National Library of Energy BETA

Sample records for wireless microwave unlicensed

  1. Intrusion detection and monitoring for wireless networks.

    SciTech Connect (OSTI)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda; Tabriz, Parisa; Pelon, Kristen; McCoy, Damon (University of Colorado, Boulder); Lodato, Mark; Hemingway, Franklin; Custer, Ryan P.; Averin, Dimitry; Franklin, Jason; Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other

  2. Wireless Josephson amplifier

    SciTech Connect (OSTI)

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 911?GHz band with about 100?MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  3. Microwave meta-atom enhanced spintronic rectification

    SciTech Connect (OSTI)

    Gou, Peng; Xi, Fuchun; Qian, Qinbai; Xu, Jie; Gui, Y. S.; Hu, C.-M.; An, Zhenghua

    2015-04-06

    An artificial meta-atom (MA), or alternatively, a plasmonic antenna, has been demonstrated to significantly enhance the microwave spin rectifying photovoltage by more than two orders in magnitude (∼280) in the ferromagnetic resonance regime. The large enhancement is attributed to the unique structure of the MA which magnifies both microwave electric (∼5) and magnetic (∼56) fields in the same near-field spatial region. Our work develops the interdisciplinary direction with artificial and natural magnetism and may find promising applications in high-frequency or opto-spintronic devices and wireless microwave energy harvesting.

  4. How the coming wireless revolution will impact manufacturing

    SciTech Connect (OSTI)

    Shourbaji, A.A.; Manges, W.W.

    1996-01-01

    Wireless technology refers to signal transmission such as microwave, infrared (IR), laser beams, and radio frequency (RF) in which the transmitting medium is wireless. Until recently, wireless applications were limited to specialized cases in select industries and research laboratories. Most commercial applications today are directly associated with vast, growing industries: cellular telephones, computer local area networks (LANs), and computer wide- area networks (WANs). The rising cost of hard wiring signals in manufacturing facilities along with the significant advances in digital and communications technologies have allowed the wireless technology to emerge as an attractive and cost-effective alternative. In this paper, technical issues associated with two applications will be described in which wireless systems have been successfully developed and applied by a team from Oak Ridge National Laboratory (ORNL). These wireless applications demonstrate the technical challenges and benefits realized by wireless technologies. A more comprehensive wireless concept aimed at automating large-scale manufacturing facilities in a unified approach using wireless links will also be discussed.

  5. Microwave detector

    DOE Patents [OSTI]

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  6. Microwave detector

    DOE Patents [OSTI]

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  7. Cosmic Microwave Background

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cosmic Microwave Background Cosmic Microwave Background CMB.jpg The Cosmic Microwave Background (CMB) is relic radiation from a very early stage in the universe -- essentially a...

  8. Wireless adiabatic power transfer

    SciTech Connect (OSTI)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  9. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  10. Lunar Wireless Power Transfer Feasibility Study

    SciTech Connect (OSTI)

    Sheldon Freid, et al.

    2008-06-01

    This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near future to power remote facilities at a lunar base. Our notional system includes state-of-the-art photovoltaics (PVs), high-efficiency microwave transmitters, low-mass large-aperture high-power transmit antennas, high-efficiency large-area rectenna receiving arrays, and reconfigurable DC combining circuitry.

  11. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  12. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  13. Dynamic Wireless Charging

    SciTech Connect (OSTI)

    2015-03-13

    ORNL successfully demonstrated in-motion wireless charging in the laboratory using a small GEM vehicle and a series of six charging coils.

  14. Wireless Environment LLC | Open Energy Information

    Open Energy Info (EERE)

    Wireless Environment LLC Jump to: navigation, search Name: Wireless Environment LLC Place: Elyria, Ohio Product: Wireless Environment designs light-emitting diode lighting products...

  15. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  16. Insecurity of Wireless Networks

    SciTech Connect (OSTI)

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  17. High brightness microwave lamp

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  18. Microwave hemorrhagic stroke detector

    DOE Patents [OSTI]

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  19. Microwave hemorrhagic stroke detector

    DOE Patents [OSTI]

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  20. Techeon Mechatronics and Wireless | Open Energy Information

    Open Energy Info (EERE)

    Techeon Mechatronics and Wireless Jump to: navigation, search Name: Techeon Mechatronics and Wireless Place: Unterhaching, Bavaria, Germany Zip: 82008 Product: Bavaria-based...

  1. Wireless passive radiation sensor

    DOE Patents [OSTI]

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  2. Biomonitoring with Wireless Communications

    SciTech Connect (OSTI)

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  3. Variable frequency microwave heating apparatus

    DOE Patents [OSTI]

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  4. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  5. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOE Patents [OSTI]

    McCown, Steven H.; Derr, Kurt W.; Rohde, Kenneth W.

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  6. Wireless power transfer test system

    DOE Patents [OSTI]

    Gilchrist, Aaron; Wu, Hunter; Sealy, Kylee D.; Israelsen, Paul D.

    2015-09-22

    A testing system for wireless power transfer systems, including a stationary plate, a rotating plate, and a driver to rotate the rotating plate with respect to the stationary plate.

  7. Wireless power transfer system

    DOE Patents [OSTI]

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  8. Wireless Power Transfer

    ScienceCinema (OSTI)

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  9. Wireless Power Transfer

    SciTech Connect (OSTI)

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  10. Microwave coupler and method

    DOE Patents [OSTI]

    Holcombe, C.E.

    1984-11-29

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  11. Microwave thawing apparatus and method

    SciTech Connect (OSTI)

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  12. Emitron: microwave diode

    DOE Patents [OSTI]

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  13. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  14. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  15. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  16. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOE Patents [OSTI]

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  17. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Patents [OSTI]

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  18. Wireless Technologies Implications for Power Systems

    SciTech Connect (OSTI)

    Fuhr, Peter L; Manges, Wayne W; Schweitzer, Patrick; Kagan, Hesh

    2010-01-01

    Wireless technologies have advanced well beyond simple SCADA radio systems and point-to-point links. The current applications supported by industrial-grade wireless sensors and systems range from field measurements (classic I/O) to voice, video, asset tracking, mobile operators, etc. Which such a wide array of supported applications, the belief that wireless technology will only impact power systems in terms of wireless sensors is shortsighted. This paper, coauthored by a group of individuals intimately involved in the general realm of industrial wireless , presents a simple snapshot of current radio technologies that are used (or seriously contemplated for use) in power systems.

  19. WIRELESS FOR A NUCLEAR FACILITY

    SciTech Connect (OSTI)

    Shull, D; Joe Cordaro, J

    2007-03-28

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  20. Microwave and Radio Frequency Workshop

    Broader source: Energy.gov [DOE]

    At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies such as microwave ...

  1. High power microwave generator

    DOE Patents [OSTI]

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  2. Hazmat Cam Wireless Video System

    SciTech Connect (OSTI)

    Kevin L. Young

    2006-02-01

    This paper describes the Hazmat Cam Wireless Video System and its application to emergency response involving chemical, biological or radiological contamination. The Idaho National Laboratory designed the Hazmat Cam Wireless Video System to assist the National Guard Weapons of Mass Destruction - Civil Support Teams during their mission of emergency response to incidents involving weapons of mass destruction. The lightweight, handheld camera transmits encrypted, real-time video from inside a contaminated area, or hot-zone, to a command post located a safe distance away. The system includes a small wireless video camera, a true-diversity receiver, viewing console, and an optional extension link that allows the command post to be placed up to five miles from danger. It can be fully deployed by one person in a standalone configuration in less than 10 minutes. The complete system is battery powered. Each rechargeable camera battery powers the camera for 3 hours with the receiver and video monitor battery lasting 22 hours on a single charge. The camera transmits encrypted, low frequency analog video signals to a true-diversity receiver with three antennas. This unique combination of encryption and transmission technologies delivers encrypted, interference-free images to the command post under conditions where other wireless systems fail. The lightweight camera is completely waterproof for quick and easy decontamination after use. The Hazmat Cam Wireless Video System is currently being used by several National Guard Teams, the US Army, and by fire fighters. The system has been proven to greatly enhance situational awareness during the crucial, initial phase of a hazardous response allowing commanders to make better, faster, safer decisions.

  3. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  4. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  5. EM's Laboratory Supports Testing Wireless Technology in Secure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joe Cordaro of SRNL observes the secure wireless TAM cart. Joe Cordaro of SRNL observes the secure wireless TAM cart. AIKEN, S.C. - Wireless networks have become commonplace in ...

  6. Vehicle Technologies Office Merit Review 2014: Wireless Charging...

    Broader source: Energy.gov (indexed) [DOE]

    wireless charging. vss103jones 2014o.pdf (4.04 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Wireless Charging of Electric Vehicles Vehicle ...

  7. Vehicle Technologies Office Merit Review 2015: Wireless & Conductive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wireless & Conductive Charging Testing to support Code & Standards Vehicle Technologies Office Merit Review 2015: Wireless & Conductive Charging Testing to support Code & Standards ...

  8. Vehicle Technologies Office Merit Review 2016: Wireless & Conductive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wireless & Conductive Charging Testing to Support Code & Standards Vehicle Technologies Office Merit Review 2016: Wireless & Conductive Charging Testing to Support Code & Standards ...

  9. Wireless Sensor Network for Electric Transmission Line Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Wireless Sensor Network for Electric Transmission Line Monitoring Citation Details In-Document Search Title: Wireless Sensor Network for Electric Transmission ...

  10. Wireless technology collects real-time information from oil and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers ...

  11. Announcing $4 Million For Wireless EV Charging | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging technology to provide hands-free, automated charging of parked vehicles. Static wireless charging - or wireless charging when the vehicle is parked - can ensure easy...

  12. Innovative Microwave Technology - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search Innovative Microwave Technology Hybrid microwave technology capable of performing functions that traditional microwave systems could not achieve. Savannah River National Laboratory New Hybrid Microwave Technology New Hybrid Microwave Technology Success Story Details Partner Location Agreement Type Publication Date Hadron Technologies, Inc. Offices in Tennessee and Colorado License October 22, 2013 Summary Hadron Technologies, Inc. has signed

  13. Wireless communication devices and movement monitoring methods

    DOE Patents [OSTI]

    Skorpik, James R.

    2006-10-31

    Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.

  14. Wireless System Considerations When Implementing NERC Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    their introduction into control center networks and field devices compound this ... Recommended Practices Guide For Securing ZigBee Wireless Networks in Process Control ...

  15. Wireless data monitor technical manual

    SciTech Connect (OSTI)

    Deck, J.W.

    1992-09-21

    This document describes the hardware and software design of a multi-site wireless data acquisition system developed for the Utilities Operations department at the Portsmouth Gaseous Diffusion Plant. Some unique features incorporated in the project are the use of packet radio modems to implement a multipoint system and the use of a commercial alpha-numeric telephone pager to allow site alarms to ``chase`` the operator.

  16. Wireless data monitor technical manual

    SciTech Connect (OSTI)

    Deck, J.W.

    1992-09-21

    This document describes the hardware and software design of a multi-site wireless data acquisition system developed for the Utilities Operations department at the Portsmouth Gaseous Diffusion Plant. Some unique features incorporated in the project are the use of packet radio modems to implement a multipoint system and the use of a commercial alpha-numeric telephone pager to allow site alarms to chase'' the operator.

  17. Microwave solidification project overview

    SciTech Connect (OSTI)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  18. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  19. Wireless System Considerations When Implementing NERC Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Protection Standards | Department of Energy Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Energy asset owners are facing a monumental challenge as they address compliance with the North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) Standards (CIP-002 through CIP-009). The increased

  20. Microwave sintering of multiple articles

    DOE Patents [OSTI]

    Blake, Rodger D.; Katz, Joel D.

    1993-01-01

    Apparatus and method for producing articles of alumina and of alumina and silicon carbide in which the articles are sintered at high temperatures using microwave radiation. The articles are placed in a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  1. Wireless power transfer magnetic couplers

    DOE Patents [OSTI]

    Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee

    2016-01-19

    A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.

  2. Comments of Verizon and Verizon Wireless | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verizon and Verizon Wireless Comments of Verizon and Verizon Wireless Verizon and Verizon Wireless comments to DOE on the Smart Grid RFI: Addressing policy and logistical challenges to smart grid implementation Comments of Verizon and Verizon Wireless (47.13 KB) More Documents & Publications Comments of Verizon and Verizon Wireless on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy

  3. Microwave hematoma detector

    DOE Patents [OSTI]

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  4. Microwave-driven ultraviolet light sources

    DOE Patents [OSTI]

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  5. Is Wireless Electricity Possible? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is Wireless Electricity Possible? Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Is Wireless Electricity Possible? 2012.06.08 Chief Scientist Jim Bray discusses the evolution of wireless power transmission from short distances and limited power to longer distances and greater power. 0 Comments Comment Name Email Submit

  6. EM threat analysis for wireless systems.

    SciTech Connect (OSTI)

    Burkholder, R. J. (Ohio State University Electroscience Laboratory); Mariano, Robert J.; Schniter, P. (Ohio State University Electroscience Laboratory); Gupta, I. J. (Ohio State University Electroscience Laboratory)

    2006-06-01

    Modern digital radio systems are complex and must be carefully designed, especially when expected to operate in harsh propagation environments. The ability to accurately predict the effects of propagation on wireless radio performance could lead to more efficient radio designs as well as the ability to perform vulnerability analyses before and after system deployment. In this report, the authors--experts in electromagnetic (EM) modeling and wireless communication theory--describe the construction of a simulation environment that is capable of quantifying the effects of wireless propagation on the performance of digital communication.

  7. Gigatron microwave amplifier

    DOE Patents [OSTI]

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  8. Gigatron microwave amplifier

    DOE Patents [OSTI]

    McIntyre, Peter M.

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  9. System and method for time synchronization in a wireless network

    DOE Patents [OSTI]

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  10. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration ...

  11. Battery Wireless Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Inc Jump to: navigation, search Name: Battery & Wireless Solutions Inc Place: New Westminster, British Columbia, Canada Zip: V3M 5V9 Product: Distributor of battery and...

  12. Low Frequency Wireless Communications Technology

    SciTech Connect (OSTI)

    Bartone, Erik J; Carbone, John F

    2004-01-27

    The purpose of this project was to demonstrate Nxegen's real-time wireless electricity monitoring and load management technologies in selected commercial, industrial, and municipal end user facilities. The purpose of which is to demonstrate the ability for Nxegen's technology to collect real-time electricity data to a central location (Nxegen's Network Operation Center "NOC"), aggregate customer load profiles into portfolios of profiles, and be able to dispatch load curtailment commands from the NOC to individual customer loads to demonstrate the ability to integrate demand resources into the overall electric utility system for the purpose of; (1) improving overall system reliability, (2) reducing wholesale electric generation prices (locational marginal prices "LMP"), and (3) reducing congestion costs in energy constrained areas (southwest Connecticut).

