National Library of Energy BETA

Sample records for wood residues agricultural

  1. EERE Success Story-California: Agricultural Residues Produce Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel | Department of Energy Agricultural Residues Produce Renewable Fuel EERE Success Story-California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The

  2. BT16 Agricultural Residues and Biomass Energy Crops Factsheet

    Broader source: Energy.gov (indexed) [DOE]

    ... forests, municipal solid wastes, urban wood waste, and algae, the report includes an evaluation of biomass supply potentially available through production on agricultural land. ...

  3. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  4. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  5. California: Agricultural Residues Produce Renewable Fuel

    Broader source: Energy.gov [DOE]

    Logos Technologies and EERE are partnering with Edeniq of Visalia to build a plant that will produce cellulosic ethanol from switchgrass, wood chips, and corn leaves, stalks, and husks--all plentiful, nonfood feedstock sources in California.

  6. EERE Success Story-California: Agricultural Residues Produce...

    Broader source: Energy.gov (indexed) [DOE]

    California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-source...

  7. Proposed plant will turn wood residues into synfuel

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A group of entrepreneurs plan to have a plant operating in Burney, CA. The projected facility will produce an estimated 21,000 gallons of oil per day, converting about 300 tons of raw material. Converting cellulose into synthetic fuel is superior to alcohol production. The process yields approximately 84 gallons of synthetic fuel per ton of raw material. The entire LHG (liquid hydrogen gas) patented facility is self-sufficient and releases only carbon dioxide into the atmosphere. Synfuel production is a three-phase process. First, butyl alcohol (butanol) and acetone are produced from a portion of the raw material. This is facilitated by adding to the raw material a bacteria culture. The planned facility in Burney will have thirty-five 2100 gallon fermentation tanks and will produce 1.25 million gallons of butanol. Next, organic material is blended with water and is pumped into patented LHG catalytic converters, charged with carbon monoxide gas as a catalyst and then heated to 350 degrees C at 2000 to 5000 psi. Here, the organic material is converted to No. 4 oil with bituminous tar as a residue. A patented gasifier system produces the carbon monoxide catalyst plus COH (carbon hydroxide) gas. The COH is used to power a gas turbine driving a 100 kW generator and a central hydraulic pump. The facility, which will be energy self-sufficient, will have approximately 50 kW of excess power to sell to the local utility power grid. Finally, the No. 4 oil, butanol and liquified COH gas are blended to produce any grade fuel oil or a gasoline substitute of very high octane.

  8. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Sokhansanj, Shahabaddine

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  9. Laboratory evaluation of the hazard to wood mice, Apodemus sylvaticus, from the agricultural use of methiocarb molluscicide pellets

    SciTech Connect (OSTI)

    Tarrant, K.A.; Westlake, G.E.

    1988-01-01

    Laboratory studies have been carried out to determine the toxicity of methiocarb pellets to wild trapped wood mice in order to provide some background data prior to any further evaluation of hazard in the field. In this study, wood mice were exposed to dry and to dampened methiocarb pellets in order to reproduce field trial application conditions. Field observations of methiocarb pellets indicate that the physical character changes under dry and wet weather conditions. This may affect their relative attractiveness and potential toxicity to wood mice. The laboratory assessment of exposed wood mice included measurement of brain esterase activities, methiocarb residues in selected mouse tissue, carcasses, and histological evaluation of kidney, liver and lungs.

  10. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect (OSTI)

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  11. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    SciTech Connect (OSTI)

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    2012-10-06

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

  12. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  13. Modelling of a downdraft gasifier fed by agricultural residues

    SciTech Connect (OSTI)

    Antonopoulos, I.-S.; Karagiannidis, A.; Gkouletsos, A.; Perkoulidis, G.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Development of software for downdraft gasification simulation. Black-Right-Pointing-Pointer Prediction of the syngas concentration. Black-Right-Pointing-Pointer Prediction of the syngas heating value. Black-Right-Pointing-Pointer Investigation of the temperature effect in reduction zone in syngas concentration. - Abstract: A non-stoichiometric model for a downdraft gasifier was developed in order to simulate the overall gasification process. Mass and energy balances of the gasifier were calculated and the composition of produced syngas was predicted. The capacity of the modeled gasifier was assumed to be 0.5 MW, with an Equivalence Ratio (EQ) of 0.45. The model incorporates the chemical reactions and species involved, while it starts by selecting all species containing C, H, and O, or any other dominant elements. Olive wood, miscanthus and cardoon were tested in the formulated model for a temperature range of 800-1200 Degree-Sign C, in order to examine the syngas composition and the moisture impact on the supplied fuel. Model results were then used in order to design an olive wood gasification reactor.

  14. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    SciTech Connect (OSTI)

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  15. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect (OSTI)

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  16. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect (OSTI)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  17. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    SciTech Connect (OSTI)

    Gori, Manuela; Bergfeldt, Britta; Reichelt, Jürgen; Sirini, Piero

    2013-04-15

    Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.

  18. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    SciTech Connect (OSTI)

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ags ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.

  19. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  20. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    SciTech Connect (OSTI)

    Govasmark, Espen; Staeb, Jessica; Holen, Borge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-15

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  1. Anaerobic fermentation of agricultural residue: potential for improvement and implementation. Final report, Volume II

    SciTech Connect (OSTI)

    Jewell, W. J.; Dell'orto, S.; Fanfoni, K. J.; Hayes, T. D.; Leuschner, A. P.; Sherman, D. F.

    1980-04-01

    Earlier studies have shown that although large quantities of agricultural residues are generated on small farms, it was difficult to economically justify use of conventional anaerobic digestion technology, such as used for sewage sludge digestion. A simple, unmixed, earthen-supported structure appeared to be capable of producing significant quantities of biogas at a cost that would make it competitive with many existing fuels. The goal of this study was to define and demonstrate a methane fermentation technology that could be practical and economically feasible on small farms. This study provides the first long term, large scale (reactor volumes of 34 m/sup 3/) parallel testing of the major theory, design, construction, and operation of a low cost approach to animal manure fermentation as compared to the more costly and complex designs. The main objectives were to define the lower limits for successful fermentor operation in terms of mixing, insulation, temperature, feed rate, and management requirements in a cold climate with both pilot scale and full scale fermentors. Over a period of four years, innovative fermentation processes for animal manures were developed from theoretical concept to successful full scale demonstration. Reactors were sized for 50 to 65 dairy animals, or for the one-family dairy size. The results show that a small farm biogas generation system that should be widely applicable and economically feasible was operated successfully for nearly two years. Although this low cost system out-performed the completely mixed unit throughout the study, perhaps the greatest advantage of this approach is its ease of modification, operation, and maintenance.

  2. Environmental and economic evaluation of energy recovery from agricultural and forestry residues

    SciTech Connect (OSTI)

    1980-09-01

    Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems are examined by quantifying the residuals generated and the land, water, and material requirements per 10/sup 12/ Btu of energy generated. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. These data are also computed on the basis of 10/sup 12/ Btu of energy recovered. The cost, residual, material, land, and water data were then organized into a format acceptable for input into the SEAS data management program. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  3. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  4. Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand...

  5. Daniel Wood

    Broader source: Energy.gov [DOE]

    Daniel Wood is the Data Visualization and Cartographic Specialist in the Office of Public Affairs at the Department of Energy. He develops creative and interactive ways of viewing the Energy...

  6. From the Woods to the Refinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Woods to the Refinery CORRIM Life Cycle Analyses of Woody Feedstocks Dr. Steve Kelley ... composition, sugar types, residue fuel value * TC models are sensitive to MC, much less ...

  7. Table 3.6 Selected Wood and Wood-Related Products in Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " ...

  8. Wood and Pellet Heating

    Broader source: Energy.gov [DOE]

    Looking for an efficient, renewable way to heat your home? Wood or pellets are renewable fuel sources, and modern wood and pellet stoves are efficient heaters.

  9. Wood pellet production

    SciTech Connect (OSTI)

    Moore, J.W.

    1983-08-01

    Southern Energy Limited's wood pellet refinery, Bristol, Florida, produces wood pellets for fuel from scrap wood from a nearby sawmill and other hog fuel delivered to the plant from nearby forest lands. The refinery will provide 50,000 tons of pellets per year to the Florida State Hospital at Chattahoochee to fire recently converted boilers in the central power plant. The pellets are densified wood, having a moisture content of about 10% and a heating value of 8000 Btu/lb. They are 0.5 inches in diameter and 2 to 3 inches in length.

  10. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  11. An economical and market analysis of Canadian wood pellets.

    SciTech Connect (OSTI)

    Peng, J.

    2010-08-01

    This study systematically examined the current and future wood pellet market, estimated the cost of Canadian torrefied pellets, and compared the torrefied pellets with the conventional pellets based on literature and industrial data. The results showed that the wood pellet industry has been gaining significant momentum due to the European bioenergy incentives and the rising oil and natural gas prices. With the new bioenergy incentives in USA, the future pellets market may shift to North America, and Canada can potentially become the largest pellet production centre, supported by the abundant wood residues and mountain pine beetle (MPB) infested trees.

  12. Residential Energy Efficiency Tax Credit | Department of Energy

    Energy Savers [EERE]

    ... basis, including agricultural crops and trees, wood and wood waste and residues (including wood pellets), plants (including aquatic plants), grasses, residues, and fibers". ...

