National Library of Energy BETA

Sample records for wm peis waste

  1. Waste Management Programmatic Environmental Impact Statement...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS)...

  2. Waste Management Programmatic Environmental Impact Statement (WM PEIS)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities. TheEnergyEnergyMedia1, inReports and Records of

  3. Waste Management Fault Tree Data Bank (WM): 1992 status report

    SciTech Connect (OSTI)

    Baughman, D.F.; Hang, P.; Townsend, C.S.

    1993-08-30

    The Risk Assessment Methodology Group (RAM) of the Nuclear Process Safety Research Section (NPSR) maintains a compilation of incidents that have occurred in the Waste Management facilities. The Waste Management Fault Tree Data Bank (WM) contains more than 35,000 entries ranging from minor equipment malfunctions to incidents with significant potential for injury or contamination of personnel. This report documents the status of the WM data bank including: availability, training, source of data, search options, and usage, to which these data have been applied. Periodic updates to this memorandum are planned as additional data or applications are acquired.

  4. Characterization of Tank WM-189 Sodium-bearing Waste at INTEC, Rev. 1

    SciTech Connect (OSTI)

    Batcheller, Thomas Aquinas; Taylor, Dean Dalton

    2003-07-01

    Idaho Nuclear Technology and Engineering Center 300,000-gallon vessel WM-189 was filled in late 2001 with concentrated sodium bearing waste (SBW). Three airlifted liquid samples and a steam jetted slurry sample were obtained for quantitative analysis and characterization of WM-189 liquid phase SBW and tank heel sludge. Estimates were provided for most of the reported data values, based on the greater of (a) analytical uncertainty, and (b) variation of analytical results between nominally similar samples. A consistency check on the data was performed by comparing the total mass of dissolved solids in the liquid, as measured gravimetrically from a dried sample, with the corresponding value obtained by summing the masses of cations and anions in the liquid, based on the reported analytical data. After reasonable adjustments to the nitrate and oxygen concentrations, satisfactory consistency between the two results was obtained. A similar consistency check was performed on the reported compositional data for sludge solids from the steam jetted sample. In addition to the compositional data, various other analyses were performed: particle size distribution was measured for the sludge solids, sludge settling tests were performed, and viscosity measurements were made. WM-189 characterization results were compared with those for WM-180, and other Tank Farm Facility tank characterization data. A 2-liter batch of WM-189 simulant was prepared and a clear, stable solution was obtained, based on a general procedure for mixing SBW simulant that was develop by Dr. Jerry Christian. This WM-189 SBW simulant is considered suitable for laboratory testing for process development.

  5. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  6. WM '04 Conference, February 29 March 4, 2004, Tucson, AZ WM-4010 VITRIFICATION OF LOW AND INTERMEDIATE LEVEL WASTE: TECHNOLOGY

    E-Print Network [OSTI]

    Sheffield, University of

    radioactive waste (LILW), may result in significant reduction of transport and disposal costs. Development and intermediate level radioactive waste (LILW) is becoming increasingly important and large programmes waste from nuclear power plants (NPP) and institutional radioactive waste in borosilicate glass matrices

  7. Supplemental information related to risk assessment for the off-site transportation of low-level waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-12-01

    This report presents supplemental information to support the human health risk assessment conducted for the transportation of low-level waste (LLW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). Detailed descriptions of the transportation health risk assessment method and results of the assessment are presented in Appendix E of the WM PEIS and are not repeated in this report. This report presents additional information that is not presented in Appendix E but that was needed to conduct the transportation risk assessment for Waste Management (WM) LLW. Included are definition of the LLW alternatives considered in the WM PEIS, data related to the inventory and to the physical and radiological characteristics of WM LLW, an overview of the risk assessment method, and detailed results of the assessment for each WM LLW alternative considered.

  8. Supplemental information related to risk assessment for the off-site transportation of low-level mixed waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Antonopoulos, A.A.; Hartmann, H.M.; Policastro, A.J.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.] [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-12-01

    This report provides supplemental information to support the human health risk assessment conducted for the transportation of low-level mixed waste (LLMW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). The assessment considers both the radioactive and chemical hazards associated with LLMW transportation. Detailed descriptions of the transportation health risk assessment methods and results of the assessment are presented in Appendix E of the WM PEIS. This report presents additional information that is not included in Appendix E but that was needed to conduct the transportation risk assessment for Waste Management (WM) LLMW. Included are definitions of the LLMW alternatives considered in the WM PEIS; data related to the inventory and to the physical, chemical, and radiological characteristics of WM LLMW; an overview of the risk assessment methods; and detailed results of the assessment for each WM LLMW case considered.

  9. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  10. Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1996-12-01

    Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

  11. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01

    LBNL/PUB-5352, Revision 6 Waste Management QualityAssurance Plan Waste Management Group Environment, HealthRev. 6 WM QA Plan Waste Management Quality Assurance Plan

  12. WM2014 Conference - Building the Community of Practice for Performance...

    Office of Environmental Management (EM)

    WM2014 Conference - Building the Community of Practice for Performance and Risk Assessment in Support of Risk-Informed Environmental Management Decisions WM2014 Conference -...

  13. Biochar: A Solution to Oakland's Green Waste?

    E-Print Network [OSTI]

    Villar, Amanda

    2012-01-01

    as an alternative waste management solution. Biochar is asequestration and alternative green waste management. For5 years, Alameda County Waste Management’s (WM) residential

  14. Final environmental assessment for off-site transportation of low-level waste from four California sites under the management of the U.S. Department of Energy Oakland Operations Office

    SciTech Connect (OSTI)

    NONE

    1997-10-01

    The Department of Energy Oakland Operations Office (DOE/OAK) manages sites within California that generate Low Level Waste (LLW) in the course or routine site operations. It is the preference of the DOE to dispose of LLW at federally owned and DOE-operated disposal facilities; however, in some circumstances DOE Headquarters has determined that disposal at commercial facilities is appropriate, as long as the facility meets all regulatory requirements for the acceptance and disposal of LLW, including the passage of a DOE audit to determine the adequacy of the disposal site. The DOE would like to ship LLW from four DOE/OAK sites in California which generate LLW, to NRC-licensed commercial nuclear waste disposal facilities such as Envirocare in Clive, Utah and Chem Nuclear in Barnwell, South Carolina. Transportation impacts for shipment of LLW and MLLW from DOE Oakland sites to other DOE sites was included in the impacts identified in the Department`s Waste Management Programmatic Environmental Impact Statement (WM-PEIS), published in May, 1997, and determined to be low. The low impacts for shipment to commercial sites identified herein is consistent with the WM-PEIS results.

  15. The Waste Management Quality Assurance Implementing Management Plan (QAIMP)

    E-Print Network [OSTI]

    Albert editor, R.

    2009-01-01

    AND SAFETY DIVISION Waste Management Quality AssuranceII I RECORD I WM-QAIMP Waste Management Quality Assurancefor hazardous waste management that have leadership

  16. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    SciTech Connect (OSTI)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  17. Standardization of DOE Disposal Facilities Waste Acceptance Process

    SciTech Connect (OSTI)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  18. WM2014 Conference - Building the Community of Practice for Performance...

    Broader source: Energy.gov (indexed) [DOE]

    WM2014 Conference - Building the Community of Practice for Performance and Risk Assessment in Support of Risk-Informed Environmental Management Decisions - 14575. Explores and...

  19. Microsoft Word - WM Paper - Eco-Restoration Final.doc

    Broader source: Energy.gov (indexed) [DOE]

    Compensation and Liability Act (CERCLA). WM2008 Conference, February 24-28, 2008, Phoenix, AZ Remedial activities and subsequent ecological restoration have converted the site...

  20. Wind Turbine Test \\^ind Matic WM 15S

    E-Print Network [OSTI]

    00 ·2 V. v/ RisoM-2481 Wind Turbine Test \\^ind Matic WM 15S Troels Friis Pedersent The Test Station for Windmills Riso National Laboratory, DK-4000 Roskilde, Denmark July 1986 #12;#12;RIS0-M-2481 WIND TURBINE describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements

  1. Improving Mathematics Retrieval Shahab Kamali and Frank Wm. Tompa

    E-Print Network [OSTI]

    Tompa, Frank

    Improving Mathematics Retrieval Shahab Kamali and Frank Wm. Tompa David R. Cheriton School. Despite the popularity of storing mathematical objects on the web, searching for mathematical expressions is extremely limited. Conventional retrieval systems are inadequate for mathematical expres- sions, because

  2. INSTITUTE FOR CYBER SECURITY The PEI Framework for

    E-Print Network [OSTI]

    Sandhu, Ravi

    INSTITUTE FOR CYBER SECURITY 1 The PEI Framework for Application-Centric Security Prof. Ravi Sandhu Executive Director and Endowed Chair Institute for Cyber Security University of Texas at San Antonio May Presented by: Ram Krishnan, GMU #12;INSTITUTE FOR CYBER SECURITY Application Context Our Basic Premise

  3. The Waste Management Quality Assurance Implementing Management Plan (QAIMP)

    E-Print Network [OSTI]

    Albert editor, R.

    2009-01-01

    III I II QUALITY ASSURANCE IMPLEMENTING MANAGEMENT PLAN I III SECTION 1 - MANAGEMENT Criterion 1 - Program II II WM-AND SAFETY DIVISION Waste Management Quality Assurance

  4. Double shell tank waste analysis plan

    SciTech Connect (OSTI)

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  5. File:Geothermal PEIS final.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonasterwind crossword.pdf JumpEnergyGeothermal PEIS

  6. Dr. Wm. E. Mott, Director Environmental 8 Safety Eng. Div.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison -T: Designation ofSEP 2Dr.Wm. E.

  7. WM'02 Conference, February 24-28, 2002, Tucson, AZ

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction Sensitivityv b W r .WM'02 Conference,

  8. Using genetic programming to determine software quality Matthew Evett, Taghi Khoshgoftaar, Pei-der Chien

    E-Print Network [OSTI]

    Fernandez, Thomas

    Using genetic programming to determine software quality Matthew Evett, Taghi Khoshgoftaar, Pei software quality prediction methodsto determine to whichmodulesex- pensivereliability techniquesshouldbe.Thepaper describes the GPsys- tem, and provides a case study using software quality data froma very large industrial

  9. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  10. MARKET-BASED APPROACHES TO SOLID WASTE MANAGEMENT

    E-Print Network [OSTI]

    Bateman, Ian J.

    MARKET-BASED APPROACHES TO SOLID WASTE MANAGEMENT by DAVID PEARCE and R. KERRY TURNER CSERGE Working Paper WM 92-02 #12;MARKET-BASED APPROACHES TO SOLID WASTE MANAGEMENT by DAVID PEARCE and R. KERRY permits. #12;1 1. INTRODUCTION: WASTE MANAGEMENT FAILURES Rational decision making about solid waste

  11. Causes and Effects of Rework on the Delivery of Healthcare Facilities in California Peter Pei-Yin Feng

    E-Print Network [OSTI]

    Tommelein, Iris D.

    Causes and Effects of Rework on the Delivery of Healthcare Facilities in California by Peter Pei Rundall Spring 2009 #12;Causes and Effects of Rework on the Delivery of Healthcare Facilities in California Copyright 2009 by Peter Pei-Yin Feng #12;1 Abstract Causes and Effects of Rework on the Delivery

  12. Waste Management Committee Fiscal Year 2012 Work Plan | Department...

    Office of Environmental Management (EM)

    Committee Fiscal Year 2012 Work Plan Waste Management Committee Fiscal Year 2012 Work Plan Topics: TA-21 TA-54 RiskBenefit Principles Consent Order WM-FY12-WP - September...

