Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electricity displacement by wood used for space heating in PNWRES (Pacific Northwest Residential Energy Survey) (1983) households  

DOE Green Energy (OSTI)

This report evaluates the amount of electricity for residential space heating displaced by the use of wood in a sample of single-family households that completed the 1983 Pacific Northwest Residential Energy Survey. Using electricity bills and daily weather data from the period of July 1981 to July 1982, it was determined that the average household used 21,800 kWh per year, normalized with respect to weather. If no households had used any wood, electricity use would have increased 9%, to 23,700 kWh; space heating electricity use would also have increased, by 21%, to 47% of total electricity use. In the unlikely event that all households had used a great deal of wood for space heating, electricity use could have dropped by 23.5% from the average use, to 16,700 kWh; space heating electricity use would have dropped by 56%, to 24% of total electricity use. Indications concerning future trends regarding the displacement of electricity by wood use are mixed. On one hand, continuing to weatherize homes in the Pacific Northwest may result in less wood use as households find using electricity more economical. On the other hand, historical trends in replacement decisions regarding old space heating systems show a decided preference for wood. 11 refs., 6 figs., 8 tabs.

White, D.L.; Tonn, B.E.

1988-12-01T23:59:59.000Z

2

Wood Heating Fuel Exemption  

Energy.gov (U.S. Department of Energy (DOE))

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

3

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heating & Cooling Systems Water Heating Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood-...

4

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning...

5

Availability of wood as a heating fuel for Colorado  

SciTech Connect

As Colorado homeowners turn to wood as an alternative space-heating fuel, supplies--particularly along the heavily populated Front Range--dwindle. The report reexamines the resource base and presents alternatives to wood in the event of a shortage (for instance, many wood stoves can burn coal as well).

1982-01-01T23:59:59.000Z

6

Wood and Pellet Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood and Pellet Heating Wood and Pellet Heating Wood and Pellet Heating November 25, 2013 - 2:24pm Addthis A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie What does this mean for me? Wood or pellets may be an economical and environmentally sound heating fuel choice. If you live in an area where you can cut your own wood for heating, your fuel will be local and inexpensive. Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1 inch in length. Choosing and Installing Wood- and Pellet-Burning Appliances

7

Air emissions from residential heating: The wood heating option put into environmental perspective. Report for June 1997--July 1998  

SciTech Connect

The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contributions of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid precipitation impacts. The major space heating energy options are natural gas, fuel oil, kerosene, liquefied petroleum gas (LPG), electricity, coal, and wood. Residential wood combustion (RWC) meets 9% of the Nation`s space heating energy needs and utilizes a renewable resource. Wood is burned regularly in about 30 million homes. Residential wood combustion is often perceived as environmentally dirty due to emissions from older wood burners.

Houck, J.E.; Tiegs, P.E.; McCrillis, R.C.; Keithley, C.; Crouch, J.

1998-12-31T23:59:59.000Z

8

Wood-Burning Heating System Deduction  

Energy.gov (U.S. Department of Energy (DOE))

This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The deduction is equal to the total cost of purchase and installation for...

9

Mathematical simulation of temperature profiles within microwave heated wood made for wood-based nanocomposites  

Science Conference Proceedings (OSTI)

High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nanocomposites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive ...

Xianjun Li, Yongfeng Luo, Hongbin Chen, Xia He, Jianxiong Lv, Yiqiang Wu

2013-01-01T23:59:59.000Z

10

Inexpensive solar-wood water heating combinations  

SciTech Connect

A promising batch heater recently built and now being tested consists of lengths of eight-inch galvanized culvert pipe painted with semiselective black coating, hooked in series and tied in as part of a passive closed loop, unpressurized solar-wood water heating combination. One 10-foot length of eight-inch culvert contains 14.6 gallons of water. Eight-inch culvert provides a near optimum surface area per unit volume ratio, resulting in quicker, more efficient solar water heating. Moreover, the proposed arrangement minimizes the mixing of hot with cold water as warm water is used, often a problem with many types of batch heaters. Details for constructing this type of batch heater are provided. The system is an unpressurized, closed loop set-up, which means that the same liquid circulates continually from solar heater to wood heater to storage tank heat exchanger. The collector design is a variation on the inverted batch heater which takes its inspiration from a number of solar designers of similar units and introduces several additional measures to take advantage of the wood heating connection and to improve the design based on operating experience.

Poitras, R.

1980-01-01T23:59:59.000Z

11

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

12

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

13

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

14

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

15

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

16

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

17

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

18

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

19

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

20

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

22

Wood and Pellet Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood and Pellet Heating Basics Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices. Traditional fireplaces draw in as much as 300 cubic feet per minute of heated room air for combustion, then send it straight up the chimney. Fireplaces also produce significant air pollution. Although some fireplace designs seek to address these issues with dedicated air supplies, glass doors, and heat recovery systems, fireplaces are still

23

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

24

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

2005 Residential Energy Consumption Survey Form EIA-457A (2005)--Household Questionnaire OMB No.: 1905-0092, Expiring May 31, 2008 33 Section D: SPACE HEATING

25

Passive solar space heating  

DOE Green Energy (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

26

Wood Pellet Heating Systems: The Earthscan Expert Handbook of Planning, Design and Installation  

Science Conference Proceedings (OSTI)

Wood Pellet Heating Systems is a comprehensive handbook covering all aspects of wood pellet heating technology. The use of wood pellets as an alternative heating fuel is already well established in several countries and is becoming widespread as fossil ...

Dilwyn Jenkins

2010-04-01T23:59:59.000Z

27

Residential Wood Heating Fuel Exemption (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Heating Fuel Exemption (New York) Wood Heating Fuel Exemption (New York) Residential Wood Heating Fuel Exemption (New York) < Back Eligibility Multi-Family Residential Residential Savings Category Bioenergy Maximum Rebate None Program Info State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider New York State Department of Taxation and Finance New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from local sales taxes. If a city with a population of 1 million or more chooses to grant the local exemption, it must enact a specific resolution that appears in the state law. Local sales tax rates in New York range from 1.5% to more than 4% in

28

Numerical and experimental validation of heat and mass transfer during heat treatment of wood  

Science Conference Proceedings (OSTI)

In the current work, the three-dimensional Navier-Stokes equations along with the energy and concentration equations for the fluid coupled with the energy and mass conservation equations for the solid (wood) are solved to study the transient heat and ... Keywords: Luikov's model, conjugate problem, heat and mass transfer, high-temperature wood treatment, mathematical modeling, validation

R. Younsi; D. Kocaefe; S. Poncsak; T. Junjun

2007-05-01T23:59:59.000Z

29

Woodfuel community heating at Kielder A wood-fired district heating  

E-Print Network (OSTI)

Woodfuel community heating at Kielder A wood-fired district heating system, one of the first of its-fired district heating system was installed in 2004 as a practical low-carbon solution to providing heat and hot 2010. Contact for further information: Graham Gill (graham.gill@forestry.gsi.gov.uk) District heating

30

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

31

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

32

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

33

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

Central warm-air furnace with ducts to individual rooms other than a heat pump ..... 03 Steam/Hot water ... REVERSE Heat pump ... Don't have a separate water heater ...

34

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

35

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Space Heat Jump to: navigation, search TODO: Add description List of Passive Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titlePassive...

36

Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

icon Solar Space Heat Jump to: navigation, search TODO: Add description List of Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarS...

37

Emerging Technologies in Wood Energy Wood can already be used to produce heat and  

E-Print Network (OSTI)

for extension of wood pellet production is lack of appropriate technology in Slovakia. Several typesOverview 1 Development of Wood Chips and Pellets market in Slovakia Jozef Viglasky, SK systems. · Co-combustion of wood residues in existing coal fired power systems. #12;Overview 3

38

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

39

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

40

Particulate matter emissions from combustion of wood in district heating applications  

Science Conference Proceedings (OSTI)

The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [Delta Research Corporation

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

STEO October 2012 - wood  

U.S. Energy Information Administration (EIA) Indexed Site

More U.S. households burning wood this winter to stay warm, More U.S. households burning wood this winter to stay warm, reversing two-decade decline Burning wood as the primary heating source in U.S. households has risen over the last 10 years, reversing the decline seen in the 1980s and 1990s. About 2.6 million households out of 115 million will rely on wood as the main way to warm their homes this winter. That's up 3 percent from last year, according to the U.S. Energy Information Administration's new winter fuels forecast. The West will have the most households using wood as their primary space heating fuel, followed by the Midwest, South and Northeast regions of the United States. Wood is also the second most common backup fuel, after electricity, that households across the U.S. use as a supplemental heating source. Almost half of all rural households use wood this

42

Geothermal Energy: Residential Space Heating  

DOE Green Energy (OSTI)

The purpose of this study, which was carried out under the auspices of the DGRST, was to determine the best way to use geothermal hot water for residential space heating. It quickly became apparent that the type of heating apparatus used in the housing units was most important and that heat pumps could be a valuable asset, making it possible to extract even more geothermal heat and thus substantially improve the cost benefit of the systems. Many factors play a significant role in this problem. Therefore, after a first stage devoted to analyzing the problem through a manual method which proved quite useful, the systematic consideration of all important aspects led us to use a computer to optimize solutions and process a large number of cases. The software used for this general study can also be used to work out particular cases: it is now available to any interested party through DGRST. This program makes it possible to: (1) take climatic conditions into account in a very detailed manner, including temperatures as well as insolation. 864 cases corresponding to 36 typical days divided into 24 hours each were chosen to represent the heating season. They make it possible to define the heating needs of any type of housing unit. (2) simulate and analyze the behavior in practice of a geothermal heating system when heat is extracted from the well by a simple heat exchanger. This simulation makes it possible to evaluate the respective qualities of various types of heating apparatus which can be used in homes. It also makes it possible to define the best control systems for the central system and substations and to assess quite accurately the presence of terminal controls, such as radiators with thermostatically controlled valves. (3) determine to what extent the addition of a heat pump makes it possible to improve the cost benefit of geothermal heating. When its average characteristics and heating use conditions (price, coefficient of performance, length of utilization, electrical rates, etc.) are taken into account, the heat pump should not be scaled for maximum heating power. Consequently, the program considers several possible sizes, with different installation schemes, and selects for each case the value which corresponds to the lowest cost of heating.

None

1977-03-01T23:59:59.000Z

43

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

44

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

45

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Solar space heating (Redirected from - Solar Ventilation Preheat) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar

46

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

47

Section D: SPACE HEATING - Energy Information Administration  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457A (2001)--Household Questionnaire OMB No.: 1905-0092, Expiring February 29, 2004 19 Section D: SPACE HEATING

48

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

49

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

50

Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia  

E-Print Network (OSTI)

Slovak Centre of Biomass Use for Energy Slovakia 1 Wood Fired Heating Plant in Slovakia Energy energy User behaviour ESCOs Biomass Education Architects and engineers Wind Other Financial institutions;Slovak Centre of Biomass Use for Energy Slovakia 2 Biomass is considered as the most perspective

51

Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia  

E-Print Network (OSTI)

Slovak Centre of Biomass Use for Energy Slovakia 1 Wood Fired Heating Plant in Slovakia Energy energy User behaviour ESCOs Biomass Education Architects and engineers Wind Other Financial institutions countries it is already implemented for several years. #12;Slovak Centre of Biomass Use for Energy Slovakia

52

Restricted-Orientation Convexity in Higher-Dimensional Spaces Eugene Fink Derick Wood  

E-Print Network (OSTI)

Restricted-Orientation Convexity in Higher-Dimensional Spaces Eugene Fink Derick Wood University of Waterloo, Waterloo, Ont., Canada N2L3G1 {efink, dwood}@violet.waterloo.edu ABSTRACT A restricted-oriented convex set is a set whose intersection with any line from a fixed set of orientations is either empty

Fink, Eugene

53

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

54

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

55

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal...

56

Klamath Apartment Buildings (13) Space Heating Low Temperature...  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

57

Merle West Medical Center Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

58

Thulium heat sources for space power applications  

DOE Green Energy (OSTI)

Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

Alderman, C.J.

1992-05-01T23:59:59.000Z

59

Final report on the use of wood as a heat source and the quality of insulation in Vermont households  

SciTech Connect

The State of Vermont Energy Office conducted a study to provide the quantitative attitudinal and behavioral information essential to assessing the use of wood as a heat source in the state. General results show that 54% of all home owners in Vermont burn wood to some degree, 47% use wood as a supplementary heat source, 9% use wood as a primary source, and the extent to which wood is used does not differ by geographic area. Results on household uses (cooking and heating) are summarized. A summary of queries on insulation attitudes, awareness, and practices shows that a majority of homeowners believe they have adequate insulation, but are unaware of R factor. In Vermont, about one-fourth of homeowners improved their insulation in the last three years. (MCW)

1976-01-01T23:59:59.000Z

60

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Using the sun and waste wood to heat a central Ohio home. Final technical report  

DOE Green Energy (OSTI)

The description of a house in Ohio built on a south facing slope with two levels above ground on the north, east, and west sides and three levels exposed to the southern winter Sun is presented. The floor plan, a general history of the project, the operation of the system, the backup heat source (wood), the collection of data, and the procedure for determining actual heat loss are described. Additionally, the calculation of the solar contribution percentage and the amount of mass to be included in the greenhouse and problems with an indirect gain wall are discussed. The location of the wood stove in the system is noted. The east wall temperature data are given. Soil temperature, air infiltration, thermal comfort, and energy usage are discussed. (MCW).

Not Available

1981-01-01T23:59:59.000Z

62

Development and testing of an automated wood-burning heating system. Final report  

DOE Green Energy (OSTI)

An improved wood continuous, automated combustion system has been developed using a tunnel burner. The tunnel burner implemented into a boiler heating system has proven to be very efficient. The prototype was tested and evaluated. A second generation tunnel system was designed and fabricated. Work performed between April 1980 and April 1981 is summarized. The most important results of the project are: the finalized tunnel burner design; high combustion efficiency; and low air pollution emissions. 3 tables. (DMC)

Not Available

1981-05-01T23:59:59.000Z

63

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

DOE Green Energy (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

64

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

65

Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis  

Science Conference Proceedings (OSTI)

Thermal decomposition of 25.4 mm diameter dry wood spheres is studied both experimentally and theoretically. Wood spheres were pyrolyzed in a vertical tube furnace at temperatures ranging from 638 K to 879 K. Mass loss and temperatures of the sample were measured during pyrolysis. Center temperature measurements showed two distinct thermal events consisting of sequential endothermic and exothermic reactions. A numerical investigation of these endo/exothermic reactions using various pyrolysis kinetics models was conducted to determine the pyrolysis mechanism and the heats of the pyrolysis reactions. A comparison of the experimental and numerical results showed that (i) Contrary to the suggestions in the literature, the contributions of the secondary tar decomposition and lignin decomposition to the center temperature exothermic peak are small. (ii) Exothermic decomposition of the intermediate solid is responsible for the center temperature peak. (iii) The center temperature plateau is caused by the endothermic decomposition of cellulose. (iv) Internal pressure generation was found to be quite important because it controls the pyrolyzate mass transfer and thus affects both the heat transfer and the residence time of the pyrolysis gases for secondary decomposition. Based on the experimental and numerical results, a new wood pyrolysis model is proposed. The model consists of three endothermic parallel reactions producing tar, gas and intermediate solid and subsequent exothermic decomposition of the intermediate solid to char and exothermic decomposition of tar to char and gas. The proposed pyrolysis model shows good agreement with the experiments. Pressure calculations based on the new pyrolysis model revealed that high pressure is generated inside the biomass particle during pyrolysis and sample splitting was observed during the experiments. The splitting is due to both weakening of the structure and internal pressure generation during pyrolysis. At low heating rates, structural weakness is the primary factor, whereas at high heating rates, internal pressure is the determining factor. It is expected that moisture, while not considered in this work will have a similar effect, but at lower temperatures. (author)

Park, Won Chan; Atreya, Arvind [Department of Mechanical Engineering, University of Michigan, 2158 GGBL 2350 Hayward St., Ann Arbor, MI 48109 (United States); Baum, Howard R. [Department of Fire Protection Engineering, University of Maryland, 3106-D J.M. Patterson Building, College Park, MD 20742 (United States)

2010-03-15T23:59:59.000Z

66

A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements  

SciTech Connect

The heat pulse method is widely used to measure water flux through plants; it works by inferring the velocity of water through a porous medium from the speed at which a heat pulse is propagated through the system. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale; and consequently, to up-scale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for estimating the wood thermal diffusivity and probe spacing simutaneously from in-situ heat response curves collected by the implanted probes of a heat ratio apparatus. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require known probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential to obtain reliable and accurate solutions. When applied to field conditions, these tests are conducted during different seasons and automated using the existing data logging system. The seasonality of wood thermal diffusivity is obtained as a by-product of the parameter estimation process, and it is shown to be affected by both moisture content and temperature. Empirical factors are often introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and they are estimated in this study as well. The proposed methodology can be applied for the calibration of existing heat ratio sap flow systems at other sites. It is especially useful when an alternative transpiration calibration device, such as a lysimeter, is not available.

Chen, Xingyuan; Miller, Gretchen R.; Rubin, Yoram; Baldocchi, Dennis

2012-09-13T23:59:59.000Z

67

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

68

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

69

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa...

70

Building Technologies Office: Space Heating and Cooling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

(HVAC) and refrigeration. DOE is conducting research into integration of optimized heat exchanger designs into new products and space conditioning systems. DOE projects...

71

Heat pipe technology development for high temperature space radiator applications  

SciTech Connect

Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

1984-01-01T23:59:59.000Z

72

Space Heating & Cooling Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating & Cooling Research Space Heating & Cooling Research Space Heating & Cooling Research The Emerging Technology team conducts research in space heating and cooling technologies, with a goal of realizing aggregate energy savings of 20% relative to a 2010 baseline. In addition to work involving the development of products, the U.S. Department of Energy (DOE), along with industry partners and researchers, develops best practices, tests, and guides designed to reduce market barriers and increase public awareness of these energy saving technologies. Research is currently focusing on: Geothermal Heat Pumps Photo of a home with a geothermal heat pump, showing how it can regulate the temperature of a home using the temperature underground to cool warm air or heat cold air.

73

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

DOE Green Energy (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

74

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

75

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

76

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

77

Residential space heating cost: geothermal vs conventional systems  

SciTech Connect

The operating characteristics and economies of several representative space heating systems are analyzed. The analysis techniques used may be applied to a larger variety of systems than considered herein, thereby making this document more useful to the residential developer, heating and ventilating contractor, or homeowner considering geothermal space heating. These analyses are based on the use of geothermal water at temperatures as low as 120/sup 0/F in forced air systems and 140/sup 0/F in baseboard convection and radiant floor panel systems. This investigation indicates the baseboard convection system is likely to be the most economical type of geothermal space heating system when geothermal water of at least 140/sup 0/F is available. Heat pumps utilizing water near 70/sup 0/F, with negligible water costs, are economically feasible and they are particularly attractive when space cooling is included in system designs. Generally, procurement and installation costs for similar geothermal and conventional space heating systems are about equal, so geothermal space heating is cost competitive when the unit cost of geothermal energy is less than or equal to the unit cost of conventional energy. Guides are provided for estimating the unit cost of geothermal energy for cases where a geothermal resource is known to exist but has not been developed for use in residential space heating.

