Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Small Wind Electric Systems: A Wisconsin Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Wisconsin Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-05-01T23:59:59.000Z

2

Wisconsin/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources Wisconsin/Wind Resources < Wisconsin Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wisconsin Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

3

Wisconsin Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wind Resources Wind Resources Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Wisconsin Wind Resources WisconsinMap.jpg Retrieved from

4

Wisconsin Small Business Guarantee Program (Wisconsin)  

Energy.gov (U.S. Department of Energy (DOE))

The Wisconsin Small Business Guarantee Program offers low-interest financing to small businesses for fixed assets, working capital, or inventory purchase. The loan guarantee maximum is 50 percent...

5

Wisconsin/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources/Full Version Wisconsin/Wind Resources/Full Version < Wisconsin‎ | Wind Resources Jump to: navigation, search Print PDF Wisconsin Wind Resources WisconsinMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

6

NREL: Wind Research - Xcel Energy Small Wind Funding Available...  

NLE Websites -- All DOE Office Websites (Extended Search)

Xcel Energy Small Wind Funding Available in Minnesota, Wisconsin February 25, 2013 Xcel Energy is releasing a new round of funding through a request for proposals. Small wind...

7

NREL GIS Data: Wisconsin High Resolution Wind Resource Abstract...  

Open Energy Info (EERE)

development potential in Wisconsin.

SupplementalInformation: This data set has been validated by NREL and wind energy meteorological consultants. However, the...

8

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

9

Winds Shift for Wisconsin Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company July 14, 2010 - 3:53pm Addthis Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Wausaukee Composites to reopen wind turbine parts facility in 2010. 150 jobs expected to be created. Plant will make nacelles for 1.5 MW to 3 MW turbines. A wind turbine parts facility in Cuba City, Wis., is getting another chance

10

Winds Shift for Wisconsin Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company July 14, 2010 - 3:53pm Addthis Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Wausaukee Composites to reopen wind turbine parts facility in 2010. 150 jobs expected to be created. Plant will make nacelles for 1.5 MW to 3 MW turbines. A wind turbine parts facility in Cuba City, Wis., is getting another chance

11

Helping Wisconsin Small Businesses Increase Sustainability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Small Businesses Increase Sustainability Wisconsin Small Businesses Increase Sustainability Helping Wisconsin Small Businesses Increase Sustainability June 28, 2012 - 3:51pm Addthis The Wisconsin Profitable Sustainability Initiative (PSI), an innovative, customizable and highly-effective program of the Wisconsin Manufacturing Extension Partnership (WMEP), demonstrates the range of economic, social and environmental benefits that can be realized by the state's small and midsize manufacturers through the implementation of sustainable business practices. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What Does the Future Look Like? Electricity demand from these participants will be reduced by nearly 13 million kilowatt hours. 9,000 tons of solid waste will be diverted from landfills.

12

Helping Wisconsin Small Businesses Increase Sustainability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helping Wisconsin Small Businesses Increase Sustainability Helping Wisconsin Small Businesses Increase Sustainability Helping Wisconsin Small Businesses Increase Sustainability June 28, 2012 - 3:51pm Addthis The Wisconsin Profitable Sustainability Initiative (PSI), an innovative, customizable and highly-effective program of the Wisconsin Manufacturing Extension Partnership (WMEP), demonstrates the range of economic, social and environmental benefits that can be realized by the state's small and midsize manufacturers through the implementation of sustainable business practices. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What Does the Future Look Like? Electricity demand from these participants will be reduced by nearly 13 million kilowatt hours. 9,000 tons of solid waste will be diverted from landfills.

13

Wind Siting Rules and Model Small Wind Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Siting Rules and Model Small Wind Ordinance Wind Siting Rules and Model Small Wind Ordinance Wind Siting Rules and Model Small Wind Ordinance < Back Eligibility Commercial General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Wisconsin Program Type Solar/Wind Permitting Standards Provider Local Wind Application Filing Requirements '''Permitting Rules''' In September 2009, the Governor of Wisconsin signed S.B. 185 (Act 40) directing the Wisconsin Public Service Commission (PSC) to establish statewide wind energy siting rules. [http://psc.wi.gov/ PSC Docket 1-AC-231] was created to conduct the rulemaking, requiring the PSC to convene an advisory council composed of various interested stakeholders

14

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Equipment Exemption In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. July 12, 2013 Small...

15

Small Wind Information (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

Not Available

2011-08-01T23:59:59.000Z

16

Zoning for Small Wind: The Importance of Tower Height  

Wind Powering America (EERE)

1 1 Zoning for Small Wind: The Importance of Tower Height An ASES Small Wind Webinar Mick Sagrillo-Wisconsin's Focus on Energy © 2008 by Mick Sagrillo 2 Definitions: rotor L&S Tech. Assoc., Inc. Rotor = "collector" for a wind system 3 Definitions: wind * Wind = the 'fuel' * Wind has two 'components' - Quantity = wind speed (velocity or V) - Quality = 'clean' flowing wind 4 Quantity * = average annual wind speed * Climate, not weather * Akin to annual average sun hours for PV or head and flow for hydro * Wind speed increases with height above ground... * ...Due to diminished ground drag (friction) 5 Power in the wind V³ * Wind speed = V * Power available is proportional to wind speed x wind speed x wind speed - or P ~ V x V x V - or P ~ V ³ * Therefore, 10% V = 33% P * Lesson !

17

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

18

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

19

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

20

NREL: Wind Research - Small Wind Turbine Independent Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Small Wind Turbine Independent Testing One of the barriers for the small wind market has been the lack...

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL: Wind Research - Small Wind Site Assessment: Wind Powering...  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental impacts have increased the demand for small wind energy systems for homeowners, schools, businesses, and local governments. Over the past decade, the knowledge,...

22

Emerging Energies of Wisconsin | Open Energy Information  

Open Energy Info (EERE)

Emerging Energies of Wisconsin Jump to: navigation, search Name Emerging Energies of Wisconsin Place United Kingdom Sector Wind energy Product Wisconsin-based wind farm developer....

23

Small Wind Standards and Policy  

Wind Powering America (EERE)

Small Wind Standards and Policy Small Wind Standards and Policy September 18, 2013 Coordinator: Thank you all for standing by. All lines been placed on a listen mode only throughout the duration of today's conference. Today's conference is being recorded. If you do have any objections you may disconnect at this time. I'd now like to turn the call over to Ian Baring-Gould. Thank you may begin. Ian Baring-Gould: Hello. Thank you and thank you everybody for joining the September - we're already in September, the September Wind Powering America Webinar and this one building off last month's webinar which was focused on the small wind annual report. This one is focusing on standards and policy in regards to the small wind industry and providing updates on that and just to be complicated we're going

24

Standards for Municipal Small Wind Regulations and Small Wind Model Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State New Hampshire Program Type Solar/Wind Permitting Standards In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy systems up to 100 kilowatts (kW) in capacity. Such wind turbines must be used primarily to produce energy for on-site consumption. The law identifies a several

25

Wisconsin Low Wind Speed Turbine Project First- and Second-Year Operating Experience: 1998-2000: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The 1.2 MW Low Wind Speed Turbine Project (LWSTP) -- installed in Glenmore, Wisconsin, in early 1998 -- was the first commercial-scale wind project in Wisconsin. This report describes the first- and second-year operating experience at the LWSTP. The lessons learned in the project will be valuable to other utilities planning similar wind power projects, particularly in cold-weather, moderate wind resource areas.

2000-12-15T23:59:59.000Z

26

Wisconsin Start-up Taps into Wind Supply Chain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start-up Taps into Wind Supply Chain Start-up Taps into Wind Supply Chain Wisconsin Start-up Taps into Wind Supply Chain August 10, 2010 - 2:00pm Addthis Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Renewegy received $525,000 Recovery Act loan to start wind turbine business Business hired 16 people and projects at least three more by end of

27

Small Wind Guidebook | Open Energy Information  

Open Energy Info (EERE)

Small Wind Guidebook Small Wind Guidebook Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms

28

Sowing the Seeds for a Bountiful Harvest: Shaping the Rules and Creating the Tools for Wisconsin's Next Generation of Wind Farms  

SciTech Connect

Project objectives are twofold: (1) to engage wind industry stakeholders to participate in formulating uniform permitting standards applicable to commercial wind energy installations; and (2) to create and maintain an online Wisconsin Wind Information Center to enable policymakers and the public to increaser their knowledge of and support for wind generation in Wisconsin.

Vickerman, Michael Jay

2012-03-29T23:59:59.000Z

29

Definition: Small Scale Wind | Open Energy Information  

Open Energy Info (EERE)

Small scale wind projects are typically defined as projects with capacity ratings of 1 - 100 kW.1 View on Wikipedia Wikipedia Definition Related Terms wind power, wind energy,...

30

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

31

NREL: Wind Research - Providing Incentives to Help Grow Small...  

NLE Websites -- All DOE Office Websites (Extended Search)

Providing Incentives to Help Grow Small Wind: Wind Powering America Lessons Learned February 25, 2013 Wind Powering America asked Mark Mayhew, small wind program manager for the...

32

Small Wind Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Electric Systems Small Wind Electric Systems Small Wind Electric Systems July 15, 2012 - 5:22pm Addthis Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. What does this mean for me? Small wind electric systems can be one of the most efficient ways of producing electricity for your home. Wind energy is a fast growing market, because it is effective and cost efficient. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having utility power lines extended

33

Small Wind Independent Testing (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the Small Wind Independent Testing at the NWTC and the Regional Test Centers project.

Not Available

2010-09-01T23:59:59.000Z

34

Small Wind Guidebook/What are the Basic Parts of a Small Wind Electric  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Small Wind Guidebook/What are the Basic Parts of a Small Wind Electric System < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

35

Wisconsin Low Wind Speed Turbine Project Third-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine V erification Program  

Science Conference Proceedings (OSTI)

This report describes the third-year operating experience at the 1.2-MW Low Wind Speed Turbine Project (LWSTP) in Glenmore, Wisconsin. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2001-12-06T23:59:59.000Z

36

AWEA Small Wind Turbine Global Market Study  

E-Print Network (OSTI)

wind turbines ­ those with rated capacities of 100 kilowatts (kW)1 and less ­ grew 15% in 2009 with 20 small wind turbines, 95 of which-- more than one-third--are based in the u.S. An estimated 100,000 unitsAWEA Small Wind Turbine Global Market Study YEAR ENDING 2009 #12;Summary 3 Survey Findings

Leu, Tzong-Shyng "Jeremy"

37

Small Wind Turbine Testing and Applications Development  

Science Conference Proceedings (OSTI)

Small wind turbines offer a promising alternative for many remote electrical uses where there is a good wind resource. The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory helps further the role that small turbines can play in supplying remote power needs. The NWTC tests and develops new applications for small turbines. The NWTC also develops components used in conjunction with wind turbines for various applications. This paper describes wind energy research at the NWTC for applications including battery charging stations, water desalination/purification, and health clinics. Development of data acquisition systems and tests on small turbines are also described.

Corbus, D.; Baring-Gould, I.; Drouilhet, S.; Gevorgian, V.; Jimenez, T.; Newcomb, C.; Flowers, L.

1999-09-14T23:59:59.000Z

38

NREL: Wind Research - Small Wind Turbine Tests and Testing Approach  

NLE Websites -- All DOE Office Websites (Extended Search)

Association of Laboratory Accreditation (A2LA). The suite of tests conducted on small wind turbines includes acoustic noise emissions, duration, power performance, power...

39

Category:Small Wind Guidebook Pages | Open Energy Information  

Open Energy Info (EERE)

Guidebook Pages Guidebook Pages Jump to: navigation, search This is the category containing the Small Wind Guidebook pages. Pages in category "Small Wind Guidebook Pages" The following 16 pages are in this category, out of 16 total. S Small Wind Guidebook/Can I Connect My System to the Utility Grid Small Wind Guidebook/Can I Go Off-Grid Small Wind Guidebook/First, How Can I Make My Home More Energy Efficient Small Wind Guidebook/For More Information Small Wind Guidebook/Glossary of Terms Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine S cont. Small Wind Guidebook/How Much Energy Will My System Generate Small Wind Guidebook/Image Library Small Wind Guidebook/Introduction Small Wind Guidebook/Is There Enough Wind on My Site Small Wind Guidebook/Is Wind Energy Practical for Me

40

Small Wind Research Turbine: Final Report  

DOE Green Energy (OSTI)

The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

Corbus, D.; Meadors, M.

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BNL Small Coil Test Winding Session  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Coil Test Winding Session 4: Interaction Region Subgroup Chairs: Fulvia Pilat, Tom Markiewicz (Tuesday afternoon) 1 cm LHe Fl ow Space Coi lSupportTubes Sext upol e Coi l...

42

Certification testing for small wind turbines  

DOE Green Energy (OSTI)

This paper describes the testing procedures for obtaining type certification for a small wind turbine. Southwest Windpower (SWWP) is seeking type certification from Underwriters Laboratory (UL) for the AIR 403 wind turbine. UL is the certification body and the National Renewable Energy Laboratory (NREL) is providing technical assistance including conducting the certification testing. This is the first small turbine to be certified in the US, therefore standards must be interpreted and test procedures developed.

Corbus, D.; Link, H.; Butterfield, S.; Stork, C.; Newcomb, C.

1999-10-20T23:59:59.000Z

43

Category:Small Wind Guidebook | Open Energy Information  

Open Energy Info (EERE)

Guidebook Guidebook Jump to: navigation, search Print PDF Book of this Category Pages in category "Small Wind Guidebook" The following 119 pages are in this category, out of 119 total. A Alabama/Wind Resources Alabama/Wind Resources/Full Version Alaska/Wind Resources Alaska/Wind Resources/Full Version Arizona/Wind Resources Arizona/Wind Resources/Full Version Arkansas/Wind Resources Arkansas/Wind Resources/Full Version C California/Wind Resources California/Wind Resources/Full Version Colorado/Wind Resources Colorado/Wind Resources/Full Version Connecticut/Wind Resources Connecticut/Wind Resources/Full Version D Delaware/Wind Resources Delaware/Wind Resources/Full Version F Florida/Wind Resources Florida/Wind Resources/Full Version G Georgia/Wind Resources Georgia/Wind Resources/Full Version

44

Planning a Small Wind Electric System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Electric System Small Wind Electric System Planning a Small Wind Electric System July 15, 2012 - 4:11pm Addthis Small wind electric systems require planning to determine if there is enough wind, the location is appropriate, if wind systems are allowed, and if the system will be economical. | Photo courtesy of Bergey WindPower. Small wind electric systems require planning to determine if there is enough wind, the location is appropriate, if wind systems are allowed, and if the system will be economical. | Photo courtesy of Bergey WindPower. What are the key facts? Careful planning helps to ensure that your small wind electric system project goes smoothly and is economical at your location. During planning, you will find out if there is enough wind to operate the system, if the location is appropriate, if wind systems are

45

Wisconsin | OpenEI  

Open Energy Info (EERE)

Wisconsin Wisconsin Dataset Summary Description Abstract: Annual average wind resource potential for Wisconsin at a 50 meter height. Purpose: Provide information on the wind resource development potential in Wisconsin. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. Other_Citation_Details: This map has been validated with available surface data by NREL and wind energy meteorological consultants. Source National Renewable Energy Laboratory (NREL) Date Released November 30th, 2003 (10 years ago) Date Updated November 17th, 2011 (2 years ago) Keywords GIS NREL shapefile wind Wisconsin Data application/zip icon Shapefile (zip, 3 MiB)

46

Small Wind Guidebook/Glossary of Terms | Open Energy Information  

Open Energy Info (EERE)

Small Wind Guidebook/Glossary of Terms Small Wind Guidebook/Glossary of Terms < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

47

Establishment of Small Wind Regional Test Centers  

SciTech Connect

The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options, but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. During the past few years, DOE, the National Renewable Energy Laboratory (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard, AWEA Standard 9.1 - 2009, in December 2009. The Small Wind Certification Council (SWCC) and Intertek, North American SWT certification bodies, began accepting applications for certification to the AWEA standard in 2010. To reduce certification testing costs, DOE and NREL are providing financial and technical assistance for an initial round of tests at four SWT test sites, which were selected through a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A and M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontracts with DOE and NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification. Turbine installation is ongoing. Testing began in early 2011 and is scheduled to conclude in mid-late 2012.

Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

2011-01-01T23:59:59.000Z

48

Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine |  

Open Energy Info (EERE)

Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms

49

Small Wind Innovation Zone and Model Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Innovation Zone and Model Ordinance Small Wind Innovation Zone and Model Ordinance Small Wind Innovation Zone and Model Ordinance < Back Eligibility Institutional Local Government Schools State Government Utility Savings Category Wind Buying & Making Electricity Program Info State Iowa Program Type Solar/Wind Permitting Standards Provider Iowa League of Cities In May 2009, the Iowa legislature created the Small Wind Innovation Zone Program, which allows any city, county, or other political subdivision to create small wind innovation zones that promote small wind production. In order to qualify for the designation, the city must adopt the Small Wind Innovation Zone Model Ordinance and also establish an expedited approval process for small wind energy systems. System owners must also enter into a

50

NREL: Wind Research - Small Wind Guidebook Now Available in OpenEI  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Guidebook Now Available in OpenEI January 14, 2013 Wind Powering America's Small Wind Guidebook is now featured in OpenEI, the U.S. Department of Energy's wiki platform...

51

Rockingham County - Small Wind Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rockingham County - Small Wind Ordinance Rockingham County - Small Wind Ordinance Rockingham County - Small Wind Ordinance < Back Eligibility Agricultural Commercial Construction Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Wind Buying & Making Electricity Program Info State Virginia Program Type Solar/Wind Permitting Standards Provider Virginia Wind Energy Collaborative In October 2004, the Rockingham County Board of Supervisors approved a zoning ordinance for small wind energy systems, the first of its kind in Virginia. Students at James Madison University drafted the original ordinance with guidance from members of the Virginia Wind Energy Collaborative (VWEC) and assistance from members of Rockingham County's planning board. Although net metering is not required, the ordinance complements the

52

Small Wind Guidebook/State Information Portal | Open Energy Information  

Open Energy Info (EERE)

Information Portal Information Portal < Small Wind Guidebook Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal

53

International Workshop on Small Scale Wind Energy for Developing Countries  

Open Energy Info (EERE)

Scale Wind Energy for Developing Countries Scale Wind Energy for Developing Countries Jump to: navigation, search Name International Workshop on Small Scale Wind Energy for Developing Countries Agency/Company /Organization Risoe DTU Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Technology characterizations Resource Type Workshop, Training materials, Lessons learned/best practices Website http://www.risoe.dtu.dk/~/medi References International Workshop on Small Scale Wind Energy for Developing Countries[1] Background "The workshop covers the following main themes: Wind energy technologies, their perspectives and applications in developing countries. Reliability of wind turbines, lifetime and strength of wind turbine components. Low cost and natural materials for wind turbines.

54

Small Wind Turbine Applications: Current Practice in Colorado  

DOE Green Energy (OSTI)

Numerous small wind turbines are being used by homeowners in Colorado. Some of these installations are quite recent while others date back to the federal tax-credit era of the early 1980s. Through visits with small wind turbine owners in Colorado, I have developed case studies of six small wind energy applications focusing on the wind turbine technology, wind turbine siting, the power systems and electric loads, regulatory issues, and motivations about wind energy. These case studies offer a glimpse into the current state-of-the-art of small-scale wind energy and provide some insight into issues affecting development of a wider market.

Green, J.