  13. Waste Isolation Pilot Plant Typifies Optimizing Resources to Maximize Results

    Broader source: Energy.gov [DOE]

    EM Carlsbad Field Office (CBFO) Manager Joe Franco, right, presents a memento to EM Senior Advisor Dave Huizenga at the February 2013 Waste Management Conference in Phoenix presented by WM Symposia.

  14. Analysis of Software Evolvability in Quality Models Hongyu Pei Breivold1, Ivica Crnkovic2

    E-Print Network [OSTI]

    Becker, Steffen

    Analysis of Software Evolvability in Quality Models Hongyu Pei Breivold1, Ivica Crnkovic2 1ABB analyze several existing quality models for the purpose of evaluating how software evolvability is that although none of the existing quality models is dedicated to the analysis of software evolvability, we can

  15. MEASUREMENTS ON DELAY AND HOPCOUNT OF THE Aiguo Fei, Guangyu Pei, Roy Liu, and Lixia Zhang

    E-Print Network [OSTI]

    California at Los Angeles, University of

    . Internet measurement has a history as long as the Internet itself. Measurement experiments on the ARPANETMEASUREMENTS ON DELAY AND HOP­COUNT OF THE INTERNET Aiguo Fei, Guangyu Pei, Roy Liu, and Lixia, lixiag@cs.ucla.edu Abstract To find out how big the Internet is, we measured the round­trip delays

  16. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect (OSTI)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  17. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  18. Tank waste remediation system compensatory measure removal

    SciTech Connect (OSTI)

    MILLIKEN, N.J.

    1999-05-18

    In support of Fiscal Year 1998 Performance Agreement TWR1.4.3, ''Replace Compensatory Measures,'' the Tank Waste Remediation System is documenting the completion of field modifications supporting the removal of the temporary exemptions from the approved Tank Waste Remediation System Technical Safety Requirements (TSRs), HNF-SD-WM-TSR-006. These temporary exemptions or compensatory measures expire September 30, 1998.

  19. GREEN TAXES, WASTE MANAGEMENT AND POLITICAL ECONOMY

    E-Print Network [OSTI]

    Bateman, Ian J.

    GREEN TAXES, WASTE MANAGEMENT AND POLITICAL ECONOMY by R. Kerry Turner J. Powell A. Craighill CSERGE Working Paper WM 96-03 #12;GREEN TAXES, WASTE MANAGEMENT AND POLITICAL ECONOMY by R. Kerry Turner and advocated. The application of such instruments in the current political economy settings will however serve

  20. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

  1. our tools (toys) PhD program http://as.wm.edu

    E-Print Network [OSTI]

    Shaw, Leah B.

    new synthetic materials. Dur nanomaterials are engineered from atomic dimensions to macroscopic lengthour tools (toys) PhD program · I http://as.wm.edu http://nano-materials.org · The College a honeycomb laffice Mission. We develop and synthesize new nanomaterials, and we investigate nanomater- ials

  2. WM '04 Conference, February 29 March 4, 2004, Tucson, AZ WM-4085 METAL MATRIX IMMOBILISATION OF SEALED RADIOACTIVE SOURCES FOR SAFE

    E-Print Network [OSTI]

    Sheffield, University of

    OF SEALED RADIOACTIVE SOURCES FOR SAFE STORAGE, TRANSPORTATION AND DISPOSAL M. I. Ojovan, W. E. Lee of radiation fields and concentrations of radionuclides from SRS may far exceed high-level radioactive waste OF SRS The classification of radioactive wastes in the Russian Federation is based on the nature

  3. Design and Implementation of a 9-Axis Inertial Measurement Unit Pei-Chun Lin and Chi-Wei Ho

    E-Print Network [OSTI]

    Lin, Pei-Chun

    Design and Implementation of a 9-Axis Inertial Measurement Unit Pei-Chun Lin and Chi-Wei Ho Abstract-- We report on a 9-axis inertial measurement unit (IMU) which utilizes 3-axis angular velocity of states. A traditional inertial measurement unit (IMU) is comprised of 3-axis acceleration measurement

  4. Ion imaging study of reaction dynamics in the N+ + CH4 system Linsen Pei and James M. Farrar

    E-Print Network [OSTI]

    Farrar, James M.

    map ion imaging method is applied to the ion-molecule reactions of N+ with CH4. The velocity spaceIon imaging study of reaction dynamics in the N+ + CH4 system Linsen Pei and James M. Farrar OF CHEMICAL PHYSICS 137, 154312 (2012) Ion imaging study of reaction dynamics in the N+ + CH4 system Linsen

  5. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  6. A Study of Integrated Prefetching and Caching Strategies Pei Cao 3 Edward W. Felten 3 Anna R. Karlin y Kai Li 3

    E-Print Network [OSTI]

    Karlin, Anna R.

    A Study of Integrated Prefetching and Caching Strategies Pei Cao 3 Edward W. Felten 3 Anna R, Princeton University, Prince­ ton, NJ. fpc,felten,lig@cs.princeton.edu y Department of Computer Science

  7. Waste Management facilities fault tree databank 1995 status report

    SciTech Connect (OSTI)

    Minnick, W.V.; Wellmaker, K.A.

    1995-08-16

    The Safety Information Management and Analysis Group (SIMA) of the Safety Engineering Department (SED) maintains compilations of incidents that have occurred in the Separations and Process Control, Waste Management, Fuel Fabrication, Tritium and SRTC facilities. This report records the status of the Waste Management (WM) Databank at the end of CY-1994. The WM Databank contains more than 35,000 entries ranging from minor equipment malfunctions to incidents with significant potential for injury or contamination of personnel. This report documents the status of the WM Databank including the availability, training, sources of data, search options, Quality Assurance, and usage to which these data have been applied. Periodic updates to this memorandum are planned as additional data or applications are acquired.

  8. Regarding the possible generation of a lunar nightside exo-ionosphere W.M. Farrell a,d,

    E-Print Network [OSTI]

    California at Berkeley, University of

    Note Regarding the possible generation of a lunar nightside exo-ionosphere W.M. Farrell a,d, , J of Maryland/Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States d NASA's Lunar Science 2011 Keywords: Moon Ionospheres a b s t r a c t The non-condensing neutral helium exosphere is at its

  9. One size fits all? An assessment tool for solid waste management at local and national levels

    SciTech Connect (OSTI)

    Broitman, Dani; Ayalon, Ofira; Kan, Iddo

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Waste management schemes are generally implemented at national or regional level. Black-Right-Pointing-Pointer Local conditions characteristics and constraints are often neglected. Black-Right-Pointing-Pointer We developed an economic model able to compare multi-level waste management options. Black-Right-Pointing-Pointer A detailed test case with real economic data and a best-fit scenario is described. Black-Right-Pointing-Pointer Most efficient schemes combine clear National directives with local level flexibility. - Abstract: As environmental awareness rises, integrated solid waste management (WM) schemes are increasingly being implemented all over the world. The different WM schemes usually address issues such as landfilling restrictions (mainly due to methane emissions and competing land use), packaging directives and compulsory recycling goals. These schemes are, in general, designed at a national or regional level, whereas local conditions and constraints are sometimes neglected. When national WM top-down policies, in addition to setting goals, also dictate the methods by which they are to be achieved, local authorities lose their freedom to optimize their operational WM schemes according to their specific characteristics. There are a myriad of implementation options at the local level, and by carrying out a bottom-up approach the overall national WM system will be optimal on economic and environmental scales. This paper presents a model for optimizing waste strategies at a local level and evaluates this effect at a national level. This is achieved by using a waste assessment model which enables us to compare both the economic viability of several WM options at the local (single municipal authority) level, and aggregated results for regional or national levels. A test case based on various WM approaches in Israel (several implementations of mixed and separated waste) shows that local characteristics significantly influence WM costs, and therefore the optimal scheme is one under which each local authority is able to implement its best-fitting mechanism, given that national guidelines are kept. The main result is that strict national/regional WM policies may be less efficient, unless some type of local flexibility is implemented. Our model is designed both for top-down and bottom-up assessment, and can be easily adapted for a wide range of WM option comparisons at different levels.

  10. Hazardous waste database: Waste management policy implications for the US Department of Energy`s Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M. [Argonne National Lab., IL (United States); Stoll, P.W. [COMPASS Environmental Compliance Associates, Boise, ID (United States)

    1994-03-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy`s Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations.

  11. Sandia National Laboratories, California Waste Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  12. WM'02 Conference, February 24-28, 2002, Tucson, AZ ENVIRONMENTAL RADIATION PROTECTION STANDARDS

    E-Print Network [OSTI]

    FOR YUCCA MOUNTAIN, NEVADA CAPT Raymond L. Clark, U.S. Public Health Service Team Leader for the Yucca disposal system in Yucca Mountain, Nevada. These standards are found in Part 197 of Title 40 of the Code for the potential spent nuclear fuel and high-level radioactive waste disposal system in Yucca Mountain, Nevada

  13. ACCESSING MCLEOD BUSINESS LIBRARY DATABASES 2/11/13 McLeod Business Library 757-221-2916 http://mason.wm.edu/about/library/

    E-Print Network [OSTI]

    Lewis, Robert Michael

    ACCESSING MCLEOD BUSINESS LIBRARY DATABASES 2/11/13 McLeod Business Library 757-221-2916 http://mason.wm.edu/about/library to use the databases OUTSIDE the library, you'll need to set up Remote Desktop Access on your computer majors.) You will need your Mason School of Business email address and password. http://masonweb.wm.edu/it/docs/bus-library

  14. Review Guidance for the TWRS FSAR amendment for Waste Retrieval and waste feed delivery

    SciTech Connect (OSTI)

    GRIFFITH, R.W.

    1999-10-01

    This review guidance (Guide) was developed for Office of River Protection (ORP) reviewers to use in reviewing the amendment to the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR) covering waste retrieval and waste feed delivery. Waste retrieval and waste feed delivery are necessary to supply nuclear waste from TWRS storage tanks to the TWRS Privatization (TWRS-P) Contractor's vitrification facility and to receive intermediate waste from the vitrification facility back into the TWRS tank farms for interim storage. An amendment to the approved TWRS FSAR (HNF-SD-WM-SAR-067, Rev. 0) is necessary to change the authorization basis to accommodate waste retrieval and waste feed delivery. The ORP'S safety responsibility in reviewing the FSAR amendment is to determine that reasonable assurance exists that waste retrieval and waste feed delivery operations can be accomplished with adequate safety for the workers, the public, and the environment. To carry out this responsibility, the ORP will evaluate the Contractor's amendment to the TWRS FSAR for waste retrieval and waste feed delivery to determine whether the submittal provides adequate safety and complies with applicable regulatory requirements.

  15. In situ thin film thickness measurement with acoustic Lamb waves Jun Pei, F. Levent Degertekin, Butrus T. KhuriYakub, and Krishna C. Saraswat

    E-Print Network [OSTI]

    Khuri-Yakub, Butrus T. "Pierre"

    In situ thin film thickness measurement with acoustic Lamb waves Jun Pei, F. Levent Degertekin-standing highly conducting ultrananocrystalline diamond films with enhanced electron field emission properties gold films Appl. Phys. Lett. 101, 201102 (2012) Effect of N2 dielectric barrier discharge treatment

  16. Sandia National Laboratories California Waste Management Program Annual Report February 2008.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2008-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  17. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  18. Hydrogen Donors in ZnO M.D. McCluskey, S.J. Jokela, and W.M. Hlaing Oo

    E-Print Network [OSTI]

    McCluskey, Matthew

    Hydrogen Donors in ZnO M.D. McCluskey, S.J. Jokela, and W.M. Hlaing Oo Department of Physics first-principles calculations and experimental studies have shown that hydrogen acts as a shallow donor in ZnO, in contrast to hydrogen's usual role as a passivating impurity. Given the omnipresence

  19. ASCEM WM 2013 Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotal OzoneStudyAdministration March1

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Karl Kong, Pei Wen Lei, Yabo Li, Rain Yuan Rain Tian

    E-Print Network [OSTI]

    that are currently used to collect food scraps at UBC are cleaned at the Composting Facility located at the south, Yabo Li, Rain Yuan Rain Tian AN INVETIGATION INTO ORGANIC WASTE BIN LINERS APSC 262 April 10, 2014 1036 Technology and Society Instructor Name: Paul Winkelman AN INVETIGATION INTO ORGANIC WASTE BIN LINERS

  1. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  2. GTS Duratek, phase I Hanford low-level waste melter tests: Final report

    SciTech Connect (OSTI)

    Eaton, W.C.

