Sample records for wood preparation waste

  1. WoodPolymer Composites Prepared by the In Situ Polymerization of Monomers Within Wood

    E-Print Network [OSTI]

    Wood­Polymer Composites Prepared by the In Situ Polymerization of Monomers Within Wood Yong-Feng Li in Wiley Online Library (wileyonlinelibrary.com). ABSTRACT: Wood­polymer composites (WPCs) were prepared words: composites; mechanical properties; modifi- cation; monomers; renewable resources INTRODUCTION

  2. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01T23:59:59.000Z

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  3. Kilowatts From Waste Wood In The Furniture Industry

    E-Print Network [OSTI]

    Nailen, R. L.

    1981-01-01T23:59:59.000Z

    recently, the Singer Furniture Co., Lenoir, N. Carolina, purchased a 450 kilowatt steam turbine/induction generator set to use extra steam - produced by 'free' waste wood fuel - in generating 15% of the plant's electrical energy demand. The turbine...

  4. Presentation 2.6: Wood waste for energy: lessons learnt from tropical regions Paul Vantomme

    E-Print Network [OSTI]

    Presentation 2.6: Wood waste for energy: lessons learnt from tropical regions Paul Vantomme of forest products with more value adding, and promoting the use of wood waste to increase energy efficiency to promote the use of wood waste for energy production. Not only the financial viability of the process needs

  5. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    1995-01-01T23:59:59.000Z

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  6. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, L.

    1995-07-11T23:59:59.000Z

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  7. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    SciTech Connect (OSTI)

    Holzman, M.I.

    1995-08-01T23:59:59.000Z

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  8. National Woodfuels and Wood Energy Information Analysis Prepared by: Muhammad Iqbal Sial PhD

    E-Print Network [OSTI]

    .5. Black liquor 2 2. TRENDS IN CONSUMPTION 2 2.1. Consumption by geographical location 3 2.2. Consumption. Province/territory wise distribution of wild lands. 13 10. National energy consumption by source. 20 112nd Draft Desk Study on National Woodfuels and Wood Energy Information Analysis PAKISTAN Prepared

  9. An evaluation of atmospheric evaporation for treating wood preserving wastes

    E-Print Network [OSTI]

    Shack, Pete A

    1976-01-01T23:59:59.000Z

    i. hat a constant rate of total organi carbon and chemical oxygen demand removal occurred as the wastewai. r was evaporated. A procedure for designing atmospheric evaporation ponds was developed and applied to a hypothetical wood preserving plant.... From this example design estimates of equivalent hydrocarbon concentrations in the air downwind of the pond are made. Various other design con- siderations such as the input data, modifications to the design pro- cedure, solids accumulation...

  10. The treatment of wood preserving wastes with activated carbon

    E-Print Network [OSTI]

    Pence, Robert Fuller

    1978-01-01T23:59:59.000Z

    requirement and treatment schemes should be based on these combined requirements. Current treatment schemes employed in the wood preserving industry combine physical, chemical, and biological processes and operations in treating wastewaters. Jones, et al...-five of the plants performed secondary treatment on-site of which 32 used biological methods. Only 6 per- cent discharged their wastewaters directly to the environment without any form of treatment and approximately 40 percent of the plants planned to change...

  11. Dover Textiles - A Case History on Retrofitting Factories with a Boiler System Fueled on Coal, Wood and Waste

    E-Print Network [OSTI]

    Pincelli, R. D.

    1981-01-01T23:59:59.000Z

    a coal, wood, and waste fired boiler system to serve two plants. This case history will document payback periods of less than three years; return on investments of 20% plus; benefits of North Carolina and federal investment tax credits; EPA...

  12. Method of preparing nuclear wastes for tansportation and interim storage

    DOE Patents [OSTI]

    Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

    1984-01-01T23:59:59.000Z

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  13. CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal

    E-Print Network [OSTI]

    Florida, University of

    CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW February 2007 Available online 9 April 2007 Abstract Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential

  14. Dover Textiles - A Case History on Retrofitting Factories with a Boiler System Fueled on Coal, Wood and Waste

    E-Print Network [OSTI]

    Pincelli, R. D.

    1981-01-01T23:59:59.000Z

    The shortage of affordable gas and oil boiler fuels and the recent Iran/Iraq war underscores the urgent need for the American industrial system to convert to domestically controlled fuels and particularly coal, wood, and waste. More talk than action...

  15. Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste

    E-Print Network [OSTI]

    Florida, University of

    Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste Helena M technologies evaluated included X-ray fluorescence spectroscopy (XRF) and laser induced breakdown spectroscopy (LIBS). The XRF detector system utilized in this study was capable of rapidly detecting the presence

  16. Cold Dissolved Saltcake Waste Simulant Development, Preparation, and Analysis

    SciTech Connect (OSTI)

    Rassat, Scot D.; Mahoney, Lenna A.; Russell, Renee L.; Bryan, Samuel A.; Sell, Rachel L.

    2003-05-13T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. is identifying and developing supplemental process technologies to accelerate the Hanford tank waste cleanup mission. Bulk vitrification, containerized grout, and steam reforming are three technologies under consideration for treatment of the radioactive saltcake wastes in 68 single-shell tanks. To support development and testing of these technologies, Pacific Northwest National Laboratory (PNNL) was tasked with developing a cold dissolved saltcake simulant formulation to be representative of an actual saltcake waste stream, preparing 25- and 100-L batches of the simulant, and analyzing the composition of the batches to ensure conformance to formulation targets. Lacking a defined composition for dissolved actual saltcake waste, PNNL used available tank waste composition information and an equilibrium chemistry model (Environmental Simulation Program [ESP{trademark}]) to predict the concentrations of analytes in solution. Observations of insoluble solids in initial laboratory preparations for the model-predicted formulation prompted reductions in the concentration of phosphate and silicon in the final simulant formulation. The analytical results for the 25- and 100-L simulant batches, prepared by an outside vendor to PNNL specifications, agree within the expected measurement accuracy ({approx}10%) of the target concentrations and are highly consistent for replicate measurements, with a few minor exceptions. In parallel with the production of the 2nd simulant batch (100-L), a 1-L laboratory control sample of the same formulation was carefully prepared at PNNL to serve as an analytical standard. The instrumental analyses indicate that the vendor prepared batches of solution adequately reflect the as-formulated simulant composition. In parallel with the simulant development effort, a nominal 5-M (molar) sodium actual waste solution was prepared at the Hanford Site from a limited number of tank waste samples. Because this actual waste solution w as also to be used for testing the supplemental treatment technologies, the modeled simulant formulation was predicated on the composite of waste samples used to prepare it. Subsequently, the actual waste solution was filtered and pretreated to remove radioactive cesium at PNNL and then analyzed using the same instrumentation and procedures applied to the simulant samples. The overall agreement of measured simulant and actual waste solution compositions is better than {+-}10% for the most concentrated species including sodium, nitrate, hydroxide, carbonate, and nitrite. While the magnitude of the relative difference in the simulant and actual waste composition is large (>20% difference) for a few analytes (aluminum, chromium, fluoride, potassium, and total organic carbon), the absolute differences in concentration are in general not appreciable. Our evaluation is that these differences in simulant and actual waste solutions should have a negligible impact on bulk vitrification and containerized grout process testing, while the impact of the low aluminum concentration on steam reforming is yet to be determined.

  17. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    SciTech Connect (OSTI)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute); R. Glickert (ESA Environmental Solutions)

    2007-12-31T23:59:59.000Z

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  18. Preparation of waste oil for analysis to determine hazardous metals

    SciTech Connect (OSTI)

    Essling, A.M.; Huff, D.R.; Huff, E.A.; Fox, I.M.; Graczyk, D.G.

    1995-07-01T23:59:59.000Z

    Two methods for preparing waste-oil samples to permit measurement of their metals content were evaluated. For this evaluation, metals-in-oil standard reference materials were prepared by each method and the resulting solutions were analyzed for 20 metals, including those (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag) regulated as hazardous under the Resource Conservation and Recovery Act. One preparation method involved combustion of the waste oil under oxygen at 25 atm pressure, as described in the American Society for Testing and Materials test method E926-88. As we applied it, this method gave recoveries well under 90% for most of the metals that we examined and, hence, proved unsatisfactory for routine application to waste-oil analysis. With the other method, nitric acid decomposition in a sealed vessel heated with microwave energy (analogous to US Environmental Protection Agency Method 3051), recoveries of all 20 metal contaminants were within 90 to 110% of the certified values. This microwave digestion procedure was also more efficient since it allowed six samples to be prepared together, whereas the oxygen combustion approach allowed processing of only one sample at a time.

  19. Strategic Utilization of Paper/Wood Waste for Biodiesel Fuel Art J. Ragauskas, Institute of Paper Science and Technology; Georgia Institute of Technology, Atlanta, GA.

    E-Print Network [OSTI]

    Strategic Utilization of Paper/Wood Waste for Biodiesel Fuel Art J. Ragauskas, Institute of Paper lignocellulosics to biodiesel fuel Feedstocks ABSTRACT This poster examines the potential of utilizing waste paper CelluloseHemicelluloseLigninResource Cracking and Refining of Polysaccharides Bio-Diesel Substitutes

  20. Exergy analysis of the Chartherm process for energy valorization and material recuperation of chromated copper arsenate (CCA) treated wood waste

    SciTech Connect (OSTI)

    Bosmans, A., E-mail: anouk.bosmans@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium); Auweele, M. Vanden; Govaerts, J.; Helsen, L. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium)

    2011-04-15T23:59:59.000Z

    The Chartherm process (Thermya, Bordeaux, France) is a thermochemical conversion process to treat chromated copper arsenate (CCA) impregnated wood waste. The process aims at maximum energy valorization and material recuperation by combining the principles of low-temperature slow pyrolysis and distillation in a smart way. The main objective of the exergy analysis presented in this paper is to find the critical points in the Chartherm process where it is necessary to apply some measures in order to reduce exergy consumption and to make energy use more economic and efficient. It is found that the process efficiency can be increased with 2.3-4.2% by using the heat lost by the reactor, implementing a combined heat and power (CHP) system, or recuperating the waste heat from the exhaust gases to preheat the product gas. Furthermore, a comparison between the exergetic performances of a 'chartherisation' reactor and an idealized gasification reactor shows that both reactors destroy about the same amount of exergy (i.e. 3500 kW kg{sub wood}{sup -1}) during thermochemical conversion of CCA-treated wood. However, the Chartherm process possesses additional capabilities with respect to arsenic and tar treatment, as well as the extra benefit of recuperating materials.

  1. National Woodfuels and Wood Energy Information Analysis Prepared by: Sok Bun Heng

    E-Print Network [OSTI]

    and electricity. However, whilst a higher consumption of LPG has been used to complement wood fuels. Such energy. The per capita energy consumption is lower compared to developed countries, but high consumption for income generation. II)- Energy Consumption There is no proper study or database about energy consumption

  2. Waste minimization in analytical chemistry through innovative sample preparation techniques.

    SciTech Connect (OSTI)

    Smith, L. L.

    1998-05-28T23:59:59.000Z

    Because toxic solvents and other hazardous materials are commonly used in analytical methods, characterization procedures result in significant and costly amount of waste. We are developing alternative analytical methods in the radiological and organic areas to reduce the volume or form of the hazardous waste produced during sample analysis. For the radiological area, we have examined high-pressure, closed-vessel microwave digestion as a way to minimize waste from sample preparation operations. Heated solutions of strong mineral acids can be avoided for sample digestion by using the microwave approach. Because reactivity increases with pressure, we examined the use of less hazardous solvents to leach selected contaminants from soil for subsequent analysis. We demonstrated the feasibility of this approach by extracting plutonium from a NET reference material using citric and tartaric acids with microwave digestion. Analytical results were comparable to traditional digestion methods, while hazardous waste was reduced by a factor often. We also evaluated the suitability of other natural acids, determined the extraction performance on a wider variety of soil types, and examined the extraction efficiency of other contaminants. For the organic area, we examined ways to minimize the wastes associated with the determination of polychlorinated biphenyls (PCBs) in environmental samples. Conventional methods for analyzing semivolatile organic compounds are labor intensive and require copious amounts of hazardous solvents. For soil and sediment samples, we have a method to analyze PCBs that is based on microscale extraction using benign solvents (e.g., water or hexane). The extraction is performed at elevated temperatures in stainless steel cells containing the sample and solvent. Gas chromatography-mass spectrometry (GC/MS) was used to quantitate the analytes in the isolated extract. More recently, we developed a method utilizing solid-phase microextraction (SPME) for natural water samples. In this SPME technique, a fused-silica fiber coated with a polymeric film is exposed to the sample, extraction is allowed to take place, and then the analytes are thermally desorbed for GC analysis. Unlike liquid-liquid extraction or solid-phase extraction, SPME consumes all of the extracted sample in the analysis, significantly reducing the required sample volume.

  3. Journal of Hazardous Materials B114 (2004) 7591 Leaching of CCA-treated wood: implications for waste disposal

    E-Print Network [OSTI]

    Florida, University of

    Journal of Hazardous Materials B114 (2004) 75­91 Leaching of CCA-treated wood: implications, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching

  4. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect (OSTI)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others] [and others

    1996-03-01T23:59:59.000Z

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  5. Energy from Waste: Preparing Today for Tomorrow's Energy Needs

    E-Print Network [OSTI]

    Krueger, R. P.

    1979-01-01T23:59:59.000Z

    This paper addresses the question of why Hooker Chemical Company, a subsidiary of Occidental Petroleum Corporation, would turn to solid waste as an energy alternative. It presents the considerations in the company's decision to construct a $70...

  6. Progress in Low and Intermediate Level Operational Waste Characterization and Preparation for Disposal at Ignalina NPP

    SciTech Connect (OSTI)

    Poskas, P.; Adomaitis, J. E.; Ragaisis, V.

    2003-02-25T23:59:59.000Z

    In Lithuania about 70-80% of all electricity is generated at a single power station, Ignalina NPP, which has two RBMK-1500 type reactors. Units 1 and 2 will be closed by 2005 and 2010, respectively, taking into account the conditions of the long-term substantial financial assistance rendered by the European Union, G-7 countries and other states as well as international institutions. The Government approved the Strategy on Radioactive Waste Management. Objectives of this strategy are to develop the radioactive waste management infrastructure based on modern technologies and provide for the set of practical actions that shall bring management of radioactive waste in Lithuania in compliance with radioactive waste management principles of IAEA and with good practices in force in European Union Member States. SKB-SWECO International-Westinghouse Atom Joint Venture with participation of Lithuanian Energy Institute has prepared a reference design of a near surface repository for short-lived low and intermediate level waste. This reference design is applicable to the needs in Lithuania, considering its hydro-geological, climatic and other environmental conditions and is able to cover the expected needs in Lithuania for at least thirty years ahead. Development of waste acceptance criteria is in practice an iterative process concerning characterization of existing waste, repository development, safety and environmental impact assessment etc. This paper describes the position in Lithuania with regard to the long-term management of low and intermediate level waste in the absence of finalized waste acceptance criteria and a near surface repository.

  7. Energy from Waste: Preparing Today for Tomorrow's Energy Needs

    E-Print Network [OSTI]

    Krueger, R. P.

    1979-01-01T23:59:59.000Z

    velocity air blows through the refuse, lifting the lighter particles upward. Heavier materials, affected by gravity and vibration, tend to fall down the inclined surface toward the discharge area. A final blast of air entrains most of the remain ing light... Conversion of Refuse Advanced by Application of Basic Combustion Principles," AIChE Symposium on Solid Waste Disposal, 1971. 8. Klaus S. Feindler, "Refuse Power Plant Technology - State of the Art Review," The Energy Bureau, Inc., December 1976, p. 7...

  8. PROSPECTS FOR CO-FIRING OF CLEAN COAL AND CREOSOTE-TREATED WASTE WOOD AT SMALL-SCALE POWER STATIONS

    E-Print Network [OSTI]

    Janis Zandersons; Aivars Zhurinsh; Edward Someus

    If a small-scale clean coal fu eled power plant is co-fu eled with 5 % of cre o-sote-treated used-up sleeper wood, the de con tam i na tion by carbonisation at 500 C in an in di rectly heated ro tary kiln with the di am e ter 1.7 m and ef fec-tive length 10 m can be real ised. It should be in cluded in the 3R Clean Coal Carbonisation Plant sys tem, which pro cesses coal. It will im prove the heat bal ance of the sys tem, since the carbonisation of wood will de liver a lot of high caloricity pyroligneous vapour to the joint fur nace of the 3R Clean Coal Carbonisation Plant. Pine wood sleeper sap wood con tains 0.25 % of sul phur, but the av er age pine sleeper wood (sap wood and heart wood) 0.05% of sul phur. Most of the sul phur is lost with the pyroligneous vapour and burned in the fur nace. Since the 3R Clean Coal Carbonisation Plant is equipped with a flue gases clean ing sys tem, the SO2 emis sion level will not ex-ceed 5 mg/m 3. The char coal of the sap wood por tion of sleep ers and that of the av er age sleeper wood will con tain 0.22 % and 0.035 % of sul phur, re spec-tively. The in crease of the carbonisation tem per a ture does not sub stan tially de crease the sul phur con tent in char coal, al though it is suf fi ciently low, and the char coal can be co-fired with clean coal. The con sid ered pro cess is suit-able for small power plants, if the bio mass in put in the com mon en ergy bal-ance is 5 to 10%. If the mean dis tance of sleep ers trans por ta tion for Cen tral and East ern Eu-rope is es ti mated not to ex ceed 200 km, the co-com bus tion of clean coal and carbonised sleep ers would be an ac cept able op tion from the en vi ron men tal and eco nomic points of view.

  9. Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching

    SciTech Connect (OSTI)

    Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

    1997-12-31T23:59:59.000Z

    Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

  10. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-12-15T23:59:59.000Z

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  11. Preparation of certified working reference material sources for the national TRU waste performance demonstration program.

    SciTech Connect (OSTI)

    Mecklenburg, S. L. (Sandra L.); Thronas, D. L. (Denise L.); Wong, A. S. (Amy S.); Marshall, Robert S.,; Becker, G. K.

    2003-01-01T23:59:59.000Z

    Traceable non-destructive assay (NDA) standards containing a variety of radionuclides including uranium, americium, and plutonium oxides mixed with an inert matrix were prepared and certified for use in the U .S. Department of Energy's National TRU Waste Program (NTWP) . The NTWP requires traceable nuclear material standards of the Working Reference Material (WRM) class for qualification of NDA instrumentation that is used to quantify nuclear material in DOE-generated waste before the waste is shipped for final disposition at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico . Qualification and approval of measurement systems is accomplished in part through successful participation in the Non-Destructive Assay (NDA) Performance Demonstration Program (PDP) and is required for DOE and EPA regulatory compliance . An overview of the PDP program highlighting the role of the certified WRMs fabricated at LANL is presented, as well as a summary of the WRM fabrication process and an overview of the inventory of over 175 WRMs fabricated and deployed to DOE measurement facilities to date .

  12. Simulated Waste for Leaching and Filtration Studies--Laboratory Preparation Procedure

    SciTech Connect (OSTI)

    Smith, Harry D.; Russell, Renee L.; Peterson, Reid A.

    2009-10-27T23:59:59.000Z

    This report discusses the simulant preparation procedure for producing multi-component simulants for leaching and filtration studies, including development and comparison activities in accordance with the test plan( ) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-06-006, Rev 0 (Smith 2006). A fundamental premise is that this approach would allow blending of the different components to simulate a wide variety of feeds to be treated in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). For example, a given feed from the planned feed vector could be selected, and the appropriate components would then be blended to achieve a representation of that particular feed. Using the blending of component simulants allows the representation of a much broader spectrum of potential feeds to the Pretreatment Engineering Platform (PEP).

  13. Waste Management in Dsseldorf Combination of separate collection,

    E-Print Network [OSTI]

    Columbia University

    Waste Management in Düsseldorf Combination of separate collection, recycling and waste-to-energy Biowaste Garden waste Light packaging Paper Glass Wood from bulky waste Bulky waste Rest / mixed waste Bio- Garden- Paper Glass Light Metals Wood Bulky Rest waste waste Card- Pack. waste board Saved CO2

  14. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect (OSTI)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

    2011-09-15T23:59:59.000Z

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  15. Composition, preparation, and gas generation results from simulated wastes of Tank 241-SY-101

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.