1999-09-30T23:59:59.000Z

55

Overview: Zoning for Small Wind Turbines  

Wind Powering America (EERE)

Overview: Overview: Zoning for Small Wind Turbines Jim Green NREL ASES Small Wind Division Webinar January 17, 2008 2 Zoning Basics * Zoning is one form of land use law * Based on legal principle of "police power:" the power to regulate in order to promote the health, morals, safety, and general welfare of the community * Zoning authority originates from state laws called "zoning enabling legislation" - Standard Zoning Enabling Act, Dept. of Commerce, 1920s * Enabling legislation delegates land use authority to local jurisdictions, "Home Rule" - counties, parishes, boroughs, townships, municipalities, cities, villages, etc. 3 Zoning is Daunting * 3,034 counties (National Association of Counties) * 16,504 townships * 19,429 municipalities (National League of Cities)

56

Small Wind Guidebook/Introduction | Open Energy Information  

Open Energy Info (EERE)

Introduction Introduction < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Introduction Can I use wind energy to power my home? This question is being asked across

57

Small Wind Guidebook/For More Information | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Small Wind Guidebook/For More Information < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site?

58

Small Wind Guidebook/What Size Wind Turbine Do I Need | Open Energy  

Open Energy Info (EERE)

What Size Wind Turbine Do I Need What Size Wind Turbine Do I Need < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information What Size Wind Turbine Do I Need?

59

Small Wind Guidebook/Is There Enough Wind on My Site | Open Energy  

Open Energy Info (EERE)

There Enough Wind on My Site There Enough Wind on My Site < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Is There Enough Wind on My Site?

60

Small Wind Guidebook/What Do Wind Systems Cost | Open Energy Information  

Open Energy Info (EERE)

What Do Wind Systems Cost What Do Wind Systems Cost < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information What Do Wind Systems Cost?

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

E-Print Network (OSTI)

project. References American Wind Energy Association (2002).The U.S. Small Wind Turbine Industry Roadmap. Clean Powerof Grid-Connected Small Wind Turbines in the Domestic

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

62

Establishment of Small Wind Turbine Regional Test Centers (Presentation)  

DOE Green Energy (OSTI)

This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

Sinclair, K.

2011-09-16T23:59:59.000Z

63

Small Wind Guidebook/Image Library | Open Energy Information  

Open Energy Info (EERE)

Image Library Image Library < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information *Capacity-10 kilowatts *Turbine manufacturer-Bergey Windpower Company

64

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

65

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

Not Available

2008-10-01T23:59:59.000Z

66

Small Business Innovation Research Grant Helps Propel Innovative Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Innovation Research Grant Helps Propel Innovative Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business March 11, 2011 - 10:32am Addthis Link to image of Wind Tower System's Space Frame Tower™ Link to image of Wind Tower System's Space Frame Tower(tm) Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Wind Tower Systems, a subsidiary of Wasatch Wind, was founded in 2002 to research, develop and commercialize new ways to make lighter, taller and easier- to-assemble land-based wind turbines. Since then, the Park City, Utah-based small business received early funding from the Department of Energy, which catalyzed investment from the California Energy Commission

67

Small Wind Guidebook/Is Wind Energy Practical for Me | Open Energy  

Open Energy Info (EERE)

Practical for Me Practical for Me < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Is Wind Energy Practical for Me?

68

Installing and Maintaining a Small Wind Electric System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System July 2, 2012 - 8:22pm Addthis Installing and Maintaining a Small Wind Electric System What does this mean for me? When installing a wind system, the location of the system, the energy budget for the site, the size of the system, and the height of the tower are important elements to consider. Deciding whether to connect the system to the electric grid or not is also an important decision. If you went through the planning steps to evaluate whether a small wind electric system will work at your location, you will already have a general idea about: The amount of wind at your site The zoning requirements and covenants in your area The economics, payback, and incentives of installing a wind system

69

Long-Term Wisconsin Capital Assets Deferral and Wisconsin-Source Asset  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Wisconsin Capital Assets Deferral and Wisconsin-Source Long-Term Wisconsin Capital Assets Deferral and Wisconsin-Source Asset Exclusion Qualified Wisconsin Business Certification (Wisconsin) Long-Term Wisconsin Capital Assets Deferral and Wisconsin-Source Asset Exclusion Qualified Wisconsin Business Certification (Wisconsin) < Back Eligibility Commercial Institutional Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Corporate Tax Incentive Personal Tax Incentives Provider Wisconsin Economic Development Corporation WEDC may certify businesses as a "Qualified Wisconsin Business". The designation allows investors with WI capital gains tax liability to both defer that tax liability and if an investment is maintained for a minimum

70

Dynamic stall of small wind systems  

SciTech Connect

Aerospace Systems, Inc. (ASI) conducted a study of dynamic stall in order to define its influence on the airfoil force and moment coefficients so that these effects can be included in the calculation of small wind energy conversion system (SWECS) loads and response. The effort includes a review of past work to determine its applicability to SWECS requirements, a definition of a dynamic stall theory for use in SWECS design, and computer implementation of the theory in SWECS loads and dynamic response analyses. Sample calculations are made for representative vertical-axis (VAWT) and horizontal-axis (HAWT) wind turbines. The basic results for the fixed-pitch HAWT show that dynamic stall effects may increase normal loads and moments by about ten percent. For the cyclic pitch VAWT, the peak normal load may be slightly underestimated but the peak moment may be significantly underestimated. The consequences of dynamic stall may be a change in performance with resultant mismatch of selected components or a reduction in the fatigue life of the SWECS structure. Semiempirical methods are used for the practical estimation of the forces and moments on oscillating airfoils or airfoils in an oscillating airstream. The dynamic stall method presented in this report is applicable primarily to large amplitude oscillations of the airfoil. Fully-developed dynamic stall is presumed and, therefore, the method may not be adequate for predicting aerodynamic loads and moments for incipient or light stall.

Noll, R.B.; Ham, N.D.

1983-02-01T23:59:59.000Z

71

Building Toward a Small Wind Turbine Site Assessor Credential (Presentation)  

SciTech Connect

Proper site assessment is integral to the development of a successful small wind project. Without a small wind site assessor certification program, consumers, including state incentive program managers, lack a benchmark for differentiating between qualified and nonqualified site assessors. A small wind site assessor best practice manual is being developed as a resource for consumers until a credential program becomes available. This presentation describes the purpose, proposed content, and the National Renewable Energy Laboratory's approach to the development of such a manual.

Sinclair, K.

2013-09-01T23:59:59.000Z

72

Energy Trust - Small Wind Incentive Program (Oregon) State Rebate...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Energy Trust - Small Wind Incentive Program (Oregon) State Rebate Program This is the...

73

An introduction to the small wind turbine project  

DOE Green Energy (OSTI)

Small wind turbines are typically used for the remote or rural areas of the world including: a village in Chile; a cabin dweller in the U.S.; a farmer who wants to water his crop; or a utility company that wants to use distributed generation to help defer building new transmission lines and distribution facilities. Small wind turbines can be used for powering communities, businesses, homes, and miscellaneous equipment to support unattended operation. This paper covers the U.S. Department of Energy/National Renewable Energy Laboratory Small Wind Turbine project, its specifications, its applications, the subcontractors and their small wind turbines concepts. 4 refs., 4 figs.

Forsyth, T.L.

1997-07-01T23:59:59.000Z

74

ENERGY CENTER OF WISCONSIN  

E-Print Network (OSTI)

of electrical energy (hydro, solar and wind), using thermal energy more realistically assesses the true nature for wind-energy systems that experience rapid changes in energy output. While based on gasENERGY CENTER OF WISCONSIN Report Summary 210-1 Life-Cycle Energy Costs and Greenhouse Gas

75

Wind Field Characterization from the Trajectories of Small Balloons  

Science Conference Proceedings (OSTI)

This paper reports the development and application of a new wind sensing system, ValidWind. ValidWind consists of small, helium-filled tracer balloons and an instrument that tracks them with high spatial resolution by means of an eye-safe lidar ...

Thomas D. Wilkerson; Alan B. Marchant; Thomas J. Apedaile

2012-09-01T23:59:59.000Z

76

Tool to Market Customer-Sited Small Wind Systems: Preprint  

DOE Green Energy (OSTI)

In order to make the Wind Powering America effort a success, homeowners and landowners interested in purchasing grid-connected small wind energy systems must be provided with assistance and education. The Clean Power Estimator (CPE) program is a valuable tool for these individuals. In support of this educational effort, the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) is integrating the CPE program with site-specific wind resource data. This paper describes how the CPE program works, how end users can determine the cost-effectiveness of wind for a specific location, and how companies can use the program to identify high-value wind locations.

Jimenez, T.; George, R.; Forsyth, T.; Hoff, T.E.

2002-05-01T23:59:59.000Z

77

Tool to Market Customer-Sited Small Wind Systems: Preprint  

SciTech Connect

In order to make the Wind Powering America effort a success, homeowners and landowners interested in purchasing grid-connected small wind energy systems must be provided with assistance and education. The Clean Power Estimator (CPE) program is a valuable tool for these individuals. In support of this educational effort, the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) is integrating the CPE program with site-specific wind resource data. This paper describes how the CPE program works, how end users can determine the cost-effectiveness of wind for a specific location, and how companies can use the program to identify high-value wind locations.

Jimenez, T.; George, R.; Forsyth, T.; Hoff, T.E.

2002-05-01T23:59:59.000Z

78

WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES  

E-Print Network (OSTI)

of a building was explored [2]. Referred to such applications, a VAWT can be so small in physical size that its by the present authors to study the aerodynamic performance of small VAWTs using the experimental and numerical1 WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES J. J. Miau*1

Leu, Tzong-Shyng "Jeremy"

79

Performance testing of small interconnected wind systems  

SciTech Connect

There is a need for performance information on small windmills intended for interconnected operation with utility distribution service. The owner or prospective buyer needs the data to estimate economic viability and service reliability, while the utility needs it to determine interconnection arrangements, maintain quality of power delivered by its line, and to answer customer inquiries. No existing testing program provides all the information needed, although the Rocky Flats test site comes close. To fill this need for Michigan, Consumers Power Company and the Michigan Electric Cooperative Association helped support a two-year program at Michigan State University involving extensive performance testing of an Enertech 1500 and a 4-kW Dakota with a Gemini inverter. The performance study suggested measurements necessary to characterize SWECS for interconnected operation. They include SWECS energy output to a-c line, miles of wind passing the rotor, var-hour metering for average var consumption, and recording watt, current, and voltmeters to assess SWECS output variability. Added instruments for waveform measurement (to assess power quality) are also needed. Typical data taken at the MSU test site are used to illustrate the techniques and preliminary data from a current project is given. Finally, conclusions about SWECS performance are listed.

Park, G.L.; Krauss, O.; Miller, J.

1984-05-01T23:59:59.000Z

80

Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Small Wind Electric Systems: A Vermont Consumer's Guide  

DOE Green Energy (OSTI)

The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

O'Dell, K.

2001-10-01T23:59:59.000Z

82

Small Wind Electric Systems: A New York Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A New York Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2005-02-01T23:59:59.000Z

83

Small Wind Electric Systems: An Oregon Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems An Oregon Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Oregon guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

Not Available

2002-05-01T23:59:59.000Z

84

Small Wind Electric Systems: A Kansas Consumer's Guide (Revision)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-05-01T23:59:59.000Z

85

Small Wind Electric Systems: An Iowa Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems An Iowa Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Iowa guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

Not Available

2003-10-01T23:59:59.000Z

86

Small Wind Electric Systems: An Alaska Consumer's Guide  

DOE Green Energy (OSTI)

The Alaska Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

Not Available

2001-10-01T23:59:59.000Z

87

Small Wind Electric Systems: A Washington Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems A Washington Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Washington guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

O'Dell, K.

2002-05-01T23:59:59.000Z

88

Small Wind Electric Systems: An Oregon Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

89

Small Wind Electric Systems: An Arizona Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Arizona Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-05-01T23:59:59.000Z

90

Small Wind Electric Systems: A Minnesota Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems A Minnesota Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Minnesota guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

Not Available

2002-10-01T23:59:59.000Z

91

Small Wind Electric Systems: An Idaho Consumer's Guide (Revised)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Idaho Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-08-01T23:59:59.000Z

92

Small Wind Electric Systems: A Pennsylvania Consumer's Guide (Revised)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-08-01T23:59:59.000Z

93

Small Wind Electric Systems: A Montana Consumer's Guide (Revised)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-08-01T23:59:59.000Z

94

Small Wind Electric Systems: A New Mexico Consumer's Guide (Revised)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A New Mexico Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-08-01T23:59:59.000Z

95

Small Wind Electric Systems: A Colorado Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-05-01T23:59:59.000Z

96

Small Wind Electric Systems: A North Carolina Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with enough information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

Not Available

2004-05-01T23:59:59.000Z

97

Small Wind Electric Systems: An Ohio Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems An Ohio Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Ohio guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

Not Available

2002-10-01T23:59:59.000Z

98

Small Wind Electric Systems: A Maryland Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-08-01T23:59:59.000Z

99

Small Wind Electric Systems: A New Mexico Consumer's Guide  

DOE Green Energy (OSTI)

The New Mexico Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

O'Dell, K.

2001-10-04T23:59:59.000Z

100

Solar and Wind Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wind Rights and Wind Rights Solar and Wind Rights < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Wisconsin Program Type Solar/Wind Access Policy Provider Public Service Commission of Wisconsin Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use restrictions, and system owner rights to unobstructed access to resources. Wisconsin permitting rules and model policy for small wind can be found [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI16R&re=1&ee=1

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

DOE Green Energy (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

102

Small Wind Electric Systems: A Colorado Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2006-12-01T23:59:59.000Z

103

Small Wind Electric Systems: A Michigan Consumer's Guide (revised)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-01-01T23:59:59.000Z

104

Small Wind Electric Systems: A Montana Consumer's Guide (Revised)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2006-04-01T23:59:59.000Z

105

Small Wind Electric Systems: A Maryland Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-01-01T23:59:59.000Z

106

Small Wind Electric Systems: A Virginia Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Virginia Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-01-01T23:59:59.000Z

107

Small Wind Electric Systems: An Oklahoma Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

108

Small Wind Electric Systems: A Vermont Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

109

Small Wind Electric Systems: A South Dakota Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

110

Small Wind Electric Systems: An Oregon Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

111

Small Wind Electric Systems: A Kansas Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

112

Small Wind Electric Systems: An Illinois Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

113

Small Wind Electric Systems: A Washington Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

114

Small Wind Electric Systems: A Minnesota Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Minnesota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

115

Small Wind Electric Systems: A North Dakota Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

116

Small Wind Electric Systems: A U.S. Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

117

Small Wind Electric Systems: A Montana Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

118

Small Wind Electric Systems: A Maine Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Maine Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

119

Small Wind Electric Systems: A Pennsylvania Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

120

Small Wind Electric Systems: A Utah Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Small Wind Electric Systems: An Ohio Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

122

Small Wind Electric Systems: An Alaska Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

123

Small Wind Electric Systems: A Hawaii Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

124

Small Wind Electric Systems: An Ohio Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

125

Small Wind Electric Systems: A U.S. Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

126

Small Wind Electric Systems: A Hawaii Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

127

Small Wind Electric Systems: A Missouri Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Missouri Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

128

Small Wind Electric Systems: A Nebraska Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Nebraska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-12-01T23:59:59.000Z

129

Small Wind Electric Systems: A Nevada Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Nevada Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

130

Small Wind Electric Systems: An Indiana Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Indiana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

131

Small Wind Electric Systems: A Michigan Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

132

Small Wind Electric Systems: An Oklahoma Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

133

Small Wind Electric Systems: A Utah Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Utah Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

134

Small Wind Electric Systems: A North Carolina Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

135

Field verification program for small wind turbines  

DOE Green Energy (OSTI)

In 1999 Windward Engineering (Windward) was awarded a Cooperative Agreement under the Field Verification Program with the Department of Energy (DOE) to install two Whisper H40 wind turbines, one at the NREL National Wind Technology Center (NWTC) and one at a test site near Spanish Fork, Utah. After installation, the turbine at the NWTC was to be operated, maintained, and monitored by NREL while the turbine in Spanish Fork was to be administered by Windward. Under this award DOE and Windward defined the primary objectives of the project as follows: (1) Determine and demonstrate the reliability and energy production of a furling wind turbine at a site where furling will be a very frequent event and extreme gusts can be expected during the duration of the tests. (2) Make engineering measurements and conduct limited computer modeling of the furling behavior to improve the industry understanding of the mechanics and nature of furling. We believe the project has achieved these objectives. The turbine has operated for approximately three and a half years. We have collected detailed engineering data approximately 75 percent of that time. Some of these data were used in an ADAMS model validation that highlighted the accuracies and inaccuracies of the computer modeling for a passively furling wind turbine. We also presented three papers at the American Wind Energy Association (AWEA) Windpower conferences in 2001, 2002, and 2003. These papers addressed the following three topics: (a) general overview of the project [1], (b) furling operation during extreme wind events [2], and (c) extrapolation of extreme (design) loads [3]. We believe these papers have given new insight into the mechanics and nature of furling and have set the stage for future research. In this final report we will highlight some of the more interesting aspects of the project as well as summarize the data for the entire project. We will also present information on the installation of the turbines as well as the findings from the post-test inspection of the turbine.

Windward Engineering, LLC

2003-11-30T23:59:59.000Z

136

How to Build a Small Wind Energy Business: Lessons from California; Preprint  

DOE Green Energy (OSTI)

This paper highlights the experience of one small wind turbine installer in California that installed more than 1 MW of small wind capacity in 6 years.

Sinclair, K.

2007-07-01T23:59:59.000Z

137

NREL Innovations Contribute to an Award-Winning Small Wind Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficient and quieter than most. Small wind turbines are electric generators that utilize wind energy to produce clean, emissions-free power for individual homes, farms, and small...

138

(Small scale wind energy conversion programmatic equipment. Final report)  

SciTech Connect

The purpose of this project is to provide South Dakota citizens with a case study of the institutional and technical problems encountered in the installation, maintenance and use of a small wind energy system. The project will provide information on wind turbine reliability, maintenance requirements and power production to demonstrate the feasibility of small-scale wind energy conversion projects for South Dakota. The system was installed by vocational students and instructors at Mitchell Vocational School. It has been in operation since the fall of 1983.

Wegman, S.

1985-05-20T23:59:59.000Z

139

Establishment of Small Wind Regional Test Centers: Preprint  

DOE Green Energy (OSTI)

The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. Within the past few years, the DOE, National Renewable Energy Lab (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 - 2009) in December 2009. The Small Wind Certification Council (SWCC), a North American certification body, began accepting applications for certification to the AWEA standard in February 2010. To reduce certification testing costs, DOE/NREL is providing financial and technical assistance for an initial round of tests at four SWT test sites which were selected via a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A&M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontract with DOE/NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification.

Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

2011-03-01T23:59:59.000Z

140

On-Site Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSIONAND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSIONscale wind energy commer- is high capital costs per unit of

Kay, J.

2009-01-01T23:59:59.000Z

142

innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine  

E-Print Network (OSTI)

innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine The Skystream 3.7 wind (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew blade design that makes the wind turbine more efficient and quieter than most. Small wind turbines

143

Wisconsin Profile  

U.S. Energy Information Administration (EIA)

Reserves & Supply ; Reserves: Wisconsin: ... It receives crude oil supply from the Lakehead ... and electricity transfers from other States satisfy the rest of demand.

144

How Many Jobs are there in the Domestic Small Wind Industry? (Presentation)  

DOE Green Energy (OSTI)

This poster introduces the preliminary small wind Jobs and Economic Development Impacts (JEDI) model.

Tegen, S.

2013-07-01T23:59:59.000Z

145

IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines  

E-Print Network (OSTI)

IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines (VAWT) is being studied at McMaster University using(VAWT) is being studied

Tullis, Stephen

146

Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business  

Energy.gov (U.S. Department of Energy (DOE))

With the support of $850,000 in Phase I and II Small Business Innovation Research (SBIR) grants from the Department in 2002 and 2003, Wind Tower Systems was able to complete the final engineering design for the 100 meter wind turbine tower that GE now plans to market.

147

Small Wind Guidebook/What are the Basic Parts of a Small Wind...  