    1995-10-26

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029).

  3. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  4. WindEnergyPEIS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statement (DOEEIS-0408) Western Area Power Administration (Western) and the U.S. Fish and Wildlife Service (Service) have jointly prepared this programmatic environmental...

  5. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  6. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  7. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    SciTech Connect (OSTI)

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Henckel, George [Los Alamos Site Office, MS-A316, Los Alamos, NM 87544 (United States)

    2012-07-01

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and reports. - Use of six-sigma tools can help improve the quality and efficiency of waste management processes. - A fair, easy to understand, transparent, and well-overseen process for distributing the cost of waste disposal and waste program oversight is essential. (authors)

  8. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    #12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

  9. WM2008 Conference, February 24-28, 2008, Phoenix, AZ Shielded Payload Containers Will Enhance the Safety and Efficiency of the DOE's Remote Handled

    E-Print Network [OSTI]

    International P.O. Box 3090, Carlsbad, New Mexico 88221 ABSTRACT The Waste Isolation Pilot Plant (WIPP) disposal-lined containers, shipped to WIPP in existing certified transportation packages for CH waste, and emplaced in WIPP to meet the requirements that apply to WIPP and its associated transportation system. This paper describes

  10. Logistic-exponential distribution (from http://www.math.wm.edu/~leemis/chart/UDR/UDR.html) The shorthand X logistic-exponential(,) is used to indicate that the random variable X has the

    E-Print Network [OSTI]

    Leemis, Larry

    Logistic-exponential distribution (from http://www.math.wm.edu/~leemis/chart/UDR/UDR.html) The shorthand X logistic-exponential(,) is used to indicate that the random variable X has the logistic-exponential distribution with positive scale parameter and positive shape parameter . A logistic-exponential random

  11. Logistic distribution (from http://www.math.wm.edu/~leemis/chart/UDR/UDR.html) The shorthand X logistic(,) is used to indicate that the random variable X has the logistic

    E-Print Network [OSTI]

    Leemis, Larry

    Logistic distribution (from http://www.math.wm.edu/~leemis/chart/UDR/UDR.html) The shorthand X logistic(,) is used to indicate that the random variable X has the logistic distribution with parameters and . A logistic random variable X with positive scale parameter and positive shape parameter has probability

  12. Predictors of student success in the Army Medical Department (AMEDD) Licensed Practical Nurse training program (91WM6) as identified by expert nurse educators, instructors, and administrators at Fort Sam Houston Post, San Antonio, Texas 

    E-Print Network [OSTI]

    Scialdo, Antonia

    2006-04-12

    must possess skills and competency of an LPN, which is a result of successful completion of a 52-week 91WM6 training program. The purpose of this two-part descriptive study includes evaluation of quantitative and qualitative data. The Delphi technique...

  13. Environmental Restoration and Waste Management Site-Specific Plan for the Oak Ridge Reservation. [Appendix contains accromyms list and maps of waste management facilities

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The United States Department of Energy (DOE) is committed to achieving and maintaining environmental regulatory compliance at its waste sites and facilities, while responding to public concerns and emphasizing waste minimization. DOE publishes the Environmental Restoration and Waste Management Five-Year Plan (FYP) annually to document its progress towards these goals. The purpose of this Site-Specific Plan (SSP) is to describe the activities, planned and completed, undertaken to implement these FYP goals at the DOE Field Office-Oak Ridge (DOE/OR) installations and programs; specifically, for the Oak Ridge Reservation (ORR), Oak Ridge Associated Universities (ORAU), and Hazardous Waste Remedial Action Program (HAZWRAP). Activities described in this SSP address hazardous, radioactive, mixed, and sanitary wastes, along with treatment, storage, and disposal of current production waste and legacy waste from past operation. The SSP is presented in sections emphasizing Corrective Activities (A), Environmental Restoration (ER), Waste Management (WM), Technology Development (TD), and Transportation; and includes descriptions of activities, resources, and milestones by installation or program. 87 tabs.

  14. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  15. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Mixed Waste Before generating mixed waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health & Safety: (858) 534-2753. * Disinfectants other than bleach mustBiohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

  16. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

  17. GTS Duratek, Phase I Hanford low-level waste melter tests: 100-kg melter offgas report

    SciTech Connect (OSTI)

    Eaton, W.C. [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States)

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the 100-kg melter offgas report on testing performed by GTS Duratek, Inc., in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The document contains the complete offgas report on the 100-kg melter as prepared by Parsons Engineering Science, Inc. A summary of this report is also contained in the GTS Duratek, Phase I Hanford Low-Level Waste Melter Tests: Final Report (WHC-SD-WM-VI-027).

  18. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  19. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02) nergFeet)DepartmentWasteWaste

  20. Electronic waste disassembly with industrial waste heat

    E-Print Network [OSTI]

    2013-01-01

    and for e?ective use of industrial exhaust heat is describedto scale up the process to industrial production levels.Waste Disassembly with Industrial Waste Heat Mengjun

  1. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

    E-Print Network [OSTI]

    Aluwihare, Lihini

    of biohazardous and chemical or radioactive waste), call Environment, Health & Safety: (858) 534Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (858

  2. MCLEOD BUSINESS LIBRARY--ACCESSING A JOURNAL ONLINE 11/13/12 McLeod Business Library 757-221-2916 http://mason.wm.edu/about/library/ Page 1

    E-Print Network [OSTI]

    Lewis, Robert Michael

    MCLEOD BUSINESS LIBRARY--ACCESSING A JOURNAL ONLINE 11/13/12 McLeod Business Library 757-221-2916 http://mason.wm.edu/about/library/ Page 1 1. Click the ProQuest ABI-INFORM Global icon on the McLeod Business Library Database page. If you don't know how to find the database page, see the ACCESSING BUSINESS

  3. WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE

    E-Print Network [OSTI]

    large amounts of waste that must be managed as part of both immediate recovery and long-term recovery management plans that can address contaminated waste through the entire life cycle of the waste. Through Demonstration LLNL Lawrence Livermore National Laboratory MSW Municipal Solid Waste OSHA Occupational Safety

  4. Hawaii Clean Energy Final PEIS

    Energy Savers [EERE]

    The Minnesota Project Renewable Fuels Association Union of Concerned Scientists Western Resource Advocates I Aloha Molokai (IAM) Hawaii Natural Energy Institute Aha Kiole...

  5. Solar PEIS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergy InformationDepotGreenPalenNation Inc

  6. Hawaii Clean Energy Final PEIS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £ ¤ ¤ ¥ ¦EnergyA 1 2

  7. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  8. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 2

    SciTech Connect (OSTI)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Site Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Volume 2 consists of nine appendices which contain the Process Team reports and Benchmarking reports.

  9. Waste remediation

    DOE Patents [OSTI]

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  10. Low-level waste vitrification phase 1 vendor test sample analysis data

    SciTech Connect (OSTI)

    Mast, E.S.

    1995-10-04

    A multi-phase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests was performed in vendor test facilities using simulated LLW and was completed during FY-1995. Test samples taken during Phase 1 testing were analyzed by independent laboratories who reported the analyses results to Westinghouse Hanford Company for integration and evaluation. The reported analytical results were integrated into an electronic data base using Microsoft Excel*5.0. This report documents this data base as of the end of FY-1995, and is supplemental to the Phase 1 LLW melter testing summary report, WHC-SD-WM-ER-498, revision 0.

  11. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  12. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  13. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2...

  14. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and...

  15. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  16. Waste-to-Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into renewable energy, thereby enabling a national network of distributed power and biofuel production sites. Image courtesy of Iona Capital Waste-to-Energy Cycle Waste...

  17. Hanford low-level waste process chemistry testing data package

    SciTech Connect (OSTI)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  18. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  19. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  20. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Winfree, Erik

    HAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office@caltech.edu http://safety.caltech.edu #12;Hazardous Waste Management Reference Guide Page 2 of 36 TABLE OF CONTENTS Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT Labeling

  1. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  2. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  3. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  4. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  5. Electronic waste disassembly with industrial waste heat

    E-Print Network [OSTI]

    2013-01-01

    equipment for automatic dismantling of electronic componentsthe technology acceptance for dismantling of waste printedR. Research on with dismantling of PCB mounted electronic

  6. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oxygen demand (COD) and availability of low-grade waste heat sources. The pulp and paper industry and other industries are also potential MHRC users. Project Description This...

  7. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Broader source: Energy.gov (indexed) [DOE]

    - Allentown, PA A microbial reverse electrodialysis technology will be combined with waste heat recovery to convert effluents into electricity and chemical products, including...

  8. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  9. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  10. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    Columbia University

    Copenhagen Waste Management and Incineration Florence, April 24 2009 Julie B. Svendsen 24 20092 Presentation · General introduction to Copenhagen Waste Management System · National incentives · Waste Management plan 2012 · Incineration plants #12;Florence, April 24 20093 Copenhagen Waste

  11. From Cleanup to Stewardship. A companion report to Accelerating Cleanup: Paths to Closure and background information to support the scoping process required for the 1998 PEIS Settlement Study

    SciTech Connect (OSTI)

    1999-10-01

    Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closure report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.

  12. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  13. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  14. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27...

  15. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  16. Pet Waste Management 

    E-Print Network [OSTI]

    Mechell, Justin; Lesikar, Bruce J.

    2008-08-28

    About 1 million pounds of dog waste is deposited daily in North Texas alone. That's why proper disposal of pet waste can make a big difference in the environment. 5 photos, 2 pages...

  17. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  18. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  19. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    1999-04-05

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  20. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  1. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  2. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  3. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  4. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

  5. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  6. Ferrocyanide tank waste stability

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

  7. www.d-waste.com info@d-waste.com

    E-Print Network [OSTI]

    Columbia University

    management data available". According to David Newman, president of the International Solid Waste Association collection services, according to the first global survey of waste management. The Waste Atlas 2013 Report marketplace, about 47 grams of waste is produced-- with worldwide municipal solid waste generation totaling

  8. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G. Chemical Compatibility p.9 Radioactive Waste Disposal p.10 Bio Hazard Waste chemical and radioactive waste, and Biohazardous waste. This document contains university procedures

  9. 8-Waste treatment and disposal A. Responsibility for waste management

    E-Print Network [OSTI]

    8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

  10. 99-32053.pdf

    Office of Environmental Management (EM)

    located across the United States; the WM PEIS also is available on the internet at www.osti.govbridge (select Advanced Search; under Select Field, choose Identifying Number, then...

  11. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  12. CARD No. 24 Waste Characterization

    E-Print Network [OSTI]

    CARD No. 24 Waste Characterization 24.A.1 BACKGROUND DOE must provide waste inventory information Report (TWBIR), Revisions 2 and 3, which provides waste characterization information specific to DOE solidified waste forms was included. Waste described in TWBIR Revision 3 was primarily characterized through

  13. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  14. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  15. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  16. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  17. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  18. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  19. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview Vitrification - general background Joule...

  20. Waste Confidence Discussion

    Office of Environmental Management (EM)

    Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum...

  1. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  2. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  3. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  4. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  5. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Broader source: Energy.gov (indexed) [DOE]

    LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container Isolation Plan for identified nitrate salt bearing waste...

  6. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  7. Report: EM Tank Waste Subcommittee Full Report for Waste Treatment...

