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , WAMM, April 18, 2013 An average well in shale gas and other continuous resource plays has steep decline curves Adam Sieminski , WAMM, April 18, 2013 3 0 500 1,000 1,500 2,000 0 5 10 15 20 Haynesville Eagle Ford Woodford Marcellus Fayetteville million cubic feet per year Source: EIA, Annual Energy Outlook 2012 1 0% 50% 100% 0 5 10 15 20 Cumulative production = EUR Oil production by monthly vintage of wells in the Williston Basin - production grows with continued drilling Adam Sieminski , WAMM, April 18, 2013

43

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Council on Foreign Relations Council on Foreign Relations April 11, 2013 | Washington, DC By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , CFR, April 11, 2013 An average well in shale gas and other continuous resource plays can also have steep decline curves, which require continued drilling to grow production 3 0 500 1,000 1,500 2,000 0 5 10 15 20 Haynesville Eagle Ford Woodford Marcellus Fayetteville million cubic feet per year Source: EIA, Annual Energy Outlook 2012 1 0% 50% 100% 0 5 10 15 20 Cumulative production = EUR Adam Sieminski , CFR, April 11, 2013 For example: Oil production by monthly vintage of wells in the Williston Basin 4 Source: Drilling Info history through August 2012, EIA Short-Term Energy Outlook, February 2013 forecast

44

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

American Petroleum Institute American Petroleum Institute April 04, 2013 | Washington, DC By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , API, April 04, 2013 An average well in shale gas and other continuous resource plays can also have steep decline curves, which require continued drilling to grow production 3 0 500 1,000 1,500 2,000 0 5 10 15 20 Haynesville Eagle Ford Woodford Marcellus Fayetteville million cubic feet per year Source: EIA, Annual Energy Outlook 2012 1 0% 50% 100% 0 5 10 15 20 Cumulative production = EUR Adam Sieminski , API, April 04, 2013 For example: Oil production by monthly vintage of wells in the Williston Basin 4 Source: DrillingInfo history through August 2012, EIA Short-Term Energy Outlook, February 2013 forecast

45

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

CERAWEEK 2013, North American Energy CERAWEEK 2013, North American Energy March 06, 2013 | Houston, TX by Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , CERAWEEK, March 06, 2013 An average well in shale gas and other continuous resource plays can also have steep decline curves, which require continued drilling to grow production 3 0 500 1,000 1,500 2,000 0 5 10 15 20 Haynesville Eagle Ford Woodford Marcellus Fayetteville million cubic feet per year Source: EIA, Annual Energy Outlook 2012 1 0% 50% 100% 0 5 10 15 20 Cumulative production = EUR Adam Sieminski , CERAWEEK, March 06, 2013 For example: Oil production by monthly vintage of wells in the Williston Basin 4 Source: DrillingInfo history through August 2012, EIA Short-Term Energy Outlook, February 2013 forecast

46

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Joint Forum on US Shale Gas & Pacific Gas Markets Joint Forum on US Shale Gas & Pacific Gas Markets May 14, 2013 | New York, NY By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , May 14, 2013 Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , May 14, 2013 3 0 5 10 15 20 25 30 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) shale gas production (dry) billion cubic feet per day Sources: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Shale gas leads growth in total gas production through 2040 to

47

Improved efficiency of miscible CO2 floods and enhanced prospects for CO2 flooding heterogeneous reservoirs. Final report, April 17, 1991--May 31, 1997  

SciTech Connect (OSTI)

From 1986 to 1996, oil recovery in the US by gas injection increased almost threefold, to 300,000 bbl/day. Carbon dioxide (CO{sub 2}) injection projects make up three-quarters of the 191,139 bbl/day production increase. This document reports experimental and modeling research in three areas that is increasing the number of reservoirs in which CO{sub 2} can profitably enhance oil recovery: (1) foams for selective mobility reduction (SMR) in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low interfacial tension (97) processes and the possibility of CO{sub 2} flooding in naturally fractured reservoirs. CO{sub 2} injection under miscible conditions can effectively displace oil, but due to differences in density and viscosity the mobility of CO{sub 2} is higher than either oil or water. High CO{sub 2} mobility causes injection gas to finger through a reservoir, causing such problems as early gas breakthrough, high gas production rates, excessive injection gas recycling, and bypassing of much of the reservoir oil. These adverse effects are exacerbated by increased reservoir heterogeneity, reaching an extreme in naturally fractured reservoirs. Thus, many highly heterogeneous reservoirs have not been considered for CO{sub 2} injection or have had disappointing recoveries. One example is the heterogeneous Spraberry trend in west Texas, where only 10% of its ten billion barrels of original oil in place (OOIP) are recoverable by conventional methods. CO{sub 2} mobility can be reduced by injecting water (brine) alternated with CO{sub 2} (WAG) and then further reduced by adding foaming agents-surfactants. In Task 1, we studied a unique foam property, selective mobility reduction (SMR), that effectively reduces the effects of reservoir heterogeneity. Selective mobility reduction creates a more uniform displacement by decreasing CO{sub 2} mobility in higher permeability zones more than in lower permeability zones.

Grigg, R.B.; Schechter, D.S.