Engen, I.A.

1978-02-01T23:59:59.000Z

78

Heat pipe nuclear reactor for space power  

SciTech Connect

A heat-pipe cooled nuclear reactor has been designed to provide 3.2 MW(t) to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat pipe temperature of 1675/sup 0/K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum, lithium vapor, heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO/sub 2/ pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber and a BeO reflector containing boron loaded control drums.

Koenig, D.R.

1976-01-01T23:59:59.000Z

79

Heat pipe reactors for space power applications  

SciTech Connect

A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kW(e) and operate in the temperature range 1200 to 1700/sup 0/K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO/sub 2/. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor.

Koenig, D.R.; Ranken, W.A.; Salmi, E.W.

1977-01-01T23:59:59.000Z

80

Energy Basics: Space Heating and Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating...

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Burgdorf Hot Springs Sector Geothermal energy Type Space Heating Location Burgdorf, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

82

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

83

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating.

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

84

Ft Bidwell Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ft Bidwell Space Heating Low Temperature Geothermal Facility Ft Bidwell Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ft Bidwell Space Heating Low Temperature Geothermal Facility Facility Ft Bidwell Sector Geothermal energy Type Space Heating Location Ft. Bidwell, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

85

Medical Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility Facility Medical Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

86

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081°, -84.6810381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

87

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Space Heating Location Ukiah, California Coordinates 39.1501709°, -123.2077831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

88

Jump Steady Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jump Steady Resort Space Heating Low Temperature Geothermal Facility Facility Jump Steady Resort Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178°, -106.1311288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

89

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

90

Stroppel Hotel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Stroppel Hotel Space Heating Low Temperature Geothermal Facility Facility Stroppel Hotel Sector Geothermal energy Type Space Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

91

Van Norman Residences Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Norman Residences Space Heating Low Temperature Geothermal Facility Norman Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Van Norman Residences Space Heating Low Temperature Geothermal Facility Facility Van Norman Residences Sector Geothermal energy Type Space Heating Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

92

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124°, -116.5016784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

93

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility Ouray Municipal Pool Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

94

Canon City Area Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canon City Area Space Heating Low Temperature Geothermal Facility Canon City Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Canon City Area Space Heating Low Temperature Geothermal Facility Facility Canon City Area Sector Geothermal energy Type Space Heating Location Canon City, Colorado Coordinates 38.439949°, -105.226097° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

95

Chena Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Space Heating Low Temperature Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Type Space Heating Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

96

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

(Poncha Spring) Space Heating Low Temperature Geothermal (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Facility Salida Hot Springs (Poncha Spring) Sector Geothermal energy Type Space Heating Location Salida, Colorado Coordinates 38.5347193°, -105.9989022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

97

Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Memorial Hospital Space Heating Low Temperature Geothermal Facility Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility Facility Modesto Memorial Hospital Sector Geothermal energy Type Space Heating Location Modesto, California Coordinates 37.6390972°, -120.9968782° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

98

Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Facility Peppermill Hotel Casino Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

99

Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Lodge Space Heating Low Temperature Geothermal Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Glenwood Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376°, -107.3247762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

100

St. Mary's Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mary's Hospital Space Heating Low Temperature Geothermal Facility Mary's Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name St. Mary's Hospital Space Heating Low Temperature Geothermal Facility Facility St. Mary's Hospital Sector Geothermal energy Type Space Heating Location Pierre, South Dakota Coordinates 44.3683156°, -100.3509665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Facility Steamboat Villa Hot Springs Spa Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

102

YMCA Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

YMCA Space Heating Low Temperature Geothermal Facility YMCA Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name YMCA Space Heating Low Temperature Geothermal Facility Facility YMCA Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

103

Vale Slaughter House Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Vale Slaughter House Space Heating Low Temperature Geothermal Facility Vale Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility Vale Slaughter House Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055°, -117.2382311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

104

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Private Wells Space Heating Low Temperature Geothermal Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Facility Pagosa Springs Private Wells Sector Geothermal energy Type Space Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

105

Avila Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Avila Hot Springs Space Heating Low Temperature Geothermal Facility Facility Avila Hot Springs Sector Geothermal energy Type Space Heating Location San Luis Obispo, California Coordinates 35.2827524°, -120.6596156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

106

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters Hot Spring Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

107

Maywood Industries of Oregon Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Maywood Industries of Oregon Space Heating Low Temperature Geothermal Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Facility Maywood Industries of Oregon Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

108

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot Springs Sector Geothermal energy Type Space Heating Location Bozeman, Montana Coordinates 45.68346°, -111.050499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

109

Radium Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Radium Hot Springs Space Heating Low Temperature Geothermal Facility Radium Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

110

Cedarville Elementary & High School Space Heating Low Temperature  

Open Energy Info (EERE)

Cedarville Elementary & High School Space Heating Low Temperature Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Facility Cedarville Elementary & High School Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606°, -120.1732781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

111

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Spring Sector Geothermal energy Type Space Heating Location Bakersfield, California Coordinates 35.3732921°, -119.0187125° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

112

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004°, -93.0551795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

113

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot Springs Resort Sector Geothermal energy Type Space Heating Location Missoula County, Montana Coordinates 47.0240503°, -113.6869923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

114

Klamath Schools (7) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schools (7) Space Heating Low Temperature Geothermal Facility Schools (7) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Schools (7) Space Heating Low Temperature Geothermal Facility Facility Klamath Schools (7) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

115

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Facility Shoshone Motel & Trailer Park Sector Geothermal energy Type Space Heating Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

116

Olene Gap Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Olene Gap Space Heating Low Temperature Geothermal Facility Olene Gap Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal energy Type Space Heating Location Klamath County, Oregon Coordinates 42.6952767°, -121.6142133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

117

Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hospital Space Heating Low Temperature Geothermal Facility Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Surprise Valley Hospital Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606°, -120.1732781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

118

Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Facility Wiesbaden Motel & Health Resort Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

Marlin Hospital Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Marlin Hospital Space Heating Low Temperature Geothermal Facility Marlin Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Marlin Hospital Space Heating Low Temperature Geothermal Facility Facility Marlin Hospital Sector Geothermal energy Type Space Heating Location Marlin, Texas Coordinates 31.3062874°, -96.8980439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

White Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sulphur Springs Space Heating Low Temperature Geothermal Facility Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility White Sulphur Springs Sector Geothermal energy Type Space Heating Location White Sulphur Springs, Montana Coordinates 46.548277°, -110.9021561° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Facility Hillbrook Nursing Home Sector Geothermal energy Type Space Heating Location Clancy, Montana Coordinates 46.4652096°, -111.9863826° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

122

Miracle Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Springs Sector Geothermal energy Type Space Heating Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

123

LDS Wardhouse Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

LDS Wardhouse Space Heating Low Temperature Geothermal Facility LDS Wardhouse Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Wardhouse Space Heating Low Temperature Geothermal Facility Facility LDS Wardhouse Sector Geothermal energy Type Space Heating Location Newcastle, Utah Coordinates 37.6666413°, -113.549406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

124

LDS Church Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

LDS Church Space Heating Low Temperature Geothermal Facility LDS Church Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Church Space Heating Low Temperature Geothermal Facility Facility LDS Church Sector Geothermal energy Type Space Heating Location Almo, Idaho Coordinates 42.1001924°, -113.6336192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

125

The Wilderness Lodge Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

The Wilderness Lodge Space Heating Low Temperature Geothermal Facility The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Facility The Wilderness Lodge Sector Geothermal energy Type Space Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

126

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Facility Senior Citizens' Center Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

127

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Facility Schutz's Hot Spring Sector Geothermal energy Type Space Heating Location Crouch, Idaho Coordinates 44.1151717°, -115.970954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

128

Mount Princeton Area Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Area Space Heating Low Temperature Geothermal Facility Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Mount Princeton Area Space Heating Low Temperature Geothermal Facility Facility Mount Princeton Area Sector Geothermal energy Type Space Heating Location Mount Princeton, Colorado Coordinates 38.749167°, -106.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

129

Baranof Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Space Heating Low Temperature Geothermal Facility Facility Baranof Sector Geothermal energy Type Space Heating Location Sitka, Alaska Coordinates 57.0530556°, -135.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

130

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145°, -112.78476° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

131

Vale Residences Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Residences Space Heating Low Temperature Geothermal Facility Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Residences Space Heating Low Temperature Geothermal Facility Facility Vale Residences Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055°, -117.2382311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

132

Cotulla High School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Cotulla High School Space Heating Low Temperature Geothermal Facility Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility Facility Cotulla High School Sector Geothermal energy Type Space Heating Location Cotulla, Texas Coordinates 28.436934°, -99.2350322° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

133

Melozi Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Space Heating Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Space Heating Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

134

Indian Valley Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley Hospital Space Heating Low Temperature Geothermal Facility Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian Valley Hospital Sector Geothermal energy Type Space Heating Location Greenville, California Coordinates 40.1396126°, -120.9510675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

135

Lakeview Residences Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lakeview Residences Space Heating Low Temperature Geothermal Facility Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility Facility Lakeview Residences Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

136

Boulder Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot Springs Sector Geothermal energy Type Space Heating Location Boulder, Montana Coordinates 46.2365947°, -112.1208336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

137

Langel Valley Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Langel Valley Space Heating Low Temperature Geothermal Facility Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel Valley Sector Geothermal energy Type Space Heating Location Bonanza, Oregon Coordinates 42.1987607°, -121.4061076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

138

Henley High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Henley High School Space Heating Low Temperature Geothermal Facility Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility Henley High School Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

139

Broadwater Athletic Club & Hot Springs Space Heating Low Temperature  

Open Energy Info (EERE)

Athletic Club & Hot Springs Space Heating Low Temperature Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Facility Broadwater Athletic Club & Hot Springs Sector Geothermal energy Type Space Heating Location Helena, Montana Coordinates 46.6002123°, -112.0147188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

140

Homestead Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Resort Space Heating Low Temperature Geothermal Facility Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Resort Space Heating Low Temperature Geothermal Facility Facility Homestead Resort Sector Geothermal energy Type Space Heating Location Hot Springs, Virginia Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility Facility Cottonwood Hot Springs Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178°, -106.1311288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

142

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Jackson, Montana Coordinates 45.3679793°, -113.4089438° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

143

Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Motel Space Heating Low Temperature Geothermal Facility Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box Canyon Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

144

Ophir Creek Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ophir Creek Space Heating Low Temperature Geothermal Facility Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek Sector Geothermal energy Type Space Heating Location SW, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

145

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Modoc High School Space Heating Low Temperature Geothermal Facility Modoc High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc High School Sector Geothermal energy Type Space Heating Location Alturas, California Coordinates 41.4871146°, -120.5424555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

146

East Middle School and Cayuga Community College Space Heating Low  

Open Energy Info (EERE)

Middle School and Cayuga Community College Space Heating Low Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Facility East Middle School and Cayuga Community College Sector Geothermal energy Type Space Heating Location Auburn, New York Coordinates 42.9317335°, -76.5660529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

147

Indian Springs School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

School Space Heating Low Temperature Geothermal Facility School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs School Space Heating Low Temperature Geothermal Facility Facility Indian Springs School Sector Geothermal energy Type Space Heating Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

148

Manley Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Space Heating Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

Klamath Residence (500) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Residence (500) Space Heating Low Temperature Geothermal Facility Residence (500) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Residence (500) Space Heating Low Temperature Geothermal Facility Facility Klamath Residence (500) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

151

Klamath Churches (5) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Churches (5) Space Heating Low Temperature Geothermal Facility Churches (5) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Churches (5) Space Heating Low Temperature Geothermal Facility Facility Klamath Churches (5) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

152

Klamath County Jail Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

County Jail Space Heating Low Temperature Geothermal Facility County Jail Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath County Jail Space Heating Low Temperature Geothermal Facility Facility Klamath County Jail Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

153

Merle West Medical Center Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Merle West Medical Center Space Heating Low Temperature Geothermal Facility Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal Facility Facility Merle West Medical Center Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

154

Lava Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs Sector Geothermal energy Type Space Heating Location Lava Hot Springs, Idaho Coordinates 42.6193625°, -112.0110712° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

155

Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rio Hot Springs Space Heating Low Temperature Geothermal Facility Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility Del Rio Hot Springs Sector Geothermal energy Type Space Heating Location Preston, Idaho Coordinates 42.0963133°, -111.8766173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

156

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's Hot Springs Resort Sector Geothermal energy Type Space Heating Location Genoa, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

Utah State Prison Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Prison Space Heating Low Temperature Geothermal Facility Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State Prison Sector Geothermal energy Type Space Heating Location Salt Lake City, Utah Coordinates 40.7607793°, -111.8910474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

158

Twin Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Springs Resort Space Heating Low Temperature Geothermal Facility Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Space Heating Low Temperature Geothermal Facility Facility Twin Springs Resort Sector Geothermal energy Type Space Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

159

Twin Peaks Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Peaks Motel Space Heating Low Temperature Geothermal Facility Peaks Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Peaks Motel Space Heating Low Temperature Geothermal Facility Facility Twin Peaks Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

160

Health Spa Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Health Spa Space Heating Low Temperature Geothermal Facility Health Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Health Spa Space Heating Low Temperature Geothermal Facility Facility Glenwood Springs Health Spa Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376°, -107.3247762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Facility Geronimo Springs Museum Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

162

Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility Arrowhead Hot Springs Sector Geothermal energy Type Space Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

163

Medical Center Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Medical Center Space Heating Low Temperature Geothermal Facility Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Center Space Heating Low Temperature Geothermal Facility Facility Medical Center Sector Geothermal energy Type Space Heating Location Caliente, Nevada Coordinates 37.6149648°, -114.5119378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

164

Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector Geothermal energy Type Space Heating Location Hot Sulphur Springs, Colorado Coordinates 40.0730411°, -106.1027991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

165

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs Sector Geothermal energy Type Space Heating Location Inyo County, California Coordinates 36.3091865°, -117.5495846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

166

Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility Facility Saratoga Springs Resort Sector Geothermal energy Type Space Heating Location Lehi, Utah Coordinates 40.3916172°, -111.8507662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

167

Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Space Heating Location Ketchikan, Alaska Coordinates 55.3422222°, -131.6461111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

168

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner Springs Ranch Resort Sector Geothermal energy Type Space Heating Location San Diego, California Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

169

Jackson Well Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Well Springs Space Heating Low Temperature Geothermal Facility Well Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well Springs Sector Geothermal energy Type Space Heating Location Ashland, Oregon Coordinates 42.1853257°, -122.6980457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

170

Banbury Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Space Heating Low Temperature Geothermal Facility Facility Banbury Hot Springs Sector Geothermal energy Type Space Heating Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

171

Long titanium heat pipes for high-temperature space radiators  

SciTech Connect

Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D-shaped cross-section container configuration. A prototype titanium heat pipe, 5.5-m long, has been fabricated and tested in space-simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

Girrens, S.P.; Ernst, D.M.

1982-01-01T23:59:59.000Z

172

Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001  

DOE Green Energy (OSTI)

This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

Krishna, C. R.

2004-05-01T23:59:59.000Z

173

Table HC3-1a. Space Heating by Climate Zone, Million U.S ...  

U.S. Energy Information Administration (EIA)

Table HC3-1a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone1 RSE

174

Table CE2-5.1u. Space-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household ... Total Households Using a Major Space-Heating

175

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

176

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

177

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

178

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

179

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

180

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vibration test plan for a space station heat pipe subassembly  

SciTech Connect

This test plan describes the Sundstrand portion of task two of Los Alamos National Laboratory (LANL) contract 9-x6H-8102L-1. Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a potassium liquid metal heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. The test objective is to expose the heat pipe subassembly to the random vibration environment which simulates the space shuttle launch condition. The results of the test will then be used to modify as required future designs of the heat pipe.

Parekh, M.B. [Sundstrand Energy Systems, Rockford, IL (United States)

1987-09-29T23:59:59.000Z

182

Retrofitting Combined Space and Water Heating Systems: Laboratory Tests  

SciTech Connect

Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

2012-10-01T23:59:59.000Z

183

Total U.S. Main Space Heating Fuel Used U.S. Using Any Households ...  

U.S. Energy Information Administration (EIA)

Average Heating Degree Days by Main Space Heating Fuel Used, ... 2005 Residential Energy Consumption Survey: ... Any Fuel Natural Gas Fuel Oil Age of Main Heating ...

184

Determining the temperature field for cylinder symmetrical heat conduction problems in unsteady heat conduction in finite space  

Science Conference Proceedings (OSTI)

This paper proposes to present a new method to calculate unsteady heat conduction for cylinder symmetrical geometry. We will investigate the situation where the temperature field and heat flux created around a heat source placed in finite space are determined. ... Keywords: Garbai's integral equation, Laplace transformation, determining the temperate field, district heating pipes, geothermal producing pipe, heat flux density, heat loss, heat pump

Lszl Garbai; Szabolcs Mhes

2007-05-01T23:59:59.000Z

185

Circle Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Circle Hot Springs Sector Geothermal energy Type Space Heating Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

186

Buckhorn Mineral Wells Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Space Heating Location Mesa, Arizona Coordinates 33.4222685°, -111.8226402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

187

Chico Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Chico Hot Springs Sector Geothermal energy Type Space Heating Location Pray, Montana Coordinates 45.3802143°, -110.6815999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

Jemez Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector Geothermal energy Type Space Heating Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Breitenbush Hot Springs Sector Geothermal energy Type Space Heating Location Marion County, Oregon Coordinates 44.8446393°, -122.5927411° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

190

Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Space Heating Location Fairmont, Montana Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

191

Low Temperature Direct Use Space Heating Geothermal Facilities | Open  

Open Energy Info (EERE)

Low Temperature Direct Use Space Heating Geothermal Facilities Low Temperature Direct Use Space Heating Geothermal Facilities Jump to: navigation, search Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":800,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":"Geothermal

192

Passive space heating with a self-pumping vapor system  

DOE Green Energy (OSTI)

In this system, which should be useful for space or water heating, a refrigerant is evaporated in a solar collector and condensed within thermal storage located in the building below the collector. The vapor pressure generated in the collector periodically forces the condensed liquid upward to the location of the collector. This paper reports results of an operational test, in which this system provided passive space heating for an outdoor test cell during a winter season. The daily average energy yield and the elevation of collector temperature caused by self-pumping are reported, as well as observations on failure modes, system reliability, and suggestions for a practical configuration.

Hedstrom, J.C.; Neeper, D.A.

1986-01-01T23:59:59.000Z

193

Feasibility study for aquaculture and space heating, Ft. Bidwell, California  

DOE Green Energy (OSTI)

Expansion of the aquaculture facilities and geothermal space heating at Ft. Bidwell, California were investigated. The lack of cold water is the limiting factor for aquaculture expansion and is also a problem for the town domestic water supply. A new cold water well approximately 1200 feet deep would provide for the aquaculture expansion and additional domestic water. A 2900 foot test well can be completed to provide additional hot water at approximately 200/sup 0/F and an estimated artesian flow of 500 gpm. If these wells are completed, the aquaculture facility could be expanded to produce 6000 two pound catfish per month on a continuous basis and provide space heating of at least 20 homes. The design provided allows for heating 11 homes initially with possible future expansion. 9 figs.