Open Energy Info (EERE)

the kinetic energy of the wind and converts it into rotary motion to drive the generator, which produces either AC or wild AC (variable frequency, variable voltage), which...

148

Northern States Power Co - Wisconsin (Wisconsin) | Open Energy...  

Open Energy Info (EERE)

Northern States Power Co - Wisconsin (Wisconsin) (Redirected from Xcel Energy Wisconsin) Jump to: navigation, search Name Northern States Power Co - Wisconsin Place Wisconsin...

149

Climate Action Plan (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Action Plan (Wisconsin) Climate Action Plan (Wisconsin) Climate Action Plan (Wisconsin) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Climate Policies Provider University of Wisconsin In April 2007, Governor Doyle signed Executive Order 191 which brought

150

225-kW Dynamometer for Testing Small Wind Turbine Components  

DOE Green Energy (OSTI)

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the 225-kW dynamometer for testing small wind turbine components.

Green, J.

2006-06-01T23:59:59.000Z

151

Enterprise Zone Tax Credits (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits (Wisconsin) Tax Credits (Wisconsin) Enterprise Zone Tax Credits (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Corporate Tax Incentive Enterprise Zone Personal Tax Incentives Provider Wisconsin Economic Development Corporation The purpose for the Enterprise Zone Tax Credits is to incent projects involving major expansion of existing Wisconsin businesses or relocation of major business operations from other states to Wisconsin. Refundable tax

152

Investment Timing and Capacity Choice for Small-Scale Wind Power Under Uncertainty  

E-Print Network (OSTI)

REFERENCES [1] American Wind Power Association (AWEA), Road-CHOICE FOR SMALL-SCALE WIND POWER UNDER UNCERTAINTY Stein-Power production from wind power has stochastic inflows, and

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-01-01T23:59:59.000Z

153

Small Wind Guidebook/First, How Can I Make My Home More Energy Efficient |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Small Wind Guidebook/First, How Can I Make My Home More Energy Efficient < Small Wind Guidebook(Redirected from Small Wind Guidebook/First, How Can I Make My Home More Energy Efficient?) Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

154

Quiet airfoils for small and large wind turbines  

DOE Patents (OSTI)

Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

Tangler, James L. (Boulder, CO); Somers, Dan L. (Port Matilda, PA)

2012-06-12T23:59:59.000Z

155

Optimizing small wind turbine performance in battery charging applications  

Science Conference Proceedings (OSTI)

Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

1995-05-01T23:59:59.000Z

156

Performance Testing of a Small Vertical-Axis Wind Turbine , S. Tullis2  

E-Print Network (OSTI)

Performance Testing of a Small Vertical-Axis Wind Turbine R. Bravo1 , S. Tullis2 , S. Ziada3 of electric production [1]. Although most performance testing for small-scale wind turbines is conducted vertical-axis wind turbines (VAWT) in urban settings, full-scale wind tunnel testing of a prototype 3.5 k

Tullis, Stephen

157

Small Wind Guidebook/Can I Connect My System to the Utility Grid | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Small Wind Guidebook/Can I Connect My System to the Utility Grid < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site?

158

Battery Voltage Stability Effects on Small Wind Turbine Energy Capture: Preprint  

DOE Green Energy (OSTI)

Previous papers on small wind turbines have shown that the ratio of battery capacity to wind capacity (known as battery-wind capacity ratio) for small wind systems with battery storage has an important effect on wind turbine energy output. Data analysis from pilot project performance monitoring has revealed shortcomings in wind turbine energy output up to 75% of expected due to the effect of a''weak'' battery grid. This paper presents an analysis of empirical test results of small wind battery systems, showing the relationships among wind turbine charging rate, battery capacity, battery internal resistance, and the change in battery voltage. By understanding these relationships, small wind systems can be designed so as to minimize''dumped'' or unused energy from small wind turbines.

Corbus, D.; Newcomb, C.; Baring-Gould, E. I.; Friedly, S.

2002-05-01T23:59:59.000Z

159

A Review of "Small-Scale Wind Turbines Policy Perspectives and  

E-Print Network (OSTI)

ERG/200607 A Review of "Small-Scale Wind Turbines ­ Policy Perspectives and Recommendations of Engineering Mathematics at Dalhousie University. #12;Hughes-Long: A Review of Small-Scale Wind Turbines proposed changes to their municipal Bylaws to allow the installation of "small-scale" wind turbines (i

Hughes, Larry

160

Small Wind Guidebook/Can I Go Off-Grid | Open Energy Information  

Open Energy Info (EERE)

Can I Go Off-Grid Can I Go Off-Grid < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Can I Go "Off-Grid"?

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Small Wind Guidebook/First, How Can I Make My Home More Energy Efficient |  

Open Energy Info (EERE)

First, How Can I Make My Home More Energy Efficient First, How Can I Make My Home More Energy Efficient < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

162

Small Wind Guidebook/How Much Energy Will My System Generate | Open Energy  

Open Energy Info (EERE)

How Much Energy Will My System Generate How Much Energy Will My System Generate < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

163

Small Wind Guidebook/Where Can I Find Installation and Maintenance Support  

Open Energy Info (EERE)

Where Can I Find Installation and Maintenance Support Where Can I Find Installation and Maintenance Support < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

164

Wind power for farms, homes, and small industry  

DOE Green Energy (OSTI)

Information is presented concerning basic wind turbine energy conversion; wind behavior and site selection; power and energy requirements; the components of a wind energy conversion system; selecting a wind energy conversion system and system economics; and legal aspects.

Park, J.; Schwind, D.

1978-09-01T23:59:59.000Z

165

Is a Small Wind Energy System Right for You? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Is a Small Wind Energy System Right for You? Is a Small Wind Energy System Right for You? Is a Small Wind Energy System Right for You? November 17, 2010 - 6:30am Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs When I think of wind technology, an image comes to mind of a towering fleet of turbines. Although I've never seen a wind farm up close, I've heard from several people that it's an awe-inspiring sight. I may not have the chance to see a large-scale wind farm anytime soon, but I have had the opportunity to examine a small wind energy system-an alternative source of energy that can fully or partially provide power for the home. In the same way, a small wind energy system can provide a significant amount of clean, renewable energy for your home. Wind turbines work by

166

Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Keeping America Competitive: Bringing Down the Cost of Small Wind Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines January 23, 2013 - 2:26pm Addthis Bison standing in front of a 10 kW wind turbine manufactured by Bergey Windpower Company. | Photo by Northwest Seed, NREL. Bison standing in front of a 10 kW wind turbine manufactured by Bergey Windpower Company. | Photo by Northwest Seed, NREL. Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office How can I participate? Interested in a small wind turbine for your home? Here's information to guide you. How do we stay competitive in the global wind energy market? A key component is continued leadership in manufacturing small wind turbines - those rated at 100 kilowatts or less.

167

Brownfield Grants (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grants (Wisconsin) Grants (Wisconsin) Brownfield Grants (Wisconsin) < Back Eligibility Commercial Local Government Agricultural Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Grant Program Provider Wiconsin Economic Development Corporation WEDC provides Brownfield Grants to local governments and businesses for redeveloping Brownfield sites. The maximum grant award is $1.25 million and

168

Idle Industrial Sites Redevelopment (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idle Industrial Sites Redevelopment (Wisconsin) Idle Industrial Sites Redevelopment (Wisconsin) Idle Industrial Sites Redevelopment (Wisconsin) < Back Eligibility Developer Institutional Local Government Nonprofit State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Grant Program Provider Wisconsin Economic Development Corporation The Idle Industrial Sites Redevelopment Program offers grants of up to $1,000,000 to Wisconsin communities for implementation of redevelopment plans for large industrial sites that have been idle, abandoned, or underutilized for a period of at least five years. Approved projects can use funds for demolition, environmental remediation, or site-specific

169

Could Your Home Benefit from a Small Wind Electric System? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Your Home Benefit from a Small Wind Electric System? Could Your Home Benefit from a Small Wind Electric System? Could Your Home Benefit from a Small Wind Electric System? August 8, 2013 - 2:31pm Addthis A small wind electric system can be a clean, affordable way to power your home. | Photo courtesy of Thomas Fleckenstein, NREL 26476 A small wind electric system can be a clean, affordable way to power your home. | Photo courtesy of Thomas Fleckenstein, NREL 26476 Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? Check out these resources to figure out whether a small wind electric system is the right choice for you. Small residential wind turbines have been around for decades, and in recent years they have become a more affordable option due to tax credits and

170

Sample Farm Bill Application: Guide for Small Wind Applicant  

Wind Powering America (EERE)

Section 9006 Sample Small Wind Application Revised April 2007 This Sample Application is provided by the National Renewable Energy Laboratory to assist applicants in meeting requirements under the Simplified Application Process contained in 7 CFR Part 4280. This sample describes a fictional project and is meant as an example for guidance purposes only. For complete application requirements, applicants should consult the regulation. Further information is available at http://www.rurdev.usda.gov/rbs/farmbill/. This document is not officially endorsed by USDA. Table of Contents Forms, Certifications and Agreements Project specific forms: SF-424 Application for Federal Assistance 1 SF-424C Budget Information - Construction Programs 2

171

Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case  

Open Energy Info (EERE)

Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Focus Area: Renewable Energy Topics: System & Application Design Website: www.leonardo-energy.org/webinar-introduction-small-scale-wind-energy-s Equivalent URI: cleanenergysolutions.org/content/introduction-small-scale-wind-energy- Language: English Policies: Deployment Programs DeploymentPrograms: Project Development This video teaches the viewer about wind turbines and RETscreen's wind module, which can be used to project the cost and production of a wind

172

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications  

E-Print Network (OSTI)

Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications. This article proposes a method to optimize the design of a small fixed-voltage wind energy conversion system are shown and discussed. Key words Wind energy conversion system, stand-alone application, nonlinear

Paris-Sud XI, Université de

173

Introduction to Small-Scale Wind Energy Systems (Including RETScreen...  

Open Energy Info (EERE)

Programs DeploymentPrograms: Project Development This video teaches the viewer about wind turbines and RETscreen's wind...

174

Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)  

DOE Green Energy (OSTI)

WindPower 2008 conference sponsored by AWEA held in Houston, Texas on June 1-4, 2008. This poster describes four small wind electric systems that were tested to IEC and AWEA standards at NREL's NWTC.

Sinclair, K.; Bowen, A.

2008-06-01T23:59:59.000Z

175

Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)  

SciTech Connect

WindPower 2008 conference sponsored by AWEA held in Houston, Texas on June 1-4, 2008. This poster describes four small wind electric systems that were tested to IEC and AWEA standards at NREL's NWTC.

Sinclair, K.; Bowen, A.

2008-06-01T23:59:59.000Z

176

Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)  

DOE Green Energy (OSTI)

This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.

Tegen, S.

2012-06-01T23:59:59.000Z

177

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

178

Census Snapshot: Wisconsin  

E-Print Network (OSTI)

WISCONSIN Adam P. Romero, Public Policy Fellow Amanda K.couples raising children in Wisconsin. We compare same-sex sex married couples in Wisconsin. 1 DECEMBER 2007 In many

Romero, Adam P.; Baumle, Amanda K; Badgett, M.V. Lee; Gates, Gary J

2007-01-01T23:59:59.000Z

179

Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines: Preprint  

DOE Green Energy (OSTI)

Aeroacoustic tests of seven airfoils were performed in an open jet anechoic wind tunnel. Six of the airfoils are candidates for use on small wind turbines operating at low Reynolds number. One airfoil was tested for comparison to benchmark data. Tests were conducted with and without boundary layer tripping. In some cases a turbulence grid was placed upstream in the test section to investigate inflow turbulence noise. An array of 48 microphones was used to locate noise sources and separate airfoil noise from extraneous tunnel noise. Trailing edge noise was dominant for all airfoils in clean tunnel flow. With the boundary layer untripped, several airfoils exhibited pure tones that disappeared after proper tripping was applied. In the presence of inflow turbulence, leading edge noise was dominant for all airfoils.

Migliore, P.; Oerlemans, S.

2003-12-01T23:59:59.000Z

180

Small Wind Electric Systems: A Guide Produced for the American Corn Growers Foundation  

DOE Green Energy (OSTI)

The purpose of the Small Wind Electric Systems Consumer's Guide produced for the AGCF is to provide members of the foundation with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains the results of the 2003 National Corn Producer Survey Wind Energy Issues.

Not Available

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A New Small Wind Center for James Madison University | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A New Small Wind Center for James Madison University A New Small Wind Center for James Madison University A New Small Wind Center for James Madison University November 15, 2010 - 1:00pm Addthis James Madison University received an $800,000 grant through the State Energy Program to build a small wind testing and training facility. Construction is expected to be completed by the end of summer 2011. The university's existing 1 kW wind turbine is pictured above. | Photo courtesy of Remy Luerssen/JMU James Madison University received an $800,000 grant through the State Energy Program to build a small wind testing and training facility. Construction is expected to be completed by the end of summer 2011. The university's existing 1 kW wind turbine is pictured above. | Photo courtesy of Remy Luerssen/JMU Stephen Graff

182

A New Small Wind Center for James Madison University | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A New Small Wind Center for James Madison University A New Small Wind Center for James Madison University A New Small Wind Center for James Madison University November 15, 2010 - 1:00pm Addthis James Madison University received an $800,000 grant through the State Energy Program to build a small wind testing and training facility. Construction is expected to be completed by the end of summer 2011. The university's existing 1 kW wind turbine is pictured above. | Photo courtesy of Remy Luerssen/JMU James Madison University received an $800,000 grant through the State Energy Program to build a small wind testing and training facility. Construction is expected to be completed by the end of summer 2011. The university's existing 1 kW wind turbine is pictured above. | Photo courtesy of Remy Luerssen/JMU Stephen Graff

183

Tax Credit for Manufacturers of Small Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit for Manufacturers of Small Wind Turbines Tax Credit for Manufacturers of Small Wind Turbines Tax Credit for Manufacturers of Small Wind Turbines < Back Eligibility Industrial Savings Category Wind Buying & Making Electricity Program Info Start Date 01/01/03 State Oklahoma Program Type Industry Recruitment/Support Rebate Amount Based on square footage of rotor swept area: 25.00/ft^2 for 2005 through 2012 Provider Oklahoma Tax Commission '''''Note: After a 2 year moratorium on all state tax credits, this credit may be claimed for tax year 2012 and subsequent tax years, for small wind turbines manufactured on or after July 1, 2012.''''' Oklahoma offers an income tax credit to the manufacturers of small wind turbines for tax years 2003 through 2012. Oklahoma manufacturers of wind turbines with a rated capacity of between 1 kilowatt (kW) and 50 kW are

184

Soft-stall control versus furling control for small wind turbine power regulation  

DOE Green Energy (OSTI)

Many small wind turbines are designed to furl (turn) in high winds to regulate power and provide overspeed protection. Furling control results in poor energy capture at high wind speeds. This paper proposes an alternative control strategy for small wind turbines -- the soft-stall control method. The furling and soft-stall control strategies are compared using steady state analysis and dynamic simulation analysis. The soft-stall method is found to offer several advantages: increased energy production at high wind speeds, energy production which tracks the maximum power coefficient at low to medium wind speeds, reducing furling noise, and reduced thrust.

Muljadi, E.; Forsyth, T.; Butterfield, C.P.

1998-07-01T23:59:59.000Z

185

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Wisconsin July 12, 2013 Xcel Energy - Farm Rewiring Loan Program Xcel Energy operates the farm rewiring loan program to help its agricultural customers install safer and...

186

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 3, 2009 Energy Secretary Steven Chu Meets with Wisconsin Governor Jim Doyle Pledges to Move Quickly on Clean Energy Investments to Create Wisconsin Jobs September 13, 2006...

187

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 CX-001687: Categorical Exclusion Determination Wisconsin Clean Transportation Program (Biodiesel) Date: 04222010 Location(s): Cumberland, Wisconsin Office(s): Energy...

188

Wisconsin Web Sites - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Wisconsin Web Sites . Other Links : Wisconsin Electricity Profile: Wisconsin Energy Profile: Wisconsin Restructuring: Last Updated: April 2007 .

189

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

SciTech Connect

Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-03-01T23:59:59.000Z

190

Economics of grid-connected small wind turbines in the domestic market  

DOE Green Energy (OSTI)

Exploitation of certain niche markets for small wind turbines is one strategy that could help speed the commercialization of grid-connected small turbines. The authors review the world's turbine manufacturers, the utility grid-connected applications and selected niche markets for grid-connected small wind systems (0.1 to 100 kilowatts). Wind turbine installation and purchase are handled under three different payment scenarios: paid in full up front, paid through a second mortgage, or paid as part of a first mortgage. The authors used a simple payback method to compare these scenarios and analyze the costs and energy produced for three different U.S. small wind turbines. When there is a buy-down program for the small wind turbine combined with other financial factors such as net metering, tax exemptions, and tax credits, a strong market incentive is created for the use of grid-connected small wind turbines.

Forsyth, T.; Tu, P.; Gilbert, J.

2000-06-29T23:59:59.000Z

191

Siting handbook for small wind energy conversion systems  

DOE Green Energy (OSTI)

This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

1980-03-01T23:59:59.000Z

192

Effect of Blade Torsion on Modeling Results for the Small Wind Research Turbine (SWRT): Preprint  

DOE Green Energy (OSTI)

This paper summarizes modeling results from both the FAST and ADAMS aeroelastic simulators characterizing small wind turbine loads and dynamic behavior.

Corbus, D.; Hansen, A. C.; Minnema, J.

2006-01-01T23:59:59.000Z

193

Impact Loans (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Loans (Wisconsin) Impact Loans (Wisconsin) Impact Loans (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Loan Program Provider Wisconsin Economic Development Corporation WEDC may provide forgivable loans to businesses that have expansion projects that will have a significant impact on job creation, job retention, capital investment, and on the surrounding area as a whole. Loans may be up to $2,000,000 and may be forgiven if contract requirements are met for high performing projects.

194

Categorical Exclusion Determinations: Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 17, 2011 June 17, 2011 CX-006207: Categorical Exclusion Determination Energy Efficiency Conservation Block Grant - Port of Milwaukee Wind Turbine CX(s) Applied: B5.1 Date: 06/17/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 1, 2011 CX-006021: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Program - Wisconsin-Tribe-Stockbridge-Munsee Band of Mohican Indians CX(s) Applied: A9, B2.5, B5.1 Date: 06/01/2011 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy June 1, 2011 CX-005950: Categorical Exclusion Determination Wisconsin Clean Transportation Partnership: Riteway Bus Services Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 06/01/2011 Location(s): Oak Creek, Wisconsin

195

Economic Development Tax Credit Program (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit Program (Wisconsin) Tax Credit Program (Wisconsin) Economic Development Tax Credit Program (Wisconsin) < Back Eligibility Commercial Agricultural Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Corporate Tax Incentive Provider Wisconsin Economic Development Corporation The Economic Development Tax Credit (ETC) program was enacted in 2009 and eliminated five existing tax credit programs (Agricultural Development Zones, Airport Development Zones, Community Development Zones, Enterprise

196

Certified Sites (Ready! Set! Build!) (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Certified Sites (Ready! Set! Build!) (Wisconsin) Certified Sites (Ready! Set! Build!) (Wisconsin) Certified Sites (Ready! Set! Build!) (Wisconsin) < Back Eligibility Agricultural Developer General Public/Consumer Institutional Low-Income Residential Nonprofit Residential Rural Electric Cooperative Schools State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Training/Technical Assistance Siting and Permitting Provider Wisconsin Economic Development Corporation WEDC has created, in partnership with Deloitte Consulting (Site Selector Consultant) and community partners, the Ready! Set! Build! Program, which provides consistent standards for industrial site certification in

197

Requirements for Power Plant and Power Line Development (Wisconsin) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Siting and Permitting Provider Public Service Commission of Wisconsin

198

Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint  

SciTech Connect

Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

Oteri, F.; Sinclair, K.