    Office of Environmental Management (EM)

    meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment Plant; Report Number EMAB EM-TWS WTP-001,...

  8. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August...

  9. Waste Loading Enhancements for Hanford Low-Activity Waste Glasses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

  10. Virginia Waste Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

  11. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

  12. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast...

  13. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  14. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  15. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  16. Attachment C ? Waste Analysis Plan

    Office of Environmental Management (EM)

    PLAN 1 Los Alamos National Laboratory Hazardous Waste Permit December 2013 TABLE OF CONTENTS LIST OF TABLES 2 WASTE ANALYSIS PLAN......

  17. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01

    Waste Management group organization chart. Revised to updatecurrent practices. New organization chart, roles, andManagement Group organization chart. EH&S Waste Management

  18. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    ,320 $5,817 Installation of motion detector lighting in common areas of Buildings 490 and 463. "Bio Circle Cleaner" parts washer Substitution 640 Hazardous waste $10,000 $4,461 $10,000 Eliminates the need disposal system Recycling 528 Hazardous waste $12,000 $0 $12,000 Empty aerosol cans are recycled as scrap

  20. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

  1. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  2. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  3. Managing America's solid waste

    SciTech Connect (OSTI)

    Phillips, J. A.

    1998-09-15

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  4. Improving medical waste disposal

    SciTech Connect (OSTI)

    O'Connor, L.

    1994-05-01

    This article describes the use of electron-beam irradiation, steam detoxification, and microwave disinfection systems rather than incineration to rid the waste stream of medical scraps. The topics of the article include biological waste stream sources and amounts, pyrolysis and oxidation, exhaust gas cleanup, superheated steam sterilization and detoxification.

  5. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  6. Microsoft Word - WM10 ORP - 10241.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a high-efficiency mist eliminator (HEME), a high-efficiency particulate air (HEPA) filter; a thermal catalytic oxidation unit (TCO); a NO x removal system (SCR); a caustic...

  7. TC&WM EIS Scoping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable Landmimic keySystemssystemso TABLES OFcall

  8. WM Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairexVertVillageVitex SystemsE.T.WINDPLAN Bosse

  9. Microsoft Word - S07050_WM.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M PGroundwater Levels5-1 5.06-1

  10. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  11. Waste Management & Research290 Waste Manage Res 2002: 20: 290301

    E-Print Network [OSTI]

    Florida, University of

    Waste Management & Research290 Waste Manage Res 2002: 20: 290­301 Printed in UK ­ all rights reserved Copyright © ISWA 2002 Waste Management & Research ISSN 0734­242X Introduction Chromated copper of sorting technologies for CCA treated wood waste Monika Blassino Helena Solo-Gabriele University of Miami

  12. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  13. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  14. Specifying Waste Heat Boilers 

    E-Print Network [OSTI]

    Ganapathy, V.

    1992-01-01

    HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants, refineries... stream_source_info ESL-IE-92-04-42.pdf.txt stream_content_type text/plain stream_size 11937 Content-Encoding ISO-8859-1 stream_name ESL-IE-92-04-42.pdf.txt Content-Type text/plain; charset=ISO-8859-1 SPECIFYING WASTE...

  15. INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY

    E-Print Network [OSTI]

    Columbia University

    1 INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY AN OVERVIEW Presented to the DELAWARE SOLID WASTE MANAGEMENT TECHNICAL WORKING GROUP January 10, 2006 #12;2 INTERSTATE WASTE MANAGEMENT ALLIANCE and maintenance (30 years) ­ Will guarantee performance and Operation and Maintenance ­ Serves solid waste

  16. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  17. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  18. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  19. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  20. Waste Steam Recovery 

    E-Print Network [OSTI]

    Kleinfeld, J. M.

    1979-01-01

    An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

  1. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  2. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  3. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  4. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  5. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility...

  6. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Environmental Management (EM)

    2013 More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory...

  7. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  8. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste...

  9. EIS-0200: Waste Management Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    00: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management...

  10. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste inventories in a safe and compliant...

  11. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  12. This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures

    E-Print Network [OSTI]

    Mease, Kenneth D.

    This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures · Always manage hazardous waste as the highest ranked waste in the hazardous waste hierarchy Waste Solids Place in solid radioactive waste box. Radioactive Waste Liquids Place in liquid radioactive

  13. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

  14. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  15. Hawaii Clean Energy Final PEIS Summary

    Broader source: Energy.gov (indexed) [DOE]

    HAWAI'I CLEAN ENERGY FINAL PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT SUMMARY U.S. DEPARTMENT OF ENERGY Office of Electricity Delivery and Energy Reliability Office of Energy...

  16. Pure Energy Inc PEI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility District No 2PumpedPunjEnergies JumpInc

  17. Draft PEI Calculator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 Federal Register /1DepartmentDepartment5

  18. Hawaii Clean Energy Final PEIS Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £ ¤ ¤ ¥ ¦EnergyA 1

  19. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  20. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  1. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval,...

  2. U.S. Bureau of Mines, Phase 1 Hanford low-level waste melter tests. Final report

    SciTech Connect (OSTI)

    Eaton, W.C. [Westinghouse Hanford Co., Richland, WA (United States); Oden, L.L.; O`Connor, W.K. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC Subcontract number MMI-SVV-384216. The report contains description of the tests, observation, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. Testing consisted of melter feed preparation and three melter tests, the first of which was to fulfill the requirements of the statement of work (WHC-SD-EM-RD-044), and the second and third were to address issues identified during the first test. The document also contains summaries of the melter offgas report issued as a separate document U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Melter Offgas Report (WHC-SD-WM-VI-032).

  3. U.S. Bureau of Mines, phase I Hanford low-level waste melter tests: Melter offgas report

    SciTech Connect (OSTI)

    Eaton, W.C.

    1995-10-27

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC subcontract number MMI-SVV-384216. The document contains the complete offgas report for the first 24-hour melter test (WHC-1) as prepared by Entropy Inc. A summary of this report is also contained in the``U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Final Report`` (WHC-SD-WM-VI-030).

  4. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  5. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    SciTech Connect (OSTI)

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-02-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the closure cover provide soil water content data, whereas sensors installed in the lysimeters provide soil water content, soil water potential, soil temperature, and drainage data for a detailed evaluation of the cover performance. Revegetation establishes a stable plant community that maximizes water loss through transpiration and reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment.

  6. The Waste Management Quality Assurance Implementing Management Plan (QAIMP)

    E-Print Network [OSTI]

    Albert editor, R.

    2009-01-01

    flAIMP REVISION 1 i i Software Testing WM groups must testinstallation testing of item, software, or other product.and testing activities. Security Access to computer software

  7. Recommendation 223: Recommendations on Additional Waste Disposal...

    Office of Environmental Management (EM)

    3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to...

  8. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  9. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  10. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  11. Waste Management Assistance Act (Iowa)

    Broader source: Energy.gov [DOE]

    This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

  12. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  13. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    ownership of treatment facilities · Incineration plants · Land fill · Disposal of hazardous waste · Source waste prevention · Focus areas · Changes in behaviour among consumers and producers · City schemes almost fully developed · Collection of hazardous substances, paper, cardboard, gardening and bulky

  14. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  15. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  16. Reducing Waste in Memory Hierarchies 

    E-Print Network [OSTI]

    Tian, Yingying

    2015-05-01

    power consumption by dynamically bypassing zero-reuse blocks. This dissertation exploits waste of data redundancy at the block-level granularity and finds that conventional cache design wastes capacity because it stores duplicate data. This dissertation...

  17. Eating Disorders: Body Wasting Away

    E-Print Network [OSTI]

    Shao, Shirley

    2015-01-01

    can begin with the waste of food, and end in the waste ofwaste in eating, regurgitating, and then flushing a box of Cheez-its down the toilet, or in tossing untouched food

  18. Process Waste Assessment - Paint Shop

    SciTech Connect (OSTI)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  19. Zero Waste, Renewable Energy & Environmental

    E-Print Network [OSTI]

    Columbia University

    Zero Waste, Renewable Energy & Environmental Stewardship - Connecting loose ends: Thermal Recycling Party, Berlin · Research Institute Karlsruhe, Germany · Oekoinstitut, Freiburg, Germany · BASF, Germany business, namely "zero waste" and "clean production." #12;Arguments given against WTE: People who think we

  20. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  1. Ferrocyanide waste simulant characterization

    SciTech Connect (OSTI)

    Jeppson, D.W.; Wong, J.J.

    1993-01-01

    Ferrocyanide waste simulants were prepared and characterized to help assess safety concerns associated with the ferrocyanide sludges stored in underground single-shell waste tanks at the Hanford Site. Simulants were prepared to represent the variety of ferrocyanide sludges stored in the storage tanks. Physical properties, chemical compositions, and thermodynamic properties of the simulants were determined. The simulants, as produced, were shown to not sustain propagating reactions when subjected to a strong ignition source. Additional testing and evaluations are recommended to assess safety concerns associated with postulated ferrocyanide sludge dry-out and exposure to external ignition sources.

  2. Heat Recovery From Solid Waste 

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  3. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    for reduction in mixed waste generation Pump Oil Substitution 51 Hazardous Waste / Industrial Waste $3,520 $6 with the subsequent clean up costs ($15,000). Hydraulic Oil Product Substitution 3,000 Industrial Waste $26,000 $0 $26WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2003 WASTE TYPE

  4. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  5. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University waste through waste hierarchy and managing the waste in-house for final disposal. To explain the waste

  6. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  7. MARSHALL UNIVERSITY HAZARDOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Sanyal, Suman

    /16/2005 1 #12;Marshall University Hazardous Waste Program POLICY STATEMENT- Hazardous Materials Management of the Hazardous Waste Management Program is to ensure that proper handling and legal disposal of hazardous wastes Management Program will apply to the following: 1. Any liquid, semi-solid, solid or gaseous substance defined

  8. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  9. Waste Management Coordinating Lead Authors

    E-Print Network [OSTI]

    Columbia University

    10 Waste Management Coordinating Lead Authors: Jean Bogner (USA) Lead Authors: Mohammed Abdelrafie Ahmed, C. Diaz, A. Faaij, Q. Gao, S. Hashimoto, K. Mareckova, R. Pipatti, T. Zhang, Waste Management University Press, Cambridge, United Kingdom and New York, NY, USA. #12;586 Waste Management Chapter 10 Table

  10. Pharmaceutical Waste Management Under Uncertainty

    E-Print Network [OSTI]

    Linninger, Andreas A.

    Pharmaceutical Waste Management Under Uncertainty Andreas A. Linninger and Aninda Chakraborty of their benefits and costs constitutes a formidable task. Designing plant-wide waste management policies assuming this article addresses the problem of finding optimal waste management policies for entire manufacturing sites

  11. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  12. Final Report Waste Incineration

    E-Print Network [OSTI]

    methods have been evaluated, and with the information obtained, it seems that the price for treatment of the waste streams, or as fuel in an incineration facility generating heat and pos- sibly electricity for export that is economical and technical efficient. The aim of this project is to make a long

  13. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  14. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  15. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  16. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  17. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 3. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    This report consists of information related to the waste forms at the WIPP facility from the waste originators. Data for retrievably stored, projected and total wastes are given.

  18. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  19. WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop

    E-Print Network [OSTI]

    ; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

  20. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  1. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  2. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  3. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and...

  4. Probative Investigation of the Thermal Stability of Wastes Involved...

    Office of Environmental Management (EM)

    the Thermal Stability of Wastes Involved in February 2014 Waste Isolation Pilot Plant (WIPP) Waste Drum Breach Event Probative Investigation of the Thermal Stability of Wastes...

  5. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  6. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  7. Naval Waste Package Design Report

    SciTech Connect (OSTI)

    M.M. Lewis

    2004-03-15

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.