Culver, G.

1985-10-01T23:59:59.000Z

194

Transient performance investigation of a space power system heat pipe  

SciTech Connect

Start-up, shut-down, and peak power tests have been conducted with a molybdenum-lithium heat pipe at temperatures to 1500 K. The heat pipe was radiation coupled to a water cooled calorimeter for the tests with rf induction heating used for the input to the evaporator region. Maximum power throughput in the tests was 36.8 kw corresponding to a power density of 23 kw/cm/sup 2/ for the 1.4 cm diameter vapor space of the annular wick heat pipe. The corresponding evaporator flux density was approximately 150 w/cm/sup 2/ over an evaporator length of 40 cm at peak power. Condenser length for the tests was approximately 3.0 m. A variable geometry radiation shield was used to vary the load on the heat pipe during the tests. Results of the tests showed that liquid depletion in the evaporator region of the heat pipe could occur in shut-down and prevent restart of the heat pipe. Changes in surface emissivity of the heat pipe condenser surface were shown to affect the shut-down and re-start limits. 12 figs.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

1986-01-01T23:59:59.000Z

195

Transient heat pipe investigations for space power systems  

SciTech Connect

A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm/sup 2/ for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm/sup 2/ over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

1985-01-01T23:59:59.000Z

196

Active space heating and hot water supply with solar energy  

DOE Green Energy (OSTI)

Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

Karaki, S.; Loef, G. O.G.

1981-04-01T23:59:59.000Z

197

www.mdpi.org/ijms The Effects of Heat Treatment on the Physical Properties and Surface Roughness of Turkish Hazel (Corylus colurna L.) Wood  

E-Print Network (OSTI)

Abstract: Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L.) wood were examined. Samples obtained from Kastamonu Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for different durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p = 0.05) between physical properties and surface roughness parameters (Ra,Rz, Ry, Rq) for three temperatures and threeInt. J. Mol. Sci. 2008, 9 1773 durations of heat treatment. The results showed that the values of density, swelling and

Derya Sevim Korkut; Sleyman Korkut; Ilter Bekar; Mehmet Budak?; Tuncer Dilik; Nevzat ak?c?er

2008-01-01T23:59:59.000Z

198

Consumer thermal energy storage costs for residential hot water, space heating and space cooling systems  

DOE Green Energy (OSTI)

The cost of household thermal energy storage (TES) in four utility service areas that are representative for hot water, space heating, and space cooling systems in the United States is presented. There are two major sections of the report: Section 2.0 is a technology characterization of commercially available and developmental/conceptual TES systems; Section 3.0 is an evaluation of the consumer cost of the three TES systems based on typical designs in four utility service areas.

None

1976-11-30T23:59:59.000Z

199

Wood pellet production  

Science Conference Proceedings (OSTI)

Southern Energy Limited's wood pellet refinery, Bristol, Florida, produces wood pellets for fuel from scrap wood from a nearby sawmill and other hog fuel delivered to the plant from nearby forest lands. The refinery will provide 50,000 tons of pellets per year to the Florida State Hospital at Chattahoochee to fire recently converted boilers in the central power plant. The pellets are densified wood, having a moisture content of about 10% and a heating value of 8000 Btu/lb. They are 0.5 inches in diameter and 2 to 3 inches in length.

Moore, J.W.

1983-08-01T23:59:59.000Z

200

On Variations of Space-heating Energy Use in Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

On Variations of Space-heating Energy Use in Office Buildings Title On Variations of Space-heating Energy Use in Office Buildings Publication Type Journal Article LBNL Report...

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar energy collector for mounting over windows of buildings for space heating thereof  

SciTech Connect

The ornamental design for a solar energy collector for mounting over windows of buildings for space heating thereof, as shown.

Arrington, P.M.

1982-09-07T23:59:59.000Z

202

Space Heating Trends in Prince Edward Island and Nova Scotia1 Mandeep Dhaliwal and Larry Hughes  

E-Print Network (OSTI)

in energy intensity. The residential sector uses energy for space heating, water heating, appliances Heating 60% Water Heating 21% Appliances 13% Lighting 5% Space Cooling 1% Figure 1: Residential Sector Scotia's energy policy goes one step further and supports R-2000 and Energuide for new houses (NSDOE

Hughes, Larry

203

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different outdoor temperatures are obtained, and the heating load of the manufactured space is analyzed. The relationship between the envelope internal surface temperature and the workspace temperature is also analyzed in this paper. CFD simulation software is used to simulate the temperature field and the envelope's internal surface temperature of the manufacture space with hot-air heating system. Comparison and analysis of heating loads are done between the manufactured spaces with convection heating and radiant heating systems.

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

204

How Wood Chip Size Affects Pretreatment Effectiveness of Woody Biomass for Biological Processing  

E-Print Network (OSTI)

Parameters employed for heating of wood chips employed inParameters employed for heating of wood chips employed inW.T. , 2006. Estimating heating times of wood boards, square

Tam, Jerry

2013-01-01T23:59:59.000Z

205

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

206

"Table HC14.4 Space Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by West Census Region, 2005" 4 Space Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Space Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Space Heating Equipment",1.2,0.7,"Q",0.7 "Have Main Space Heating Equipment",109.8,23.4,7.5,16 "Use Main Space Heating Equipment",109.1,22.9,7.4,15.4 "Have Equipment But Do Not Use It",0.8,0.6,"Q",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,14.7,4.6,10.1 "Central Warm-Air Furnace",44.7,11.4,4,7.4

207

"Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Midwest Census Region, 2005" 4 Space Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N" "Have Main Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Main Space Heating Equipment",109.1,25.6,17.7,7.9 "Have Equipment But Do Not Use It",0.8,"N","N","N" "Main Heating Fuel and Equipment"

208

Survey of advanced-heat-pump developments for space conditioning  

SciTech Connect

A survey of heat pump projects with special emphasis on those supported by DOE, EPRI, and the Gas Research Institute is presented. Some historical notes on heat pump development are discussed. Market and equipment trends, well water and ground-coupled heat pumps, heat-actuated heat pump development, and international interest in heat pumps are also discussed. 30 references.

Fairchild, P.D.

1981-01-01T23:59:59.000Z

209

"Table HC13.4 Space Heating Characteristics by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by South Census Region, 2005" 4 Space Heating Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Space Heating Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N","Q" "Have Main Space Heating Equipment",109.8,40.3,21.4,6.9,12 "Use Main Space Heating Equipment",109.1,40.1,21.2,6.9,12 "Have Equipment But Do Not Use It",0.8,"Q","Q","N","N"

210

Wood and energy in connecticut. Staff report  

SciTech Connect

Telephone surveys of Connecticut households conducted in 1979 indicate a transition to wood heating in response to a series of conventional energy price increases and uncertainty in conventional energy supplies. Connecticut households consumed 668,000 cords of wood in the winter of 1978-79. The airtight wood stove has become the most commonly used wood-burning apparatus. Survey data of residential wood cutting, purchasing, and burning were analyzed by household tenure, wood-burning apparatus, and county. Residential use of wood for energy constitutes a new demand on the forest resource, increases local income and employment, displaces fuel oil and electricity, but may compromise household safety.

Bailey, M.R.; Wheeling, P.R.; Lenz, M.I.

1983-03-01T23:59:59.000Z

211

Air-Source Heat Pumps for Residential and Light Commercial Space Conditioning Applications  

Science Conference Proceedings (OSTI)

This technology brief provides the latest information on current and emerging air-source heat pump technologies for space heating and space cooling of residential and light commercial buildings. Air-source heat pumps provide important options that can reduce ownership costs while reducing noise and enhancing reliability and customer comfort. The tech brief also describes new air-source heat pumps with an important load shaping and demand response option.

2008-12-15T23:59:59.000Z

212

Focus on Energy - Commercial Solar Space-Heating Grant (WPS Customers...  

Open Energy Info (EERE)

Summary Focus on Energy (FOE) and Wisconsin Public Service (WPS) are partnering to offer solar space-heating grants for feasibility studies and installations. Commercial projects...

213

Modeling Space Heating Demand in Massachusetts Housing Stock and the Implications for Climate Change Mitigation Policy.  

E-Print Network (OSTI)

??This research examines variation in average household energy consumption for space heating in municipalities in Massachusetts in order to explore the magnitude of variation among (more)

Robinson, Nathan H.

2011-01-01T23:59:59.000Z

214

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

215

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

216

"Table HC4.4 Space Heating Characteristics by Renter-Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC4.4 Space Heating...

217

Table SH3. Total Consumption for Space Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Natural Gas (billion cf) Major Fuels Used 4 (physical units) Table SH3. Total Consumption for Space Heating by Major Fuels Used, 2005 Physical Units

218

"Table HC11.4 Space Heating Characteristics by Northeast Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC11.4 Space Heating...

219

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

220

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

222

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

223

Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump  

DOE Green Energy (OSTI)

Our goal was to design and monitor a hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a micro-computer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Micro-computer hardware and computer programs were developed to make cost effective decisions between the various modes of operation. Although recent advances in micro-computer hardware make similar control systems more readily achievable utilizing standard components, attention to the decision making criteria will always be required.

Shirley, J.W.; James, L.C.; Stevens, S.; Autry, A.N.; Nussbaum, M.; MacQueen, S.V.

1983-06-22T23:59:59.000Z

224

Space heating systems in the Northwest: energy usage and cost analysis  

DOE Green Energy (OSTI)

The question of energy usage and cost of providing space heat in the Northwest is discussed. Though space heating needs represents only 18% of the U.S.'s total energy consumption, it nevertheless appears to offer the greatest potential for conservation and near term applications of alternate energy sources. Efficiency and economic feasibility factors are considered in providing for space heating demands. These criteria are presented to establish energy usage, cost effectiveness and beneficial conservation practices for space heating of residential, commercial, and industrial buildings. Four Northwestern cities have been chosen whose wide range of climate conditions are used to formulate the seasonal fuel and capital cost and hence the annual heating cost covering a broad spectrum of heating applications, both the traditional methods, the newer alternate forms of energy, and various methods to achieve more efficient utilization of all types.

Keller, J.G.; Kunze, J.F.

1976-01-01T23:59:59.000Z

225

Space heating systems in the Northwest: energy usage and cost analysis  

SciTech Connect

The question of energy usage and cost of providing space heat in the Northwest is discussed. Though space heating needs represents only 18% of the U.S.'s total energy consumption, it nevertheless appears to offer the greatest potential for conservation and near term applications of alternate energy sources. Efficiency and economic feasibility factors are considered in providing for space heating demands. These criteria are presented to establish energy usage, cost effectiveness and beneficial conservation practices for space heating of residential, commercial, and industrial buildings. Four Northwestern cities have been chosen whose wide range of climate conditions are used to formulate the seasonal fuel and capital cost and hence the annual heating cost covering a broad spectrum of heating applications, both the traditional methods, the newer alternate forms of energy, and various methods to achieve more efficient utilization of all types.

Keller, J.G.; Kunze, J.F.

1976-01-01T23:59:59.000Z

226

Irregular spacing of heat sources for treating hydrocarbon containing formations  

SciTech Connect

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

227

Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters  

SciTech Connect

A description is given of the development and testing of the newly-marketed dedicated heat pump water heater (HPWH), and an analysis is presented of its performance and space conditioning impacts. This system utilizes an air-to-water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. Since a HPWH is usually installed indoors and extracts heat from the air, its operation is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. To investigate HPWH performance and a space conditioning impacts, a simulation has been developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three US geographical areas (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. In addition, the water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio (RPR) of the HPWH. The annual simulated RPRs range from 1.5 to 1.7, which indicate a substantial space heating penalty of HPWH operation in these cities.

Morrison, L.; Swisher, J.

1980-12-01T23:59:59.000Z

228

Residential wood burning: Energy modeling and conventional fuel displacement in a national sample  

SciTech Connect

This research studied the natural, built, and behavioral factors predictive of energy consumption for residential space heating with wood or conventional fuels. This study was a secondary analysis of survey data from a nationwide representative sample of 5,682 households collected DOE in the 1984-1985 REC survey. Included were: weather, census division and utility data, interviewer-supplied dwelling measurements and respondent-reported energy-related family behaviors. Linear-regression procedures were used to develop a model that identified key determinants accounting for the variability in wood consumption. A nonlinear-regression model was employed to estimate the amount of conventional fuels used for space heating. The model was also used to estimate the amount of conventional fuels being displaced by wood-heating systems. There was a significant (p {le} .05) linear relationship between the dependent variable, square root of cords burned, various independent variables.

Warsco, K.S.

1988-01-01T23:59:59.000Z

229

EIA Energy Kids - Wood - Energy Information Administration  

U.S. Energy Information Administration (EIA)

1860: Wood was the primary fuel for heating and cooking in homes and businesses, and was used for steam in industries, trains, and boats.

230

Membrane heat pipe development for space radiator applications  

SciTech Connect

A self-deploying membrane heat pipe (SMHP) is being designed and fabricated to operate in an in-cabin experiment aboard a STS flight. The heat pipe comprises a mylar membrane with a woven fabric arterial wick and R-11 as the working fluid. Preliminary results indicate that this SMHP design will successfully expand and retract in response to an applied heat load; the retraction force is provided by a constant force spring.

Woloshun, K.; Merrigan, M.

1986-01-01T23:59:59.000Z

231

"Table B21. Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Space-Heating Energy Sources, Floorspace, 1999" 1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,2651,3250,598,"Q",469,"Q" "5,001 to 10,000 ..............",8238,7090,2808,4613,573,"Q",688,"Q" "10,001 to 25,000 .............",11153,9865,5079,6069,773,307,682,"Q"

232

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

233

Space heating for office building at Glenwood Springs, Colorado  

DOE Green Energy (OSTI)

Technical assistance in a preliminary design and economic evaluation of a geothermal heating system was provided. The use of a downhole heat exchanger was evaluated, with the objective of reducing costs in this first stage of the project, but was abandoned. The low resource temperature and lack of sufficient aquifer data were the reasons for abandonment of the downhole heat exchanger concept. The use of surface plate heat exchangers was selected as the preferred approach for utilizing the geothermal resource. Brine will be passed through three plate heat exchangers in the building basement. Separate loops of clean circulating fluid will be used to extract heat from the brine in three heat exchangers, with the loops providing heat to the building, a hot tub, and a deicing system. The cooled geothermal fluid from the heat exchangers will be injected to an isolated injection zone at the bottom of the production well. Aquifer tests are required to develop final pump sizes and process flows. The information developed from the work tasks of this project is presented.

Garing, K.L.; Coury, G.E.

1982-03-01T23:59:59.000Z

234

Design and development of a titanium heat-pipe space radiator  

SciTech Connect

A titanium heat-pipe radiator has been designed for use in a 100-kW/sub e/ nuclear-thermoelectric (TE) space power plant. The radiator is required to have a 99% probability of remaining functional at full power at the end of a seven-year mission. The radiator has a conical-cylindrical shape and is compatible for launch in the space shuttle. The radiator heat pipes are arranged into panel segments and each reactor-core thermoelectric heat-pipe unit has four radiator heat pipes for redundancy. Radiator mass was minimized was based on acceptable losses due to micrometeoroid impact. Results of studies on various design parameters are presented in terms of radiator mass. Developments on the design and testing of the radiator heat pipes are also presented. Prototype titanium (potassium working fluid) heat pipes were fabricated and tested in space-simulating conditions. Testing results are compared to analytical performance predictions.

Girrens, S.P.

1982-03-01T23:59:59.000Z

235

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

DOE Green Energy (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

236

Heat recovery in building envelopes  

E-Print Network (OSTI)

Heating Research Facility (AHHRF) located in Edmonton, Alberta, Canada. The house is of standard wood

Walker, Iain S.; Sherman, Max H.

2003-01-01T23:59:59.000Z

237

Maryvale Terrace: geothermal residential district space heating and cooling  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 gpm each of 220/sup 0/F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145. Further, the cost of geothermal heating and cooling is estimated to be $47.50 per million Btu when debt service is included and $6.14 per million Btu when only operating costs are included. Operating (or fuel) costs for conventional heating and cooling are estimated to be $15.55 per million Btu.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

238

Lodging Industry Solutions: Heating and Cooling Space Conditioning Technology Guidebook  

Science Conference Proceedings (OSTI)

This guidebook provides utility representatives with a tool to help understand the lodging industry and its space conditioning needs and options. It also provides information to help build and maintain customer loyalty. The guidebook will enable utility personnel to provide additional services to their lodging clients by informing them of space conditioning choices and solutions for their facilities.

1998-12-18T23:59:59.000Z

239

Heat-pipe development for the SPAR space-power system. [100 kW(e)  

SciTech Connect

The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures.

Ranken, W.A.

1981-01-01T23:59:59.000Z

240

Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area  

DOE Green Energy (OSTI)

Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

None

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A transient heat pipe model for a multimegawatt space power application  

SciTech Connect

The Argonne ''Monolithic Solid Oxide Fuel Cell'' power generation system has been described previously. In a ''burst power'' generation mode, hundreds of megawatts of DC power would be generated for a finite time interval. An accompanying nuclear power generation system would be used to regenerate the spent reactants (hydrogen and oxygen) in this closed system for subsequent re-use. Although the Argonne space power supply was designed to be a closed system in terms of material effluents, it had to reject the waste heat from the fuel cells (which operate with approximately 70% conversion efficiency). The heat rejection method included multiple heat pipes operated in parallel to convey thermal energy from the fuel cell coolant for ultimate radiation-rejection to space. These individual heat pipes featured a convectively heated evaporator section, an adiabatic section leading out from the fuel cell chamber to space, and the condenser section radiating to space. The transient behavior of these heat rejection heat pipes was not considered previously. This paper addresses the problem, showing that the heat pipes as conceptually designed also satisfy the stringent transient power generation---heat rejection requirements of the multimegawatt power generation system. 4 refs., 4 figs.

Carlson, L.W.

1989-01-01T23:59:59.000Z

242

Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Facility Hi-Tech Fisheries Sector Geothermal energy Type Space Heating Location Bluffdale, Utah Coordinates 40.4896711°, -111.9388244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

243

City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility Facility City of Twenty-Nine Palms Sector Geothermal energy Type Space Heating Location Twenty-Nine Palms, California Coordinates 34.1355582°, -116.0541689° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

244

Hot Lake RV Park Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Park Space Heating Low Temperature Geothermal Facility Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake RV Park Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

245

Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Facility Reno-Moana Area (300) Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

246

Analysis and numerical optimization of gas turbine space power systems with nuclear fission reactor heat sources  

Science Conference Proceedings (OSTI)

A new three objective optimization technique is developed and applied to find the operating conditions for fission reactor heated Closed Cycle Gas Turbine (CCGT) space power systems at which maximum efficiency, minimum radiator area, and minimum total ...