  13. Standards for the wireless IoT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZigBee Alliance. All rights reserved. ZigBee Alliance Standards for the wireless IoT DOE Connected Lighting Workshop 16 November 2015 Roy Harvey, OSRAM SYLVANIA © ZigBee Alliance. All rights reserved. ZigBee in brief ZigBee Alliance was founded in 2002 Focus is on low-power wireless networking specifications, application standards, and certification programs for the Internet of Things Specifies all layers, from Application to Physical Addresses consumer, commercial, and industrial markets Broad

  14. Airborne wireless communication systems, airborne communication methods, and communication methods

    SciTech Connect (OSTI)

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  15. OIT Wireless Telemetry for Industrial Applications

    SciTech Connect (OSTI)

    Manges, WW

    2002-09-03

    The need for advanced wireless technology has been identified in the National Research Council publication (1) ''Manufacturing Process Controls for the Industries of the Future as a Critical Technology for the Future''. The deployment challenges to be overcome in order for wireless to be a viable option include: (1) eliminating interference (assuring reliable communications); (2) easing the deployment of intelligent, wireless sensors; (3) developing reliable networks (robust architectures); (4) developing remote power (long-lasting and reliable); and (5) developing standardized communication protocols. This project demonstrated the feasibility of robust wireless sensor networks that could meet these requirements for the harsh environments common to the DOE/OIT Industries of the Future. It resulted in a wireless test bed that was demonstrated in a paper mill and a steel plant. The test bed illustrated key protocols and components that would be required in a real-life, wireless network. The technologies for low power connectivity developed and demonstrated at the plant eased fears that the radios would interfere with existing control equipment. The same direct sequence, spread spectrum (DSSS) technology that helped assure the reliability of the connection also demonstrated that wireless communication was feasible in these plants without boosting the transmitted power to dangerous levels. Our experience and research have indicated that two key parameters are of ultimate importance: (1) reliability and (2) inter-system compatibility. Reliability is the key to immediate acceptance among industrial users. The importance cannot be overstated, because users will not tolerate an unreliable information network. A longer term issue that is at least as important as the reliability of a single system is the inter-system compatibility between these wireless sensor networks and other wireless systems that are part of our industries. In the long run, the ability of wireless sensor

  16. Indiana: EERE's Wireless Sensors Can Save Companies Millions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indiana: EERE's Wireless Sensors Can Save Companies Millions of Dollars Indiana: EERE's Wireless Sensors Can Save Companies Millions of Dollars March 6, 2014 - 10:44am Addthis All ...

  17. Converter Topologies for Wired and Wireless Battery Chargers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Converter Topologies for Wired and Wireless Battery Chargers Converter Topologies for Wired and Wireless Battery Chargers 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape033_su_2011_o.pdf (384.8 KB) More Documents & Publications Converter Topologies for Wired and Wireless Battery Chargers Inverter Using Current Source Topology Wireless Plug-in Electric Vehicle (PEV) Charging

  18. Using Wireless Technology to Reduce Facility Energy Usage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using Wireless Technology to Reduce Facility Energy Usage Using Wireless Technology to Reduce Facility Energy Usage This presentation details the U.S. Department of Energy's TEAM initiative's wireless technologies and their applications. Using Wireless Technology to Reduce Facility Energy Usage (December 4, 2009) (2.57 MB) More Documents & Publications New and Emerging Technologies Figure 1: Chamber experiment to study impact of air movement on thermal comfort using personally

  19. Announcing $4 Million For Wireless EV Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $4 Million For Wireless EV Charging Announcing $4 Million For Wireless EV Charging April 6, 2012 - 1:44pm Addthis The Energy Department announced up to $4 million to develop wireless chargers for electric vehicles. | Graphic courtesy of the Vehicle Technologies Program. The Energy Department announced up to $4 million to develop wireless chargers for electric vehicles. | Graphic courtesy of the Vehicle Technologies Program. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist,

  20. ISA Approves Standard for Wireless Automation in Process Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy ISA Approves Standard for Wireless Automation in Process Control Applications ISA Approves Standard for Wireless Automation in Process Control Applications On September 9, the Standards and Practices Board of the International Society for Automation (ISA) approved the ISA-100.11a wireless standard, "Wireless Systems for Industrial Automation: Process Control and Related Applications," making it an official ISA standard. ISA Approves Standard for

  1. Vehicle Technologies Office Merit Review 2014: Wireless Charging |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wireless Charging Vehicle Technologies Office Merit Review 2014: Wireless Charging Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless charging. vss103_jones _2014_o.pdf (4.04 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Wireless Charging of Electric Vehicles Vehicle Technologies Office Merit

  2. Microwave heating apparatus and method

    DOE Patents [OSTI]

    Johnson, Andrew J.; Petersen, Robert D.; Swanson, Stephen D.

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  3. Name Company Contact Information AC Independence Bandwidth Throughput

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coverage Latency Reliability Security Licensed Wireless Radio Licensed Wireless Microwave Unlicensed Wireless Fiber Other Private Network Commercial Wireless Network (Licensed) Commercial Wireless Network (Unlicensed) Commercial Wireline Network Remote Meter Reading (based on hourly reads) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Direct Load Control n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Real time

  4. Microsoft Word - Wireless Automation World for OE FINAL.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automation World Features New White Paper on Wireless Security, Interviews Authors April 16, 2009 The April 2009 issue of Automation World magazine features the white paper Wireless Systems Considerations When Implementing NERC Critical Infrastructure Protection Standards. The paper addresses wireless protection issues arising from requirements of the Critical Infrastructure Protection (CIP) Standards for the electricity sector, developed by the North American Electric Reliability Corporation

  5. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema (OSTI)

    Haase, Andy

    2014-06-13

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  6. Ignition methods and apparatus using microwave energy

    DOE Patents [OSTI]

    DeFreitas, Dennis M.; Darling, Timothy W.; Migliori, Albert; Rees, Daniel E.

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  7. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  8. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  9. Microwave assisted centrifuge and related methods

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  10. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  11. Microwave treatment of vulcanized rubber

    DOE Patents [OSTI]

    Wicks, George G.; Schulz, Rebecca L.; Clark, David E.; Folz, Diane C.

    2002-07-16

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds broken by microwave radiation. The direct application of microwaves in combination with uniform heating of the crumb rubber renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger particle sizes and/or loading levels of the treated crumb rubber can be used in new rubber mixtures to produce recycled composite products with good properties.

  12. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect (OSTI)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  13. Tags, wireless communication systems, tag communication methods, and wireless communications methods

    DOE Patents [OSTI]

    Scott; Jeff W. , Pratt; Richard M.

    2006-09-12

    Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.

  14. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  15. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  16. Scanning tip microwave near field microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Schultz, Peter G.; Wei, Tao

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  17. Scanning tip microwave near field microscope

    DOE Patents [OSTI]

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  18. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  19. Controlled zone microwave plasma system

    SciTech Connect (OSTI)

    Ripley, Edward B; Seals, Roland D; Morrell, Jonathan S

    2009-10-20

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  20. Microwave sintering of boron carbide

    DOE Patents [OSTI]

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  1. Marginal Expense Oil Well Wireless Surveillance (MEOWWS)

    SciTech Connect (OSTI)

    Nelson, Donald G.

    2002-03-11

    The objective of this study was to identify and field test a new, low cost, wireless oil well surveillance system. A variety of suppliers and technologies were considered. One supplier and system was chosen that was low cost, new to the oil field, and successfully field tested.

  2. Microwave-enhanced chemical processes

    DOE Patents [OSTI]

    Varma, Ravi

    1990-01-01

    A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

  3. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  4. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMicrowave Radiometer Profiler Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Microwave Radiometer Profiler Evaluation 2000.09.01 - 2001.03.31 Lead Scientist : James Liljegren For data sets, see below. Abstract The microwave radiometer profiler (MWRP) is a new 12-channel radiometer developed by Radiometrics Corporation for measuring vertical profiles of temperature, water vapor, and

  5. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMicrowave Radiometer Profiler Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Microwave Radiometer Profiler Evaluation 2000.02.25 - 2000.08.22 Lead Scientist : James Liljegren For data sets, see below. Abstract The microwave radiometer profiler (MWRP) is a new 12-channel radiometer developed by Radiometrics Corporation for measuring vertical profiles of temperature, water vapor, and

  6. Microwave solidification development for Rocky Flats waste

    SciTech Connect (OSTI)

    Dixon, D.; Erle, R.; Eschen, V.

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

  7. Cosmic Microwave Background | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Background Cosmic Microwave Background Remarkable progress has been made in the characterization of the cosmic microwave background radiation (CMB) over the last several years. It was nearly 30 years after the initial discovery of the CMB by Penzias and Wilson in 1965 before small differences in its intensity were measured by COBE and its spectrum was shown to be a blackbody to high precision. The finding helped motivate the inflation theory for the origin of the universe. In the past

  8. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Facility Managers | Department of Energy Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers This fact sheet provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons of

  9. Wireless Sensors Improve Data Center Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors Improve Data Center Efficiency Wireless Sensors Improve Data Center Efficiency Case study bulletin describes how to improve data center energy efficiency for wireless sensors, and how to use that information to manage the data center. Download the Wireless Sensors Improve Data Center Efficiency case study. (3.57 MB) More Documents & Publications Data Center Airflow Management Retrofit Data Center Airflow Management Retrofit September 2010 Data Center Energy Efficiency Measurement

  10. Secure Wireless Tritium Air Monitoring Cart Development | Department of

    Office of Environmental Management (EM)

    Energy Secure Wireless Tritium Air Monitoring Cart Development Secure Wireless Tritium Air Monitoring Cart Development Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. Secure Wireless Tritium Air Monitoring Cart Development (4.14 MB) More Documents & Publications FY 2011 LDRD Report Tritium Detection Methods and Limitations FY 2008 LDRD Report

  11. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect (OSTI)

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  12. Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Systems | Department of Energy INL Testing of Wireless Charging Systems Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL testing of wireless charging systems. vss096_carlson_2014_o.pdf (3.55 MB) More Documents & Publications Vehicle Technologies Office Merit

  13. Vehicle Technologies Office Merit Review 2015: Wireless & Conductive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Testing to support Code & Standards | Department of Energy Wireless & Conductive Charging Testing to support Code & Standards Vehicle Technologies Office Merit Review 2015: Wireless & Conductive Charging Testing to support Code & Standards Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless and conductive charging testing to

  14. Process for microwave sintering boron carbide

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  15. Process for microwave sintering boron carbide

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  16. Hybrid Microwave Energy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undesirable environmental consequences.Description The hybrid microwave system provides a simple processing method for the reduction of waste volume, immobilization of hazardous...

  17. ARM - Measurement - Microwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometer - ETL MWRP : Microwave Radiometer Profiler MMWR : Millimeter Wave Radiometer MIR : Millimeter-wave Imaging Radiometer NOAA-P3 : NOAA P-3 Aircraft PARSL : PNNL's...

  18. V-076: Cisco Wireless LAN Controller Bugs Let Remote Users Deny...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cisco Wireless LAN Controller Bugs Let Remote Users Deny Service and Remote Authenticated Users Modify the Configuration and Execute Arbitrary Code V-076: Cisco Wireless LAN ...

  19. Wireless boundary monitor system and method

    DOE Patents [OSTI]

    Haynes, H.D.; Ayers, C.W.

    1997-12-09

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments. 4 figs.

  20. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

    SciTech Connect (OSTI)

    Mason M. Medizade; John R. Ridgely; Donald G. Nelson

    2004-11-01

    A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

  1. Wireless boundary monitor system and method

    DOE Patents [OSTI]

    Haynes, Howard D.; Ayers, Curtis W.

    1997-01-01

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments.

  2. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect (OSTI)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  3. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect (OSTI)

    Daz-Rubio, Ana; Carbonell, Jorge; Snchez-Dehesa, Jos

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. Exchange of electromagnetic energy between shells with high efficiency is analyzed. Strong coupling is supported with high wireless transfer efficiency. End-to-end energy transfer efficiencies higher than 83% can be predicted.

  4. Comments of On-Ramp Wireless, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Ramp Wireless, Inc. Comments of On-Ramp Wireless, Inc. On-Ramp Wireless, Inc. ("On-Ramp") hereby submits comments in response to the Department of Energy's ("DOE") May 11, 2010 Request for Information as to the communications needs of electric utilities to inform federal Smart Grid policy. In these comments, On-Ramp addresses two vital aspects of the need for wireless communications in connection with Smart Grid-more specifically, for customer smart meters and devices and

  5. Wireless Occupancy Sensors for Lighting Controls: An Applications...

    Office of Scientific and Technical Information (OSTI)

    for Lighting Controls: An Applications Guide for Federal Facility Managers Citation Details In-Document Search Title: Wireless Occupancy Sensors for Lighting Controls: An ...

  6. ISA Approves Standard for Wireless Automation in Process Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards DOEOE National SCADA Test Bed Fiscal Year 2009 Work Plan Control Systems ...

  7. Automation World Features New White Paper on Wireless Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards DOEOE National SCADA Test Bed Fiscal Year 2009 Work Plan ISA Approves Standard ...

  8. A mobile-agent based wireless sensing network for structural...

    Office of Scientific and Technical Information (OSTI)

    for structural health monitoring applications Citation Details In-Document Search Title: A mobile-agent based wireless sensing network for structural health monitoring ...

  9. Wireless Occupancy Sensors for Lighting Controls: An Applications...

    Office of Environmental Management (EM)

    Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal ...

  10. Wireless, Passive Ceramic Strain Sensors for Turbine Engine Applications

    SciTech Connect (OSTI)

    An, Linan

    2015-03-31

    The overall objective of this project is to develop a high-temperature wireless passive ceramic strain sensor for online, real-time monitoring turbine blade.

  11. Recommended Practices Guide For Securing ZigBee Wireless Networks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommended Practices Guide For Securing ZigBee Wireless Networks in Process Control System Environments This paper addresses design principles and best practices regarding the ...

  12. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 25 ...

  13. A mobile-agent based wireless sensing network for structural...

    Office of Scientific and Technical Information (OSTI)

    Title: A mobile-agent based wireless sensing network for structural health monitoring ... Office of Scientific and Technical Information (OSTI) and is provided as a public service. ...

  14. Microsoft Word - Wireless Automation World for OE FINAL.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automation World Features New White Paper on Wireless Security, Interviews Authors April 16, 2009 The April 2009 issue of Automation World magazine features the white paper ...

  15. Low-cost Manufacturing of Wireless Sensors for Building Monitoring...

    Energy Savers [EERE]

    ... Four Key Elements of Technology Low-power Wireless Communication Energy-Harvesting and Storage Integrated System Design Innovative low-cost manufacturing 1 2 3 4 Multifunctional ...

  16. OSTIblog Articles in the wireless health monitoring Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    wirelessly send updates to your cellphone, computer, or doctor's office. The U.S. Department of Defense's National Security Science and Engineering Faculty Fellowship of Energy, ...

  17. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave...

    Office of Scientific and Technical Information (OSTI)

    George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background Radiation ... of the cosmic microwave background radiation." '1 Smoot previously won the Ernest ...

  18. Seeing through walls at the nanoscale: Microwave microscopy of...

    Office of Scientific and Technical Information (OSTI)

    Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and ... Title: Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and ...

  19. TM01-mode microwave propagation property analysis for plasmas...

    Office of Scientific and Technical Information (OSTI)

    Then electromagnetic fields of the TM01-mode microwave concentrate at the center surfaces ... EVALUATIONS; ELECTRIC FIELDS; ELECTROMAGNETIC FIELDS; ELECTRON DENSITY; MICROWAVE ...

  20. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced ...

  1. Modulated microwave microscopy and probes used therewith (Patent...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Modulated microwave microscopy and probes used therewith A microwave microscope including a probe tip electrode vertically positionable ...

  2. Product Standards for Microwaves (Japan) | Open Energy Information

    Open Energy Info (EERE)

    Microwaves (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Microwaves (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts...

  3. A Linear Theory of Microwave Instability in Electron Storage...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron...

  4. ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid...

    Office of Scientific and Technical Information (OSTI)

    Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and Precipitable Water Vapor Title: ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and ...

  5. A Microwave Thruster for Spacecraft Propulsion (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion This presentation ...

  6. ARM: Microwave Radiometer: High Frequency, calibration data for...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Microwave Radiometer: High Frequency, calibration data for 150GHz channel Microwave Radiometer: High Frequency, calibration data for 150GHz channel Authors: Maria ...