  13. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect (OSTI)

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  14. STEO October 2012 - wood

    U.S. Energy Information Administration (EIA) Indexed Site

    More U.S. households burning wood this winter to stay warm, reversing two-decade decline Burning wood as the primary heating source in U.S. households has risen over the last 10 years, reversing the decline seen in the 1980s and 1990s. About 2.6 million households out of 115 million will rely on wood as the main way to warm their homes this winter. That's up 3 percent from last year, according to the U.S. Energy Information Administration's new winter fuels forecast. The West will have the most

  15. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  16. James F. Wood

    Broader source: Energy.gov [DOE]

    James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's...

  17. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  18. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect (OSTI)

    Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Preto, F.; Melin, Staffan

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  19. Precision wood particle feedstocks

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  20. Agriculture Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Industrial Federal Agriculture SIS Variable Frequency Drives Irrigation Pump Testing Irrigation Hardware Upgrades LESA Agricultural Marketing Toolkit BPA's...

  1. Feasibility for Wood Heat - Collaborative Integrated Wood Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Wood Heat * Non-Profit Consortium of Ten Tribal ... Forestry, Fire Management, Self- Governance, ... coordination's across organizations 2 boilers and one ...

  2. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Broader source: Energy.gov (indexed) [DOE]

    1.4 M - Cord Wood 275 - 300 per cord - Kwh 0.51 (rate increase coming) - Propane 193 per 100 lbs tank - Funder reassurance - Consultant accountability - Harvest ...

  3. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  4. Wood3 Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood3 Resources Jump to: navigation, search Name: Wood3 Resources Place: Houston, Texas Zip: 77056-2409 Product: Wood3 Resources is an energy project development firm run by former...

  5. Wanda Woods | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wanda Woods Budget & Resource Administrator Wanda Woods Argonne National Laboratory 9700 South Cass Avenue Building 240 - Wkstn. 1C9 Argonne, IL 60439 630-252-1353...

  6. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Broader source: Energy.gov (indexed) [DOE]

    Oil cost per year for school 210,000 Fuel cost for electrical generation 1.4 M Cord Wood 275 - 300 per cord Kwh 0.77 (rate increase coming) Propane 203.89 per 100 ...

  7. Demonstration of wood/coal co-firing in a spreader stoker

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.; Elder, W.W.; Geiger, G.E.; Campus, N.J.; Miller, W.F.; Freeman, M.C.; McCreery, L.R.

    1999-07-01

    The Forest Service of the U.S. Department of Agriculture is sponsoring a series of demonstrations of wood/coal co-firing in stoker boilers. The first demonstration was conducted in 1997 in an industrial traveling-grate stoker boiler and the second in May 1999 in a spreader stoker boiler operated by the National Institute of Occupational Safety and Health (NIOSH) at the Bruceton Research Laboratory. The principal wood used in both demonstrations was tub-ground broken pallets. In the first phase of the NIOSH demonstration, four five-ton loads of wood/coal mixtures, varying from 3% to 12% wood (by Btu content), were combusted. The second phase of this demonstration was a 50-hour test using a 10% wood/coal blend delivered in two 20-ton loads. It has been concluded from both demonstrations that (1) a 10% wood/coal blend burns acceptably in the boiler, but (2) tub-ground urban wood is unacceptably difficult to feed through the grill above the delivery pit and through the spreader stokers. A method is being sought to acquire urban waste wood, having a more chip-like nature, to use in further testing and for commercialization.

  8. Stanford - Woods Institute for the Environment | Open Energy...

    Open Energy Info (EERE)

    Stanford - Woods Institute for the Environment Jump to: navigation, search Logo: Stanford- Woods Institute for the Environment Name: Stanford- Woods Institute for the Environment...

  9. Wood To Fuel LLC | Open Energy Information

    Open Energy Info (EERE)

    To Fuel LLC Jump to: navigation, search Name: Wood To Fuel LLC Place: Lackawana, New York Zip: 14208 Product: Wood fuelproduct supplier. Coordinates: 41.401932, -75.637848...

  10. Processes change the look of wood fuel

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed, these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  11. Processes change the look of wood fuel

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1980-06-01

    The various forms of wood-derived fuels are reviewed; these include briquetted and pelleted wood products. Charcoal, obtained by pyrolysis has a heating value one and a half times the equivalent weight of the dry wood from which it was made. By process modifications, more oil and gas may be produced instead of charcoal. At Albany, Oregon two barrels of oil are produced daily by hydrogenation of one ton of dry wood chips. It is stated that methanol can be synthesized from solid wood - by wood gasification - with a 38% energy efficiency while ethanol can also be made from wood. The use of wood fuels for electric power generation and cogeneration are also mentioned.

  12. Marcia A. Wood | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marcia A. Wood Group Leader, Information Solutions and Technology Assurance B.S. Computer Science, University of St. Francis Telephone 630.252.4656 Fax 630.252.6866 E-mail wood@anl.gov

  13. Duffield Wood Pellets | Open Energy Information

    Open Energy Info (EERE)

    Duffield Wood Pellets Jump to: navigation, search Name: Duffield Wood Pellets Place: North Yorkshire, United Kingdom Zip: HG4 5JB Product: A Yorkshire-based, family-run producer of...

  14. Kenneth L. Wood | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kenneth L. Wood Senior Engineering Specialist Telephone (630) 252-3971 E-mail klw@hep.anl

  15. Wood and Pellet Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Wood and Pellet Heating Wood and Pellet Heating A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1

  16. Densified fuels from wood waste

    SciTech Connect (OSTI)

    Pickering, W.H.

    1995-11-01

    Wood compressed to a specific gravity of about 1.2 constitutes an excellent clean burning fuel. {open_quotes}Prestologs{close_quotes} were marketed before 1940, but in the past ten years a much larger and growing market is densified pellet fuel has developed. The market for pellet fuel is about 90% residential, using special pellet burning stoves. Initial sales were almost entirely in the northwest, but sales in other parts of the country are now growing rapidly. Approximately 300,000 stoves are in use. Note that this industry developed from the private sector with little or no support from federal or state governments. Densified fuel is manufactured by drying and compressing sawdust feedstock. Combustion is different than that of normal wood. For example, wood pellets require ample supplies of air. They then burn with a hot flame and very low particulate emissions. Volatile organic compounds are burned almost completely and carbon monoxide can also be kept very low. Stoves burning pellets easily meet EPA standards. This paper discusses technical and economic factors associated with densified fuel and considers the future of the industry.

  17. Table N5.2. Selected Wood and Wood-Related Products in Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ... "Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: ...

  18. Arbuthnott Wood Pellets Ltd | Open Energy Information

    Open Energy Info (EERE)

    Scotland, United Kingdom Zip: AB30 1PA Product: Wood pellet producer. Coordinates: 56.932781, -2.42531 Show Map Loading map... "minzoom":false,"mappingservice":"googlema...

  19. Grant F. Wood | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grant F. Wood Consultant - Project Management 9700 S. Cass Avenue Building 240 Wkstn. 3D18 Argonne, IL 60439 630-252-5315 gfwood

  20. Qualifying Wood Stove Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total cost, exclusive of taxes, interest and other finance charges Summary This incentive allows Arizona taxpayers to deduct the cost of converting an existing wood fireplace to a ...

  1. Wood, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.568752, -90.330887 Show Map Loading map... "minzoom":false,"mappingservice"...

  2. No Fossils in This Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... that burn diesel fuel. biomass - any organic plant or animal matter (wood, wood wastes, agricultural residues, animal wastes, micro-algae and other aquatic plants) that can be ...

  3. Rachel Woods-Robinson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rachel Woods-Robinson About Us Rachel Woods-Robinson - Guest Blogger, Cycle for Science Most Recent Rain or Shine: We Cycle for Science July 2 Mountains, and Teachers, and a Bear, Oh My! June 2 Sol-Cycle: Biking Across America for Science Education May 1

  4. Flash pyrolysis products from beech wood

    SciTech Connect (OSTI)

    Beaumont, O.

    1985-04-01

    Flash pyrolysis products from beech wood obtained in an original pyrolysis apparatus were analyzed. The analytical procedure is described, and the composition of pyrolytic oil presented with more than 50 compounds. Comparison of pyrolytic products of cellulose, hemicellulose, and wood indicates the origin of each product. 19 references.

  5. Council of Athabascan Tribal Governments - Wood Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 November 2008 Gwitchyaa Zhee Corporation CATG - AWEA For-Profit Wood Energy Business Model Fort Yukon * Forest Management Service - CATG * For-Profit Wood Utility Company -...

  6. Lake of the Woods County, Minnesota: Energy Resources | Open...

    Open Energy Info (EERE)

    in Lake of the Woods County, Minnesota Baudette, Minnesota Roosevelt, Minnesota Williams, Minnesota Retrieved from "http:en.openei.orgwindex.php?titleLakeoftheWoodsC...

  7. Woods Hole Research Center Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy...

  8. Compound and Elemental Analysis At Little Valley Area (Wood,...

    Open Energy Info (EERE)

    Little Valley Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood,...