    1994-08-01T23:59:59.000Z

    This document reviews the preparation and composition of simulants that have been developed to mimic the wastes temporarily stored in Tank 241-SY-101 at Hanford. The kinetics and stoichiometry of gases that are generated using these simulants are also compared, considering the roles of hydroxide, chloride, and transition metal ions; the identities of organic constituents; and the effects of dilution, radiation, and temperature. Work described in this report was conducted for the Flammable Gas Safety Program at Pacific Northwest Laboratory, (a) whose purpose is to develop information that is necessary to mitigate potential safety hazards associated with waste tanks at the Hanford Site. The goal of this research and of related efforts at the Georgia Institute of Technology (GIT), Argonne National Laboratory (ANL), and Westinghouse Hanford Company (WHC) is to determine the thermal and thermal/radiolytic mechanisms by which flammable and other gases are produced in Hanford wastes, emphasizing those stored in Tank 241-SY-101. A variety of Tank 241-SY-101 simulants have been developed to date. The use of simulants in laboratory testing activities provides a number of advantages, including elimination of radiological risks to researchers, lower costs associated with experimentation, and the ability to systematically alter simulant compositions to study the chemical mechanisms of reactions responsible for gas generation. The earliest simulants contained the principal inorganic components of the actual waste and generally a single complexant such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) or ethylenediaminetriacetic acid (EDTA). Both homogeneous and heterogeneous compositional forms were developed. Aggressive core sampling and analysis activities conducted during Windows C and E provided information that was used to design new simulants that more accurately reflected major and minor inorganic components.

  16. Disposal of CCA-treated Wood: An Evaluation of

    E-Print Network [OSTI]

    Florida, University of

    Disposal of CCA-treated Wood: An Evaluation of Existing and Alternative Management Options (FINAL CHARACTERISTICS OF CCA-TREATED WOOD ASH II.1 Sample Preparation 10 II.2 Laboratory Methods 15 II.3 Laboratory Results 24 CHAPTER III, SORTING TECHNOLOGIES FOR SEPARATING TREATED WOOD FROM UNTREATED WOOD III.1

  17. Compilation of reports prepared for the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This report contains reports prepared for the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management, from experts in the United States. The contents of the report focus mainly on public opinion, and government policies as perceived by the public.

  18. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

    1990-07-10T23:59:59.000Z

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  19. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, G.; Gokhale, A.J.

    1990-07-10T23:59:59.000Z

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  20. Wood Burning Combined Cycle Power Plant

    E-Print Network [OSTI]

    Culley, J. W.; Bourgeois, H. S.

    1984-01-01T23:59:59.000Z

    A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas...

  1. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    SciTech Connect (OSTI)

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Henckel, George [Los Alamos Site Office, MS-A316, Los Alamos, NM 87544 (United States)

    2012-07-01T23:59:59.000Z

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and reports. - Use of six-sigma tools can help improve the quality and efficiency of waste management processes. - A fair, easy to understand, transparent, and well-overseen process for distributing the cost of waste disposal and waste program oversight is essential. (authors)

  2. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  3. Evaluation of Seafood Processing Wastes in Prepared Feeds for Red Drum (Sciaenops ocellatus)

    E-Print Network [OSTI]

    Pernu, Benjamin Mark

    2012-07-16T23:59:59.000Z

    High feed costs and increasing demand for fishmeal have intensified the search for alternative protein sources which are needed to allow world aquaculture to continue expanding. A severely underused marine resource is processing wastes of various...

  4. Alaska Wood Biomass Energy Project Final Report

    SciTech Connect (OSTI)

    Jonathan Bolling

    2009-03-02T23:59:59.000Z

    The purpose of the Craig Wood Fired Boiler Project is to use waste wood from local sawmilling operations to provide heat to local public buildings, in an effort to reduce the cost of operating those buildings, and put to productive use a byproduct from the wood milling process that otherwise presents an expense to local mills. The scope of the project included the acquisition of a wood boiler and the delivery systems to feed wood fuel to it, the construction of a building to house the boiler and delivery systems, and connection of the boiler facility to three buildings that will benefit from heat generated by the boiler: the Craig Aquatic Center, the Craig Elementary School, and the Craig Middle School buildings.

  5. Waste Preparation and Transport Chemistry: Results of the FY 2002 Studies

    SciTech Connect (OSTI)

    Hunt, R.D.

    2003-07-10T23:59:59.000Z

    The initial step in the remediation of nuclear waste stored at Hanford and the Savannah River Site (SRS) involves the retrieval and transfer of the waste to another tank or to a treatment facility. The retrieved waste can range from a filtered supernatant to a slurry. Nearly all of the recent solid formation problems encountered during waste transfers and subsequent treatment steps have involved decanted or filtered supernatants. Problems with slurry transfers have not yet surfaced, because tank farm operations at Hanford and the SRS have focused primarily on supernatant transfers and treatment. For example, the interim stabilization program at Hanford continues to reduce the level of supernatants and interstitial liquids in its single-shell tanks through saltwell pumping of filtered liquid. In addition, at present, the cross-site transfer lines at Hanford can be used only to transfer liquids. Another reason for fewer problems with slurry transfers involves the additions of large quantities of dilution water prior to the transfer. When the waste is transferred, a drop in temperature is expected because most transfer lines are not heated. However, the dilution water reduces or eliminates solid formation caused by this temperature drop. In sharp contrast, decanted or filtered supernatants are near or at saturation for certain compounds. In such cases, tank farm operators must continue to evaporate their liquid waste since available tank space is quite limited. Solid formation can occur when the temperature of saturated solutions drops even slightly. The evaporation step can also lead to the formation of problematic solids. At the SRS, the evaporation of a relatively dilute waste stream was suspended due to the formation of deposits in the evaporator system. Therefore, small drops in temperature or evaporation can lead to problematic solid formations.

  6. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  7. CONTROLLING THE INTERNATIONAL TRADE IN ILLEGALLY LOGGED TIMBER AND WOOD PRODUCTS

    E-Print Network [OSTI]

    CONTROLLING THE INTERNATIONAL TRADE IN ILLEGALLY LOGGED TIMBER AND WOOD PRODUCTS A study prepared@riia.org February 2002 #12;Controlling the international trade in illegally logged timber and wood products Page 2...................................................................................................................... 11 ILLEGAL ACTIVITIES IN THE FOREST SECTOR

  8. Wood-based Energy Technologies Michigan offers some significant advantages

    E-Print Network [OSTI]

    quality stan- dards. Wood pellets are an attractive alternative for home heating or for larger individual--ground wood. Pellet storage area. #12;distributed through a District Energy grid. Efficiencies are high on municipal solid waste. Both district heating and CHP plants can also pro- duce pellets for local housing

  9. Journal of Hazardous Materials A135 (2006) 2131 Leaching of chromated copper arsenate (CCA)-treated wood in a

    E-Print Network [OSTI]

    Florida, University of

    2006-01-01T23:59:59.000Z

    . Monofills are a type of landfill designed and operated to dispose a single waste type, such as ash, tires-treated wood is commingled with untreated wood as part of recycling operations, the mulch product produced

  10. Quantities of Arsenic-Treated Wood in Demolition Debris Generated by

    E-Print Network [OSTI]

    Florida, University of

    Research Quantities of Arsenic-Treated Wood in Demolition Debris Generated by Hurricane Katrina B R of the demolition debris is wood waste of which a significant proportion is treated with preservatives, including preservatives containing arsenic. As a result of the large scale destruction of treated wood structures

  11. Energie-Cits 2001 BIOMASS -WOOD

    E-Print Network [OSTI]

    Energie-Cits 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units which with conventional technologies

  12. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-06-07T23:59:59.000Z

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  13. Waste Toolkit A-Z Food waste (recycling on-site)

    E-Print Network [OSTI]

    Melham, Tom

    into compost in 14 days, when mixed with wood chippings (from your grounds/gardens). The waste is heated usingWaste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling food waste on-site is a new concept as the University typically has its waste collected and taken away

  14. Residential Wood Residential wood combustion (RWC) is

    E-Print Network [OSTI]

    Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

  15. Management of Discarded Treated Wood Products: A Resource Guide for Generators

    E-Print Network [OSTI]

    Florida, University of

    Management of Discarded Treated Wood Products: A Resource Guide for Generators Prepared by have been conducting research on treated wood since 1996. During the course of the research, there have been numerous inquiries about the disposal and management options for treated wood products. There has

  16. Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary

    SciTech Connect (OSTI)

    Levi, M. P.; O'Grady, M. J.

    1980-02-01T23:59:59.000Z

    The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

  17. Comparison of SW-846 method 3051 and SW-846 method 7471A for the preparation of solid waste samples for mercury determination

    SciTech Connect (OSTI)

    Giaquinto, J.M.; Essling, A.M.; Keller, J.M.

    1996-08-01T23:59:59.000Z

    This report describes experimental studies to evaluate the use of EPA SW-846 method 3051 for preparation and dissolution of solid samples for Hg analysis. The study showed that the method is effective in dissolution of four sample types without significant loss of Hg. Based on results of this study, method 3051 was used for analysis of high radioactive waste samples to obtain results for a number of RCRA regulated metals without the need to utilize a separate sample preparation method (EPA SW-846 method 7471A) specific only for Hg.

  18. Wood Resources International

    E-Print Network [OSTI]

    .3% Sweden 5.3% Finland 4.1% Russia 13.8% US 37.3% Germany 3.3% France 2.8% Poland 2.1% Other Europe 14 International Wood Fuel Removals in Europe 2002 Turkey 12.2% Poland 3.6% Romania 5.3% Hungary 4.1% Germany 7;Wood Resources International Production of energy from wood fuels in 2000 Source: EUBIONET 0 50 100 150

  19. A report on high-level nuclear waste transportation: Prepared pursuant to assembly concurrent resolution No. 8 of the 1987 Nevada Legislature

    SciTech Connect (OSTI)

    NONE

    1988-12-01T23:59:59.000Z

    This report has been prepared by the staff of the State of Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) in response to Assembly Concurrent Resolution No. 8 (ACR 8), passed by the Nevada State Legislature in 1987. ACR 8 directed the NWPO, in cooperation with affected local governments and the Legislative committee on High-Level Radioactive Waste, to prepare this report which scrutinizes the US Department of Energy`s (DOE) plans for transportation of high-level radioactive waste to the proposed yucca Mountain repository, which reviews the regulatory structure under which shipments to a repository would be made and which presents NWPO`s plans for addressing high-level radioactive waste transportation issues. The report is divided into three major sections. Section 1.0 provides a review of DOE`s statutory requirements, its repository transportation program and plans, the major policy, programmatic, technical and institutional issues and specific areas of concern for the State of Nevada. Section 2.0 contains a description of the current federal, state and tribal transportation regulatory environment within which nuclear waste is shipped and a discussion of regulatory issues which must be resolved in order for the State to minimize risks and adverse impacts to its citizens. Section 3.0 contains the NWPO plan for the study and management of repository-related transportation. The plan addresses four areas, including policy and program management, regulatory studies, technical reviews and studies and institutional relationships. A fourth section provides recommendations for consideration by State and local officials which would assist the State in meeting the objectives of the plan.

  20. James F. Wood

    Broader source: Energy.gov [DOE]

    James F. Wood is currently Deputy Assistant Secretary for Clean Coal in the Office of Fossil Energy (FE). In this position, he is responsible for the management and direction of the Office's...

  1. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  2. Preparation of BaPbO3 functional ceramics from leaded waste Bin Li, Shen-Gen Zhang*, Kun Zhang,

    E-Print Network [OSTI]

    Volinsky, Alex A.

    -mail: thlibin@sina.com K. Zhang Beijing Nonferrous Metals and Rare Earth Research Institute, Beijing 100012 should be made to process secondary sources, such as waste rare earth pro- ducts [1], tailings [2, USA 123 Rare Met. (2014) 33(5):598603 RARE METALS DOI 10.1007/s12598-014-0369-1 www

  3. Waste wood processing and combustion for energy

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This volume contains the proceedings of the Fifth Annual National Biofuels Conference and Exhibition held October 19--22, 1992 in Newton, Massachusetts. Individual papers have been abstracted and indexed for the database.

  4. Marketing of Tropical Hardwood Wood Products from Ghana

    E-Print Network [OSTI]

    productive · Causes: farming, bush fires, fuel wood, wasteful logging practices, mining and quarrying #12;Fuelwood #12;Current Industry Structure · 8% of GDP · 250 companies involved in primary operations · 180 companies in secondary operations · Over 200 companies involved in tertiary operations · General

  5. Pellet Production Wood Pellets are made by compressing

    E-Print Network [OSTI]

    Pellet Production Wood Pellets are made by compressing clean dry sawdust, under very high pressure into a pellet as it cools. The material used for producing pellets usually comes from industries who are already pellets reduces the volume of material they have to treat as waste, reducing landfill. Pellets have

  6. Wood-Coal Fired "Small" Boiler Case Study

    E-Print Network [OSTI]

    Pincelli, R. D.

    1980-01-01T23:59:59.000Z

    Galaxy Carpet Corporation installed a coal and wood waste fired boiler approximately twelve months ago. Its first year net savings were $195,000.00 Total capital investment was paid off in 1.9 years. 20% investment tax credits were granted...

  7. Micro-Continuum Modeling of Nuclear Waste Glass Corrosion

    E-Print Network [OSTI]

    Steefel, Carl

    2014-01-01T23:59:59.000Z

    21. Grambow, B. (2006). Nuclear waste glasses How durable?Continuum Modeling of Nuclear Waste Glass Corrosion AugustContinuum Modeling of Nuclear Waste Glass Corrosion Prepared

  8. Precision wood particle feedstocks

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30T23:59:59.000Z

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  9. WOOD PRODUCTS AND UTILIZATION

    E-Print Network [OSTI]

    Standiford, Richard B.

    not require extensive cultivation and extraction methods, and it uses less manmade energy to manufacture, these trees are a vital component of wildlife and plant ecosystems, water quality, recreation, and esthetic and firewood harvesting are two activities that consume large quantities of wood from oak woodlands. Finding

  10. Rheological Model for Wood

    E-Print Network [OSTI]

    Mohammad Masoud Hassani; Falk K. Wittel; Stefan Hering; Hans J. Herrmann

    2014-10-15T23:59:59.000Z

    Wood as the most important natural and renewable building material plays an important role in the construction sector. Nevertheless, its hygroscopic character basically affects all related mechanical properties leading to degradation of material stiffness and strength over the service life. Accordingly, to attain reliable design of the timber structures, the influence of moisture evolution and the role of time- and moisture-dependent behaviors have to be taken into account. For this purpose, in the current study a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive constitutive model for wood, with all material constants being defined as a function of moisture content, is presented. The corresponding numerical integration approach, with additive decomposition of the total strain is developed and implemented within the framework of the finite element method (FEM). Moreover to preserve a quadratic rate of asymptotic convergence the consistent tangent operator for the whole model is derived. Functionality and capability of the presented material model are evaluated by performing several numerical verification simulations of wood components under different combinations of mechanical loading and moisture variation. Additionally, the flexibility and universality of the introduced model to predict the mechanical behavior of different species are demonstrated by the analysis of a hybrid wood element. Furthermore, the proposed numerical approach is validated by comparisons of computational evaluations with experimental results.

  11. CONTROLLING THE INTERNATIONAL TRADE IN ILLEGALLY LOGGED TIMBER AND WOOD PRODUCTS

    E-Print Network [OSTI]

    CONTROLLING THE INTERNATIONAL TRADE IN ILLEGALLY LOGGED TIMBER AND WOOD PRODUCTS A study prepared@riia.org February 2002 http://www.illegal-logging.info/uploads/1_ControllingTrade.pdf #12;Controlling the international trade in illegally logged timber and wood products Page 2 Contents EXECUTIVE SUMMARY

  12. Interrelation of technologies for RW preparation and sites for final isolation of the wastes from pyrochemical processing of SNF

    SciTech Connect (OSTI)

    Gupalo, V.S.; Chistyakov, V.N. [JSC - Design-Prospecting and Scientific-Research Institute of Industrial Technology -, Kashirskoye Highway, 33, Moscow 115409 (Russian Federation); Kormilitsyn, M.V.; Kormilitsyna, L.A. [JSC - State Scientific Center - Research Institute of Atomic Reactors -, Ulyanovsk region, Dimitrovgrad - 10, 433510 (Russian Federation)

    2013-07-01T23:59:59.000Z

    For the justification of engineering solutions and practical testing of the radiochemical component of the perspective nuclear power complex with on-site variant of nuclear fuel cycle (NFC), it is planned to establish a multi-functional research-development complex (MFCRC) for radiochemical processing of spent nuclear fuels (SNF) from fast reactors. MFCRC is being established at the NIIAR site, it comprises technological process lines, where innovation pyro-electrochemical and hydrometallurgical technologies are realized, with an option for closing the inter-chain material flows for testing the combined radiochemically converted materials. The technological flowchart for processing at the MFCRC is subdivided into 3 segments: -) complex of the lead operations for dismantling the fuel elements (FE) and fuel assemblies (FA), -) pyrochemical extraction flowchart for processing SNF, and -) hydrometallurgical flowchart for processing SNF. The engineered solutions for the management and disposition of the radioactive wastes from MFCRC are reviewed.

  13. Review and Status of Solid Waste Management Practices in Multan, Pakistan

    E-Print Network [OSTI]

    Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

    2006-01-01T23:59:59.000Z

    Bones Metals Textile Wood Composting Community Developmentestablished a solid waste composting plant as a theme ofwaste sorting and composting plant, which was manufactured

  14. Industrial Wastes as a Fuel

    E-Print Network [OSTI]

    Richardson, G.; Hendrix, W.

    1980-01-01T23:59:59.000Z

    objects. Screw conveyors are relatively inexpensive and of simple construction. Their capacity becomes re stricted when they are inclined. The pneumatic conveyor is one type of equipment that finds more widespread use in wood and similar materials.... These are relatively simple devices that are most effective on dry wood waste particles of small size. The principal drawbacks to pneumatics are the requirement for cyclones to perform air/ particle separation at the delivery points (since particulates can cause...

  15. FAO Forestry Department Wood Energy WISDOM Slovenia

    E-Print Network [OSTI]

    in developing pellet production and district heating systems; the formulation of a national wood energy strategyFAO Forestry Department Wood Energy WISDOM Slovenia Spatial woodfuel production Rudi Drigo Forestry Specialist - Wood energy planning and forest resources monitoring Zivan Veseli

  16. DIVISION 6 -WOOD AND PLASTICS 06000 GENERAL

    E-Print Network [OSTI]

    DIVISION 6 - WOOD AND PLASTICS ________________________________________________________________________ 06000 GENERAL 1. For both woods and plastics, special attention is called to matters of flame spread-dried. 3. For exterior wood or plastic framed structures, see Division 4 for dimensions of Sample Panel

  17. Eugene Solid Waste Management Market Analysis

    E-Print Network [OSTI]

    Oregon, University of

    Eugene Solid Waste Management Market Analysis Prepared By: Mitchell Johnson Alex Sonnichsen #12;Eugene Solid Waste Management Market Analysis May 2012 Page 1 Summary This study examines the economic impact of the solid waste management system

  18. Beverly Woods | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beverly Woods Beverly Woods Oral History Videos Speakers INTRODUCTION Ed Bailey Jim Bailey Kay Bailey Ken Bernander Willard Brock Wilma Brooks Elmer Brummitt Naomi Brummitt Blake...

  19. Environmental Impacts of Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Environmental Impacts of Treated Wood 6495_C000.fm Page iii Wednesday, February 1, 2006 5:48 PM #12 through the Florida Center for Environmental Solutions, National Science Foundation Grant No. 0126172. Any of treated-wood research and their efforts in organizing the con- ference entitled Environmental Impacts

  20. The Asian Wood Pellet Markets

    E-Print Network [OSTI]

    The Asian Wood Pellet Markets Joseph A. Roos and Allen M. Brackley United States Department Wood Pellet plant in North Pole, Alaska. Clockwise from upper left: pelleting machine; pellets bagged for home use; a Superior Pellet Fuels bag; inventory of product ready for shipment to retailers. Upper

  1. GLOBAL WOOD SUPPLY Sten Nilsson

    E-Print Network [OSTI]

    GLOBAL WOOD SUPPLY Sten Nilsson Biomass and Resource Efficiency: the need for a supply led approach the wood come from? Western EU Deficit Eastern EU Deficit Rest of Eastern Europe Balanced Russia Rest of Eastern Europe Balanced Russia Is probably at production ceiling under current conditions Japan

  2. DOE/LX/07-0097&D1 Secondary Document DMSA C-400-04 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    included an empty container. The low-level waste formerly stored included wood, metal, plastic, carboys, empty containers, ferrous sulfate, sodium hydroxide, personal protective...

  3. DOE/LX/07-0315&D1 Secondary Document DMSA C-333-14 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mix, metal items, wire, cloth, and wood pallets. Solid waste formerly stored consisted of containers of paperplasticdirtrope. Reusable materials identified in the SWMU were...