  8. UC Irvine Construction Related Hazardous Waste Some construction related wastes are hazardous and require special handling. Examples of such wastes

    E-Print Network [OSTI]

    Mease, Kenneth D.

    UC Irvine Construction Related Hazardous Waste Scope Some construction related wastes are hazardous the hazardous waste manifest. Process 1. When a construction project will generate hazardous wastes, the project and require special handling. Examples of such wastes include: · Asbestos Containing Materials · Mercury

  9. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  10. WASTE DESCRIPTION CONTACT PHONE RECYCLED OR

    E-Print Network [OSTI]

    eliminates potential environmental impact of storing waste bricks. Waste Oil Roland Baillargeon, ext.3261 Source Reduction 3,500 Hazardous Waste $6,000 $0 $20,000 350 gallons of waste oil contaminated contamination was identified and replaced with non-chlorinated substitute. Waste oil is now removed free

  11. Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Hazardous Chemical Pharmaceutical Waste: A number of common pharmaceuticals are regulated as hazardous or more of the EPA characteristics of a hazardous chemical waste are also regulated as a hazardous

  12. University of Sussex Waste Management Policy

    E-Print Network [OSTI]

    Sussex, University of

    University of Sussex Waste Management Policy May 2007 #12;1 University of Sussex Waste Management Policy May 2007 University of Sussex Waste Management Policy Contents 1. Introduction 2. Policy Statement;2 University of Sussex Waste Management Policy May 2007 Waste Management Policy 1. Introduction Due

  13. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste and submit a chemical waste pick-up request form for proper disposal. Periodically evaluate your chemical are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO

  14. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  15. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect (OSTI)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  16. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  17. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  18. Progress Update: TRU Waste Shipping

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

  19. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  20. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  1. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and...

  2. Nuclear Waste Partnership Contract Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Partnership Contract DE-EM0001971 Modifications NWP Modification Index Description Modification 001 Modification 002 Modification 003 Modification 004 Modification 005...

  3. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-15

    This Notice reminds all DOE employees of their duty to report allegations of fraud, waste, and abuse to the Office of Inspector General. No cancellation.

  4. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  5. Waste IncIneratIon and Waste PreventIon

    E-Print Network [OSTI]

    Columbia University

    replace fossil energy sources such as coal or oil and prevent about 9.75 million tonnes of carbon dioxide in recent years would withdraw these from material recovery. Regarding this point, the UBA would emphasise-/Abfallgesetz) continues to hold: Waste prevention has priority over recovery and disposal. Nevertheless, the use of waste

  6. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  7. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    SciTech Connect (OSTI)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  8. SYNERGIA Forum Integrated Municipal Solid Waste Management

    E-Print Network [OSTI]

    Columbia University

    2nd SYNERGIA Forum «Integrated Municipal Solid Waste Management: Recycling and Energy Change and Solid Waste Management" Anthony Mavropoulos President, Scientific Technical Committee, Chairman, SYNERGIA "Where Greece stands on the Ladder of Sustainable Waste Management " *Nikolaos

  9. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  10. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  11. Environmental Management Waste and Recycling Policy

    E-Print Network [OSTI]

    Haase, Markus

    Environmental Management Waste and Recycling Policy October 2006 The University is committed to sustainable waste management through reducing our consumption of materials, encouraging re-use where possible information in all future waste management contracts For further information see www

  12. Biochar: A Solution to Oakland's Green Waste?

    E-Print Network [OSTI]

    Villar, Amanda

    2012-01-01

    maize stover, is the food waste which differs from stoverfor simplicity, since food waste accounts for only 1/3 ofof Oakland. This waste consists of food scraps as well as

  13. Coolside waste management research

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Objective was to produce sufficient information on physical and chemical nature of Coolside waste (Coolside No.1, 3 at Edgewater power plant) to design and construct stable, environmentally safe landfills. Progress during this period was centered on analytical method development, elemental and mineralogical analysis of samples, and field facilities preparation to receive lysimeter fill. Sample preparation techniques for thick target PIXE/PIGE were investigated; good agreement between measured and actual values for standard fly ash were obtained for all elements except Fe, Ba, K (PIXE).

  14. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, John L. (Idaho Falls, ID)

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  15. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, John L. (Idaho Falls, ID)

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  16. Tank Waste Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliers Tag:Take ActionPermitB3/15 Tank Waste

  17. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  18. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  19. Solid low-level radioactive waste radiation stability studies 

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01

    MANAGEMENT . . . Historical background Characteristics of radioactive wastes Classification of radioactive wastes Disposal methodology and criteria Handling and storage of radioactive wastes SOLID RADIOACTIVE WASTES Historical background... Characteristics of the solidified wastes Storage and handling of solid radioactive wastes Shipment of solid radioactive wastes Solidification of waste solutions MATERIALS AND METHODS Ion-exchange methods. High integrity containers (HIC). . tv tx 15 15...

  20. Production and degradation of polyhydroxyalkanoates in waste environment

    E-Print Network [OSTI]

    waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA

  1. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    3 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction...

  2. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    2 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project...

  3. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 August 2011 Hanford Waste Treatment and Immobilization Plant Construction Quality...

  4. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    October 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant...

  5. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Environmental Management (EM)

    Enterprise Assessments Review, Waste Isolation Pilot Plant - December 2014 Enterprise Assessments Review, Waste Isolation Pilot Plant - December 2014 December, 2014 Review of the...

  6. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant...

  7. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    May 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - May 2013 May 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction...

  8. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant...

  9. Independent Oversight Assessment, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the...

  10. Independent Oversight Activity Report, Hanford Waste Treatment...

    Energy Savers [EERE]

    - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities...

  11. Integrated Solid Waste Management Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and municipality is required to file an integrated...

  12. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  13. Solid Waste Management Policy and Programs (Minnesota)

    Broader source: Energy.gov [DOE]

    These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse...

  14. Solid Waste Management Act (West Virginia)

    Broader source: Energy.gov [DOE]

    In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of...

  15. UNIVERSITY OF SOUTH CAROLINA INFECTIOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Morgan, Stephen L.

    UNIVERSITY OF SOUTH CAROLINA INFECTIOUS WASTE DISPOSAL Introduction All biologically EHS: -South Carolina Infectious Waste Management Regulations R.61-105 #12;

  16. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations This document was used to determine facts and conditions...

  17. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  18. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the results of an...

  19. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the results of an...

  20. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  1. Overview of Integrated Waste Treatment Unit

    Office of Environmental Management (EM)

    Environmental Management Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety performance cleanup closure...

  2. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve...

  3. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  4. Enforcement Letter, Westinghouse Waste Isolation Division - October...

    Broader source: Energy.gov (indexed) [DOE]

    to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant On October 3, 2000,...

  5. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  6. Vitrification Melter Waste Incidental to Reprocessing Determination...

    Office of Environmental Management (EM)

    DOE Manual 435.1-1 Waste-Incidental-To-Reprocessing Determination for the West Valley Demonstration Project Vitrification Melter Vitrification Melter Waste Incidental to...

  7. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit,...

  8. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

  9. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive Waste Heat Recovery Presentation given at the 2007 Diesel Engine-Efficiency & Emissions...

  10. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  11. Waste Encapsulation and Storage Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the waste inside those tanks. Both elements were ultimately placed in sturdy, stainless steel containers which were then put into Hanford's Waste Encapsulation Storage...

  12. Waste Treatment Facility Passes Federal Inspection, Completes...

    Office of Environmental Management (EM)

    Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins...

  13. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  14. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at...

  15. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-15

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG). Cancels: DOE N 221.12, Reporting Fraud, Waste, and Abuse, dated 10-19-06

  16. Generating Steam by Waste Incineration 

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  17. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  18. EIS-0200: Notice of Intent to Prepare a Programmatic Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Proposed Integrated Environmental Restoration and Waste Management Program, and to Conduct Public Scoping Meetings The Department of Energy announces its intent to prepare a PEIS...

  19. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  20. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  1. An Introduction to Virginia Tech's Waste Management Program

    E-Print Network [OSTI]

    ;Waste Management Program · Montgomery Regional Solid Waste Authority (MRSWA): · Provides integrated solid waste management for the New River Valley Region · Located in Christiansburg, VA · Materials;Waste Management Program · Non-Municipal Solid Waste Recycled MATERIAL DESCRIPTION SOURCE RESPONSIBLE

  2. HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously with the words "Hazardous Waste."

    E-Print Network [OSTI]

    Slatton, Clint

    HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously. Decontaminate 5. Dispose of cleanup debris as Hazardous Waste Chemical Spill ­ major 1. Evacuate area, isolate with the words "Hazardous Waste." 2. Label all containers accurately, indicating the constituents and approximate

  3. Waste drum refurbishment

    SciTech Connect (OSTI)

    Whitmill, L.J.

    1996-10-18

    Low-carbon steel, radioactive waste containers (55-gallon drums) are experiencing degradation due to moisture and temperature fluctuations. With thousands of these containers currently in use; drum refurbishment becomes a significant issue for the taxpayer and stockholders. This drum refurbishment is a non-intrusive, portable process costing between 1/2 and 1/25 the cost of repackaging, depending on the severity of degradation. At the INEL alone, there are an estimated 9,000 drums earmarked for repackaging. Refurbishing drums rather than repackaging can save up to $45,000,000 at the INEL. Based on current but ever changing WIPP Waste Acceptance Criteria (WAC), this drum refurbishment process will restore drums to a WIPP acceptable condition plus; drums with up to 40% thinning o the wall can be refurbished to meet performance test requirements for DOT 7A Type A packaging. A refurbished drum provides a tough, corrosion resistant, waterproof container with longer storage life and an additional containment barrier. Drums are coated with a high-pressure spray copolymer material approximately .045 inches thick. Increase in internal drum temperature can be held to less than 15 F. Application can be performed hands-on or the equipment is readily adaptable and controllable for remote operations. The material dries to touch in seconds, is fully cured in 48 hours and has a service temperature of {minus}60 to 500 F. Drums can be coated with little or no surface preparation. This research was performed on drums however research results indicate the coating is very versatile and compatible with most any material and geometry. It could be used to provide abrasion resistance, corrosion protection and waterproofing to almost anything.