  9. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect (OSTI)

    Jonathan Bolling

    2009-03-02

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  10. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  11. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  12. YAVAPAI APACHE NATION BIOMASS FEASIBILITY STUDY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Materials * Forest Trimmings - Wood * Agricultural Residues * Animal Manures * Human Biosolids * Municipal Solid Wastes * Carbonaceous Fossil Fuels Gasifier Process ...

  13. Solvolytic liquefaction of wood under mild conditions

    SciTech Connect (OSTI)

    Yu, S.M.

    1982-04-01

    Conversion of wood to liquid products requires cleavage of bonds which crosslink the wood structure. This study examines a low-severity wood solubilization process utilizing a solvent medium consisting of a small amount of sulfuric acid and a potentially wood-derivable alcohol. In one half hour of reaction time at 250/sup 0/C under 15 psia starting nitrogen pressure, over 95% of the wood (maf) was rendered acetone-soluble. The product is a soft, black, bitumen-like solid at room temperature but readily softens at 140/sup 0/C. Between 25 and 50% of the original wood oxygen, depending on alcohol used, was removed as water. Approximately 2 to 17% of the alcohols were retained in the product. Gel permeation chromatography showed that the product's median molecular weight is around 300. Based on experimental and literature results, a mechanism for wood solubilization is proposed. This involves protonation of the etheric oxygen atoms, leading to subsequent bond scission to form carbonium ions which are stabilized by solvent alkoxylation. At severe conditions, polymerization and condensation reactions result in acetone-insoluble materials.

  14. Mobility of organic carbon from incineration residues

    SciTech Connect (OSTI)

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  15. Wood fuel in fluidized bed boilers

    SciTech Connect (OSTI)

    Virr, M.J.

    1982-01-01

    Development of fluidized bed fire-tube and water-tube boilers for the burning of wood, gas, and refuse-derived fuel will be reviewed. Experience gained in already installed plants will be outlined. Research experiments results on the use of various forms of wood and other biomass fuels, such as wood chips, pellets, peach pits, nut shells and kernels and refuse-derived fuels, will be described for small and medium sized fire-tube boilers, and for larger water-tube boilers for co-generation. (Refs. 4).

  16. Marin County- Wood Stove Replacement Rebate Program

    Broader source: Energy.gov [DOE]

    Homes in the San Geronimo Valley (Forest Knolls, Lagunitas, San Geronimo, and Woodacre) can receive a rebate of $1,500 for the removal and replacement of non-certified wood burning appliances with...

  17. Wood Fuel LP | Open Energy Information

    Open Energy Info (EERE)

    77034 Region: Texas Area Sector: Biomass Product: Wood by-products consulting and marketing Website: www.woodfuel.com Coordinates: 29.6221328, -95.1872605 Show Map Loading...

  18. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  19. Logs Wood Chips Straw Corn Switchgrass

    Broader source: Energy.gov (indexed) [DOE]

    Clean energy can come from the sun. The energy in wind can make electricity. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use ...

  20. Wood Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Ltd Jump to: navigation, search Name: Wood Energy Ltd Place: Devon, United Kingdom Zip: EX16 9EU Product: Specialises in the design, installation and service of automatic...

  1. Potential role of lignin in tomorrow's wood utilization technologies

    SciTech Connect (OSTI)

    Glasser, W.G.

    1981-03-01

    Low-grade timber supplies and wood processing residues are presently converted into paper products, used for fuel, or remain totally unused. Competition for this resource will continue to mount, particularly when manufacturers of chemicals and liquid fuels enter the market with new technologies now under development. The type of technology that concentrates on depolymerization of carbohydrates will generate large quantities of lignin-rich residues. The potential of these lignins to contribute to the economic feasibility of new chemical wood process technologies may involve degradative depolymerization to phenols and benzene, or polymer conversion into a wide variety of dispersants, binders, reinforcing and antioxidizing agents, etc. Where lignin's fuel value lies around 3 to 4 cents/lb. (fall of 1979), its raw material value for phenol is reported to be almost 5 cents/lb., and the value of the polymeric materials is estimated to be between 6 and 20 cents/lb. At the lower end of this range of raw material values are ligninsulfonates, which contribute nearly 98 percent to the approximately 1.5 billion lb./yr. U.S. market for lignin products. Kraft lignins are located at the opposite end of this range. Novel bioconversion-type lignins are expected to be more similar in structure and properties to kraft than to sulfite lignins. Whereas application of the dispersant properties of ligninsulfonates in tertiary oil recovery operations is expected to constitute the most significant use of lignin in terms of volume, adhesive and resin applications hold the greatest promise in terms of value. Both utilization schemes seem to require pretreatments in the form of either polymeric fractionation or chemical modification. Potential savings from the use of polymeric lignins in material systems are great.

  2. Wood and Pellet Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices.

  3. Minnesota wood energy scale-up project 1994 establishment cost data

    SciTech Connect (OSTI)

    Downing, M.; Pierce, R.; Kroll, T.

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  4. On-site energy production from agricultural residues

    SciTech Connect (OSTI)

    Hiler, E.A.

    1980-03-01

    Tests with a 61 cm diameter fluidized-bed combustor revealed that raw cotton gin trash could be efficiently burned while satisfying Federal standards for particulate emissions. Certain chemicals within cotton gin trash zone can cause slagging or caking of ash and bed particles in the combustion zone. They can also corrode and accumulate on the heat recovery equipment. These problems are not considered insurmountable and methods of control are being studied. Raw cotton gin trash was also converted into a low Btu gas using fluidized-bed technology. Tests with a 30 cm diameter gasifier revealed that raw gin trash could be converted to a combustible gas, containing carbon monoxide and hydrogen. The heating value of the gas ranged from 3.65 to 5.29 MJ/m3 and about 50 percent of the heat value of the raw trash was converted to combustible gases. Economic analyses have shown that these techniques can be economically competitive with present fuels in specific situations.

  5. International Trade of Wood Pellets (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  6. New England Wood Pellet LLC | Open Energy Information

    Open Energy Info (EERE)

    Pellet LLC Jump to: navigation, search Name: New England Wood Pellet LLC Place: Jaffrey, New Hampshire Zip: NH 03452 Product: New England Wood Pellet LLC is a manufacturer and...

  7. Method of predicting mechanical properties of decayed wood

    DOE Patents [OSTI]

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  8. Genomics of wood-degrading fungi (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Genomics of wood-degrading fungi Prev Next Title: Genomics of wood-degrading fungi Authors: Ohm, Robin A. ; Riley, Robert ; Salamov, Asaf ; Min, Byoungnam ; Choi, In-Geol ; ...

  9. City of Wood River, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Wood River, Nebraska (Utility Company) Jump to: navigation, search Name: Wood River Municipal Power Place: Nebraska Phone Number: 308.583-2515; 308-583-2066 Website:...

  10. Wood County Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Wood County Electric Coop, Inc Jump to: navigation, search Name: Wood County Electric Coop, Inc Place: Texas Phone Number: 1-866-415-2951 Website: www.wcec.org Facebook: https:...

  11. One on One - Douglas K Woods | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One on One - Douglas K Woods One on One - Douglas K Woods A September 2014 interview with Douglas K Woods, the President of the Association for Manufacturing Technology, on the state of US manufacturing. One on One - Douglas K Woods (97.92 KB) More Documents & Publications Printing a Car: A Team Effort in Innovation Printing a Car: A Team Effort in Innovation Advanced Microturbine System: Market Assessment, May 2003 Green Leasing Deployment Portfolio - 2014 BTO Peer Review

  12. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  13. Fast Curing of Composite Wood Products

    SciTech Connect (OSTI)

    Dr. Arthur J. Ragauskas

    2006-04-26

    The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: • Identifying the rate limiting UF and PF curing reactions for current market resins; • Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood composites such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press temperatures that currently employed. Several differing additives have been developed to enhance cure rates of PF resins including the use of organic esters, lactones and organic carbonates. A model compound study by Conner, Lorenz and Hirth (2002) employed 2- and 4-hydroxymethylphenol with organic esters to examine the chemical basis for the reported enhanced reactivity. Their studies suggested that the enhance curing in the presence of esters could be due to enhanced quinone methide formation or enhanced intermolecular SN2 reactions. In either case the esters do not function as true catalysts as they are consumed in the reaction and were not found to be incorporated in the polymerized resin product. An

  14. Wood and Wood Waste - Energy Explained, Your Guide To Understanding Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    - Energy Information Administration Wood and Wood Waste Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From

  15. Effect of species and wood to bark ratio on pelleting of southern woods

    SciTech Connect (OSTI)

    Bradfield, J.; Levi, M.P.

    1984-01-01

    Six common southern hardwoods and loblolly pine were pelleted in a laboratory pellet mill. The pellet furnishes were blended to test the effect of different wood to bark ratios on pellet durability and production rate. Included was a ratio chosen to simulate the wood to bark ratio found in whole-tree chips. This furnish produced good quality pellets for all species tested. Pelleting of the pure wood of hardwoods was not successful; furnish routinely blocked the pellet mill dies. Pure pine wood, however, did produce acceptable pellets. It was noted that, as lignin and extractive content increased above a threshold level, the precentage of fines produced in a pellet durability test increased. Thus, all pine and tupelo wood/bark mixes produces high fines. This reduces the desirability of the pellets in the marketplace. Further research is necessary to confirm this relationship. This study suggests that both tree species and wood/bark ratio affect the durability of pellets and the rate with which they can be produced in a laboratory pellet mill. 9 references.