2012-03-01T23:59:59.000Z

199

Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint  

DOE Green Energy (OSTI)

Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

Oteri, F.; Sinclair, K.

2012-03-01T23:59:59.000Z

200

Original article: Comparison of maximum peak power tracking algorithms for a small wind turbine  

Science Conference Proceedings (OSTI)

This paper reviews maximum power point tracking (MPPT) algorithms dedicated for small wind turbines (SWTs). Many control strategies with different features are available and it is very important to select proper one in order to achieve best performance ... Keywords: Maximum power point tracking (MPPT), PMSG, Small wind turbine (SWT)

R. Kot, M. Rolak, M. Malinowski

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Numerical Simulation of Along-Wind Loading on Small ...  

Science Conference Proceedings (OSTI)

... This means that the energy of the missing low-frequency fluctuations is supplied, in the simplified flow, by the increment in mean wind speed, which ...

2013-09-27T23:59:59.000Z

202

Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2009-06-01T23:59:59.000Z

203

Small Wind Electric Systems: A U.S. Consumer's Guide (Revised)  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

Not Available

2004-08-01T23:59:59.000Z

204

Small Wind Electric Systems: A South Dakota Consumer's Guide  

SciTech Connect

The South Dakota Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

O' Dell, K.

2001-10-04T23:59:59.000Z

205

Small Town Using Wind Power to Offset Electricity Costs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Town Using Wind Power to Offset Electricity Costs Town Using Wind Power to Offset Electricity Costs Small Town Using Wind Power to Offset Electricity Costs September 8, 2010 - 10:00am Addthis Kevin Craft Carmen, Oklahoma, is not your average small town. It was the first recipient of an Energy Efficiency and Conservation block grant - and the small town of 412 is using that Recovery Act funding to cut costs through wind energy. Through a $242,500 Recovery Act grant, town officials purchased four 5 kW and one 10 kW wind turbines. Officials are using wind energy to offset electricity costs for all town-owned buildings and save an estimated $24,000 a year. According to Therese Kephart, Carmen's town clerk and treasurer, the goal of the project is to produce enough electricity to run all town-owned buildings.

206

Small Wind Electric Systems: A Guide for the American Corn Growers Association  

Wind Powering America (EERE)

Guide Produced for the Guide Produced for the American Corn Growers Foundation Small Wind Electric Systems Small Wind Electric Systems U.S. Department of Energy Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program Small Wind Electric Systems Cover photo: This AOC 15/50 wind turbine on a farm in Clarion, Iowa, saves the Clarion-Goldfield Community School about $9,000 per year on electrical purchase and provides a part of the school's science curriculum. Photo credit - Robert Olson/PIX11649 A national survey of corn producers conducted by the American Corn Growers Foundation (ACGF) found a strong majority level of support among farmers on a range of important wind energy issues. The survey, conducted by Robinson and Muenster Associates, Inc. of Sioux Falls, South Dakota during

207

Small Packages, Big Benefits: Economic Advantages of Local Wind Projects  

E-Print Network (OSTI)

The sun heats the earths surface unevenly creating areas of high and low pressure. Air molecules flow away from areas of high pressure towards areas of low pressure. We know this phenomenon by sight, sound and touch as wind. The speed and duration of wind are unpredictable, but what is predictable is that in many places the wind will eventually blow with enough force to be a significant power source. This fact has been relied on and winds kinetic energy has been harnessed for centuries to do things such as pump water and grind grain. Windmills that helped Americans from settlement times until the 1930s are still visible on much of the nations rural landscape including Iowasyet they are now found in various states of disrepair. Today the relic sentinels of the countryside are being joined in their towering positions by sleek new wind turbines. These modern machines and the clean power they generate are a sign of the prosperity they can bring to their landowners and communities. Although wind power only accounted for one-tenth of 1 percent of the nations total electric power generation capacity in 2003, this is four times the capacity that was in place in 1990. From 1999 to 2003, wind power capacity had an average annual growth rate of 28 percent, a

Teresa Welsh; Teresa Welsh

2005-01-01T23:59:59.000Z

208

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

209

Development and Validation of an Aeroelastic Model of a Small Furling Wind Turbine: Preprint  

DOE Green Energy (OSTI)

Small wind turbines often use some form of furling (yawing and/or tilting out of the wind) to protect against excessive power generation and rotor speeds in high winds.The verification study demonstrated the correct implementation of FAST's furling dynamics. During validation, the model tends to predict mean rotor speeds higher than measured in spite of the fact that the mean furl motion and rotor thrust are predicted quite accurately. This work has culminated with an enhanced version of FAST that should prove to be a valuable asset to designers of small wind turbines.

Jonkman, J. M.; Hansen, A. C.

2004-12-01T23:59:59.000Z

210

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

and incentives supporting smaller wind projects in Minnesota. In 2003, Wisconsin Focus on Energy (the state

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

211

Is a Small Wind Energy System Right for You? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Is a Small Wind Energy System Right for You? Is a Small Wind Energy System Right for You? Is a Small Wind Energy System Right for You? November 17, 2010 - 5:32pm Addthis When I think of wind technology, an image comes to mind of a towering fleet of turbines. Although I've never seen a wind farm up close, I've heard from several people that it's an awe-inspiring sight. I may not have the chance to see a large-scale wind farm anytime soon, but I have had the opportunity to examine a small wind energy system-an alternative source of energy that can fully or partially provide power for the home. During a recent visit to the U.S Botanic Gardens (USBG) in Washington, D.C., I noticed a vertical wind turbine on display. This single turbine, relatively small in stature, provides up to 2,000 kilowatt hours per year

212

Is a Small Wind Energy System Right for You? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Is a Small Wind Energy System Right for You? Is a Small Wind Energy System Right for You? Is a Small Wind Energy System Right for You? November 17, 2010 - 5:32pm Addthis When I think of wind technology, an image comes to mind of a towering fleet of turbines. Although I've never seen a wind farm up close, I've heard from several people that it's an awe-inspiring sight. I may not have the chance to see a large-scale wind farm anytime soon, but I have had the opportunity to examine a small wind energy system-an alternative source of energy that can fully or partially provide power for the home. During a recent visit to the U.S Botanic Gardens (USBG) in Washington, D.C., I noticed a vertical wind turbine on display. This single turbine, relatively small in stature, provides up to 2,000 kilowatt hours per year

213

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17, 2012 Secretary Chu and Office of Indian Energy Director Tracey LeBeau meet with Wisconsin tribal leaders in Milwaukee, WI. | Photo courtesy of Mark Appleton. Wisconsin Tribal...

214

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050WI3","N3010WI3","N3020WI3","N3035WI3","N3045WI3" "Date","Natural Gas Citygate Price in Wisconsin (Dollars per Thousand Cubic Feet)","Wisconsin...

215

Residential Small Wind Rebate Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

216

Local Small Wind Rebate Programs (Colorado) | Open Energy Information  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

217

Commercial Small Wind Rebate Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

218

Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: October 31, 2002--January 31, 2003  

DOE Green Energy (OSTI)

Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbinesrepresents the fourth installment in a series of volumes documenting the ongoing work of th University of Illinois at Urbana-Champaign Low-Speed Airfoil Tests Program. This particular volume deals with airfoils that are candidates for use on small wind turbines, which operate at low Reynolds numbers.

Selig, M. S.; McGranahan, B. D.

2004-10-01T23:59:59.000Z

219

Small Wind Electric Systems: A Michigan Consumer's Guide (revised)  

SciTech Connect

Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-01-01T23:59:59.000Z

220

Small Wind Electric Systems: A North Dakota Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Small Wind Electric Systems: A Minnesota Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Minnesota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-04-01T23:59:59.000Z

222

Small Wind Electric Systems: A Montana Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-08-01T23:59:59.000Z

223

Small Wind Electric Systems: A Virginia Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Virginia Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-01-01T23:59:59.000Z

224

Small Wind Electric Systems: A Montana Consumer's Guide (Revised)  

SciTech Connect

Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2006-04-01T23:59:59.000Z

225

Small Wind Electric Systems: A Hawaii Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-08-01T23:59:59.000Z

226

Small Wind Electric Systems: A Washington Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-08-01T23:59:59.000Z

227

Small Wind Electric Systems: A Nebraska Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Nebraska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-12-01T23:59:59.000Z

228

Small Wind Electric Systems: An Illinois Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-04-01T23:59:59.000Z

229

Small Wind Electric Systems: An Oklahoma Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-08-01T23:59:59.000Z

230

Small Wind Electric Systems: A Maryland Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-01-01T23:59:59.000Z

231

Small Wind Electric Systems: A Vermont Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-04-01T23:59:59.000Z

232

Small Wind Electric Systems: An Oregon Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-08-01T23:59:59.000Z

233

Small Wind Electric Systems: A South Dakota Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-04-01T23:59:59.000Z

234

NREL Innovations Contribute to an Award-Winning Small Wind Turbine (Fact Sheet)  

DOE Green Energy (OSTI)

The Skystream 3.7 wind turbine is the result of a decade-long collaboration between the National Renewable Energy Laboratory (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew heavily on its research experience to incorporate innovations into the Skystream 3.7, including a unique blade design that makes the wind turbine more efficient and quieter than most.

Not Available

2010-12-01T23:59:59.000Z

235

Regional Field Verification -- Case Study of Small Wind Turbines in the Pacific Northwest: Preprint  

DOE Green Energy (OSTI)

The U.S. Department of Energy/National Renewable Energy Laboratory's (DOE/NREL) Regional Field Verification (RFV) project supports industry needs for gaining initial field operation experience with small wind turbines and verify the performance, reliability, maintainability, and cost of small wind turbines in diverse applications. In addition, RFV aims to help expand opportunities for wind energy in new regions of the United States by tailoring projects to meet unique regional requirements and document and communicate the experience from these projects for the benefit of others in the wind power development community and rural utilities. Between August 2003 and August 2004, six turbines were installed at different host sites. At least one year of data has been collected from five of these sites. This paper describes DOE/NREL's RFV project, reviews some of the lessons learned with regards to small wind turbine installations, summarizes operations data from these sites, and provides preliminary BOS costs.

Sinclair, K.

2005-05-01T23:59:59.000Z

236

Categorical Exclusion Determinations: Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 21, 2010 April 21, 2010 CX-002107: Categorical Exclusion Determination Wisconsin-City-West Allis CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 04/21/2010 Location(s): West Allis, Wisconsin Office(s): Energy Efficiency and Renewable Energy April 7, 2010 CX-001642: Categorical Exclusion Determination Wind Turbine Castings Manufacturer CX(s) Applied: B5.1 Date: 04/07/2010 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 29, 2010 CX-001871: Categorical Exclusion Determination Low Energy Building Materials CX(s) Applied: B5.1 Date: 03/29/2010 Location(s): Caledonia, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 29, 2010 CX-001878: Categorical Exclusion Determination Industrial Energy Efficiency

237

Molldeing and Simulation of a Small-Scale Wind Turbine Generator in Isolated Distribution Network  

Science Conference Proceedings (OSTI)

In recent years, the wind energy capacity is rapidly increasing in importance as a share of electricity supply on worldwide basis. A small-scale wind turbine generator is usually installed in an isolated distribution network. This paper aims to justzjj ...

2007-09-01T23:59:59.000Z

238

Investment Timing and Capacity Choice for Small-Scale Wind Power Under Uncertainty  

E-Print Network (OSTI)

Scott Distributed power generation (New York, Marcel Dekker,the renewable share of power generation. The American Windin small-scale wind power generation, as well as the choice

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-01-01T23:59:59.000Z

239

Regional Field Verification -- Operational Results from Four Small Wind Turbines in the Pacific Northwest: Preprint  

SciTech Connect

This paper describes four small wind turbines installed in the Pacific Northwest under DOE/NREL's Regional Field Verification Program between 2003 and 2004 and summarizes operational data from each site.

Sinclair, K.; Raker, J.

2006-08-01T23:59:59.000Z

240

Challenges and strategies for increasing adoption of small wind turbines in urban areas  

E-Print Network (OSTI)

A student group at MIT in cooperation with the MIT Department of Facilities is currently working to install a Skystream 3.7 wind turbine on MIT's campus. This has raised several questions about how to best develop small ...

Ferrigno, Kevin J. (Kevin James)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

225-kW Dynamometer for Testing Small Wind Turbine Components: Preprint  

DOE Green Energy (OSTI)

This paper describes NREL's new 225-kW dynamometer facility that is suitable for testing a variety of components and subsystems for small wind turbines and discusses opportunities for industry partnerships with NREL for use of the facility.

Green, J.

2006-06-01T23:59:59.000Z

242

Small Wind Turbine Testing Results from the National Renewable Energy Lab  

DOE Green Energy (OSTI)

The independent testing project was established at the National Renewable Energy Laboratory to help reduce the barriers of wind energy expansion. Among these barriers is a lack of independent testing results for small turbines.

Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

2009-07-01T23:59:59.000Z

243

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Home Weatherization Wind Solar Wisconsin Economic Development Corporation Wisconsin Small Business Guarantee Program (Wisconsin) Wisconsin Commercial Alternative Fuel...

244

Institute for Wisconsins Future  

E-Print Network (OSTI)

Wisconsin citizens want strong communities, reasonable state and local taxes and a revenue system in which all individuals, businesses and organizations pay a fair share. IWFs Fair and Adequate series of reports examines how the current tax system works and what changes are needed to create a fair system that adequately funds the services needed for the common good. Wisconsins Tax Gap Executive Summary In 2010, recovery from the recession requires better schools, better roads, better infrastructure and aid for the unemployed. However, Wisconsin faces a multi-billion dollar revenue shortfall. Almost half of that deficit would disappear if the state was not losing over one billion dollars annually to the tax gap, the difference between what is legally owed by taxpayers and what is actually paid. The majority of Wisconsin citizens are conscientious, paying responsibly to keep our state, county, municipal and education systems running. Unfortunately, a substantial number of taxpayers dont. The tax gap is defined as the difference between the amount of money that taxpayers should pay and the amount that is actually paid voluntarily and on time. Wisconsins annual tax gap of $1.2 billion is equal to 10 % of state tax collections. This tax gap contributes heavily to the state budget shortfall and reduces

Dennis Collier; Jack Norman

2010-01-01T23:59:59.000Z

245

Energy Crossroads: Utility Energy Efficiency Programs Wisconsin...  

NLE Websites -- All DOE Office Websites (Extended Search)

WE Energies Information for Businesses Wisconsin Energy Corporation Information for Businesses Wisconsin Public Service Information for Businesses Xcel Energy (Wisconsin)...

246

Small Town Using Wind Power to Offset Electricity Costs | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carmen, Oklahoma, is not your average small town. It was the first recipient of an Energy Efficiency and Conservation block grant - and the small town of 412 is using that...

247

Wisconsin/Incentives | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Incentives Wisconsin/Incentives < Wisconsin Jump to: navigation, search Contents 1 Financial Incentive Programs for Wisconsin 2 Rules, Regulations and Policies for Wisconsin Download All Financial Incentives and Policies for Wisconsin CSV (rows 1 - 173) Financial Incentive Programs for Wisconsin Download Financial Incentives for Wisconsin CSV (rows 1 - 114) Incentive Incentive Type Active Alliant Energy (Wisconsin Power & Light) - Renewable Incentives Grant Program (Wisconsin) Utility Grant Program No Alliant Energy (Wisconsin Power and Light) - Farm Wiring Financing Program (Wisconsin) Utility Loan Program Yes Alliant Energy (Wisconsin Power & Light) - Renewable Incentives Loan Program (Wisconsin) Utility Loan Program No Alliant Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) Performance-Based Incentive No

248

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

E-Print Network (OSTI)

project. References American Wind Energy Association (2002).of the American Wind Energy Association WindPower 2002Washington, DC: American Wind Energy Association; 8 pp. ;

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

249

Wisconsin Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin Wisconsin Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Selected Cities Appleton AppletonGasPrices.com Automotive.com Mapquest.com Eau Claire EauClaireGasPrices.com Automotive.com Mapquest.com Green Bay GreenBayGasPrices.com Automotive.com Mapquest.com Kenosha KenoshaGasPrices.com Automotive.com Mapquest.com Madison MadisonGasPrices.com Automotive.com Mapquest.com Milwaukee MilwaukeeGasPrices.com Automotive.com Mapquest.com Other Wisconsin Cities WisconsinGasPrices.com (search by city or ZIP code) - GasBuddy.com Wisconsin Gas Prices (selected cities) - GasBuddy.com Wisconsin Gas Prices (organized by county) - Automotive.com

250

The integrated design of a permanent-magnet generator for small wind energy conversion system  

Science Conference Proceedings (OSTI)

This paper presents the integrated design, analysis and performance test of a 1.4 kW, radial-flux, permanent-magnet generator applied to small wind energy conversion system (WECS). In a small WECS, the three major components, i.e., turbine, generator ...

Min-Fu Hsieh; Yu-Han Yeh

2012-12-01T23:59:59.000Z

251

Small Wind Turbines Taking Off: Q&A with Andy Kruse | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Turbines Taking Off: Q&A with Andy Kruse Small Wind Turbines Taking Off: Q&A with Andy Kruse Small Wind Turbines Taking Off: Q&A with Andy Kruse June 9, 2010 - 10:36am Addthis Andy Kruse, senior vice president of Southwest Windpower. Andy Kruse, senior vice president of Southwest Windpower. Stephen Graff Former Writer & editor for Energy Empowers, EERE "That whole movement is growing like I have never seen it before. And, at the same time, we are seeing a lot of more demand for large scale utility systems.... There is significant opportunity there." Andy Kruse Q&A with Andy Kruse of Southwest Windpower In the 1980s, Andy Kruse was living off the grid, generating electricity from a small solar energy system, on a cattle ranch outside Flagstaff, Ariz. In a quest for more energy, he found a business partner, who was

252

Potential for Reducing Blade-Tip Acoustic Emissions for Small Wind Turbines: June 1, 2007 - July 31, 2008  

DOE Green Energy (OSTI)

This report provides results of wind tunnel aroacoustic tests conducted on a small wind turbine blade in the open-jet test section of the Georgia Tech Research Institute Flight Simulation Facility.

Migliore, P.

2009-02-01T23:59:59.000Z

253

Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint  

DOE Green Energy (OSTI)

This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

2007-06-01T23:59:59.000Z

254

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Purchasing Under terms of legislation (SB 459) enacted in March 2006, Wisconsin's Departments of Administration, Corrections, Health and Family Services, Public...

255

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013"...

256

Climate Action Plan (Wisconsin)  

Energy.gov (U.S. Department of Energy (DOE))

In April 2007, Governor Doyle signed Executive Order 191 which brought together a prominent and diverse group of key Wisconsin business, industry, government, energy and environmental leaders to...

257

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response Controller CX(s) Applied: B5.1 Date: 08092010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology...

258

Residential Retail - Wisconsin  

U.S. Energy Information Administration (EIA)

... and new cost categories were ... using algorithms to estimate daily usage as opposed to using expensive telemetering equipment. 12/00. Wisconsin ...

259

Residential Retail - Wisconsin  

U.S. Energy Information Administration (EIA)

... continuation of Wisconsin Gas Company's customer choice program for a third year for customers in certain zip codes in West ... of utility personnel and ...