  4. LLNL Waste Minimization Program Plan

    SciTech Connect (OSTI)

    Not Available

    1990-02-14

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  5. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  6. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  7. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect (OSTI)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  8. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  9. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  10. ISWA Study Tour WASTE-TO-ENERGY

    E-Print Network [OSTI]

    Columbia University

    .30 pm ­ 2.00 pm Development of Municipal Solid Waste Management and Treatment Facilities in Vienna;Practice Seminar on Sustainable Waste Management in Europe based on Prevention, Recycling, Recovery taught by senior experts in waste management, environmental policy and engineering 2. Visits to waste

  11. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  12. http://wmr.sagepub.com/ Waste Management &

    E-Print Network [OSTI]

    : International Solid Waste Association can be found at:Waste Management & ResearchAdditional serviceshttp://wmr.sagepub.com/ Research Waste Management & http://wmr.sagepub.com/content/13/4/363 The online version of this article can be found at: DOI: 10.1177/0734242X9501300407 1995 13: 363Waste Manag

  13. Wake Forest University Medical Waste Management Plan

    E-Print Network [OSTI]

    Cook, Greg

    Wake Forest University Medical Waste Management Plan June 15, 2009 Rev.1 1 Biohazard Waste without a permit from the Solid Waste Section. The Occupational Safety and Health Administration (OSHA) regulate Bloodborne Pathogens and Exposure Control Plans. Under state regulations a solid waste generator

  14. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    reflect avoided waste disposal costs and lower material purchase costs ($6000) Hydraulic Oil ProductWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2002 WASTE TYPE DESCRIPTION DETAILS * Electrophoretic Mini-Gels Microscale Chemical Use 2,200 Hazardous Waste - Lab Pack $10

  15. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    . Removed grit and sludge are mixed with the waste oil. Photon-counting spectrofluorimeter Substitution 54 or composted at the stump dump. Plant Engineering grounds vehicle wash system * Waste minimization 8,000 OilsWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2007 WASTE TYPE

  16. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  17. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    2010-11-14

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  18. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  19. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  20. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  1. Agricultural Waste Management System Component Design

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Agricultural Waste Management System Component Design Chapter 10 Part 651 Agricultural Waste Management Field Handbook 10­1(210-vi-AWMFH, rev. 1, July 1996) Chapter 10 Agricultural Waste Management....................................................................................................10­70 10­i #12;Chapter 10 Agricultural Waste Management System Component Design Part 651 Agricultural

  2. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  3. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctoberSustainableFAQS TITLETank Waste and Waste

  4. WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed

    E-Print Network [OSTI]

    WIPP TRANSURANIC WASTE INVENTORY How has the WIPP TRU Waste Inventory Changed Since the 1998 improves. At the time of the 1998 Certification Decision, no waste had been emplaced in WIPP, therefore the entire waste inventory was an es- timation of the waste DOE might put in WIPP. The recer- tification

  5. Seventh State of the Environment Report 3.11 Waste Management 3.11 WASTE MANAGEMENT

    E-Print Network [OSTI]

    Columbia University

    Seventh State of the Environment Report ­ 3.11 Waste Management 211 3.11 WASTE MANAGEMENT 3 on waste management: specific types of waste (end-of-life vehicles, white goods) must be collected of waste management in Austria for the period under review (2000 - 2002) were shaped above all by two

  6. Consolidation process for producing ceramic waste forms

    DOE Patents [OSTI]

    Hash, Harry C. (Joliet, IL); Hash, Mark C. (Shorewood, IL)

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  7. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  8. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect (OSTI)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  9. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

  10. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  11. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  12. Waste Handeling Building Conceptual Study

    SciTech Connect (OSTI)

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

  13. Optimization of Waste Disposal - 13338

    SciTech Connect (OSTI)

    Shephard, E.; Walter, N.; Downey, H.; Collopy, P.; Conant, J.

    2013-07-01

    From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

  14. On Going TRU Waste Disposition

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  15. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  16. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report. This report is required by and has bee n prepared in accordance with the WIPP Hazardous Waste Facility Perm it Part 2, Permit Condition 2.4. We certify under penalty...

  17. Reporting Fraud, Waste and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-07-12

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  18. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-07

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General's responsibilities in this area. Does not cancel other directives.

  19. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  20. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-06-09

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General’s responsibilities in this area. No cancellation.

  1. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-29

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General’s responsibilities in this area. No cancellation.

  2. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-07-29

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General's responsibilities in this area. No cancellation.

  3. Nuclear waste isolation activities report

    SciTech Connect (OSTI)

    1980-12-01

    Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE`s radwaste management programs. (DLC)

  4. Reporting Fraud, Waste and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-10-19

    To notify all Department of Energy employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General. No cancellation.

  5. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20

    To notify all Department of Energy employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General.

  6. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-07-29

    DOE N 221.8 notifies all DOE employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to appropriate authorities, including the DOE Office of Inspector General. No cancellation.

  7. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-06

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  8. Cogeneration/Cogeneration - Solid Waste 

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  9. Federal Waste Management www.lebensministerium.at

    E-Print Network [OSTI]

    Columbia University

    of water use 25 2.3.6. Separately collected industrial recyclables 27 2.3.7. Other non-hazardous waste 27 2 volumes and waste treatment in Austria 12 2.2. Hazardous waste and waste oils 15 2.2.1. Waste volume 15 2.4. Recycling and treatment plants 27 2.4.1. Chemico-physical recycling and treatment plants 28 2.4.2. Thermal

  10. Automated Sorting of Transuranic Waste

    SciTech Connect (OSTI)

    Shurtliff, Rodney Marvin

    2001-03-01

    The HANDSS-55 Transuranic Waste Sorting Module is designed to sort out items found in 55-gallon drums of waste as determined by an operator. Innovative imaging techniques coupled with fast linear motor-based motion systems and a flexible end-effector system allow the operator to remove items from the waste stream by a touch of the finger. When all desired items are removed from the waste stream, the remaining objects are automatically moved to a repackaging port for removal from the glovebox/cell. The Transuranic Waste Sorting Module consists of 1) a high accuracy XYZ Stereo Measurement and Imaging system, 2) a vibrating/tilting sorting table, 3) an XY Deployment System, 4) a ZR Deployment System, 5) several user-selectable end-effectors, 6) a waste bag opening system, 7) control and instrumentation, 8) a noncompliant waste load-out area, and 9) a Human/Machine Interface (HMI). The system is modular in design to accommodate database management tools, additional load-out ports, and other enhancements. Manually sorting the contents of a 55-gallon drum takes about one day per drum. The HANDSS-55 Waste Sorting Module is designed to significantly increase the throughput of this sorting process by automating those functions that are strenuous and tiresome for an operator to perform. The Waste Sorting Module uses the inherent ability of an operator to identify the items that need to be segregated from the waste stream and then, under computer control, picks that item out of the waste and deposits it in the appropriate location. The operator identifies the object by locating the visual image on a large color display and touches the image on the display with his finger. The computer then determines the location of the object, and performing a highspeed image analysis determines its size and orientation, so that a robotic gripper can be deployed to pick it up. Following operator verification by voice or function key, the object is deposited into a specified location.

  11. Human factors in waste management

    SciTech Connect (OSTI)

    Moray, N.

    1994-10-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors.

  12. Procedure for the Recycling Material and Disposal of Waste from

    E-Print Network [OSTI]

    Guillas, Serge

    that waste is produced, stored, transported and disposed of without harming the environment. This is your, transport and disposal of wastes produced by UCL as requested by Facilities Services waste managers Clinical Wastes Radioactive Wastes Laboratory Wastes of Unknown Hazard Non-Hazardous Laboratory Wastes

  13. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    SciTech Connect (OSTI)

    Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  14. All chemotherapy waste must be managed as a hazardous chemical waste. For more information regarding hazardous chemical waste management please visit www.ehs.uci.edu/programs/enviro/.

    E-Print Network [OSTI]

    Mease, Kenneth D.

    All chemotherapy waste must be managed as a hazardous chemical waste. For more information regarding hazardous chemical waste management please visit www Expired stock vials · Solid chemotherapy waste includes but is not limited to trace-contaminated: o

  15. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  16. Hybrid systems process mixed wastes

    SciTech Connect (OSTI)

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  17. THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2010-01-01

    Scientific Basis for Nuclear Waste Management". This papern t i f i c Basis for Nuclear Waste Management, Vol. 1, F.J.c Basis for Nuclear Waste Management, v. 1, G.J. McCarthy (

  18. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    SciTech Connect (OSTI)

    Price, S.M.

    1997-04-30

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  19. 1,153-ton Waste Vault Removed from 300 Area - Vault held waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with contamination from Hanford's former laboratory facilities 1,153-ton Waste Vault Removed from 300 Area -...

  20. THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2010-01-01

    thermohydroiogic behavior of nuclear waste r e p o s i t o rground repository for nuclear wastes in hard r o d ' .RELATED PROBLEMS IN A NUCLEAR WASTE REPOSITORY T h i s b i b

  1. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  2. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  3. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  4. Net Zero Waste - Tools and Technical Support ...and other observations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Zero Waste - Tools and Technical Support ...and other observations Net Zero Waste - Tools and Technical Support ...and other observations Presentation at Waste-to-Energy using...

  5. Microsoft PowerPoint - EM SSAB Chairs Webinar - Marcinowski Waste...

    Office of Environmental Management (EM)

    Chair's Meeting Waste Disposition Strategies Update www.energy.govEM 1 Waste Disposition Strategies Update Frank Marcinowski Deputy Assistant Secretary for Waste Management Office...

  6. Nuclear waste management. Semiannual progress report, April 1983-September 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A. (comps.)

    1984-01-01

    The status of the following programs is reported: waste stabilization; waste isolation; low-level waste management; remedial action; and supporting studies. 58 figures, 39 tables.

  7. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01

    your Waste Management Generator Assistant for guidance onHelp News & Updates Generator Resources Reference Materialsand Biohazardous Waste Generator’s Guide Waste Management

  8. New Mexico Environmental Department (NMED) Waste Isolation Pilot...

    Office of Environmental Management (EM)

    New Mexico Environmental Department (NMED) Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit New Mexico Environmental Department (NMED) Waste Isolation Pilot Plant...

  9. Mr. John E. Kieling, Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to characterize and certify waste in accordance with the Waste Isolation Pilot Plant Hazardous Waste Facility Permit. The report contains the results of the recertification audit...

  10. Electronic Waste Management in India: A Stakeholder’s Perspective

    E-Print Network [OSTI]

    Borthakur, Anwesha; Sinha, Kunal

    2013-01-01

    of Municipal Solid Waste Management in Accra (Ghana):environmental problem. Waste Management and Research, 25,alliances in solid waste management. Cities, 18(1), 3–12.

  11. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    Civilian Radioactive Waste Management Program Plan. DOE/RW-Civilian Radioactive Waste Management Program Plan. DraftBasis for Nuclear Waste Management X V I , Mat. Res. Soc.

  12. Globalization and Hazardous Waste Management: From Brown to Green?

    E-Print Network [OSTI]

    O'Neill, Kate

    2002-01-01

    perspectives on hazardous waste management. London: Academicproblems of hazardous waste management at a global level. ”future in toxic waste management: lessons from Europe. New

  13. Geological challenges in radioactive waste isolation: Third worldwide review

    E-Print Network [OSTI]

    Witherspoon editor, P.A.; Bodvarsson editor, G.S.

    2001-01-01

    level radioactive waste disposal, 1993–1996, Annual Reportradioactive waste disposal programme, Nagra Technical ReportDisposal concepts for radioactive wastes, Final Report,

  14. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    radioactive waste disposal programme; Nagra Technical Reportfor radioactive waste disposal; and • a summary report onof Radioactive Waste Disposal Facilities, O E C D , Report,

  15. The Social and Ethical Aspects of Nuclear Waste

    E-Print Network [OSTI]

    Marshall, Alan

    2005-01-01

    siting a high-level nuclear waste repository at Hanford,Eds. ), Public reactions to nuclear waste. Durham, NC: Dukefairness in toxic and nuclear waste siting. Cambridge, MA:

  16. Micro-Continuum Modeling of Nuclear Waste Glass Corrosion

    E-Print Network [OSTI]

    Steefel, Carl

    2014-01-01

    21. Grambow, B. (2006). Nuclear waste glasses – How durable?Continuum Modeling of Nuclear Waste Glass Corrosion AugustContinuum Modeling of Nuclear Waste Glass Corrosion Prepared

  17. Modeling, Estimation, and Control of Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Luong, David

    2013-01-01

    System for Waste Heat Recovery. ” Journal of Heat Transfer,Rankine cycle for waste heat recovery. ” Energy, 29:1207–Strategy of Waste Heat Recovery Organic Rankine Cycles. ”

  18. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    radioac- tive waste repository construction and operation,and Construction of Underground Repositories for Radioactive Wastes,suitable for the construction of deep waste repositories and

  19. Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York)

    Broader source: Energy.gov [DOE]

    These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators,...

  20. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    SciTech Connect (OSTI)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes.

  1. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  2. Transuranic waste disposal in the United States

    SciTech Connect (OSTI)

    Hoffman, R.B.

    1986-01-01

    The United States is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic elements in the waste. Since 1970, the US has been placing newly generated transuranic waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). WIPP opening for a demonstration emplacement period is set for October, 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by DOE. The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium contaminated materials ranging from glove boxes, HEPA filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities.