  16. USDA Agricultural Conservation Easement Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture's (USDA's) Agricultural Conservation Easement Program (ACEP) provides financial and technical assistance to help conserve agricultural lands, wetlands, and their related benefits.

  17. Council of Athabascan Tribal Governments - Wood Energy Program in the Yukon Flats Region

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Integrated Wood Energy Program for Fort Yukon Implementation DOE Tribal Energy Program 2 0 November 2008 Gwitchyaa Zhee Corporation CATG - AWEA For-Profit Wood Energy Business Model Fort Yukon * Forest Management Service - CATG * For-Profit Wood Utility Company - Vertically Integrated * Gwitchyaa Zhee Native Corporation - Wood Harvest Company - Village Wood Yard/Distribution Company - Wood Energy Utility - Diesel Biomass - Wood diesel hybrid power plant CHP - still dreaming for

  18. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  19. Agricultural Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agricultural-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  20. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOE Patents [OSTI]

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  1. Massachusetts Schools Switch to Wood Pellets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Massachusetts Schools Switch to Wood Pellets Massachusetts Schools Switch to Wood Pellets August 20, 2015 - 5:22pm Addthis Art created by a student at John Briggs Elementary School as part of their recent Green Ceremony. John Briggs Elementary is one of the Massachusetts schools switching their heating fuel source from petroleum based fuels to wood pellets. Art created by a student at John Briggs Elementary School as part of their recent Green Ceremony. John Briggs Elementary is one of the

  2. Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) Exploration Activity Details...

  3. Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

  4. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  5. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details...

  6. Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salton Sea Area (Wood, 2002) Exploration Activity Details Location Salton...

  7. Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details...

  8. Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  9. Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity...

  10. Water Sampling At Heber Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area...

  11. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details...

  12. Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  13. Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  14. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  15. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass...

    Office of Scientific and Technical Information (OSTI)

    ...cofiring of Biomass and Coal Citation Details In-Document Search Title: Thermal Pretreatment of Wood for Cogasificationcofiring of Biomass and Coal Utilization of biomass as a ...

  16. Building America Case Study: Retrofit Measure for Embedded Wood...

    Energy Savers [EERE]

    Existing Homes Building America Case Study Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls Lawrence, Massachusetts PROJECT INFORMATION Project Name: The...

  17. Title: Ames Blue Alert- Wood Cabinet Falls Apart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Blue Alert- Wood Cabinet Falls Apart Lessons Learned Statement- Cumulative damage can cause a loss of structural integrity. When furnishings are repeatedly exposed to water,...

  18. International WoodFuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Maine Zip: 4101 Product: Maine-based pellet producer and installer of commercial wood pellet heating systems. Coordinates: 45.511795, -122.675629 Show Map Loading map......

  19. Wood Pulp Digetster Wall Corrosion Investigation

    SciTech Connect (OSTI)

    Giles, GE

    2003-09-18

    The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

  20. Upgrading residual oil

    SciTech Connect (OSTI)

    Angevine, P.J.; Stein, T.R.

    1982-04-13

    Residual oil fractions are upgraded in that Conradson Carbon Residue (CCR) is selectively removed without undue hydrogen consumption by hydroprocessing with a catalyst comprising a single metal such as molybdenum, tungsten, nickel, iron or palladium or multimetallic combination of such metals, excluding, however, active desulfurization compositions such as nickel molybdenum and nickel-tungsten. Said catalyst is characterized as having greater than about 50% of its pore volume contribution in pores having diameters in the range of between about 100 and 200 angstroms. The product of such hydroprocessing is a particularly preferable feedstock for coking to give more liquid yield and less coke make.

  1. Third world applications of pyrolysis of agricultural and forestry wastes

    SciTech Connect (OSTI)

    Tatom, J.W.; Wellborn, H.W.; Harahap, F.; Sasmojo, S.

    1980-01-01

    The development of an appropriate technology for the conversion of agricultural and wood wastes into fuels in underdeveloped nations is discussed. Low temperature pyrolysis offers a promising means of conversion since the char and oil products are storable and easily transportable. The steady-flow, vertical packed bed, partial oxidation pyrolysis process is described and the appropriate technology pyrolytic converter basic design concept is presented. The current status of program in the US and in Papua New Guinea is described. The operation, test results, and economics of the converter are discussed.

  2. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  3. Fuels for Schools Program Uses Leftover Wood to Warm Buildings

    Broader source: Energy.gov [DOE]

    In parts of this country, wood seems like the outsider in the biomass family. New ethanol plants that grind down millions of bushels of corn in the Midwest and breakthroughs in algae along the coasts always garner the most attention. But in states like Montana, a place with over 70 million acres of forest, wood is the biofuel of choice.

  4. Wood fuel technologies and group-oriented Timber Stand Improvement Program: model for waste wood utilization and resource renewal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress is reported on the following: educating and assisting landowners in the most efficient and profitable use of wood resources; developing local timber resources as energy alternatives by representing collective interests to Consumers Power, the woodchip industry, firewood retailers, country residents, and woodlot owners; and providing public information on the economics and methods of wood heat as a supplemental energy source. (MHR)

  5. Multipass comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2014-05-27

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel.

  6. Wastes and by-products - alternatives for agricultural use

    SciTech Connect (OSTI)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  7. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect (OSTI)

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal

  8. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  9. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  10. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  11. Wood-Polymer composites obtained by gamma irradiation

    SciTech Connect (OSTI)

    Gago, J.; Lopez, A.; Rodriguez, J.; Santiago, J.; Acevedo, M.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  12. Wood chips: an exploration of problems and opportunities. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report evaluates the current use of and potential market for wood chips as a fuel in the Northeast. This study covers the residential, commercial, and light industrial sectors and addresses cost, reliability, marketing systems, and technology improvements. A review of the available equipment for wood chip harvesting, processing, handling, drying, and transport is included. Three representative strategic business guides for different chip suppliers are presented. There is also a recommended action plan for future programs with initiatives that could facilitate the development of the wood chip market. 25 refs., 8 figs., 11 tabs.

  13. Webinar: Using the New Bioenergy KDF for Data Discovery and Research

    Broader source: Energy.gov (indexed) [DOE]

    ... Biomass includes agricultural residues, forest resources, perennial grasses, woody energy crops, wastes (municipal solid waste, urban wood waste, and food waste), and algae, as ...

  14. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for...

    Broader source: Energy.gov (indexed) [DOE]

    ... Biomass includes agricultural residues, forest resources, perennial grasses, woody energy crops, wastes (municipal solid waste, urban wood waste, and food waste), and algae, as ...

  15. Benefits of Biofuel Production and Use in Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... INL's studies include a variety of biomass resources, such as perennial grasses, wood, agricultural residues, and municipal solid wastes that can be used to produce biopower, ...

  16. Diesel Brewing | Open Energy Information

    Open Energy Info (EERE)

    company that uses gasification to produce liquid fuels and electricity from non-food-based biomass sources, including wood wastes, agricultural residues, and manure....

  17. Method for lowering the VOCS emitted during drying of wood products

    DOE Patents [OSTI]

    Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

    2000-01-01

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  18. Community Based Wood Heat System for Fort Yukon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80,000 acres in one month Proposed Rural Wood Fuel Supply System *Capital costs for system capable of producing 7,000 TPY: 600,000 Key Obstacles to Overcome Development...

  19. Huntington Woods, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Huntington Woods is a city in Oakland County, Michigan. It falls under Michigan's 12th...

  20. Laguna Woods, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Laguna Woods is a city in Orange County, California. It falls under California's 48th...

  1. Mission Woods, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Mission Woods is a city in Johnson County, Kansas. It falls under Kansas's 3rd congressional district.12 References...

  2. Study of emissions from small woods - fired boiler systems

    SciTech Connect (OSTI)

    1994-12-31

    This short article announces a testing project RFP to determine the air emissions produced by small wood-chip fired combustion systems and to determine associated health risks if any.

  3. Improving combustion in residential size wood chip fireboxes

    SciTech Connect (OSTI)

    Huff, E.R.

    1982-12-01

    In a small experimental wood chip firebox with separate control of grate and overfire air, combustion intensity was increased with reduction in flyash and carbon monoxide by reducing air through the grate to a small fraction of stoichiometric air.

  4. Wood Dale, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood Dale is a city in DuPage County, Illinois. It falls under Illinois' 6th congressional...

  5. Wood County, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood County is a county in West Virginia. Its FIPS County Code is 107. It is classified as...

  6. Wood County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood County is a county in Texas. Its FIPS County Code is 499. It is classified as ASHRAE...

  7. Wood Village, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood Village is a city in Multnomah County, Oregon. It falls under Oregon's 3rd...

  8. Wood-Ridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood-Ridge, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8456555, -74.0879195 Show Map Loading map... "minzoom":false,"mappin...

  9. Wood-Composites Industry Benefits from ALS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that wood-composite development is something that will bolster the U.S. economy, matches the funding from the WBC. "People in this industry are always looking for ways to...