260

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint  

SciTech Connect

This paper provides a status of the changes currently being made by IEC Maintenance Team 02 (MT02) to the existing IEC 61400-2 ''Safety of small wind turbines.'' In relation to the work done by IEC MT02, work has been done by NREL and Windward Engineering under the DOE/NREL Small Wind Turbine (SWT) Project. Aeroelastic models were built and measurements taken on a Whisper H40 turbine and an AOC 15/50. Results from this study were used to verify the simple design equations. This verification will be used to evaluate how changes made in the design load estimation section of the standard work out for a broad range of turbine configurations. The work presented here builds on work performed by Van Hulle (1996).

van Dam, J. J. D. (Energy Research Centre of the Netherlands); Forsyth, T. L. (National Renewable Energy Laboratory); Hansen, A. C. (Windward Engineering LLC)

2001-10-19T23:59:59.000Z

262

A peak power tracker for small wind turbines in battery charging applications  

Science Conference Proceedings (OSTI)

This paper describes the design, implementation and testing of a prototype version of a peak power tracking system for small wind turbines in battery charging applications. The causes for the poor performance of small wind turbines in battery charging applications are explained and previously proposed configurations to increase the power output of the wind turbines are discussed. Through computer modeling of the steady-state operation the potential performance gain of the proposed system in comparison with existing systems is calculated. It is shown that one configuration consisting of reactive compensation by capacitors and a DC/DC converter is able to optimally load the wind turbine and thus obtain maximum energy capture over the whole range of wind speeds. A proof of concept of the peak power tracking system is provided by building and testing a prototype version. The peak power tracking system is tested in combination with a typical small wind turbine generator on a dynamometer. Steady-state operating curves confirming the performance improvement predicted by calculations are presented.

De Broe, A.M.; Drouilhet, S.; Gevorgian, V.

1999-12-01T23:59:59.000Z

263

Regional Field Verification - Operational Results from Four Small Wind Turbines in the Pacific Northwest  

SciTech Connect

The purpose of the Department of Energy/National Renewable Energy Laboratory's (DOE/NREL) Regional Field Verification (RFV) project is to support industry needs for gaining initial field operation experience with small wind turbines and to verify the performance, reliability, maintainability, and cost of small wind turbines in diverse applications. In addition, RFV aims to help expand opportunities for wind energy in new regions of the United States by tailoring projects to meet unique regional requirements, and document and communicate the experience from these projects for the benefit of others in the wind power development community and rural utilities. Under RFV, Bergey Excel S (10kW) wind turbines were installed at sites in the Pacific Northwest as part of Northwest Sustainable Energy for Economic Development's (NWSEED) Our Wind Cooperative. Each installation was instrumented with data acquisition systems to collect a minimum of two years of operating data. The four turbines highlighted in this paper were installed between 2003 and 2004. At least two years of operational data have been collected from each of these sites by Northwest SEED. This paper describes DOE/NREL's RFV project and summarizes operational data from these sites.

Sinclair, K.; Raker, J.

2006-01-01T23:59:59.000Z

264

Stakeholder Engagement and Outreach: Residential-Scale 30-Meter Wind Maps  

Wind Powering America (EERE)

Residential-Scale 30-Meter Wind Maps Residential-Scale 30-Meter Wind Maps The Stakeholder Engagement and Outreach initiative provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map. Go to the Nevada wind resource map. Go to the Montana wind resource map. Go to the Wyoming wind resource map. Go to the Utah wind resource map. Go to the Colorado wind resource map. Go to the Arizona wind resource map. Go to the New Mexico wind resource map. Go to the North Dakota wind resource map. Go to the South Dakota wind resource map. Go to the Nebraska wind resource map. Go to the Kansas wind resource map. Go to the Oklahoma wind resource map. Go to the Texas wind resource map. Go to the Minnesota wind resource map. Go to the Iowa wind resource map. Go to the Missouri wind resource map. Go to the Arkansas wind resource map. Go to the Louisiana wind resource map. Go to the Wisconsin wind resource map. Go to the Illinois wind resource map. Go to the Indiana wind resource map. Go to the Michigan wind resource map. Go to the Ohio wind resource map. Go to the Kentucky wind resource map. Go to the Tennessee wind resource map. Go to the Mississippi wind resource map. Go to the Alabama wind resource map. Go to the Florida wind resource map. Go to the Georgia wind resource map. Go to the South Carolina wind resource map. Go to the North Carolina wind resource map. Go to the Virginia wind resource map. Go to the West Virginia wind resource map. Go to the Pennsylvania wind resource map. Go to the Maryland wind resource map. Go to the Delaware wind resource map. Go to the New Jersey wind resource map. Go to the New York wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. Go to the Massachusetts wind resource map. Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Alaska wind resource map. Go to the Hawaii wind resource map.

265

Investment Timing and Capacity Choice for Small-Scale Wind PowerUnder Uncertainty  

DOE Green Energy (OSTI)

This paper presents a method for evaluation of investments in small-scale wind power under uncertainty. It is assumed that the price of electricity is uncertain and that an owner of a property with wind resources has a deferrable opportunity to invest in one wind power turbine within a capacity range. The model evaluates investment in a set of projects with different capacity. It is assumed that the owner substitutes own electricity load with electricity from the wind mill and sells excess electricity back to the grid on an hourly basis. The problem for the owner is to find the price levels at which it is optimal to invest, and in which capacity to invest. The results suggests it is optimal to wait for significantly higher prices than the net present value break-even. Optimal scale and timing depend on the expected price growth rate and the uncertainty in the future prices.

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-11-28T23:59:59.000Z

266

Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revenue Bond Issuance Cost Assistance (Wisconsin) Revenue Bond Issuance Cost Assistance (Wisconsin) Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) < Back Eligibility Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Bond Program Provider Wisconsin Economic Development Corporation Industrial Revenue Bonds (IRB) are tax-exempt bonds that can be used to stimulate capital investment and job creation by providing private borrowers with access to financing at interest rates that are lower than conventional bank loans. The IRB process involves five separate entities - the borrower, lender, bond attorney, issuer, and WEDC. WEDC allocates the bonding authority or the volume cap for the program under Wis. Stat. §

267

225-kW Dynamometer for Testing Small Wind Turbine Components: Preprint  

SciTech Connect

This paper describes NREL's new 225-kW dynamometer facility that is suitable for testing a variety of components and subsystems for small wind turbines and discusses opportunities for industry partnerships with NREL for use of the facility.

Green, J.

2006-06-01T23:59:59.000Z

268

Methods for obtaining an operating point sufficiently small signal stable in power systems including wind parks  

Science Conference Proceedings (OSTI)

This paper shows a simple approach to obtain an operating point sufficiently small signal stable. In the case of a stable operating point with a poorly damped oscillatory mode, the objective is to increase the damping of that mode. That is, the power ... Keywords: critical mode, damping, eigenvalues, inter-area oscillations, linearization, wind power converter

P. Ledesma; C. Gallardo

2008-07-01T23:59:59.000Z

269

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

less. April 29, 2010 CX-002138: Categorical Exclusion Determination Waste Digester Biogas Recovery System CX(s) Applied: B5.1 Date: 04292010 Location(s): Plover, Wisconsin...

270

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Retrofits CX(s) Applied: B5.1, A9 Date: 11242009 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy November 23, 2009 CX-000096:...

271

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Performance CX(s) Applied: A9, B3.1 Date: 01202011 Location(s): Eau Claire, Wisconsin Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011...

272

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heaters CX(s) Applied: B3.6 Date: 08262010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology...

273

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biotechnology for Renewable Energy CX(s) Applied: B3.6 Date: 01212010 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 21,...

274

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy at their schools. March 5, 2010 CX-006366: Categorical Exclusion Determination Wisconsin-City-Oshkosh CX(s) Applied: A9, B2.5, B5.1 Date: 03052010 Location(s): Oshkosh,...

275

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Business CX(s) Applied: B5.1 Date: 01272010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 27,...

276

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings CX(s) Applied: A9, B2.2, B5.1 Date: 03172011 Location(s): Madison, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology...

277

Expanding Small Wind Turbine Certification Testing - Establishment of Regional Test Centers (Poster)  

SciTech Connect

Presented at the WINDPOWER 2010 Conference & Exhibition, 23-26 May 2010, Dallas, Texas. The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. To reduce certification testing costs, DOE/NREL is assisting in establishing a network of Regional Test Centers (RTCs) to conduct SWT third-party certification testing. To jump-start these RTCs, DOE/NREL is providing financial and technical assistance for an initial round of tests. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification. This poster describes the project, describes how it fits within broader SWT certification activities, and provides current status.

Jimenez, A.; Bowen, A.; Forsyth, T.; Huskey, A.; Sinclair, K.; van Dam, J.; Smith, J.

2010-05-01T23:59:59.000Z

278

Wisconsin Power & Light Co | Open Energy Information  

Open Energy Info (EERE)

Power & Light Co (Redirected from Wisconsin Power and Light Company) Jump to: navigation, search Name Wisconsin Power & Light Co Place Madison, Wisconsin Utility Id 20856 Utility...

279

Social Centers in Wisconsin, 1911-1915  

E-Print Network (OSTI)

Collection, University of Wisconsin. University Archives.Papers, University of Wisconsin Archives, p. 10. 35DavidAllen, "University of Wisconsin: The Louis E. Reber

Jew, Victor

1987-01-01T23:59:59.000Z

280

Water Use Permitting (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permitting (Wisconsin) Water Use Permitting (Wisconsin) Eligibility Utility Program Information Start Date 2011 Wisconsin Program Type Siting and Permitting Withdrawers in the...

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wisconsin/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

providing training to employees; and 4) by locating company headquarters in Wisconsin. Energy and Utility Project Review (Wisconsin) Wisconsin Siting & Permitting Yes State...

282

NREL: Wind Research - Information and Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

small wind systems. Printable Version Wind Research Home Capabilities Projects Offshore Wind Research Large Wind Turbine Research Midsize Wind Turbine Research Small Wind Turbine...

283

Small-scale anisotropy and intermittency in high and low-latitude solar wind  

E-Print Network (OSTI)

We analyze low and high--latitude fast solar wind data from the Ulysses spacecraft from 1992 to 1994 using a a systematic method to analyse the anisotropic content of the magnetic field fluctuations. We investigate all available frequencies, 1-10^{-6} Hz, for both high and low--latitudes datasets and are able to quantify the relative importance of the anisotropic versus the isotropic fluctuations. We analyse, up to sixth order, longitudinal, transverse and mixed magnetic field correlations. Our results show that strongly intermittent and anisotropic events are present in the solar wind plasma at high frequencies/small scales, indicating the absence of a complete recovery of isotropy. Anisotropic scaling properties are compatible for high and low--latitude data, suggesting a universal behaviour in spite of the different rate of evolution of the fast solar wind streams in the two environments.

A. Bigazzi; L. Biferale; S. M. A. Gama; M. Velli

2004-12-14T23:59:59.000Z

284

Small-scale anisotropy and intermittency in high and low-latitude solar wind  

E-Print Network (OSTI)

We analyze low and high--latitude fast solar wind data from the Ulysses spacecraft from 1992 to 1994 using a a systematic method to analyse the anisotropic content of the magnetic field fluctuations. We investigate all available frequencies, 1-10^{-6} Hz, for both high and low--latitudes datasets and are able to quantify the relative importance of the anisotropic versus the isotropic fluctuations. We analyse, up to sixth order, longitudinal, transverse and mixed magnetic field correlations. Our results show that strongly intermittent and anisotropic events are present in the solar wind plasma at high frequencies/small scales, indicating the absence of a complete recovery of isotropy. Anisotropic scaling properties are compatible for high and low--latitude data, suggesting a universal behaviour in spite of the different rate of evolution of the fast solar wind streams in the two environments.

Bigazzi, A; Gama, S M A; Velli, M

2004-01-01T23:59:59.000Z

285

Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report  

DOE Green Energy (OSTI)

Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.

Griffin, Dayton A.

2005-09-29T23:59:59.000Z

286

Wisconsin: Wisconsin's Clean Energy Resources and Economy (Brochure)  

SciTech Connect

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Wisconsin.

Not Available

2013-03-01T23:59:59.000Z

287

Brownfield Grants (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Wisconsin) Brownfield Grants (Wisconsin) Eligibility Commercial Local Government Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water...

288

Training Grant (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Wisconsin) Training Grant (Wisconsin) Eligibility Commercial Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization...

289

Workforce Training Grant (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workforce Training Grant (Wisconsin) Workforce Training Grant (Wisconsin) Eligibility Commercial Agricultural Construction Developer Fuel Distributor Industrial Installer...

290

Sistemas Eolicos Pequenos para Generacion de Electridad (Spanish version of Small Wind Electric Systems: A U.S. Consumer's Guide)  

DOE Green Energy (OSTI)

This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-07-01T23:59:59.000Z

291

Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology  

DOE Green Energy (OSTI)

Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

2006-08-01T23:59:59.000Z

292

Wisconsin.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin Wisconsin www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

293

Wisconsin.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin Wisconsin www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

294

Wisconsin Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Wisconsin households use 103 million Btu of site energy per home, ... Electric Power Industry Emissions: ... hydroelectric power, biomass, geothermal technology, ...

295

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

incentives supporting smaller wind projects in Minnesota. In 2003, Wisconsin Focus on Energy (the states clean energy

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

296

09/22/2004 University of Wisconsin-Madison 1 ENERGY, POLITICS AND  

E-Print Network (OSTI)

OF THE BOX SOLUTIONS #12;09/22/2004 University of Wisconsin-Madison 9 OUT OF THE BOX SOLUTIONS · SPACE SOLAR09/22/2004 University of Wisconsin-Madison 1 ENERGY, POLITICS AND SPACE Harrison H. Schmitt TOFE · TERRESTRIAL SOLAR (PHOTO, THERMAL, WIND, BIO) ­ REGIONAL ACE IN THE HOLE · FEED TO BASE LOAD GRID · OTHERWISE

297

Field Verification Program for Small Wind Turbines: Quarterly Report for January-March 2001; 1st Quarter, Issue No.4  

DOE Green Energy (OSTI)

This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

Forsyth, T.; Cardinal, J.

2001-10-30T23:59:59.000Z

298

The Numerical Simulation of Drainage Winds in a Small Urban Valley under Conditions with Supercritical Richardson Numbers  

Science Conference Proceedings (OSTI)

A two-dimensional numerical model is used to simulate nocturnal drainage flow in a small urban valley with light prevailing winds and conditions of supercritical Richardson numbers (Ri). The model uses a hydrostatic and Boussinesq system of ...

Raymond K. W. Wong; Keith D. Hage; Leslie D. Phillips

1987-10-01T23:59:59.000Z

299

Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines  

SciTech Connect

In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

2004-11-16T23:59:59.000Z

300

Small Wind Turbine Testing Results from the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

In 2008, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) began testing small wind turbines (SWTs) through the Independent Testing project. Using competitive solicitation, five SWTs were selected for testing at the National Wind Technology Center (NWTC). NREL's NWTC is accredited by the American Association of Laboratory Accreditation (A2LA) to conduct duration, power performance, safety and function, power quality, and noise tests to International Electrotechnical Commission (IEC) standards. Results of the tests conducted on each of the SWTs are or will be available to the public on the NREL website. The results could be used by their manufacturers in the certification of the turbines or state agencies to decide which turbines are eligible for state incentives.

Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Wisconsin Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Information Wisconsin Information to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Information on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Information on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Information on Google Bookmark Alternative Fuels Data Center: Wisconsin Information on Delicious Rank Alternative Fuels Data Center: Wisconsin Information on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Information on AddThis.com... Wisconsin Information This state page compiles information related to alternative fuels and advanced vehicles in Wisconsin and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

302

"1. Pleasant Prairie","Coal","Wisconsin Electric Power Co",1190  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" "1. Pleasant Prairie","Coal","Wisconsin Electric Power Co",1190 "2. South Oak Creek","Coal","Wisconsin Electric Power Co",1135 "3. Columbia","Coal","Wisconsin Power &...

303

Village of Muscoda, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Muscoda, Wisconsin (Utility Company) Muscoda, Wisconsin (Utility Company) (Redirected from City of Muscoda, Wisconsin (Utility Company)) Jump to: navigation, search Name Village of Muscoda Place Wisconsin Utility Id 13145 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-2 Large Power Service Industrial Cp-2 Large Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

304

Small Solar Wind Transients and Their Connection totheLarge-Scale Coronal Structure  

E-Print Network (OSTI)

I.G. : 2006, In situ solar wind and magnetic ?eld signaturesE. : 2008, The IMPACT Solar Wind Electron Analyzer (SWEA).Heliospheric images of the solar wind at Earth. Astrophys.

2009-01-01T23:59:59.000Z

305

Small Solar Wind Transients and Their Connection totheLarge-Scale Coronal Structure  

E-Print Network (OSTI)

I.G. : 2006, In situ solar wind and magnetic ?eld signaturesPenou, E. : 2008, The IMPACT Solar Wind Electron Analyzer (Heliospheric images of the solar wind at Earth. Astrophys.

2009-01-01T23:59:59.000Z

306

Distributed Small-Scale Wind in New Zealand: Advantages, Barriers and Policy Support Instruments.  

E-Print Network (OSTI)

??Despite having one of the best wind resources in the world, New Zealands wind energy industry is growing at a slower rate than the OECD (more)

Barry, Martin

2007-01-01T23:59:59.000Z

307

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

308

Residential Retail Unbundling for Wisconsin  

U.S. Energy Information Administration (EIA)

A smaller utility, ... continuation of Wisconsin Gas Company's customer choice program for a third year for customers in certain zip codes in West Bend. Marketers ...

309

Wisconsin Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

WisconsinGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Wisconsin Gas Prices (Ciudades Selectas) - GasBuddy.com Wisconsin Gas Prices (Organizado por...

310

Characterizing the Effects of High Wind Penetration on a Small Isolated Grid in Arctic Alaska  

DOE Green Energy (OSTI)

This paper examines the operating characteristics of the wind-diesel system in Kotzebue, Alaska, operated by Kotzebue Electric Association (KEA). KEA began incorporating wind power into its 100% diesel generating system in 1997 with three 66 kW wind turbines. In 1999, KEA added another seven 66 kW turbines, resulting in the current wind capacity of 660 kW. KEA is in the process of expanding its wind project again and ultimately expects to operate 2-3 MW of wind capacity. With a peak load of approximately 4 MW and a minimum load of approximately 1.6 MW, the wind penetration is significant. KEA is currently experiencing greater than 35% wind penetration, sometimes for several consecutive hours. This paper discusses the observed wind penetration at KEA and evaluates the effects of wind penetration on power quality on the KEA grid.

Randall, G; Vilhauer, R. (Global Energy Concepts, LLC); Thompson, C. (Thompson Engineering Company)

2001-07-18T23:59:59.000Z

311

ATLAS: A Small, Light Weight, Time-Synchronized Wind-Turbine Data Acquistion System  

DOE Green Energy (OSTI)

Wind energy researchers at Sandia National Laboratories have developed a small, lightweight, time- synchronized, robust data acquisition system to acquire long-term time-series data on a wind turbine rotor. A commercial data acquisition module is utilized to acquire data simultaneously from multip!e strain-gauge, analog, and digital channels. Acquisition of rotor data at precisely the same times as acquisition of ground data is ensured by slaving the acquisition clocks on the rotor- based data unit and ground-based units to the Global Positioning Satellite (GPS) system with commercial GPS receiver units and custom-built and programmed programmable logic devices. The acquisition clocks will remain synchronized within two microseconds indefinitely. Field tests have confirmed that synchronization can be maintained at rotation rates in excess of 350 rpm, Commercial spread-spectrum radio modems are used to transfer the rotor data to a ground- based computer concurrently with data acquisition, permitting continuous acquisition of data over a period of several hours, days or even weeks.

Berg, D.E.; Robertson, P.; Zayas, J.

1998-11-09T23:59:59.000Z

312

Lessons Learned from the U.S. Photovoltaic Industry and Implications for Development of Distributed Small Wind: Preprint  

DOE Green Energy (OSTI)

In recent years, advocates for the solar photovoltaic (PV) industry have developed successful strategies for marketing PV as a customer-sited energy resource. Their efforts have ranged from supporting effective Federal programs and incentives to initiating state and local efforts to remove siting barriers and industry efforts that build consumer confidence. More important, PV advocates have established relationships that define customer-sited PV as a viable and important technology. The PV industry's record of success and its persistent challenges can be instructive to the small wind industry. These industries share many characteristics in terms of system outputs, applications, economics, and industry goals. In some ways, small wind is staged for growth just as PV was a decade ago. The authors provide an examination of market development issues in these industries, including Federal policy infrastructure and incentives, state and local policy infrastructure, and business support. Subsequently, the authors provide recommendations for distributed wind development that include collaborations with the PV industry and as stand-alone small wind initiatives. In particular, the authors suggest aligning customer-sited small wind (and PV) with demand-side energy strategies and emphasizing the need to address all customer-sited renewables under a cohesive distributed generation development strategy.