  3. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  4. Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy

    E-Print Network [OSTI]

    Mengozzi, Alessandro

    2010-01-01

    and Health Impact of Solid Waste Management Activities. Inof Alternative Solid Waste Management Options: A Life Cyclesecond Hellenic Solid Waste Management Association explained

  5. Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy

    E-Print Network [OSTI]

    Mengozzi, Alessandro

    2010-01-01

    for the Environment, Waste Management Data 2006. Collectionhttp://www.bmu.de/english/waste_management/downloads/the Politics of Place in Waste Management Strategies. Irish

  6. Low-level waste program technical strategy

    SciTech Connect (OSTI)

    Bledsoe, K.W.

    1994-10-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite.

  7. Plasma filtering techniques for nuclear waste remediation

    E-Print Network [OSTI]

    Gueroult, Renaud; Fisch, Nathaniel J

    2015-01-01

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  8. Method and apparatus for reducing mixed waste

    DOE Patents [OSTI]

    Elliott, Michael L. (Kennewick, WA); Perez, Jr., Joseph M. (Richland, WA); Chapman, Chris C. (Richland, WA); Peters, Richard D. (Pasco, WA)

    1995-01-01

    The present invention is a method and apparatus for in-can waste reduction. The method is mixing waste with combustible material prior to placing the waste into a waste reduction vessel. The combustible portion is ignited, thereby reducing combustible material to ash and non-combustible material to a slag. Further combustion or heating may be used to sinter or melt the ash. The apparatus is a waste reduction vessel having receiving canister connection means on a first end, and a waste/combustible mixture inlet on a second end. An oxygen supply is provided to support combustion of the combustible mixture.

  9. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-10-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  10. Waste audit study: Automotive paint shops

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This report presents the results of a waste-audit study of automotive paint shops. The study focuses on the types and quantities of wastes generated, treatment and disposal alternatives, and the potential for reducing the amount and/or toxicity of waste generated. The analysis of solvent waste minimization focused primarily on in-plant modifications (e.g., source reduction) to reduce the generation of solvent waste. Strict inventory control is the most-readily implementable approach. While in-house recycling is viable, it is usually only cost-effective for larger firms. Specific recommendations for waste reduction were made.

  11. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  12. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  13. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    SciTech Connect (OSTI)

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  14. Hanford Waste Transfer Planning and Control - 13465

    SciTech Connect (OSTI)

    Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)] [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2013-07-01

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  15. Waste minimization in an autobody repair shop

    SciTech Connect (OSTI)

    Baria, D.N.; Dorland, D.; Bergeron, J.T.

    1994-12-31

    This work was done to document the waste minimization incorporated in a new autobody repair facility in Hermantown, Minnesota. Humes Collision Center incorporated new waste reduction techniques when it expanded its old facilities in 1992 and it was able to achieve the benefits of cost reduction and waste reduction. Humes Collision Center repairs an average of 500 cars annually and is a very small quantity generator (VSQG) of hazardous waste, as defined by the Minnesota Pollution Control Agency (MPCA). The hazardous waste consists of antifreeze, batteries, paint sludge, refrigerants, and used oil, while the nonhazardous waste consists of cardboard, glass, paint filters, plastic, sanding dust, scrap metal, and wastewater. The hazardous and nonhazardous waste output were decreased by 72%. In addition, there was a 63% reduction in the operating costs. The waste minimization includes antifreeze recovery and recycling, reduction in unused waste paint, reduction, recovery and recycle of waste lacquer thinner for cleaning spray guns and paint cups, elimination of used plastic car bags, recovery and recycle of refrigerant, reduction in waste sandpaper and elimination of sanding dust, and elimination of waste paint filters. The rate of return on the investment in waste minimization equipment is estimated from 37% per year for the distillation unit, 80% for vacuum sanding, 146% for computerized paint mixing, 211% for the refrigerant recycler, to 588% per year for the gun washer. The corresponding payback time varies from 3 years to 2 months.

  16. WRAP Module 1 waste characterization plan

    SciTech Connect (OSTI)

    Mayancsik, B.A.

    1995-01-23

    The purpose of this document is to present the characterization methodology for waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing (WRAP) Module 1 facility. The scope of this document includes all solid low level waste (LLW), transuranic (TRU), mixed waste (MW), and dangerous waste. This document is not meant to be all-inclusive of the waste processed or generated within WRAP Module 1, but to present a methodology for characterization. As other streams are identified, the method of characterization will be consistent with the other streams identified in this plan. The WRAP Module 1 facility is located in the 200 West Area of the Hanford Site. The facility`s function is two-fold. The first is to verify/characterize, treat and repackage contact handled (CH) waste currently in retrievable storage in the LLW Burial Grounds, Hanford Central Waste Complex, and the Transuranic Storage and Assay Facility (TRUSAF). The second is to verify newly generated CH TRU waste and LLW, including MW. The WRAP Module 1 facility provides NDE and NDA of the waste for both drums and boxes. The NDE is used to identify the physical contents of the waste containers to support waste characterization and processing, verification, or certification. The NDA results determine the radioactive content and distribution of the waste.

  17. Environmental evaluation of municipal waste prevention

    SciTech Connect (OSTI)

    Gentil, Emmanuel C.; Gallo, Daniele [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H., E-mail: thho@env.dtu.dk [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2011-12-15

    Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.

  18. Transuranic contaminated waste form characterization and data base

    SciTech Connect (OSTI)

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies.

  19. Electronic Waste Management in India: A Stakeholder’s Perspective

    E-Print Network [OSTI]

    Borthakur, Anwesha; Sinha, Kunal

    2013-01-01

    of Municipal Solid Waste Management in Accra (Ghana):and alliances in solid waste management. Cities, 18(1), 3–

  20. CRAD, Safety Basis - Los Alamos National Laboratory Waste Characteriza...

    Office of Environmental Management (EM)

    Safety Basis - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Safety Basis - Los Alamos National Laboratory Waste...

  1. CRAD, Maintenance - Los Alamos National Laboratory Waste Characterizat...

    Office of Environmental Management (EM)

    Maintenance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Maintenance - Los Alamos National Laboratory Waste Characterization,...

  2. EIS-0026: Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The Office of Environmental Restoration and Waste Management prepared this EIS for the Waste Isolation Pilot Plant.

  3. Waste Form Degradation Model Integration for Engineered Materials...

    Office of Environmental Management (EM)

    Waste Form Degradation Model Integration for Engineered Materials Performance Waste Form Degradation Model Integration for Engineered Materials Performance The collaborative...

  4. Independent Oversight Review, Oak Ridge Transuranic Waste Processing...

    Energy Savers [EERE]

    Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility -...

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

  6. NUCLEAR WASTE ISOLATION IN THE UNSATURATED ZONE OF ARID REGIONS

    E-Print Network [OSTI]

    Wollenberg, H.A.

    2010-01-01

    changes induced by construction and waste storage, the s i tof the waste. Only underground construction i s considered

  7. Process Waste Assessment Electroplating Research Facility

    SciTech Connect (OSTI)

    Phillips, N.M.

    1992-06-01

    This process Waste Assessment was conducted on the Electroplating Research Facility to identify waste generating processes with the goal of minimizing hazardous wastes. The primary focus was on the hazardous chemical and toxic waste streams with special attention given to the Oakite 90 alkaline cleaning solution. It was concluded that this facility, which contributes less than 1% of the hazardous wastes to the site`s overall waste stream, is committed to minimization of hazardous wastes. It is recommended that a research program be implemented to study the possibility of replacing the Oakite 90 cleaning solution with a less hazardous one and/or minimizing its volume of waste. Instituting a formal documentation system to keep track of the most used raw materials would be helpful also.

  8. Radioactive Waste Management BasisApril 2006

    SciTech Connect (OSTI)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  9. Aluminum phosphate ceramics for waste storage

    SciTech Connect (OSTI)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  10. Waste Disposition Update by Doug Tonkay

    Office of Environmental Management (EM)

    Douglas Tonkay Office of Disposal Operations October 20, 2011 o Continue to manage waste inventories in a safe and compliant manner. o Address high risk waste in a cost-...

  11. Summary - WTP HLW Waste Vitrification Facility

    Office of Environmental Management (EM)

    usin HanfordORP Waste Treatme March 2007 Departmen Treatmen W E-EM Did This n Facility a Waste Treat (WTP) at Hanf The WTP is com High-Level Wa purpose of this technology...

  12. Gaines County Solid Waste Management Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and...

  13. Massachusetts Hazardous Waste Management Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

  14. The Hanford Story: Tank Waste Cleanup

    Broader source: Energy.gov [DOE]

    This fourth chapter of The Hanford Story explains how the DOE Office of River Protection will use the Waste Treatment Plant to treat the 56 million gallons of radioactive waste in the Tank Farms.

  15. Conversion of Waste Biomass into Useful Products 

    E-Print Network [OSTI]

    Holtzapple, M.

    1998-01-01

    Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

  16. Waste Management Trends in Texas Industrial Plants 

    E-Print Network [OSTI]

    Smith, C. S.; Heffington, W. M.

    1995-01-01

    , including reporting. Some reporting is required of all industrial plants, but the reporting requirements and procedures differ in accordance with the type and amount of waste generated. Future changes in federal and state laws regarding waste management...

  17. Independent Oversight Activity Report, Hanford Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation HIAR-WTP-2013-05-13 This...

  18. Energy from Waste November 4, 2011

    E-Print Network [OSTI]

    Columbia University

    Waste Combustion (MWC) · Power plant that combusts MSW and other non-hazardous wastes as fuel gas to energy facilities · 2 Hydro electric facilities · Recently broke ground on Durham / York

  19. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-05-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site.

  20. Small businesses selected for nuclear waste services

    E-Print Network [OSTI]

    to the Waste Isolation Pilot Plant (WIPP) repository in Southern New Mexico. "These tasks play a key role of above-ground LANL transuranic waste to WIPP by June 30, 2014," said George Rael, Environmental Projects

  1. Annual Transuranic Waste Inventory Report - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Page 4 of 382 Table of Figures Figure 1-1. U.S. Department of Energy TRU Waste Generator Sites ... 17 Figure 2-1. TRU Waste Inventory Process Flowchart...

  2. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  3. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  4. Savannah River Site Achieves Waste Transfer First

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F Tank Farm to H Tank Farm using a central control room.

  5. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  6. An Introduction to Waste Heat Recovery 

    E-Print Network [OSTI]

    Darby, D. F.

    1985-01-01

    The recovery of waste heat energy is one element of a complete energy conservation plan. In addition to contributing to the goal of saving energy, utilization of waste heat is also an important source of cost savings. This presentation details...

  7. Industrial Low Temperature Waste Heat Utilization 

    E-Print Network [OSTI]

    Altin, M.

    1981-01-01

    In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

  8. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  9. High Level Waste System Plan Revision 9

    SciTech Connect (OSTI)

    Davis, N.R.; Wells, M.N.; Choi, A.S.; Paul, P.; Wise, F.E.

    1998-04-01

    Revision 9 of the High Level Waste System Plan documents the current operating strategy of the HLW System at SRS to receive, store, treat, and dispose of high-level waste.

  10. Waste Heat Utilization System Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Waste heat utilization systems are facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elect...

  11. Plasma vitrification of waste materials

    DOE Patents [OSTI]

    McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

    1997-06-10

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs.