  7. ARM: Microwave Radiometer: High Frequency, calibration data for...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Microwave Radiometer: High Frequency, calibration data for 90GHz channel Microwave Radiometer: High Frequency, calibration data for 90GHz channel Authors: Maria Cadeddu ...

  8. Microwave-enhanced chemical processes

    DOE Patents [OSTI]

    Varma, R.

    1990-06-19

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  9. Microwave-triggered laser switch

    DOE Patents [OSTI]

    Piltch, Martin S.

    1984-01-01

    A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

  10. Microwave-triggered laser switch

    DOE Patents [OSTI]

    Piltch, M.S.

    1982-05-19

    A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

  11. Method of sintering materials with microwave radiation

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.; Holcombe, C.E. Jr.; Dykes, N.L.

    1994-06-14

    Disclosed is a method of sintering ceramic materials. A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article. No Drawings

  12. Method of sintering materials with microwave radiation

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  13. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  14. A Microwave Thruster for Spacecraft Propulsion

    SciTech Connect (OSTI)

    Chiravalle, Vincent P

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  15. Tandem microwave waste remediation and decontamination system

    DOE Patents [OSTI]

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  16. A Compact Wireless Charging System for Electric Vehicles

    SciTech Connect (OSTI)

    Ning, Puqi; Miller, John M; Onar, Omer C; White, Cliff P

    2013-01-01

    In this paper, a compact high efficiency wireless power transfer system has been designed and developed. The detailed gate drive design, cooling system design, power stage development, and system assembling are presented. The successful tests verified the feasibility of wireless power transfer system to achieve over-all 90% efficiency.

  17. Appraisers Project Plan: Wireless Controls and Retrofit LED Lighting Demonstration

    Broader source: Energy.gov [DOE]

    Appraisers Project Plan: Wireless Controls and Retrofit LED Lighting Demonstration Measurement and Verification Report This report details the measurement and verification tools and methods used to evaluate the effectiveness of wireless lighting controls and LED lighting at the Appraisers Building, a federal office building in San Francisco, CA.

  18. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOE Patents [OSTI]

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  19. High Fidelity Simulations of Large-Scale Wireless Networks

    SciTech Connect (OSTI)

    Onunkwo, Uzoma; Benz, Zachary

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  20. Microwaving of normally opaque and semi-opaque substances

    DOE Patents [OSTI]

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-07-17

    Disclosed is a method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.

  1. Microwaving of normally opaque and semi-opaque substances

    DOE Patents [OSTI]

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    Method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.

  2. Passive wireless sensing tags NASA inflatable structures.

    SciTech Connect (OSTI)

    Brocato, Robert Wesley

    2006-03-01

    This report gives a description of several types of wireless, unpowered remote sensors. Surface acoustic wave (SAW) devices were coupled with conventional sensors to create entirely new types of sensors. These sensors report physically measurable data in the same manner as the conventional sensors, but they do it remotely and without any local power source. The sensors are measured remotely using a radar-like interrogation device, and the sensors and their related communication electronics draw all of the power needed for communicating from the radar pulse. The report covers only a description of prototype sensors and not of the manufacturing requirements of these devices.

  3. V-048: Cisco Wireless Lan Controller Cross-Site Request Forgery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vulnerability | Department of Energy 48: Cisco Wireless Lan Controller Cross-Site Request Forgery Vulnerability V-048: Cisco Wireless Lan Controller Cross-Site Request Forgery Vulnerability December 17, 2012 - 1:00am Addthis PROBLEM: Cisco Wireless Lan Controller Cross-Site Request Forgery Vulnerability PLATFORM: Cisco Wireless LAN Controller (WLC) ABSTRACT: A vulnerability was reported in Cisco Wireless LAN Controller. REFERENCE LINKS: SecurityTracker Alert ID: 1027886 Secunia Advisory

  4. Microwave Excitation In ECRIS plasmas

    SciTech Connect (OSTI)

    Ciavola, G.; Celona, L.; Consoli, F.; Gammino, S.; Maimone, F.; Barbarino, S.; Catalano, R. S.; Mascali, D.; Tumino, L.

    2007-09-28

    A number of phenomena related to the electron cyclotron resonance ion sources (ECRIS) has been better understood recently by means of the improvement of comprehension of the coupling mechanism between microwave generators and ECR plasma. In particular, the two frequency heating and the frequency tuning effect, that permit a remarkable increase of the current for the highest charge states ions, can be explained in terms of modes excitation in the cylindrical cavity of the plasma chamber. Calculations based on this theoretical approach have been performed, and the major results will be presented. It will be shown that the electric field pattern completely changes for a few MHz frequency variations and the changes in ECRIS performances can be correlated to the efficiency of the power transfer between electromagnetic field and plasma.

  5. Planar slot coupled microwave hybrid

    DOE Patents [OSTI]

    Petter, Jeffrey K.

    1991-01-01

    A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

  6. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    SciTech Connect (OSTI)

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data between the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.

  7. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  8. Modulated microwave microscopy and probes used therewith

    DOE Patents [OSTI]

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  9. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  10. Container evaluation for microwave solidification project

    SciTech Connect (OSTI)

    Smith, J.A.

    1994-08-01

    This document discusses the development and testing of a suitable waste container and packaging arrangement to be used with the Microwave Solidification System (MSS) and Bagless Posting System (BPS). The project involves the Rocky Flats Plant.

  11. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  12. Microwave Melting | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this browser. Download video Captions: On Time: 2:90 min. Ed Ripley and Kenneth Evans explain some of the benefits of microwave heating technology, including how its uses...

  13. System and method for merging clusters of wireless nodes in a wireless network

    DOE Patents [OSTI]

    Budampati, Ramakrishna S.; Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.

    2012-05-29

    A system includes a first cluster having multiple first wireless nodes. One first node is configured to act as a first cluster master, and other first nodes are configured to receive time synchronization information provided by the first cluster master. The system also includes a second cluster having one or more second wireless nodes. One second node is configured to act as a second cluster master, and any other second nodes configured to receive time synchronization information provided by the second cluster master. The system further includes a manager configured to merge the clusters into a combined cluster. One of the nodes is configured to act as a single cluster master for the combined cluster, and the other nodes are configured to receive time synchronization information provided by the single cluster master.

  14. Detection of contraband using microwave radiation

    DOE Patents [OSTI]

    Toth, Richard P.; Loubriel, Guillermo M.; Bacon, Larry D.; Watson, Robert D.

    2002-01-01

    The present invention relates to a method and system for using microwave radiation to detect contraband hidden inside of a non-metallic container, such as a pneumatic vehicle tire. The method relies on the attenuation, retardation, time delay, or phase shift of microwave radiation as it passes through the container plus the contraband. The method is non-invasive, non-destructive, low power, and does not require physical contact with the container.

  15. Continuous microwave regeneration apparatus for absorption media

    DOE Patents [OSTI]

    Smith, Douglas D.

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  16. Wireless zoned particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

    2011-10-04

    An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

  17. Dynamic Wireless Power Transfer - Grid Impacts Analysis (Presentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.5-mi loop; 60-75 circuits per day; 2-3 charging locations * Future opportunities o ... A.; Konan, A. "Fuel Savings Potential from Future In- Motion Wireless Power Transfer." ...

  18. Prototype system brings advantages of wireless technology to...

    National Nuclear Security Administration (NNSA)

    NNSA's Savannah River Tritium Enterprise (SRTE) has begun a year-long test using secure wireless technology in a tritium air monitoring system. The test is an important step in ...

  19. Energy efficiency in wireless communication systems

    DOE Patents [OSTI]

    Caffrey, Michael Paul; Palmer, Joseph McRae

    2012-12-11

    Wireless communication systems and methods utilize one or more remote terminals, one or more base terminals, and a communication channel between the remote terminal(s) and base terminal(s). The remote terminal applies a direct sequence spreading code to a data signal at a spreading factor to provide a direct sequence spread spectrum (DSSS) signal. The DSSS signal is transmitted over the communication channel to the base terminal which can be configured to despread the received DSSS signal by a spreading factor matching the spreading factor utilized to spread the data signal. The remote terminal and base terminal can dynamically vary the matching spreading factors to adjust the data rate based on an estimation of operating quality over time between the remote terminal and base terminal such that the amount of data being transmitted is substantially maximized while providing a specified quality of service.

  20. Comments of Verizon and Verizon Wireless on DOE Request for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy Wireless on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of Verizon and Verizon Wireless on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data

  1. Wireless Sensor Networks for Data Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products & Technologies » Technology Deployment » Wireless Sensor Networks for Data Centers Wireless Sensor Networks for Data Centers Hot Aisle Containment System Hot Aisle Containment System Hot aisle containment system in the data center at the National Renewable Energy Laboratory's Research Support Facility. Server Rack Configuration Server Rack Configuration Server rack configuration in the data center at the National Renewable Energy Laboratory's Research Support Facility. Data

  2. AVTA: PLUGLESS Level 2 Wireless Charging Testing Results | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy PLUGLESS Level 2 Wireless Charging Testing Results AVTA: PLUGLESS Level 2 Wireless Charging Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing

  3. Project Profile: Heliostat System with Wireless Closed-Loop Control |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heliostat System with Wireless Closed-Loop Control Project Profile: Heliostat System with Wireless Closed-Loop Control Thermata Logo -- This project is inactive -- Thermata, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is demonstrating a collector system with enhanced optical tracking capability. The unit includes a control system that provides real-time information to adjust the location of the reflected

  4. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    SciTech Connect (OSTI)

    Dana Teasdale; Francis Rubinstein; Dave Watson; Steve Purdy

    2005-10-01

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for

  5. Transformational Energy Action Management (TEAM) Wireless Energy Efficiency Keys Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Transformational Energy Action Management (TEAM) Wireless Energy Efficiency Keys Initiative *Ways of Using Wireless Technology to Help You Reduce Energy Usage at your Facility Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy

  6. Vehicle Technologies Office Merit Review 2016: Wireless & Conductive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Testing to Support Code & Standards | Department of Energy Wireless & Conductive Charging Testing to Support Code & Standards Vehicle Technologies Office Merit Review 2016: Wireless & Conductive Charging Testing to Support Code & Standards Presentation given by Idaho National Laboratory (INL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  7. Wireless Sensors and Networks for Advanced Energy Management

    SciTech Connect (OSTI)

    Hardy, J.E.

    2005-05-06

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modeling investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.

  8. Large-Volume Resonant Microwave Discharge for Plasma Cleaning...

    Office of Scientific and Technical Information (OSTI)

    Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity Citation Details In-Document Search Title: Large-Volume Resonant Microwave Discharge for...

  9. ARM: Microwave Water Radiometer (MWR): water liq. and vapor along...

    Office of Scientific and Technical Information (OSTI)

    Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) path Title: ARM: Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) ...

  10. Microwave and Radio Frequency Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshops » Microwave and Radio Frequency Workshop Microwave and Radio Frequency Workshop July 25, 2012 At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies - such as microwave (MW) and radio frequency (RF) energy - and their potential to impact advanced manufacturing. Exploiting the material interactions of MW and RF energy is a route to developing energy-saving process

  11. Microwave off-gas treatment apparatus and process

    DOE Patents [OSTI]

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  12. Microwave accelerator E-beam pumped laser

    DOE Patents [OSTI]

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  13. Wireless Electric Charging: The Future of Plug-In Electric Vehicles...

    Office of Environmental Management (EM)

    Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless March 7, ...

  14. V-048: Cisco Wireless Lan Controller Cross-Site Request Forgery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    48: Cisco Wireless Lan Controller Cross-Site Request Forgery Vulnerability V-048: Cisco Wireless Lan Controller Cross-Site Request Forgery Vulnerability December 17, 2012 - 1:00am ...

  15. Apparatus for microwave heat treatment of manufactured components

    SciTech Connect (OSTI)

    Babcock & Wilcox Technical Services Y-12, LLC

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  16. Methods for microwave heat treatment of manufactured components

    SciTech Connect (OSTI)

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  17. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing | Department of Energy Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing mw_rf_workshop_background_july2012.pdf (178.12 KB) More Documents & Publications Microwave and Radio Frequency Workshop

  18. Synthesis of ultrafine powders by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T.; Sheinberg, Haskell; Blake, Rodger D.

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  19. Synthesis of ultrafine powders by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  20. Clamshell microwave cavities having a superconductive coating

    DOE Patents [OSTI]

    Cooke, D. Wayne; Arendt, Paul N.; Piel, Helmut

    1994-01-01

    A microwave cavity including a pair of opposing clamshell halves, such halves comprised of a metal selected from the group consisting of silver, copper, or a silver-based alloy, wherein the cavity is further characterized as exhibiting a dominant TE.sub.011 mode is provided together with an embodiment wherein the interior concave surfaces of the clamshell halves are coated with a superconductive material. In the case of copper clamshell halves, the microwave cavity has a Q-value of about 1.2.times.10.sup.5 as measured at a temperature of 10K and a frequency of 10 GHz.

  1. Recommended Practices Guide For Securing ZigBee Wireless Networks in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Control System Environments | Department of Energy Recommended Practices Guide For Securing ZigBee Wireless Networks in Process Control System Environments Recommended Practices Guide For Securing ZigBee Wireless Networks in Process Control System Environments This paper addresses design principles and best practices regarding the secure implementation and operation of ZigBee wireless networks. ZigBee is a protocol specification and industry standard for a type of wireless

  2. A Survey of Wireless Communications for the Electric Power System

    SciTech Connect (OSTI)

    Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

    2010-01-27

    A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nation’s energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: • IEEE 802.16 d and e (WiMAX) • IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s • Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee • The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

  3. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOE Patents [OSTI]

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  4. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  5. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  6. Planar controlled zone microwave plasma system

    SciTech Connect (OSTI)

    Ripley, Edward B.; Seals, Roland D.; Morrell, Jonathan S.

    2011-10-04

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  7. Environmental assessment: South microwave communication facilities

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  8. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect (OSTI)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared

  9. Time Synchronization in Hierarchical TESLA Wireless Sensor Networks

    SciTech Connect (OSTI)

    Jason L. Wright; Milos Manic

    2009-08-01

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  10. Industrial Wireless Technology for the 21st Century

    SciTech Connect (OSTI)

    none,

    2002-12-01

    In July 2002, the U.S. Department of Energy's Industrial Technologies Program sponsored the Industrial Wireless Workshop as a forum for articulating some long-term goals that may help guide the development of industrial wireless sensor systems. Over 30 individuals, representing manufacturers and suppliers, end users, universities, and national laboratories, attended the workshop in San Francisco and participated in a series of facilitated sessions. The workshop participants cooperatively developed a unified vision for the future and defined specific goals and challenges. This document presents the results of the workshop as well as some context for non-experts.

  11. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    SciTech Connect (OSTI)

    Dana Teasdale; Francis Rubinstein; David S. Watson; Steve Purdy

    2006-04-30

    Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the

  12. WIRELESS MINE-WIDE TELECOMMUNICATIONS TECHNOLOGY

    SciTech Connect (OSTI)

    Zvi H. Meiksin

    2004-03-01

    A comprehensive mine-wide, two-way wireless voice and data communication system for the underground mining industry was developed. The system achieves energy savings through increased productivity and greater energy efficiency in meeting safety requirements within mines. The mine-wide system is comprised of two interfaced subsystems: a through-the-earth communications system and an in-mine communications system. The mine-wide system permits two-way communication among underground personnel and between underground and surface personnel. The system was designed, built, and commercialized. Several systems are in operation in underground mines in the United States. The use of these systems has proven they result in considerable energy savings. A system for tracking the location of vehicles and people within the mine was also developed, built and tested successfully. Transtek's systems are being used by the National Institute of Occupational Safety and Health (NIOSH) in their underground mine rescue team training program. This project also resulted in a spin-off rescue team lifeline and communications system. Furthermore, the project points the way to further developments that can lead to a GPS-like system for underground mines allowing the use of autonomous machines in underground mining operations, greatly reducing the amount of energy used in these operations. Some products developed under this program are transferable to applications in fields other than mining. The rescue team system is applicable to use by first responders to natural, accidental, or terrorist-caused building collapses. The in-mine communications system can be installed in high-rise buildings providing in-building communications to security and maintenance personnel as well as to first responders.