Forsyth, T.; Tombari, C.; Nelson, M.

2006-06-01T23:59:59.000Z

313

Lessons Learned from the U.S. Photovoltaic Industry and Implications for Development of Distributed Small Wind: Preprint  

SciTech Connect

In recent years, advocates for the solar photovoltaic (PV) industry have developed successful strategies for marketing PV as a customer-sited energy resource. Their efforts have ranged from supporting effective Federal programs and incentives to initiating state and local efforts to remove siting barriers and industry efforts that build consumer confidence. More important, PV advocates have established relationships that define customer-sited PV as a viable and important technology. The PV industry's record of success and its persistent challenges can be instructive to the small wind industry. These industries share many characteristics in terms of system outputs, applications, economics, and industry goals. In some ways, small wind is staged for growth just as PV was a decade ago. The authors provide an examination of market development issues in these industries, including Federal policy infrastructure and incentives, state and local policy infrastructure, and business support. Subsequently, the authors provide recommendations for distributed wind development that include collaborations with the PV industry and as stand-alone small wind initiatives. In particular, the authors suggest aligning customer-sited small wind (and PV) with demand-side energy strategies and emphasizing the need to address all customer-sited renewables under a cohesive distributed generation development strategy.

Forsyth, T.; Tombari, C.; Nelson, M.

2006-06-01T23:59:59.000Z

314

Lessons Learned from the U.S. Photovoltaic Industry and Implications for Development of Distributed Small Wind  

Science Conference Proceedings (OSTI)

In recent years, advocates for the solar photovoltaic (PV) industry have developed successful strategies for marketing PV as a customer-sited energy resource. Their efforts have ranged from supporting effective Federal programs and incentives to initiating state and local efforts to remove siting barriers and industry efforts that build consumer confidence. More important, PV advocates have established relationships that define customer-sited PV as a viable and important technology. The PV industry's record of success and its persistent challenges can be instructive to the small wind industry. These industries share many characteristics in terms of system outputs, applications, economics, and industry goals. In some ways, small wind is staged for growth just as PV was a decade ago. The authors provide an examination of market development issues in these industries, including Federal policy infrastructure and incentives, state and local policy infrastructure, and business support. Subsequently, the authors provide recommendations for distributed wind development that include collaborations with the PV industry and as stand-alone small wind initiatives. In particular, the authors suggest aligning customer-sited small wind (and PV) with demand-side energy strategies and emphasizing the need to address all customer-sited renewables under a cohesive distributed generation development strategy.

Forsyth, T.; Tombari, C.; Nelson, M.

2006-01-01T23:59:59.000Z

315

Village of Pardeeville, Wisconsin (Utility Company) | Open Energy  

Open Energy Info (EERE)

Pardeeville, Wisconsin (Utility Company) Pardeeville, Wisconsin (Utility Company) Jump to: navigation, search Name Village of Pardeeville Place Wisconsin Utility Id 14451 Utility Location Yes Ownership M NERC Location RFC NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

316

City of New Lisbon, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wisconsin (Utility Company) Wisconsin (Utility Company) Jump to: navigation, search Name City of New Lisbon Place Wisconsin Utility Id 13466 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

317

Village of Mt Horeb, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Horeb, Wisconsin (Utility Company) Horeb, Wisconsin (Utility Company) Jump to: navigation, search Name Mt Horeb Village of Place Wisconsin Utility Id 13036 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

318

City of Clintonville, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Clintonville, Wisconsin (Utility Company) Clintonville, Wisconsin (Utility Company) Jump to: navigation, search Name City of Clintonville Place Wisconsin Utility Id 3814 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

319

City of Richland Center, Wisconsin (Utility Company) | Open Energy  

Open Energy Info (EERE)

Wisconsin (Utility Company) Wisconsin (Utility Company) Jump to: navigation, search Name City of Richland Center Place Wisconsin Utility Id 15978 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

320

City of New Holstein, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wisconsin (Utility Company) Wisconsin (Utility Company) Jump to: navigation, search Name City of New Holstein Place Wisconsin Utility Id 13448 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Village of Cadott, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cadott, Wisconsin (Utility Company) Cadott, Wisconsin (Utility Company) Jump to: navigation, search Name Village of Cadott Place Wisconsin Utility Id 2759 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Commercial Cp-1 Small Power Service Primary Metering Discount & Transformer Ownership Discount with Parallel Generation(20kW or less) Commercial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Commercial Cp-1 Small Power Service Primary Metering Discount & Transformer Ownership

322

Village of Prairie Du Sac, Wisconsin (Utility Company) | Open Energy  

Open Energy Info (EERE)

Du Sac, Wisconsin (Utility Company) Du Sac, Wisconsin (Utility Company) Jump to: navigation, search Name Village of Prairie Du Sac Place Wisconsin Utility Id 15312 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Industrial Cp-2 Large Power Time-of-Day Service Industrial

323

Village of New Glarus, Wisconsin (Utility Company) | Open Energy  

Open Energy Info (EERE)

Glarus, Wisconsin (Utility Company) Glarus, Wisconsin (Utility Company) Jump to: navigation, search Name Village of New Glarus Place Wisconsin Utility Id 13438 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Demand Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Demand Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel

324

First semiannual report: Rocky Flats Small Wind Systems Test Center activities. Volume I. Description of the National Small Wind Systems Test Center  

DOE Green Energy (OSTI)

Information is presented concerning the Rocky Flats wind turbine test site; the philosophy of testing at Rocky Flats; test procedure development; atmospheric SWECS testing; SWECS component testing; data collection, handling, and analysis; reporting procedures; and future plans.

None

1978-09-28T23:59:59.000Z

325

Wisconsin River Power Company | Open Energy Information  

Open Energy Info (EERE)

River Power Company Jump to: navigation, search Name Wisconsin River Power Company Place Wisconsin Utility Id 20863 Utility Location Yes Ownership I NERC Location RFC NERC MRO Yes...

326

Wisconsin Power & Light Co | Open Energy Information  

Open Energy Info (EERE)

Power & Light Co Jump to: navigation, search Name Wisconsin Power & Light Co Place Madison, Wisconsin Utility Id 20856 Utility Location Yes Ownership I NERC Location MRO NERC MRO...

327

Jobs Tax Credit (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs Tax Credit (Wisconsin) Jobs Tax Credit (Wisconsin) Eligibility Commercial Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home...

328

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal < Wisconsin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wisconsin Geothermal edit General Regulatory Roadmap Geothermal Power Projects Under...

329

Tobacco Industry Political Activity and Tobacco Control Policy Making in Wisconsin: 1983-1998  

E-Print Network (OSTI)

ASSIST in Wisconsin . . . . . . . . . .WISCONSINS LAWSUIT AGAINST THE TOBACCOMORRIS SUBSIDIARIES IN WISCONSIN STATE LEGISLATION IN THE

Monardi, Fred M. Ph.D.; Glantz, Stanton A. Ph.D.

1998-01-01T23:59:59.000Z

330

Microsoft Word - wisconsin.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Wisconsin NERC Region(s) ....................................................................................................... MRO/RFC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 17,836 23 Electric Utilities ...................................................................................................... 13,098 19 Independent Power Producers & Combined Heat and Power ................................ 4,738 20 Net Generation (megawatthours) ........................................................................... 64,314,067 24

331

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bassett just received a 48C tax credit to invest in capital equipment for wind turbine tower manufacturing.| Photo courtesy Bassett Mechanical Bassett Mechanical Explores...

332

A Multispacecraft Analysis of a Small-Scale Transient Entrained by Solar Wind Streams  

E-Print Network (OSTI)

solar wind and solar transients between the Sun and 1 AU bythe solar wind can be tracked continuously from the Sun tothe Suns corona, known as coronal holes, where solar plasma

2009-01-01T23:59:59.000Z

333

City of Barron, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Barron, Wisconsin (Utility Company) Barron, Wisconsin (Utility Company) Jump to: navigation, search Name City of Barron Place Wisconsin Utility Id 1278 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Commercial Cp-1 Small Power Service Primary Metering Discount& Transformer Ownership Discount with Parallel Generation(20kW or less) Commercial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Commercial

334

City of Menasha, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Menasha, Wisconsin (Utility Company) Menasha, Wisconsin (Utility Company) Jump to: navigation, search Name City of Menasha Place Wisconsin Utility Id 12298 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering

335

City of River Falls, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Falls, Wisconsin (Utility Company) Falls, Wisconsin (Utility Company) Jump to: navigation, search Name City of River Falls Place Wisconsin Utility Id 16082 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

336

City of Elkhorn, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Elkhorn, Wisconsin (Utility Company) Elkhorn, Wisconsin (Utility Company) Jump to: navigation, search Name City of Elkhorn Place Wisconsin Utility Id 5777 Utility Location Yes Ownership M NERC Location RFC NERC MRO Yes NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 75kW and 200kW Demand Transformer Ownership Discount Industrial Cp-1 Small Power Service between 75kW and 200kW Demand Primary Metering Discount Industrial Cp-1 Small Power Service between 75kW and 200kW Demand Primary Metering and Transformer Ownership Discount Industrial

337

City of Kiel, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Kiel, Wisconsin (Utility Company) Kiel, Wisconsin (Utility Company) Jump to: navigation, search Name City of Kiel Place Wisconsin Utility Id 10243 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering Discount Industrial

338

Effects of Net Metering on the Use of Small-Scale Wind Systems in the United States  

DOE Green Energy (OSTI)

Factors such as technological advancements, steadily decreasing costs, consumer demand, and state and federal policies are combining to make wind energy the world's fastest growing energy source. State and federal policies are facilitating the growth of the domestic, large-scale wind power market; however, small-scale wind projects (those with a capacity of less than 100 kilowatts[kW]) still face challenges in many states. Net metering, also referred to as net billing, is one particular policy that states are implementing to encourage the use of small renewable energy systems. Net metering allows individual, grid-tied customers who generate electricity using a small renewable energy system to receive credit from their utility for any excess power they generate beyond what they consume. Under most state rules, residential, commercial, and industrial customers are eligible for net metering; however, some states restrict eligibility to particular customer classes. This paper illustrates how net metering programs in certain states vary considerably in terms of how customers are credited for excess power they generate; the type and size of eligible technologies and whether the utility; the state, or some other entity administers the program. This paper focuses on10 particular states where net metering policies are in place. It analyzes how the different versions of these programs affect the use of small-scale wind technologies and whether some versions are more favorable to this technology than others. The choice of citizens in some states to net meter with photovoltaics is also examined.

Forsyth, T. L.; Pedden, M.; Gagliano, T.

2002-11-01T23:59:59.000Z

339

Wisconsin Strategic Highway Safety Plan 2011 2013  

E-Print Network (OSTI)

Wisconsin Strategic Highway Safety Plan 2011 ­ 2013 Published by the Wisconsin Department preventable traffic death is one too many Wisconsin Strategic Highway Safety Plan 2011 ­ 2013 Wisconsin Strategic Highway Safety Plan for 2011-2013. This document provides background and details about highway

Sheridan, Jennifer

340

Center on Wisconsin StrategyAcknowledgements  

E-Print Network (OSTI)

Gibbon, of the Wisconsin Department of Revenue, also deserve thanks for providing great assistance in compiling data and sharing their extensive knowledge of Wisconsins TIF system. Note: While Wisconsin Department of Revenue (DOR) staff members were instrumental in facilitating the research process, the views and reforms presented in this report are in no way endorsed by the DOR. About COWS The Center on Wisconsin Strategy (COWS) is a research and policy center dedicated to improving economic performance and living standards in Wisconsin and beyond. Based at the University of Wisconsin-Madison, COWS promotes high-road strategies that support living wages, environmental

Matthew Mayrl; Rebecca Boldt

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

E-Print Network (OSTI)

resource, and the retail electricity rate offset by on-sitevariations in retail electricity rates and other factors, ita small surcharge on electricity rates. These states are

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

342

Variability of Temperature in Wisconsin  

Science Conference Proceedings (OSTI)

Daily maximum and minimum temperatures since 1897 at three stations in Wisconsin are examined, and the hypothesis is tested that there is no association between interdiurnal or interannual temperature and either the local mean temperature or an ...

W. A. R. Brinkmann

1983-01-01T23:59:59.000Z

343

City of Bangor, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wisconsin (Utility Company) Wisconsin (Utility Company) Jump to: navigation, search Name Bangor City of Place Wisconsin Utility Id 1181 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Commercial Cp-1 Small Power Service with Parallel Generation(20kW or less) Commercial Cp-2 Large Power Service Industrial Cp-2 Large Power Service Primary Metering Discount & Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-2 Large Power Service Primary Metering Discount & Transformer Ownership

344

Village of Muscoda, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Muscoda, Wisconsin (Utility Company) Muscoda, Wisconsin (Utility Company) Jump to: navigation, search Name Village of Muscoda Place Wisconsin Utility Id 13145 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-2 Large Power Service Industrial Cp-2 Large Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-2 Large Power Service Primary Metering and Transformer Ownership

345

City of Kaukauna, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Kaukauna, Wisconsin (Utility Company) Kaukauna, Wisconsin (Utility Company) Jump to: navigation, search Name City of Kaukauna Place Wisconsin Utility Id 10056 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount(2,300-15,000 volts) with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering

346

City of Evansville, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Evansville, Wisconsin (Utility Company) Evansville, Wisconsin (Utility Company) Jump to: navigation, search Name City of Evansville Place Wisconsin Utility Id 6043 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 45kW and 200kW Demand Primary Metering Discount with Parallel Generation(20 kW or less) Industrial Cp-1 Small Power Service between 45kW and 200kW Demand Primary Metering and Transformer Ownership Discount with Parallel Generation(20 kW or less)

347

Recovery Act State Memos Wisconsin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Wisconsin For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 6

348

Wisconsin SRF Electron Gun Commissioning  

SciTech Connect

The University of Wisconsin has completed fabrication and commissioning of a low frequency (199.6 MHz) superconducting electron gun based on a quarter wave resonator (QWR) cavity. Its concept was optimized to be the source for a CW free electron laser facility. The gun design includes active tuning and a high temperature superconducting solenoid. We will report on the status of the Wisconsin SRF electron gun program, including commissioning experience and first beam measurements.

Bisognano, Joseph J. [University of Wisconsin-Madison; Bissen, M. [University of Wisconsin-Madison; Bosch, R. [University of Wisconsin-Madison; Efremov, M. [University of Wisconsin-Madison; Eisert, D. [University of Wisconsin-Madison; Fisher, M. [University of Wisconsin-Madison; Green, M. [University of Wisconsin-Madison; Jacobs, K. [University of Wisconsin-Madison; Keil, R. [University of Wisconsin-Madison; Kleman, K. [University of Wisconsin-Madison; Rogers, G. [University of Wisconsin-Madison; Severson, M. [University of Wisconsin-Madison; Yavuz, D. D. [University of Wisconsin-Madison; Legg, Robert A. [JLAB; Bachimanchi, Ramakrishna [JLAB; Hovater, J. Curtis [JLAB; Plawski, Tomasz [JLAB; Powers, Thomas J. [JLAB

2013-12-01T23:59:59.000Z

349

Regional Field Verification Project--Operational Results from Four Small Wind Turbines (Poster)  

SciTech Connect

A poster describing two years of operating data for four Bergey, 10-kW wind turbines on different host sites in the Pacific Northwest.

Sinclair, K.; Raker, J.

2006-06-01T23:59:59.000Z

350

Small Wind Energy Policy Making in the States: Lessons for a Shifting Energy Landscape.  

E-Print Network (OSTI)

??A key component of climate change policy is the promotion of alternative energy sources. Among renewable energy technologies wind energy represents an important source of (more)

Wiener, Joshua G.

2009-01-01T23:59:59.000Z

351

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

B. Dawley, I. Wind Energy Conversion System Monitoring &ment of Wind Energy Conversion Systems, Los AlamosCommerical Wind Energy Conversion System Monitoring and

Kay, J.

2009-01-01T23:59:59.000Z

352

Public Service Commission of Wisconsin | Open Energy Information  

Open Energy Info (EERE)

Public Service Commission of Wisconsin Jump to: navigation, search Name Public Service Commission of Wisconsin Address 610 North Whitney Way Place Madison, Wisconsin Zip 53707-7854...

353

EA-274 Wisconsin Public Service Corporation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-274 Wisconsin Public Service Corporation Order authorizing Wisconsin Public Service Corporation to export electric energy to Canada. EA-274 Wisconsin Public Service...

354

United Wisconsin Grain Producers UWGP | Open Energy Information  

Open Energy Info (EERE)

Name United Wisconsin Grain Producers (UWGP) Place Friesland, Wisconsin Product Bioethanol producer using corn as feedstock References United Wisconsin Grain Producers...

355

Wisconsin Sexual Orientation and Gender Identity Law and Documentation  

E-Print Network (OSTI)

W IS . S TAT . 111.397(2)(a). WISCONSIN Williams InstituteComplaint, [Redacted] v. State of Wisconsin Departmentof Corrections, Wisconsin Department of Workforce

Sears, Brad

2009-01-01T23:59:59.000Z

356

Evaluation of Power Extraction to Linear Gain Scheduling Controllers in a Small Wind Energy Conversion System  

Science Conference Proceedings (OSTI)

Renewable energy sources have focused a special attention in wind energy conversion systems, where the goal is maximal power extraction. This paper presents an evaluation of the linear controllers eigen structure assingment, linear quadratic regulator, ... Keywords: Wind turbines, permanent magnet synchronous generator, eigenstructure assingment, linear quadratic regulator, loop shaping design procedure

Santiago Sanchez Acevedo; Eduardo Giraldo; Edilson Delgado Trejos

2010-09-01T23:59:59.000Z

357

Optimal control in energy conversion of small wind power systems with permanent-magnet-synchronous-generators  

Science Conference Proceedings (OSTI)

This paper presents the results of experimental investigation of a low-power wind energy conversion system (WECS), based on a permanent-magnet synchronous generator (PMSG) connected directly to the turbine. A development system was built in order to ... Keywords: hardware-in-the-loop simulation, maximum power point tracking, optimal control, permanent-magnet synchronous generator, wind system

C. Vlad; I. Munteanu; A. I. Bratcu; E. Ceanga

2008-07-01T23:59:59.000Z

358

Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K McLaren S Ziada  

E-Print Network (OSTI)

in 1970s & 1980s Small VAWTs mainly H-type Sandia 34 m Darrieus Sandia National Labs Cleanfield VAWT #12 is unsuited to traditional small-scale HAWTs Small VAWTs are able to handle the "dirty" air Main technicalSmall-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K

Tullis, Stephen

359

Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade  

Science Conference Proceedings (OSTI)

An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

David M. Wright; DOE Project Officer - Keith Bennett

2007-07-31T23:59:59.000Z

360

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

The Ohio Urban Wind Electricity Project The Oklahoma Pecanon a Michigan Farm Wind Pumping on an Oklahoma Pecan Orchard

Kay, J.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Maintenance and operation of a small wind generator in the marine environment. Final report  

SciTech Connect

This report discusses the maintenance and operation of a wind-turbine generator that has been undergoing tests as a source of energy for remote Coast Guard lighthouses. The report documents both the effects of operating the wind machine in the marine environment and the maintenance that it required. Design parameters and performance records of the generator are also evaluated. The HR2 is a horizontal-axis, upwind-oriented, three-bladed wind machine. It is equipped with a direct-drive system that allows the kinetic force captured by the propeller to be converted directly into rotational force driving the main shaft. The HR2 alternator and blade/hub system are allowed to tilt out of a near-vertical plane about a shaft and bearing mechanism. The VARCS is a torsion spring- and hinge-mechanism that acts against the lifting dynamics of the spinning blades. As high winds or gusts tilt the alternator about the hinge, the VARCS's spring opposes this force and regulates the blades angle of attack into the wind; the propeller's RPM drop when tilted because of the feathering action. If the wind subsides, the force of the VARCS spring drives the alternator assembly down and presents the blades back into the wind.