  12. Plasma vitrification of waste materials

    DOE Patents [OSTI]

    McLaughlin, David F. (Oakmont, PA); Dighe, Shyam V. (North Huntingdon, PA); Gass, William R. (Plum Boro, PA)

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  13. Recycling Of Cis Photovoltaic Waste

    DOE Patents [OSTI]

    Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

    1998-07-14

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  14. Studien-und Prfungsordnung der Universitt Stuttgart fr den auslandsorientierten Studiengang Air Quality Control, Solid Waste and Waste Water Process Engineering

    E-Print Network [OSTI]

    Reyle, Uwe

    Air Quality Control, Solid Waste and Waste Water Process Engineering (WASTE) mit Abschluss Master Quality Control, Solid Waste and Waste Water Process Engineering" (WASTE) beschlossen. Der Rektor hat Control, Solid Waste and Waste Water Process Engineering" (WASTE) überblickt werden, die Fähigkeit

  15. Capacity-to-Act in India's Solid Waste Management and Waste-to-

    E-Print Network [OSTI]

    Columbia University

    1 Capacity-to-Act in India's Solid Waste Management and Waste-to- Energy Industries Perinaz Bhada% of the total solid waste management budget. [28] Ironically, NGO and community groups are opposed and disposal of garbage, or municipal solid waste, compounded by increasing consumption levels. Another serious

  16. Waste in a land of plenty -Solid waste generation and management

    E-Print Network [OSTI]

    Columbia University

    Waste in a land of plenty - Solid waste generation and management in the US The US generates solid waste generation and management Nickolas J. Themelis and Scott M. Kaufman Article by N.J. Themelis and S.M. Kaufman in WASTE MANAGEMENT WORLD, ISWA (www.iswa.org), September-October 2004 Issue

  17. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect (OSTI)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  18. Waste Management & Research172 Waste Manage Res 2003: 21: 172177

    E-Print Network [OSTI]

    Columbia University

    there is a growing trend to PVC. For example, 54% of window frames in Germany are made of PVC. In 1997 the production of PVC in Germany increased by 9%, the fastest growth rate of all plastics. The waste stream in Germany Menke Hiltrud Fiedler Heiner Zwahr MVR Müllverwertung Rugenberger Damm GmbH & Co. KG, Hamburg, Germany

  19. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    on the cost of one mercury spill and clean-up event. PCB Oils Retrofill 1,200 Hazardous Waste $2,850 $3,450 $2 the life expentency on a $100,000 piece of equipment. PCB Oils Removal 3,110 Hazardous Waste $6,220 $10 generation Pump Oil Substitution 51 Hazardous Waste / Industrial Waste $3,520 $0 $3,520 Replaced oil

  20. Waste Feed Delivery Transfer System Analysis

    SciTech Connect (OSTI)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  1. Waste management units: Savannah River Site

    SciTech Connect (OSTI)

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  2. Process for treating fission waste. [Patent application

    DOE Patents [OSTI]

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  3. Waste Management Information System (WMIS) User Guide

    SciTech Connect (OSTI)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  4. Radioactive Waste Management Complex Wide Review

    Office of Environmental Management (EM)

    This page intentionally blank i Complex-Wide Review of DOE's Radioactive Waste Management Summary Report TABLE OF CONTENTS Acronyms ......

  5. Hanford Site solid waste acceptance criteria

    SciTech Connect (OSTI)

    Ellefson, M.D.

    1998-07-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

  6. Waste Isolation Pilot Plant Transportation Security

    Office of Environmental Management (EM)

    Senior Management Operational Management Implementation OOB NTP Transportation Logistics OSO Operations Management Organization Security WIPP Security Conditions * TRU Waste...

  7. Waste shipment engineering data management plan

    SciTech Connect (OSTI)

    Marquez, D.L.

    1995-05-01

    This plan documents current data management practices and future data management improvements for TWRS Waste Shipment Engineering.

  8. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    JEC187V3 UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 of Energy 1000 Independence Avenue, SW Washington, DC 20585 Dear Secretary O'Leary: At the Nuclear Waste Technical Review Board's October 1995 meeting, the DOE's Office of Civilian Radioactive Waste Management

  9. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    and issues related to the waste- management system, including transportation of spent nuclear fuel and highcon202vf UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300, the Nuclear Waste Technical Review Board (Board) submits its second report of 2003 in accordance

  10. U. S. Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    technical and scientific review of DOE activities related to nuclear waste management and disposal Program Management Specialist U.S. Nuclear Waste Technical Review Board Staff #12;viii Board ActivitiesCA U. S. Nuclear Waste Technical Review Board A Report to The U.S. Congress and The Secretary

  11. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  12. AUSTRIA SHOWCASE WASTE-to-ENERGY

    E-Print Network [OSTI]

    Columbia University

    to Landfills #12;10 More efficient use of crude oil for production of valuable materials, including recycling and recovery of energy from waste. Use of Non-renewable Resources: Crude Oil #12;11 Separate Collection;12 ,,Green Waste" for Production of Compost Mobile shredder for green waste and wood Turning machine

  13. Municipal Solid Waste in The United States

    E-Print Network [OSTI]

    Laughlin, Robert B.

    ...................................................................................................................... 17 The Solid Waste Management Hierarchy2007 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-08-010 November 2008 www.epa.gov #12;MUNICIPAL SOLID

  14. Solid Waste Diversion Plan Fallen Star, 2012

    E-Print Network [OSTI]

    Aluwihare, Lihini

    2012 Prepared by: Facilities Management #12;UC San Diego Solid Waste Diversion Plan Table of Contents Overview Location and Areas Covered Recycling and Solid Waste Management Contact Campus/Medical Center Campus Recycling and Solid Waste Management Contact The Facilities Management department is responsible

  15. Municipal Solid Waste in The United States

    E-Print Network [OSTI]

    Barlaz, Morton A.

    ...................................................................................................................18 The Solid Waste Management Hierarchy2011 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-13-001 May 2013 www.epa.gov #12;MUNICIPAL SOLID

  16. Transuranic (TRU) Waste Processing Center- Overview

    Broader source: Energy.gov [DOE]

    DOE established the TRU Waste Processing Center (TWPC) as a regional center for the management, treatment, packaging and shipment of DOE TRU waste legacy inventory. TWPC is also responsible for managing and treating Low Level and Mixed Low Level Waste generated at ORNL. TWPC is operated by Wastren Advantage, Inc. (WAI) under contract to the DOE's Oak Ridge Office.

  17. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    Fuel oil and Turkey Based Biofuel Energy Rocovery 12,000 Industrial Waste $30,000 $500 $29,500 1500 re-distills the solvent when dirty. The removed grit and sludge is mixed in with the waste oil Wash * Waste Minimization 8,000 oils/grease to soils $16,000 $1,000 $16,000 This is a multi

  18. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  19. LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Portman, Douglas

    1 LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE MANAGEMENT UNIVERSITY OF ROCHESTER the effects of improper hazardous waste management and disposal. Each person who works with hazardous is managed by the Hazardous Waste Management Unit (HWMU) of Facilities and Services. To contact HWMU dial x

  20. Page 1 of 2 UNIVERSAL WASTE

    E-Print Network [OSTI]

    Jia, Songtao

    -Cadmium (Ni-Cd) Nickel Metal Hydride (Ni-MH) Lithium Ion (Li-ion) Large or Small sealed lead acid (Pb) MercuryPage 1 of 2 UNIVERSAL WASTE and OTHER ENVIRONMENTALLY DELETERIOUS PRODUCTS Batteries All Universal Waste Batteries generated in laboratories must be collected through the hazardous waste program

  1. A THEORY OF WASTE AND VALUE 

    E-Print Network [OSTI]

    Ferná ndez-Solis, José Rybkowski, Zofia K.

    2015-02-08

    and production. This paper proposes that additional research is needed to measure synergistic and systemic waste and value. Visualizing waste in construction is the point of departure for those seeking to find and minimize or eliminate waste and create a theory...

  2. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1991-12-31

    This report contains highlights from the 1991 fall meeting of the Low Level Radioactive Waste Forum. Topics included legal updates; US NRC updates; US EPA updates; mixed waste issues; financial assistance for waste disposal facilities; and a legislative and policy report.

  3. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect (OSTI)

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  4. Environmental waste disposal contracts April 3, 2012

    E-Print Network [OSTI]

    and radioactive waste. The companies are · ARS Cavanagh Environmental Services, LLC · Portage, Inc. · Navarro of these materials may include trace or low levels of radioactive material. Waste materials also include transuranic the knowledge and experience to safely treat, package, and transport the waste for disposal in accordance

  5. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    , and transporting high-level radioactive waste and spent nuclear fuel. The Board is required to report its findings of the Office of Civilian Radioactive Waste Management (OCRWM) following Board meetings held in February, MayUNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington

  6. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    repository for disposing of spent nuclear fuel and high-level radioactive waste. The Board also reviews the Department of Energy's (DOE) work related to the packaging and transport of such waste. Consistent with itscon144vf UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300

  7. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    of Energy's (DOE) activities related to disposing of, packaging, and transporting high-level radioactive-complex sites; handling, transporting, processing, and storing the waste; and emplacing the waste undergroundUNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington

  8. The Virginia Yard-Waste Management Manual

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    The Virginia Yard-Waste Management Manual Second Edition PUBLICATION 452-055 #12;#12;The Virginia Yard-Waste Management Manual Second Edition Prepared by: Gregory K. Evanylo, Caroline A. Sherony, James a grant from the Virginia Department of Waste Management (now a Division of the Department

  9. Waste Management World November/December 2005

    E-Print Network [OSTI]

    Columbia University

    of stringent regulations waste incineration plants are no longer significant in terms of emissions of dioxins doubled since 1985.' `Total dioxin emissions from all 66 waste incineration plants in Germany has dropped is that whereas in 1990 one third of all dioxin emissions in Germany came from waste incineration plants

  10. Transuranic Waste Characterization Quality Assurance Program Plan

    SciTech Connect (OSTI)

    NONE

    1995-04-30

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  11. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  12. Oak Ridge Reservation Waste Management Plan

    SciTech Connect (OSTI)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  13. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington are pleased to transmit a technical report prepared by the Nuclear Waste Technical Review Board (Board. Based on its review of data gathered by the DOE and the Center for Nuclear Waste Regulatory Analyses

  14. United States Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    United States Nuclear Waste Technical Review Board Experience Gained From Programs to Manage High-Level Radioactive Waste and Spent Nuclear Fuel in the United States and Other Countries A Report to Congress and the Secretary of Energy April 2011 #12;#12;U.S. Nuclear Waste Technical Review Board Experience Gained From

  15. Hanford site transuranic waste certification plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-12

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

  16. ISSN 0734242X Waste Management & Research

    E-Print Network [OSTI]

    Columbia University

    839 ISSN 0734­242X Waste Management & Research 2009: 27: 839­849 DOI: 10.1177/0734242X09350485 Los and permissions: http://www.sagepub.co.uk/journalsPermissions.nav Integrated waste management as a climate change's waste management hierarchy was not evaluated as a wedge. This analysis demonstrates that if the tonnage

  17. Biotech Breakthrough Produces Ethanol from Waste Glycerin

    E-Print Network [OSTI]

    Stuart, Steven J.

    , it actually assists with waste processing, vitamin K production and food absorption. The same principleBiotech Breakthrough Produces Ethanol from Waste Glycerin Doing something about global warming that this process creates large quantities of waste glycerin, that was so far impossible to put to good use

  18. DESCRIPTION OF SELECTED WASTE MANAGEMENT PROBLEMS,

    E-Print Network [OSTI]

    #12;DESCRIPTION OF SELECTED WASTE MANAGEMENT PROBLEMS, OPTIONS AND STRATEGIES Prepared for BC of Agriculture, Fisheries and Food Fisheries and Oceans Fraser River Action Plan November, 1996 Prepared by P. E Nutrients in Wastes 22 4.2.5 Waste Treatment 23 5.0 STRATEGY DEVELOPMENT 24 5.1 LAND USE MANAGEMENT 24 5

  19. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  20. Aqueous Zinc Bromide Waste Solidification

    SciTech Connect (OSTI)

    Langton, C.A.

    2002-07-23

    The goal of this study was to select one or more commercially available aqueous sorbents to solidify the zinc bromide solution stored in C-Area, identify the polymer to zinc bromide solution ratio (waste loading) for the selected sorbents, and identify processing issues that require further testing in pilot-scale testing.