Albert J. Juhasz / Jerzy Sawicki

2005-01-01T23:59:59.000Z

247

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

248

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

249

Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Number of Household Members, 2005 5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.0 0.8 0.5 0.5 0.7 1 to 499........................................................ 6.1 3.0 1.6 0.6 0.6 0.3 500 to 999.................................................... 27.7 11.6 8.3 3.6 2.7 1.6 1,000 to 1,499..............................................

250

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network (OSTI)

-acceptable refrigerants. Whether involving design of specific new products or refriger- ants to which the entire industryElectric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use

Oak Ridge National Laboratory

251

Performance predictions and measurements for space-power-system heat pipes  

SciTech Connect

High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000.

Prenger, F.C. Jr.

1981-01-01T23:59:59.000Z

252

Jordan Woods  

NLE Websites -- All DOE Office Websites (Extended Search)

Jordan Woods Windows and Envelope Materials Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2000 Berkeley CA 94720 Office Location: 90-2052C (510) 486-4931...

253

Drew Wood  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood Indoor Air Quality Research Collaborative drew@iaqrc.org This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This...

254

"Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by U.S. Census Region, 2005" 5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have But Do Not Use Equipment",0.8,"N","N","Q",0.6 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

255

"Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Urban/Rural Location, 2005" 5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating Equipment",109.8,46.3,18.9,22.5,22.1 "Use Space Heating Equipment",109.1,45.6,18.8,22.5,22.1 "Have But Do Not Use Equipment",0.8,0.7,"Q","N","N" "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

256

"Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Four Most Populated States, 2005" 5 Space Heating Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Space Heating Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have But Do Not Use Equipment",0.8,"N","Q","N",0.5 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

257

Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 16.4 4.5 2.1 3.2 6.2 0.3 Central Warm-Air Furnace........................ 44.7 10.0 3.3 1.4 1.6 3.3 0.3 For One Housing Unit........................... 42.9 8.6 3.3 1.2 1.4 2.4 0.3 For Two Housing Units..........................

258

Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Number of Household Members, 2005 4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and Equipment Natural Gas....................................................... 58.2 15.6 18.0 9.5 8.4 6.7 Central Warm-Air Furnace............................. 44.7 10.7 14.3 7.6 6.9 5.2 For One Housing Unit................................ 42.9 10.1 13.8 7.3 6.5 5.2 For Two Housing Units...............................

259

Estimation of heat load in waste tanks using average vapor space temperatures  

SciTech Connect

This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

Crowe, R.D.; Kummerer, M.; Postma, A.K.

1993-12-01T23:59:59.000Z

260

Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 41.8 35.3 2.8 1.2 1.0 1.6 Central Warm-Air Furnace........................ 44.7 34.8 29.7 2.3 0.7 0.6 1.4 For One Housing Unit........................... 42.9 34.3 29.5 2.3 0.6 0.6 1.4 For Two Housing Units..........................

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents (OSTI)

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

262

Wood Fuel Future: The Potential Web Text December 2010  

E-Print Network (OSTI)

and power, the wood products industry and major independent power producers also have significant production of heat and power. Table 3.1 Canadian Wood Residue Heat & Power Generation - 2003 13 Forest Products SAWMILLS LTD LACRETE 50,000 TONNE WOOD PELLET PRODUCTION IN WESTERN CANADA 2004 / 2005 PINNACLE PEL LET INC

263

Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets  

SciTech Connect

Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 540 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 2328 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 1949, 1920, 180 and 207% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 46502%, 1415 mm, 6465 mm, 11251175 kg m-3, 750770 kg m-3, 825840 kg m-3, 7374%, 18321878 MJ kg-1, 065074% and 013015%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

2013-11-01T23:59:59.000Z

264

"Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Midwest Census Region, 2005" 5 Space Heating Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Usage Indicators",,,"East North Central","West North Central" "Total U.S. Housing Units",111.1,25.6,17.7,7.9 "Do Not Have Heating Equipment",1.2,"Q","Q","N" "Have Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Space Heating Equipment",109.1,25.6,17.7,7.9 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

265

"Table HC15.4 Space Heating Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Four Most Populated States, 2005" 4 Space Heating Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Space Heating Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Main Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Main Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have Equipment But Do Not Use It",0.8,"N","Q","N",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,3.8,0.4,3.8,8.4

266

"Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Northeast Census Region, 2005" 5 Space Heating Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Space Heating Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Do Not Have Heating Equipment",1.2,"Q","Q","Q" "Have Space Heating Equipment",109.8,20.5,15.1,5.4 "Use Space Heating Equipment",109.1,20.5,15.1,5.4 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

267

"Table HC10.4 Space Heating Characteristics by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by U.S. Census Region, 2005" 4 Space Heating Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Main Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Main Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have Equipment But Do Not Use It",0.8,"N","N","Q",0.6 "Main Heating Fuel and Equipment" "Natural Gas",58.2,11.4,18.4,13.6,14.7

268

Wood as a fuel. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the availability, combustion aspects, economics, and feasibility of using wood as fuel. Topics include wood-fuel power plants, wood waste fuels, district heating systems, wood burning furnaces and appliances, and wood waste generators. (Contains a minimum of 128 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

269

Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by automatically setting back your thermostat when you are asleep or away. Read more Wood and Pellet Heating Wood and pellets are renewable fuel sources, and modern wood and...

270

Solar-assisted heat pump system for cost-effective space heating and cooling  

DOE Green Energy (OSTI)

The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

Andrews, J W; Kush, E A; Metz, P D

1978-03-01T23:59:59.000Z

271

James F. Wood | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

James F. Wood James F. Wood About Us James F. Wood - Deputy Assistant Secretary for Clean Coal Photo of James Wood Photo of James Wood James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's clean coal research and development programs. Chief among these is the Carbon Sequestration program, the Clean Coal Power Initiative, and FE's $3.4 billion portfolio of Recovery Act projects. Wood has over 30 years of experience in the power industry. Most recently, he was president and CEO of Babcock Power Inc. (BPI), one of the major US-based designer/manufacturers of environmental, pressure part, heat exchanger, combustion equipment and after-market

272

Solar space and water heating system at Stanford University Central Food Services Building. Final report  

DOE Green Energy (OSTI)

This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

Not Available

1980-05-01T23:59:59.000Z

273

Performance of active solar space-heating systems, 1980-1981 heating season  

DOE Green Energy (OSTI)

Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

1981-01-01T23:59:59.000Z

274

Lightning dock geothermal space heating project, Lightning Dock KGRA, New Mexico. Final report  

DOE Green Energy (OSTI)

The proposed project was to take the existing geothermal greenhouse and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern heat exchange units. It was proposed to complete the existing unfinished, re-inforced glass side wall, wood framed structure, as a nursery lath house, the purpose of which would be to use geothermal water in implementing university concepts on the advantages of bottom heat to establish hardy root systems in nursery and bedding plants. The use of this framework was abandoned in favor of erecting new structures for the proposed purpose. The final project of the proposal was the establishment of a drip irrigation system, to an area just west of the existing greenhouse and within feet of the geothermal well. Through this drip irrigation system geothermal water would be pumped, to prevent killing spring frosts. The purpose of this area of the proposal is to increase the potential use of existing geothermal waters of the Lightning Dock KGRA, in opening a new geothermal agri-industry which is economically feasible for the area and would be extremely energy efficient.

McCants, T.W.

1980-12-01T23:59:59.000Z

275

Heat conductivity in small quantum systems: Kubo formula in Liouville space  

E-Print Network (OSTI)

We consider chains consisting of several identical subsystems weakly coupled by various types of next neighbor interactions. At both ends the chain is coupled to a respective heat bath with different temperature modeled by a Lindblad formalism. The temperature gradient introduced by this environment is then treated as an external perturbation. We propose a method to evaluate the heat current and the local temperature profile of the resulting stationary state as well as the heat conductivity in such systems. This method is similar to Kubo techniques used e.g. for electrical transport but extended here to the Liouville space.

Mathias Michel; Jochen Gemmer; Guenter Mahler

2005-03-22T23:59:59.000Z

276

Interaction of a solar space heating system with the thermal behavior of a building  

DOE Green Energy (OSTI)

The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

Vilmer, C.; Warren, M.L.; Auslander, D.

1980-12-01T23:59:59.000Z

277

Heat pipe cooled reactors for multi-kilowatt space power supplies  

SciTech Connect

Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

Ranken, W.A.; Houts, M.G.

1995-01-01T23:59:59.000Z

278

Analysis of selected surface characteristics and latent heat storage for passive solar space heating  

DOE Green Energy (OSTI)

Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.

Fthenakis, V.; Leigh, R.

1981-12-01T23:59:59.000Z

279

Optimization of design and control strategies for geothermal space heating systems. Final report  

DOE Green Energy (OSTI)

The efficient design and operation of geothermal space heating systems requires careful analysis and departure from normal design practices. Since geothermal source temperatures are much lower than either fossil fuel or electrical source temperatures, the temperature of the delivered energy becomes more critical. Also, since the geothermal water is rejected after heat exchange, it is necessary to extract all of the energy that is practical in one pass; there is no second change for energy recovery. The present work examines several heating system configurations and describes the desired design and control characteristics for operation on geothermal sources. Specific design methods are outlined as well as several generalized guidelines that should significantly improve the operation of any geothermally heated system.

Batdorf, J.A.; Simmons, G.M.

1984-07-01T23:59:59.000Z

280

Balance of heating fuels varies regionally  

U.S. Energy Information Administration (EIA)

... announced a plan to expand natural gas distribution networks Consumers are also supplementing liquid heating fuels with wood and electricity wood pellet use ...

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wood power - its potential in our energy crisis  

Science Conference Proceedings (OSTI)

Wood is meeting about 2% of total U.S. energy needs and may eventually supply up to 7% of our nation's energy. Many forms of direct combustion equipment are available for residential heating and range from supplemental wood-burning stoves to complete house-heating multi-fuel furnaces. A recent survey conducted in New York indicated that one-third of the people contacted used wood for home heating. The total amount of fuelwood used in New York State in 1978 amounted to 1,716,000 standard cords. A Wisconsin study indicates that more than 1.2 million cords of firewood were burned by Wisconsin households during the 1979-80 heating season. A Pennsylvania survey indicated that 22% of single family households used wood for home heating. Corning Glass Works recently conducted a wood-burning stove market survey and found that 18% of all U.S. households own wood-burning stoves. On the basis of cost per unit of heat, wood heat is cheaper than its next closest commonly available rival (fuel oil) and is also cheaper than anthracite coal and electricity. Industrial wood-burning furnaces are commonly incorporated into boiler systems. Nearly 1700 wood-fired boiler systems are in operation in the United States. The economic value of a wood fuel will depend on its heating value and moisture content. For an indsutry considering use of densified wood for fuel, there is a question of whether the added expense is justified by increased ease of handling and improved burning efficiency. Where high sulfur emissions from coal are a problem, burning sulfur-free pellets in combination with coal may be a solution. In Maine a $3 million pellet-making plant is producing 600 tons of pellets per day. Nationally, the overall generating capacity of all known electrical generating plants using wood and wood derived fuels is about 4500 megawatts. Wood can be processed to produce liquid fuels and other chemicals.

Johnson, W.W.

1982-01-01T23:59:59.000Z

282

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" 4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

283

Homeowners energy conservation and consumption behavior: wood users and non/low wood users  

SciTech Connect

Relationships among energy expenditure, energy consumption, energy-budget share, energy managerial practices, housing, and household-membership factors for non/low wood-user and high wood-user households were examined to explain substitution of fuelwood for primary fuels. Data were from a nationwide representative sample of 1599 homeowners collected by the Department of Energy in 1982-1983 Residential Energy Conservation Survey. In three multivariate regression models, different dependent variables - energy expenditure, energy consumption, and energy budget share, were used. The same independent variables - housing factors, household energy managerial practices, and household membership factors, were used in the three models. Finally, in a fourth model, discriminant analysis with the dichotomous criterion variable of non/low or high wood users and significant variables from the multivariate regressions models were used to explain 34% of the variance. The amount of space heated, their appliance use, whether they had teenage children, and if they were single-earner households were significant explanatory variables in all four models.

Urich, J.R.

1986-01-01T23:59:59.000Z

284

Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays  

Science Conference Proceedings (OSTI)

Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W?=?76.2 mm, E?=?25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D?=?6.35 mm?=?E, three different pin-fin height-to-diameter ratios, H/D?=?4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D?=?0, 1, 2, respectively. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D?=?1, i.e., H/D?=?3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D?=?0 and C/D?=?2, i.e., H/D?=?4 or 2, respectively.

Siw, Sin C.; Chyu, Minking K.; Shih, Tom I-P.; Alvin, Mary Anne

2012-08-01T23:59:59.000Z

285

STOICHIOMETRY OF WOOD LIQUEFACTION  

E-Print Network (OSTI)

co 2 By decomposition to (2) - 0 in H cf 0 in wood TABLE VForced Balance - Wood to Char Output - 55 lbs char lbsuc -61 STOICHIOMETRY OF WOOD LIQUEFACTION Hubert G. Davis

Davis, Hubert G.

2013-01-01T23:59:59.000Z

286

Alaska Wood Biomass Energy Project Final Report  

SciTech Connect

The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

Jonathan Bolling

2009-03-02T23:59:59.000Z

287

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network (OSTI)

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

288

Use of hot-dry-rock geothermal resources for space heating: a case study  

DOE Green Energy (OSTI)

This study shows that a hot dry rock (HDR) geothermal space heat system proposed for the National Aeronautics and Space Administrations's Wallops Flight Center (WFC) will cost $10.9 million, saving $4.1 million over the existing oil heating system over a 30-yr lifetime. The minimal, economically feasible plan for HDR at WFC is shown to be the design of a single-fracture reservoir using a combined HDR preheat and a final oil burner after the first 4 years of operation. The WFC cost savings generalize and range from $3.1 million to $7.2 million for other HDR sites having geothermal temperature gradients ranging from 25/sup 0/C/km to 40/sup 0/C/km and depths to basement rock of 2400 ft or 5700 ft compared to the 30/sup 0/C/km and 9000 ft to basement rock at WFC.

Cummings, R.G.; Arundale, C.J.; Bivins, R.L.; Burness, H.S.; Drake, R.H.; Norton, R.D.

1982-09-01T23:59:59.000Z

289

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Choice in Home Heating and Cooling D.J. Wood, H. Ruderman,IN HOME HEATING AND COOLING* David J. Wood, Henry RudermanIN HOME HEATING AND COOLING David J. Wood, Henry Ruderman,

Wood, D.J.

2010-01-01T23:59:59.000Z

290

A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT  

E-Print Network (OSTI)

Home Heating and Cooling Equipment D.J. Wood, H. Ruderman,on home heating appliance choice are referred to Wood,FOR HOME HEATING AND COOLING EQUIPMENT David J. Wood, Henry

Wood, D.J.

2010-01-01T23:59:59.000Z

291

Simplified solar fraction estimation for space and water heating at DOD installations. Final report  

SciTech Connect

A set of nomographs is provided which can be used to estimate the average annual solar fraction for solar space and water heating at a large number of DOD facilities. The solar fraction estimated from the nomograph is in close agreement with F-Chart 3.0 and allows for variation of the following parameters: annual load, collector area, collector transmittance-absorption coefficient, and collector overall loss coefficient.

Pacheco, N.S.; Kniola, D.G.; Sheedy, J.F.; Scari, R.J.

1982-09-01T23:59:59.000Z

292

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Science Conference Proceedings (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

293

Econometric model of the joint production and consumption of residential space heat  

Science Conference Proceedings (OSTI)

This study models the production and comsumption of residential space heat, a nonmarket good. Production reflects capital investment decisions of households; consumption reflects final demand decisions given the existing capital stock. In the model, the production relationship is represented by a translog cost equation and an anergy factor share equation. Consumption is represented by a log-linear demand equation. This system of three equations - cost, fuel share, and final demand - is estimated simultaneously. Results are presented for two cross-sections of households surveyed in 1973 and 1981. Estimates of own-price and cross-price elasticities of factor demand are of the correct sign, and less than one in magnitude. The price elasticity of final demand is about -0.4; the income elasticity of final demand is less than 0.1. Short-run and long-run elasticities of demand for energy are about -0.3 and -0.6, respectively. These results suggest that price-induced decreases in the use of energy for space heat are attributable equally to changes in final demand and to energy conservation, the substitution of capital for energy in the production of space heat. The model is used to simulate the behavior of poor and nonpoor households during a period of rising energy prices. This simulation illustrates the greater impact of rising prices on poor households.

Klein, Y.L.

1985-12-01T23:59:59.000Z

294

"Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,33,8,3.4,5.9,14.4,1.2 "Do Not Have Heating Equipment",1.2,0.6,"Q","Q","Q",0.3,"Q" "Have Space Heating Equipment",109.8,32.3,8,3.3,5.8,14.1,1.1

295

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

296

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

297

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

298

Performance Analysis of Potassium Heat Pipes Radiator for HP-STMCs Space Reactor Power System  

SciTech Connect

A detailed design and performance results of C-C finned, and armored potassium heat pipes radiator for a 110 kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The radiator consists of two sections; each serves an equal number of STMCs and has 162 longitudinal potassium heat pipes with 0.508 mm thick C-C fins. The width of the C-C fins at the minor diameter of the radiator is almost zero, but increases with distance along the radiator to reach 3.7 cm at the radiator's major diameter. The radiator's heat pipes (OD = 2.42 cm in front and 3.03 cm in rear) have thin titanium (0.0762 mm thick) liners and wicks (0.20 mm thick with an effective pore radius of 12-16 {mu}m) and a 1.016 mm thick C-C wall. The wick is separated from the titanium liner by a 0.4 mm annulus filled with liquid potassium to increase the capillary limit. The outer surfaces of the heat pipes in the front and rear sections of the radiator are protected with a C-C armor that is 2.17 mm and 1.70 mm thick, respectively. The inside surface of the heat pipes in the front radiator is thermally insulated while the C-C finned condensers of the rear heat pipes are exposed, radiating into space through the rear opening of the radiator cavity. The heat pipes in both the front and the rear radiators have a 1.5 m long evaporator section and each dissipates 4.47 kW while operating at 43.6% of the prevailing sonic limit. The front and rear radiator sections are 5.29 m and 2.61 m long with outer surface area and mass of 47.1 m2 and 314.3 kg, and 39.9 m2 and 243.2 kg, respectively. The total radiator is 7.63 m long and has minor and major diameters of 1.48 m and 5.57 m, respectively, and a total surface area of 87 m2; however, the effective radiator area, after accounting for heat rejection through the rear of the radiator cavity, is 98.8 m2. The radiator's total mass including the C-C armor is 557.5 kg and the specific area and specific mass are 6.41 kg/m2 and 5.07 kg/kWe, respectively.

