National Library of Energy BETA

Sample records for wkn windkraft nord

  1. Windkraft Nord USA | Open Energy Information

    Open Energy Info (EERE)

    Nord USA Jump to: navigation, search Name: Windkraft Nord USA Place: San Diego, California Zip: 92122 Product: Subsidiary of WKN AG based in North America. References: Windkraft...

  2. WKN Texas LLC | Open Energy Information

    Open Energy Info (EERE)

    Product: A wind farm developer based in Texas. Originally a subsidiary of Windkraft Nord USA, WKN Texas LLC is currently owned by Enel North America. References: WKN Texas LLC1...

  3. WKN Windkraft Nord AG WKN Offshore Tech | Open Energy Information

    Open Energy Info (EERE)

    Zip: 25813 Sector: Wind energy Product: Wind project developer. The majority of their wind farms are marketed as closed end funds though some have been sold to private investors...

  4. Maka Windkraft GmbH | Open Energy Information

    Open Energy Info (EERE)

    Windkraft GmbH Jump to: navigation, search Name: Maka Windkraft GmbH Place: 33034, Germany Sector: Wind energy Product: Wind farm developer in Germany References: Maka...

  5. WK Windkraft Kontor | Open Energy Information

    Open Energy Info (EERE)

    Kontor Jump to: navigation, search Name: WK Windkraft-Kontor Place: Grebenstein, Germany Zip: D-34393 Sector: Wind energy Product: Germany-based wind energy project...

  6. Windkraft Luhrs GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Windkraft Luhrs GmbH & Co KG Place: Germany Sector: Wind energy Product: Germany-based, wind farm developer. References: Windkraft Luhrs GmbH & Co...

  7. Nord Distribution Solaire | Open Energy Information

    Open Energy Info (EERE)

    Solaire Jump to: navigation, search Name: Nord Distribution Solaire Place: Roubaix, France Zip: 59100 Sector: Solar Product: An installation company for solar passive and PV...

  8. Biogas Nord GmbH | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Biogas Nord GmbH Place: Bielefeld, North Rhine-Westphalia, Germany Zip: 33719 Product: Biogas Nord is a specialized engineering company for biogas...

  9. NordStrom Solar GmbH | Open Energy Information

    Open Energy Info (EERE)

    NordStrom Solar GmbH Jump to: navigation, search Name: NordStrom Solar GmbH Place: Husum, Germany Zip: 25813 Sector: Solar Product: Solar PV project developer. Coordinates:...

  10. Wagner | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner WKN USA LLC Developer WKN USA LLC Energy Purchaser Undisclosed PPA Location Palm Springs CA...

  11. Mozart | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner WKN USA LLC Developer WKN USA LLC Energy Purchaser Merchant (ERCOT) Location Kent County TX...

  12. MHK Projects/Norde lv | Open Energy Information

    Open Energy Info (EERE)

    Phase Phase 1 Project Details The test site for the first full scale Current Power prototype is currently in the planning and siting stage. Project Installed Capacity (MW) 0...

  13. NordEnergie Renewables A S | Open Energy Information

    Open Energy Info (EERE)

    Renewables AS Place: Copenhagen, Denmark Zip: DK 1265 Sector: Renewable Energy, Solar, Wind energy Product: Copenhagen-based renewable energy project developer focused on wind and...

  14. PROKON Nord Energiesysteme GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Place: Leer, Lower Saxony, Germany Zip: 26789 Sector: Biomass, Wind energy Product: Germany-based developer of wind and biomass energy power plants. Coordinates:...

  15. BKN biostrom AG formerly BKN BioKraftstoff Nord AG | Open Energy...

    Open Energy Info (EERE)

    Zip: 29365 Product: Investment holding company focusing on project development for biogas plants and the production of biodiesel. Coordinates: 52.766651, 10.49397 Show Map...

  16. Gilbert_etal_MS_FIGS

    Office of Scientific and Technical Information (OSTI)

    ... Magnetite nanoparticles can be formed by microbial activity in anaerobic subsurface ... J. F.; Nord, G. L.; Phillips, E. J. P., Anaerobic production of magnetite by a ...

  17. Copenhagen, Denmark: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Core Carbon Group AS CCG Danionics A S Dansk Solar Energy Denmark Solar Industry DSI Lithium Balance Middelgrunden Wind Turbine Cooperative NordEnergie Renewables A S Proark...

  18. PN Rotor GmbH | Open Energy Information

    Open Energy Info (EERE)

    PN Rotor GmbH Jump to: navigation, search Name: PN Rotor GmbH Place: Lower Saxony, Germany Sector: Wind energy Product: Germany-based subsidiary of Prokon Nord Energiesysteme GmbH...

  19. Sciences and society

    SciTech Connect (OSTI)


    J.Luns des Pays-Bas, ancien sécétaire général de NATO (OTAN=Organisation du traité de l'Atlantique Nord) parle du passé, présent et future de la défense européenne et des relations est et ouest

  20. ET EnergieTechnologie GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Place: Brunnthal-Nord, Bavaria, Germany Zip: 85649 Sector: Hydro, Hydrogen Product: ET originated in 1998 as a spin-off from Dasa's space department. Its...