  10. Council of Athabascan Tribal Governments - Wood Energy Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Wood Energy Program for Yukon Flats Villages DOE Tribal Energy Program 20 November 2008 Feasibility for Wood Heat Council of Athabascan Tribal Governments (CATG) * Non-Profit Consortium of Ten Tribal Governments within the Yukon Flats. * CATG Administers several Tribal Programs on behalf of the Tribes. * CATG also applies for and administers several other grants. - IHS, Regional Clinic (Fort Yukon), Health Aids in Each Village, drug and alcohol programs, and other health related

  11. How Much Wood Would a North Country School Chip

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Country School in Lake Placid, New York, recently installed a high-efficiency wood chip boiler using Recovery Act funds from the New York State Energy Research and Development Authority. Using wood sourced from their sustainably managed woodlot and local forests, the school will be able to cut energy costs by $38,970 annually and reduce carbon dioxide emissions by 184 tons per year.

  12. Evaluation of processes for producing gasoline from wood. Final report

    SciTech Connect (OSTI)

    1980-05-01

    Three processes for producing gasoline from wood by pyrolysis have been investigated. Technical and economic comparisons among the processes have been made, based on a hypothetical common plant size of 2000 tons per day green wood chip feedstock. In order to consider the entire fuel production process, the energy and cost inputs for producing and delivering the feedstock were included in the analysis. In addition, perspective has been provided by comparisons of the wood-to-gasoline technologies with other similar systems, including coal-to-methanol and various biomass-to-alcohol systems. Based on several assumptions that were required because of the candidate processes' information gaps, comparisons of energy efficiency were made. Several descriptors of energy efficiency were used, but all showed that methanol production from wood, with or without subsequent processing by the Mobil route to gasoline, appears most promising. It must be emphasized, however, that the critical wood-to-methanol system remains conceptual. Another observation was that the ethanol production systems appear inferior to the wood-to-gasoline processes. Each of the processes investigated requires further research and development to answer the questions about their potential contributions confidently. The processes each have so many unknowns that it appears unwise to pursue any one while abandoning the others.

  13. Bioenergy systems report: The AID (Agency for International Development) approach. Using agricultural and forestry wastes for the production of energy in support of rural development

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The Biomass Energy Systems and Technology project (BEST) seeks to integrate natural resources, private sector expertise, and financial support in order to convert biomass into marketable energy products at existing agro-processing facilities. This report documents BEST's approach to biomass promotion and includes sections on: the rationale for the project's commodity focus (sugar cane, rice, and wood); the relevant U.S. biomass experience with rice, cane, and wood residues, etc., which BEST draws upon; A.I.D.'s experience in the field application of rice, wood, and cane residue bioenergy systems; economic analyses of biomass systems (using examples from Indonesia and Costa Rica); research initiatives to develop off-season fuels for sugar mills, advanced biomass conversion systems, and energy efficiency in sugar factories; and the environmental aspects of biomass (including its ability to be used without increasing global warming).

  14. CRC handbook of agricultural energy potential of developing countries

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    This book provides background information on the agroenergetic potential of 65 countries and offers summaries of major crops planted, total area planted, yield per hectare, and total production. Total land area is categorized as to agriculture, forest, and woodland, and is discussed with demographic statistics for each country. The potential for agricultural by-products and biomass to contribute to energy availability is explored, with reference to each major crop. Vegetation and/or economic activity, or soil maps are presented for most countries, as are climatic data, with crop yields and residues which are compared with production elsewhere.

  15. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    SciTech Connect (OSTI)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  16. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect (OSTI)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt

  17. Performance of a small underfed wood chip-fired stoker in a hot air-heated home

    SciTech Connect (OSTI)

    Schneider, M.H.

    1983-01-01

    The goal of the study was to provide space heat for a home using forest biomass presently not in demand by industry, and by using a convenient, automatic, low-emission heating system. A stoker firing wood chips was installed in a home, and chips were prepared for it from the residues of a softwood clearcut. Residues from 1 and a quarter acre provided enough fuel to heat the house for the heating season. The chip-fired heating system was convenient, maintained the house at whatever temperature was set on the room thermostat, and generated little creosote or wood smoke. It was better at converting fuel to heat than the previous combustion heating systems in the house, with steady-state combustion efficiency of approximately 75% and longer-term appliance efficiency of 69%. Electric energy required for heating hot water was reduced approximately 27% as a result of a preheating coil located in the chip-fired furnace. The major cause of heat interruptions was jamming of the stoker which occurred on the average of every 18 and a half days. Clearing such jams was simple. The system operated safely throughout the test period.

  18. Sustainable Agriculture Network | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Network Jump to: navigation, search Logo: Sustainable Agriculture Network Name: Sustainable Agriculture Network Website: clima.sanstandards.org References: Sustainable...

  19. Characterization of ashes from co-combustion of refuse-derived fuel with coal, wood and bark in a fluidized bed

    SciTech Connect (OSTI)

    Zevenhoven, R.; Skrifvars, B.J.; Hupa, M.

    1998-12-31

    The technical and environmental feasibility of co-combustion of a recovered fuel (RF) prepared from combustible waste fractions (separated at the source), together with coal, peat, wood or wood-waste in thermal power/electricity generation has been studied in several R and D projects within Finland. The current work focuses on eventual changes in ash characteristics during co-combustion of RF with coal, wood or bark, which could lead to bed agglomeration, slagging, fouling and even corrosion in the boiler. Ashes were produced in a 15 kW bubbling fluidized bed (BFB) combustion reactor, the fly ash captured by the cyclone was further analyzed by XRF. The sintering tendency behavior of these ashes was investigated using a test procedure developed at Aabo Akademi University. Earlier, a screening program involved ashes from RF (from a waste separation scheme in Finland) co-combustion with peat, wood and bark, in which ash pellets were thermally treated in air. This showed significant sintering below 600 C as well as above 800 C for RF/wood and RF/bark, but not for RF/peat. This seemed to correlate with alkali chloride and sulfate concentrations in the ashes. The current work addresses a Danish refuse-derived fuel (RDF), co-combusted with bark, coal, bark+coal, wood, and wood+coal (eight tests). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 C, significant changes in sintering are seen with pellets treated at 1,000 C. Ash from 100% RDF combustion does not sinter, 25% RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Furthermore, it appears that the presence of a 25% coal fraction (on energy basis) seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows that, in general, an increased level of

  20. Cofiring Wood and Coal to Stoker Boilers in Pittsburgh

    SciTech Connect (OSTI)

    Cobb, J.T., Jr.; Elder, W.W.

    1997-07-01

    The prime objective of the University of Pittsburgh's overall wood/coal cofiring program is the successful introduction of commercial cofiring of urban wood wastes into the stoker boilers of western Pennsylvania. Central to this objective is the demonstration test at the Pittsburgh Brewing Company. In this test the project team is working to show that two commercially-available clean wood wastes - tub-ground pallet waste and chipped clearance wood - can be included in the fuel fed daily to an industrial stoker boiler. Irrespective of its economic outcome, the technical success of the demonstration at the brewery will allow the local air quality regulation agency to permit a parametric test at the Bellefield Boiler Plant. The objective of this test is to obtain comprehensive data on all key parameters of this operational boiler while firing wood with coal. The data would then be used for thorough generic technical and economic analyses. The technical analysis would be added to the open literature for the general planning and operational guidance for boiler owners and operators. The economic analysis would gage the potential for providing this stoker fuel commercially in an urban setting and for purchasing it regularly for combustion in an urban stoker boiler.

  1. Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary

    SciTech Connect (OSTI)

    Levi, M. P.; O'Grady, M. J.

    1980-02-01

    The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

  2. Comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOE Patents [OSTI]

    Dooley, James H.; Lanning, David N.

    2015-06-23

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, wherein W.sub.C>L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel, wherein the cutting discs have a uniform thickness (T.sub.D), and wherein at least one of L.sub.C, W.sub.C, and H.sub.C is less than T.sub.D.

  3. Comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-08-13

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel, wherein the cutting discs have a uniform thickness (T.sub.D), and wherein at least one of L.sub.C, W.sub.C, and H.sub.C is greater than T.sub.D.

  4. Gas pollution control apparatus and method and wood drying system employing same

    SciTech Connect (OSTI)

    Eatherton, J.R.

    1984-02-14

    Pollution control apparatus and method are disclosed in which hot exhaust gas containing pollutants including solid particles and hydrocarbon vapors is treated by transmitting such exhaust gas through a container containing wood members, such as wood chips, which serve as a filter media for filtering out such pollutants by causing such solids to deposit and such hydrocarbon vapors to condense upon the surface of the wood members. The contaminated wood chips are discharged from the filter and further processed into chip board or other commercial wood products thereby disposing of the pollutants. Lumber may be used as the wood members of the filter in a lumber kiln by deposition of solid particles on the rough surface of such lumber. The contaminated surfaces of the lumber are removed by a planer which produces a smooth finished lumber and contaminated wood chips that may be processed into chip board or other commercial wood products. A wood drying system employing such pollution control apparatus and method includes a hot air dryer for wood or other organic material, such as a wood chip rotary dryer or a wood veneer dryer, which produces hot exhaust gases containing pollutants including hydrocarbon vapors and solid particles. This hot exhaust air is transmitted through a lumber kiln to dry lumber thereby conserving heat energy and causing solid particle pollutants to deposit on the surface of the lumber. The kiln exhaust air containing solid and hydrocarbon vapor pollutants is then transmitted up through a filter stack of wood chips.