El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Dept., University of New Mexico, Albuquerque, NM, 87131 (United States)

2004-02-04T23:59:59.000Z

299

Uses and Desirable Properties of Wood in the 21st Century  

E-Print Network (OSTI)

of commercial de- velopment is use of wood pellet fuel to pro- duce heat or electric power. Wood pellets for the pellet Figure 2. Global production of paper and paperboard and wood panels by principal (continental, and production of nano-enabled materials and products are expected to increasingly shape wood use as the 21st

300

Utah State Prison Space Heating with Geothermal Heat Third Semi-Annual Report for the Period January 1981 - July 1981  

DOE Green Energy (OSTI)

Facing certain cost overruns and lacking information about the long term productivity of the Crystal Hot Springs geothermal resource, costs of construction for the geothermal retrofit, and the method of disposal of geothermal waste water, the Energy Office embarked on a strategy that would enable the project participants to develop accurate cost information on the State Prison Space Heating Program through the completion of Task 5-Construction. The strategy called for: (1) Completion of the resource assessment to determine whether test well USP/TH-1 could be used as a production well. If well USP/TH-1 was found to have sufficient production capacity, money would not have to be expended on drilling another production well. (2) Evaluation of disposal alternatives and estimation of the cost of each alternative. There was no contingency in the original budget to provide for a reinjection disposal system. Cooperative agreement DE EC07-ET27027 indicated that if a disposal system requiring reinjection was selected for funding that task would be negotiated with DOE and the budget amended accordingly. (3) Completion of the preliminary engineering and design work. Included in this task was a thorough net present value cash flow analysis and an assessment of the technical feasibility of a system retrofit given the production characteristics of well USP/TH-1 . In addition, completion of the preliminary design would provide cost estimates for the construction and commissioning of the minimum security geothermal space heating system. With this information accurate costs for each task would be available, allowing the Energy Office to develop strategies to optimize the use of money in the existing budget to ensure completion of the program. Reported herein is a summary of the work towards the completion of these three objectives conducted during the period of January 1981 through June 1981.

None

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Application Analysis of Ground Source Heat Pumps in Building Space Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Analysis of Ground Source Heat Application Analysis of Ground Source Heat Pumps in Building Space Conditioning Hua Qian 1,2 , Yungang Wang 2 1 School of Energy and Environment Southeast University Nanjing, 210096, China 2 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA July 2013 The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1) and by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

302

Development and test of a space-reactor-core heat pipe  

SciTech Connect

A heat pipe designed to meet the heat transfer requirements of a 100-kW/sub e/ space nuclear power system has been developed and tested. General design requirements for the device included an operating temperature of 1500/sup 0/K with an evaporator radial flux density of 100 w/cm/sup 2/. The total heat-pipe length of 2 m comprised an evaporator length of 0.3 m, a 1.2-m adiabatic section, and a condenser length of 0.5 m. A four-artery design employing screen arteries and distribution wicks was used with lithium serving as the working fluid. Molybdenum alloys were used for the screen materials and tube shell. Hafnium and zirconium gettering materials were used in connection with a pre-purified distilled lithium charge to ensure internal chemical compatibility. After initial performance verification, the 14.1-mm i.d. heat pipe was operated at 15 kW throughput at 1500/sup 0/K for 100 hours. No performance degradation was observed during the test.

Merrigan, M.A.; Runyan, J.E.; Martinez, H.E.; Keddy, E.S.

1983-01-01T23:59:59.000Z

303

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

Science Conference Proceedings (OSTI)

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

304

Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977  

DOE Green Energy (OSTI)

Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternatives much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

Sims, A.V.; Racine, W.C.

1977-12-01T23:59:59.000Z

305

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

306

District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report  

DOE Green Energy (OSTI)

A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

McDevitt, P.K.; Rao, C.R.

1978-10-01T23:59:59.000Z

307

The feasibility of retrieving nuclear heat sources from orbit with the space shuttle  

SciTech Connect

Spacecraft launched for orbital missions have a finite orbital lifetime. Current estimates for the lifetime of the nine nuclear powered U.S. satellites now in orbit range from 150 years to 10{sup 6} years. Orbital lifetime is determined primarily by altitude, solar activity, and the satellite ballistic coefficient. There is also the potential of collision with other satellites or space debris, which would reduce the lifetime in orbit. These orbiting power sources contain primarily Pu-238 and Pu-239 as the fuel material. Pu-238 has an approximate 87-year half life and so considerable amounts of daughter products are present after a few tens of years. In addition, there are minor but possibly significant amounts of impurity isotopes present with their own decay chains. Radioisotopic heat sources have been designed to evolving criteria since the first launches. Early models were designed to burn up upon reentry. Later designs were designed to reenter intact. After tens or hundreds of years in orbit, the ability of any orbiting heat source to reenter intact and impact while maintaining containment integrity is in doubt. Such ability could only be verified by design to provide protection in the case of early mission failures such as launch aborts, failure to achieve orbit, or the attainment of only a short orbit. With the development of the Space Shuttle there exists the potential ability to recover heat sources in orbit after their missions are completed. Such retrieval could allow the risk of eventual reentry burnup or impact with atmospheric dispersion and subsequent radiation doses to the public to be avoided.

Pyatt, D.W.; Englehart, R.W.

1980-01-01T23:59:59.000Z

308

Optimal design of seasonal storage for 100% solar space heating in buildings  

DOE Green Energy (OSTI)

An analysis is presented of seasonal solar systems that contain water as the sensible heat storage medium. A concise model is developed under the assumption of a fully mixed, uniform temperature, storage tank that permits efficient simulation of long-term (multi-day) system performance over the course of the year. The approach explicitly neglects the effects of short-term (sub-daily) fluctuations in insolation and load, effects that will be extremely small for seasonal solar systems. This approach is useful for examining the major design tradeoffs of concern here. The application considered is winter space heating. The thermal performance of seasonal solar systems that are designed to supply 100% of load without any backup is solved for, under ''reference year'' monthly normal ground temperature and insolation conditions. Unit break-even costs of seasonal storage are estimated by comparing the capital and fuel costs of conventional heating technologies against those of a seasonal solar system. A rough comparison between the alternatives for more severe winters was made by examining statistical variations in winter season conditions over the past several decades. (MHR)

Mueller, R.O.; Asbury, J.G.; Caruso, J.V.; Connor, D.W.; Giese, R.F.

1978-01-01T23:59:59.000Z

309

Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report  

DOE Green Energy (OSTI)

The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

1983-05-01T23:59:59.000Z

310

Method for lowering the VOCS emitted during drying of wood products  

DOE Patents (OSTI)

The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

2000-01-01T23:59:59.000Z

311

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

312

Wood Use Across Time  

E-Print Network (OSTI)

?Forest products history and use ?Forest resource- the big picture ?Consumption- the big picture ?Trends forest products industry ? pulp & paper ? solid woodBack in Time ?1492 ? Columbus sailed the ocean blue! ? wood use- fuelwood American Indians ?1634: Jean Nicolet

Scott Bowe; United States Wood Use

2005-01-01T23:59:59.000Z

313

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

314

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

315

Wood and energy in New Hampshire. Staff report  

SciTech Connect

Telephone surveys of New Hampshire households conducted in 1979 and 1980 indicate a transition to wood heating in response to a series of conventional energy price increases and uncertainty in conventional energy supplies. New Hampshire households consumed 394,000 cords of wood in the winter of 1978-79; 504,000 cords were burnt during the next winter. The airtight wood stove has become the most commonly used wood-burning apparatus. Survey data of residential wood cutting, purchasing, and burning were analyzed by household tenure, wood-burning apparatus, and county. Residential use of wood for energy constitutes a new demand on the forest resource, increases local income and employment, displaces fuel oil and electricity, and may compromise household safety.

Bailey, M.R.; Wheeling, P.R.

1982-06-01T23:59:59.000Z

316

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network (OSTI)

The coefficient for wood as a heating source was elevated,distant heating) Natural gas Electricity Coal Wood Unknown/distant heating and use of natural gas, electricity, or wood

2006-01-01T23:59:59.000Z

317

Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space  

Science Conference Proceedings (OSTI)

The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

Munk, Jeffrey D [ORNL; Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL

2012-01-01T23:59:59.000Z

318

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

319

Solar space- and water-heating system at Stanford University. Final report  

DOE Green Energy (OSTI)

Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

Not Available

1980-05-01T23:59:59.000Z

320

Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report  

SciTech Connect

The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

322

Geothermal space/water heating for Mammoth Lakes Village, California. Quarterly technical progress report, September 13-December 12, 1976  

SciTech Connect

During the first three months of this one-year study to determine the technical, economic and environmental feasibility of heating the town of Mammoth Lakes, California using geothermal energy, the following work was completed. Literature concerning both geothermal and conventional hydronic heating systems was reviewed and put on file. Estimates were prepared for the monthly electrical energy consumption and peak electrical demand for space and water heating in Mammoth Lakes Village in 1980. An analysis of the energy potential of the Casa Diablo geothermal reservoir was completed. Discussions were held with US Forest Service and Mammoth County Water District employees, to obtain their input to the feasibility study.

Sims, A.V.; Racine, W.C.

1976-12-12T23:59:59.000Z

323

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

to a typical h"ydronic solar heating system for differentlarger by the active solar heating system. its, Schiller,Klein, and J, A. Duffie, "Solar Heating Design", (New York:

Vilmer, Christian

2013-01-01T23:59:59.000Z

324

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

determine the building response to the solar heating system.on building comfort of an active solar heating system wherethe building response to a typical h"ydronic solar heating

Vilmer, Christian

2013-01-01T23:59:59.000Z

325

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

Pant Rfict Fan coil heat exchanger effectiveness. c min Fanis modeled as a fan-coil heat exchanger. The fan coil outputsystem with a fan-coil heat exchanger sized for a solar

Vilmer, Christian

2013-01-01T23:59:59.000Z

326

"Table B22. Primary Space-Heating Energy Sources, Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

.....",894,894,213,498,79,5 "District Heat ...",96,96,"Q",2,"Q",77 "Boilers ...",581,581,40,364,136,"Q" "Packaged Heating Units...

327

Residential electricity use, wood use, and indoor temperature; An econometric model  

DOE Green Energy (OSTI)

A lagged-dependent variable, simultaneous-equation system model of residential electricity use for space heating and other uses, wood use, and indoor temperature is presented. The model is specified by means of a five-element model-building framework developed at Oak Ridge National Laboratory. Data were collected from 100 households that had end-use metering installed as part of the Hood River Conservation Project. The most important finding is that the dependent variables are relatively independent of each other. Model results also indicate that houses with central heating use more electricity for space heating and that households with favorable attitudes toward conservation prefer lower indoor temperatures and use less energy.

Tonn, B.E.; White, D.L. (Oak Ridge National Lab., TN (USA))

1988-01-01T23:59:59.000Z

328

A neural-fuzzy based inferential sensor for improving the control of boilers in space heating systems  

Science Conference Proceedings (OSTI)

Conventionally the boilers in space heating systems are controlled by open-loop control systems due to the absence of a practical method for measuring the overall thermal comfort level in the building. This paper describes a neural-fuzzy based inferential ...

Zaiyi Liao

2005-08-01T23:59:59.000Z

329

The influence of indoor temperature on the difference between actual and theoretical energy consumption for space heating  

Science Conference Proceedings (OSTI)

The Energy Advice procedure (EAP) is developed to evaluate the energetic performance of "existing" dwellings to generate a useful advice for the occupants of the dwelling to invest in rational energy measures. The EAP is based on a theoretical calculation ... Keywords: actual energy consumption, consumer behaviour, indoor temperature, space heating, theoretical energy consumption

Amaryllis Audenaert; Katleen Briffaerts; Dries De Boeck

2011-11-01T23:59:59.000Z

330

Urban Wood Waste Resource Assessment  

DOE Green Energy (OSTI)

This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

Wiltsee, G.

1998-11-20T23:59:59.000Z

331

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

Science Conference Proceedings (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

332

Development of a Financial Model for Wood Pellet Production Costs in New England.  

E-Print Network (OSTI)

??The wood fuel pellet industry has been growing rapidly in recent years. The conversion of a significant proportion of central home heating systems in the (more)

Lu, Ning

2012-01-01T23:59:59.000Z

333

HYDROLYZED WOOD SLURRY FLOW MODELING  

E-Print Network (OSTI)

LBL-10090 UC-61 HYDROLYZED WOOD SLURRY FLOW MODELING JimLBL-10090 HYDROLYZED WOOD SLURRY FLOW MODELING Jim Wrathallconversion of hydrolyzed wood slurry to fuel oil, Based on

Wrathall, Jim

2012-01-01T23:59:59.000Z

334

Energie-Cits 2001 BIOMASS-WOOD  

E-Print Network (OSTI)

Energie-Cités 2001 BIOMASS-WOOD Power plant LIENZ Austria By the year 2010, 12% of the gross inland this goal, intensified use needs to be made of biomass, both for heating purposes and for power generation to this rule. Thus, for instance, the town of Lienz started up the largest biomass facility of Austria

335

Effects of wood fuel use on plant management  

SciTech Connect

During the winter of 1979-80, about 20% of homeowners in the New England region relied on wood fuel as their primary source of heat; an additional 30% used wood heat on a supplementary basis. The demand for wood put a great strain on the New England forests. However, experts in forest management believe that with proper management and utilization, national forest growth could replace as much as four billion gpy of oil by 2023. Implications for the forests of the Upper Great Lakes region of increased use of public and private woodlands for fuel are examined. Conflicts that could arise with the tourist and recreation industry, and with wilderness preservation interests, and discussed. Wood wastes generated by timber harvesting, sawmills, and lumber manufacturing could be collected and used as fuel, thus reducing the amount of raw wood resources needed to fill the increasing demand. (6 photos)

Harris, M.; Buckmann, C.A.

1980-09-01T23:59:59.000Z

336

Pellet stoves wood energy for all  

Science Conference Proceedings (OSTI)

While it`s true that specialized pellet stoves, capable of burning fuels as diverse as reprocessed paper waste and feed corn, are expensive and occasionally clunky, they also represent one of the best hopes for introducing clean burning, reliable renewable energy to those now heating with gas and oil. This article explores the benefits and operation of the stoves including discussions of the following: ecological benefits, combustion, stove venting, ashes, costs, fuels, and the future of wood heat. 1 tab.

NONE

1995-10-01T23:59:59.000Z

337

Heat Pump Systems  

Energy.gov (U.S. Department of Energy (DOE))

Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate...

338

Ductless, Mini-Split Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless, Mini-Split Heat Pumps Ductless, Mini-Split Heat Pumps Ductless, Mini-Split Heat Pumps June 24, 2012 - 4:19pm Addthis What does this mean for me? You can take advantage of the fact that -- unlike earlier versions -- newer models of ductless mini-split heat pumps operate effectively in cold temperatures. If you are building an addition or doing a major remodel and your home does not have heating and cooling ducts, a ductless mini-split heat pump may be a cost-effective, energy-efficient choice. Ductless, mini-split-system heat pumps (mini splits) make good retrofit add-ons to houses with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane). They can also be a good choice for room additions where extending or

339

OpenEI - Wood and Derived Fuels  

Open Energy Info (EERE)

UK Energy Statistics: UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) http://en.openei.org/datasets/node/82 Annual commodity balances (supply, consumption) for renewables and waste in the UK from 1998 to 2009. Published as part of the Digest of UK energy statistics (DUKES), by the UK Department of Energy & Climate Change (DECC). Waste includes: wood waste, farm waste, sewage gas, landfill gas, waste and tyres. Renewables includes: wood, plant-based biomass, geothermal and active solar heat, hydro, wind, wave and tidal, and liquid biofuels.

License
Type of

340

Impact of the national energy plan on solar economics. [Economic analysis of solar space heating and solar water heating by state  

SciTech Connect

The National Energy Plan (NEP) sets as a goal the use of solar energy in two and a half million homes in 1985. A key provision of the NEP (as well as congressional alternatives) provides for the subsidization of solar equipment. The extent to which these subsidies (income tax credits) might offset the impact of continued energy price control is examined. Regional prices and availability of conventional energy sources (oil, gas, and electricity) were compiled to obtain a current and consistent set of energy prices by state and energy type. These prices are converted into equivalent terms ($/10/sup 6/ Btu) which account for combustion and heat generation efficiencies. Projections of conventional fuel price increases (or decreases) are made under both the NEP scenario and a projected scenario where all wellhead price controls are removed on natural gas and crude oil production. The economic feasibility (life-cycle cost basis) of solar energy for residential space heating and domestic hot water is examined on a state-by-state basis. Solar system costs are developed for each state by fraction of Btu heating load provided. The total number of homes, projected energy savings, and sensitivity to heating loads, alternative energy costs and prices are included in the analysis.

Ben-David, S.; Noll, S.; Roach, F.; Schulze, W.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wood and Derived Fuels | OpenEI  

Open Energy Info (EERE)

1 1 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288361 Varnish cache server Wood and Derived Fuels Dataset Summary Description Annual commodity balances (supply, consumption) for renewables and waste in the UK from 1998 to 2009. Published as part of the Digest of UK energy statistics (DUKES), by the UK Department of Energy & Climate Change (DECC). Waste includes: wood waste, farm waste, sewage gas, landfill gas, waste and tyres. Renewables includes: wood, plant-based biomass, geothermal and active solar heat, hydro, wind, wave and tidal, and liquid biofuels. Source UK Department of Energy and Climate Change (DECC) Date Released July 29th, 2010 (4 years ago)

342

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling (Fact Sheet)  

DOE Green Energy (OSTI)

FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

Not Available

2010-04-01T23:59:59.000Z

343

Geothermal space/water heating for City of Mammoth Lakes, California. Draft final report  

DOE Green Energy (OSTI)

The results of a study to determine the technical, economic and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are presented. The geothermal district heating system selected is technically feasible and uses existing technology in its design and operation. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

Sims, A.V.; Racine, W.C.

1977-09-01T23:59:59.000Z

344

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet covers the FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney barracks.

345

Industrial food processing and space heating with geothermal heat. Final report, February 16, 1979-August 31, 1982  

Science Conference Proceedings (OSTI)

A competitive aware for a cost sharing program was made to Madison County, Idaho to share in a program to develop moderate-to-low temperature geothermal energy for the heating of a large junior college, business building, public shcools and other large buildings in Rexburg, Idaho. A 3943 ft deep well was drilled at the edge of Rexburg in a region that had been probed by some shallower test holes. Temperatures measured near the 4000 ft depth were far below what was expected or needed, and drilling was abandoned at that depth. In 1981 attempts were made to restrict downward circulation into the well, but the results of this effort yielded no higher temperatures. The well is a prolific producer of 70/sup 0/F water, and could be used as a domestic water well.

Kunze, J.F.; Marlor, J.K.

1982-08-01T23:59:59.000Z

346

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

and Duffie [17], the fan give 185 % of the design heat loadfan coil heating system sized at 130 % of design load tofan coil output power of 32 kW (110 kBtu/hr), or about three times the design

Vilmer, Christian

2013-01-01T23:59:59.000Z

347

Gregory H. Woods  

Energy.gov (U.S. Department of Energy (DOE))

Gregory H. Woods was sworn in as the General Counsel of the Department of Energy on April 16, 2012, following the unanimous confirmation of his appointment by the United States Senate. Mr....