  4. Modelling piloted ignition of wood and plastics

    SciTech Connect (OSTI)

    Blijderveen, Maarten van [TNO, Schoemakerstraat 97, 2628 VK Delft (Netherlands); University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Bramer, Eddy A. [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Brem, Gerrit, E-mail: g.brem@utwente.nl [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2012-09-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  5. Successful biomass (wood pellets ) implementation in

    E-Print Network [OSTI]

    Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local of primary energy in Estonia ! Wood fuels production ! Pellet firing projects in Estonia ­ SIDA Demo East Production of wood fuels in Estonia in 2002 Regional Energy Centres in Estonia Wood pellets production

  6. Wood Fuel Task Force Response 2 | Wood Fuel Task Force Response

    E-Print Network [OSTI]

    Wood Fuel Task Force Response #12;2 | Wood Fuel Task Force Response #12;Wood Fuel Task Force Response | 3 Wood Fuel Task Force Response Scottish Government response by Minister for Environment, Michael Russell I am pleased to present on behalf of the Scottish Government our response to the Wood Fuel

  7. Industrial Wastes as a Fuel

    E-Print Network [OSTI]

    Richardson, G.; Hendrix, W.

    1980-01-01T23:59:59.000Z

    available for coal since it was at one time a major industrial fuel and is still used extensively for electric power generation. However, combustion data for other fuels such as wood and solid materials typically generated as industrial wastes can only...

  8. Textile Drying Via Wood Gasification

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  9. Textile Drying Via Wood Gasification

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  10. Integrated Industrial Wood Chip Utilization

    E-Print Network [OSTI]

    Owens, E. T.

    1984-01-01T23:59:59.000Z

    The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

  11. Waste Minimization Plan Prepared by

    E-Print Network [OSTI]

    ............................................................................................. 6 Green Chemistry Principals to the discovery and recovery of the Earth's resources, their conversion to materials and energy

  12. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  13. Combustion of waste fuels in a fluidized-bed boiler

    SciTech Connect (OSTI)

    Zylkowski, J.; Ehrlich, S.

    1983-01-01T23:59:59.000Z

    This paper reports on a project whose objectives are to determine the impact of the waste fuels on Atmospheric Fluidized Bed Combustion (AFBC) operating procedures, boiler performance, and emissions and to assess the potential for fuel-specific operating problems. The low-grade waste fuels investigated are hogged railroad ties, shredded rubber tires, peat, refuse-derived fuel, and one or more agricultiral wastes. The Northern States Power (NSP) Company converted their French Island Unit No. 2 stoker-fired boiler to a fluidized-bed combustor designed to burn wood waste. NSP and EPRI are investigating cofiring other waste fuels with wood waste. Topics considered include fluidized-bed boiler conversion, fuel resources, economic justification, environmental considerations, the wood-handling system, an auxiliary fuel system, the air quality control system, ash handling and disposal, and the alternate fuels test program.

  14. automotive waste heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat... Murphy, W. T.; Woods, B. E.; Gerdes, J. E....

  15. The Conversion of Waste to Energy

    E-Print Network [OSTI]

    John, T.; Cheek, L.

    1980-01-01T23:59:59.000Z

    quent slagging of cyclones and boilers. (3) Large fan power requirements. The gasification of solid wastes may be advantageous especially when converting equipment designed to burn oil or gas. Fixed bed gasifiers have been found to be a problem... costing $78,000 and saving $33,000/year. Fluidized beds are used for a variety of combustion applications including wood and agricultural wastes, waste treatment sludge, and chemical incineration. A fluidized bed can be used to recover non...

  16. Utilization of Agricultural WasteUtilization of Agricultural Waste for Composite Panelsfor Composite Panels

    E-Print Network [OSTI]

    Utilization of Agricultural WasteUtilization of Agricultural Waste for Composite Panelsfor to increase. There is potential for agricultural residue fiber toThere is potential for agricultural residue. The benefits of utilizing agricultural residues for woodbenefits of utilizing agricultural residues for wood

  17. Guidance document for the preparation of waste management plans for the Environmental Restoration Program at Oak Ridge National Laboratory. Environmental Restoration Program

    SciTech Connect (OSTI)

    Clark, C. Jr.

    1993-07-01T23:59:59.000Z

    A project waste management (WM) plan is required for all Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program remedial investigation, decommission and decontamination (D&D), and remedial action (RA) activities. The project WM plan describes the strategy for handling, packaging, treating, transporting, characterizing, storing, and/or disposing of waste produced as part of ORNL ER Program activities. The project WM plan also contains a strategy for ensuring worker and environmental protection during WM activities.

  18. Science Highlight June 2011 Chromium forms in coal and wood and their converted forms in

    E-Print Network [OSTI]

    Wechsler, Risa H.

    as a component in fly-ash, the major waste product from coal combustion. Disposal practices for coal-derived fly-ash Science Highlight June 2011 Chromium forms in coal and wood and their converted forms in fly-ash(VI) in Coal-Derived Fly-Ash The two common chromium oxidation states, Cr(III) and Cr(VI), differ greatly

  19. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form Separate liquid from solid Radionuclide Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste Program is designed to

  20. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31T23:59:59.000Z

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  1. CHEMISTRY AND STOICHIOMETRY OF WOOD LIQUEFACTION

    E-Print Network [OSTI]

    Davis, H.G.

    2012-01-01T23:59:59.000Z

    analysis of the wood-oil product derived from the above2 g It is probable that oil products with oxygen contentscollected with the wood-oil product. The condensate contains

  2. Marin County- Wood Stove Replacement Rebate Program

    Broader source: Energy.gov [DOE]

    The County of Marin has created a rebate program to encourage homeowners to remove or replace non-EPA certified wood-burning heaters (wood stoves and fireplace inserts) with cleaner burning stoves...

  3. Leonard Wood and the American Empire

    E-Print Network [OSTI]

    Pruitt, James Herman

    2012-07-16T23:59:59.000Z

    During the ten years following the Spanish American War (1898 to 1908), Major General Leonard Wood served as the primary agent of American imperialism. Wood was not only a proconsul of the new American Empire; he was a ...

  4. Structure-Infesting Wood-Boring Beetles

    E-Print Network [OSTI]

    Jackman, John A.

    2006-03-28T23:59:59.000Z

    Several kinds of beetles damage stored wood, structural timbers and other wood products. This publication explains how to detect, identify, prevent and control powderpost beetle, old house borer and others....

  5. Decreasing the leachibility of boron wood preservatives

    E-Print Network [OSTI]

    Gezer, Engin Derya

    1996-01-01T23:59:59.000Z

    The use of boron in wood preservatives has been growing since the 1930s, primarily in various boric acid/borax mixtures. Boron preservatives have several advantages for application as wood preservatives including a broad spectrum of activity...

  6. Emerging Technologies in Wood Energy Wood can already be used to produce heat and

    E-Print Network [OSTI]

    established technologies of District Energy and Combined Heat and Power plants. Using wood to makeEmerging Technologies in Wood Energy Wood can already be used to produce heat and electricity using such as flooring and siding. In Europe, torrefaction has been explored to produce an improved wood pellet

  7. Creating Value Wood Products Industry

    E-Print Network [OSTI]

    Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland for the Wood Products Industry The forest industry contributes more than 50 percent of the total value of all for quality information, research and education in forest products in Louisiana, recognized regionally

  8. Optical computing Damien Woods a

    E-Print Network [OSTI]

    Woods, Damien

    Optical computing Damien Woods a aDepartment of Computer Science and Artificial Intelligence Institute, Vierimaantie 5, 84100 Ylivieska, Finland Abstract In this survey we consider optical computers of such optical computing archi- tectures, including descriptions of the type of hardware commonly used in optical

  9. Optical computing Damien Woods a

    E-Print Network [OSTI]

    Woods, Damien

    Optical computing Damien Woods a aDepartment of Computer Science and Artificial Intelligence Institute, Vierimaantie 5, 84100 Ylivieska, Finland Abstract We consider optical computers that encode data using images and compute by transforming such images. We give an overview of a number of such optical

  10. Solid Waste Resource Recovery Financing Act (Texas)

    Broader source: Energy.gov [DOE]

    The State of Texas encourages the processing of solid waste for the purpose of extracting, converting to energy, or otherwise separating and preparing solid waste for reuse. This Act provides for...

  11. Measuring bulky waste arisings in Hong Kong

    SciTech Connect (OSTI)

    Chung Shanshan, E-mail: sschung@hkbu.edu.h [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Lau, Ka-yan Winifred; Zhang Chan [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-05-15T23:59:59.000Z

    All too often, waste authorities either assume that they know enough about their bulky waste stream or that it is too insignificant to deserve attention. In this paper, we use Hong Kong as an example to illustrate that official bulky waste figures can actually be very different from the reality and therefore important waste management decisions made based on such statistics may be wrong too. This study is also the first attempt in Hong Kong to outline the composition of bulky waste. It was found that about 342 tonnes/day of wood waste were omitted by official statistics owing to incomplete records on actual bulky waste flow. This is more than enough to provide all the feedstock needed for one regular-sized wood waste recycling facility in Hong Kong. In addition, the proportion of bulky waste in the municipal solid waste (MSW) streams in Hong Kong should be about 6.1% instead of the officially stated 1.43%. Admittedly, there are limitations with this study. Yet, present findings are suggestive of significant MSW data distortion in Hong Kong.

  12. Potential adverse health effects of wood smoke

    SciTech Connect (OSTI)

    Pierson, W.E.; Koenig, J.Q.; Bardana, E.J. Jr.

    1989-09-01T23:59:59.000Z

    The use of wood stoves has increased greatly in the past decade, causing concern in many communities about the health effects of wood smoke. Wood smoke is known to contain such compounds as carbon monoxide, nitrogen oxides, sulfur oxides, aldehydes, polycyclic aromatic hydrocarbons, and fine respirable particulate matter. All of these have been shown to cause deleterious physiologic responses in laboratory studies in humans. Some compounds found in wood smoke--benzo(a)pyrene and formaldehyde--are possible human carcinogens. Fine particulate matter has been associated with decreased pulmonary function in children and with increased chronic lung disease in Nepal, where exposure to very high amounts of wood smoke occurs in residences. Wood smoke fumes, taken from both outdoor and indoor samples, have shown mutagenic activity in short-term bioassay tests. Because of the potential health effects of wood smoke, exposure to this source of air pollution should be minimal.29 references.

  13. The renewable energy contribution from waste across Europe.

    E-Print Network [OSTI]

    Incineration with Energy Recovery Mixed residual waste WtE Steam -> Electr. & Heat Av 50 Range 47-80 Landfill Biomass Energy Plants incineration,gasification Collected & sorted waste wood BEP Steam -> Electr. & Heat in total 11 #12;Anaerobic Digestion underlying assumptions units 2006 2010 2020Real 2020 Pot Volume

  14. User Guide for Disposal of Unwanted Items and Electronic Waste

    E-Print Network [OSTI]

    Mullins, Dyche

    User Guide for Disposal of Unwanted Items and Electronic Waste January 31, 2012 Jointly developed metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o and electronics of all types (working or not) o Furniture o Reusable/Recyclable items o Assets with UC Property

  15. Hanford Waste Treatment Plant Construction Quality Review

    Broader source: Energy.gov (indexed) [DOE]

    Safety and Health Evaluations Activity Report for the Hanford Waste Treatment Plant Construction Quality Review Dates of Activity 02142011 - 02172011 Report Preparer Joseph...

  16. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01T23:59:59.000Z

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  17. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  18. PPPO-02-427-07 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5&D1 Secondary Document Staging Area for Concrete Piers, Rubble, and Wood on the North Side of C-745-B Cylinder Yard Solid Waste Management Unit Assessment Report UNIT NUMBER: 548...

  19. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02T23:59:59.000Z

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  20. The conservation of waterlogged wood using sucrose

    E-Print Network [OSTI]

    Parrent, James Michael

    1983-01-01T23:59:59.000Z

    such as resins or creosote, which are 13 volatilized by heating, the standard methods for moisture determination yield false values (Panshin a de Zeeuw 1980:203). This should not be a problem when working with waterlogged wood since only small samples... water. Formation of hydrogen bonds releases energy which can be measured as the "heat of wetting" for dry wood. In turn, energy must be supplied to wet wood to remove any water that is present. 14 "The forces of attraction between dry wood and water...

  1. One on One- Douglas K Woods

    Broader source: Energy.gov [DOE]

    A September 2014 interview with Douglas K Woods, the President of the Association for Manufacturing Technology, on the state of US manufacturing.

  2. Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets

    E-Print Network [OSTI]

    Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood@aol.com; hekstrom@wri-ltd.com October, 2004 #12;Page ES - 1 Illegal Logging and Global Wood Markets: The Competitive, LLC Executive Summary Illegal logging has been high on the agenda, if not directly at the center

  3. Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets

    E-Print Network [OSTI]

    Seneca Creek Associates, LLC Wood Resources International, LLC SUMMARY "Illegal" Logging and Global Resources International, LLC Illegal Logging and Global Wood Markets: The Competitive Impacts on the U.S. Wood Products Industry1 Summary Study Objectives Illegal logging and illegal forest activities, in one

  4. Daniel Wood | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel Wood About Us Daniel

  5. automatic wood furnaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure differences that included standard rating points 11 Wood Products 201213 Student Handbook Environmental Sciences and Ecology Websites Summary: Wood Products 201213 Student...

  6. Autonomy for Aurora's Mars Missions Mark Woods,

    E-Print Network [OSTI]

    Fisher, Michael

    Autonomy for Aurora's Mars Missions Mark Woods, SciSys Ltd., Clothier Road, Bristol, UK BS4 5SS Email: mark.woods@scisys.co.uk Tel: +44 117 9717251 ESA's Aurora programme incorporates a strategy for European involvement in future robotic and human exploration of our Solar System. The Aurora roadmap calls

  7. Leonard Wood and the American Empire

    E-Print Network [OSTI]

    Pruitt, James Herman

    2012-07-16T23:59:59.000Z

    During the ten years following the Spanish American War (1898 to 1908), Major General Leonard Wood served as the primary agent of American imperialism. Wood was not only a proconsul of the new American Empire; he was a symbol of the empire...

  8. Bioremediation: a study of genotoxicity of soil and groundwater from a former wood treatment facility

    E-Print Network [OSTI]

    Gomez, Cristi Lea Rysc

    2002-01-01T23:59:59.000Z

    , 2001). PAHs are commonly found in wood treatment and petroleum waste. The goal of bioremediation is to completely mineralize hazardous constituents into carbon dioxide, water, and other less toxic compounds by way of microbial degradation...). Bioventing aerates contaminated soils by forcing oxygen into the unsaturated soil. The addition of oxygen stimulates aerobic degradation. Other in situ treatments include biosparging, phytoremediation, and slurry-phase lagoon aeration. The USEPA lists...

  9. Genotoxicity profiles during KPEG dehalogenation of wood preserving waste

    E-Print Network [OSTI]

    Hong, Marjorie S

    1994-01-01T23:59:59.000Z

    and evaluation data, needs except permits and checkout 7. lowest estimated cost ra. nge among alternative emerging technologies The ranking order from highest to lowest of these methods with their associated costs per cubic meter of sediment treated a. re... for estiniated first year costs for the treatment of 1. 50i0 yd of contaminated soil, incineration. topped the list at $28&&5t!0, followed by Ianclfilling at 8322, 500. Bioreniediation was tlie least costly altern. ative aud first year cosi. s v, ere...

  10. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington are pleased to transmit a technical report prepared by the Nuclear Waste Technical Review Board (Board. Based on its review of data gathered by the DOE and the Center for Nuclear Waste Regulatory Analyses

  11. Solid Waste Diversion Plan Fallen Star, 2012

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Solid Waste Diversion Plan DO HO DUH Fallen Star, 2012 Stuart Collection UC San Diego Updated July 2012 Prepared by: Facilities Management #12;UC San Diego Solid Waste Diversion Plan Table of Contents Overview Location and Areas Covered Recycling and Solid Waste Management Contact Campus/Medical Center

  12. Can a City of 5,000,000 Recycle 60% of its Organic Waste? Lessons from 1910 New York.!

    E-Print Network [OSTI]

    Columbia University

    and horse manure from the streets. Ashes: Coal and wood ash from fireplaces, stoves, and boilers. Refuse a complete overhaul of its municipal solid waste management systems. Street sweeping, solid waste disposal for the disposal of organic wastes. The incinerator technology of the era only allowed for low temperature

  13. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    SciTech Connect (OSTI)

    Liang Sai [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Xu Yijian [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); China Academy of Urban Planning and Design, Beijing 100037 (China)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  14. Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates

    E-Print Network [OSTI]

    Powell, Brian A.

    2008-01-01T23:59:59.000Z

    in Hanford waste tank sludge simulants. J. Nucl. Sci.from simulated tank waste sludges. Sep. Sci. Tech. 38(2),Dissolution of Waste Tank Sludge Surrogates. In preparation,

  15. Environmental-performance research priorities: Wood products. Final report

    SciTech Connect (OSTI)

    NONE

    1998-01-15T23:59:59.000Z

    This report describes a research plan to establish environmental, energy, and economic performance measures for renewable building materials, and to identify management and technology alternatives to improve environmental performance in a cost-effective manner. The research plan is designed to: (1) collect environmental and economic data on all life-cycle stages of the materials, (2) ensure that the data follows consistent definitions and collection procedures, and (3) develop analytical procedures for life-cycle analysis to address environmental performance questions. The research will be subdivided into a number of individual project modules. The five processing stages of wood used to organize the research plan are: (1) resource management and harvesting; (2) processing; (3) design and construction of structures; (4) use, maintenance, and disposal; and (5) waste recycling. Individual research module descriptions are provided in the report, as well as assessment techniques, research standards and protocol, and research management. 13 refs., 5 figs., 3 tabs.

  16. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect (OSTI)

    Not Available

    1984-07-01T23:59:59.000Z

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  17. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    SciTech Connect (OSTI)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01T23:59:59.000Z

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  18. North American wood markets hit by United States housing crash North American wood markets hit by United States housing crash

    E-Print Network [OSTI]

    themes were: 1. softwood market developments, and 2. wood energy and wood mobilization. The main use of wood for energy throughout the UNECE region, driven by policy measures and high oil prices development, which will have to try to balance the needs of the established wood products sector and the bio-energy

  19. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2DBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  20. Residential Wood Heating Fuel Exemption (New York)

    Broader source: Energy.gov [DOE]

    New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from...

  1. Wood Fired Steam Plants in Georgia

    E-Print Network [OSTI]

    Bulpitt, W. S.

    1983-01-01T23:59:59.000Z

    suppliers. Based upon the designs submitted and subsequent negotiations, the Applied Engineering Company (APCO) in Orangeburg, South Carolina, was chosen to do the job. Applied Engineering has been working on wood gasification systems for several years...-20, 1983 company has a large manufacturing plant in Orange burg and is fully capable of fabricating large pressure vessels and heavy industrial equipment. The overall wood gasification system is shown in Figure 1. The fuel for the gasifier is green...

  2. A Wood-Fired Gas Turbine Plant

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

  3. Introduction Preparation

    E-Print Network [OSTI]

    Introduction Motivation Preparation Notos' Components Results Conclusions and Future Work Building Problem Description and Motivation Preparation Notation, Passive DNS trends and Anchor Classes Notos Reputation Results Conclusions and Future Work Special thanks to: Damballa Passive DNS data, Malware and BL

  4. European Panel FederationEuropean Panel Federation viewpoint on wood energy policiesviewpoint on wood energy policies

    E-Print Network [OSTI]

    --called "green energy"called "green energy" ·· Simultaneously, the taxes on the use of fossil fuelsSimultaneously, the taxes on the use of fossil fuels increaseincrease ·· This leads to increasing costs for wood productsIncreasing use of wood for energy production ·· Governments in Europe are granting subsidies for

  5. Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood

    E-Print Network [OSTI]

    Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood.2 million cubic meters) of lumber treated with CCA are produced annually in the United States (Micklewright 1998). ·In 1997, for example, some 581.4 million cu. ft. was treated with waterborne preservatives

  6. River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description

    SciTech Connect (OSTI)

    DOVALLE, O.R.

    1999-12-29T23:59:59.000Z

    This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

  7. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    SciTech Connect (OSTI)

    Hrma, P. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    The work presented in this paper is a part of a major technology program supported by the US Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

  8. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    SciTech Connect (OSTI)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31T23:59:59.000Z

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systemswithout cell debris removalis a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of useful products using this technology is to scale the technology from the 700-L pilot reactor to a small-scale production facility, with dedicated operation staff and engineering controls. In addition, we recommend that a market study be conducted as well as further product development for construction products that will utilize the unique properties of this bio-based material.

  9. Coolside waste management research

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Objective was to produce sufficient information on physical and chemical nature of Coolside waste (Coolside No.1, 3 at Edgewater power plant) to design and construct stable, environmentally safe landfills. Progress during this period was centered on analytical method development, elemental and mineralogical analysis of samples, and field facilities preparation to receive lysimeter fill. Sample preparation techniques for thick target PIXE/PIGE were investigated; good agreement between measured and actual values for standard fly ash were obtained for all elements except Fe, Ba, K (PIXE).