1998-02-01T23:59:59.000Z

48

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

5. Attributes of unproved technically recoverable resources for selected shale gas plays as of January 1, 2010 5. Attributes of unproved technically recoverable resources for selected shale gas plays as of January 1, 2010 Basin/Play Area (square miles) Average well spacing (wells per square mile) Percent of area untested Percent of area with potential Average EUR (billion cubic feet per well) Number of potential wells TRR (billion cubic feet) Appalachian Marcellus 104,067 5 99 18 1.56 90,216 140,565 Utica 16,590 4 100 21 1.13 13,936 15,712 Arkoma Woodford 3,000 8 98 23 1.97 5,428 10,678 Fayetteville 5,853 8 93 23 1.30 10,181 13,240 Chattanooga 696 8 100 29 0.99 1,633 1,617 Caney 2,890 4 100 29 0.34 3,369 1,135 TX-LA-MS Salt Haynesville/Bossier 9,320 8 98 34 2.67 24,627 65,860

49

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Devonian and Mississippian Mudrock systems in Texas: Contrasts and Commonalities Devonian and Mississippian Mudrock systems in Texas: Contrasts and Commonalities Devonian and Mississippian Mudrock systems in Texas: Contrasts and Commonalities Authors: Ruppel, Stephen C. and Robert G. Loucks, Bureau of Economic Geology, Jackson School of GeoSciences, University of Texas at Austin Venue: West Texas Geological Society Symposium, in Midland, Texas September 10-12, 2008. http://www.wtgs.org [external site] Abstract: The Devonian Woodford and Mississippian Barnett formations document a long (approximately 70-80 million year) period of clay-rich sedimentation along the southern margin of the Laurentian paleocraton during the middle Paleozoic. As might be expected, these rocks display many general similarities, for example in thickness, mineralogy, organic carbon content, thermal maturity, organic matter type, etc. Both also display conspicuous and systematic changes in composition from more proximal to more distal areas. However, our studies of more than 75 cores across the Permian and Ft. Worth Basins demonstrate that dissimilarities between the two systems are perhaps even more common than similarities. Many of the differences can be related to paleogeography, basin hydrography, and global sea level.

50

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

7. Estimated ultimate recovery for selected shale gas plays in three AEOs (billion cubic feet per well) 7. Estimated ultimate recovery for selected shale gas plays in three AEOs (billion cubic feet per well) AEO2010 AEO2011 AEO2012 Basin/Play Range Average Range Average Range Average Appalachian Marcellus 0.25-0.74 0.49 0.86-4.66 1.62 0.02-7.80 1.56 Utica -- -- -- -- 0.10-2.75 1.13 Arkoma Woodford 1.43-4.28 2.85 3.00-5.32 4.06 0.40-4.22 1.97 Fayetteville 0.91-2.73 1.82 0.86-2.99 2.03 0.19-3.22 1.30 Chattanooga -- -- -- -- 0.14-1.94 0.99 Caney -- -- -- -- 0.05-0.66 0.34 TX-LA-MS Salt Haynesville/Boosier 2.30-6.89 4.59 1.13-8.65 3.58 0.08-5.76 2.67 Western Gulf Eagle Ford 1.10-3.29 2.19 1.73-7.32 2.63 0.41-4.93 2.36 Pearsall -- -- -- -- 0.12-2.91 1.22

51

New York Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name New York Solar Energy Industries Association Address 533 Woodford Avenue Place Endicott, New York Zip 13760 Region Northeast - NY NJ CT PA Area Website http://www.nyseia.org/ Notes Non-profit membership and trade association dedicated solely to advancing solar energy use in New York State Coordinates 42.105025°, -76.065685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.105025,"lon":-76.065685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Chaotic Dynamics in Optimal Monetary Policy  

E-Print Network [OSTI]

There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King (1997), Clarida et al. (1999), Svensson (1999) and Woodford (2003). In this paper we extend the standard optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the standard model in a discrete time and deterministic framework produces radical changes to the major conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle--path stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its volatility.

Orlando Gomes; Vivaldo M. Mendes; Diana A. Mendes; J. Sousa Ramos

2006-07-28T23:59:59.000Z

53

Table 4. Principal shale gas plays: natural gas production and proved reserves, 2010-1011  

U.S. Energy Information Administration (EIA) Indexed Site

Principal shale gas plays: natural gas production and proved reserves, 2010-2011 Principal shale gas plays: natural gas production and proved reserves, 2010-2011 trillion cubic feet Basin Shale Play State(s) Production Reserves Production Reserves Production Reserves Fort Worth Barnett TX 1.9 31.0 2.0 32.6 0.1 1.6 Appalachian Marcellus PA, WV, KY, TN, NY, OH 0.5 13.2 1.4 31.9 0.9 18.7 Texas-Louisiana Salt Haynesville/Bossier TX, LA 1.5 24.5 2.5 29.5 1.0 5.0 Arkoma Fayetteville AR 0.8 12.5 0.9 14.8 0.1 2.3 Anadarko Woodford TX, OK 0.4 9.7 0.5 10.8 0.1 1.1 Western Gulf Eagle Ford TX 0.1 2.5 0.4 8.4 0.3 5.9 Sub-total 5.2 93.4 7.7 128.0 2.5 34.6 Other shale gas plays 0.2 4.0 0.3 3.6 0.1 -0.4 All U.S. Shale Plays 5.4 97.4 8.0 131.6 2.6 34.2 Change 2011-2010 2010 2011 Notes: Some columns may not add up to its subtotal because of independent rounding. Natural gas is wet after lease separation. The above table is