348

Thermal Transport and Heat Exchanger Design for the Space Molten Salt Reactor Concept.  

E-Print Network (OSTI)

??Surface power and nuclear electric propulsion in space necessitate the development of high energy density, long term continuous power sources. Research at The Ohio State (more)

Flanders, Justin M.

2012-01-01T23:59:59.000Z

349

Modeling and analysis of a heat transport transient test facility for space nuclear systems.  

E-Print Network (OSTI)

??The purpose of this thesis is to design a robust test facility for a small space nuclear power system and model its physical behavior under (more)

[No author

2013-01-01T23:59:59.000Z

350

How Much Wood Would a North Country School Chip | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Much Wood Would a North Country School Chip How Much Wood Would a North Country School Chip How Much Wood Would a North Country School Chip November 3, 2011 - 11:19am Addthis This is the North Country School's 32,000-square-foot main building. Aligning with the school's commitment to a simple, sustainable lifestyle, the school is heated with a wood chip boiler that uses wood sourced from their sustainably managed woodlot and local forests. | Courtesy of North Country School This is the North Country School's 32,000-square-foot main building. Aligning with the school's commitment to a simple, sustainable lifestyle, the school is heated with a wood chip boiler that uses wood sourced from their sustainably managed woodlot and local forests. | Courtesy of North Country School Alice Dasek Project Officer, Department of Energy State Energy Program

351

How Much Wood Would a North Country School Chip | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Much Wood Would a North Country School Chip How Much Wood Would a North Country School Chip How Much Wood Would a North Country School Chip November 3, 2011 - 11:19am Addthis This is the North Country School's 32,000-square-foot main building. Aligning with the school's commitment to a simple, sustainable lifestyle, the school is heated with a wood chip boiler that uses wood sourced from their sustainably managed woodlot and local forests. | Courtesy of North Country School This is the North Country School's 32,000-square-foot main building. Aligning with the school's commitment to a simple, sustainable lifestyle, the school is heated with a wood chip boiler that uses wood sourced from their sustainably managed woodlot and local forests. | Courtesy of North Country School Alice Dasek Project Officer, Department of Energy State Energy Program

352

Gregory H. Woods  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

H. Woods H. Woods Department· of Energy Fermi Site Office Post Office Box 2000 Batavia, Illinois 60510 JAN 1 1 2DD Office of the General Counsel GC-1, FORS SUBJECT: FERMI SITE OFFICE (FSO) 2013 ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY Section 5(a) (7) of Department Of Energy Order 451.1 B Change 2, NEPA Compliance Program, requires each Secretarial Officer and Head of Field Organization to submit an annual NEPA

353

Finishing Wood Decks  

E-Print Network (OSTI)

Wood decks have become an important part of residential construction in recent years. However, there is considerable confusion regarding how these structures should be protected with finish. This paper summarizes the types, application techniques, and expected service lives of various finishes on both preservative treated and untreated lumber. Recommendations are made on the basis of decades of research on various wood species using a wide variety of finishes.

R. Sam Williams; et al.

1993-01-01T23:59:59.000Z

354

Treated Wood Pole Management  

Science Conference Proceedings (OSTI)

This document characterizes similarities and differences in international wood pole and wood pole preservative management. The research team identified practices for selection, regulation, and disposition of utility poles outside the United States. Most information is based on interviews and website and published literature searches. Additional research will clarify regulatory positions in other countries and generate improved understanding, which will support strategic planning for U.S. utilities. Utili...

2008-10-29T23:59:59.000Z

355

Ductless, Mini-Split Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless, Mini-Split Heat Pump Basics Ductless, Mini-Split Heat Pump Basics Ductless, Mini-Split Heat Pump Basics August 19, 2013 - 11:04am Addthis Ductless, mini-split-system heat pumps (mini splits), as their name implies, do not have ducts. Therefore, they make good retrofit add-ons to houses or buildings with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane). They can also be a good choice for room additions, where extending or installing distribution ductwork is not feasible. How Ductless, Mini-Split Heat Pumps Work Like standard air-source heat pumps, mini splits have two main components: an outdoor compressor/condenser, and an indoor air-handling unit. A conduit, which houses the power cable, refrigerant tubing, suction tubing,

356

Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.  

SciTech Connect

This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

Onisko, Stephen A.; Roos, Carolyn; Baylon, David

1993-06-01T23:59:59.000Z

357

Table HC9.4 Space Heating Characteristics by Climate Zone, 2005  

Annual Energy Outlook 2012 (EIA)

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

358

"Table HC9.5 Space Heating Usage Indicators by Climate Zone...  

U.S. Energy Information Administration (EIA) Indexed Site

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

359

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

experimental data, Energy and Buildings 36, 543-555. O.G.consumption for heating, Energy and Buildings 43, 2662-2672.reduction for a net zero energy building, ACEEE Summer Study

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

360

Solar-energy-system performance-evaluation update: Wood Road School, Ballston Spa, New York, October 1982-April 1983  

DOE Green Energy (OSTI)

The Wood Road School Solar Project is a 216,000 square foot combined elementary and middle school in Ballston Spa, New York. The solar energy system supplies energy to the space heating and domestic hot water subsystems. Heat is collected by flat plate collector panels and stored in two storage tanks. Performance data are given for the system overall and for each of the four subsystems - energy collection, storage, space heating, and domestic hot water. Data are also provided on operating energy, energy savings, and weather conditions. Design and actual system solar fraction are compared, and percentage of incident solar energy and collected solar energy utilized are given. Also given are building loads analysis, system thermal losses, and system coefficient of performance. (LEW)

Kendall, P

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Analysis of community solar systems for combined space and domestic hot water heating using annual cycle thermal energy storage  

DOE Green Energy (OSTI)

A simplified design procedure is examined for estimating the storage capacity and collector area for annual-cycle-storage, community solar heating systems in which 100% of the annual space heating energy demand is provided from the solar source for the typical meteorological year. Hourly computer simulations of the performance of these systems were carried out for 10 cities in the United States for 3 different building types and 4 community sizes. These permitted the use of design values for evaluation of a more simplified system sizing method. Results of this study show a strong correlation between annual collector efficiency and two major, location-specific, annual weather parameters: the mean air temperature during daylignt hours and the total global insolation on the collector surface. Storage capacity correlates well with the net winter load, which is a measure of the seasonal variation in the total load, a correlation which appears to be independent of collector type.

Hooper, F.C.; McClenahan, J.D.; Cook, J.D.; Baylin, F.; Monte, R.; Sillman, S.

1980-01-01T23:59:59.000Z

362

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy costs during the cooling season as well as the heating season. To achieve air conditioning savings, the system separates dehumidification from sensible cooling; dehumidifies by desiccant absorption, using heat from storage to dry the desiccant; and then cools at an elevated temperature improving overall system efficiency. Efficient heat for desiccant regeneration is provided by a selective-energy system coupled with thermal storage. The selective-energy system incorporates diesel cogeneration, solar energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility energy for refrigeration; 10 to 20% in refrigeration equipment; and space savings due to smaller ductwork and equipment.

Meckler, G.

1985-01-01T23:59:59.000Z

363

Principle Wood Scientist  

E-Print Network (OSTI)

Wood, bark, and the wax-coated seeds from Chinese tallow tree (Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) Small), an invasive tree species in the southeastern United States, were subjected to extractions and degradative chemical analyses in an effort to better understand the mechanism(s) by which this tree species aggressively competes against native vegetation, and also to facilitate utilization efforts. Analysis of the wood extractives by FTIR spectroscopy showed functionalities analogous to those in hydrolyzable tannins, which appeared to be abundant in the bark; as expected, the seeds had a high wax/oil content (43.1%). Compared to other fast-growing hardwoods, the holocellulose content for the Chinese tallow tree wood was somewhat higher (83.3%). The alpha-cellulose (48.3%) and Klason lignin (20.3%) contents were found to be similar to those for most native North American hardwoods. Results suggest that Chinese tallow tree wood utilization along with commercial wood species should not present any significant processing problems related to the extractives or cell-wall chemistry. Keywords: Cellulose, Chinese tallow tree, extractives, Klason lignin, utilization.

Thomas L. Eberhardt; Usda Forest Service; Xiaobo Li; Chung Y. Hse; Usda Forest Service

2005-01-01T23:59:59.000Z

364

Geothermal space heating for the Senior Citizens Center at Truth or Consequences, New Mexico. Final report  

SciTech Connect

A demonstration project to heat the Senior Citizens Center at Truth or Consequences, New Mexico with geothermal waters is described. There were three phases to the project: Phase I - design and permitting; Phase II - installation of the heating system and well drilling; and Phase III - operation of the system. All three phases went well and there was only one major problem encountered. This was that the well which was drilled to serve as the geothermal source was dry. This could not have been anticipated and there was, as a contingency plan, the option of using an existing sump in the Teen Center adjacent to the Senior Citizens Center as the geothermal source. The system was made operational in August of 1981 and has virtually supplied all of the heat to the Senior Citizens Center during this winter.

Mancini, T.R.; Chaturvedi, L.N.; Gebhard, T.G.

1982-03-01T23:59:59.000Z

365

Precision wood particle feedstocks  

DOE Patents (OSTI)

Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

Dooley, James H; Lanning, David N

2013-07-30T23:59:59.000Z

366

Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.  

SciTech Connect

The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to properly survey the heat shield panels. System features were introduced to minimize the potential for human factors errors in identifying and locating the flaws. The in-situ NDI team completed the transfer of this technology to NASA and USA employees so that they can complete 'Return-to-Flight' certification inspections on all Shuttle Orbiters prior to each launch.

Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

2005-06-01T23:59:59.000Z

367

The Pitfalls of Realist Analysis of Global Capitalism: A Critique of Ellen Meiksins Woods Empire of Capitalism: A Critique of Ellen Meiksins Wood's "Empire of Capital"  

E-Print Network (OSTI)

Boulder: Paradigm Press. Wood, Ellen Meiksins 2002, Globalgroups. 13 Indeed, Wood 2003, p. 23. Wood 2003, p. 132.Ibid. Wood 2003, p. 129. Wood 2003, p. 133. Wood 2003, p.

Robinson, William I.

2007-01-01T23:59:59.000Z

368

Performance demonstration of a high-power space-reactor heat-pipe design  

SciTech Connect

Performance of a 15.9-mm diam, 2-m long, artery heat pipe has been demonstrated at power levels to 22.6 kW and temperatures to 1500/sup 0/K. The heat pipe employed lithium as a working fluid with distribution wicks and arteries fabricated from 400 mesh Mo-41 wt % Re screen. Molybdenum alloy (TZM) was used for the container. Peak axial power density attained in the testing was 19 kW/cm/sup 2/ at 1465/sup 0/K. The corresponding radial flux density in the evaporator region of the heat pipe was 150 W/cm/sup 2/. The extrapolated limit for the heat pipe at its 1500/sup 0/K design point is 30 kW, corresponding to an axial flux density of 25 kW/cm/sup 2/. Sonic and capillary limits for the design were investigated in the 1100 to 1500/sup 0/K temperature range. Excellent agreement of measured and predicted temperature and power levels was observed.

Merrigan, M.A.; Martinez, E.H.; Keddy, E.S.; Runyan, J.; Kemme, J.E.

1983-01-01T23:59:59.000Z

369

Burls and Other Unusual Woods  

NLE Websites -- All DOE Office Websites (Extended Search)

President Roland F. Eisenbeis, Supt. of Conservation BURLS AND OTHER UNUSUAL WOODS Wood worked by the hands of skilled craftsmen puts a wealth of quiet beauty into our daily...

370

Implementing Strategies for Drying and Pressing Wood Without Emissions Controls  

DOE Green Energy (OSTI)

Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal effects; Method 25A emissions from lumber drying can be modeled from a knowledge of the airflow through the kiln; A heat transfer model shows that VOCs released during hot-pressing mainly originate from the surface of the board; and Boiler ash can be used to adsorb formaldehyde from air streams.

Sujit Banerjee; Terrance Conners

2007-09-07T23:59:59.000Z

371

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

372

The Asian Wood Pellet Markets  

E-Print Network (OSTI)

. 25 p. This study examines the three major wood pellet markets in Asia: China, Japan, and South Korea, South Korea is striving to increase its per- centage of renewable energy, which could benefit the wood pellets industry. We found that China, the largest energy consumer in Asia, has an established wood pellet

373

China: Changing Wood Products Markets  

E-Print Network (OSTI)

#12;China: Changing Wood Products Markets less is probably known about the forestry and wood products market in China than most other U.S. trading partners. In the 1980s China emerged as the world,11,12). However, U.S. wood products exports to China declined nearly 93 percent from 1988 to 1996, from $-I%3

Zhang, Daowei

374

Thermal analysis of heat storage canisters for a solar dynamic, space power system  

DOE Green Energy (OSTI)

A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF/sub 2/ contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavior in 1/minus/g and microgravity. The thermal anaylsis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1/minus/g, flow due to density gradients. A number of significant differences between 1/minus/g and 0/minus/g behavior were found. These resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0/minus/g due to the absence of gravity-induced convection.

Wichner, R.P.; Solomon, A.D.; Drake, J.B.; Williams, P.T.

1988-04-01T23:59:59.000Z

375

Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

1980-05-01T23:59:59.000Z

376

Transient thermal analysis of three fast-charging latent heat storage configurations for a space-based power system  

DOE Green Energy (OSTI)

A space-based thermal storage application must accept large quantities of heat in a short period of time at an elevated temperature. A model of a lithium hydride phase change energy storage system was used to estimate reasonable physical dimensions for this application which included the use of a liquid metal heat transfer fluid. A finite difference computer code was developed and used to evaluate three methods of enhancing heat transfer in the PCM energy storage system. None of these three methods, inserting thin fins, reticulated nickel, or liquid lithium, significantly improved the system performance. The use of a 95% void fraction reticulated nickel insert was found to increase the storage capacity (total energy stored) of the system slightly with only a small decrease in the system energy density (energy storage/system mass). The addition of 10% liquid lithium was found to cause minor increases in both storage density and storage capacity with the added benefit of reducing the hydrogen pressure of the lithium hydride. 9 refs., 7 figs., 2 tabs.

Stovall, T.K.; Arimilli, R.V.

1988-01-01T23:59:59.000Z

377

Fuels for Schools Program Uses Leftover Wood to Warm Buildings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels for Schools Program Uses Leftover Wood to Warm Buildings Fuels for Schools Program Uses Leftover Wood to Warm Buildings Fuels for Schools Program Uses Leftover Wood to Warm Buildings May 10, 2010 - 1:11pm Addthis Darby Schools received a woodchip heating system in 2003. Rick Scheele, facilities manager for the Darby schools, shows off the wood firebox | Photo Courtesy USFS Fuels for Schools, Dave Atkins Darby Schools received a woodchip heating system in 2003. Rick Scheele, facilities manager for the Darby schools, shows off the wood firebox | Photo Courtesy USFS Fuels for Schools, Dave Atkins Stephen Graff Former Writer & editor for Energy Empowers, EERE In parts of this country, wood seems like the outsider in the biomass family. New ethanol plants that grind down millions of bushels of corn in the Midwest and breakthroughs in algae along the coasts always garner the

378

The Wood Duck  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood Duck Wood Duck Nature Bulletin No. 502-A October 13, 1973 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE WOOD DUCK Of all the fowl that swim, the Wood Duck is a most unusual bird. They perch in trees like jaybirds, and nest in tree holes like woodpeckers. The hens do not quack like the females of most ducks, and the drakes are dressed in a riot of gaudy colors. Each summer we see dozens of them -- more than any other kind of wild duck -- rear their families of ducklings on and around the streams, ponds, lakes and sloughs of Cook County's forest preserves. Words can scarcely describe the brilliance of the drake's plumage. The head, crest and back glint with iridescent greens, purples and blues. The eyes are red, the throat white, and the bill orange-red. The breast is wine-colored flecked with white, the belly is white, and the sides are buff. The woodie is about midway in size between the mallard and the blue-winged teal. The drakes weigh about a pound and a half. The hen is smaller and plainer, with a gray-brown head and body, a white throat, and a conspicuous white ring around the eye. Her voice is a shrill, squealing "whoo-eek", while the male's is a mere squeak.

379

Thermal performance and economics of solar space and hot water heating system on Long Island, New York. [F-chart method  

DOE Green Energy (OSTI)

A practical method for designing solar space and water heating systems, called the ''f-chart'' method, is described with the results calculated for Long Island, New York. The solar heating systems to be considered consist of a solar collector which uses either liquid or air, an energy storage which can be either a water tank or a pebble bed, and an auxiliary energy source which supplies heat when solar energy is not available. Solar heated water from storage can be used either for space heating or for preheating the domestic hot water. The results of the ''f-chart'' analysis can simply be expressed as follows. For the thermal performance, Annual Load Fraction Supplied by Solar Energy versus Collector Area, and for the economic performance, Life Cycle Cost Savings versus Collector Area.

Auh, P C

1978-06-01T23:59:59.000Z

380

Wood Inspection by Infrared Thermography  

E-Print Network (OSTI)

Wood is used everywhere and for everything. With times, this material presents many adulterations, witch degrade his physical properties. This work present a study of infrared thermography NDT for wood decay detection. The study is based on the difference of moisture content between sound wood and decay. In the first part, moisture content influence on response signal is determine. The second part define the limits of infrared thermography for wood decay detection. Results show that this method could be used, but with many cautions on depth and size of wood defects.

A. Wyckhuyse; X. Maldague; X. Maldague Corresponding

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fire safety for your wood-burning appliance: tips for proper installation, operation, and maintenance  

Science Conference Proceedings (OSTI)

A dramatic increase in house fires caused by wood-burning appliances has accompanied the rediscovery of wood as an alternative heating fuel. The National Bureau of Standards attributed the majority of these fires to conditions related to the installation, operation or maintenance of the appliances rather than malfunctions or construction defects. This publication presents guidelines for the proper installation, use, and maintenance of wood-burning appliances in the home. (DMC)

Not Available

1984-01-01T23:59:59.000Z

382

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

383

Techno-economic analysis of wood biomass boilers for the greenhouse industry  

SciTech Connect

The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

2009-01-01T23:59:59.000Z

384

International WoodFuels LLC | Open Energy Information  

Open Energy Info (EERE)

WoodFuels LLC WoodFuels LLC Jump to: navigation, search Name International WoodFuels LLC Place Portland, Maine Zip 4101 Product Maine-based pellet producer and installer of commercial wood pellet heating systems. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Geothermal heat pump analysis article  

U.S. Energy Information Administration (EIA)

heat pump transfers heat from the ground or ground water to provide space heating. In the summer, the heat transfer process is reversed; the ground or groundwater

386

Heat resistant materials and their feasibility issues for a space nuclear transportation system  

DOE Green Energy (OSTI)

A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs.

Olsen, C.S.