  10. Department of Forest and Wood Science Academic Programmes for 2014

    E-Print Network [OSTI]

    Geldenhuys, Jaco

    ; harvesting and supply; biomass conversion; energy production; marketing of bio-energy; economicsDepartment of Forest and Wood Science Academic Programmes for 2014 Postgraduate Diploma Enquiries: Head of Department Contact details: Department of Forest and Wood Science Stellenbosch University

  11. Trends and Market Effects of Wood Energy Policies

    E-Print Network [OSTI]

    Trends and Market Effects of Wood Energy Policies Bengt Hillring SLU SWEDEN http://www.unece.org/trade/timber/docs/tc-sessions/tc-61/presentations/10-hillring.pdf #12;Introduction Industrial use of wood fibre has increased Oil

  12. A study of the molecular mechanics of wood cell walls

    E-Print Network [OSTI]

    Adler, David, S.M. (David C.). Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Wood is the original structural material, developed by nature to support tall plants. Every advantageous feature of wood as used in artificial structures is rooted in the plant's evolved capability to withstand the conditions ...

  13. Method of predicting mechanical properties of decayed wood

    DOE Patents [OSTI]

    Kelley, Stephen S.

    2003-07-15T23:59:59.000Z

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  14. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities

    E-Print Network [OSTI]

    Bruns, Tom

    ForReview Only Assembly history dictates ecosystem functioning: evidence from wood decomposer change, community assembly, ecosystem functioning, New Zealand Nothofagus (beech) forests, priority dictates ecosystem functioning: evidence from wood decomposer communities Tadashi Fukami1,2,3 , Ian A

  15. Clean-Burning Wood Stove Grant Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) now offers the Clean Burning Wood Stove Grant program as part of its Residential Clean Energy Grant Program. The Clean Burning Wood Stove Grant program...

  16. Guide to Using Wood Ash as an Agricultural Soil Amendment

    E-Print Network [OSTI]

    New Hampshire, University of

    from larger commercial sources such as wood-burning biomass plants which produce heat or electricity in the soil. Wood ash is more soluble and reactive than ground limestone, and brings about a Benefits Recycles

  17. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25T23:59:59.000Z

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  18. International Trade of Wood Pellets (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  19. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

  20. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

  1. The Storage and Seasoning of Pecan Bud Wood.

    E-Print Network [OSTI]

    Brison, Fred R. (Fred Robert)

    1933-01-01T23:59:59.000Z

    be returned to cold storage and will remain ready for use at a later date. It has been found that bud wood cut late in the dormant period seasons in a shorter time than that cut early. Bud wood of the Delmas variety seasons more readiIy than that of Stuart... _._-_._.--__..__------~-..._..--_...._.--_.....-. Relation of Time of Cutting Bud Wood to Seasoning ._.__....._._-___._------------ ., Relative Response of Stuart and Delmas in Seasoning _---..__._.__....._.---....-....--.- 10 Number of Days for Seasoning Bud Wood During Different Months .... 12 Storage...

  2. Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

    SciTech Connect (OSTI)

    COZZI, ALEX

    2004-02-18T23:59:59.000Z

    At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

  3. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  4. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  5. ERDCTR-14-3 Leonard Wood Institute

    E-Print Network [OSTI]

    US Army Corps of Engineers

    through biogas. The project focused on laboratory studies to evaluate the treatment of applicable wastes and determine gas production. The study found that food waste is very effectively treated, and generates in particular uses a mix of wastes, along with food, and this mixture should improve stability and increase

  6. Ganoderma in South Africa Article prepared by Dr Martin Coetzee

    E-Print Network [OSTI]

    Ganoderma in South Africa Article prepared by Dr Martin Coetzee Ganoderma is a genus of wood-wide. In South Africa, a number of Ganoderma species have been reported from various indigenous and introduced linked with this disease in South Africa are G. lucidum and G. applinatum. It is known, however

  7. APPLIED ISSUES Effects of agriculture on wood breakdown and microbial

    E-Print Network [OSTI]

    Webster, Jackson R.

    creating the potential for recovery of ecosystem processes. 2. We examined wood breakdown and microbial breakdown. Wood may not be desirable as a tool for Correspondence: M. E. McTammany, Biology DepartmentAPPLIED ISSUES Effects of agriculture on wood breakdown and microbial biofilm respiration

  8. Landfill Disposal of CCA-Treated Wood with Construction and

    E-Print Network [OSTI]

    Florida, University of

    Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

  9. Wood Fuel Future: The Potential Web Text December 2010

    E-Print Network [OSTI]

    Wood Fuel Future: The Potential Web Text 31st December 2010 Wood Fuel Future: The Potential Wood Fuel Future : The Potential Renewable Energy is a key part of our Energy Policy. This UK Government by 2020. This should reduce carbon emissions from fossil fuel by 60% by the year 2050. The Welsh Assembly

  10. Center for Wood Utilization Progress Report for Fiscal Year 2010

    E-Print Network [OSTI]

    Tullos, Desiree

    , Asia, and Latin America. A business plan was developed to capture 1% of the $2.5 billion h manufacturing; and (c) lead to more efficient use of renewable wood-based materials for the benefit of Americans. Renewable wood is essential to human existence. Wood utilization research is critical to national needs

  11. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, D.E.

    1998-05-12T23:59:59.000Z

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  12. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, Delbert E. (Rolla, MO)

    1998-01-01T23:59:59.000Z

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  13. Conversion of a black liquor recovery boiler to wood firing: A case history

    SciTech Connect (OSTI)

    Eleniewski, M.A. [Detroit Stoker Company, Monroe, MI (United States)

    1994-12-31T23:59:59.000Z

    In 1983 a large integrated pulp and paper mill in southeastern United States retired an older chemical recovery boiler when it was replaced by a newer and larger unit as part of a mill expansion. At that time the mill was generating steam and power using wood waste, natural gas and black liquor, a common fuel mix for pulp mills. The retirement of the recovery boiler presented an opportunity for the mill and corporate engineering to evaluate various mixes of fuels for the mill.

  14. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  15. Excavation and Repackaging of Retrievably-Stored, Remote-Handled Transuranic Waste at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Skinner, R. [US DOE, Oak Ridge Operations, Oak Ridge, TN (United States); Bolling, D. [Washington Safety Management Solutions, LLC, Oak Ridge, TN (United States); Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Turner, D. [Visionary Solutions, LLC, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    Between 1972 and 1981, remote-handled transuranic (RH-TRU) wastes generated at Oak Ridge National Laboratory (ORNL) were retrievably stored through shallow land burial in a series of 22 earthen trenches in the northern portion of Solid Waste Storage Area 5 in ORNL's Melton Valley. A Dispute Resolution Agreement signed by the Tennessee Department of Environment and Conservation and DOE specified removal of the buried (stored) waste to allow for repackaging, processing, and offsite disposal at an appropriate facility. A total of 204 concrete casks were successfully retrieved and over-packed from the 22-trench area between November 2004 and June 2006. Wastes originally stored in boxes, drums or placed without packaging was also recovered and repackaged. The repackaged wastes were transported to a nearby temporary storage facility at ORNL pending processing at DOE's Transuranic Waste Processing Center. In summary: The objective of the MVTRU Waste Retrieval Project was to satisfy conditions of the Dispute Resolution Agreement. This remedial action consisted of removal of all buried waste containers and loose items from the 22-trench area. The TRU waste casks were placed in steel overpacks, while other waste boxes, drums, and loose items were placed in steel drums or boxes. The over-packed waste was placed in an approved staging area until it can be accepted for treatment at the ORNL TRU Waste Processing Facility and ultimately disposed. A total of 204 casks were indicated by historical records to have been buried in the 22-Trench area, and 204 casks were found and over-packed during the retrieval operations. The historical records also indicated that some 18 steel or wood boxes, 12 steel drums, and approximately 15 m{sup 3} of loose waste were buried in the trenches. The contents of approximately 12 boxes, 3 drums, and approximately the expected 15 m{sup 3} quantity of loose waste were retrieved and over-packed. One significant deviation from the actions described in the Dispute Resolution Agreement occurred during the excavation of Trench 13. Pyrophoric material was encountered and a reaction occurred, causing a brief flame in the excavator bucket. No personnel contamination or radioactive material release occurred. The waste buried in Trench 13, consisting of approximately eight 208-liter (55-gal) drums and one 114-liter (30-gal) drum, was stabilized in-place due to risks associated with the retrieval and handling of this pyrophoric material. The Dispute Resolution Agreement completion date was revised to allow this material to remain stabilized in place as interim storage until a disposition path is established. The baseline schedule called for site mobilization and preparation to begin in November 2003, soil excavation and waste retrieval to be completed by March 2006, and site restoration and demobilization to be complete by April 2006, with the draft letter of completion submitted in May 2006. Soil excavation and waste retrieval were completed in March 2006 as planned, and no significant deviations to the baseline schedule were encountered. (authors)

  16. QUALITY OF COMPOSTS FROM MUNICIPAL BIODEGRADABLE WASTE

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    QUALITY OF COMPOSTS FROM MUNICIPAL BIODEGRADABLE WASTE OF DIFFERENT ORIGINS I. ZDANEVITCH AND O countries. One of the outputs of this treatment is a compost prepared from the organic matter of the waste the total MSW in the plant. Unlike in Germany or Austria, where only the compost from selective collection

  17. Wood Fired Steam Plants in Georgia

    E-Print Network [OSTI]

    Bulpitt, W. S.

    1983-01-01T23:59:59.000Z

    . Shortly after that time, Georgia Tech and the Georgia Forestry Commission embarked on a number of projects directed toward providing the use of wood as an industrial energy source. This paper will present an overview of these programs with an emphasis...

  18. Woods Safety SFRC UF 7/09

    E-Print Network [OSTI]

    Watson, Craig A.

    Woods Safety SFRC UF 7/09 #12;Working alone #12;Poison Plants Poison ivy (Toxicodendron radicans) Poison oak (Toxicodendron pubescens) #12;Commonly Mistaken Plants Virginia creeper (Parthenocissus quinquefolia) Blackberry (Rubus spp.) Three leaflets let it be! #12;Poison Ivy/Oak Prevention: Wear long

  19. Updated 1-12 Bryan H. Wood

    E-Print Network [OSTI]

    as an attorney with the Department of the Navy's Office of the General Counsel (OGC). Initially appointed as ONR Counsel in 2007, he was the first Navy OGC attorney to deploy to a combat zone in his civilian OGC Force-Horn of Africa (CJTF-HOA) in Djibouti, Africa. Mr. Wood began his career with Navy OGC

  20. A Wood-Fired Gas Turbine Plant

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    1986-01-01T23:59:59.000Z

    This paper covers the research and development of a wood-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T...

  1. CORRUPTION AND ILLEGAL LOGGING IN THE WOOD

    E-Print Network [OSTI]

    Pettenella, Davide

    CORRUPTION AND ILLEGAL LOGGING IN THE WOOD PRODUCTS MARKET: the Italian experience in controlling Science 7 May 2004 Paper organization 1. State of the problem 2. Are Italian companies involved in deforestation and trade of illegal logging? 3. Which are the most affected countries? 4. Why do we need

  2. PASSION FOR WOOD THE DLH GROUP 2006

    E-Print Network [OSTI]

    countries on 5 continents · 19 timber merchant companies in Denmark, 10 of which have do-it-yourself stores Division consists of 19 timber merchant companies in Denmark, just over half of which have an adjacent doPASSION FOR WOOD THE DLH GROUP 2006 #12;54% 21% 25% ONE OF THE WORLD'S MAJOR TIMBER WHOLESALERS

  3. Harvested Wood Products -an Incentive for Deforestation?

    E-Print Network [OSTI]

    Fischlin, Andreas

    1 Harvested Wood Products - an Incentive for Deforestation? Andreas Fischlin1 Abstract Mitigation for deforestation is real. To curb the disadvantages of HWP, some debiting of non-sustainable forest management activities are implemented that provide true disincentives to deforestation, HWP may continue to create some

  4. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  5. Fast Curing of Composite Wood Products

    SciTech Connect (OSTI)

    Dr. Arthur J. Ragauskas

    2006-04-26T23:59:59.000Z

    The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: Identifying the rate limiting UF and PF curing reactions for current market resins; Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood composites such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press temperatures that currently employed. Several differing additives have been developed to enhance cure rates of PF resins including the use of organic esters, lactones and organic carbonates. A model compound study by Conner, Lorenz and Hirth (2002) employed 2- and 4-hydroxymethylphenol with organic esters to examine the chemical basis for the reported enhanced reactivity. Their studies suggested that the enhance curing in the presence of esters could be due to enhanced quinone methide formation or enhanced intermolecular SN2 reactions. In either case the esters do not function as true catalysts as they are consumed in the reaction and were not found to be incorporated in the polymerized resin product. An alternative approach to accelerated PF curing can be accomplished with the addition amines or amides. The later functionality undergoes base catalyzed hydrolysis yielding the corresponding carboxyl ate and free amine which rapidly reacts with the phenolic methylol groups facilitating polymerization and curing of the PF resin (Pizzi, 1997).

  6. Organic and inorganic hazardous waste stabilization utilizing fossil fuel combustion waste materials

    SciTech Connect (OSTI)

    Netzel, D.A.; Lane, D.C.; Brown, M.A.; Raska, K.A.; Clark, J.A.; Rovani, J.F.

    1993-09-01T23:59:59.000Z

    A laboratory study was conducted at the Western Research Institute to evaluate the ability of innovative clean coal technology (ICCT) waste to stabilize organic and inorganic constituents of hazardous wastes. The four ICCT wastes used in this study were: (1) the Tennessee Valley Authority (TVA) atmospheric fluidized bed combustor (AFBC) waste, (2) the TVA spray dryer waste, (3) the Laramie River Station spray dryer waste, and (4) the Colorado-Ute AFBC waste. Four types of hazardous waste stream materials were obtained and chemically characterized for use in evaluating the ability of the ICCT wastes to stabilize hazardous organic and inorganic wastes. The wastes included an API separator sludge, mixed metal oxide-hydroxide waste, metal-plating sludge, and creosote-contaminated soil. The API separator sludge and creosote-contaminated soil are US Environmental Protection Agency (EPA)-listed hazardous wastes and contain organic contaminants. The mixed metal oxide-hydroxide waste and metal-plating sludge (also an EPA-listed waste) contain high concentrations of heavy metals. The mixed metal oxide-hydroxide waste fails the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metal-plating sludge fails the TCLP for chromium. To evaluate the ability of the ICCT wastes to stabilize the hazardous wastes, mixtures involving varying amounts of each of the ICCT wastes with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest using the Toxicity Characteristic Leaching Procedure.

  7. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  8. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  9. Guidelines for developing certification programs for newly generated TRU waste

    SciTech Connect (OSTI)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

    1983-05-01T23:59:59.000Z

    These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included.

  10. Hanford Waste Transfer Planning and Control - 13465

    SciTech Connect (OSTI)

    Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)] [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2013-07-01T23:59:59.000Z

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  11. Low Temperature Waste Immobilization Testing Vol. I

    SciTech Connect (OSTI)

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste formsalkali-aluminosilicate hydroceramic cement, Ceramicrete phosphate-bonded ceramic, and DuraLith alkali-aluminosilicate geopolymerwere selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  12. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01T23:59:59.000Z

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  13. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  14. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01T23:59:59.000Z

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  15. The Mixed Waste Management Facility. Preliminary design review

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  16. Generation, Use, Disposal, and Management Options for CCA-Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Generation, Use, Disposal, and Management Options for CCA-Treated Wood May 1998 Helena Solo, INVENTORY OF CCA-TREATED WOOD IN FLORIDA II.1 Characteristics of the Florida Wood Treatment Industry in 1996 10 II.2 Generation and Disposal of Cca-treated Wood 14 II.3 Disposal Reservoirs for Cca-treated Wood

  17. Society of Wood Science and Technology State-of-the-Art Review

    E-Print Network [OSTI]

    Society of Wood Science and Technology State-of-the-Art Review CHEMICAL COUPLING IN WOOD FIBER. In this paper, we review coupling agents, pretreatment, and mixing technology for wood fiber and polymer and adhesion Wood ond trhc,r S c r r ~ ~ Society of Wood Sclencc

  18. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect (OSTI)

    Arnold, Patrick [NSTec] [NSTec

    2014-02-14T23:59:59.000Z

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  19. ORNL nuclear waste programs annual progress report for period ending September 30, 1982

    SciTech Connect (OSTI)

    Not Available

    1983-05-01T23:59:59.000Z

    Research progress is reported in 20 activities under the headings: spent fuels, defense waste management, commercial waste management, remedial action, and conventional reactors. Separate entries were prepared for each activity.

  20. Development and demonstration of a wood-fired gas turbine system

    SciTech Connect (OSTI)

    Smith, V.; Selzer, B.; Sethi, V.

    1993-08-01T23:59:59.000Z

    The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

  1. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOE Patents [OSTI]

    Griffith, William Louis; Compere, Alicia Lucille; Leitten Jr., Carl Frederick

    2010-04-20T23:59:59.000Z

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  2. Wood-boring Insects of Trees and Shrubs

    E-Print Network [OSTI]

    Drees, Bastiaan M.; Jackman, John A.; Merchant, Michael E.

    2008-06-17T23:59:59.000Z

    This publication explains how to identify and control wood-boring insects that invade shrubs and shade trees in Texas. 12 pages, 9 figures, 6 photographs, 1 table...

  3. From: FERGAS To: Wood, Natalie (CONTR); Moore, Larine Subject...

    Energy Savers [EERE]

    Wood, Natalie (CONTR); Moore, Larine Subject: FW: FE Docket No. 14-96-LNG Date: Friday, October 24, 2014 3:17:49 PM Attachments: image001.png ---...

  4. arsenate cca wood: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Renewable Energy Websites Summary: of primary energy in Estonia Wood fuels production Pellet firing projects in Estonia - SIDA Demo East firing projects in...

  5. anisotropic olivier wood: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Renewable Energy Websites Summary: of primary energy in Estonia Wood fuels production Pellet firing projects in Estonia - SIDA Demo East firing projects in Estonia:...

  6. Microsoft Word - CX-Murray-CusterWoodPoles_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    Covington SUBJECT: Environmental Clearance Memorandum Steve Scott Line Foreman III - TFNF-Snohomish Proposed Action: Wood pole replacement at selected locations along the...

  7. FIEA Advancing Wood Technology Forest Industry Engineering Scholarship

    E-Print Network [OSTI]

    Hickman, Mark

    year. Forestry and wood products companies, key product suppliers, researchers and technology qualification. This FIEA Scholarship has also been set up to encourage and support an outstanding student

  8. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1981-03-01T23:59:59.000Z

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  9. EA-1962: Analysis for Below Grade Suspect Transuranic (TRU) Waste at Technical Area (TA)-54

    Broader source: Energy.gov [DOE]

    DOE is preparing an EA to evaluate the legacy suspect transuranic (TRU) waste at Area G for the purposes of reclassification of waste type and determination of a final disposal path. Per DOE Order 435.1, Change 1, Radioactive Waste Management, and its associated guide, legacy waste at Los Alamos National Laboratory that contained TRU waste was stored and managed as TRU waste. The waste was given an interim classification for the purposes of applying the most restrictive standard until the waste could be adequately characterized and a final determination on the disposition classification was made.

  10. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Wilson, K. L.

    1997-08-01T23:59:59.000Z

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  11. Home Page > Business > Industrial > Global Trade Of Wood Chips Down 26% In 2009 As Pulpmills Reduce Production Worldwide, Reports Wood Resources International

    E-Print Network [OSTI]

    in Europe searching for additional sources of woody biomass, it is likely that trade with wood chips On March 16-17, 2010, the 4th Global Wood Fiber Conference: Trade in Wood chips and Biomass worldwide, European demand for pellets and biomass chips, outlook for plantation wood chip supply, ocean

  12. Life in the woods : production and consumption of the urban forest

    E-Print Network [OSTI]

    Volicer, Nadine (Nadine M.)

    2012-01-01T23:59:59.000Z

    The use of wood is fraught with paradox. Wood as a building material is embraced for its naturalness, while the cutting of trees is indicted as a destruction of nature. Wood is lauded for its structural properties and ...

  13. How Wood Chip Size Affects Pretreatment Effectiveness of Woody Biomass for Biological Processing

    E-Print Network [OSTI]

    Tam, Jerry

    2013-01-01T23:59:59.000Z

    temperature treatment of aspen. Wood Sci Technol 40:371-391size- reduction of Poplar and Aspen wood. Biotechnology andHydrothermal Pretreatment of Aspen Wood Chips 5.1. Abstract

  14. NRDC: Good Wood: How Forest Certification Helps the Environment The Natural Resources Defense Council works to protect wildlife and wild places and to ensure a healthy environment for all life on earth.