  13. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect (OSTI)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  14. Apparatus and method for microwave processing of materials

    DOE Patents [OSTI]

    Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

    1996-05-28

    Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

  15. Apparatus and method for microwave processing of materials

    DOE Patents [OSTI]

    Johnson, Arvid C.; Lauf, Robert J.; Bible, Don W.; Markunas, Robert J.

    1996-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  16. Apparatus and method for microwave processing of materials using field-perturbing tool

    DOE Patents [OSTI]

    Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.

    2001-01-01

    A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.

  17. Wireless spread-spectrum telesensor chip with synchronous digital architecture

    SciTech Connect (OSTI)

    Smith, Stephen F.; Turner, Gary W.; Wintenberg, Alan L.; Emery, Michael Steven

    2005-03-08

    A fully integrated wireless spread-spectrum sensor incorporating all elements of an "intelligent" sensor on a single circuit chip is capable of telemetering data to a receiver. Synchronous control of all elements of the chip provides low-cost, low-noise, and highly robust data transmission, in turn enabling the use of low-cost monolithic receivers.

  18. Ground-Based Microwave Radiometer Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm

  19. Wireless Roadside Inspection Proof of Concept Test Final Report

    SciTech Connect (OSTI)

    Capps, Gary J; Franzese, Oscar; Knee, Helmut E; Plate, Randall S; Lascurain, Mary Beth

    2009-03-01

    The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness -- Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.

  20. Joining of thermoplastic substrates by microwaves

    DOE Patents [OSTI]

    Paulauskas, Felix L.; Meek, Thomas T.

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  1. A container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  2. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect (OSTI)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  3. Method and apparatus for thickness measurement using microwaves

    DOE Patents [OSTI]

    Woskov, Paul [Bedford, MA; Lamar, David A. [West Richland, WA

    2001-01-01

    The method for measuring the thickness of a material which transmits a detectable amount of microwave radiation includes irradiating the material with coherent microwave radiation tuned over a frequency range. Reflected microwave radiation is detected, the reflected radiation having maxima and minima over the frequency range as a result of coherent interference of microwaves reflected from reflecting surfaces of the material. The thickness of the material is determined from the period of the maxima and minima along with knowledge of the index of refraction of the material.

  4. Microwave Plasma Monitoring System For Real-Time Elemental Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis The invention apparatus can also be used to monitor for the presence of halogens, sulfur and silicon. Available for Feynman Center (505) 665-9090 Email Microwave...

  5. ARM: Microwave Radiometer, 3 Channel: airmasses, brightness temperatur...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences Microwave narrowband brightness temperature Dataset File size ...

  6. Microwave and Millimeter-Wave Radiometric Studies of Temperature...

    Office of Scientific and Technical Information (OSTI)

    of Temperature, Water Vapor and Clouds Citation Details In-Document Search Title: Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds The ...

  7. Determining Cloud Ice Water Path from High-Frequency Microwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu ... A better understanding of cloud water content and its large-scale distribution ...

  8. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Japan Society of Electromagnetic Wave Energy Application (JEMEA) and microwave groups ... If possible, discuss the study with colleagues to gain their thoughts and insights. You ...

  9. Microwave and Millimeter Wave Forward Modeling Results from the...

    Office of Scientific and Technical Information (OSTI)

    9 to April 9, 2004. The goals of the experiment were: to study the microwave and ... ColoradoNOAA-Environmental Technology Laboratory, Boulder, Colorado (US); Universiti di ...

  10. A Linear Theory of Microwave Instability in Electron Storage...

    Office of Scientific and Technical Information (OSTI)

    Title: A Linear Theory of Microwave Instability in Electron Storage Rings The well-known Haissinski distribution provides a stable equilibrium of longitudinal beam distribution in ...

  11. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  12. Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff...

    Office of Environmental Management (EM)

    Residential microwaves vary in their wattages; the higher the wattage, the faster your ... Saver (note that we used weekly energy consumption instead of daily): Microwave Time used: ...

  13. Microwave Synthesis of Au?Rh Core?Shell Nanoparticles and Implications...

    Office of Scientific and Technical Information (OSTI)

    Microwave Synthesis of Au?Rh Core?Shell Nanoparticles and Implications of the Shell Thickness in Hydrogenation Catalysis Citation Details In-Document Search Title: Microwave ...

  14. Wireless technology collects real-time information from oil and gas wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas

  15. INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Systems | Department of Energy INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss096_francfort_2013_o.pdf (2.28 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Wireless & Conductive

  16. Microwaves and particle accelerators: a fundamental link

    SciTech Connect (OSTI)

    Chattopadhyay, Swapan

    2011-07-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of the twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society. (author)

  17. Systems and methods for performing wireless financial transactions

    DOE Patents [OSTI]

    McCown, Steven Harvey

    2012-07-03

    A secure computing module (SCM) is configured for connection with a host device. The SCM includes a processor for performing secure processing operations, a host interface for coupling the processor to the host device, and a memory connected to the processor wherein the processor logically isolates at least some of the memory from access by the host device. The SCM also includes a proximate-field wireless communicator connected to the processor to communicate with another SCM associated with another host device. The SCM generates a secure digital signature for a financial transaction package and communicates the package and the signature to the other SCM using the proximate-field wireless communicator. Financial transactions are performed from person to person using the secure digital signature of each person's SCM and possibly message encryption. The digital signatures and transaction details are communicated to appropriate financial organizations to authenticate the transaction parties and complete the transaction.

  18. Vehicle Technologies Office Merit Review 2015: Wireless Charging of Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless...

  19. EM’s Laboratory Supports Testing Wireless Technology in Secure Environment

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Wireless networks have become commonplace in homes, restaurants and retail environments. But up to now, they have not been suitable for secure environments.

  20. Wireless Electric Charging: The Future of Plug-In Electric Vehicles is

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Going Cordless | Department of Energy Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless March 7, 2016 - 3:50pm Addthis Researchers from Oak Ridge National Laboratory test a wireless charger on the fully-electric Toyota Scion iQ at a demonstration site. | Photo courtesy of Oak Ridge National Laboratory Researchers from Oak Ridge National Laboratory test a wireless charger

  1. Software-defined Radio Based Wireless Tomography: Experimental Demonstration and Verification

    SciTech Connect (OSTI)

    Bonior, Jason D; Hu, Zhen; Guo, Terry N.; Qiu, Robert C.; Browning, James P.; Wicks, Michael C.

    2015-01-01

    This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.

  2. Comments of Verizon and Verizon Wireless on DOE Request forInformatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Because effective communications networks will be central to the success of smart grid ... wireline and wireless broadband networks and related expertise to quickly and ...

  3. Five Things You Didn't Know About The Potential for Wireless...

    Office of Environmental Management (EM)

    Wireless charging systems could provide PEVs with as much power and efficiency as today's Level 2 charging stations. Electric buses could charge quickly and more conveniently with ...

  4. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  5. Tunable superconducting qudit mediated by microwave photons

    SciTech Connect (OSTI)

    Cho, Sung Un; Bae, Myung-Ho; Kim, Nam; Kang, Kicheon

    2015-08-15

    We have investigated the time-domain characteristics of the Autler-Townes doublet in a superconducting circuit. The transition probabilities between the ground state and the Autler-Townes doublet states are shown to be controlled in a phase-coherent manner using a well-known microwave pulse pattern technique. The experimental results are well explained by a numerical simulation based on the Markovian master equation. Our result indicates that the Autler-Townes doublet states might be useful as a tunable qudit for implementation of quantum information processing, in particular as a multivalued quantum logic element.

  6. Microwave measurements of the ETA accelerating cavity

    SciTech Connect (OSTI)

    Birx, D.

    1980-03-12

    Microwave measurements of the ETA accelerating cavities have shown eleven resonances in the frequency range of 0 to 850 MHz. These modes have been identified according to their similarity with the modes of a cylindrical cavity. Measurements of the Q's of the modes yielded values from 14 to 70 and transverse shunt impedances (R/sub perpendicular/Q) of 9 to 12..cap omega... In particular, beam breakup mode (TM/sub 110/) has a Q of 20 to 40 and a transverse impedance of 9..cap omega... A later report will describe proposed modifications to the cavity for the ATA accelerator that reduce the Q's substantially.

  7. INEXPENSIVE, OFF THE SHELF HYBRID MICROWAVE SYSTEM

    SciTech Connect (OSTI)

    Walters, T; Paul Burket, P; John Scogin, J

    2007-06-21

    A hybrid-heating microwave oven provides the energy to heat small 10-gram samples of spent metal tritide storage bed material to release tenaciously held decay product {sup 3}He. Complete mass balance procedures require direct measurement of added or produced gases on a tritide bed, and over 1100 C is necessary to release deep trapped {sup 3}He. The decomposition of non-radioactive CaCO{sub 3} and the quantitative measurement of CO{sub 2} within 3% of stoichiometry demonstrate the capabilities of the apparatus to capture generated (released) gases.

  8. Microwave sintering of single plate-shaped articles

    DOE Patents [OSTI]

    Katz, Joel D. (Los Alamos, NM); Blake, Rodger D. (Tucson, AZ)

    1995-01-01

    Apparatus and method for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  9. Microwave sintering of sol-gel derived abrasive grain

    DOE Patents [OSTI]

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  10. Microwave sintering of single plate-shaped articles

    DOE Patents [OSTI]

    Katz, J.D.; Blake, R.D.

    1995-07-11

    Apparatus and method are disclosed for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled. 2 figs.

  11. Converter Topologies for Wired and Wireless Battery Chargers | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape033_su_2012_o.pdf (655.46 KB) More Documents & Publications Converter Topologies for Wired and Wireless Battery Chargers Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Vehicle Technologies Office Merit Review 2014: WBG Converters and Chargers

  12. Cyber Security Requirements for Wireless Devices and Information Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-11

    The Notice establishes DOE policy requirements and responsibilities for using wireless networks and devices within DOE and implements the requirements of DOE 0 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, including requirements for cyber resource protection, risk management, program evaluation, and cyber security plan development and maintenance. No cancellation. DOE N 205.15, dated 3/18/05, extends this directive until 3/18/06.

  13. Energy storage management system with distributed wireless sensors

    SciTech Connect (OSTI)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  14. Steam distribution and energy delivery optimization using wireless sensors

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Djouadi, Seddik M; Lake, Joe E

    2011-01-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  15. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-03-24

    The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

  16. Intelligent Control in Automation Based on Wireless Traffic Analysis

    SciTech Connect (OSTI)

    Kurt Derr; Milos Manic

    2007-09-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  17. Intelligent Control in Automation Based on Wireless Traffic Analysis

    SciTech Connect (OSTI)

    Kurt Derr; Milos Manic

    2007-08-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  18. Unidirectional wireless power transfer using near-field plates

    SciTech Connect (OSTI)

    Imani, Mohammadreza F.; Grbic, Anthony

    2015-05-14

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop to the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.

  19. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-07-05

    The third quarter of the project was dedicated to creating the detailed design for the manufacturing of the mechanical system for wireless communications and the power generation module. Another emphasis for the quarter was the development of the surface system and acoustic detector for the downhole tool for 2 way communications. The tasks accomplished during this report period were: (1) All detailed drawings for manufacturing of the wireless communications gauge and power generator were completed and the drawings were forward to a machine shop for manufacturing. (2) The power generator was incorporated to the mandrel of the wireless gauge reducing the length of the tool by 25% and manufacturing cost by about 35%. (3) The new piezoelectric acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly provides a new technique to manufacture large diameter piezoelectric based acoustic generators. (4) The acoustic two-way communications development progressed significantly. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the piezoelectric wafer assembly was designed and manufactured. The transformer has been received and it will go through testing and evaluation during the next quarter.

  20. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  1. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, Terry L.; Bigelow, Timothy S.; Schaich, Charles R.; Foster, Jr., Don

    1997-01-01

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  2. Container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.; Kimrey, Jr., Harold D.; Mills, James E.

    1989-01-01

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  3. Intense microwave pulses II. SPIE Volume 2154

    SciTech Connect (OSTI)

    Brandt, H.E.

    1994-12-31

    The primary purpose of this conference was to present and critically evaluate new and ongoing research on the generation and transmission of intense microwave pulses. Significant progress was reported on high-power, high-current relativistic klystron amplifier research and design. Other work presented at the conference, include research on a high-power relativistic magnetron driven by a high-current linear induction accelerator, derivation of a Pierce-type dispersion relation describing the interaction of an intense relativistic electron beam with a corrugated cylindrical slow-wave structure, experiments on an X-band backward-wave cyclotron maser oscillator, and observation of frequency chirping in a free electron laser amplifier. Other presentations included work on multiwave Cerenkov generator experiments, analysis of resonance characteristics of slow-wave structures in high-power Cerenkov devices, linear analysis and numerical simulation of Doppler-shifted cyclotron harmonics in a cyclotron autoresonance klystron, high-power virtual cathode oscillator theory and experiments, design of a sixth-harmonic gyrofrequency multiplier as a millimeter-wave source, and experiments on dielectric-loaded and multiwave slotted gyro-TWT amplifiers. A review was presented on innovative concepts which employ high-power microwaves in propulsion of space vehicles. Separate abstracts were prepared for 34 papers of this conference.

  4. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  5. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  6. Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon

    Broader source: Energy.gov [DOE]

    EERE's new microwave standards will reduce carbon pollution and save consumers money on their energy bills.

  7. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    SciTech Connect (OSTI)

    Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton

    2015-09-01

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of the MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.

  8. Lightning control system using high power microwave FEL

    SciTech Connect (OSTI)

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    1995-12-31

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightning control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.

  9. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOE Patents [OSTI]

    Bible, Don W.; Crutcher, Richard I.; Sohns, Carl W.; Maddox, Stephen R.

    1995-01-01

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.

  10. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOE Patents [OSTI]

    Bible, D.W.; Crutcher, R.I.; Sohns, C.W.; Maddox, S.R.

    1995-01-24

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member. 6 figures.

  11. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  12. Electron beam collector for a microwave power tube

    DOE Patents [OSTI]

    Dandl, Raphael A.

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  13. Method and apparatus for component separation using microwave energy

    DOE Patents [OSTI]

    Morrow, Marvin S. (Kingston, TN); Schechter, Donald E. (Ten Mile, TN); Calhoun, Jr., Clyde L. (Knoxville, TN)

    2001-04-03

    A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

  14. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect (OSTI)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  15. Wireless energy transmission to supplement energy harvesters in sensor network applications

    SciTech Connect (OSTI)

    Farinholt, Kevin M; Taylor, Stuart G; Park, Gyuhae; Farrar, Charles R

    2010-01-01

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  16. Efficient near-field wireless energy transfer using adiabatic system variations

    DOE Patents [OSTI]

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin

    2013-01-29

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  17. Efficient near-field wireless energy transfer using adiabatic system variations

    DOE Patents [OSTI]

    Hamam, Rafif E; Karalis, Aristeidis; Joannopoulos, John D; Soljacic, Marin

    2014-09-16

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  18. 140 GHz pulsed fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  19. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  20. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  1. Skyrmion based microwave detectors and harvesting

    SciTech Connect (OSTI)

    Finocchio, G.; Giordano, A.; Ricci, M.; Burrascano, P.; Tomasello, R.; Lanuzza, M.; Puliafito, V.; Azzerboni, B.; Carpentieri, M.