1991-01-01T23:59:59.000Z

387

Comparative economics of passive and active systems: residential space heating applications  

SciTech Connect

The economic performance of alternative designs are evaluated. One passive design is emphasized, the thermal mass storage wall. The economic performance of this design is examined and subsequently contrasted with one active design, the air collector/rock storage system. Architectural design criteria, solar performance characteristics, and the incremental solar cost of each design is briefly reviewed. Projections of conventional energy prices are discussed, along with the optimal sizing/feasibility criterion employed in the economic performance analysis. In addition, the effects of two incentive proposals, income tax credits and low interest loans, upon each design are examined. Results are reported on a state-by-state basis, with major conclusions summarized for each design. It is generally the case that incentives greatly enhance the economics of both system designs, although the contrast is greater for the passive design. Also, against the less expensive conventional fuels (natural gas and heating oil) the passive design was shown to offer a more cost effective alternative than the active system for most states.

Roach, F.; Noll, S.; Ben-David, S.

1978-01-01T23:59:59.000Z

388

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

389

Clean energy funds: An overview of state support for renewable energy  

E-Print Network (OSTI)

solar space heating, and clean wood stoves - applicationsloans (11 advanced wood heating systems, 2 geothermal heatburning, or heating of waste wood, tires, garbage, general

Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

2001-01-01T23:59:59.000Z

390

Inside the guts of wood-eating catfishes: can they digest wood?  

E-Print Network (OSTI)

the cellulolytic system of the wood-boring marine mollusk2008), how diVerent are the wood-eating catWshes from otherendosymbionts and digest wood, or are these wood- eating

German, Donovan P.

2009-01-01T23:59:59.000Z

391

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

392

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

393

WOOD PRODUCTS 1. INTRODUCTION TO WARM AND WOOD PRODUCTS  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood products beginning at the point of waste generation. The WARM GHG emission factors are used to compare the net emissions associated with wood products in the following four materials management alternatives: source

unknown authors

2012-01-01T23:59:59.000Z

394

CHEMISTRY AND STOICHIOMETRY OF WOOD LIQUEFACTION  

E-Print Network (OSTI)

V. , Anderson, Carry, Academic, New York. Pyrolysis of WoodT.J. Elder, E.J. Soltes, Wood and Fiber, 12(4), 1980, "Phenolic Constituents of a Wood Pyrolytic Oil." J.A. Knight,

Davis, H.G.

2012-01-01T23:59:59.000Z

395

Wood pellet market and trade: a global perspective  

SciTech Connect

This perspective provides an overview of wood pellet markets in a number of countries of high significance, together with an inventory of market factors and relevant past or existing policies. In 2010, the estimated global wood pellet production and consumption were close to 14.3 Mt (million metric tonnes) and 13.5 Mt, respectively, while the global installed production capacity had reached over 28 Mt. Two types of pellets are mainly traded (i) for residential heating and (ii) for large-scale district heating or co-fi ring installations. The EU was the primary market, responsible for nearly 61% and 85% of global production and consumption, respectively in 2010. EU markets were divided according to end use: (i) residential and district heating, (ii) power plants driven market, (iii) mixed market, and (iv) export-driven countries. North America basically serves as an exporter, but also with signifi cant domestic consumption in USA. East Asia is predicted to become the second-largest consumer after the EU in the near future. The development perspective in Latin America remains unclear. Five factors that determine the market characteristics are: (i) the existence of coal-based power plants, (ii) the development of heating systems, (iii) feedstock availability, (iv) interactions with wood industry, and (v) logistics factor. Furthermore, intervention policies play a pivotal role in market development. The perspective of wood pellets industry was also analyzed from four major aspects: (i) supply potential, (ii) logistics issues, (iii) sustainability considerations, and (iv) technology development.

Chun Sheng Goh; Martin Junginger; Maurizio Cocchi; Didier Marchal; Daniela Thran; Christiane Hennig; Jussi Heinimo; Lars Nikolaisen; Peter-Paul Schouwenberg; Douglas Bradley; J. Richard Hess; Jacob J. Jacobson; Leslie Ovard; Michael Deutmeyer

2001-01-01T23:59:59.000Z

396

Moisture Distribution and Flow During Drying of Wood and Fiber  

DOE Green Energy (OSTI)

New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt chloride was developed for nondestructive determination of surface moisture content. Fundamental new understanding of drying characteristics in wood and fiber has been provided that can be used by researchers to improve drying of wood and fiber. The three techniques for measuring moisture content and gradients provided in this study are efficient, practical, and economical - easy to apply by industry and researchers. An energy consumption worksheet is provided as a first step toward reducing energy consumed during drying of lumber and strandboard flakes. However, it will need additional verification and testing.

Zink-Sharp, Audrey; Hanna, Robert B.

2001-12-28T23:59:59.000Z

397

GLOBAL WOOD SUPPLY Sten Nilsson  

E-Print Network (OSTI)

· Increasing demand for wood through population and economic growth · More expensive wood · Where should America Expansion potential USA Deficit Canada Deficit #12;RUSSIA Advantages: Raw Materials Source LEAVED ­ EASTERN USA Source: http://www.cas.vanderbilt.edu/bioimages/biohires/ecoregions/h50404bottomland

398

Low VOC drying of lumber and wood panel products. Progress report No. 7  

DOE Green Energy (OSTI)

Green pine blocks (2x1x 1) were dried to different moisture levels at 120 degrees C. They were immersed in D{sub 2}O (greater than 99% isotopic Content) for different periods at room temperature, and were then cut in halves. One piece from each set was then wrapped in plastic, and microwaved at 110 W, for 30 minutes, with the field being cycled to keep the wood surface at 90-100 degrees C. Fibers taken from just inside the wet surface from five regions along the length of the piece were then analysed by mass spectrometry with a direct insertion probe. The m/e profiles of the three isotopic forms of water, namely H{sub 2}O, HOD, and D{sub 2}O, remained unchanged as the wood was heated inside the spectrometer, indicating that they were bound equally strongly to the wood. The water released from the green wood had the same isotopic composition regardless of whether or not the wood was microwaved (Table 1), indicating that the exchangeable protons in wood were not affected by microwaving. However, as the wood progressively dried, the water released from the microwaved wood was of lower isotopic content, which means that microwaving increases access of the exchangeable protons in wood tissue to water. The only exchangeable protons in dried wood are those sited on hydroxyl groups, and the difference in isotopic exchange is the greatest for dried wood. This must mean that as wood dries, internal hydrogen bonding restricts access of D{sub 2}O to the hydroxyl protons. Presumably the energy transferred to water upon microwaving is sufficient to at least partially overcome this barrier. The effect is akin to the hysteresis that occurs for moisture sorption to green and dried wood. Similar isotope exchange work with D{sub 2}O has been previously conducted to determine the accessibility of cellulose to water.

Hui Yan; Hooda, Usha; Banerjee, Sujit [and others

1998-03-01T23:59:59.000Z

399

Short rotation Wood Crops Program  

DOE Green Energy (OSTI)

This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

Wright, L.L.; Ehrenshaft, A.R.

1990-08-01T23:59:59.000Z

400

Daniel Wood | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Wood About Us Daniel Wood - Data Integration Specialist Daniel Wood Daniel Wood is the Data Visualization and Cartographic Specialist in the Office of Public Affairs at the Department of Energy. He develops creative and interactive ways of viewing the Energy Department's vast array of data. You can check out some of his work here. Prior to joining the Energy.gov team, Daniel worked at a large PR firm in Washington, D.C, doing web development and technical project management. Daniel is a graduate of Boston University but a true Philadelphian at heart. On his off days you are likely to find him exploring new neighborhoods on his bike or hanging out with the awesome kids over at Little Lights Urban Ministries. Most Recent The History of the Light Bulb November 22

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Weathering and Protection of Wood  

E-Print Network (OSTI)

Introduction When wood is exposed outdoors, above ground, a complex combination of chemical, mechanical, and light energy factors contribute to what is described as weathering (38). Weathering is not to be confused with decay, which results from decay organisms (fungi) acting in the presence of excess moisture and air for an extended period of time (34). Under conditions suitable for the development of decay, wood can deteriorate rapidly and the result is far different than that observed for natural outdoor weathering, Outdoor Weathering Process In outdoor weathering of smooth wood, original surfaces become rough as grain raises and the wood checks, and the checks grow into large cracks; grain may loosen, boards cup and warp and pull away from fasteners (Figs. 1 and 2), The roughened surface changes color, gathers dirt and mildew, and may become unsightly; the wood loses its surface coherence and becomes friable, splinters, and frag ments come off. All these e

William C. Feist

1983-01-01T23:59:59.000Z

402

PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS  

E-Print Network (OSTI)

solar space heating system with heat input and building loadBUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATINGBUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING

Warren, Mashuri L.

2013-01-01T23:59:59.000Z

403

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

SciTech Connect

We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

Blum, Helcio; Sathaye, Jayant

2010-05-14T23:59:59.000Z

404

Where Wood Works Harnessing the Energy of Woody Biomass in Colorado  

E-Print Network (OSTI)

. Many coal-fired power plants can be adapted to use a blend of wood chips and coal, a process called "co by a central combined heat and power (CHP) power plant fueled by 80% biomass. The system produces up to 25 MW are needed. Heat Energy Measurements. A Btu (British Thermal Unit) is a common measurement of heat. About 1

405

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

3,037 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity Education .................................. 371 15 74 83 11 113 2 16 4 32 21 Food Sales ................................ 208 6 12 7 Q 46 2 119 2 2 10 Food Service .............................

406

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

50.7 50.7 2.4 6.9 6.2 1.3 19.1 0.3 5.4 1.0 2.2 6.0 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 60.6 2.9 6.8 2.8 1.7 14.8 1.1 21.2 1.2 1.8 6.0 5,001 to 10,000 .......................... 44.0 2.6 5.7 2.8 1.1 14.3 0.7 8.6 0.9 1.4 5.8 10,001 to 25,000 ........................ 38.8 2.1 4.4 4.1 1.1 14.7 0.2 4.5 0.8 1.6 5.1 25,001 to 50,000 ........................ 43.7 2.0 6.8 6.1 1.3 15.4 0.2 4.0 0.8 1.9 5.3 50,001 to 100,000 ...................... 50.9 2.7 7.5 7.6 1.4 19.6 0.3 3.4 0.7 2.0 5.8 100,001 to 200,000 .................... 57.7 2.3 8.0 8.9 1.1 23.0 0.1 2.9 1.3 3.2 6.7 200,001 to 500,000 .................... 51.8 1.5 7.4 7.5 0.8 23.0 0.2 1.3 1.1 2.7 6.2 Over 500,000 ............................. 65.4 3.0 9.0 8.8 1.5 28.7 0.3 2.4 1.2 3.2 7.3 Principal Building Activity Education .................................. 37.6 1.5

407

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

,043 ,043 49 141 128 26 393 7 112 20 46 122 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 115 6 13 5 3 28 2 40 2 3 11 5,001 to 10,000 .......................... 86 5 11 5 2 28 1 17 2 3 11 10,001 to 25,000 ........................ 142 8 16 15 4 54 1 17 3 6 19 25,001 to 50,000 ........................ 116 5 18 16 3 41 (*) 11 2 5 14 50,001 to 100,000 ...................... 153 8 22 23 4 59 1 10 2 6 17 100,001 to 200,000 .................... 172 7 24 27 3 68 (*) 9 4 10 20 200,001 to 500,000 .................... 112 3 16 16 2 50 (*) 3 2 6 13 Over 500,000 ............................. 147 7 20 20 3 64 1 5 3 7 16 Principal Building Activity Education .................................. 109 4 22 24 3 33 (*) 5 1 9 6 Food Sales ................................ 61 2 4 2 Q 14 1 35 1 1 3 Food Service ............................. 63 3 8 7 3 12 4 20 (*) 1 4 Health Care ...............................

408

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

3,559 3,559 167 481 436 88 1,340 24 381 69 156 418 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 392 19 44 18 11 96 7 138 8 12 39 5,001 to 10,000 .......................... 293 18 38 18 8 95 4 57 6 10 39 10,001 to 25,000 ........................ 485 26 55 52 14 184 3 57 10 20 63 25,001 to 50,000 ........................ 397 18 62 55 12 140 2 37 7 17 48 50,001 to 100,000 ...................... 523 28 77 78 15 202 3 35 7 20 59 100,001 to 200,000 .................... 587 23 82 91 11 234 1 30 14 33 68 200,001 to 500,000 .................... 381 11 55 56 6 170 2 10 8 20 46 Over 500,000 ............................. 501 23 69 67 12 220 2 19 9 25 56 Principal Building Activity Education .................................. 371 15 74 83 11 113 2 16 4 32 21 Food Sales ................................ 208 6 12 7 Q 46 2 119 2 2 10 Food Service .............................

409

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

48.0 48.0 1.8 6.3 6.1 0.8 18.1 0.3 5.6 1.0 2.3 5.6 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 60.8 2.9 6.8 2.9 1.7 14.6 1.1 21.6 1.2 1.9 6.0 5,001 to 10,000 .......................... 42.2 2.0 5.6 2.8 0.9 13.3 0.7 9.0 0.9 1.5 5.7 10,001 to 25,000 ........................ 35.8 1.7 4.1 3.9 0.7 13.3 0.3 4.6 0.8 1.7 4.7 25,001 to 50,000 ........................ 41.8 1.8 6.6 6.0 1.0 14.4 0.2 4.1 0.8 1.9 5.0 50,001 to 100,000 ...................... 44.8 1.8 6.4 7.2 0.8 17.5 0.3 3.3 0.7 2.0 5.0 100,001 to 200,000 .................... 53.5 1.8 6.9 8.8 0.5 21.7 0.1 2.7 Q 3.5 6.2 200,001 to 500,000 .................... 51.2 1.2 7.2 7.6 0.7 23.0 0.2 1.2 1.1 2.7 6.1 Over 500,000 ............................. 64.9 1.4 7.9 9.5 0.5 30.6 0.3 2.1 1.4 3.9 7.3 Principal Building Activity Education .................................. 37.6 1.5 7.5

410

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

89.8 89.8 34.0 6.7 5.9 6.9 17.6 2.6 5.5 1.0 2.3 7.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 98.9 30.5 6.7 2.7 7.1 13.7 7.1 20.2 1.2 1.7 8.1 5,001 to 10,000 .......................... 78.3 30.0 5.4 2.6 6.1 12.5 5.2 8.4 0.8 1.4 5.9 10,001 to 25,000 ........................ 67.3 28.1 4.1 3.9 3.7 13.1 2.1 4.6 0.8 1.6 5.3 25,001 to 50,000 ........................ 77.6 30.2 6.6 5.8 6.3 13.9 1.6 3.9 0.8 1.9 6.7 50,001 to 100,000 ...................... 83.8 32.4 6.5 7.2 6.0 17.4 1.2 3.3 0.7 2.0 7.1 100,001 to 200,000 .................... 103.0 41.3 7.1 8.8 7.9 21.5 0.9 2.7 Q 3.4 8.0 200,001 to 500,000 .................... 101.0 39.0 7.6 7.5 9.4 22.6 1.9 1.2 1.1 2.7 8.1 Over 500,000 ............................. 129.7 44.9 11.5 9.5 11.7 30.6 2.2 2.1 Q 3.9 11.9 Principal Building Activity Education ..................................

411

Wood Pulp Digetster Wall Corrosion Investigation  

DOE Green Energy (OSTI)

The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

Giles, GE

2003-09-18T23:59:59.000Z

412

HEAT THAT GROWS ON TREES Short description of timber energy  

E-Print Network (OSTI)

HEAT THAT GROWS ON TREES 6 Short description of timber energy · Along with hydro-electric power, wood is Switzerland's most important energy source. · Wood is CO2-neutral: in sustainably managed, a balance is maintained between growth and combustion). · Wood energy represents a welcome potential use

413

Influence of Heat Treatment on Corrosion and Wear Resistances of ...  

Science Conference Proceedings (OSTI)

Both the increasing of the heating up time and the prolonging of the temperature ... with FRP Facesheets and Nanoclay-wood Flour Modified Polyurethane Foam.

414

EA-1887: Renewable Fuel Heat Plant Improvements at the National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of...

415

Heat reclaimer  

Science Conference Proceedings (OSTI)

A heat reclaimer for the exhaust flue of a heating unit comprises a housing having an air input space, an air output space, and an exhaust space, with a plurality of tubes connected between and communicating the air input space with the air output space and extending through the exhaust space. The exhaust flue of the heating unit is connected into the exhaust space of the housing and an exhaust output is connected to the housing extending from the exhaust space for venting exhaust coming from the heater into the exhaust space to a chimney, for example. A float or level switch is connected to the housing near the bottom of the exhaust space for switching, for example, an alarm if water accumulates in the exhaust space from condensed water vapor in the exhaust. At least one hole is also provided in the housing above the level of the float switch to permit condensed water to leave the exhaust space. The hole is provided in case the float switch clogs with soot. A wiping device may also be provided in the exhaust space for wiping the exterior surfaces of the tubes and removing films of water and soot which might accumulate thereon and reduce their heat transfer capacity.

Bellaff, L.

1981-10-20T23:59:59.000Z

416

Wood Handbook Wood as an Engineering Material Centennial EditionCentennial Edition  

E-Print Network (OSTI)

Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

United States; Forest Service; Wood Handbook; Wood As An Engineering Material

2010-01-01T23:59:59.000Z

417

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

Daman, Ernest L. (Westfield, NJ); McCallister, Robert A. (Mountain Lakes, NJ)

1979-01-01T23:59:59.000Z

418

Managing Transmission Line Wood Structures  

Science Conference Proceedings (OSTI)

The objective of this project is to reduce capital cost by extending life expectancy of overhead transmission wood structures through inspection and assessment procedures and through aging mitigation techniques and tools.

2005-11-29T23:59:59.000Z

419

Geothermal space/water heating for Mammoth Lakes Village, California. Quarterly technical progress report, 13 December 1976-12 March 1977  

DOE Green Energy (OSTI)

During the second three months of this feasibility study to determine the technical, economic and environmental feasibility of heating Mammoth Lakes Village, California using geothermal energy, the following work was accomplished. A saturation survey of the number and types of space and water heaters currently in use in the Village was completed. Electric energy and ambient temperature metering equipment was installed. Peak heating demand for Mammoth Lakes was estimated for the years 1985, 1990 and 2000. Buildings were selected which are considered typical of Mammoth Lakes in terms of their heating systems to be used in estimating the cost of installing hydronic heating systems in Mammoth. Block diagrams and an order of magnitude cost comparison were prepared for high-temperature and low-temperature geothermal district heating systems. Models depicting a geothermal district heating system and a geothermal-electric power plant were designed, built and delivered to ERDA in Washington. Local input to the feasibility study was obtained from representatives of the State of California Departments of Transportation and Fish and Game, US Forest Service, and Mono County Planning Department.

Sims, A.V.; Racine, W.C.