    E-Print Network [OSTI]

    Health Environmental Justice U.S. Law & Policy Nuclear Weapons, Waste & Energy Smart Growth their buying power for good. 1. Why is it important to protect forests? 2. What is forest certification and how I buy FSC-certified wood products? 1. Why is it important to protect forests? Forests are more than

  15. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect (OSTI)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09T23:59:59.000Z

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  16. Volatile constituents in a wood pyrolysis oil

    E-Print Network [OSTI]

    Lin, Shih-Chien

    1978-01-01T23:59:59.000Z

    , 1958]. . . . . . . . . . . . 4 Pyrolysis products of cellulose and treated cellulose at 600oC f Chin, 1973]. . . . . . . . . . . . . . . 6 3. Pyrolysis products of lignin at 450-550 C [Allen and Nattil a, 1971] Properties of wood pyrolysis oil. 12... and decom- 0 poses at 225-325 C. Cellulose decompos s at higher temp- eratures within a narrow range of 320-375 C. In other 0 words, the cell wall polysaccharides provide most of the vol ati) e products, while lignin predominantly forms a charred...

  17. Wood, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood, Wisconsin: Energy Resources Jump

  18. Wood3 Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin: Energy ResourcesWolverineWood3

  19. Wood Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba,WisconsinWonder SourceWood

  20. Wood To Fuel LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba,WisconsinWonderWood To Fuel

  1. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    SciTech Connect (OSTI)

    Greenhalgh, W.O.

    1994-08-08T23:59:59.000Z

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream.

  2. 1995 Solid Waste 30-year volume summary

    SciTech Connect (OSTI)

    Valero, O.J. [Westinghouse Hanford Co., Richland, WA (United States); DeForest, T.J.; Templeton, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01T23:59:59.000Z

    This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), provides a description of the annual low-level mixed waste (LLMW) and transuranic/transuranic mixed solid waste (TRU-TRUM) volumes expected to be managed by Hanford`s Solid Waste Central Waste Complex (CWC) over the next 30 years. The waste generation sources and waste categories are also described. This document is intended to be used as a reference for short- and long-term planning of the Hanford treatment, storage, and disposal (TSD) activities over the next several decades. By estimating the waste volumes that will be generated in the future, facility planners can determine the timing of key waste management activities, evaluate alternative treatment strategies, and plan storage and disposal capacities. In addition, this document can be used by other waste sites and the general public to gain a better understanding of the types and volumes of waste that will be managed at Hanford.

  3. Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process

    E-Print Network [OSTI]

    Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process J. Z. Lu,1 Q. Wu,1 I. I strength and flexural modulus of the resultant composites. With 50 wt % wood fiber, the optimum compounding of the modified blends and the dynamic mechanical properties of the resultant composites. The melt torque

  4. Wood for energy at Bedgebury Forest Bedgebury visitor centre's

    E-Print Network [OSTI]

    Wood for energy at Bedgebury Forest Bedgebury visitor centre's woodfuel boiler provides a renewable source of energy and demonstrates that locally- produced wood has economic and sustainable value is stored outside but stacked off the ground to allow air to circulate. It is essential that the chips

  5. SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project

    E-Print Network [OSTI]

    Betts, W. D.

    1982-01-01T23:59:59.000Z

    In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

  6. Wood, energy and households: Perspectives on rural Kenya

    SciTech Connect (OSTI)

    Barnes, C.; Ensminger, J.; O'Keefe, P.

    1984-01-01T23:59:59.000Z

    This book presents papers on the use of wood fuels in Kenya. Topics considered include domestic energy consumption, historical aspects, the Kenyan economy, ecology, supply and demand, forests, aspects of energy consumption in a pastoral ecosystem, estimation of present and future demand for wood fuels, and energy source development.

  7. Emerging Markets for Wood Energy Richard Vlosky, Director

    E-Print Network [OSTI]

    ) are Woody Biomass Utilization Grants (Woody BUG) and Biomass Crop Assistance Program (BCAP) Renewable Fuel The Louisiana Forest Products Development Center Wood-to-Energy Wood Biomass Energy Options Current Forest Products Development Center School of Renewable Natural Resources, LSU AgCenter & School

  8. SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project

    E-Print Network [OSTI]

    Betts, W. D.

    1982-01-01T23:59:59.000Z

    In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

  9. Relative Leaching and Aquatic Toxicity of Pressure-Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Relative Leaching and Aquatic Toxicity of Pressure-Treated Wood Products Using Batch Leaching Tests treated with one of five different waterborne chemical preservatives, were leached using 18-h batch- treated wood at concentrations above the U.S. federal toxicity characteristic limit (5 mg/L). All

  10. A Chemical Stain for Identifying Arsenic-Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    A Chemical Stain for Identifying Arsenic-Treated Wood (FINAL) Submitted June 23, 2006 Amy Omae.2 Motivation 4 I.3 Objectives 5 CHAPTER II, DEVELOPMENT OF A CHEMICAL STAIN FOR IDENTIFYING ARSENIC-TREATED Applications 22 II.5 Resulting Stain to Identify Arsenic-Treated Wood and Methods of Testing 25 CHAPTER III

  11. FAO Forestry Department Wood Energy WISDOM East Africa

    E-Print Network [OSTI]

    FAO Forestry Department Wood Energy WISDOM East Africa Woodfuel Integrated Supply and Tropical Southern Africa woodfuels, mainly fuelwood, contribute from 75 to 86 percent of total primary African countries Rudi Drigo Consultant - Wood energy planning and forest resources monitoring August 2005

  12. SURFACE CHARACTERIZATION OF CHEMICALLY MODIFIED WOOD: DYNAMIC WETTABILITY1

    E-Print Network [OSTI]

    wetting slope and K value) were used to illustrate the dynamic wetting process. Dynamic contact angle the dynamic wettability of wood surfaces modified with different coupling agents. Keywords: Chemical articles on dynamic wetting process for wood adhesion have been published (Scheikl and Dunky 1998

  13. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  14. Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip

    E-Print Network [OSTI]

    Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

  15. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect (OSTI)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01T23:59:59.000Z

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  16. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  17. Multipass comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2014-05-27T23:59:59.000Z

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel.

  18. Technology demonstration summary: Bio Trol soil-washing system for treatment of a wood-preserving site

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Superfund Innovative Technology Evaluation (SITE) Program was instituted in 1986 to promote the development and application of innovative technologies to the remediation of Superfund and other sites contaminated with hazardous wastes. The Project Summary highlights the results of an evaluation of a specific arrangement of the three technologies of the BSWS. The system consists of multiple stages of physical abrasion, attrition, flotation, and washing of excavated soil in the BSW. The site selected for the evaluation is a wood preserving facility in New Brighton, MN, where creosote and pentachlorophenol were used for several decades.

  19. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  20. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect (OSTI)

    Sujit Banerjee; Terrance Conners

    2007-09-07T23:59:59.000Z

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal effects; Method 25A emissions from lumber drying can be modeled from a knowledge of the airflow through the kiln; A heat transfer model shows that VOCs released during hot-pressing mainly originate from the surface of the board; and Boiler ash can be used to adsorb formaldehyde from air streams.

  1. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

  2. Maximization of waste loading for a vitrified Hanford high-activity simulated waste

    SciTech Connect (OSTI)

    Fini, P.T. [State Univ. of New York, Alfred, NY (United States). Coll. of Ceramics; Hrma, P. [Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01T23:59:59.000Z

    Simulated high-level nuclear waste glasses incorporating up to 70 wt % Neutralized Current Acid Waste (NCAW) were prepared. For the waste loading (W) range of 40 to 55 wt %, alkaliborosilicate glasses were formulated with a melting temperature of 1,150 C; for W > 55 wt %, only silica was added to the waste and the melting temperature was 1,150 C. Properties measured included durability and crystallinity of slowly cooled glasses and glasses heat treated for 24 hours at 1,050 C. Acceptable durability (by the Environmental Assessment glass standard) was retained up to W = 70 wt %, which is the maximum NCAW waste loading if no limit on crystallinity is imposed. If < 1 vol% of spinel is acceptable in the melt at 1,050 C, a waste loading of approximately 50 wt % is possible. If no crystallinity is permissible at 1,050 C, W = 34 wt % is the estimated maximum.

  3. Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles

    SciTech Connect (OSTI)

    Lucas, Marcel [Los Alamos National Laboratory; Macdonald, Brian A [Los Alamos National Laboratory; Wagner, Gregory L [Los Alamos National Laboratory; Joyce, Steven A [Los Alamos National Laboratory; Rector, Kirk D [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Lignocellulosic biomass represents a potentially sustainable source of liquid fuels and commodity chemicals. It could satisfy the energy needs for transportation and electricity generation, while contributing substantially to carbon sequestration and limiting the accumulation of greenhouse gases in the atmosphere. Potential feedstocks are abundant and include crops, agricultural wastes, forest products, grasses, and algae. Among those feedstocks, wood is mainly constituted of three components: cellulose, hemicellulose, and lignin. The conversion process of lignocellulosic biomass typically consists of three steps: (1) pretreatment; (2) hydrolysis of cellulose and hemicellulose into fermentable sugars; and (3) fermentation of the sugars into liquid fuels (ethanol) and other commodity chemicals. The pretreatment step is necessary due to the complex structure of the plant cell wall and the chemical resistance of lignin. Most current pretreatments are energy-intensive and/or polluting. So it is imperative to develop new pretreatments that are economically viable and environmentally friendly. Recently, ionic liquids have attracted considerable interest, due to their ability to dissolve biopolymers, such as cellulose, lignin, native switchgrass, and others. Ionic liquids are also considered green solvents, since they have been successfully recycled at high yields for further use with limited efficiency loss. Also, a few microbial cellulases remain active at high ionic liquid concentration. However, all studies on the dissolution of wood in ionic liquids have been conducted so far at high temperatures, typically above 90 C. Development of alternative pretreatments at room temperature is desirable to eliminate the additional energy cost. In this study, thin sections of poplar wood were swollen at room temperature by a 3 h ionic liquid (1-ethyl-3-methylimidazolium acetate or EMIMAc) pretreatment. The pretreated sample was then exposed to an aqueous suspension of nanoparticles that resulted in the sample contraction and the deposition of nanoparticles onto the surface and embedded into the cell wall. To date, both silver and gold particles ranging in size from 40-100 nm have been incorporated into wood. Penetration of gold nanoparticles of 100 nm diameter in the cell walls was best confirmed by near-infrared confocal Raman microscopy, since the deposition of gold nanoparticles induces a significant enhancement of the Raman signal from the wood in their close proximity, an enhancement attributed to the surface-enhanced Raman effect (SERS). After rinsing with water, scanning electron microscopy (SEM) and Raman images of the same areas show that most nanoparticles remained on the pretreated sample. Raman images at different depths reveal that a significant number of nanoparticles were incorporated into the wood sample, at depths up to 4 {micro}m, or 40 times the diameter of the nanoparticles. Control experiments on an untreated wood sample resulted in the deposition of nanoparticles only at the surface and most nanoparticles were removed upon rinsing. This particle incorporation process enables the development of new pretreatments, since the nanoparticles have a high surface-to-volume ratio and could be chemically functionalized. Other potential applications for the incorporated nanoparticles include isotope tracing, catalysis, imaging agents, drug-delivery systems, energy-storage devices, and chemical sensors.

  4. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    if deemed necessary by WHE. Attachments are required to be completed as the applicable step is completed. 1.0 UNDERGROUND SITE-DERIVED WASTE CONTAINER PREPARATION NOTE Adequate...

  5. Food Preparation Unit Preparation Materials and

    E-Print Network [OSTI]

    brush, potato masher, peeler, strainer, and steamer basket. Food and kitchen equipment for preparation

  6. Copyright (to be inserted by Humphrey) Thermal and Dynamic-mechanical Properties of Wood-PVC

    E-Print Network [OSTI]

    Citation & Copyright (to be inserted by Humphrey) Thermal and Dynamic-mechanical Properties of Wood-PVC properties, maleation, thermal analysis, wood veneer, wood-PVC composites ABSTRACT The influence of maleation on thermal and dynamic-mechanical properties of wood-PVC composites was investigated in this study

  7. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate)

    E-Print Network [OSTI]

    Wood plastic composites based on microfibrillar blends of high density polyethylene January 2010 Keywords: Wood plastic composites Poly(ethylene terephthalate) Polyethylene Extrusion a b into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre

  8. Jmtland County Energy Agency Comfortable use of wood pellets in one-family houses in

    E-Print Network [OSTI]

    Jämtland County Energy Agency Sweden 1 Comfortable use of wood pellets in one-family houses-operation with the Swedish Energy Agency, carried through the project "Comfortable use of wood pellets in one-family houses of one-family houses to start using wood pellets and an increase of the use of wood pellets in one

  9. Dynamics of wood recruitment in streams of the northeastern US Dana R. Warren a,

    E-Print Network [OSTI]

    Kraft, Clifford E.

    : Large woody debris LWD Riparian forest Wood recruitment Wood dynamics Stream restoration Debris dam restoration efforts often incorporate large wood. In most cases, however, stream restoration projectsDynamics of wood recruitment in streams of the northeastern US Dana R. Warren a, *, Clifford E

  10. Author's personal copy Evaluation of methods for sorting CCA-treated wood

    E-Print Network [OSTI]

    Florida, University of

    Author's personal copy Evaluation of methods for sorting CCA-treated wood Gary Jacobi a , Helena contains treated wood including wood treated with chromated copper arsenate (CCA). Many recycling options of sorting methods for identifying treated wood. Sorting methods evaluated included visual sorting and visual

  11. PROPERTIES OF HDPE/CLAY/WOOD NANOCOMPOSITES , C. M. Clemons 2

    E-Print Network [OSTI]

    from wood, kenaf, flax, hemp, cotton, Kraft pulp, coconut husk, areca fruit, pineapple leaf, oil palm

  12. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  13. An economical and market analysis of Canadian wood pellets.

    SciTech Connect (OSTI)

    Peng, J. [University of British Columbia, Vancouver

    2010-08-01T23:59:59.000Z

    This study systematically examined the current and future wood pellet market, estimated the cost of Canadian torrefied pellets, and compared the torrefied pellets with the conventional pellets based on literature and industrial data. The results showed that the wood pellet industry has been gaining significant momentum due to the European bioenergy incentives and the rising oil and natural gas prices. With the new bioenergy incentives in USA, the future pellets market may shift to North America, and Canada can potentially become the largest pellet production centre, supported by the abundant wood residues and mountain pine beetle (MPB) infested trees.

  14. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    to Climate protection in light of the· Waste Framework Directive. The "energy package", e.g. the RenewablesWASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

  15. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

  16. Method for lowering the VOCS emitted during drying of wood products

    DOE Patents [OSTI]

    Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

    2000-01-01T23:59:59.000Z

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  17. Wood Gasification: Where It's At, Where It's Going

    E-Print Network [OSTI]

    Murphy, M. L.

    1981-01-01T23:59:59.000Z

    This paper discusses the principles and practice of various designs of biomass/wood gasifiers. In general, the basic principle of gasification is reviewed. A look at existing gasifier schemes, including packed bed updraft, downdraft, and fluidized...

  18. Wood Gasification: Where It's At, Where It's Going

    E-Print Network [OSTI]

    Murphy, M. L.

    1981-01-01T23:59:59.000Z

    This paper discusses the principles and practice of various designs of biomass/wood gasifiers. In general, the basic principle of gasification is reviewed. A look at existing gasifier schemes, including packed bed updraft, downdraft, and fluidized...

  19. The Honorable John T. 'Gregorio 301 N. Wood Avenue

    Office of Legacy Management (LM)

    Wood Avenue Linden, 'New Jersey 07036 d. Dear Mayor Gregorio: ,' ,' .' , Secretary of Energy Hazel O'Leary has announced a new approach to openness, in the'llepartment' of...

  20. Disentangling Biodiversity and Climatic Determinants of Wood Production

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    an important role in carbon sequestration. Methodology/Principal Findings: We tested whether tree wood incorporating the role of biodiversity in management and policy plans for forest carbon sequestration. Citation

  1. Seismic rehabilitation of wood diaphragms in unreinforced masonary buildings

    E-Print Network [OSTI]

    Grubbs, Amber Jo

    2002-01-01T23:59:59.000Z

    The purpose of this study is to evaluate the seismic performance of existing and rehabilitated wood floor and roof diaphragms in typical pre-1950's, unreinforced masonry (URM) buildings found in the Central and Eastern portions of the United States...

  2. aspen wood chips: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 COMPARISON OF DIFFERENT APPROACHES FOR THE SIMULATION OF BOILERS USING OIL, GAS, PELLETS OR WOOD CHIPS CiteSeer Summary: A detailed model for the simulation of boilers using...

  3. An Overview of the U.S. Wood Preserving Industry

    E-Print Network [OSTI]

    Preservatives Oilborne Preservatives Creosote Treatments Fire Retardants Additives Concluding Comments Waterborne Preservatives Oilborne Preservatives Creosote Treatments Fire Retardants Additives a baselinewas to develop a baseline profile of the treated woodprofile of the treated wood manufacturing

  4. An Overview of the Louisiana Primary Solid Wood Products Industry

    E-Print Network [OSTI]

    goal of this second study is to profile the primary solid wood products industry. In addition (including pulp and paper) and secondary manufacturing establishments (Jacob et al. 1987). The forest

  5. RFPs Due for Hazardous Fuel Wood to Energy Grant

    Broader source: Energy.gov [DOE]

    The U.S. Forest Service requests proposals for the 2014 Hazardous Fuel Wood to Energy (W2E) Grant. The outcome anticipated under this funding mechanism will advance the United States Department of...

  6. RFPs Due for Statewide Wood Energy Cooperative Agreement

    Broader source: Energy.gov [DOE]

    The U.S. Forest Service requests proposals for the 2014 Statewide Wood Energy Teams (SWET) Cooperative Agreement. The outcome anticipated under this funding mechanism will advance the United States...

  7. Long-term lime pretreatment of poplar wood

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2006-04-12T23:59:59.000Z

    Lignocellulosic biomass (e.g., poplar wood) provides a unique and sustainable resource for environmentally safe organic fuels and chemicals. The core of this study is the pretreatment step involved in bioconversion processes. Pretreatment...

  8. Long-term lime pretreatment of poplar wood

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2006-04-12T23:59:59.000Z

    Lignocellulosic biomass (e.g., poplar wood) provides a unique and sustainable resource for environmentally safe organic fuels and chemicals. The core of this study is the pretreatment step involved in bioconversion processes. Pretreatment...

  9. Photo by Helvetas Moambique Architecture, Wood and Civil Engineering

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Photo by Helvetas Moambique Architecture, Wood and Civil Engineering #12;IWRM in order to maximize the resultant economic and social welfare in an equitable manner without CAS consists of the following units: - Basic knowledge in order to follow the class

  10. Wood Products Marketing And Value-Added Opportunities

    E-Print Network [OSTI]

    Wood Products Marketing And Value-Added Opportunities In Latin America: A Focus on Brazil Richard School of Renewable Natural Resources Louisiana State University Presented at: PANORAMA Curitiba, Brazil

  11. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  12. Habitat selection of the Wood Thrush nesting in east Texas

    E-Print Network [OSTI]

    Carrie, Neil Ross

    1995-01-01T23:59:59.000Z

    HABITAT SELECTION OF THE WOOD THRUSH NESTING IN EAST TEXAS A Thesis by NEIL ROSS CARRIE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1995 Major Subject: Wildlife and Fisheries Sciences HABITAT SELECTION OF THE WOOD THRUSH NESTING IN EAST TEXAS A Thesis by NEIL ROSS CARRIE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

  13. Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2012-02-14T23:59:59.000Z

    biomass is one of the most promising feedstocks for producing biofuels through fermentation processes. Among lignocellulose choices, poplar wood is appealing because of high energy potential, above-average carbon mitigation potential, fast growth... KINETIC MODELING AND ASSESSMENT OF LIME PRETREATMENT OF POPLAR WOOD A Dissertation by ROCIO SIERRA RAMIREZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  14. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass and Coal

    SciTech Connect (OSTI)

    Wang, Ping; Howard, Bret; Hedges, Sheila; Morreale, Bryan; Van Essendelft, Dirk; Berry, David

    2013-10-29T23:59:59.000Z

    Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/cofiring of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550oC for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300oC and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300oC lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300oC is probably sufficient to improve grindability and retain energy value.

  15. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-02-16T23:59:59.000Z

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  16. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Arnold, P. M.

    2013-02-21T23:59:59.000Z

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  17. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  18. Transuranic contaminated waste container characterization and data base. Revision I

    SciTech Connect (OSTI)

    Kniazewycz, B.G.

    1980-05-01T23:59:59.000Z

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

  19. Natural polymers as alternative consolidants for the preservation of waterlogged archaeological wood

    E-Print Network [OSTI]

    Walsh, Zarah; Jane?ek, Emma-Rose; Jones, Mark; Scherman, Oren A.