  1. Sciences and society

    ScienceCinema (OSTI)



    J.Luns des Pays-Bas, ancien sécétaire général de NATO (OTAN=Organisation du traité de l'Atlantique Nord) parle du passé, présent et future de la défense européenne et des relations est et ouest


    SciTech Connect (OSTI)

    Carelli, M.D.; Petrovic, B.


    The IRIS (International Reactor Innovative and Secure) reactor design is being developed by an international consortium of 21 organizations from ten countries, including three members from Brazil and one from Mexico. This reflects the interest that Latin America has for a project which addresses the energy needs of the region. Presented here are some of the most recent developments in the IRIS project. The project's highest priority is the current pre-application licensing with the US NRC, which has required an investigation of the major accident sequences and a preliminary probabilistic risk assessment (PRA). The results of the accident analyses confirmed the outstanding inherent safety of the IRIS configuration and the PRA analyses indicated a core damage frequency due to internal events of the order of 2E-8. This not only highlights the enhanced safety characteristic of IRIS which should enhance its public acceptance, but it has also prompted IRIS to consider the possibility of being licensed without the need for off-site emergency response planning which would have a very positive economic implication. The modular IRIS, with each module rated at {approx} 335 MWe, is of course an ideal size for developing countries as it allows to easily introduce a moderate amount of power on limited electric grids. IRIS can be deployed in single modules in regions only requiring a few hundred MWs or in multiple modules deployed successively at time intervals in large urban areas requiring a larger amount of power increasing with time. IRIS is designed to operate ''hands-off'' as much as possible, with a small crew, having in mind deployment in areas with limited infrastructure. Thus IRIS has a 48-months maintenance interval, long refueling cycles in excess of three years, and is designed to increase as much as possible operational reliability. For example, the project has recently adopted internal control rod drive mechanisms to eliminate vessel head penetrations and the possibility of corrosion cracking as in Davis-Besse and other plants. Latin America, as many other regions on the earth, needs water as much as electricity. IRIS has developed a water desalination co-generation design which can employ a variety of processes as dictated by local and economic conditions. Applications to the arid Brazilian Nord-Este and Mexican Nord-Oeste are being considered.

  3. Plant Decontamination as a Precondition of the Remote Dismantling Concept of the Karlsruhe Vitrification Plant VEK - 12206

    SciTech Connect (OSTI)

    Dux, Joachim; Fleisch, Joachim; Latzko, Bernhard; Rohleder, Norbert


    Vitrification of the high-active liquid waste concentrates (HAWC) was a major milestone in the WAK decommissioning project (StiWAK). From September 2009 to June 2010, about 56 m{sup 3} of HAWC were vitrified at the Karlsruhe vitrification facility (VEK) and filled into 123 canisters. HAWC vitrification was followed by an extensive rinsing and shutdown program, in the course of which both the VEK process installations and the facilities for the storage and evaporation of high-active fission product solutions (LAVA) are prepared specifically for dismantling. Finally the rinsing programme leads to an overall reduction of the remaining contamination in the installations by a factor of approx. 5 - 10. The amount of liquids arisen from this program has been vitrified and another 17 canisters have been filled. In total, 140 canisters were packed into 5 CASTOR casks that were already transported to the Zwischenlager Nord (interim store North) of EWN GmbH (ZLN) in the mid of February 2011. The melter of the VEK was already shut down in the late November 2010. (authors)

  4. Revk - a Tool for the Fulfilment of Requirements from National Rules for Tracking and Documentation of Radioactive Residual Material and Radioactive Waste

    SciTech Connect (OSTI)

    Hartmann, B.; Haeger, M.; Gruendler, D.


    According to the German Radiation Protection Ordinance treatment, storage, whereabouts of radioactive material etc. have to be documented. Due to legal requirements an electronic documentation system for radioactive waste has to be installed. Within the framework of the currently largest decommissioning project of nuclear facilities by Energiewerke Nord GmbH, a material flow-waste tracking and control system (ReVK) has been developed, tailored to the special needs of the decommissioning of nuclear facilities. With this system it is possible to record radioactive materials which can be released after treatment or decay storage for restricted and unrestricted utilization. Radioactive waste meant for final storage can be registered and documented as well. Based on ORACLE, ReVK is a client/server data base system with the following modules: 1. data registration, 2. transport management, 3. waste tracking, 4. storage management, 5. container management, 6. reporting, 7. activity calculation, 8. examination of technical acceptance criteria for storages and final repositories. Furthermore ReVK provides a multitude of add-ons to meet special user needs, which enlarge the spectrum of application enormously. ReVK is validated and qualified, accepted by experts and authorities and fulfils the requirements for a radioactive waste documentation system. (authors)

  5. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect (OSTI)

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.


    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  6. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    SciTech Connect (OSTI)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang; Noack, Volker; Baeuerle, Guenther


    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted waste monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)