    2015-12-28

    Magnetic skyrmions are topologically protected states that are very promising for the design of the next generation of ultra-low-power electronic devices. In this letter, we propose a magnetic tunnel junction based spin-transfer torque diode with a magnetic skyrmion as ground state and a perpendicular polarizer patterned as nano-contact for a local injection of the current. The key result is the possibility to achieve sensitivities (i.e., detection voltage over input microwave power) larger than 2000 V/W for optimized contact diameters. We also pointed out that large enough voltage controlled magnetocrystalline anisotropy could significantly improve the sensitivity. Our results can be very useful for the identification of a class of spin-torque diodes with a non-uniform ground state and to understand the fundamental physics of the skyrmion dynamical properties.

  2. 2D microwave imaging reflectometer electronics

    SciTech Connect (OSTI)

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  3. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect (OSTI)

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform

  4. Wireless power transmission: The key to solar power satellites

    SciTech Connect (OSTI)

    Nansen, R.H.

    1995-12-31

    In the years following the OPEC oil embargo of 1973--74, the US aggressively researched alternative energy options. Among those studied was the concept of Solar Power Satellites -- generating electricity in space from solar energy on giant satellites and sending the energy to the earth with wireless power transmission. Much has happened in the fifteen years since the studies were terminated. Maturing of the enabling technologies has provided much of the infrastructure to support the development of a commercial Solar Power Satellite program. All of this will reduce the cost by one to two orders of magnitude so development can now be undertaken by industry instead of relying on a massive government program. Solar Space Industries was formed to accomplish this goal. The basis of their development plan for Solar Power Satellites is to build a Ground Test Installation that will duplicate, in small scale on the earth, all aspects of the power generating and power transmission systems for the Solar Power Satellite concept except for the space environment and the range and size of the energy beam. Space operations issues will be separated from the power generation function and verified by testing using the NASA Space Station and Space Shuttle. Solar Space Industries` concept is to built a Ground Test Installation that couples an existing 100 kW terrestrial solar cell array, furnished by an interested utility, to a phased-array wireless power transmitter based on the subarray developed by William Brown and The Center for Space Power. Power will be transmitted over a 1 1/4 mile range to a receiving antenna (rectenna) and then fed into a commercial utility power grid. The objective is to demonstrate the complete function of the Solar Power Satellites, with the primary issue being the validation of practical wireless power transmission. The key features to demonstrate are; beam control, stability, steering, efficiency, reliability, cost, and safety.

  5. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  6. Data Transport in a Novel Wireless Sensor Network

    SciTech Connect (OSTI)

    Roberts, R S

    2001-06-01

    The deployment and operation of large wireless sensor networks can pose difficult problems, particularly in time critical situations, over large geographic areas, or in rugged terrain. An approach to this problem is to use unmanned air vehicles to first deploy the sensors, and then provide communication services to the sensors. This paper presents a network model that describes the flow of data through such a sensor network. Simulation results are presented that illustrate the behavior of the data flow in steady state and transient conditions.

  7. Constraints on Cosmology from the Cosmic Microwave Background...

    Office of Scientific and Technical Information (OSTI)

    from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Citation Details In-Document Search Title: Constraints on Cosmology from the Cosmic...

  8. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  9. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Development of a Multi-Point Microwave Interferometry (MPMI)...

    Office of Scientific and Technical Information (OSTI)

    The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an ...

  11. Method for curing polymers using variable-frequency microwave heating

    DOE Patents [OSTI]

    Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

    1998-02-24

    A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.

  12. Method for curing polymers using variable-frequency microwave heating

    DOE Patents [OSTI]

    Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  13. Virtual cathode microwave generator having annular anode slit

    DOE Patents [OSTI]

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  14. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Energy Savers [EERE]

    Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? November 24, ...

  15. Constraints on Cosmology from the Cosmic Microwave Background...

    Office of Scientific and Technical Information (OSTI)

    Power Spectrum of the 2500-square degree SPT-SZ Survey Citation Details In-Document Search Title: Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of ...

  16. Expanded Capacity Microwave-Cleaned Diesel Particulate Filter | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic Solutions, LLC 2002_deer_nixdorf.pdf (1016.17 KB) More Documents & Publications Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Pleated Ceramic Fiber Diesel Particulate Filter Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape

  17. Microwave-induced thermogenetic activation of single cells

    SciTech Connect (OSTI)

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  18. Microwave mode shifting antenna system for regenerating particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  19. A device for microwave sintering large ceramic articles

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.

    1987-07-24

    A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.

  20. Uniform bulk material processing using multimode microwave radiation

    DOE Patents [OSTI]

    Varma, Ravi; Vaughn, Worth E.

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  1. Stable microwave coaxial cavity plasma system at atmospheric pressure

    SciTech Connect (OSTI)

    Song, H. [Department of Electrical and Computer Engineering, University of Colorado, Colorado Springs, Colorado 80918 (United States); Hong, J. M.; Lee, K. H. [Plasma Systems and Materials (PSM) Inc., Sungnam-Si, Gyonggi-Do 190-1 (Korea, Republic of); Choi, J. J. [Department of Radio Science and Engineering, Kwangwoon University, Nowon-Gu, Seoul 447-1 (Korea, Republic of)

    2008-05-15

    We present a systematic study of the development of a novel atmospheric microwave plasma system for material processing in the pressure range up to 760 torr and the microwave input power up to 6 kW. Atmospheric microwave plasma was reliably produced and sustained by using a cylindrical resonator with the TM{sub 011} cavity mode. The applicator and the microwave cavity, which is a cylindrical resonator, are carefully designed and optimized with the time dependent finite element Maxwell equation solver. The azimuthal apertures are placed at the maximum magnetic field positions between the cavity and the applicator to maximize the coupling efficiency into the microwave plasma at a resonant frequency of 2.45 GHz. The system consists of a magnetron power supply, a circulator, a directional coupler, a three-stub tuner, a dummy load, a coaxial cavity, and a central cavity. Design and construction of the resonant structures and diagnostics of atmospheric plasma using optical experiments are discussed in various ranges of pressure and microwave input power for different types of gases.

  2. Development of a photovoltaic power supply for wireless sensor networks.

    SciTech Connect (OSTI)

    Harvey, Matthew R.; Kyker, Ronald D.

    2005-06-01

    This report examines the design process of a photovoltaic (solar) based power supply for wireless sensor networks. Such a system stores the energy produced by an array of photovoltaic cells in a secondary (rechargeable) battery that in turn provides power to the individual node of the sensor network. The goal of such a power supply is to enable a wireless sensor network to have an autonomous operation on the order of years. Ideally, such a system is as small as possible physically while transferring the maximum amount of available solar energy to the load (the node). Within this report, there is first an overview of current solar and battery technologies, including characteristics of different technologies and their impact on overall system design. Second is a general discussion of modeling, predicting, and analyzing the extended operation of a small photovoltaic power supply and setting design parameters. This is followed by results and conclusions from the testing of a few basic systems. Lastly, some advanced concepts that may be considered in order to optimize future systems will be discussed.

  3. Wireless Sensor Network for Advanced Energy Management Solutions

    SciTech Connect (OSTI)

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  4. Wireless Sensor Networks - Node Localization for Various Industry Problems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Derr, Kurt; Manic, Milos

    2015-06-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothingmore » (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.« less

  5. Wireless Sensor Networks - Node Localization for Various Industry Problems

    SciTech Connect (OSTI)

    Derr, Kurt; Manic, Milos

    2015-06-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothing (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications.

  6. Thermoelectric powered wireless sensors for spent fuel monitoring

    SciTech Connect (OSTI)

    Carstens, T.; Corradini, M.; Blanchard, J.; Ma, Z.

    2011-07-01

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  7. Microsoft Word - Wireless Test Bed named NUF_INL version.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL News Release FOR IMMEDIATE RELEASE Jan. 10, 2013 NEWS MEDIA CONTACTS: Brad Bugger, 208-526-6789, buggerbp@id.doe.gov Misty Benjamin, 208-526-6864, misty.benjamin@inl.gov Department of Energy Designates the Wireless Test Bed as a National User Facility IDAHO FALLS - The U.S. Department of Energy (DOE) recently designated Idaho National Laboratory's (INL) Wireless Test Bed as a National User Facility. Establishing the Wireless Test Bed as a National User Facility will help assert U.S.

  8. Fuel Savings Potential from Future In-motion Wireless Power Transfer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT) E. Burton, L. ... charge or direct power to the motor o Charging efficiencies at high speed o Metrics ...

  9. A mobile-agent based wireless sensing network for structural monitoring applications

    SciTech Connect (OSTI)

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  10. Regulation control and energy management scheme for wireless power transfer

    DOE Patents [OSTI]

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  11. Surface acoustic wave devices for harsh environment wireless sensing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  12. Surface acoustic wave devices for harsh environment wireless sensing

    SciTech Connect (OSTI)

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  13. V-076: Cisco Wireless LAN Controller Bugs Let Remote Users Deny Service and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Authenticated Users Modify the Configuration and Execute Arbitrary Code | Department of Energy 6: Cisco Wireless LAN Controller Bugs Let Remote Users Deny Service and Remote Authenticated Users Modify the Configuration and Execute Arbitrary Code V-076: Cisco Wireless LAN Controller Bugs Let Remote Users Deny Service and Remote Authenticated Users Modify the Configuration and Execute Arbitrary Code January 24, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in

  14. Self organization of wireless sensor networks using ultra-wideband radios

    DOE Patents [OSTI]

    Dowla, Farid U.; Nekoogar, Franak; Spiridon, Alex

    2009-06-16

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  15. Simulation of a Wireless Power Transfer System for Electric Vehicles with Power Factor Correction

    SciTech Connect (OSTI)

    Pickelsimer, Michael C; Tolbert, Leon M; Ozpineci, Burak; Miller, John M

    2012-01-01

    Wireless power transfer has been a popular topic of recent research. Most research has been done to address the limitations of coil-to-coil efficiency. However, little has been done to address the problem associated with the low input power factor with which the systems operate. This paper details the steps taken to analyze a wireless power transfer system from the view of the power grid under a variety of loading conditions with and without power factor correction.

  16. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  17. Application of an automated wireless structural monitoring system for long-span suspension bridges

    SciTech Connect (OSTI)

    Kurata, M.; Lynch, J. P.; Linden, G. W. van der; Hipley, P.; Sheng, L.-H.

    2011-06-23

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  18. Temperature distribution in a flowing fluid heated in a microwave resonant cavity

    SciTech Connect (OSTI)

    Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)

    1996-04-01

    This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.

  19. Physics Analysis of Microwave Imaging Data from DIII-D & KSTAR. Final Technical Report

    SciTech Connect (OSTI)

    Munsat, Tobin

    2015-12-31

    Final Technical Report of the award entitled Physics Analysis of Microwave Imaging Data from DIII-D & KSTAR

  20. A Microwave Thruster for Spacecraft Propulsion (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this

  1. A prototype silicon double quantum dot with dispersive microwave readout

    SciTech Connect (OSTI)

    Schmidt, A. R. Henry, E.; Namaan, O.; Siddiqi, I.; Lo, C. C.; Wang, Y.-T.; Bokor, J.; Yablonovitch, E.; Li, H.; Greenman, L.; Whaley, K. B.; Schenkel, T.

    2014-07-28

    We present a unique design and fabrication process for a lateral, gate-confined double quantum dot in an accumulation mode metal-oxide-semiconductor (MOS) structure coupled to an integrated microwave resonator. All electrostatic gates for the double quantum dot are contained in a single metal layer, and use of the MOS structure allows for control of the location of the two-dimensional electron gas via the location of the accumulation gates. Numerical simulations of the electrostatic confinement potential are performed along with an estimate of the coupling of the double quantum dot to the microwave resonator. Prototype devices are fabricated and characterized by transport measurements of electron confinement and reflectometry measurements of the microwave resonator.

  2. One piece microwave container screens for electrodeless lamps

    DOE Patents [OSTI]

    Turner, Brian; Ury, Michael

    1998-01-01

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.

  3. Microwave guiding in air along single femtosecond laser filament

    SciTech Connect (OSTI)

    Ren Yu; Alshershby, Mostafa; Qin Jiang; Hao Zuoqiang; Lin Jingquan

    2013-03-07

    Microwave guiding along single plasma filament generated through the propagation of femtosecond (fs) laser pulses in air has been demonstrated over a distance of about 6.5 cm, corresponding to a microwave signal intensity enhancement of more than 3-fold over free space propagation. The current propagation distance along the fs laser filament is in agreement with the calculations and limited by the relatively high resistance of the single plasma filament. Using a single fs laser filament to channel microwave radiation considerably alleviate requirements to the power of fs laser pulses compared to the case of the circular filaments waveguide. In addition, it can be used as a simple and non-intrusive method to obtain the basic parameters of laser-generated plasma filament.

  4. Apparatus with moderating material for microwave heat treatment of manufactured components

    SciTech Connect (OSTI)

    Ripley, Edward B.

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  5. Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination

    SciTech Connect (OSTI)

    Srogi, K.

    2007-01-15

    The aim of this paper is to review microwave-assisted digestion of coal and coal fly ash. A brief description of microwave heating principles is presented. Microwave-assisted digestion appears currently to be the most popular preparation technique, possibly due to the comparatively rapid sample preparation and the reduction of contamination, compared to the conventional hot-plate digestion methods.

  6. Diatomic molecules in optical and microwave dipole traps

    SciTech Connect (OSTI)

    Lysebo, Marius; Veseth, Leif

    2011-03-15

    The dipole forces on rotating diatomic molecules are worked out in detail for optical as well as microwave radiation fields. The objective is in particular to investigate how the dipole forces and potentials depend on the subtle internal structure of the molecule, with special emphasis on hyperfine and Zeeman states. Dipole potentials are obtained from computations of the real part of the complex molecular polarizability, whereas the imaginary part yields the scattering force. Numerical examples are presented for {sup 23}Na{sub 2} and OH for optical (laser) fields related to strong electronic transitions and for microwave fields for the {Lambda} doubling in the OH ground state.

  7. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  8. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  9. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  10. Ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  11. ARM - Field Campaign - Long-Term Microwave Radiometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLong-Term Microwave Radiometer Intercomparison ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Long-Term Microwave Radiometer Intercomparison 2001.04.01 - 2001.09.30 Lead Scientist : Richard Cederwall For data sets, see below. Summary Make the spare MWR operational. Ingest data from the spare MWR. Input the output data of the spare MWR and ingest to VAP. Provide data to IOP participants.

  12. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect (OSTI)

    Liu, Hao; Mertsch, Philipp

    2014-07-10

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation.

  13. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  14. Ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  15. Electrical discharge machining of type-N(f) microwave connectors

    SciTech Connect (OSTI)

    Haushalter, R.J.

    1996-07-01

    A particular out-of-specification mechanical dimension on Type-N(f) [Type-N(female)] microwave connectors sometimes disqualifies otherwise perfectly acceptable microwave devices from being used in calibration systems. The Miniature Machining Group at Sandia National Laboratories applied a technique called Electrical Discharge Machining (EDM) to quickly and economically machine these devices without disassembly. In so doing, they facilitated the use of existing components without the need to purchase new devices. The technique also improves an uncertainty of calibration known as Mismatch Uncertainty by optimizing the reflection coefficient of the calibration test port. This effects a reduction in overall calibration uncertainties.