    2014-01-01T23:59:59.000Z

    ageing tests. Briefly this involved preparing solutions of the appropriate concentrations (50 wt.% for synthetic polymers and 1-3 wt.% for natural polymer based consolidants in ultrapure water), heating the solutions to 70 C for 15 days while... materials as consolidants. Their increased structural stability at lower concentrations, potential for anti-bacterial and metal chelating properties, reduced cost, renewability due to sourcing from waste products and plants, and their low toxicity make...

  20. Cementitious waste option scoping study report

    SciTech Connect (OSTI)

    Lee, A.E.; Taylor, D.D.

    1998-02-01T23:59:59.000Z

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.

  1. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  2. 1 Copyright 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference

    E-Print Network [OSTI]

    models. On the other hand, full-scale grate models have not been used for examining solid waste mixing these phenomena, a full-scale physical model of the reverse acting grate was built and used for investigating residence time analysis using clay, wood and ceramic spheres in a small-scale model of the reverse acting

  3. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  4. Moisture Distribution and Flow During Drying of Wood and Fiber

    SciTech Connect (OSTI)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28T23:59:59.000Z

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt chloride was developed for nondestructive determination of surface moisture content. Fundamental new understanding of drying characteristics in wood and fiber has been provided that can be used by researchers to improve drying of wood and fiber. The three techniques for measuring moisture content and gradients provided in this study are efficient, practical, and economical - easy to apply by industry and researchers. An energy consumption worksheet is provided as a first step toward reducing energy consumed during drying of lumber and strandboard flakes. However, it will need additional verification and testing.

  5. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Salt Bearing Waste

  6. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  7. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  8. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  9. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  10. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  11. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  12. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  13. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect (OSTI)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01T23:59:59.000Z

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  14. Annual report of tank waste treatability

    SciTech Connect (OSTI)

    Lane, A.G. [Los Alamos Technical Associates, Inc., NM (United States); Kirkbride, R.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-01T23:59:59.000Z

    This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00D for fiscal year 1993. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1992 report and is intended to provide traceability for the documentation by statusing the studies, activities, and issues which occurred in these areas listed above over the period of March 1, 1992, through February 28, 1993. Therefore, ongoing studies, activities, and issues which were documented in the previous (1992) report are addressed in this (1993) report.

  15. Solid Waste and Infectious Waste Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

  16. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  17. CSTB / CTBA Wood Preservation -Cannes 2001 MEASUREMENT OF VOC EMISSIONS FROM CURATIVE TREATED WOOD

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Committee for Standardization (CEN) and the International Organization for Standardization (ISO of International Organization for Standardization (ISO) has prepared the draft international standard ISO/DIS 16000 analytical methods are needed. The aim of this paper is to present the new standards prepared by the European

  18. The tenth conference on solid waste management & materials policy and the New York State solid waste management

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The proceedings of the Tenth Conference on Solid Waste Management and Materials Policy and the New York State Solid Waste Management held February 19-22, 1995 in New York City are presented. Such topics as recycling, resource recovery, emission characteristics of burn barrels, ash management, controlling landfill closure costs, flow control and federalism, composting programs, air pollutant emissions from MSW landfills, backyard waste management, waste-based manufacturing, and scrap tire management are covered. A separate abstract and indexing were prepared for each paper for inclusion in the Energy Science and Technology Database.

  19. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  20. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  1. Radioactive waste management in the former USSR

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01T23:59:59.000Z

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  2. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  3. Comminution process to produce precision wood particles of uniform size and shape with disrupted grain structure from wood chips

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-08-13T23:59:59.000Z

    A process of comminution of wood chips (C) having a grain direction to produce a mixture of wood particles (P), wherein the wood chips are characterized by an average length dimension (L.sub.C) as measured substantially parallel to the grain, an average width dimension (W.sub.C) as measured normal to L.sub.C and aligned cross grain, and an average height dimension (H.sub.C) as measured normal to W.sub.C and L.sub.C, and wherein the comminution process comprises the step of feeding the wood chips in a direction of travel substantially randomly to the grain direction through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of wood chip travel, wherein the cutting discs have a uniform thickness (T.sub.D), and wherein at least one of L.sub.C, W.sub.C, and H.sub.C is greater than T.sub.D.

  4. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-01-06T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  5. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect (OSTI)

    Jooho, W.; Baldwin, G. T.

    2005-04-01T23:59:59.000Z

    One critical aspect of any denuclearization of the Democratic Peoples Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for complete, verifiable and irreversible dismantlement, or CVID. It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

  6. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  7. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  8. Properties of concrete containing wood/coal fly ash mixtures

    SciTech Connect (OSTI)

    Boylan, D.M.; Larrimore, C.L.; Fouad, F.

    1999-07-01T23:59:59.000Z

    Utilities are increasingly interested in co-firing wood with coal in existing pulverized coal units. The co-firing technology is a means of developing a relatively low-cost renewable energy resource, as well as of supporting customers and community by making energy with biomass that might otherwise have been land-filled. However, recent changes in the ASTM C618 standard for fly ash as cement replacement restrict the definition of fly ash that includes non-coal sources. As a result, wood co-firing could affect the market for the fly ash, reducing ash sales revenue, increasing ash disposal costs, and overall substantially increasing the cost of the co-firing technology. In order to address concerns about the effect of wood ash/coal ash mixtures on concrete properties, a study was conducted by University of Alabama at Birmingham, Southern Company, EPRI, and the State of Alabama. This study compared the effects on properties of concrete made with fly ash from coal and made with fly ash from co-firing up to 30% wood with coal. Fly ashes from three plants were used, with two of the ashes from actual co-firing experience and the third an artificial blend of wood and coal ash. Concrete test cylinders were made of several cement/fly ash mixes, and enough were made to allow testing periodically over a one year time period. Test measurements included workability, setting time, air content, compressive and flexural strength, rapid chloride permeability and freeze thaw. It was concluded on the basis of these tests that the wood ash content had no detrimental effect on the plastic and hardened properties of the concrete.

  9. Analytical Modeling of Wood Frame Shear Walls Subjected to Vertical Load

    E-Print Network [OSTI]

    Nguyendinh, Hai

    2011-08-08T23:59:59.000Z

    referred to as Analytical Model of wood frame SHEar walls subjected to Vertical load (AMSHEV) is based on the kinematic behavior of wood frame shear walls and captures significant characteristics observed from experimental testing through appropriate...

  10. Metals Concentrations in Soils Below Decks Made of CCA-Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Metals Concentrations in Soils Below Decks Made of CCA-Treated Wood This report is an excerpt from the report titled: New Lines of CCA-Treated Wood Research, In-Service and Disposal Issues Which was finalized

  11. Simulating the dynamics of flexible wood pulp fibres in suspension John M. Stockie

    E-Print Network [OSTI]

    Stockie, John

    , including wood pulp processing, polymer composites, and formation of fibre-reinforced materials elements to form a surface that re- sists bending and stretching. This is a natural construction for wood

  12. 1995 solid waste 30-year characteristics volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; DeForest, T.J.; Rice, G.I. [Pacific Northwest Lab., Richland, WA (United States); Valero, O.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-10-01T23:59:59.000Z

    The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D&D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford`s SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and the transuranic - transuranic mixed waste (TW{underscore}TRUM).

  13. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  14. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  15. Wood residuals find big uses in small pieces

    SciTech Connect (OSTI)

    Glenn, J.

    1996-12-01T23:59:59.000Z

    With a history of finding economic uses for leftovers, the wood industry explores sustainable options for creating higher value products. Years ago, companies saw the use - any use - of residues as a sound, economic business practice. Today, many companies are looking to go beyond low value products such as mulch, animal bedding and fuel, and market to higher value end users. Additionally, with so much material from the primary industries already accounted for, consumers of wood residue are in need of additional supply from sources such as secondary mills (furniture manufacturers, etc.), as wells as the C&D and MSW streams. This paper discusses these products and markets.

  16. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

    1999-01-01T23:59:59.000Z

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  17. Logs Wood Chips Straw Corn Switchgrass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for an EnergyDepartment of Energy

  18. Waste drum refurbishment

    SciTech Connect (OSTI)

    Whitmill, L.J.

    1996-10-18T23:59:59.000Z

    Low-carbon steel, radioactive waste containers (55-gallon drums) are experiencing degradation due to moisture and temperature fluctuations. With thousands of these containers currently in use; drum refurbishment becomes a significant issue for the taxpayer and stockholders. This drum refurbishment is a non-intrusive, portable process costing between 1/2 and 1/25 the cost of repackaging, depending on the severity of degradation. At the INEL alone, there are an estimated 9,000 drums earmarked for repackaging. Refurbishing drums rather than repackaging can save up to $45,000,000 at the INEL. Based on current but ever changing WIPP Waste Acceptance Criteria (WAC), this drum refurbishment process will restore drums to a WIPP acceptable condition plus; drums with up to 40% thinning o the wall can be refurbished to meet performance test requirements for DOT 7A Type A packaging. A refurbished drum provides a tough, corrosion resistant, waterproof container with longer storage life and an additional containment barrier. Drums are coated with a high-pressure spray copolymer material approximately .045 inches thick. Increase in internal drum temperature can be held to less than 15 F. Application can be performed hands-on or the equipment is readily adaptable and controllable for remote operations. The material dries to touch in seconds, is fully cured in 48 hours and has a service temperature of {minus}60 to 500 F. Drums can be coated with little or no surface preparation. This research was performed on drums however research results indicate the coating is very versatile and compatible with most any material and geometry. It could be used to provide abrasion resistance, corrosion protection and waterproofing to almost anything.

  19. Constraining uncertainties about the sources and magnitude of ambient air exposures to polycyclic aromatic hydrocarbons (PAHs): The state of Minnesota as a case study

    E-Print Network [OSTI]

    Lobscheid, Agnes B.; McKone, Thomas E.

    2004-01-01T23:59:59.000Z

    wood, wood waste, and black liquor are reported by thee other= wood waste, black liquor, used oil, petroleum coke,

  20. Rational production of veneer by IR-heating of green wood during peeling: Modeling experiments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (0)3 85 59 53 85 E-mail: anna.dupleix@ensam.eu Abstract Heating green wood logs by infrared (IR-line IR heating system installed on the peeling lathe. Keywords: green wood; heating; infrared; modelingRational production of veneer by IR-heating of green wood during peeling: Modeling experiments Anna

  1. SECTION 50 Table of Contents 50 Lake Rufus Woods Management Plan .........................................................2

    E-Print Network [OSTI]

    and formation of the Subbasin Work Teams and the process used to develop and adopt the management plan can50-1 SECTION 50 ­ Table of Contents 50 Lake Rufus Woods Management Plan .........................................................................28 #12;50-2 50 Lake Rufus Woods Management Plan The Lake Rufus Woods Subbasin Management Plan

  2. European Institute for Wood Preservation Congress 4-6 September 2008, Lausanne, Switzerland

    E-Print Network [OSTI]

    developments A. Wood raw materials (roundwood) B. Sawn softwood C. Wood energy V. Conclusions VI" In 2007, US housing construction continued its sharp decline, severely impacting world markets. Green building systems are a market driver, but also a constraint. UNECE region consumption of wood and paper

  3. EFFECTS OF SAMPLE SIZE ON CHARACTERIZATION OF WOOD-PARTICLE LENGTH DISTRIBUTION

    E-Print Network [OSTI]

    EFFECTS OF SAMPLE SIZE ON CHARACTERIZATION OF WOOD-PARTICLE LENGTH DISTRIBUTION Quang V. Cao of sample size on fitting length distribution of wood particles used for manufacturing wood-based composites moments and the ability of the sample distributions to characterize the population represented

  4. Matrix penetration in the bulk:In uence of humidity: Morphological analysis of wood welding

    E-Print Network [OSTI]

    Dalang, Robert C.

    Matrix penetration in the bulk:In uence of humidity: Morphological analysis of wood welding.pichelin@b .ch Context: Wood can be welded using linear vibration welding tech- niques similar to the ones in plastic and metal industry[1] . Wood welding allows bonding strength similar to glued joints. However, due

  5. Streamlined LCA of Wood Pellets: Export and Possible Utilization in UBC

    E-Print Network [OSTI]

    Streamlined LCA of Wood Pellets: Export and Possible Utilization in UBC Boiler House CHBE 573 Ann Pa May 15, 2009 #12;2 | P a g e INTRODUCTION Wood pellets are a type of biofuels and are often made. Like all biofuels, wood pellets are carbon- neutral and renewable and are very popular in Europe

  6. Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast

    E-Print Network [OSTI]

    Vermont, University of

    gas emissions implications of wood biomass (`bioenergy') harvests are highly uncer- tain yet of great') on long-term green- house gas emissions are uncertain (McKechnie et al., 2011), yet demand for wood (C) emitted from wood bioenergy may eventually be re-sequestered through regeneration and increased

  7. Alternative Chemicals and Improved Disposal-End Management Practices for CCA-treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Alternative Chemicals and Improved Disposal-End Management Practices for CCA-treated Wood (FINAL Importation Associated with CCA-Treated Wood Use APPENDIX B: MSDS Sheets for Alternative Chemicals APPENDIX C Members A-1 B-1 C-1 D-1 E-1 F-1 G-1 ATTACHMENT: Treated Wood Resource Book #12;ii This page left

  8. Preservative leaching from weathered CCA-treated wood Timothy Townsenda,*, Brajesh Dubeya

    E-Print Network [OSTI]

    Florida, University of

    Preservative leaching from weathered CCA-treated wood Timothy Townsenda,*, Brajesh Dubeya , Thabet copper arsenate (CCA)-treated wood in landfills raises concerns with respect to leaching of preservative compounds. When unweathered CCA-treated wood is leached using the toxicity characteristic leaching procedure

  9. Implications for the Future of Treated Wood in Four U.S. Demand Sectors

    E-Print Network [OSTI]

    Implications for the Future of Treated Wood in Four U.S. Demand Sectors Todd F. Shupe Associate extends the life span of lumber, but the Environmental Protection Agency says arsenic treated wood might arsenic-treated wood from Florida's public playgrounds failed to pass. "Wave of opponents kills Crow

  10. Attitudes and Awareness about Treated Wood Products: The U.S. South Homeowner Perspective

    E-Print Network [OSTI]

    Wu, Qinglin

    Attitudes and Awareness about Treated Wood Products: The U.S. South Homeowner Perspective is preservative-treated (SFPA 2004). In light of increasing market penetration from non-wood alternatives homeowner attitudes and awareness about using treated wood Strategic decisions can be made to better

  11. U.S. Playground Equipment Manufacturer and Purchaser Perceptions of Treated Wood

    E-Print Network [OSTI]

    U.S. Playground Equipment Manufacturer and Purchaser Perceptions of Treated Wood Todd F. Shupe treated wood might cut life short for our children. "EPA chops down potential killer", 24 Hour News 8, Florida, after his bill to ban arsenic-treated wood from Florida's public playgrounds failed to pass

  12. Mechanical characteristics of aged Hinoki (Chamaecyparis obtusa Endl.) wood from Japanese historical buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    historical buildings -Comparative analyses with accelerated aging wood- Misao YOKOYAMA*1 , Joseph GRIL*1 Abstract Wood is present in many cultural heritage objects thanks to its capacity to resist odvantage with mechanical characteristics of aged hinoki (Chamaecyparis obtusa Endl.) wood of Japanese historical buildings

  13. Society of Wood Science and Technology Convention 10-12 November 2008, Concepcin, Chile

    E-Print Network [OSTI]

    Society of Wood Science and Technology Convention 10-12 November 2008, Concepción, Chile Global #12;Society of Wood Science and Technology Convention 10-12 November 2008, Concepción, Chile Subjects;Society of Wood Science and Technology Convention 10-12 November 2008, Concepción, Chile Main sources

  14. Name: Qinglin Wu Title: Roy O Martin Sr. Professor, Composites and Engineered Wood Products

    E-Print Network [OSTI]

    (ASTM), Philadelphia, PA · Forest Products Society, Madison, WI · Society of Wood and Science Technology Organizations · International Research Group in Wood Preservation, Stockholm, Sweden · American Chemical Society (ACS) · American Wood Preservation Association (AWPA) · American Society for Testing and Materials

  15. Final Independent External Peer Review Report Melvin Price Wood River Underseepage

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EXECUTIVE SUMMARY Project Background and Purpose The purpose of the Melvin Price Wood River Underseepage Price Wood River LRR and the overall scope of the project, the final panel members were selectedFinal Independent External Peer Review Report Melvin Price Wood River Underseepage Limited

  16. Histological preparation of embryonic and adult zebrafish eyes Richard J. Nuckels1

    E-Print Network [OSTI]

    Gross, Jeff

    minutes per wash. Osmium tetroxide is toxic and should be disposed of with hazardous waste. 5. Remove PBS@mail.utexas.edu INTRODUCTION This is a protocol for the histological preparation of embryonic and adult zebrafish eyes

  17. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may: cause or significantly...

  18. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  19. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  20. waste | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW) and...

  1. APPLICATION OF NELSON'S SORPTION ISOTHERM TO WOOD COMPOSITES AND OVERLAYS'

    E-Print Network [OSTI]

    APPLICATION OF NELSON'S SORPTION ISOTHERM TO WOOD COMPOSITES AND OVERLAYS' Qinglin Wu Assistant. It was found that Nelson's model can be used to describe the experimental data from different composite composite materials (Suchsland 1972). These relationships, known as sorption isotherms, greatly affect

  2. Influence of Nanoclay on Properties of HDPE/Wood Composites

    E-Print Network [OSTI]

    Influence of Nanoclay on Properties of HDPE/Wood Composites Yong Lei,1 Qinglin Wu,1 Craig M Agricultural Center, Baton Rouge, Louisiana 70803 2 Performance Engineered Composites, USDA Forest ServiceScience (www.interscience.wiley.com). ABSTRACT: Composites based on high density polyeth- ylene (HDPE), pine

  3. Bryan H. Wood Assistant Deputy Commandant of the Marine Corps

    E-Print Network [OSTI]

    and stations throughout the world and for the operating forces across the U.S. Marine Corps. Mr. Wood advisor to the Commander, Combined Joint Task Force- Horn of Africa (CJTF-HOA) in Djibouti, Africa. Mr as the Environmental Law Section Head and Senior Associate Counsel (Environment/ Safety), Naval Sea Systems Command

  4. AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN

    E-Print Network [OSTI]

    American green building standards, with use of such materials awarded or specified. Construction-consumer materials shall be considered as recycled. In addition to reviewing provisions of various green building! ! ! AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN BUILDING PROGRAMS DR. JIM

  5. Physiological Insights Towards Improving Fish Culture L. CURRY WOODS III*

    E-Print Network [OSTI]

    Hamza, Iqbal

    Physiological Insights Towards Improving Fish Culture L. CURRY WOODS III* Department of Animal, and American Fisheries Society (AFS) Fish Culture Section, was held February 26 through March 2, 2007, in San Antonio, Texas. At this meeting, the AFS Fish Culture and Fish Physiol- ogy Sections co

  6. Wood Residues as Fuel Source for Lime Kilns

    E-Print Network [OSTI]

    Azarniouch, M. K.; Philp, R. J.

    1984-01-01T23:59:59.000Z

    One of the main obstacles to total energy self sufficiency of kraft mills appears to be the fossil fuel requirements of the lime kilns. If an economical technology can be developed which allows fossil fuel to be replaced in whole or in part by wood...

  7. Measuring Interfacial Stiffness of Adhesively-Bonded Wood

    E-Print Network [OSTI]

    Nairn, John A.