  5. Community Based Wood Heat System for Fort Yukon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Based Wood Heat System for Fort Yukon A Systems Integration Bill Wall, PhD Alaska Wood Energy Associates Village Survival Highest Energy Costs in Nation Project Initiation Partners 2005  Council of Athabascan Tribal Government  Alaska Village Initiatives  Original Goal: Displace as much diesel fuel as possible through development of a sustainable community based program  $0.51 per kWh electricity  $6.75 per gallon gasoline  $7.00 per gallon heating fuel  $200 per

  6. Wood energy in Georgia: a five-year progress report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    An increasing number of industrial plants and public and residential facilities in Georgia are using wood, Georgia's greatest renewable energy source, to replace gas, oil, coal, and electricity. All wood systems described in this report are or will soon be in operation in schools, prisons, hospitals, and other state facilities, and are producing substantial financial savings. The economic values from increased markets and jobs are important in all areas of the state, with total benefits projected at $2.9 million a year for state taxpayers. 2 figures.

  7. 01-02-2008 - Wood Cabinet Falls Apart | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 - Wood Cabinet Falls Apart Document Number: NA Effective Date: 012008 File (public): PDF icon 01-02-2008blue...

  8. Effect of wood chip size on update gasifier-combustor operation

    SciTech Connect (OSTI)

    Payne, F.A.; Dunlap, J.L.; Caussanel, P.

    1984-01-01

    Three wood chip sizes were tested in a 0.3 GJ/h updraft gasifier-combustor. Thermal output did not vary significantly between wood chips. Pressure and temperature profiles were measured in the gasifier bed. Channeling occurred with the small wood chips. Efficiency of the combustor was determined by a mass and energy balance and an enthalpy technique.

  9. Production of chemical feedstock by the methanolysis of wood

    DOE Patents [OSTI]

    Steinberg, Meyer; Fallon, Peter

    1984-07-31

    A process for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700.degree. C. to 1200.degree. C., at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

  10. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  11. Engineering methods for the design and employment of wood cribs

    SciTech Connect (OSTI)

    Barczak, T.M. ); Gearhart, D.F. )

    1993-01-01

    Wood cribs are used extensively by the mining industry to stabilize mine openings. While the cost per crib is relatively low, their extensive use can result in annual mine costs of over $1 million. In an effort to improve the utilization of these supports and to reduce ground control hazards, the US Bureau of Mines has developed engineering methods to assist mine operators in wood-crib design and employment. Design and employment criteria are established based on the strength, stiffness, and stability of the crib structure in relation to the load conditions imposed by the mine environment. Models have been developed based on full-scale tests in the USBM's Mine Roof Simulator that compute the capacity of wood cribs of various configurations and material constructions as a function of displacement of the crib structure due to roof-and-floor convergence. These models permit the comparison of the loading characteristics and cost of employment of different crib designs, and in conjunction with roof behavior models, provide a means to determine the optimum design and employment strategy. In eastern coal mines, wood cribs generally are constructed from hardwood timbers, while softwood timbers generally are used in western coal mines. 11 refs., 27 figs., 2 tabs.

  12. Wood pellet market and trade: a global perspective

    SciTech Connect (OSTI)

    Chun Sheng Goh; Martin Junginger; Maurizio Cocchi; Didier Marchal; Daniela Thran; Christiane Hennig; Jussi Heinimo; Lars Nikolaisen; Peter-Paul Schouwenberg; Douglas Bradley; J. Richard Hess; Jacob J. Jacobson; Leslie Ovard; Michael Deutmeyer

    2001-01-01

    This perspective provides an overview of wood pellet markets in a number of countries of high significance, together with an inventory of market factors and relevant past or existing policies. In 2010, the estimated global wood pellet production and consumption were close to 14.3 Mt (million metric tonnes) and 13.5 Mt, respectively, while the global installed production capacity had reached over 28 Mt. Two types of pellets are mainly traded (i) for residential heating and (ii) for large-scale district heating or co-fi ring installations. The EU was the primary market, responsible for nearly 61% and 85% of global production and consumption, respectively in 2010. EU markets were divided according to end use: (i) residential and district heating, (ii) power plants driven market, (iii) mixed market, and (iv) export-driven countries. North America basically serves as an exporter, but also with signifi cant domestic consumption in USA. East Asia is predicted to become the second-largest consumer after the EU in the near future. The development perspective in Latin America remains unclear. Five factors that determine the market characteristics are: (i) the existence of coal-based power plants, (ii) the development of heating systems, (iii) feedstock availability, (iv) interactions with wood industry, and (v) logistics factor. Furthermore, intervention policies play a pivotal role in market development. The perspective of wood pellets industry was also analyzed from four major aspects: (i) supply potential, (ii) logistics issues, (iii) sustainability considerations, and (iv) technology development.

  13. Production of chemical feedstock by the methanolysis of wood

    DOE Patents [OSTI]

    Steinberg, M.; Fallon, P.

    1983-06-01

    A process is discussed for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700/sup 0/C to 1200/sup 0/C, at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

  14. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  15. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  16. Demonstration Results From Greenhouse Heating with Liquified Wood

    SciTech Connect (OSTI)

    Steele, Philip; Parish, Don; Cooper, Jerome

    2011-07-01

    A boiler fuel known as Lignocellulosic Boiler Fuel (LBF) was developed at the Department of Forest Products, Mississippi State University for potential application for heating agricultural buildings. LBF was field tested to heat green houses in cooperation with Natchez Trace Greenhouses (NTG) located in Kosciusko, Mississippi. MSU modified an idled natural gas boiler located at NTG to combust the LBF. Thirty gallons of bio-oil were produced at the MSU Bio-oil Research Laboratory. The bio-oil was produced from the fast-pyrolysis of southern pine (15 gal) and white oak (15 gal) feedstocks and subsequently upgraded by a proprietary process. Preliminary field testing was conducted at (NTG). The LBF was produced from each wood species was tested separately and co-fed with diesel fuel to yield three fuel formulations: (1) 100% diesel; (2) 87.5% LBF from southern pine bio-oil co-fed with 12.5% diesel and (3) 87.5% LBF from white oak co-fed with 12.5% diesel fuel formulations. Each fuel formulation was combusted in a retrofit NTG boiler. Fuel consumption and water temperature were measured periodically. Flue gas from the boiler was analyzed by gas chromatograph. The 100% diesel fuel increased water temperature at a rate of 4 °F per min. for 35 min. to achieve the target 140 °F water temperature increase. The 87.5% pine LBF fuel cofed with 12.5%) diesel attained the 140 °F water temperature increase in 62 min. at a rate of 2.3 °F per min. The 87.5% white oak LBF fuel co-fed with 12.5% diesel reached the 140 °F water temperature increase in 85 min. at a rate of 1.6 °F per min. Fuel that contained 87.5% pine LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 5.3 and carbon dioxide and carbon monoxide at a ratio of 22.2. Fuel formulations that contained 87.5% white oak LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 4.9 and carbon dioxide and

  17. Using recycled wood waste as a fuel in the northeast: A handbook for prospective urban wood waste producers, suppliers and consumers

    SciTech Connect (OSTI)

    Prast, W.G.; Donovan, C.T.

    1988-03-01

    This report provides a comprehensive analysis of existing and future markets for recycled wood wastes in the eleven-state northeast region. The purpose of the report is to estimate the availability of wood and woody materials in the solid waste stream and to determine the technical and economic viability of separating and recycling them for other uses. The topics discussed include: current and future markets for recycled wood wastes; key components of successful wood waste processing facilities; decisionmaking process used to determine technical and economic viability of a proposed processing facility; environmental regulations and the permitting process required for recycled wood waste processors and users; case studies and annotated listings of existing wood waste processors and uses; detailed assessments of market opportunities in three metropolitan areas including Boston, New York, and Philadelphia; and a proposed action plan to stimulate and facilitate future market development.

  18. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    SciTech Connect (OSTI)

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood

  19. Characterization of Lignin Derived from Water-only and Dilute Acid Flowthrough Pretreatment of Poplar Wood at Elevated Temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    Background: Flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. Results: In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. Conclusions: Elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  20. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during

  1. Kinetics of fluidized bed combustion of wood pellets

    SciTech Connect (OSTI)

    Leckner, B.; Hansson, K.M.; Tullin, C.; Borodulya, A.V.; Dikalenko, V.I.; Palchonok, G.I.

    1999-07-01

    Devolatilization and char combustion of a single wood pellet in a fluidized bed has been studied. The effect of operation parameters (bed temperature, bed particle size, oxygen concentration) and pellet characteristics has been investigated. A simplified analytical model of heat-transfer controlled pyrolysis has been developed to interpret the measured volatiles release time. The model predictions are in a good agreement with the experimental data, provided that the initial physical properties of the pellet are used. The model can be used to estimate the devolatilization times in other combustion systems. Kinetic parameters of char combustion are obtained, based on the measured burnout times and simple model considerations. The physical properties of wood pellets need further study.

  2. Assessment of superheated steam drying of wood waste

    SciTech Connect (OSTI)

    Woods, B.G.; Nguyen, Y.; Bruce, S.