1977-01-01T23:59:59.000Z

420

Treated Wood Planted Post Study  

Science Conference Proceedings (OSTI)

This Technical Update describes the interim results of a planted post study currently under way at the Austin Cary Memorial Forest (ACMF), operated by The University of Florida, in Gainesville. The purpose of this research is to examine the effectiveness of commercially available prevention methods to reduce preservative migration from treated wood poles, compare the migration of constituents of various wood treatments, and assess the environmental impacts and performance of untreated chestnut.

2009-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chimneys: Warm and Cozy or Easy Exit for Your Heat? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Fireplace and Chimney Efficiency Chimneys: Keep 'em Clean... and Closed A wood stove on a stone hearth. | Photo courtesy of iStockphotoKingLouie Wood and Pellet Heating...

422

Identification of environmental issues: Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California: First phase report  

DOE Green Energy (OSTI)

The development of a 55 MWe power plant in Lassen County, California, has been proposed. The proposed power plant is unique in that it will utilize goethermal heat and wood fuel to generate electrical power. This report identifies environmental issues and constraints which may impact the proposed hybrid wood-geothermal power plant. (ACR)

Not Available

1981-08-14T23:59:59.000Z

423

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

424

Small Space Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities...

425

Table F24: Wood and Biomass Waste Consumption Estimates, 2011  

U.S. Energy Information Administration (EIA)

Table F24: Wood and Biomass Waste Consumption Estimates, 2011 State Wood Wood and Biomass Waste a Residential Commercial Industrial Electric Power ...

426

Chromoblastomycosis associated with in a carpenter handling exotic woods  

E-Print Network (OSTI)

in a carpenter handling exotic woods Nuno Menezes 1 , Pauloas saprophytes in the soil, wood and vegetation [ 3 ]. Theyare normally made of tropical wood [ 9 ]. The inoculation

2008-01-01T23:59:59.000Z

427

Geothermal Energy Development in the Eastern United States: Technical assistance report No. 6 geothermal space heating and airconditioning -- McGuire Air Force Base, New Jersey  

DOE Green Energy (OSTI)

A method of utilizing the geothermal (66 F) water resource for space heating and cooling of 200 of the 1452 housing units at McGuire AFB is suggested. Using projections of future costs of gas, coal and electricity made by DOD and by industry (Westinghouse), the relative costs of the geothermal-water-plus-heat-pump system and the otherwise-planned central gas heating (to be converted to coal in 1984) and air-conditioning (using individual electric units) system are compared. For heating with the geothermal/heat-pump system, an outlet temperature of 130 F is selected, requiring a longer running time than the conventional system (at 180 F) but permitting a COP (coefficient of performance) of the heat pump of about 3.4. For cooling (obtained in this study by changing directions of water flow, not refrigerant cycles), the change in temperature is less, and a COP near 4.5 is obtained. The cost of cooling in the summer months would be significantly less than the cost of using individual electric air-conditioners. Thus, by using nonreversible heat pumps, geothermal water is used to heat and to cool a section of the housing compound, minimizing operating expenditures. It is estimated that, to drill 1000 ft deep production and reinjection wells and to install ten heat pumps, heat exchangers and piping, would require a capital outlay of $643 K. This cost would replace the capital cost of purchasing and installing 200 air-conditioning units and 14% of the cost of the future coal-fired central heating system (which would otherwise serve all 1452 housing units at McGuire). The net additional capital outlay would be $299 K, which could be amortized in 10 years by the lower operating cost of the geothermal system if electricity and coal prices escalate as industry suggests. If the coal and electricity costs rise at the more modest rates that DOD projects, the capital costs would be amortized in a 15 year period.

Hill, F.K.; Briesen R. von

1980-12-01T23:59:59.000Z

428

Modelling piloted ignition of wood and plastics  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

Blijderveen, Maarten van [TNO, Schoemakerstraat 97, 2628 VK Delft (Netherlands); University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Bramer, Eddy A. [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Brem, Gerrit, E-mail: g.brem@utwente.nl [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

2012-09-15T23:59:59.000Z

429

Fuel selection study for Fort Leonard Wood, Missouri. Volume 2. Final report  

SciTech Connect

The objectives of the Fuel Selection Study for Fort Leonard Wood, Missouri were: (1) to evaluate specified sources of heating energy - electric or fuel oil, and the necessary associated conversion work for meeting the heating requirements of selected buildings at Fort Leonard Wood, Missouri; and (2) to determine the impact on energy usage and cost savings which would result from increasing insulation levels in the building under review. The buildings considered in this study included 2,862 family housing units, 5 Bachelor Officers' Quarters, an Enlisted Women's Barracks, the Medical Detachment Building, and the Heating Plant supporting the main Fort laundry.

1975-05-01T23:59:59.000Z

430

Fuel selection study for Fort Leonard Wood, Missouri. Volume 1. Final report  

SciTech Connect

The objectives of the Fuel Selection Study for Fort Leonard Wood, Missouri were: (1) to evaluate specified sources of heating energy - electric or fuel oil, and the necessary associated conversion work for meeting the heating requirements of selected buildings at Fort Leonard Wood, Missouri; and (2) to determine the impact on energy usage and cost savings which would result from increasing insulation levels in the building under review. The buildings considered in this study included 2,862 family housing units, 5 Bachelor Officers' Quarters, an Enlisted Women's Barracks, the Medical Detachment Building, and the Heating Plant supporting the main Fort laundry.

1975-05-01T23:59:59.000Z

431

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0 312 Beverage and Tobacco Products 0 1 0 0 1 0 321 Wood Products 0 218 * 13 199 6 321113 Sawmills 0 100 * 5 94 1 3212 Veneer, Plywood, and Engineered Woods 0 95 * 6 87 2 321219 Reconstituted Wood Products 0 52 0 6 46 1 3219 Other Wood Products

432

The potential for Eucalyptus as a wood fuel in the UK A.D. Leslie a,  

E-Print Network (OSTI)

The potential for Eucalyptus as a wood fuel in the UK A.D. Leslie a, , M. Mencuccini b,1 , M. Perks for utilising woody biomass, grown under short rotation forestry management systems, to produce electricity or heat. There are benefits to using biomass in generating heat and power the main environmental benefit

Mencuccini, Maurizio

433

Projecting Monthly Natural Gas Sales for Space Heating Using a Monthly Updated Model and Degree-days from Monthly Outlooks  

Science Conference Proceedings (OSTI)

The problem of projecting monthly residential natural gas sales and evaluating interannual changes in demand is investigated using a linear regression model adjusted monthly. with lagged monthly heating degree-days as the independent variable. ...

Richard L. Lehman; Henry E. Warren

1994-01-01T23:59:59.000Z

434

Wood-Composites Industry Benefits from ALS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wood-Composites Industry Benefits from ALS Research Wood-Composites Industry Benefits from ALS Research Print Thursday, 25 October 2012 10:44 paris-wood composites Wood scientist...

435

Categorical Exclusion for Wood Pole  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Pole Wood Pole Replacement at two structures (11/6 & 11/9) located along the Oracle-Tucson 115-kV Transmission Line, in Oro Valley, Pima County, Arizona. RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western plans to replace deteriorated wood poles, cross arms and X-braces at two existing H-frame structures (11/6 & 1119) located along the Oracle Tucson 115-kV Transmission Line in Pima, Arizona (Figure 1). Built in 1943, its aging components are beyond repair and require replacement. These poles performed poorly during structural tests, and we consider them unstable. This replacement project will ensure the safety of Western's workers and the public as well as reliability of the bulk electric system. Western will accomplish the work by clearing vegetation and blading a level pad at

436

Marin County- Wood Stove Replacement Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The County of Marin has created a rebate program to encourage homeowners to remove or replace non-EPA certified wood-burning heaters (wood stoves and fireplace inserts) with cleaner burning stoves...

437

Structure-Infesting Wood-Boring Beetles  

E-Print Network (OSTI)

Several kinds of beetles damage stored wood, structural timbers and other wood products. This publication explains how to detect, identify, prevent and control powderpost beetle, old house borer and others.

Jackman, John A.

2006-03-28T23:59:59.000Z

438

Geothermal space heating applications for the Fort Peck Indian Reservation in the vicinity of Poplar, Montana. Final report, August 20, 1979-May 31, 1980  

DOE Green Energy (OSTI)

The results of a first-stage evaluation of the overall feasibility of utilizing geothermal waters from the Madison aquifer in the vicinity of Poplar, Montana for space heating are reported. A preliminary assessment of the resource characteristics, a preliminary design and economic evaluation of a geothermal heating district and an analysis of environmental and institutional issues are included. Preliminary investigations were also made into possible additional uses of the geothermal resource, including ethanol production. The results of the resource analysis showed that the depth to the top of the Madison occurs at approximately 5,500 feet at Poplar, and the Madison Group is characterized by low average porosity (about 5 percent) and permeability (about 0.004 gal/day-ft), and by hot water production rates of a few tens of gallons per minute from intervals a few feet thick. The preliminary heating district system effort for the town of Poplar included design heat load estimates, a field development concept, and preliminary design of heat extraction and hot water distribution systems. The environmental analysis, based on current data, indicated that resource development is not expected to result in undue impacts. The institutional analysis concluded that a Tribal geothermal utility could be established, but no clear-cut procedure can be identified without a more comprehensive evaluation of legal and jurisdistional issues. The economic evaluation found that, if the current trend of rapidly increasing prices for fossil fuels continues, a geothermal heating district within Poplar could be a long-term, economically attractive alternative to current energy sources.

Birman, J.H.; Cohen, J.; Spencer, G.J.

1980-10-01T23:59:59.000Z

439

Field Guide: Visual Inspection of Wood Structures  

Science Conference Proceedings (OSTI)

The Field Guide: Visual Inspection of Wood Structures is a catalog of photographs illustrating various conditions and factors that commonly affect transmission line wood structures, along with their likely causes, a Maintenance Priority Rating, and suggested actions to be taken by utility personnel. Poles, cross-arms, cross-arm braces, X-braces, brackets, anchor rods, guy wires, and direct imbedded foundations are covered. Other sections include types of wood structures, the anatomy of wood ...

2013-10-28T23:59:59.000Z

440

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

Note: This page contains sample records for the topic "wood space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

442

Autonomous Underwater Gliders Wood, Stephen  

E-Print Network (OSTI)

26 Autonomous Underwater Gliders Wood, Stephen Florida Institute of Technology United States underwater vehicles to perform ocean surveys. With these vehicles it is now possible for the scientist substances in the ocean such as chemicals from an underwater vent or toxic algae such as red tide

Wood, Stephen L.

443

Solar heat collector  

SciTech Connect

A solar heat collector comprises an evacuated transparent pipe; a solar heat collection plate disposed in the transparent pipe; a heat pipe, disposed in the transparent pipe so as to contact with the solar heat collection plate, and containing an evaporable working liquid therein; a heat medium pipe containing a heat medium to be heated; a heat releasing member extending along the axis of the heat medium pipe and having thin fin portions extending from the axis to the inner surface of the heat medium pipe; and a cylindrical casing surrounding coaxially the heat medium pipe to provide an annular space which communicates with the heat pipe. The evaporable working liquid evaporates, receiving solar heat collected by the heat collection plate. The resultant vapor heats the heat medium through the heat medium pipe and the heat releasing member.

Yamamoto, T.; Imani, K.; Sumida, I.; Tsukamoto, M.; Watahiki, N.

1984-04-03T23:59:59.000Z

444

Effect of rib spacing on heat transfer and friction in a rotating two-pass rectangular (AR=1:2) channel  

E-Print Network (OSTI)

The research focuses on testing the heat transfer enhancement in a channel for different spacing of the rib turbulators. Those ribs are put on the surface in the two pass rectangular channel with an aspect ratio of AR=1:2. The cross section of the rib is 1.59 x 1.59 mm. Those ribs are put on the leading and trailing walls of the channel with the angle of flow attack to the mainstream of 45?°. The rotating speed is fixed at 550-RPM with the channel orientation at ?²=90?°. Air is used as the coolant through the cooling passage with the coolant-to-wall density ratio ( ρ ρ â?? ) maintained around 0.115 in the first pass and 0.08 in the second pass. The Reynolds numbers are controlled at 5000, 10000, 25000, and 40000. The rib spacing-to-height ratios (P/e) are 3, 5, 7.5, and 10. The heat transfer coefficient and friction factor are measured to determine the effect of the different rib distributions. Stationary cases and rotational cases are examined and compared. The result shows that the highest thermal performance is P/e=5 for the stationary case and P/e=7.5 for the rotating case.

Liu, Yao-Hsien

2005-08-01T23:59:59.000Z

445

Qualifying Wood Stove Deduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualifying Wood Stove Deduction Qualifying Wood Stove Deduction Qualifying Wood Stove Deduction < Back Eligibility Residential Savings Category Bioenergy Maximum Rebate 500 Program Info Start Date 1/1/1994 State Arizona Program Type Personal Deduction Rebate Amount Total cost, exclusive of taxes, interest and other finance charges Provider Arizona Department of Revenue This incentive allows Arizona taxpayers to deduct the cost of converting an existing wood fireplace to a qualifying wood stove. The cost to purchase and install all necessary equipment is tax deductible, up to a maximum $500 deduction. Qualifying wood stoves must meet the standards of performance for new wood heaters manufactured after July 1990, or sold after July 1992 pursuant to [http://www.epa.gov/oecaerth/resources/policies/monitoring/caa/woodstover...

446

Space and Time Resolved Measurements of the Heating of Solids to Ten Million Kelvin by a Petawatt Laser  

Science Conference Proceedings (OSTI)

The heating of plane solid targets by the Vulcan petawatt laser at powers of 0.32-0.73 PW and intensities of up to 4 x 10^20 W cm^-2 has been diagnosed with a temporal resolution of 17 ps and a spatial resolution of 30 um, by measuring optical emission from the opposite side of the target to the laser with a streak camera. Second harmonic emission was filtered out and the target viewed at an angle to eliminate optical transition radiation. Spatial resolution was obtained by imaging the emission onto a bundle of fibre optics, arranged into a one-dimensional array at the camera entrance. The results show that a region 160 um in diameter can be heated to a temperature of ~10^7 K (kT/e ~ keV) in solid targets from 10 to 20 um thick and that this temperature is maintained for at least 20 ps, confirming the utility of PW lasers in the study of high energy density physics. Hybrid code modelling shows that magnetic field generation prevents increased target heating by electron refluxing above a certain target thickness and that the absorption of laser energy into electrons entering the solid target was between 15-30%, and tends to increase with laser energy.

Nakatsutsumi, M.; Davies, J.R.; Kodama, R.; Green, J.S.; Lancaster, K.L.; Akli, K.U.; Beg, F.N.; Chen, S.N.; Clark, D.; Freeman, R.R.; Gregory, C.D.; Habara, H.; Heathcote, R.; Hey, D.S.; Highbarger, K.; Jaanimagi, P.; Key, M.H.; Krushelnick, K.; Ma, T.; MacPhee, A.; MacKinnon, A.J.; Nakamura, H.; Stephens, R.B.; Storm, M.; Tampo, M.; Theobald, W.; Van Woerkom, L.; Weber, R.L.; Wei, M.S.; Woolsey, N.C.; Norreys, P.A.

2008-04-29T23:59:59.000Z

447

Geothermal Energy Market Study on the Atlantic Coastal Plain. A Review of Recent Energy Price Projections for Traditional Space Heating Fuel 1985-2000  

DOE Green Energy (OSTI)

In order to develop an initial estimate of the potential competitiveness of low temperature (45 degrees C to 100 degrees C) geothermal resources on the Eastern Coastal Plain, the Center for Metropolitant Planning and Research of The Johns Hopkins University reviewed and compared available energy price projections. Series of projections covering the post-1985 period have been made by the Energy Information Administration, Brookhaven National Laboratory, and by private research firms. Since low temperature geothermal energy will compete primarily for the space and process heating markets currently held by petroleum, natural gas, and electricity, projected trends in the real prices for these fuels were examined. The spread in the current and in projected future prices for these fuels, which often serve identical end uses, underscores the influence of specific attributes for each type of fuel, such as cleanliness, security of supply, and governmental regulation. Geothermal energy possesses several important attributes in common with electricity (e.g., ease of maintenance and perceived security of supply), and thus the price of electric space heating is likely to be an upper bound on a competitive price for geothermal energy. Competitiveness would, of course, be increased if geothermal heat could be delivered for prices closer to those for oil and natural gas. The projections reviewed suggest that oil and gas prices will rise significantly in real terms over the next few decades, while electricity prices are projected to be more stable. Electricity prices will, however, remain above those for the other two fuels. The significance of this work rests on the fact that, in market economies, prices provide the fundamental signals needed for efficient resource allocation. Although market prices often fail to fully account for factors such as environmental impacts and long-term scarcity value, they nevertheless embody a considerable amount of information and are the primary guideposts for suppliers and consumers.

Weissbrod, Richard; Barron, William

1979-03-01T23:59:59.000Z

448

Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA Report No. 6  

DOE Green Energy (OSTI)

This feasibility study and preliminary conceptual design effort assesses the conversion of Colorado School District 50 facilities - a high school and gym, and a middle school building - at Pagosa Springs, Colorado to geothermal space heating. A preliminary cost-benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 150/sup 0/F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system-compatible components would be used for the building modifications. Asbestos-cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates. In view of the favorable economics and the uncertain future availability and escalating cost of natural gas, the conversion appears economicaly feasible and desirable.

Engen, I.A.

1981-11-01T23:59:59.000Z

449

Wood-based Energy Technologies Michigan offers some significant advantages  

E-Print Network (OSTI)

on municipal solid waste. Both district heating and CHP plants can also pro- duce pellets for local housing tech- nology and heat trans- fer systems allow more energy to be directed to space heating and less be connected to the system. It can also work for collections of cooperating homes. Use of District Energy

450

The deposition and burning characteristics during slagging co-firing coal and wood: modeling and numerical simulation  

SciTech Connect

Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristics (especially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input same) were simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.

Wang, X.H.; Zhao, D.Q.; Jiang, L.Q.; Yang, W.B. [Chinese Academy of Sciences, Ghangzhou (China)

2009-07-01T23:59:59.000Z

451

Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II  

DOE Green Energy (OSTI)

Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

Vasenda, S.K.; Hassler, C.C.

1992-06-01T23:59:59.000Z

452

Managing Transmission Line Wood Structures  

Science Conference Proceedings (OSTI)

Transmission and distribution infrastructures throughout the world are aging. As such, inspection, assessment, and maintenance of existing facilities have become increasingly important topics. This valuable reference provides an in-depth look at all facets of an inspection, assessment, and maintenance program for transmission line wood structures to help utilities develop and refine individual maintenance programs. The report is part of a broader multi-year effort by EPRI to develop a comprehensive handb...

2006-09-28T23:59:59.000Z

453

Distribution Library--Wood Poles  

Science Conference Proceedings (OSTI)

EPRI has sponsored research and published information on a wide variety of topics related to wood poles for overhead lines. Many of these resources, particularly older publications, are difficult for EPRI members to find and use. To help ensure retention of this valuable knowledge base, EPRI sponsored the project reported herein to capture this information and