    , the interfaces will fail, the elements will cease to share load, and the composite will have poor properties property. Nearly all methods for characterizing wood adhesive bonds consider only strength of the bonds. Typically a bond line is loaded until failure and the final load at failure is recorded. Some common

  8. 14 November 2010 Wood SA & Timber Times FOREST HEALTH

    E-Print Network [OSTI]

    14 November 2010 Wood SA & Timber Times FOREST HEALTH Aprogramme that begun based on a very small other disciplines within reach of a dynamic forestry industry. Three South African forestry companies was formally launched in 1990.The research directors of these companies Neville Denison (Mondi),Mike Shaw

  9. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C. (Orono, ME)

    1982-01-01T23:59:59.000Z

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  10. Performance of Wood-Frame Structures during Hurricane Katrina

    E-Print Network [OSTI]

    Cox, Dan

    Performance of Wood-Frame Structures during Hurricane Katrina John W. van de Lindt, M.ASCE1 ; Andrew Graettinger, M.ASCE2 ; Rakesh Gupta, M.ASCE3 ; Thomas Skaggs, M.ASCE4 ; Steven Pryor, M.ASCE5 ; and Kenneth J. Fridley, M.ASCE6 Abstract: The costliest natural disaster in U.S. history was Hurricane Katrina

  11. Practical Approach to Designing Wood Roof Truss Assemblies

    E-Print Network [OSTI]

    Gupta, Rakesh

    Practical Approach to Designing Wood Roof Truss Assemblies Rakesh Gupta, M.ASCE1 ; and Pranueng to evaluate "system effects" in light-frame roof truss assemblies. The goal of this study was to develop an improved and practical design method for 3D roof truss assemblies used in residential construction. A truss

  12. U.S. Homeowner of Perceptions of Treated Wood

    E-Print Network [OSTI]

    U.S. Homeowner of Perceptions of Treated Wood Todd F. Shupe Extension Specialist Forest Products% Naturally durable species (cedar, redwood) 19% 56% 25% Treated lumber products 18% 67% 15% Untreated lumber Stating Agree or Strongly Agree Plastic 3.6 55% Steel 3.4 48% Treated Lumber 3.3 38% Concrete 2.8 24

  13. HISTORICAL WOOD COLLECTION AT THE DENDROCHRONOLOGY LABORATORY, VYTAUTAS MAGNUS

    E-Print Network [OSTI]

    investigations. Subfossil oaks from river gravels, pines from peat bogs and wood from archeological excavations.) samples were collected in two peat bogs with pine trunks embedded in oligotrophic peat layers. One more than 300 samples of pine stumps and stems preserved in oligotrophic peat layers were coll

  14. Production of chemical feedstock by the methanolysis of wood

    DOE Patents [OSTI]

    Steinberg, M.; Fallon, P.

    1983-06-01T23:59:59.000Z

    A process is discussed for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700/sup 0/C to 1200/sup 0/C, at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

  15. In-Depth Temperature Profiles in Pyrolyzing Wood

    E-Print Network [OSTI]

    Reszka, Pedro

    of experimental in-depth temperature measurements were done in wood samples exposed to various intensities of radiant heat fluxes, with clearly defined boundary conditions that allow a proper input for pyrolysis models. The imposed heat fluxes range from 10 k...

  16. Production of chemical feedstock by the methanolysis of wood

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY); Fallon, Peter (East Moriches, NY)

    1984-07-31T23:59:59.000Z

    A process for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700.degree. C. to 1200.degree. C., at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

  17. INFLUENCE OF TORREFACTION TREATMENT ON WOOD POWDER PROPERTIES M. Almendrosa

    E-Print Network [OSTI]

    Boyer, Edmond

    INFLUENCE OF TORREFACTION TREATMENT ON WOOD POWDER PROPERTIES M. Almendrosa , O. Bonnefoyb , A de Saint-Etienne (EMSE), 158, Cours Fauriel, F-42023 Saint-Etienne, France ABSTRACT: Torrefaction and makes the grinding easier. Our project deals with the study of the effects of the combined torrefaction

  18. The Wood-Based Biorefinery in a Petroleum Depleted World

    E-Print Network [OSTI]

    Chatterjee, Avik P.

    3 Year Old Willow #12;14 14 Woody Biomass Feedstocks Sustainably harvested low value wood from, Sustainable Bioproducts: Fuels, Chemicals, Materials Renewable Resources to "Green" Bio-Products Woody Biomass Feedstock #12;5 5 Spindletop at Beaumont, TX Circa late 1890's Birth of the Petroleum Industry in Texas

  19. Page 2 of 4 TREE Cookies Etc. Got Woods -continued

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    of a forester is to help sell timber, though they can and should be used to write management plans, manage tree plantings, implement intermediate tending treatments to improve the woods, design soil stabilization the tree, the rays (the lateral transporting structures for water and nutrients) are blocked. Finally

  20. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  1. Technetium Waste Form Development Progress Report

    SciTech Connect (OSTI)

    Buck, Edgar C.

    2010-02-26T23:59:59.000Z

    The approach being followed to evaluate the use of an iron-based alloy waste form to immobilize the Tc-bearing waste streams generated during the aqueous and electrochemical processing of used fuel that is being studied in the DOE Advanced Fuel Cycle Initiative (AFCI) is presented in this report. The objective is to develop an alloy waste form that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides, and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal. Microanalysis using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to analyze non-radioactive Fe-Mo-Re samples. A sample was prepared for SEM; however, significant unforeseen instrument problems led to delays in conducting the detailed work. The TEM was not available for this particular sample and therefore only preliminary SEM work can be reported. The results are in agreement with previous studies [Ebert 2009]; however, a rhenium-rich region within the Re-Mo phase is clearly visible.

  2. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  3. Development of Polymeric Waste Forms for the Encapsulation of Toxic Wastes Using an Emulsion-Encapsulation Based Process

    SciTech Connect (OSTI)

    Evans, R.; Quach, A.; Birnie, D. P.; Saez, A. E.; Ela, W. P.; Zeliniski, B. J. J.; Xia, G.; Smith, H.

    2003-01-01T23:59:59.000Z

    Developed technologies in vitrification, cement, and polymeric materials manufactured using flammable organic solvents have been used to encapsulate solid wastes, including low-level radioactive materials, but are impractical for high salt-content waste streams (Maio, 1998). In this work, we investigate an emulsification process for producing an aqueous-based polymeric waste form as a preliminary step towards fabricating hybrid organic/inorganic polyceram matrices. The material developed incorporates epoxy resin and polystyrene-butadiene (PSB) latex to produce a waste form that is non-flammable, light weight, of relatively low cost, and that can be loaded to a relatively high weight content of waste materials. Sodium nitrate was used as a model for the salt waste. Small-scale samples were manufactured and analyzed using leach tests designed to measure the diffusion coefficient and leachability index for the fastest diffusing species in the waste form, the salt ions. The microstructure and composition of the samples were probed using SEM/EDS techniques. The results show that some portion of the salt migrates towards the exterior surfaces of the waste forms during the curing process. A portion of the salt in the interior of the sample is contained in polymer corpuscles or sacs. These sacs are embedded in a polymer matrix phase that contains fine, well-dispersed salt crystals. The diffusion behavior observed in sections of the waste forms indicates that samples prepared using this emulsion process meet or exceed the leachability criteria suggested for low level radioactivity waste forms.

  4. Office Automation Document Preparation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    .2 Distinctions 1.3 Facilities 1.3.1 Document Preparation 1.3.2 Records Management 1.3.3 Communication 1 organizations contemplating the installation of document-preparation systems. * Administrative managersOffice Automation and Document Preparation for the v' University of North Carolina at Chapel Hill

  5. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  6. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste

    Broader source: Energy.gov [DOE]

    This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

  7. Waste systems progress report, March 1983 through February 1984

    SciTech Connect (OSTI)

    Hickle, G.L.

    1984-10-01T23:59:59.000Z

    Preliminary design engineering for a Beryllum Electrorefining Demonstration Process has been completed and final engineering for fabrication of the process will be completed by the fourth quarter of FY-84. A remotely operated Advanced Size Reduction Facility (ASRF) is under construction and, when completed, will be used for sectioning plutonium-contaminated gloveboxes for disposal. Modification and additions were made to the 82 kg/hr Fluidized Bed Incinerator (FBI) in preparation for turning the unit over to Production. Several types of cementation processes are being developed to treat various TRU and low-level waste streams to reduce the dispersibility of the wastes. Portland cement and Envirostone gypsum cement were investigated as immobilization media for wet precipitation sludges and organic liquid wastes. Transuranic contaminated waste is being retrieved from storage at the Idaho National Engineering Laboratory for examination at Rocky Flats Plant for compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria. The removal of unreacted calcium metal from the waste salt formed during the direct oxide reduction of plutonium oxide to plutonium metal is necessary in order to comply with regulations regarding the transportation and storage of waste material containing flammable substances. Chemical methods of denitrification of simulated low-level nitrate wastes were investigated on a laboratory scale. Methods of inserting the carbon composite filters into presently stored and currently generated radioactive waste drums have been investigated and their sealing efficiencies determined. Analyses of carbon tetrachloride (CCl/sub 4/) recovered from spent lathe coolant revealed contamination levels above usable limits. A handbook covering techniques and processes that have been successfully demonstrated to minimize generation of new transuranic waste is being prepared.

  8. International perspectives on coal preparation

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  9. Woodfuel Usage Update 1 I Wood fuel use in Scotland 2012 I Hudson Consulting I November 2012

    E-Print Network [OSTI]

    furnish of 150k odt/yr in 2012. 9. Including wood going for the production of pellets, usage of wood in progress 3.3. Wood fuel usage by fuel category 3.4. Pellet plants 3.5. Greenhouse gas emissions 4 to 1.073 million odt in 2014. 8. Four wood pellet manufacturing plants in Scotland used in total some

  10. U.S. Home Builder Perceptions about Treated Wood:Summary Richard P. Vlosky, Ph.D.1

    E-Print Network [OSTI]

    U.S. Home Builder Perceptions about Treated Wood:Summary Richard P. Vlosky, Ph.D.1 Professor for wood. In areas subject to a high risk of decay, wood that is preservative treated is often recommended alternatives to treated wood in certain applications, but this may result in higher costs, higher energy

  11. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  12. Mixed waste focus area alternative technologies workshop

    SciTech Connect (OSTI)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

    1995-05-24T23:59:59.000Z

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

  13. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  14. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  15. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  16. Video Article Preparation of Complaint Matrices for Quantifying Cellular Contraction

    E-Print Network [OSTI]

    Gardel, Margaret

    solutions should be disposed as hazardous waste. 6. Dry coverslips in incubator at warm temperature (~37°C and remodeling with traction forces. Here we present a detailed experimental protocol for the preparation of two mechanical stiffness, which is suitable for measuring cellular contraction. These protocols include

  17. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect (OSTI)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  18. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    SciTech Connect (OSTI)

    James T. Cobb Jr.

    2005-02-10T23:59:59.000Z

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood gasification project at its site. Throughout much of this total project the Principal Investigator has counseled two small businesses in developing a waxed cardboard pellet business. A recent test burn of this biofuel appears successful and a purchase contract is anticipated soon. During the past two months a major tree-trimming firm has shown an active interest in entering the wood-chip fuel market in the Pittsburgh area and has contacted the NBP, among others, as potential customers. The NBP superintendent is currently in discussion with the facilities management of the Bruceton Research Center about resuming their interest in cofiring this renewable fuel to the stoker there.

  19. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  20. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-04-14T23:59:59.000Z

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  1. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect (OSTI)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01T23:59:59.000Z

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  2. Special case waste located at Oak Ridge National Laboratory facilities: Survey report

    SciTech Connect (OSTI)

    Forgy, J.R. Jr.

    1995-11-01T23:59:59.000Z

    Between October 1994 and October 1995, a data base was established at the Oak Ridge National Laboratory (ORNL) to provide a current inventory of the radioactive waste materials, located at ORNL, for which the US Department of Energy (DOE) has no definite planned disposal alternatives. DOE refers to these waste materials as special case waste. To assist ORNL and DOE management in future planning, an inventory system was established and a baseline inventory prepared. This report provides the background of the ORNL special case waste survey project, as well as special case waste category definitions, both current and anticipated sources and locations of special case waste materials, and the survey and data management processes. Special case waste will be that waste material which, no matter how much practical characterization, treatment, and packaging is made, will never meet the acceptance criteria for permanent disposal at ORNL, and does not meet the criteria at a currently planned off-site permanent disposal facility.

  3. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  4. Final Report Waste Incineration

    E-Print Network [OSTI]

    solid waste, the composition and com- bustion of it. A main focus is on the European emission from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical with municipal solid waste incineration (MSWI) and the problems that occur in connection to this. The emphasis

  5. Rethinking the Waste Hierarchy

    E-Print Network [OSTI]

    principles of EU waste policies. The environmental damage caused by waste depends on which type of manage, Environmental Assessment Institute For further information please contact: Environmental Assessment Institute.imv.dk #12;Environmental Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations

  6. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOE Patents [OSTI]

    Wagh, Arun; Maloney, Martin D.

    2010-06-29T23:59:59.000Z

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  7. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    SciTech Connect (OSTI)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y. (Nuclear Engineering Division); ( ES)

    2011-06-21T23:59:59.000Z

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted binder components from the waste form surface. Waste forms for ANS 16.1 leach testing contained appropriate amounts of rhenium and iodine as radionuclide surrogates, along with the additives silver-loaded zeolite and tin chloride. The leachability index for Re was found to range from 7.9 to 9.0 for all the samples evaluated. Iodine was below detection limit (5 ppb) for all the leachate samples. Further, leaching of sodium was low, as indicated by the leachability index ranging from 7.6-10.4, indicative of chemical binding of the various chemical species. Target leachability indices for Re, I, and Na were 9, 11, and 6, respectively. Degradation was observed in some of the samples post 90-day ANS 16.1 tests. Toxicity characteristic leaching procedure (TCLP) results showed that all the hazardous contaminants were contained in the waste, and the hazardous metal concentrations were below the Universal Treatment Standard limits. Preliminary scale-up (2-gal waste forms) was conducted to demonstrate the scalability of the Ceramicrete process. Use of minimal amounts of boric acid as a set retarder was used to control the working time for the slurry. Flexibility in treating waste streams with wide ranging compositional make-ups and ease of process scale-up are attractive attributes of Ceramicrete technology.

  8. Cost, time, and benefit measures for personal use fuel-wood collection in Colorado. Forest Service research paper

    SciTech Connect (OSTI)

    Betters, D.R.; Markstrom, D.C.; Aukerman, R.

    1990-01-01T23:59:59.000Z

    The average fuel-wood collector is willing to pay, beyond current perceived costs, an additional $21 to $29 per cord in order to continue collecting fuel-wood. The difference between willingness-to-pay estimates for fuel-wood collection and for wood purchased from a commercial vendor is assumed to present recreational value of fuel-wood collection. On that basis, the recreation values for the average collection is estimated to be between $6 and $12 per cord.

  9. Nuclear waste management. Quarterly progress report, January-March, 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A. (comp.)

    1981-06-01T23:59:59.000Z

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  10. Nuclear Waste Management Program summary document, FY 1981

    SciTech Connect (OSTI)

    Meyers, Sheldon

    1980-03-01T23:59:59.000Z

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  11. Organic and inorganic hazardous waste stabilization using combusted oil shale

    SciTech Connect (OSTI)

    Sorini, S.S.; Lane, D.C.

    1991-04-01T23:59:59.000Z

    A laboratory study was conducted at the Western Research Institute to evaluate the ability of combusted oil shale to stabilize organic and inorganic constituents of hazardous wastes. The oil shale used in the research was a western oil shale retorted in an inclined fluidized-bed reactor. Two combustion temperatures were used, 1550{degrees}F and 1620{degrees}F (843{degrees}C and 882{degrees}C). The five wastes selected for experimentation were an API separator sludge, creosote-contaminated soil, mixed metal oxide/hydroxide waste, metal-plating sludge, and smelter dust. The API separator sludge and creosote-contaminated soil are US EPA-listed hazardous wastes and contain organic contaminants. The mixed metal oxide/hydroxide waste, metal-plating sludge (also an EPA-listed waste), and smelter dust contain high concentrations of heavy metals. The smelter dust and mixed metal oxide/hydroxide waste fail the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metalplating sludge fails the TCLP for chromium. To evaluate the ability of the combusted oil shales to stabilize the hazardous wastes, mixtures involving varying amounts of each of the shales with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest.

  12. Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan

    SciTech Connect (OSTI)

    Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

    2007-07-01T23:59:59.000Z

    Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

  13. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect (OSTI)

    ROBBINS RA

    2011-02-11T23:59:59.000Z

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory.

  14. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    SciTech Connect (OSTI)

    Turner, J.W. [ed.

    1993-12-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.

  15. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  16. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  17. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13T23:59:59.000Z

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  18. An analysis of repository waste-handling operations

    SciTech Connect (OSTI)

    Dennis, A.W.

    1990-09-01T23:59:59.000Z

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs.

  19. Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmountCammie CroftPRELIMINARYPreparation for

  20. It Just Keeps Getting Better-Tru Waste Inventory

    SciTech Connect (OSTI)

    Lott, S.; Crawford, B.; McInroy, W.; Van Soest, G.; McTaggart, J.; Guerin, D. [Los Alamos National Laboratory-Carlsbad Operations, Carlsbad, NM (United States); Patterson, R. [U.S. Department of Energy Carlsbad, Field Office, Carlsbad, NM (United States)

    2008-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) opened on March 26, 1999, becoming the nation's first deep geologic repository for the permanent disposal of defense-generated transuranic (TRU) waste. In May 1998, the U. S. Environmental Protection Agency (EPA) certified WIPP and re-certified WIPP in March 2006. The knowledge of TRU waste inventory is fundamental to packaging, transportation, disposal strategies, resource allocation, and is also imperative when working in a regulatory framework. TRU waste inventory data are used to define the waste that will fill the WIPP repository in terms of volume, radionuclides, waste material parameters, other chemical components, and to model the impact of the waste on the performance of the WIPP over a 10,000-year evolution. The data that pertain to TRU waste is defined in the WIPP Land Withdrawal Act (LWA), as '..waste containing more that 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years..' Defining TRU waste further, the wastes are classified as either contact-handled (CH) or remote-handled (RH) TRU waste, depending on the dose rate at the surface of the waste container. CH TRU wastes are packaged with an external surface dose rate not greater than 200 milli-rem (mrem) per hour, while RH TRU wastes are packaged with an external surface dose rate of 200 mrem per hour or greater. The Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) Inventory Team has developed a powerful new database, the Comprehensive Inventory Database (CID), to maintain the TRU waste inventory information. The CID is intended to replace the Transuranic Waste Baseline Inventory Database (TWBID), Revision 2.1, as the central inventory information repository for tracking all existing and potential (TRU) waste generated across the Department of Energy (DOE) TRU waste complex. It is also the source for information submitted for the Annual TRU Waste Inventory Reports some of which will be used in future Compliance Re-certification Applications (CRAs) for the WIPP. Currently, the DOE is preparing for the second re-certification, CRA-2009. The CID contains comprehensive TRU waste inventory that is consistent, relevant, and easily accessible to support DOE needs, not only the CRAs and performance assessments, but also waste management planning activities and other regulatory needs (e.g., National Environmental Policy Act (NEPA) analyses). The comprehensive inventory contains information obtained via inventory updates and approved acceptable knowledge (AK) characterization information to ensure inventory data integrity is maintained and the inventory is current. The TRU waste inventory is maintained in the CID under configuration management as defined in the LANL-CO Quality Assurance Program. The CID was developed using Microsoft{sup TM} Access Data Project{sup TM} (ADP) technology with a Microsoft SQL Server{sup TM} back end. The CID is user friendly, contains more fields, provides for easy upload of data, and has the capability to generate fully qualified data reports. To go along with the new database, the LANL-CO Inventory Team has developed an improved data collection/screening process and has excellent communications with the TRU waste site personnel. WIPP has now received over 6,000 shipments, emplaced over 50,000 cubic meters of CH waste, and successfully completed one re-certification. With a new robust qualified database, the CID, to maintain the inventory information, the TRU waste inventory information is continuously improving in quality, accuracy, and usability (better). (authors)

  1. ENVIRONMENTAL IMPACTS ASSOCIATED WITH STORAGE, TREATMENT, AND DISPOSAL OF SOLID RADIOACTIVE AND CHEMICALLY HAZARDOUS WASTE AT THE HANFORD SITE, RICHLAND, WASHINGTON

    SciTech Connect (OSTI)

    Johnson, Wayne L.; Nelson, Iral C.; Payson, David R.; Rhoads, Kathleen

    2004-03-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices for certain solid radioactive wastes at the Hanford Site through the year 2046. The HSW EIS covers four primary aspects of waste management at Hanford storage, treatment, transportation, and disposal. It also addresses four types of solid waste low-level waste, mixed low-level waste that contains both radioactive and chemically hazardous constituents, immobilized low-activity waste from processing Hanford tank waste, and transuranic waste. The HSW EIS was prepared to assist DOE in determining which specific Hanford Site facilities will continue to be used, will be modified, or need to be constructed, to safely treat, store, and dispose of these wastes.

  2. QUALITY OF WOOD PELLETS PRODUCED IN BRITISH COLUMBIA FOR EXPORT

    SciTech Connect (OSTI)

    Tumuluru, J.S. [Idaho National Laboratory (INL); Sokhansanj, Shahabaddine [ORNL; Lim, C. Jim [University of British Columbia, Vancouver; Bi, X.T. [University of British Columbia, Vancouver; Lau, A.K. [University of British Columbia, Vancouver; Melin, Staffan [University of British Columbia, Vancouver; Oveisi, E. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver

    2010-11-01T23:59:59.000Z

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  3. Quality of Wood Pellets Produced in British Columbia for Export

    SciTech Connect (OSTI)

    J. S. Tumuluru; S. Sokhansanj; C. J. Lim; T. Bi; A. Lau; S. Melin; T. Sowlati; E. Oveisi

    2010-11-01T23:59:59.000Z

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  4. Wood-boring Insects of Trees and Shrubs

    E-Print Network [OSTI]

    Drees, Bastiaan M.; Jackman, John A.; Merchant, Michael E.