Heerlein, W.

1986-07-01T23:59:59.000Z

362

On-Site Small Wind Incentive Program (New York) | Open Energy...  

Open Energy Info (EERE)

paid directly to the owner of the wind system. Instead, they are paid to eligible installers that have been approved to participate in this program, but the entire incentive...

363

Effects of Small-Scale Vertical Motion on Radar Measurements of Wind and Temperature Profiles  

Science Conference Proceedings (OSTI)

Vertical velocities were observed during the month of June 1990 with two side-by-side wind profilers at Platteville, Colorado. Many of the observations reveal strong wave motion, probably mountain lee waves, that sometimes caused vertical ...

B. L. Weber; D. B. Wuertz; D. C. Law; A. S. Frisch; J. M. Brown

1992-06-01T23:59:59.000Z

364

Village of Cashton, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cashton, Wisconsin (Utility Company) Cashton, Wisconsin (Utility Company) Jump to: navigation, search Name Village of Cashton Place Wisconsin Utility Id 3156 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Commercial Cp-2 Large Power Service Industrial Gs-1 General Service Single Phase Commercial Gs-1 General Service Three Phase Commercial Ms-1 Street Lighting Service: 100 W HPS(Overhead) Lighting Ms-1 Street Lighting Service: 175 W HPS(Ornamental) Lighting

365

City of Boscobel, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Boscobel, Wisconsin (Utility Company) Boscobel, Wisconsin (Utility Company) Jump to: navigation, search Name City of Boscobel Place Wisconsin Utility Id 1997 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Single Phase Industrial General Service Three Phase Industrial Large Power Service Industrial Residential Service Residential Small Power Service Industrial Average Rates Residential: $0.1020/kWh Commercial: $0.0870/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

366

City of Westby, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Westby, Wisconsin (Utility Company) Westby, Wisconsin (Utility Company) Jump to: navigation, search Name City of Westby Place Wisconsin Utility Id 20434 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Three Phase Commercial General Service Single phase Commercial Large Power Service Industrial Residential Residential Residential TOU(7am-7pm peak time) Residential Residential TOU(8am-8pm peak time) Residential Residential TOU(9am-9pm peak time) Residential Small Power Service Industrial

367

Lessons Learned: Milwaukees Wind Turbine Project  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

368

Relocated Business Tax Credit or Deduction (Wisconsin) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Relocated Business Tax Credit or Deduction (Wisconsin) Relocated Business Tax Credit or Deduction (Wisconsin) Eligibility Agricultural Commercial Developer Fuel Distributor...

369

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

SciTech Connect

This report presents an analysis of the technical performance and cost effectiveness of nine small wind energy conversion systems (SWECS) funded during FY 1979 by the U.S. Department of Energy. Chapter 1 gives an analytic framework with which to evaluate the systems. Chapter 2 consists of a review of each of the nine projects, including project technical overviews, estimates of energy savings, and results of economic analysis. Chapter 3 summarizes technical, economic, and institutional barriers that are likely to inhibit widespread dissemination of SWECS technology.

Kay, J.

1982-04-01T23:59:59.000Z

370

Wisconsin | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin Wisconsin Last updated on 2013-07-18 Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information SPS Chapter 363 specifically addresses amendments to the 2009 IECC. For example, if there is reference to SPS 363.0503, then the SPS 363 references only those amendments associated with the 2009 IECC (as based on language adopted in SPS 361.05), and 0503 indicates that section 503 of the 2009 IECC is being amended. WI Amendments as addressed by SPS 361.05 Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Wisconsin (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 09/01/2011 Adoption Date 07/01/2011

371

Categorical Exclusion Determinations: Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Wisconsin Categorical Exclusion Determinations: Wisconsin Location Categorical Exclusion Determinations issued for actions in Wisconsin. DOCUMENTS AVAILABLE FOR DOWNLOAD September 24, 2013 CX-010915: Categorical Exclusion Determination Wisconsin Clean Transportation Program - Conversion of Vehicle to Operate on Compressed Natural Gas CX(s) Applied: B5.1 Date: 09/24/2013 Location(s): Wisconsin Offices(s): National Energy Technology Laboratory August 8, 2013 CX-010807: Categorical Exclusion Determination Biofuels Retail Availability Improvement Network CX(s) Applied: B5.1, B5.22 Date: 08/08/2013 Location(s): Wisconsin Offices(s): National Energy Technology Laboratory July 12, 2013 CX-010623: Categorical Exclusion Determination Wisconsin Clean Transportation Program

372

The WEI6K, a 6-kW 7-m Small Wind Turbine: Final Technical Report  

SciTech Connect

This project was selected by the U.S. Department of Energy under a DOE solicitation Low Wind Speed Technology for Small Turbine Development. The objective of this project has been to design a new small wind turbine with improved cost, reliability and performance in grid-connected residential and small business applications, in order to achieve the overall DOE goal of cost effectiveness in Class 3 wind resources that can now be achieved in Class 5 resources. The scope of work for this project has been to complete the preliminary design of an improved small wind turbine, including preliminary loads and strength analyses; analysis and design of all major components; systems integration and structural dynamic analysis; estimation of life-cycle cost of energy; and design documentation and review. The project did not entail hardware fabrication or testing. The WEI6K Turbine resulting from this project is an upwind horizontal-axis wind turbine rated at 6 kW. It features a 3-blade 7-m diameter rotor. The generator is a direct-drive permanent magnet synchronous machine generating 3-phase power at 240 VAC. The turbine is maintained oriented in to the wind via active yaw control using electromechanical servos. Power is regulated with active blade pitch control. The turbine is presently designed to be placed on a 100-foot (30m) tower. The turbine is predicted to generate electricity at a levelized cost of energy (COE) between 7.3 and 8.9 /kWh at an IEC Class II site, with an average wind speed of 8.5 m/s at hub height, depending upon whether the customer uses a guyed truss tower (the lower figure) or a monopole tower. For the NREL Reference Site, with a mean wind speed of 5.35 m/s at 10 m height, the turbine would generate at a levelized cost of energy of between 9.7 and 11.9 /kWh. The lowest of these numbers is presently competitive with retail electricity rates in most of the country. The 8.9 /kWh is still competitive with retail rates in many regions of the country with high electricity costs. The study further concludes that several design changes could shave 10-14% from the cost of energy determined in the preliminary design. These changes include a new tower design that offers tilt-up capability without guy wires and takes better advantage of the lowered loads produced by pitch control; design a family of airfoils more appropriate for pitch regulation on a turbine of this size; tune the pitch controller properly to minimize shedding of power during turbulent operation in the transition from Region 2 to 3; value engineer the pitch system to shave costs, including consideration of a collective pitch system; and refine the design of the hub and main frame castings to minimize weight and cost. We are generally encouraged by the results. These preliminary numbers show that we can produce a turbine that is competitive with retail electric rates at relatively windy IEC Class II sites. With further improvements in the design, we believe the turbine could be competitive at sites with lesser wind resource.

Wetzel, Kyle K.; McCleer, Patrick J.; Hahlbeck, Edwin C.; DOE Project Office - Keith Bennett

2006-07-21T23:59:59.000Z

373

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

374

Wisconsins Forest Products Industry Business Climate Status Report  

E-Print Network (OSTI)

Wisconsins Center for Technology Transfer (CTT) is a non-profit, non-stock corporation with a mission of accelerating investments in energy efficient, environmentally friendly technologies into Wisconsin industry clusters. CTT was awarded its mission in February of 2002 by the Focus on Energy program, which identified the energy intensive, economically important industry clusters whose needs for advanced technology transfer could be served by the CTT. These clusters are Forest Products, Metal Casting, Food Processing, Printing, Glass, Biobased Products & Energy, Water & Wastewater, and Utilities. Technology roadmaps had been developed for each industry cluster through U.S. Department of Energy grants and by Focus on Energy. However, a more in-depth understanding of critical issues facing industry clusters was still needed. CTT, in a joint effort with the U.S. Forest Products Laboratory (FPL) in Madison, initiated issue scoping sessions for the Forest Products cluster. One-on-one meetings with senior executives of Wisconsin forest products companies were conducted to assess the current state and future potentials of the industry group. The findings of these sessions document a litany of challenges facing the industry and are summarized at the end of this report. Many of these challenges and the potential for investments in new technologies were

unknown authors

2004-01-01T23:59:59.000Z

375

City of Princeton, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wisconsin Wisconsin Utility Id 15385 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Commercial Cp-1 Small Power Service with Parallel Generation(20kW or less) Commercial Cp-1 TOD Small Power Optional Time-of-Day Service with Parallel Generation(20kW or less) Commercial Cp-1 TOD Small Power Optional Time-of-Day Service Commercial Cp-2 Large Power Service Industrial Cp-2 Large Power Service with Parallel Generation(20kW or less) Industrial Cp-2 TOD Large Power Optional Time-of-Day Service with Parallel

376

City of Columbus, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wisconsin Wisconsin Utility Id 4073 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

377

Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio  

DOE Green Energy (OSTI)

This paper provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

Oteri, F.; Sinclair, K.

2011-11-01T23:59:59.000Z

378

Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio (Presentation)  

DOE Green Energy (OSTI)

This presentation provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

Sinclair, K.; Oteri, F.

2011-05-01T23:59:59.000Z

379

Technical and management support for the development of small wind systems. Annual report, October 1, 1977-September 30, 1978  

DOE Green Energy (OSTI)

The FY 1978 Annual Report of the Rocky Flats Wind Systems Program describes the objectives, approach, and achievements of the program and each of its tasks areas during the period October 1, 1977-September 30, 1978. During this period, additional testing of ten small wind energy conversion systems (SWECS) was conducted and the Test Center was expanded to accommodate up to 30 SWECS. Work on nine design and analysis projects for advanced prototypes in three size ranges progressed through a series of design reviews, with prototype delivery scheduled to begin in mid-1979. Supporting activities included a Systems Engineering project which analyzed the cost of SWECS components and fabrication, a task effort in technical support to standards development, and the dissemination of information.

None

1979-02-01T23:59:59.000Z

380

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

for large, multi-MW wind farms where dispersed geographicProject The Michigan Farm Wind Pumping Project The MichiganProject The Minnesota Farm Wind Electricity Project The New

Kay, J.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

W.R. (May 1977), Wind Energy tics for Large Arrays Statis-land-use related permits. Wind Energy Report (May 1981) p.2.R. Cappelli, B. Dawley, I. Wind Energy Conversion System

Kay, J.

2009-01-01T23:59:59.000Z

382

A Simple Technique for Simultaneous Suspension of Multiple Drops in a Small Vertical Wind Tunnel  

Science Conference Proceedings (OSTI)

A simple technique is described by which multiple millimeter-size water drops can be simultaneously suspended in an air stream above the test section of a 12 12 cm cross section of a vertical wind tunnel. Horizontal profiles of the vertical air ...

A. K. Kamra; D. V. Ahire

1985-09-01T23:59:59.000Z

383

Comparison of Home Retrofit Programs in Wisconsin  

SciTech Connect

To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.

Cunningham, K.; Hannigan, E.

2013-03-01T23:59:59.000Z

384

Comparison of Home Retrofit Programs in Wisconsin  

SciTech Connect

To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.

Cunningham, K.; Hannigan, E.

2013-03-01T23:59:59.000Z

385

Forestry Policies (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Forestry Policies (Wisconsin) Forestry Policies (Wisconsin) < Back Eligibility Agricultural Commercial Developer Program Info State Wisconsin Program Type Environmental Regulations Provider Wisconsin Forestry Council The State of Wisconsin has nearly 16 million acres of forested lands in the state. The Statewide Forest Plan, completed in 2004, is carried out by the Wisconsin Council on Forestry together with the Wisconsin Department of Natural Resources Division of Forestry. This Plan has been augmented with the Statewide Forest Strategy and Statewide Forest Assessment, both completed in 2010. The Statewide Forestry Strategy includes goals with respect to Energy and Climate Change, in terms of both use of forestry residues for energy as

386

Wisconsin Dells, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dells, Wisconsin: Energy Resources Dells, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6274794°, -89.7709579° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6274794,"lon":-89.7709579,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

SEACC: the systems engineering and analysis computer code for small wind systems  

DOE Green Energy (OSTI)

The systems engineering and analysis (SEA) computer program (code) evaluates complete horizontal-axis SWECS performance. Rotor power output as a function of wind speed and energy production at various wind regions are predicted by the code. Efficiencies of components such as gearbox, electric generators, rectifiers, electronic inverters, and batteries can be included in the evaluation process to reflect the complete system performance. Parametric studies can be carried out for blade design characteristics such as airfoil series, taper rate, twist degrees and pitch setting; and for geometry such as rotor radius, hub radius, number of blades, coning angle, rotor rpm, etc. Design tradeoffs can also be performed to optimize system configurations for constant rpm, constant tip speed ratio and rpm-specific rotors. SWECS energy supply as compared to the load demand for each hour of the day and during each session of the year can be assessed by the code if the diurnal wind and load distributions are known. Also available during each run of the code is blade aerodynamic loading information.

Tu, P.K.C.; Kertesz, V.

1983-03-01T23:59:59.000Z

388

Investment Timing and Capacity Choice for Small-Scale Wind Power Under Uncertainty  

E-Print Network (OSTI)

Renewable Generation, Distributed Generation, Risk Analysis,both central and distributed generation is needed. Small-Among proponents of distributed generation there is a desire

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-01-01T23:59:59.000Z

389

Offshore Wind Power - Opportunity and strategy for a small engineering consultants firm.  

E-Print Network (OSTI)

??GVA is a small engineering consultancy firm, with specialized focus in design of floating structures such as oil production platforms. The key business is at (more)

Jobson Sellstrm, Carin

2010-01-01T23:59:59.000Z

390

Investment Timing and Capacity Choice for Small-Scale Wind Power Under Uncertainty  

E-Print Network (OSTI)

INVESTMENT TIMING AND CAPACITY CHOICE FOR SMALL-SCALE WINDvalue as a func- tion of capacity is declining because ais reduced with increased capacity. A possible approach for

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-01-01T23:59:59.000Z

391

Cedar Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cedar Ridge Wind Farm Cedar Ridge Wind Farm Facility Cedar Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Alliant (Wisconsin Power & Light) Developer Midwest Wind Energy/Alliant (Wisconsin Power & Light) Energy Purchaser Alliant (Wisconsin Power & Light) Location Fond du Lac County WI Coordinates 43.647092°, -88.459146° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.647092,"lon":-88.459146,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

Bolinger, Mark

2010-01-01T23:59:59.000Z

393

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA). 2009b. AWEA SmallWashington, DC: American Wind Energy Association. Bolinger,

Bolinger, Mark

2010-01-01T23:59:59.000Z

394

Fermilab Today | University of Wisconsin Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

of Wisconsin experimental particle physics group focuses on searches for the Higgs boson within and beyond the Standard Model. The group also focuses on new exotic...

395

Clean Cities: Wisconsin Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Wisconsin Clean Cities coalition Contact Information Lorrie...

396

Eileen, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Eileen, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

397

University of Wisconsin-Stout Profile - 2001  

Science Conference Proceedings (OSTI)

... For more information, contact: Julie Furst-Bowe University of Wisconsin-Stout 1 Clock Tower Plaza Menomonie, WI 54751 Telephone: (715) 232 ...

2011-07-13T23:59:59.000Z

398

Qualifying RPS State Export Markets (Wisconsin)  

Energy.gov (U.S. Department of Energy (DOE))

This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Wisconsin as eligible sources towards their RPS targets or goals. For specific...

399

,"Wisconsin Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

400

Windsor, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2183254, -89.3415057 Loading map... "minzoom":false,"mappingservice":"googlemaps3...

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

WISCONSIN WASTE CHARACTERIZATION & MANAGEMENT STUDY UPDATE 2000  

E-Print Network (OSTI)

Printed on Recycled Paper CLIENTS\\WISCONSIN\\KC011629.doc 7.31.02 81501TABLE OF CONTENTS CHAPTER 1- SOLID WASTE GENERATION....................................................................................1-1

Prepared For

2002-01-01T23:59:59.000Z

402

Dorchester, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dorchester, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0030238, -90.3356912 Loading map... "minzoom":false,"mappingservice":...

403

Cary, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cary, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4556769, -90.2432307 Loading map... "minzoom":false,"mappingservice":"googl...

404

Nepeuskun, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nepeuskun, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9565437, -88.8070886 Loading map... "minzoom":false,"mappingservice":"...

405

Climate Action Plan (Wisconsin) | Open Energy Information  

Open Energy Info (EERE)

gas emissions. In July 2008, the Task Force voted overwhelmingly to approve the final report and recommendations, Wisconsin's Strategy for Reducing Global Warming, and...

406

Wood, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wood, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.568752, -90.330887 Loading map... "minzoom":false,"mappingservice":"googlem...

407

City of Eagle River, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

River, Wisconsin (Utility Company) River, Wisconsin (Utility Company) Jump to: navigation, search Name City of Eagle River Place Wisconsin Utility Id 5551 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less)-Net Energy Billing Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Optional Time-of-Day Service between 50kW and 200kW

408

How Do Wisconsins Health Outcomes Compare To Those Of Other Midwest States?  

E-Print Network (OSTI)

documented that Wisconsin was ranked 16 th in the US for age-adjusted mortality rates, and that by one estimate our rank would fall to 18 th by 2010. Since we often compare ourselves to adjacent states in our region, this Issue Brief will examine Wisconsins performance in health outcomes as compared with the neighboring states of

Angela M. Kempf; David A. Kindig; Patrick L. Remington

2005-01-01T23:59:59.000Z

409

Influence of the Tobacco Industry on Wisconsin Tobacco Control Policies  

E-Print Network (OSTI)

of each companys brands in Wisconsin are proportional topublication of the Wisconsin Anti-Tuberculosis Association.Capital Times. 6 Jul 1966. Wisconsin State Journal. 10 Jan

University of Wisconsin Comprehensive Cancer Center

2002-01-01T23:59:59.000Z

410

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

411

Community small scale wind farms for New Zealand: a comparative study of Austrian development, with consideration for New Zealand???s future wind energy development.  

E-Print Network (OSTI)

??In New Zealand, the development of wind energy is occurring predominantly at a large scale level with very little opportunity for local people to become (more)

Thomson, Grant

412

Neutronics at Wisconsin, ORNL advances ITER shielding and internationa...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutronics at Wisconsin, ORNL advances ITER shielding and international collaboration American Fusion News Category: U.S. ITER Link: Neutronics at Wisconsin, ORNL advances ITER...

413

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bayfield County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate...

414

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

415

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashland County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

416

Green Power Network - Description of Wisconsin Electric RFP for...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Wisconsin Electric's Plans for Request For Proposals (RFP) for 5 mw Renewable Energy Supply March 17,1998 Project Overview: Wisconsin Electric plans to solicit bids for...

417

Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and...

418

Wisconsin Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million...

419

Wisconsin - State Energy Profile Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for ... Viking Gas Transmission Co. Fueling Stations: Wisconsin: Share of U.S ... Consumption for Home Heating: Wisconsin ...

420

Wisconsin - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... and the State's high corn production allows Wisconsin to produce ... Wisconsin produces a substantial amount of ethanol at several ethanol plants in the southern ...

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alliant Energy (Wisconsin Power and Light) - Shared Savings Program...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Alliant Energy (Wisconsin Power and Light) - Shared Savings Program (Wisconsin) This is the...