  16. Apparatus for mounting a diode in a microwave circuit

    DOE Patents [OSTI]

    Liu, Shing-gong

    1976-07-27

    Apparatus for mounting a diode in a microwave circuit for making electrical contact between the circuit and ground and for dissipation of heat between the diode and a heat sink. The diode, supported on a thermally and electrically conductive member, is resiliently pressed in electrical contact with the microwave circuit. A tapered collar on the member is elastically deformably wedged into a tapered aperture formed in a heat sink. The wedged collar tightens firmly around the member establishing good thermal and electrical conduction from the diode to the heat sink and ground. Disassembly is facilitated because of the elastically deformed collar.

  17. Technology Development: Wireless Sensors and Controls BT0201 Review of Energy Scavenging Schemes and Recommended Order of Investigation

    SciTech Connect (OSTI)

    DeSteese, John G.; Olsen, Larry C.; Schienbein, Lawrence A.

    2004-09-01

    This report reviews the characteristics of four candidate concepts that extract and convert ambient energy to provide electrical power for wireless sensors.

  18. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect (OSTI)

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2?ms-3?kW-2.45?GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  19. Microwave-assisted synthesis of transition metal phosphide

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  20. Ultra-low power microwave CHFET integrated circuit development

    SciTech Connect (OSTI)

    Baca, A.G.; Hietala, V.M.; Greenway, D.; Sloan, L.R.; Shul, R.J.; Muyshondt, G.P.; Dubbert, D.F.

    1998-04-01

    This report summarizes work on the development of ultra-low power microwave CHFET integrated circuit development. Power consumption of microwave circuits has been reduced by factors of 50--1,000 over commercially available circuits. Positive threshold field effect transistors (nJFETs and PHEMTs) have been used to design and fabricate microwave circuits with power levels of 1 milliwatt or less. 0.7 {micro}m gate nJFETs are suitable for both digital CHFET integrated circuits as well as low power microwave circuits. Both hybrid amplifiers and MMICs were demonstrated at the 1 mW level at 2.4 GHz. Advanced devices were also developed and characterized for even lower power levels. Amplifiers with 0.3 {micro}m JFETs were simulated with 8--10 dB gain down to power levels of 250 microwatts ({mu}W). However 0.25 {micro}m PHEMTs proved superior to the JFETs with amplifier gain of 8 dB at 217 MHz and 50 {mu}W power levels but they are not integrable with the digital CHFET technology.

  1. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    SciTech Connect (OSTI)

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  2. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  3. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  4. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    SciTech Connect (OSTI)

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-05-06

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  5. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOE Patents [OSTI]

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  6. Microwave-emitting rotor, separator apparatus including same, methods of operation and design thereof

    DOE Patents [OSTI]

    Meikrantz, David H.

    2006-12-19

    An apparatus for use in separating, at least in part, a mixture, including at least one chamber and at least one microwave generation device configured for communicating microwave energy into the at least one chamber is disclosed. The rotor assembly may comprise an electric generator for generating electricity for operating the microwave generation device. At least one microwave generation device may be positioned within a tubular interior shaft extending within the rotor assembly. At least a portion of the tubular interior shaft may be substantially transparent to microwave energy. Microwave energy may be emitted in an outward radial direction or toward an anticipated boundary surface defined between a mixture and a separated constituent thereof. A method including flowing a mixture through at least one chamber and communicating microwave energy into the at least one chamber while rotating same is disclosed. Methods of operating a centrifugal separator and design thereof are disclosed.

  7. Satellite remote sensing of global rainfall using passive microwave radiometry

    SciTech Connect (OSTI)

    Ferriday, J.G.

    1994-12-31

    Global rainfall over land and ocean is estimated using measurements of upwelling microwaves by a satellite passive microwave radiometer. Radiative transfer calculations through a cloud model are used to parameterize an inversion technique for retrieving rain rates from brightness temperatures measured by the Special Sensor Microwave Imager (SSM/I). The rainfall retrieval technique is based on the interaction between multi-spectral microwave radiances and millimeter sized liquid and frozen hydrometeors distributed in the satellite`s field of view. The rain rate algorithm is sensitive to both hydrometeor emission and scattering while being relatively insensitive to extraneous atmospheric and surface effects. Separate formulations are used over ocean and land to account for different background microwave characteristics and the algorithm corrects for inhomogeneous distributions of rain rates within the satellite`s field of view. Estimates of instantaneous and climate scale rainfall are validated through comparisons with modeled clouds, surface radars, rain gauges and alternative satellite estimates. The accuracy of the rainfall estimates is determined from a combination of validation comparisons, theoretical sampling error calculations, and modeled sensitivity to variations in atmospheric and surface radiative properties. An error budget is constructed for both instantaneous rain rates and climate scale global estimates. At a one degree resolution, the root mean square errors in instantaneous rain rate estimates are 13% over ocean and 20% over land. The root mean square errors in global rainfall totals over a four month period are found to be 46% over ocean and 63% over land. Global rainfall totals are computed on a monthly scale for a three year period from 1987 to 1990. The time series is analyzed for climate scale rainfall distribution and variability.

  8. Development and characterisations of WC–12Co microwave clad

    SciTech Connect (OSTI)

    Zafar, Sunny Sharma, Apurbba Kumar

    2014-10-15

    In the present work, WC–12Co based cermet clad was developed on AISI 304 stainless steel using microwave hybrid heating technique. The experimental trials were carried out in a 1.4 kW industrial multimode microwave applicator. The paper explains the major events occurring during microwave irradiation and formation of clad. The developed clads were subsequently characterised through field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, assessment of porosity and microhardness. The WC–12Co clads developed with an approximate thickness of 1 mm, illustrated excellent metallurgical bonding with substrate. The microstructure of the WC–12Co clad mainly consists of skeleton structured carbides embedded in tough metallic phase. The phase analysis of the developed clads indicate the presence of various stable and complex carbides like Co{sub 6}W{sub 6}C, Co{sub 3}W{sub 3}C and Fe{sub 6}W{sub 6}C. The uniform distribution of such carbides with skeleton-like morphology in the microstructure is indicative of high hardness of the clad. The developed clads were free from visible interfacial cracking and the clad porosity was found in the order of approximately 0.98%. The average microhardness of the WC–12Co microwave clads was observed to be 1135 ± 88 HV. - Highlights: • Microwave cladding of WC–12Co on AISI 304 stainless steel is carried out. • Skeleton-like structures of W–Co based carbides are embedded in metallic matrix. • Clad–substrate interface is free from un-melted and un-dissolved carbide particles. • Hardness of clad (1135 ± 88 HV) is 3.5 times that of the substrate (325 ± 49 HV)

  9. Multiscale wireless sensor node for impedance-based SHM and low-frequency vibration data acquisition

    SciTech Connect (OSTI)

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R; Todd, Michael D

    2009-01-01

    This paper presents recent developments in an extremely compact, wireless impedance sensor node (WID3, Wireless Impedance Device) at Los Alamos National Laboratory for use in impedance-based structural health monitoring (SHM), Sensor diagnostics and low-frequency vibrational data acquisition. The current generation WID3 is equipped with an Analog Devices AD5933 impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using an Atmega1281 microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog to digital and digital and analog converters so that the same device can measure structural vibration data. The WID3 requires less than 70 mW of power to operate, and it can operate in various wireless network paradigms. The performance of this miniaturized and portable device is compared to our previous results and its broader capabilities are demonstrated.

  10. Wireless sensor systems and methods, and methods of monitoring structures

    SciTech Connect (OSTI)

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

    2007-02-20

    A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

  11. Wireless sensor systems for sense/decide/act/communicate.

    SciTech Connect (OSTI)

    Berry, Nina M.; Cushner, Adam; Baker, James A.; Davis, Jesse Zehring; Stark, Douglas P.; Ko, Teresa H.; Kyker, Ronald D.; Stinnett, Regan White; Pate, Ronald C.; Van Dyke, Colin; Kyckelhahn, Brian

    2003-12-01

    After 9/11, the United States (U.S.) was suddenly pushed into challenging situations they could no longer ignore as simple spectators. The War on Terrorism (WoT) was suddenly ignited and no one knows when this war will end. While the government is exploring many existing and potential technologies, the area of wireless Sensor networks (WSN) has emerged as a foundation for establish future national security. Unlike other technologies, WSN could provide virtual presence capabilities needed for precision awareness and response in military, intelligence, and homeland security applications. The Advance Concept Group (ACG) vision of Sense/Decide/Act/Communicate (SDAC) sensor system is an instantiation of the WSN concept that takes a 'systems of systems' view. Each sensing nodes will exhibit the ability to: Sense the environment around them, Decide as a collective what the situation of their environment is, Act in an intelligent and coordinated manner in response to this situational determination, and Communicate their actions amongst each other and to a human command. This LDRD report provides a review of the research and development done to bring the SDAC vision closer to reality.

  12. Final Report Providing the Design for Low-Cost Wireless Current Transducer and Electric Power Sensor Prototype

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Burghard, Brion J.; Reid, Larry D.

    2005-01-31

    This report describes the design and development of a wireless current transducer and electric power sensor prototype. The report includes annotated schematics of the power sensor circuitry and the printed circuit board. The application program used to illustrate the functionality of the wireless sensors is described in this document as well.

  13. Apparatus and method supporting wireless access to multiple security layers in an industrial control and automation system or other system

    DOE Patents [OSTI]

    Chen, Yu-Gene T.

    2013-04-16

    A method includes receiving a message at a first wireless node. The first wireless node is associated with a first wired network, and the first wired network is associated with a first security layer. The method also includes transmitting the message over the first wired network when at least one destination of the message is located in the first security layer. The method further includes wirelessly transmitting the message for delivery to a second wireless node when at least one destination of the message is located in a second security layer. The second wireless node is associated with a second wired network, and the second wired network is associated with the second security layer. The first and second security layers may be associated with different security paradigms and/or different security domains. Also, the message could be associated with destinations in the first and second security layers.

  14. Demonstrating Dynamic Wireless Charging of an Electric Vehicle - The benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller , John M.; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene; Sepe, Raymond B; Steyerl, Anton

    2014-01-01

    The wireless charging of an electric vehicle (EV) while it is in motion presents challenges in terms of low-latency communications for roadway coil excitation sequencing and maintenance of lateral alignment, plus the need for power-flow smoothing. This article summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at the Oak Ridge National Laboratory (ORNL) using various combinations of electrochemical capacitors at the grid side and in the vehicle. Electrochemical capacitors of the symmetric carbon carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories (ESL) fabricated the passive and active parallel lithium-capacitor (LiC) unit used to smooth the grid-side power. The power pulsation reduction was 81% on the grid by the LiC, and 84% on the vehicle for both the LiC and the carbon ultracapacitors (UCs).

  15. Distributed Wireless Multi-Sensor Technologies, A Novel Approach to Reduce Motor Energy Usage

    SciTech Connect (OSTI)

    Daniel Sexton

    2008-03-28

    This report is the final report for the General Electric Distributed Wireless Multi-Sensor Technologies project. The report covers the research activities and benefits surrounding wireless technology used for industrial sensing applications. The main goal of this project was to develop wireless sensor technology that would be commercialized and adopted by industry for a various set of applications. Many of these applications will yield significant energy savings. One application where there was significant information to estimate a potential energy savings was focused on equipment condition monitoring and in particular electric motor monitoring. The results of the testing of the technology developed are described in this report along with the commercialization activities and various new applications and benefits realized.

  16. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    SciTech Connect (OSTI)

    Kawate, T.; Nishizuka, N.; Oi, A.; Ohyama, M.; Nakajima, H.

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  17. An efficient wireless power transfer system with security considerations for electric vehicle applications

    SciTech Connect (OSTI)

    Zhang, Zhen; Chau, K. T. Liu, Chunhua; Qiu, Chun; Lin, Fei

    2014-05-07

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.

  18. Dynamic characteristic of intense short microwave propagation in an atmosphere

    SciTech Connect (OSTI)

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures.

  19. A tunable microwave slot antenna based on graphene

    SciTech Connect (OSTI)

    Dragoman, Mircea; Aldrigo, Martino; Vasilache, D.; Dinescu, A.; Neculoiu, Dan; Bunea, Alina-Cristina; Deligeorgis, George; Konstantinidis, George; Mencarelli, Davide; Pierantoni, Luca; Modreanu, M.

    2015-04-13

    The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO{sub 2} layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO{sub 2}. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower than a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.

  20. Microwave measurement of the mass of frozen hydrogen pellets

    DOE Patents [OSTI]

    Talanker, Vera; Greenwald, Martin

    1990-01-01

    A nondestructive apparatus and method for measuring the mass of a moving object, based on the perturbation of the dielectric character of a resonant microwave cavity caused by the object passing through the cavity. An oscillator circuit is formed with a resonant cavity in a positive feedback loop of a microwave power amplifier. The moving object perturbs the resonant characteristics of the cavity causing a shift in the operating frequency of the oscillator proportional to the ratio of the pellet volume to the volume of the cavity. Signals from the cavity oscillation are mixed with a local oscillator. Then the IF frequency from the mixer is measured thereby providing a direct measurement of pellet mass based upon known physical properties and relationships. This apparatus and method is particularly adapted for the measurement of frozen hydrogen pellets.

  1. Kinetics of the carbon monoxide oxidation reaction under microwave heating

    SciTech Connect (OSTI)

    Perry, W.L.; Katz, J.D.; Rees, D.; Paffett, M.T. [Los Alamos National Lab., NM (United States); Datye, A. [Univ. of New Mexico, Albuquerque, NM (United States)

    1996-06-01

    915 MHz microwave heating has been used to drive the CO oxidation reaction over Pd/Al{sub 2}O{sub 3} with out significantly affecting the reaction kinetics. As compared to an identical conventionally heated system, the activation energy, pre-exponential factor, and reaction order with respect to CO were unchanged. Temperature was measured using a thermocouple extrapolation technique. Microwave-induced thermal gradients were found to play a significant role in kinetic observations. The authors chose the CO oxidation reaction over a supported metal catalyst because the reaction kinetics are well known, and because of the diverse dielectric properties of the various elements in the system: CO is a polar molecule, O{sub 2} and CO{sub 2} are non-polar, Al{sub 2}O{sub 3} is a dielectric, and Pt and Pd are conductors.

  2. Cosmic microwave background observables of small field models of inflation

    SciTech Connect (OSTI)

    Ben-Dayan, Ido; Brustein, Ram E-mail: ramyb@bgu.ac.il

    2010-09-01

    We construct a class of single small field models of inflation that can predict, contrary to popular wisdom, an observable gravitational wave signal in the cosmic microwave background anisotropies. The spectral index, its running, the tensor to scalar ratio and the number of e-folds can cover all the parameter space currently allowed by cosmological observations. A unique feature of models in this class is their ability to predict a negative spectral index running in accordance with recent cosmic microwave background observations. We discuss the new class of models from an effective field theory perspective and show that if the dimensionless trilinear coupling is small, as required for consistency, then the observed spectral index running implies a high scale of inflation and hence an observable gravitational wave signal. All the models share a distinct prediction of higher power at smaller scales, making them easy targets for detection.

  3. Critical operating parameters for microwave solidification of hydroxide sludge

    SciTech Connect (OSTI)

    Sprenger, G.S.; Eschen, V.G.