    1994-12-31

    A 5 MW co-generation facility using wood waste is described which will supply power to Ontario Hydro, steam to the sawmill for process heating, and hot water for district heating customers in the town. The use of superheated steam for drying the wood was investigated to determine the impact on boiler performance, the environmental impact and the economic feasibility. The main benefit with superheated steam drying is the reduction in VOC emissions. The capital cost is currently higher with superheated steam drying, but further investigation is warranted to determine if the cost reductions which could be achieved by manufacturing the major components in North America are sufficient to make the technology cost competitive.

  3. Incorporation of metal nanoparticles into wood substrate and methods

    DOE Patents [OSTI]

    Rector, Kirk D; Lucas, Marcel

    2015-11-04

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation process at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.

  4. Multiplex detection of agricultural pathogens

    SciTech Connect (OSTI)

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  5. Multiplex detection of agricultural pathogens

    DOE Patents [OSTI]

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  6. Good Practice Guidance on the Sustainable Mobilisation of Wood...

    Open Energy Info (EERE)

    AgencyCompany Organization: United Nations Economic Commission for Europe Partner: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Biomass,...

  7. Quality of Wood Pellets Produced in British Columbia for Export

    SciTech Connect (OSTI)

    J. S. Tumuluru; S. Sokhansanj; C. J. Lim; T. Bi; A. Lau; S. Melin; T. Sowlati; E. Oveisi

    2010-11-01

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  8. QUALITY OF WOOD PELLETS PRODUCED IN BRITISH COLUMBIA FOR EXPORT

    SciTech Connect (OSTI)

    Tumuluru, J.S.; Sokhansanj, Shahabaddine; Lim, C. Jim; Bi, X.T.; Lau, A.K.; Melin, Staffan; Oveisi, E.; Sowlati, T.

    2010-11-01

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  9. Mechanics of compression drying solid wood cubes and chip mats

    SciTech Connect (OSTI)

    Haygreen, J.G.

    1982-10-01

    Wood cubes and chip mats were compressed in a cell under ram face pressures to 13,000 psi. The amount of water removed was determined for a range of species of various specific gravities and at several green moisture contents (MCs). The time dependence of the process was also studied. The purpose of this work was to describe the mechanics of compression drying which must be considered in designing commercial equipment. Green MC of wood chip mats was reduced to 45 to 50 percent MC (31% to 33% MC, wet basis) at pressures of 13,000 psi. At low pressures of 1,000 to 2,000 psi, moisture was reduced to 60 to 75 percent MC (38% to 43% MC, wet basis). There was a significantly greater moisture reduction at these low pressures if the pressure is maintained for up to 2 minutes rather than releasing it immediately once the target pressure is obtained. Water can be removed from high density species but pressures required are higher by a factor of 2 to 3. The chip mat is reduced to about one-sixth of its original volume at 2,000 psi and one-seventh at 6,000 psi. When pressing cubes of high green MC, about 7,000 foot-pounds of work (equivalent to 9 Btu) applied to the wood will remove up to 1 pound of water. (Refs. 9).

  10. Solidification process for sludge residue

    SciTech Connect (OSTI)

    Pearce, K.L.

    1998-09-10

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria.

  11. Particulate matter emissions from combustion of wood in district heating applications

    SciTech Connect (OSTI)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Melin, Staffan

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

  12. LEDSGP/sector/Agriculture | Open Energy Information

    Open Energy Info (EERE)

    LEDSGPsectorAgriculture < LEDSGP(Redirected from Agriculture Work Space) Redirect page Jump to: navigation, search REDIRECT LEDSGPsectorAFOLU Retrieved from "http:...

  13. Oregon Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Name: Oregon Department of Agriculture Address: 635 Capitol St NE Place: Salem, Oregon Zip: 97301 Phone Number: 503-986-4550 Website:...

  14. Wyoming Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Name: Wyoming Department of Agriculture Address: 2219 Carey Avenue Place: Cheyenne, Wyoming Zip: 82002 Phone Number: 307-777-7321 Website:...

  15. Energy Secretary Chu, Agriculture Secretary Vilsack Announce...

    Energy Savers [EERE]

    Chu, Agriculture Secretary Vilsack Announce 6.3 million for Biofuels Research Energy Secretary Chu, Agriculture Secretary Vilsack Announce 6.3 million for Biofuels Research July ...

  16. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  17. Method for predicting dry mechanical properties from wet wood and standing trees

    DOE Patents [OSTI]

    Meglen, Robert R.; Kelley, Stephen S.

    2003-08-12

    A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.

  18. Wood-fuel use in Papua New Guinea: an assessment of industrial combustion equipment

    SciTech Connect (OSTI)

    Mendis, M.S.

    1980-11-01

    This report presents the results of an engineering and economic assessment of new and retrofit industrial combustion equipment for wood-fuel use in Papua New Guinea. Existing industrial combustion equipment and practices in Papua New Guinea are appraised. Potential industrial wood-fuel systems that utilize wood, wood wastes, charcoal and pyrolytic oils and which are particularly applicable to Papua New Guinea are identified. An economic assessment of wood-fuel systems is conducted for eleven case studies which are representative of a cross-section of Papua New Guinea industry. Conclusions and recommendations are presented to aid both government and industry in Papua New Guinea in fostering the development of appropriate wood-fuel technologies and thereby help displace the consumption of imported petroleum.

  19. Residue management at Rocky Flats

    SciTech Connect (OSTI)

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  20. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1,200 C to 1,400 C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  1. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1995-09-01

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  2. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect (OSTI)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  3. SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS

    SciTech Connect (OSTI)

    Duff, M; Keisha Martin, K; S Crump, S

    2007-03-23

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

  4. Evaluation of residue drum storage safety risks

    SciTech Connect (OSTI)

    Conner, W.V.

    1994-06-17

    A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

  5. Genomics of wood-degrading fungi (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Details In-Document Search This content will become publicly available on November 1, 2015 Title: Genomics of wood-degrading fungi Authors: Ohm, Robin A. ; Riley, Robert ;...

  6. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake...

  7. Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity...

  8. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  9. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect (OSTI)

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  10. The Honorable John T. 'Gregorio 301 N. Wood Avenue

    Office of Legacy Management (LM)

    Eiergy ; Washington, DC 20585 -, (, > - .' c ' . FEB 1 7 1995 _ .; , _-, The Honorable John T. 'Gregorio 301 N. Wood Avenue Linden, 'New Jersey 07036 d. \ Dear Mayor Gregorio: ,' ,' .' , Secretary of Energy Hazel O'Leary has announced a new approach to openness, in the'llepartment' of Energy (DDE) and its co,annunications with the .public.', In sup~port of this initiative, we are.pleased to forward.the,enclosed information reiated to the.former Linden Pilot Plant of the Chemical' Construction

  11. Environmental characterization studies of a high-throughput wood gasifier

    SciTech Connect (OSTI)

    Chang, H.; Niemann, R.C.; Wilzbach, K.E.; Paisley, M.

    1983-01-01

    Potential environmental effects associated with thermochemical biomass gasification have been studied by Argonne National Laboratory in cooperation with Battelle Columbus Laboratories (BCL). A series of samples from the process research unit of an indirectly heated, high-throughput wood gasifier operated by BCL has been analyzed for potentially toxic organic compounds and trace elements. The results indicate that, under the test-run conditions, the gasification of both pine and hardwood is accompanied by the formation of some oil, the heavier fraction of which gives a positive response in the Ames assay for mutagenicity and contains numerous phenols and polycyclic aromatic hydrocarbons, including some carcinogens. The implications of these observations are discussed.

  12. Process to recycle shredder residue

    DOE Patents [OSTI]

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  13. Hygrothermal Performance of West Coast Wood Deck Roofing System

    SciTech Connect (OSTI)

    Pallin, Simon B; Kehrer, Manfred; Desjarlais, Andre Omer

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  14. Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix E.) J. Jennings. ERC Environmental and Energy Services, Co. ERCEPO-49. (190) Empirical Impact Evaluation of the Energy Savings Resulting From BPA's Stage II Irrigation...

  15. RESIDUAL STRESSES IN 3013 CONTAINERS

    SciTech Connect (OSTI)

    Mickalonis, J.; Dunn, K.

    2009-11-10

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  16. Relationships between dead wood and arthropods in the Southeastern United States.

    SciTech Connect (OSTI)

    Ulyshen, Michael, Darragh

    2009-05-01

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

  17. THE ROLE OF DEAD WOOD IN MAINTAINING ARTHROPOD DIVERSITY ON THE FOREST FLOOR.

    SciTech Connect (OSTI)

    Hanula, James L.; Horn, Scott; Wade, Dale D.

    2006-08-01

    AbstractDead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. The results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  18. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    SciTech Connect (OSTI)

    Saqib, Naeem Bäckström, Mattias

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  19. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILERPLANT

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; Thomas Stickle; Jun Wang; Hongming Li; William P. Barry

    2002-06-13

    During the third quarter, the experimental portion of the project was carried out. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NIOSH Boiler Plant (NBP). Blends using hammer-milled wood were operationally successful and can form the basis of Phase II. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and the mathematical modeling of mercury speciation reactions continued, yielding many interesting results. Material and energy balances for the test periods at the NBP, as well as at the Bellefield Boiler Plant, were prepared. Steps were taken to remove severe constraints from the Pennsylvania Switchgrass Energy and Conservation Project and to organize the supplying of landfill gas to the Bruceton federal complex. Two presentations were made to meetings of the Electric Power Research Institute and the National Energy Technology Laboratory.