422

Village of Mazomanie, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mazomanie, Wisconsin (Utility Company) Mazomanie, Wisconsin (Utility Company) Jump to: navigation, search Name Village of Mazomanie Place Wisconsin Utility Id 11895 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 45kW and 200kW Demand Commercial Cp-1 Small Power Service between 45kW and 200kW Demand with Parallel Generation(20kW or less) Commercial Cp-2 Large Power Time-of-Day Service above 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-2 Large Power Time-of-Day Service above 200kW Demand Primary Metering

423

City of Fennimore, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Fennimore, Wisconsin (Utility Company) Fennimore, Wisconsin (Utility Company) Jump to: navigation, search Name City of Fennimore Place Wisconsin Utility Id 6274 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Commercial Cp-1 Small Power Service between 50kW and 200kW Demand Commercial Cp-2 Large Power Service above 200kW Demand with Parallel Generation(20 kW OR LESS) Cp-2 Large Power Service above 200kW Demand

424

City of Arcadia, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wisconsin Wisconsin Utility Id 765 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Commercial, Instutional, Gevernment, and Farm - Three Phase Commercial General Service- Commercial, Instutional, Gevernment, and Farm - Single Phase Commercial Industrial Power Service - Over 1,000kW Demand Industrial Large Power Service - 200kW-1,000kW Demand Industrial Residential Service Residential Small Power Service - 40kW-200kW Demand Industrial

425

Northern States Power Co - Wisconsin | Open Energy Information  

Open Energy Info (EERE)

Northern States Power Co - Wisconsin Northern States Power Co - Wisconsin Place Minnesota Utility Id 13780 Utility Location Yes Ownership I NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A09, A10, A11, A13 - Small General Service Commercial AUTOMATIC PROTECTIVE LIGHTING SERVICE 100 W SV Lighting

426

Energy Center of Wisconsin | Open Energy Information  

Open Energy Info (EERE)

of Wisconsin of Wisconsin Jump to: navigation, search Name Energy Center of Wisconsin Place Madison, WI Website http://www.ecw.org/ References Partnering for Success, April 2002[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Energy Center of Wisconsin is a company located in Madison, WI. References ↑ "Partnering for Success, April 2002" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Center_of_Wisconsin&oldid=381655" Categories: Clean Energy Organizations Companies Organizations What links here Related changes

427

Categorical Exclusion Determinations: Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 19, 2009 October 19, 2009 CX-000161: Categorical Exclusion Determination WI City Madison CX(s) Applied: A9, A11, B2.5, B5.1 Date: 10/19/2009 Location(s): Madison, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office October 1, 2009 CX-004622: Categorical Exclusion Determination Red Cliff Band of Lake Superior Chippewa of Wisconsin - Energy Efficiency and Conservation Strategy CX(s) Applied: A1, A9, A11 Date: 10/01/2009 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy October 1, 2009 CX-004621: Categorical Exclusion Determination Red Cliff Band of Lake Superior Chippewa of Wisconsin - Commercial Building Energy Audits CX(s) Applied: A9, B5.1 Date: 10/01/2009 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy

428

Clean Cities: Wisconsin Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Clean Cities Coalition Wisconsin Clean Cities Coalition The Wisconsin Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Wisconsin Clean Cities coalition Contact Information Lorrie Lisek 414-221-4958 lorrie.lisek@wicleancities.org Coalition Website Clean Cities Coordinator Lorrie Lisek Photo of Lorrie Lisek Lorrie Lisek is the President and co-owner of Legacy Environmental Services, Inc., an environmental consulting firm specializing in quality of life and management of environmental, energy, transportation and construction projects and programs. Lisek was co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission now extends north to Wisconsin where she has served

429

Water Use Fees (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Use Fees (Wisconsin) Water Use Fees (Wisconsin) Water Use Fees (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info Start Date 2011 State Wisconsin Program Type Fees Provider Department of Natural Resources Annual $125 water use fees are charged by the State of Wisconsin to each property that has the capacity to withdraw 100,000 gallons per day or more

430

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

to purchase and install an Enertech 1500 wind an elevationabout $100 annually. The Enertech 1500 that would have beenthan by the utility. Enertech estimates that a similarly

Kay, J.

2009-01-01T23:59:59.000Z

431

Field verification program for small wind turbines, Block Island, Rhode Island. Quarterly report for the period October to December 1999  

SciTech Connect

The proposal is to install and monitor five 10-kW residential wind turbines on 25-meter towers on Block Island, which has excellent wind resources and high electricity costs. The harsh environment will provide an opportunity for accelerated reliability testing of an enhanced wind turbine and other equipment.

Henry G. duPont

2000-01-01T23:59:59.000Z

432

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

433

Community-Owned wind power development: The challenge of applying the European model in the United States, and how states are addressing that challenge  

E-Print Network (OSTI)

state policy and clean energy fund support, new federal incentives,and incentives supporting smaller wind projects in Minnesota. In 2003, Wisconsin Focus on Energy (the state

Bolinger, Mark

2004-01-01T23:59:59.000Z

434

Minnesota, Wisconsin, North and South Dakota Refining District ...  

U.S. Energy Information Administration (EIA)

Minnesota, Wisconsin, North and South Dakota Refining District Percent Utilization of Refinery Operable Capacity (Percent)

435

Wisconsin Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Wisconsin Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

436

Refining District Minnesota-Wisconsin-North Dakota-South ...  

U.S. Energy Information Administration (EIA)

Refining District Minnesota-Wisconsin-North Dakota-South Dakota Refinery Yield of Petroleum Coke (Percent)

437

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

438

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

Other utility-scale (>100 kW) wind turbines installed in thesales of small wind turbines, 100 kW and less in size, intoSales of Small Wind Turbines (? 100 kW) into the United

Wiser, Ryan

2012-01-01T23:59:59.000Z

439

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Other utility-scale (>100 kW) wind turbines installed in thesales of small wind turbines, 100 kW and less in size, intoSales of Small Wind Turbines (? 100 kW) into the United

Bolinger, Mark

2013-01-01T23:59:59.000Z

440

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 September 25, 2012 Wind Energy Research Institutes Join Forces at the Inaugural Meeting of the North American Wind Energy Academy The North American Wind Energy Academy held its inaugural meeting August 7-9, 2012, at the University of Massachusetts Amherst. The meeting drew 92 participants from 17 states and Canada, including 22 universities, eight commercial companies, and four government laboratories. September 25, 2012 DOE Wind Program Funds University of Wisconsin-Madison Wind Workforce Development Efforts: A Wind Powering America Success Story The University of Wisconsin-Madison was awarded an Energy Department workforce development grant in July 2010 to develop a series of continuing education short courses focused on civil design and construction for wind

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin: Energy Resources Wisconsin: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7844397,"lon":-88.7878678,"alt":0,"address":"Wisconsin","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

City of Madison- Solar & Wind Access and Planning Laws  

Energy.gov (U.S. Department of Energy (DOE))

Madison, Wisconsin, has established several local laws to facilitate the planning and permitting of solar and wind systems. The planning guidelines are specific to solar, while the permitting laws...

443

Village of Sauk City, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Village of Sauk City Village of Sauk City Place Wisconsin Utility Id 16680 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering Discount Industrial

444

City of Plymouth, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Plymouth Plymouth Place Wisconsin Utility Id 15159 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Secondary Voltage Metering with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Secondary Voltage Service with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Secondary Voltage Metering Industrial Cp-1 Small Power Service Secondary Voltage Service Industrial

445

Wisconsin's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Wisconsin's 2nd congressional district: Energy Resources Wisconsin's 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Wisconsin. Contents 1 US Recovery Act Smart Grid Projects in Wisconsin's 2nd congressional district 2 Registered Research Institutions in Wisconsin's 2nd congressional district 3 Registered Energy Companies in Wisconsin's 2nd congressional district 4 Registered Financial Organizations in Wisconsin's 2nd congressional district 5 Utility Companies in Wisconsin's 2nd congressional district US Recovery Act Smart Grid Projects in Wisconsin's 2nd congressional district Madison Gas and Electric Company Smart Grid Project Wisconsin Power and Light Company Smart Grid Project

446

Alternative Fuels Data Center: Wisconsin Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Points of Wisconsin Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Points of Contact on Google Bookmark Alternative Fuels Data Center: Wisconsin Points of Contact on Delicious Rank Alternative Fuels Data Center: Wisconsin Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Points of Contact The following people or agencies can help you find more information about Wisconsin's clean transportation laws, incentives, and funding

447

Alternative Fuels Data Center: Wisconsin Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Laws and Wisconsin Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Wisconsin. Your Clean Cities coordinator at

448

Wisconsin: Wisconsin's Clean Energy Resources and Economy (Brochure)  

SciTech Connect

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Wisconsin.

2013-03-01T23:59:59.000Z

449

Energy Incentive Programs, Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Wisconsin Energy Incentive Programs, Wisconsin October 29, 2013 - 1:19pm Addthis Updated September 2013 What public-purpose-funded energy efficiency programs are available in my state? The Reliability 2000 legislation in Wisconsin established a public benefits funding mechanism for energy efficiency, renewable energy, and low-income assistance. Starting in 2007 (following 2005's Act 141), the state's utilities began collecting the funds for the programs directly, and then individually contracting with the administrators of the state-wide Focus On Energy initiative. Over $80 million was budgeted across these programs and individual utilities' voluntary efforts in 2012. The Focus on Energy program provides various types of financial incentives to eligible customers of participating utilities for installing qualified

450

East Central Energy (Wisconsin) | Open Energy Information  

Open Energy Info (EERE)

Energy (Wisconsin) Energy (Wisconsin) Jump to: navigation, search Name East Central Energy Place Wisconsin Utility Id 5574 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1200/kWh Commercial: $0.1130/kWh Industrial: $0.0968/kWh The following table contains monthly sales and revenue data for East Central Energy (Wisconsin). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

451

Central Wisconsin Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Central Wisconsin Elec Coop Central Wisconsin Elec Coop Jump to: navigation, search Name Central Wisconsin Elec Coop Place Wisconsin Utility Id 3293 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Heating Commercial Irrigation-Rate L Industrial Irrigation-Rate M Industrial Irrigation-Rate N (Controlled) Industrial Large General Service Industrial Medium General Service Industrial Outdoor Lighting Service-100w HPS Lighting Outdoor Lighting Service-150w HPS Lighting Outdoor Lighting Service-175w MV Lighting

452

Wisconsin Energy Center | Open Energy Information  

Open Energy Info (EERE)

Wisconsin Energy Center Wisconsin Energy Center Place Madison, Wisconsin Zip 53711 Sector Efficiency, Renewable Energy Product The Energy Center of Wisconsin is a private, non-profit organization dedicated to improving energy sustainability including support of energy efficiency, renewable energy, and environmental protection. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Wisconsin Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

454

Project Green Thumb: A Demonstration in Wisconsin  

Science Conference Proceedings (OSTI)

A prototype of NOAA's proposed Green Thumb agricultural information dissemination system was demonstrated at five different sites across Wisconsin during the period JulyOctober 1979. Those viewing the system were asked to complete questionnaires ...

David Suchman

1980-04-01T23:59:59.000Z

455

Carroll County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance sets forth regulations for the zoning, erection, and operation of small wind energy systems in Carroll County, Maryland.

456

Kent County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

457

Technical and management support for the development of Small Wind Systems. Fiscal year 1980 annual report, October 1, 1979-September 30, 1980  

DOE Green Energy (OSTI)

The status and achievements of a program for the development, testing, and commercialization of wind energy systems rated under 100 kilowatts are described. The organization structure and task definition used to promote the production, marketing, and acceptance of small systems are described, and the Work Breakdown Structure under which the program is organized is detailed. Reports are given which describe the status of contracts funded by the Federal Wind Energy Program and managed by the Rocky Flats Wind Systems Program. These project reports, sequenced according to the Department of Energy Work Breakdown Structure, name the principal investigators involved, and discuss achievements and progress made during Fiscal Year 1980. Of fourty-four projects, seven were completed during the Fiscal Year. The Work Breakdown Structure Index details the organization sequence.

Not Available

1981-08-01T23:59:59.000Z

458

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

459

City of New Richmond, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

New Richmond New Richmond Place Wisconsin Utility Id 13481 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering & Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering & Transformer Ownership Discount

460

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Reduces Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on AddThis.com... Oct. 2, 2010 Wisconsin Reduces Emissions With Natural Gas Trucks

462

Water Conservation and Water Use Efficiency (Wisconsin) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation and Water Use Efficiency (Wisconsin) Conservation and Water Use Efficiency (Wisconsin) Water Conservation and Water Use Efficiency (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Program Info Start Date 01/2011 State Wisconsin Program Type Siting and Permitting Provider Wisconsin Department of Natural Resources Wisconsin has several statutes that promote water conservation and

463

Universality of the Modeled Small-Scale Response of the Upper Tropical Ocean to Squall Wind Forcing  

Science Conference Proceedings (OSTI)

The upper ocean response to idealized surface wind forcing that is representative of conditions observed during the TOGA-COARE Intensive Observation Period is studied by numerical simulations using a second-moment closure model. A set of ...

R. A. Richardson; G. G. Sutyrin; D. Hebert; L. M. Rothstein

1999-03-01T23:59:59.000Z

464

Spatial and Temporal Scales of Boundary Layer Wind Predictability in Response to Small-Amplitude Land Surface Uncertainty  

Science Conference Proceedings (OSTI)

Predictability experiments with the Weather Research and Forecast (WRF) model as a proxy for the atmosphere are analyzed to quantify the spatial and temporal scales of boundary layer wind response to land surface perturbations. Soil moisture is ...

Joshua P. Hacker

2010-01-01T23:59:59.000Z

465

A Free-Floating PIV System: Measurements of Small-Scale Turbulence under the Wind Wave Surface  

Science Conference Proceedings (OSTI)

An in situ free-floating underwater miniature particle image velocimetry (UWMPIV) system is developed and applied to measure the structure of turbulence in the aqueous side of the wind wave surface boundary layer. The UWMPIV system provides a ...

Binbin Wang; Qian Liao; Jianen Xiao; Harvey A. Bootsma

2013-07-01T23:59:59.000Z

466

City of Cumberland, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cumberland City of Cumberland City of Place Wisconsin Utility Id 4627 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20 kW or less)-Net Energy Billing Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and

467

City of Marshfield, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Marshfield Marshfield Place Wisconsin Utility Id 11740 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering

468

Village of Gresham, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Gresham Gresham Place Wisconsin Utility Id 7665 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 40kW and 200kW Demand Transformer Ownership discount with Excess Meter Industrial Cp-1 Small Power Service between 40kW and 200kW Demand Primary Metering Discount with Excess Meter and Parallel Generation(20 kW or less) Industrial Cp-1 Small Power Service between 40kW and 200kW Demand Transformer Ownership discount with Parallel Generation(20 kW or less) Industrial

469

EA-1811: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin Rapids, Wisconsin EA-1811: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin Rapids, Wisconsin Summary This...

470

New England Wind Forum: New England Wind Projects  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Projects This page shows the location of installed and planned New England wind projects. Find windfarms, community-scale wind projects, customer-sited wind projects, small wind projects, and offshore wind projects. Read more information about how to use the Google Map and how to add your wind project to the map. Text version New England Wind Energy Projects Connecticut, East Canaan Wind Connecticut, Klug Farm Connecticut, Phoenix Press Connecticut, Wind Colebrook (South and North)

471

Solar and Wind Energy Equipment Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Equipment Exemption Solar and Wind Energy Equipment Exemption Solar and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate None Program Info State Wisconsin Program Type Property Tax Incentive Rebate Amount Varies Provider Wisconsin Department of Revenue In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then transfers or stores solar energy into usable forms of thermal or electrical energy, but does not include equipment or components that would be present as part of a

472

Northwestern Wisconsin Elec Co | Open Energy Information  

Open Energy Info (EERE)

Wisconsin Elec Co Wisconsin Elec Co Place Wisconsin Utility Id 13815 Utility Location Yes Ownership I NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1320/kWh Commercial: $0.1180/kWh Industrial: $0.0914/kWh The following table contains monthly sales and revenue data for

473

Categorical Exclusion Determinations: Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 27, 2010 January 27, 2010 CX-000999: Categorical Exclusion Determination Biodiesel In-line Blending Project (Innovation) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 26, 2010 CX-000650: Categorical Exclusion Determination Hybrid Geothermal Heat Pump Systems Research CX(s) Applied: A9 Date: 01/26/2010 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 21, 2010 CX-002155: Categorical Exclusion Determination Anaerobic Biotechnology for Renewable Energy CX(s) Applied: B3.6 Date: 01/21/2010 Location(s): Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 21, 2010

474

Categorical Exclusion Determinations: Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 19, 2010 November 19, 2010 CX-004499: Categorical Exclusion Determination Energy and Daylighting Demonstration & Assessment of Sunlight Responsive Thermochromic Window Systems CX(s) Applied: B3.6 Date: 11/19/2010 Location(s): Sun Prairie, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 18, 2010 CX-004528: Categorical Exclusion Determination State Energy Program- Supply Chain Manufacturing CX(s) Applied: B5.1 Date: 11/18/2010 Location(s): Waukesha, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 18, 2010 CX-004527: Categorical Exclusion Determination State Energy Program - Anaerobic Digester CX(s) Applied: B5.1 Date: 11/18/2010 Location(s): Milton, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

475

Categorical Exclusion Determinations: Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 CX-003229: Categorical Exclusion Determination Energy Efficiency Project CX(s) Applied: B5.1 Date: 08/04/2010 Location(s): Peshtigo, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office July 19, 2010 CX-003046: Categorical Exclusion Determination Development of Total Energy, Environment and Asset Management (TE2AM) Curriculum CX(s) Applied: A1, A9, A11 Date: 07/19/2010 Location(s): Madison, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 15, 2010 CX-003071: Categorical Exclusion Determination Development and Validation of a Gas-Fired Residential Heat Pump Water Heater CX(s) Applied: B3.6 Date: 07/15/2010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy

476

Categorical Exclusion Determinations: Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 29, 2011 December 29, 2011 CX-007575: Categorical Exclusion Determination PY2011 State Energy Program Formula - Compressed Natural Gas Infrastructure Challenge: Madison Gas and Electric CX(s) Applied: B5.22 Date: 12/29/2011 Location(s): Wisconsin Offices(s): Golden Field Office December 21, 2011 CX-007436: Categorical Exclusion Determination Whey Waste to Energy - GreenWhey Energy, LLC CX(s) Applied: A9, A11 Date: 12/21/2011 Location(s): Wisconsin Offices(s): Golden Field Office December 20, 2011 CX-007459: Categorical Exclusion Determination Significant Cost Improvement of Lithium-Ion Cells CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): California, Michigan, Wisconsin, Oregon Offices(s): National Energy Technology Laboratory November 30, 2011 CX-007691: Categorical Exclusion Determination

477

Wisconsin Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Recovery Act State Memo Wisconsin Recovery Act State Memo Wisconsin Recovery Act State Memo Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wisconsin are supporting a broad range of clean energy projects from energy efficiency and the smart grid to alternative fuel vehicles. Through these investments, Wisconsin's businesses, non-profits, and local governments are creating quality jobs today and positioning Wisconsin to play an important role in the new energy economy of the future. Wisconsin Recovery Act State Memo More Documents & Publications California Recovery Act State Memo

478

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Grants The list below contains summaries of all Wisconsin laws and incentives

479

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Ethanol The list below contains summaries of all Wisconsin laws and incentives

480

Alternative Fuels Data Center: Wisconsin Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives Listed below are the summaries of all current Wisconsin laws, incentives, regulations, funding opportunities, and other initiatives related to

Note: This page contains sample records for the topic "wisconsin small wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Exemptions The list below contains summaries of all Wisconsin laws and incentives

482

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Other The list below contains summaries of all Wisconsin laws and incentives