    1993-08-01

    Engineers at the Rocky Flats Plant (RFP) have developed an innovative technology for the treatment of homogeneous wet or dry solids which are contaminated with hazardous and/or radioactive materials. The process uses microwave energy to heat and melt the waste into a vitreous final form that is suitable for land disposal. The advantages include a high density, leach resistant, robust waste form; volume and toxicity reduction; favorable economics; in-container treatment; favorable public acceptance; isolated equipment; and instantaneous energy control. Regulatory certification of the final form is accomplished by meeting the limitation specified in EPA`s Toxicity Characteristic Leach Procedure (TCLP). This paper presents the results from a series of TCLP tests performed on a surrogate hydroxide coprecipitation sludge spiked with heavy metals at elevated concentrations. The results are very encouraging and support RFP`s commitment to the use of microwave technology for treatment of various mixed waste streams.

  4. Controlled synthesis of novel octapod platinum nanocrystals under microwave irradiation

    SciTech Connect (OSTI)

    Dai, Lei; Chi, Quan; Zhao, Yanxi; Liu, Hanfan; Zhou, Zhongqiang; Li, Jinlin; Huang, Tao

    2014-01-01

    Graphical abstract: Under microwave irradiation, novel octapod Pt nanocrystals were synthesized by reducing H{sub 2}PtCl{sub 6} in TEG with PVP as a stabilizer. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center. The use of KI was crucial to the formation of novel Pt octapods. Novel Octapod Platinum Nanocrystals. - Highlights: • A novel octapod Pt nanocrystals different from the common octapod were obtained. • The use of KI was crucial to the formation of the novel Pt octapods. • Microwave was readily employed in controlled synthesis of the novel Pt octapods. - Abstract: Microwave was employed in the shape-controlled synthesis of Pt nanoparticles. Novel octapod Pt nanocrystals enclosed with (1 1 1) facets were readily synthesized with H{sub 2}PtCl{sub 6} as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent, polyvinylpyrrolidone (PVP) as a stabilizer in the presence of an appropriate amount of KI under microwave irradiation for 140 s. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center and exhibited higher electrocatalytic activity than commercial Pt black in the electro-oxidations of methanol and formic acid. The results demonstrated that the use of KI was crucial to the formation of Pt octapods. KI determined the formation of the novel octapod Pt nanocrystals by tuning up the reduction kinetics and adsorbing on the surfaces of growing Pt nanoparticles. The optimum molar ratio of H{sub 2}PtCl{sub 6}/KI/PVP was 1/30/45.

  5. Microwave plasma CVD of NANO structured tin/carbon composites

    DOE Patents [OSTI]

    Marcinek, Marek; Kostecki, Robert

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  6. Effect of microwave radiation on Jayadhar cotton fibers: WAXS studies

    SciTech Connect (OSTI)

    Niranjana, A. R. Mahesh, S. S. Divakara, S. Somashekar, R.

    2014-04-24

    Thermal effect in the form of micro wave energy on Jayadhar cotton fiber has been investigated. Microstructural parameters have been estimated using wide angle x-ray scattering (WAXS) data and line profile analysis program developed by us. Physical properties like tensile strength are correlated with X-ray results. We observe that the microwave radiation do affect significantly many parameters and we have suggested a multivariate analysis of these parameters to arrive at a significant result.

  7. Research on calorimeter for high-power microwave measurements

    SciTech Connect (OSTI)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

  8. Method for heat treating and sintering metal oxides with microwave radiation

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  9. Elimination of dimethyl methylphosphonate by plasma flame made of microwave plasma and burning hydrocarbon fuel

    SciTech Connect (OSTI)

    Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.

    2008-06-15

    Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.

  10. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    SciTech Connect (OSTI)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  11. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOE Patents [OSTI]

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  12. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in #EnergyFaceoff Round 4?

    Broader source: Energy.gov [DOE]

    In the final #EnergyFaceoff round, the electric kettle takes on the microwave for the honor of heating your water.

  13. Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    Microwave regeneration of the DPF can be done without diesel fuel or a catalyst in less than 5 minutes with the engine off.

  14. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOE Patents [OSTI]

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  15. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect (OSTI)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  16. Geometry for web microwave heating or drying to a desired profile in a waveguide

    DOE Patents [OSTI]

    Habeger, Jr., Charles C.; Patterson, Timothy F.; Ahrens, Frederick W.

    2005-11-15

    A microwave heater and/or dryer has a nonlinear or curvilinear relative slot profile geometry. In one embodiment, the microwave dryer has at least one adjustable field modifier making it possible to change the geometry of the heater or dryer when drying different webs. In another embodiment, the microwave dryer provides more uniform drying of a web when the field modifier is adjusted in response to a sensed condition of the web. Finally, a method of microwave heating and/or drying a web achieves a uniform heating and/or drying profile.

  17. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    SciTech Connect (OSTI)

    Butler, William P.; Buescher, Tom

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  18. Evaluation of Rugged Wireless Mesh Nodes for Use In Emergency Response

    SciTech Connect (OSTI)

    Kevin L Young; Alan M Snyder

    2007-11-01

    During the summer of 2007, engineers at the Idaho National Laboratory (INL) conducted a two-day evaluation of commercially available battery powered, wireless, self-forming mesh nodes for use in emergency response. In this paper, the author describes the fundamentals of this emerging technology, applciations for emergency response and specific results of the technology evaluation conducted at the Idaho National Laboratory.

  19. Hardware-in-the-loop testing of wireless systems in realistic environments.

    SciTech Connect (OSTI)

    Burkholder, R. J. (Ohio State University ElectroScience Laboratory); Mariano, Robert J.; Gupta, I. J. (Ohio State University ElectroScience Laboratory); Schniter, P. (Ohio State University ElectroScience Laboratory)

    2006-06-01

    This document describes an approach for testing of wireless systems in realistic environments that include intentional as well as unintentional radio frequency interference. In the approach, signal generators along with radio channel simulators are used to carry out hardware-in-the-loop testing. The channel parameters are obtained independently via channel sounding measurements and/or EM simulations.

  20. Transforming Ordinary BUildings inot Smart Buildings via Low-Cost, Self-Powering Wireless Sensors & Sensor Networks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors & Sensor Networks 2016 Building Technologies Office Peer Review Philip Feng, Ph.D., philip.feng@case.edu Case Western Reserve University Gateway Wireless Sensor Node Wireless Relay 2 Project Summary Timeline: Start date: 10/01/2014 Planned end date: 09/30/2014 Key Milestones 1. Design Energy Harvesting ASIC; 12/31/2014 2. Tapeout ASIC and Test Circuit; 6/30/2015 3. Complete Sensor Node;

  1. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  2. Enhanced window breakdown dynamics in a nanosecond microwave tail pulse

    SciTech Connect (OSTI)

    Chang, Chao; Zhu, Meng; Li, Shuang; Xie, Jialing; Yan, Kai; Luo, Tongding; Zhu, Xiaoxin; Verboncoeur, John

    2014-06-23

    The mechanisms of nanosecond microwave-driven discharges near a dielectric/vacuum interface were studied by measuring the time- and space-dependent optical emissions and pulse waveforms. The experimental observations indicate multipactor and plasma developing in a thin layer of several millimeters above interface. The emission brightness increases significantly after main pulse, but emission region widens little. The mechanisms are studied by analysis and simulation, revealing intense ionization concentrated in a desorbed high-pressure layer, leading to a bright light layer above surface; the lower-voltage tail after main pulse contributes to heat electron energy tails closer to excitation cross section peaks, resulting in brighter emission.

  3. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, Isidoro E. (Newport News, VA)

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  4. Microwave lamp with multi-purpose rotary motor

    DOE Patents [OSTI]

    Ury, Michael G.; Turner, Brian; Wooten, Robert D.

    1999-01-01

    In a microwave powered electrodeless lamp, a single rotary motor is used to a) rotate the bulb and b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooling for providing cooler gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement.

  5. Microwave lamp with multi-purpose rotary motor

    DOE Patents [OSTI]

    Ury, M.G.; Turner, B.; Wooten, R.D.

    1999-02-02

    In a microwave powered electrodeless lamp, a single rotary motor is used to (a) rotate the bulb and (b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooler for providing cooling gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement. 8 figs.

  6. Combination biological and microwave treatments of used rubber products

    DOE Patents [OSTI]

    Fliermans, Carl B.; Wicks, George G.

    2002-01-01

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds altered by biotreatment with thermophillic microorganisms selected from natural isolates from hot sulfur springs. Following the biotreatment, microwave radiation is used to further treat the surface and to treat the bulk interior of the crumb rubber. The resulting combined treatments render the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels and sizes of the treated crumb rubber can be used in new rubber mixtures and good properties obtained from the new recycled products.

  7. Microwave diagnostics of femtosecond laser-generated plasma filaments

    SciTech Connect (OSTI)

    Papeer, J.; Ehrlich, Y.; Zigler, A.; Mitchell, C.; Penano, J.; Sprangle, P.

    2011-10-03

    We present a simple non-intrusive experimental method allowing a complete single shot temporal measurement of laser produced plasma filament conductivity. The method is based on filament interaction with low intensity microwave radiation in a rectangular waveguide. The suggested diagnostics allow a complete single shot temporal analysis of filament plasma decay with resolution better than 0.3 ns and high spatial resolution along the filament. The experimental results are compared to numerical simulations, and an initial electron density of 7 x 10{sup 16 }cm{sup -3} and decay time of 3 ns are obtained.

  8. Microwave sintering of nanophase ceramics without concomitant grain growth

    DOE Patents [OSTI]

    Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  9. Investigation of a metallic photonic crystal high power microwave mode converter

    SciTech Connect (OSTI)

    Wang, Dong Qin, Fen; Xu, Sha; Yu, Aimin; Wu, Yong

    2015-02-15

    It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  10. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN)

    1994-01-01

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  11. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOE Patents [OSTI]

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  12. An Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service Andrew Meintz Kate Doubleday, Tony Markel Publication No. PR-5400-66571 2016 IEEE Transportation Electrification Conference and Expo (ITEC'16) Dearborn, Michigan June 29, 2016 2 On-Demand NREL Employee Shuttle Photo by Dennis Schroeder (NREL 32221) 3 Charging through Wireless Power Transfer (WPT) Ground-side transmitter Vehicle-side receivers 4 Typical Shuttle Route Imagery and map data by Google © 2016 5 Typical

  13. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.; Tiegs, Terry N.

    1992-01-01

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  14. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

    1992-10-13

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  15. A Flat Universe from High-Resolution Maps of the Cosmic MicrowaveBackground Radiation

    SciTech Connect (OSTI)

    de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; Ferreira, P.G.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Lange, A.E.; Martinis, L.; Masi, S.; Mason,P.; Mauskopf, P.D.; Melchiorri, A.; Miglio, L.; Montroy, T.; Netterfield,C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Prunet, S.; Rao, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.; Sforna, D.; Vittorio, N.

    2000-04-28

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K Cosmic Microwave Background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole {ell}{sub peak} = (197 {+-} 6), with an amplitude DT{sub 200} = (69 {+-} 8){mu}K. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favored by standard inflationary scenarios.

  16. Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation

    SciTech Connect (OSTI)

    Gedam, Vidyadhar V.; Regupathi, Iyyaswami

    2012-03-15

    In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation highly depends on the process parameters, like microwave power, microwave absorbers, and time of irradiation. The thoroughness of pyrolysis and product recovery were studied by changing the abovesaid variables. Pyrolysis of MSW occurs in the power rating range of 450-850 W-outside this power rating range, pyrolysis is not possible. Experiments were carried out using various microwave absorbers (i.e., graphite, charcoal, and iron) to enhance the pyrolysis even at lower power rating. The results show that the pyrolysis of MSW was possible even at low power ratings. The major composition of the pyrolysis gaseous product were analyzed with GC-MS which includes CO{sub 2}, CO, CH{sub 4}, etc.

  17. Microwave-assisted synthesis of palladium nanocubes and nanobars

    SciTech Connect (OSTI)

    Yu, Yanchun; Zhao, Yanxi; Huang, Tao; Liu, Hanfan; Institute of Chemistry, Chinese Academy of Science, Beijing 100080

    2010-02-15

    Microwave was employed in the shape-controlled synthesis of palladium nanoparticles. Palladium nanocubes and nanobars with a mean size of about 23.8 nm were readily synthesized with H{sub 2}PdCl{sub 4} as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent in the presence of PVP and CTAB in 80 s under microwave irradiation. The structures of the as-prepared palladium nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and ultraviolet-visible (UV-vis) absorption spectroscopy. The formation of PdBr{sub 4}{sup 2-}due to the coordination replacement of the ligand Cl{sup -} ions in PdCl{sub 4}{sup 2-} ions by Br{sup -} ions in the presence of bromide was responsible for the synthesis of Pd nanocubes and nanobars. In addition, a milder reducing power, a higher viscosity and a stronger affinity of TEG were beneficial to the larger sizes of Pd nanocubes and nanobars.

  18. Floating data acquisition system for microwave calorimeter measurements on MTX

    SciTech Connect (OSTI)

    Sewall, N.R.; Meassick, S. )

    1989-09-13

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs.

  19. Optic-microwave mixing velocimeter for superhigh velocity measurement

    SciTech Connect (OSTI)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-12-15

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  20. Characterization of microwave plasmas for deposition of polyparylene

    SciTech Connect (OSTI)

    Franz, Gerhard; Rauter, Florian; Dribinskiy, Stanislav F.

    2009-07-15

    Polyparylene, a noncritical, nontoxic layer material well suited for long-term applications in the human body, has been deposited by plasma-enhanced chemical vapor deposition of the monomeric species. For that end, a microwave discharge in a pulsed mode has been applied. Important plasma parameters have been evaluated by simultaneous application of Langmuir probe and trace rare gas optical emission spectroscopy. Plasma densities and electron temperature have been found to cover values from an almost Langmuir plasma up to some 10{sup 10}/cm{sup 3} and between 1 and 3.5 eV, respectively. The differences in electron temperature between the two methods clearly show the efficiency of microwave fields to excite the high-energy tail of the electron energy distribution function. Due to diffusion loss, the plasma is spatially inhomogenous which has been taken care of by measuring at four different radial positions and different pressures with the Langmuir probe. This holds true for both ambients: argon and parylene-C. However, the plasma density in parylene is lower by a factor of almost 10, indicating that this molecule and/or its fragments exhibit a strong power for electronic attachment or that the process of ionization must compete with other, parasitic reaction paths.