  20. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    SciTech Connect (OSTI)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated

  1. Mathias Agricultural Energy Efficiency Grant program

    Broader source: Energy.gov [DOE]

    Mathias Agriculture Energy Efficiency program offered by the Maryland Energy Administration (MEA) provides grants to farms and businesses in agricultural sector to offset 50% of the cost of energ...

  2. Randolph EMC- Agricultural Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Agricultural members of Randolph EMC (REMC) who upgrade to energy-efficientCFL bulbs in agricultural facilities are eligible for an incentive to help cover the initial cost of installation. The...

  3. Resource recovery from coal residues

    SciTech Connect (OSTI)

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  4. Industrial and Agricultural Production Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    food processing, cold storage, agricultural, greenhouses, irrigation districts, and waterwastewater treatment. Standard prescriptive incentives include lighting, green motor...

  5. Agricultural Research Service (ARS) Research Participation Program -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managed by ORAU Agricultural Research Service (ARS) Research Participation Program Home About USDA ARS About ORISE Current Research Opportunities Site Map Contact ORISE Facebook Twitter Applicants Welcome to the Agricultural Research Service (ARS) Research Participation Program The Agricultural Research Service (ARS) Research Participation Program will serve as the next step in the educational and professional development of scientists and engineers interested in agricultural related

  6. Environmental-performance research priorities: Wood products. Final report

    SciTech Connect (OSTI)

    1998-01-15

    This report describes a research plan to establish environmental, energy, and economic performance measures for renewable building materials, and to identify management and technology alternatives to improve environmental performance in a cost-effective manner. The research plan is designed to: (1) collect environmental and economic data on all life-cycle stages of the materials, (2) ensure that the data follows consistent definitions and collection procedures, and (3) develop analytical procedures for life-cycle analysis to address environmental performance questions. The research will be subdivided into a number of individual project modules. The five processing stages of wood used to organize the research plan are: (1) resource management and harvesting; (2) processing; (3) design and construction of structures; (4) use, maintenance, and disposal; and (5) waste recycling. Individual research module descriptions are provided in the report, as well as assessment techniques, research standards and protocol, and research management. 13 refs., 5 figs., 3 tabs.

  7. Ecological objectives can be achieved with wood-derived bioenergy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollutionmore » from power plants.« less

  8. Ecological objectives can be achieved with wood-derived bioenergy

    SciTech Connect (OSTI)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollution from power plants.

  9. Forest and wood products role in carbon sequestration

    SciTech Connect (OSTI)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  10. Ecological objectives can be achieved with wood-derived bioenergy

    SciTech Connect (OSTI)

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. In addition, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollution from power plants.

  11. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  12. The Pennsylvanian and Permian Oquirrh-Wood River basin

    SciTech Connect (OSTI)

    Geslin, J.K. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    Strata of the Middle Pennsylvanian to Lower Permian Oquirrh-Wood River Basin (OWRB) lie unconformably above the Antler orogenic belt and flysch trough/starved basin in NW Utah, NE Nevada, and SC Idaho. Strata of the basin, now separated geographically by the Neogene Snake River Plain, show similar subsidence histories, identical mixed carbonate-siliciclastic sedimentary fill, and identical chert pebble conglomerate beds supplied by one or more DesMoinesian uplifts containing Lower Paleozoic strata. This conglomerate, of the lower Sun Valley Group, Snaky Canyon Formation, and parts of the Oquirrh Formation, was reworked progressively southward, to at least the Idaho-Utah border. It is present in strata as young as Virgilian. Virgilian to Leonardian rocks are ubiquitously fine-grained mixed carbonate-siliciclastic turbidites. These rocks contain cratonal, well-sorbed subarkosic and quartzose sand and silt in part derived from the Canadian Shield. This siliciclastic fraction is intimately mixed with arenaceous micritized skeletal material and peloids derived from an eastern carbonate platform represented by the Snaky Canyon Formation in east-central Idaho, an eastern facies of the Eagle Creek Member, Wood River Formation in the Boulder Mountains, and the Oquirrh Formation in the Deep Creek Mountains. Subsidence of the OWRB may have been caused by two phases (DesMoinesian and Wolfcampian to Leonardian) of crustal loading by continental margin tectonism to the west. An elevated rim separated the OWRB from coeval volcanogenic basins to the west. Earlier, Antler-age structures may have been reactivated. A new pulse of tectonism occurred in Leonardian to Guadalupian time as in most places carbonatic and phosphatic strata of the Leonardian to Guadalupian Park City and Phosphoria Formation overlie OWRB strata, with different geographic arrangement of basinal, slope, and shelf depocenters.

  13. Particulate residue separators for harvesting devices

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  14. Methods of separating particulate residue streams

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, J. Richard

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  15. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  16. A preliminary assessment of the state of harvest and collection technology for forest residues

    SciTech Connect (OSTI)

    Webb, Erin; Perlack, Robert D; Blackwelder, D. Brad; Muth, David J.; Hess, J. Richard

    2008-08-01

    To meet the 'Twenty in Ten Initiative' goals set in the 2007 State of the Union address, forest resources will be needed as feedstocks for lignocellulosic ethanol production. It has been estimated that 368 million dry tons can be produced annually in the U.S. from logging residues and fuel treatment thinnings. Currently, very little of this woody biomass is used for energy production due to the costs and difficulty in collecting and transporting this material. However, minimizing biomass costs (including harvest, handling, transport, storage, and processing costs) delivered to the refinery is necessary to develop a sustainable cellulosic ethanol industry. Achieving this goal requires a fresh look at conventional timber harvesting operations to identify ways of efficiently integrating energy wood collection and developing cost-effective technologies to harvest small-diameter trees. In conventional whole-tree logging operations, entire trees are felled and skidded from the stump to the landing. The residues (also called slash), consisting of tops and limbs, accumulate at the landing when trees are delimbed. This slash can be ground at the landing with a mobile grinder or transported to another central location with a stationary grinder. The ground material is transported via chip vans, or possibly large roll on/off containers, to the user facility. Cut-to-length harvesting systems are gaining popularity in some locations. In these operations, specialized harvesters that can fall, delimb, and cut logs to length are used. The small diameter tops and limbs accumulate along the machine's track. It can be left in the forest to dry or removed soon after harvest while logs are extracted. Removing slash during the same operation as the wood has been shown to be more efficient. However, leaving residue in the forest to dry reduces moisture content, which improves grinder performance, reduces dry matter loss during storage, and inhibits colonization of fungi that produce

  17. California Department of Food and Agriculture | Open Energy Informatio...

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Logo: California Department of Food and Agriculture Name: California Department of Food and Agriculture Abbreviation: CDFA Address: 1220 N...

  18. Superfund Record of Decision (EPA region 4): Coleman Evans Wood Preserving Co. , Jacksonville, Duval County, Florida, September 1986. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-09-25

    The Coleman Evans Wood Preserving Company site is an active 11-acre wood-preserving facility located in the town of Whitehouse, Duval County, Florida. The site consists of two distinct areas: the western portion, which comprises the wood treating facility; and the eastern portion, which consists of a landfill area which has been used for the disposal of wood-chip and other wastes. Coleman Evans has produced wood products impregnated with PCP. Site investigations confirm soil and ground-water contamination, with PCP the primary contaminant of concern.

  19. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    SciTech Connect (OSTI)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  20. A Benchmark Study on Casting Residual Stress

    SciTech Connect (OSTI)

    Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  1. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    SciTech Connect (OSTI)

    Murray, A.M.

    1999-02-10

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  2. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  3. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum...

  4. Genomics of wood-degrading fungi Ohm, Robin A.; Riley, Robert...

    Office of Scientific and Technical Information (OSTI)

    Genomics of wood-degrading fungi Ohm, Robin A.; Riley, Robert; Salamov, Asaf; Min, Byoungnam; Choi, In-Geol; Grigoriev, Igor V. Not Available Elsevier None USDOE United States...

  5. Title 43 CFR 3620 Free Use of Petrified Wood | Open Energy Information

    Open Energy Info (EERE)

    620 Free Use of Petrified Wood Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR 3620 Free Use...

  6. Global Climate Change and Agriculture

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 C by the end of the 21st century.

  7. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    SciTech Connect (OSTI)

    Seggiani, Maurizia; Puccini, Monica; Raggio, Giovanni

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was

  8. SEP Success Story: How Much Wood Would a North Country School Chip

    Broader source: Energy.gov [DOE]

    The North Country School has dedicated itself to finding renewable sources of fuel to heat the approximately 85,000 square feet of classroom and office space on campus. After investigating many options, installing a wood chip boiler emerged as the most environmental and economical choice, due in large part to the availability of wood chips that are a by-product of the campus’ forest woodlot. Learn more.

  9. Microsoft Word - DOE-ID-13-053 Woods Hole EC B3-16.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Advances in the Recovery of Uranium from Seawater: Studies under Real Ocean Conditions - Woods Hole Oceanographic Institution SECTION B. Project Description Woods Hole Oceanographic Institution proposes to study the effectiveness of uranium adsorbents using different field testing designs. Objectives include: 1) To test the extraction efficiency of the uranium adsorbents under changing environmental conditions in a controlled laboratory setting and then in the field.

  10. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect (OSTI)

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.