    2008-06-17T23:59:59.000Z

    termites, carpenter bees and carpenter ants. Many other insects live in dying or dead trees, including natural enemies (predators and parasites) of the insect borers, sap or fungi feeders, or species which merely use the spaces provided by the tunnels... segments behind the head capsule. While tunneling, larvae continually pack their tunnels with excrement (frass), which looks like compressed wood fibers, or push frass out of the holes they pro- duce. This excrement, along with the sap exuded by the plant...

  5. Performance of bolted wood connections using supplemental confining devices

    E-Print Network [OSTI]

    Stromatt, Rebecca Faye

    1996-01-01T23:59:59.000Z

    (1994) currently restricts the use of 2x dimensioned lumber for sill plates (nominal lumber thickness of The style and format of this thesis follow the Journal of Structural Engineering. 38. 1 mm [1. 5 in]) and requires the use of 3x dimensioned... lumber (nominal lumber thickness of 63. 5 mm [2. 5 in]). While a thicker wood member would increase the strength capacity of the connection according to analytical strength models, the ultimate failure mode under extreme loading conditions can still...

  6. EIS-0026-S: Supplemental Environmental Impact Statement Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Environmental Restoration and Waste Management prepared this statement to update the environmental record established during preparation of DOE/EIS-0026, Waste Isolation Pilot Plant, by evaluating the environmental impacts associated with new information, new circumstances, and modifications to the actions evaluated in DOE/EIS-0026 that were proposed in light of the new information.

  7. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  8. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    SciTech Connect (OSTI)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06T23:59:59.000Z

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  9. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect (OSTI)

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25T23:59:59.000Z

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  10. Preparation of acetaldehyde

    DOE Patents [OSTI]

    Tustin, G.C.; Depew, L.S.

    1997-10-21T23:59:59.000Z

    Disclosed is a process for the preparation of acetaldehyde by the hydrogenation of ketene in the presence of a transition metal hydrogenation catalyst.

  11. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect (OSTI)

    DEROSA, D.C.

    2000-01-13T23:59:59.000Z

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  12. EIS-0120: Waste Management Activities for Groundwater Protection, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has prepared this environmental impact statement to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant in Aiken, South Carolina.

  13. EIS-0120: Waste Management Activities for Groundwater Protection, Savannah River Plant, Aiken, SC

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has prepared this environmental impact statement to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant in Aiken, South Carolina.

  14. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

    2011-09-23T23:59:59.000Z

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

  15. Impact assessment of draft DOE Order 5820.2B. Radioactive Waste Technical Support Program

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared a revision to DOE Order 5820.2A, entitled ``Radioactive Waste Management.`` DOE issued DOE Order 5820.2A in September 1988 and, as the title implies, it covered only radioactive waste forms. The proposed draft order, entitled ``Waste Management,`` addresses the management of both radioactive and nonradioactive waste forms. It also includes spent nuclear fuel, which DOE does not consider a waste. Waste forms covered include hazardous waste, high-level waste, transuranic (TRU) waste, low-level radioactive waste, uranium and thorium mill tailings, mixed waste, and sanitary waste. The Radioactive Waste Technical Support Program (TSP) of Leached Idaho Technologies Company (LITCO) is facilitating the revision of this order. The EM Regulatory Compliance Division (EM-331) has requested that TSP estimate the impacts and costs of compliance with the revised order. TSP requested Dames & Moore to aid in this assessment by comparing requirements in Draft Order 5820.2B to ones in DOE Order 5820.2A and other DOE orders and Federal regulations. The assessment started with a draft version of 5820.2B dated January 14, 1994. DOE has released three updated versions of the draft order since then (dated May 20, 1994; August 26, 1994; and January 23, 1995). Each time DOE revised the order, Dames and Moore updated the assessment work to reflect the text changes. This report reflects the January 23, 1995 version of the draft order.

  16. Proposed research and development plan for mixed low-level waste forms

    SciTech Connect (OSTI)

    O`Holleran, T.O.; Feng, X.; Kalb, P. [and others

    1996-12-01T23:59:59.000Z

    The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

  17. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    NONE

    1995-04-26T23:59:59.000Z

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  18. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

  19. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

  20. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M [Los Alamos National Laboratory

    2010-11-09T23:59:59.000Z

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  1. Barge loading facilities in conjunction with wood chipping and sawlog mill, Tennessee River Mile 145. 9R: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    The purpose of this Environmental Assessment (EA) is to evaluate the environmental consequences of approving, denying, or adopting reasonable alternatives to a request for barge loading facilities. These facilities would serve a proposed wood chipping and sawlog products operation at Tennessee River Mile (TRM) 145.9, right descending bank, (Kentucky Lake), in Perry County, Tennessee. The site is located between Short Creek and Peters Landing. The applicant is Southeastern Forest Products, L.P. (SFP), Box 73, Linden, Tennessee and the proposed facilities would be constructed on or adjacent to company owned land. Portions of the barge terminal would be constructed on land over which flood easement rights are held by the United States of America and administered by the Tennessee Valley Authority (TVA). The US Army Corps of Engineers (CE) and TVA have regulatory control over the proposed barge terminal facilities since the action would involve construction in the Tennessee River which is a navigable water of the United States. The wood chipping and sawlog products facilities proposed on the upland property are not regulated by the CE or TVA. On the basis of the analysis which follows, it has been determined that a modified proposal (as described herein) would not significantly affect the quality of the human environment, and does not require the preparation of an environmental impact statement. 8 refs.

  2. New Waste Calcining Facility (NWCF) Waste Streams

    SciTech Connect (OSTI)

    K. E. Archibald

    1999-08-01T23:59:59.000Z

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  3. Waste IncIneratIon and Waste PreventIon

    E-Print Network [OSTI]

    and heat. In 2005/2006, German waste incineration plants provided some 6 terawatt hours (TWh-/Abfallgesetz) continues to hold: Waste prevention has priority over recovery and disposal. Nevertheless, the use of waste for en- ergy recovery is an indispensable element of sus- tainable waste management. Waste incineration

  4. Energy from Waste UK Joint Statement on Energy from Waste

    E-Print Network [OSTI]

    Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

  5. www.d-waste.com info@d-waste.com

    E-Print Network [OSTI]

    marketplace, about 47 grams of waste is produced-- with worldwide municipal solid waste generation totaling, the International Solid Waste Association, GIZ/SWEEP-Net, the Waste to Energy Research Council (WTERT) and the Solid management data available". According to David Newman, president of the International Solid Waste Association

  6. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  7. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  8. Method for predicting dry mechanical properties from wet wood and standing trees

    DOE Patents [OSTI]

    Meglen, Robert R.; Kelley, Stephen S.

    2003-08-12T23:59:59.000Z

    A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.

  9. The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology

    E-Print Network [OSTI]

    He, Wei

    2011-01-01T23:59:59.000Z

    wood-water, wood-water, wood-biosolids and wood-manure) were55 2.2.2 Rheological properties of biomass biosolidsViscosity to Shear Rate Profile of Biosolids With or Without

  10. Colorado School of Mines Nov-12 Cylindrical or mortise lock aluminum, wood or steel door

    E-Print Network [OSTI]

    Colorado School of Mines Nov-12 Cylindrical or mortise lock aluminum, wood or steel door Hinges 4 cylindrical or mortise lock aluminum, wood or steel door Hinges 4.5"x4.5" Ives 5BB1HW El Hinge 4.5"x4 FS18S OR FS444 #12;Colorado School of Mines Nov-12 Aluminum, wood or steel door with panic bar Hinges

  11. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  12. Converting sugarcane waste into charcoal for Haiti

    E-Print Network [OSTI]

    Toussaint, Etienne Clement

    2007-01-01T23:59:59.000Z

    In Haiti, most families have traditionally relied on wood and wood-derived charcoal as their primary fuel source for indoor cooking. This resource has proven to be unsustainable, however, as over 90% of the Haitian countryside ...

  13. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  14. Issues in the use of wood as an energy source in the northeastern US

    SciTech Connect (OSTI)

    Munson, J.S. (ed.)

    1980-05-01T23:59:59.000Z

    This report analyzes some of the concerns surrounding the use of wood for energy in the Northeast. It reviews the information on resource availability and ownership patterns in the Northeast, then focuses on New England, to assess the affect of potential resource constraints on the supply of wood available for energy and the effects of wood energy use on land use patterns. Finally, the application of specific technologies in settings that may experience significant wood energy use in the future is considered, including an assessment of the regional employment and income benefits of a major woodfuel installation.

  15. A review of "The Life of Anthony Wood In His Own Words" edited by Nicholas Kiessling

    E-Print Network [OSTI]

    Paleit, Edward

    2011-01-01T23:59:59.000Z

    authors exasperating, it is a vital form of exasperation. And whatever the exasperation, Genre and Women?s Life Writing in Early Modern England is much better reading than most blogs. Nicholas Kiessling, ed. #31;e Life of Anthony Wood In His Own Words...;#30;#21;#31; until retrieved by more recent scholarship, especially in the case of women. Anthony Wood, or as he later called himself, ? Wood, the historian of Oxford University and biographer of its alumni, was more fortunate. Wood wrote two manuscript...

  16. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect (OSTI)

    Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

    2009-01-01T23:59:59.000Z

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  17. Microsoft Word - CX-RedmondWoodPoles_multiSub_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    5, 2011 REPLY TO ATTN OF: KEP-Celilo SUBJECT: Environmental Clearance Memorandum Darrell Aaby Line Foreman III - TFDF-Redmond Proposed Action: Wood pole replacement at selected...

  18. Microsoft Word - CX-FY11PascoDistrictWoodPoleReplacement_WEB...

    Broader source: Energy.gov (indexed) [DOE]

    1, 2011 REPLY TO ATTN OF: KEPR-PASCO SUBJECT: Environmental Clearance Memorandum Toby Cossairt Lineman Foreman III - TFPF-PASCO Proposed Action: Wood pole replacement and minor...

  19. Microsoft Word - CX-AlveyDistrictWoodPoles-FY14_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    8, 2014 REPLY TO ATTN OF: KEP-Alvey SUBJECT: Environmental Clearance Memorandum Stacey Hensley Project Manager - TEP-TPP-4 Proposed Action: 2014 Alvey District Wood Pole...

  20. Microsoft Word - CX-BigEddy-RedmondWoodPoles_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    1 REPLY TO ATTN OF: KEP-Celilo SUBJECT: Environmental Clearance Memorandum Darrell Aaby Line Foreman III - TFDF-Redmond Proposed Action: Wood pole replacements at select locations...

  1. Microsoft Word - CX-FY11WenatcheeDistrictWoodPoleReplacement...

    Broader source: Energy.gov (indexed) [DOE]

    4, 2011 REPLY TO ATTN OF: KEPR-PASCO SUBJECT: Environmental Clearance Memorandum Terry Kugler Lineman Foreman III - TFWF-SCHULTZ Proposed Action: Wood pole replacement and minor...

  2. Microsoft Word - CX-CowlitzTaptoChehalis-CovingtonWoodPoles_WEB...

    Broader source: Energy.gov (indexed) [DOE]

    8, 2011 REPLY TO ATTN OF: KEPR-Covington SUBJECT: Environmental Clearance Memorandum Clay Grande Line Foreman III - TFCF-Covington Proposed Action: Wood pole replacement at...

  3. Microsoft Word - CX-RossDistrictWoodPolesFY13_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    9, 2013 REPLY TO ATTN OF: KEP-Alvey SUBJECT: Environmental Clearance Memorandum Stacie Hensley Realty Specialist - TEP-TPP-4 Proposed Action: 2013 Ross District Wood Pole...

  4. Microsoft Word - CX-PilotButte-LaPine-WoodPoles-FY13_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    3, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Wood pole replacements on Bonneville Power...

  5. Microsoft Word - CX-Chehalis-CentraliaNo2WoodPolesFY12_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    0, 2012 REPLY TO ATTN OF: KEPROlympia SUBJECT: Environmental Clearance Memorandum Ryan Brady Line Foreman III - TFOK-Chehalis Proposed Action: Wood pole structure replacements on...

  6. Microsoft Word - CX-KalispellTLMDistrictFY11WoodPoleReplacement...

    Broader source: Energy.gov (indexed) [DOE]

    Bell-1 SUBJECT: Environmental Cleareance Memorandum Michael Stolfus Lineman Foreman III - TFKF-Kalispell Kurt Marsh Lineman Foreman I - TFKF-Kalispell Proposed Action: Wood pole...

  7. WOODS FOR LEARNING ACTION PLAN 2010-2013 Objective National Indicators Specific actions

    E-Print Network [OSTI]

    WOODS FOR LEARNING ACTION PLAN 2010-2013 Objective National Indicators Specific actions Lead positive inspection reports Develop Forest Kindergarten with nurseries in both private and state sectors

  8. FEASIBILITY AND EXPEDIENCE TO VITRIFY NPP OPERATIONAL WASTE

    SciTech Connect (OSTI)

    LIFANOV, F.A.; OJOVAN, M.I.; STEFANOVSKY, S.V.; BURCL, R.

    2003-02-27T23:59:59.000Z

    Operational radioactive waste is generated during routine operation of NPP. Process waste is mainly generated by treatment of water from reactor or ancillaries including spent fuel storage pools and some decontamination operations. Typical process wastes of pressurized water reactors (PWR or WWER) are borated water concentrates, whereas typical process wastes of boiling and RBMK type reactors are water concentrates with no boron content. NPP operational wastes are classified as low and intermediate level waste (LILW). NPP operational waste must be solidified in order to ensure safe conditions of storage and disposal. Currently the most promising solidification method for this waste is the vitrification technology. Vitrification of NPP operational waste is a relative new option being developed for last years. Nevertheless there is already accumulated operational experience on vitrifying low and intermediate level waste in Russian Federation at Moscow SIA ''Radon'' vitrification plant. This plant uses the most advanced type induction high frequency melters that facilitate the melting process and significantly reduce the generation of secondary waste and henceforth the overall cost. The plant was put into operation by the end of 1999. It has three operating cold crucible melters with the overall capacity up to 75 kg/h. The vitrification technology comprises a few stages, starting with evaporation of excess water from liquid radioactive waste, followed by batch preparation, glass melting, and ending with vitrified waste blocks and some relative small amounts of secondary waste. First of all since the original waste contain as main component water, this water is removed from waste through evaporation. Then the remaining salt concentrate is mixed with necessary technological additives, thus a glass-forming batch is formed. The batch is fed into melters where the glass melting occurs. From here there are two streams: one is the glass melt containing the most part of radioactivity and second is the off gas flow, which contains off gaseous and aerosol airborne. The melt glass is fed into containers, which are slowly cooled in an annealing tunnel furnace to avoid accumulation of mechanical stresses in the glass. Containers with glass are the final processing product containing the overwhelming part of waste contaminants. The second stream from melter is directed to gas purification system, which is a rather complex system taking into account the necessity to remove from off gas not only radionuclides but also the chemical contaminants. Operation of this purification system leads to generation of a small amount of secondary waste. This waste stream slightly contaminated with volatilized radionuclides is recycled in the same technological scheme. As a result only non-radioactive materials are produced. They are either discharged into environment or reused. Based on the experience gained during operation of vitrification plant one can conclude on high efficiency achieved through vitrification method. Another significant argument on vitrifying NPP operational waste is the minimal impact of vitrified radioactive waste onto environment. Solidified waste shall be disposed of into a near surface disposal facility. Waste forms disposed of in a near-surface wet repository eventually come into contact with groundwater. Engineered structures used or designed to prevent or postpone such contact and the subsequent radionuclide release are complex and often too expensive. Vitrification technologies provide waste forms with excellent resistance to corrosion and gave the basic possibility of maximal simplification of engineered barrier systems. The most simple disposal option is to locate the vitrified waste form packages directly into earthen trenches provided the host rock has the necessary sorption and confinement properties. Such an approach will significantly make simpler the disposal facilities thus contributing both to enhancing safety and economic al efficiency.

  9. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-09-01T23:59:59.000Z

    This Safety Evaluation Report (SER) documents the Department of Energys (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  10. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  11. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  12. Operational waste volume projection

    SciTech Connect (OSTI)

    Koreski, G.M.

    1996-09-20T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  13. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect (OSTI)

    Boggs, C.J. [Argonne National Lab., Germantown, MD (United States); Shaddoan, W.T. [Lockheed Martin Energy Systems, Paducah, KY (United States)

    1996-03-01T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  14. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01T23:59:59.000Z

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  15. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06T23:59:59.000Z

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  16. Solid Waste Management (Connecticut)

    Broader source: Energy.gov [DOE]

    Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

  17. Solid Waste Policies (Iowa)

    Broader source: Energy.gov [DOE]

    This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are...

  18. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  19. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01T23:59:59.000Z

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  20. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  1. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  2. Solid Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

  3. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  4. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26T23:59:59.000Z

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  5. The Manure Spreader IFASLivestockWaste TestingLaboratory

    E-Print Network [OSTI]

    Watson, Craig A.

    and guidance on sustainable waste management for optimum eco nomic, aesthetic and environmental returns from preparation and digestion for further analyses. · Kelley Hines, Chemist, Nutrient Management Program in Soil by Kelley Hines, Chemist Nutrient Management Program Dr. Rao Mylavarapu Nutrient Management

  6. System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Wiggins, Gavin [ORNL; Hao, Ye [ORNL

    2010-01-01T23:59:59.000Z

    We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

  7. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28T23:59:59.000Z

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  8. Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...

    National Nuclear Security Administration (NNSA)

    licensed to safely and permanently dispose of transuranic radioactive waste, or TRU waste, left over from the production of nuclear weapons. After more than 20 years of...

  9. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  10. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  11. Virginia Waste Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

  12. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  13. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  14. Georgia Waste Control Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

  15. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect (OSTI)

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26T23:59:59.000Z

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  16. Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs, Raymer J.E.

    2008-06-12T23:59:59.000Z

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets, contaminated equipment, decontamination materials, etc.).

  17. Implementation plan for the Waste Experimental Reduction Facility Restart Operational Readiness Review

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The primary technical objective for the WERF Restart Project is to assess, upgrade where necessary, and implement management, documentation, safety, and operation control systems that enable the resumption and continued operation of waste treatment and storage operations in a manner that is compliant with all environment, safety, and quality requirements of the US Department of Energy and Federal and State regulatory agencies. Specific processes that will be resumed at WERF include compaction of low-level compatible waste; size reduction of LLW, metallic and wood waste; incineration of combustible LLW and MLLW; and solidification of low-level and mixed low-level incinerator bottom ash, baghouse fly ash, and compatible sludges and debris. WERF will also provide for the operation of the WWSB which includes storage of MLLW in accordance with Resource Conservation and Recovery Act requirements.

  18. Laguna Woods, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills,Woods,

  19. Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood, 2002) Jump to: navigation,Open

  20. Wood-Ridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood, Wisconsin: Energy Resources

  1. Wood County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin: Energy ResourcesWolverine JumpWood

  2. Lake of the Woods, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995°,ILEDSGP/joinHavasuPalmdaleLakeWoods,

  3. Woods County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoods County, Oklahoma: Energy Resources Jump

  4. Woods Hole, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoods County, Oklahoma: Energy Resources

  5. Wood and Pellet Heating Basics | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads|ofEvents »SSL BasicsKawtarSue CangeWendeWood and Pellet

  6. Hancock-Wood Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersvilleHallandaleHamlinHanauOhio:Hancock-Wood

  7. Meadow Woods, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° ShowMeade County, Kansas:Acres,Woods,

  8. Wood-Composites Industry Benefits from ALS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig worldFélicieTeresaConcernswithWood

  9. Solid Waste Paul Woodson, East Central University

    E-Print Network [OSTI]

    of groundwater contamination, air pollution, and odor. Solid wastes may be displeasing to the public either, industrial and medical wastes, food wastes, mineral waste, and nonhazardous wastes. In addition/reservoirs, special wastes, such as medical wastes, low level radioactive wastes, construction/demolition debris

  10. Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.

    SciTech Connect (OSTI)

    Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

    1990-10-01T23:59:59.000Z

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  11. EXPORT CONTROLS PREPARED BY

    E-Print Network [OSTI]

    Sorin, Eric J.

    EXPORT CONTROLS MANUAL PREPARED BY: Office of General Counsel The California State University SEPTEMBER 2012 #12; Export Controls Manual Table of Contents I. INTRODUCTION ......................................................................................................... 1 II. HISTORY OF EXPORT CONTROLS

  12. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  13. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  14. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  15. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  16. Animal Waste Technology Fund (Maryland)

    Broader source: Energy.gov [DOE]

    A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

  17. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  18. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  19. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  20. Waste classification sampling plan

    SciTech Connect (OSTI)

    Landsman, S.D.

    1998-05-27T23:59:59.000Z

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.