  1. Microwave-excited microplasma thruster with helium and hydrogen propellants

    SciTech Connect (OSTI)

    Takahashi, Takeshi; Takao, Yoshinori; Ichida, Yugo; Eriguchi, Koji; Ono, Kouichi

    2011-06-15

    Microplasma thruster of electrothermal type has been investigated with feed or propellant gases of He and H{sub 2}. The thruster consisted of an azimuthally symmetric microwave-excited microplasma source 1.5 mm in diameter and 10 mm long with a rod antenna on axis, and a converging-diverging micronozzle 1 mm long with a throat 0.2 mm in diameter. Surface wave-excited plasmas were established by 4.0-GHz microwaves at powers of {<=} 6 W, with the source pressure in the range 0.5-12 kPa at flow rates of 2-70 sccm. The microplasma generation, micronozzle flow, and thrust performance with He were numerically analyzed by using a two-dimensional fluid model, coupled with an electromagnetic model for microwaves interacting with plasmas in the source region. In experiments, the plasma electron density and gas temperature in the microplasma source were measured at around the top of the microwave antenna, or just upstream of the micronozzle inlet, by optical emission spectroscopy with a small amount of additive gases of H{sub 2} and N{sub 2}. In the case of He propellant, the Stark broadening of H Balmer-{beta} line and the vibronic spectrum of N{sub 2} 2nd positive (0, 2) band indicated that the electron density was in the range (2-5)x10{sup 19}m{sup -3} and the gas or rotational temperature was in the range 600-700 K. The thrust performance was also measured by using a target-type microthrust stand, giving a thrust in the range 0.04-0.51 mN, a specific impulse in the range 150-270 s, and a thrust efficiency in the range 2%-12%. These experimental results were consistent with those of numerical analysis, depending on microwave power and gas flow rate. Similar plasma characteristics and thrust performance were obtained with H{sub 2} propellant, where the specific impulse of {<=} 450 s was more than 1.5 times higher than that with He, owing to a difference in mass between He and H{sub 2}. A comparison with previous studies with Ar propellant [T. Takahashi et al., Phys. Plasmas

  2. Primary Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    SciTech Connect (OSTI)

    Miller, John M; Onar, Omer C; Chinthavali, Madhu Sudhan

    2015-01-01

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. This paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

  3. Discursive Deployments: Mobilizing Support for Municipal and Community Wireless Networks in the U.S.

    SciTech Connect (OSTI)

    Alvarez, Rosio; Rodriguez, Juana Maria

    2008-08-16

    This paper examines Municipal Wireless (MW) deployments in the United States. In particular, the interest is in understanding how discourse has worked to mobilize widespread support for MW networks. We explore how local governments discursively deploy the language of social movements to create a shared understanding of the networking needs of communities. Through the process of"framing" local governments assign meaning to the MW networks in ways intended to mobilize support anddemobilize opposition. The mobilizing potential of a frame varies and is dependent on its centrality and cultural resonance. We examine the framing efforts of MW networks by using a sample of Request for Proposals for community wireless networks, semi-structured interviews and local media sources. Prominent values that are central to a majority of the projects and others that are culturally specific are identified and analyzed for their mobilizing potency.

  4. Energy harvesting and wireless energy transmission for powering SHM sensor nodes

    SciTech Connect (OSTI)

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R

    2009-01-01

    In this paper, we present a feasibility study of using energy harvesting and wireless energy transmission systems to operate SHM sensor nodes. The energy harvesting approach examines the use of kinetic energy harvesters to scavenge energy from the ambient sources. Acceleration measurements were made on a bridge, and serve as the basis for a series of laboratory experiments that replicate these sources using an electromagnetic shaker. We also investigated the use of wireless energy transmission systems to operate SHM sensor nodes. The goal of this investigation is to develop SHM sensing systems which can be permanently embedded in the host structure and do not require on-board power sources. This paper summarizes considerations needed to design such systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  5. An Optimal Deployment of Wireless Charging Lane for Electric Vehicles on Highway Corridors

    SciTech Connect (OSTI)

    Huang, Yongxi

    2016-01-01

    We propose an integrated modeling framework to optimally locate wireless charging facilities along a highway corridor to provide sufficient in-motion charging. The integrated model consists of a master, Infrastructure Planning Model that determines best locations with integrated two sub-models that explicitly capture energy consumption and charging and the interactions between electric vehicle and wireless charging technologies, geometrics of highway corridors, speed, and auxiliary system. The model is implemented in an illustrative case study of a highway corridor of Interstate 5 in Oregon. We found that the cost of establishing the charging lane is sensitive and increases with the speed to achieve. Through sensitivity analyses, we gain better understanding on the extent of impacts of geometric characteristics of highways and battery capacity on the charging lane design.

  6. Fabrication and Evaluation of a High Performance SiC Inverter for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Onar, Omer C; Campbell, Steven L; Ning, Puqi; Miller, John M; Liang, Zhenxian

    2013-01-01

    In this study, a high power density SiC high efficiency wireless power transfer converter system via inductive coupling has been designed and developed. The detailed power module design, cooling system design and power stage development are presented. The successful operation of rated power converter system demonstrates the feasible wireless charging plan. One of the most important part of this study is the wind bandgap devices packaged at the Oak Ridge National Laboratory (ORNL) using the in-house packaging technologies by employing the bare SiC dies acquired from CREE, which are rated at 50 A / 1200 V each. These packaged devices are also inhouse tested and characterized using ORNL s Device Characterization Facility. The successful operation of the proposed inverter is experimentally verified and the efficiency and operational characteristics of the inverter are also revealed.

  7. DSTiPE Algorithm for Fuzzy Spatio-Temporal Risk Calculation in Wireless Environments

    SciTech Connect (OSTI)

    Kurt Derr; Milos Manic

    2008-09-01

    Time and location data play a very significant role in a variety of factory automation scenarios, such as automated vehicles and robots, their navigation, tracking, and monitoring, to services of optimization and security. In addition, pervasive wireless capabilities combined with time and location information are enabling new applications in areas such as transportation systems, health care, elder care, military, emergency response, critical infrastructure, and law enforcement. A person/object in proximity to certain areas for specific durations of time may pose a risk hazard either to themselves, others, or the environment. This paper presents a novel fuzzy based spatio-temporal risk calculation DSTiPE method that an object with wireless communications presents to the environment. The presented Matlab based application for fuzzy spatio-temporal risk cluster extraction is verified on a diagonal vehicle movement example.

  8. On Modeling and Analysis of MIMO Wireless Mesh Networks with Triangular Overlay Topology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Zhanmao; Wu, Chase Q.; Zhang, Yuanping; Shiva, Sajjan G.; Gu, Yi

    2015-01-01

    Multiple input multiple output (MIMO) wireless mesh networks (WMNs) aim to provide the last-mile broadband wireless access to the Internet. Along with the algorithmic development for WMNs, some fundamental mathematical problems also emerge in various aspects such as routing, scheduling, and channel assignment, all of which require an effective mathematical model and rigorous analysis of network properties. In this paper, we propose to employ Cartesian product of graphs (CPG) as a multichannel modeling approach and explore a set of unique properties of triangular WMNs. In each layer of CPG with a single channel, we design a node coordinate scheme thatmore » retains the symmetric property of triangular meshes and develop a function for the assignment of node identity numbers based on their coordinates. We also derive a necessary-sufficient condition for interference-free links and combinatorial formulas to determine the number of the shortest paths for channel realization in triangular WMNs.« less

  9. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect (OSTI)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  10. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    SciTech Connect (OSTI)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-03

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  11. Management of Large-Scale Wireless Sensor Networks Utilizing Multi-Parent Recursive Area Hierarchies

    SciTech Connect (OSTI)

    Cree, Johnathan V.; Delgado-Frias, Jose

    2013-04-19

    Autonomously configuring and self-healing a largescale wireless sensor network requires a light-weight maintenance protocol that is scalable. Further, in a battery powered wireless sensor network duty-cycling a node’s radio can reduce the power consumption of a device and extend the lifetime of a network. With duty-cycled nodes the power consumption of a node’s radio depends on the amount of communication is must perform and by reducing the communication the power consumption can also be reduced. Multi-parent hierarchies can be used to reduce the communication cost when constructing a recursive area clustering hierarchy when compared to singleparent solutions that utilize inefficient communication methods such as flooding and information propagation via single-hop broadcasts. The multi-parent hierarchies remain scalable and provides a level of redundancy for the hierarchy.

  12. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    SciTech Connect (OSTI)

    Miller, John M.; Onar, Omer C.; Chinthavali, Madhu

    2014-12-22

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

  13. Low-Power Direct-Sequence Spread-Spectrum Modem Architecture for Distributed Wireless Sensor Networks

    SciTech Connect (OSTI)

    Chien, C; Elgorriaga, I; McConaghy, C

    2001-07-03

    Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mW for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.

  14. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer A. Meintz, T. Markel, E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan Work sponsored by United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicles Technologies Office, Vehicle Systems Program The information contained in this poster is subject to a government license. 2015 IEEE PELS Workshop on

  15. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    SciTech Connect (OSTI)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  16. DEVELOPMENT OF A COMPREHENSIVE WIRELESS COMMUNICATIONS SYSTEM FOR THE UNDERGROUND MINING INDUSTRY

    SciTech Connect (OSTI)

    Zvi H. Meiksin

    2001-04-01

    Progress continued along both subsystems towards an integrated comprehensive wireless communications system for the underground mining industry. Designing an automated continuous self-tuning mechanism that optimizes signal transmission intensity for a given power input enhanced through-the-earth communications. In-mine communications was enhanced through the design of a circuit that eliminates multi-antenna interference, cleaning-up the received signal.

  17. ISSUANCE 2016-02-09: Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

  18. Wireless infrastructure protection using low-cost radio frequency fingerprinting receivers

    SciTech Connect (OSTI)

    Ramsey, Benjamin W.; Stubbs, Tyler D.; Mullins, Barry E.; Temple, Michael A.; Buckner, Mark A.

    2015-12-11

    We report that low-data-rate wireless networks incorporated in critical infrastructure applications can be protected through 128-bit encryption keys and address-based access control lists. However, these bit-level credentials are vulnerable to interception, extraction and spoofing using software tools available free of charge on the Internet. Recent research has demonstrated that wireless physical layer device fingerprinting can be used to defend against replay and spoofing attacks. However, radio frequency (RF) fingerprinting typically uses expensive signal collection systems; this is because fingerprinting wireless devices with low-cost receivers has been reported to have inconsistent accuracy. In conclusion, this paper demonstrates a robust radio frequency fingerprinting process that is consistently accurate with both high-end and low-cost receivers. Indeed, the results demonstrate that low-cost software-defined radios can be used to perform accurate radio frequency fingerprinting and to identify spoofing attacks in critical IEEE 802.154-based infrastructure networks such as ZigBee.

  19. Wireless infrastructure protection using low-cost radio frequency fingerprinting receivers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramsey, Benjamin W.; Stubbs, Tyler D.; Mullins, Barry E.; Temple, Michael A.; Buckner, Mark A.

    2015-12-11

    We report that low-data-rate wireless networks incorporated in critical infrastructure applications can be protected through 128-bit encryption keys and address-based access control lists. However, these bit-level credentials are vulnerable to interception, extraction and spoofing using software tools available free of charge on the Internet. Recent research has demonstrated that wireless physical layer device fingerprinting can be used to defend against replay and spoofing attacks. However, radio frequency (RF) fingerprinting typically uses expensive signal collection systems; this is because fingerprinting wireless devices with low-cost receivers has been reported to have inconsistent accuracy. In conclusion, this paper demonstrates a robust radio frequencymore » fingerprinting process that is consistently accurate with both high-end and low-cost receivers. Indeed, the results demonstrate that low-cost software-defined radios can be used to perform accurate radio frequency fingerprinting and to identify spoofing attacks in critical IEEE 802.154-based infrastructure networks such as ZigBee.« less

  20. Application of a wireless sensor node to health monitoring of operational wind turbine blades

    SciTech Connect (OSTI)

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R; Todd, Michael D

    2009-01-01

    Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

  1. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks

    SciTech Connect (OSTI)

    Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; Clayton, Dwight A

    2014-01-01

    Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermal energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

  2. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    SciTech Connect (OSTI)

    Onunkwo, Uzoma

    2015-11-01

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutual benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.

  3. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks

    SciTech Connect (OSTI)

    Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; Clayton, Dwight A

    2014-11-01

    Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermal energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

  4. An Integrated Signaling-Encryption Mechanism to Reduce Error Propagation in Wireless Communications: Performance Analyses

    SciTech Connect (OSTI)

    Olama, Mohammed M; Matalgah, Mustafa M; Bobrek, Miljko

    2015-01-01

    Traditional encryption techniques require packet overhead, produce processing time delay, and suffer from severe quality of service deterioration due to fades and interference in wireless channels. These issues reduce the effective transmission data rate (throughput) considerably in wireless communications, where data rate with limited bandwidth is the main constraint. In this paper, performance evaluation analyses are conducted for an integrated signaling-encryption mechanism that is secure and enables improved throughput and probability of bit-error in wireless channels. This mechanism eliminates the drawbacks stated herein by encrypting only a small portion of an entire transmitted frame, while the rest is not subject to traditional encryption but goes through a signaling process (designed transformation) with the plaintext of the portion selected for encryption. We also propose to incorporate error correction coding solely on the small encrypted portion of the data to drastically improve the overall bit-error rate performance while not noticeably increasing the required bit-rate. We focus on validating the signaling-encryption mechanism utilizing Hamming and convolutional error correction coding by conducting an end-to-end system-level simulation-based study. The average probability of bit-error and throughput of the encryption mechanism are evaluated over standard Gaussian and Rayleigh fading-type channels and compared to the ones of the conventional advanced encryption standard (AES).

  5. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; Clayton, Dwight A

    2014-11-01

    Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less

  6. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    SciTech Connect (OSTI)

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-11-13

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved.

  7. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect (OSTI)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki; Togo, Hiroyoshi; Kuninaka, Hitoshi

    2012-12-15

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  8. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; Merrelli, Aronne J.; Shupe, Matthew D.; Turner, David D.

    2016-04-15

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 gm–2 or less, themore » cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. As a result, this measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less

  9. [A variable frequency microwave furnace]. CRADA final report for CRADA Number ORNL91-0055

    SciTech Connect (OSTI)

    Lauf, R.J.

    1994-12-08

    The goals of this CRADA were to: (1) development and demonstrate a highly frequency-agile microwave furnace; (2) explore applications of the furnace for materials processing; and (3) develop control systems and packaging that are robust, user-friendly, and suitable for sale as a turnkey system. Microwave Laboratories, Inc. (MLI) designed, built, and successfully brought to market a benchtop Variable Frequency Microwave Furnace (VFMF). The concept has demonstrated advantages in polymer curing, waste remediation, and diamond (CVD). Through experimentation and modeling, the VFMF approach has gained credibility within the technical community.

  10. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    SciTech Connect (OSTI)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Yoshinaga, T.; Yamaguchi, S.; Yoshikawa, M.; Kohagura, J.; Sugito, S.; Kogi, Y.; Mase, A.

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  11. EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumers Energy and Updates the Social Cost of Carbon | Department of Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon August 21, 2013 - 9:18am Addthis A typical microwave is used to heat food for about 70 hours each year, but continues to use electricity for the remaining 8,690 hours of the year to power

  12. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    SciTech Connect (OSTI)

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang; Hao, Zuoqiang; Lin, Jingquan

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  13. Flight, orientation, and homing abilities of honeybees following exposure to 2. 45-GHz CW microwaves

    SciTech Connect (OSTI)

    Gary, N.E.; Westerdahl, B.B.

    1981-01-01

    Foraging-experienced honeybees retained normal flight, orientation, and memory functions after 30 minutes' exposure to 2.45-GHz CW microwaves at power densities from 3 to 50 mW/cm2. These experiments were conducted at power densities approximating and exceeding those that would be present above receiving antennas of the proposed solar power satellite (SPS) energy transmission system and for a duration exceeding that which honeybees living outside a rectenna might be expected to spend within the rectenna on individual foraging trips. There was no evidence that airborne invertebrates would be significantly affected during transient passage through microwaves associated with SPS ground-based microwave receiving stations.

  14. Multichannel microwave interferometer for the levitated dipole experiment

    SciTech Connect (OSTI)

    Boxer, Alexander C.; Garnier, Darren T.; Mauel, Michael E.

    2009-04-15

    A four-channel microwave interferometer (center frequency: 60 GHz) has been constructed to measure plasma density profiles in the levitated dipole experiment (LDX). The LDX interferometer has a unique design owing to the unique geometry of LDX. The main design features of the interferometer are: (1) the transmitted beam traverses the plasma entirely in O-mode; (2) the interferometer is a heterodyne system employing two free-running oscillators; (3) four signals of data are received from just on transmitted beam; (4) phase shifts are detected in quadrature. Calibration tests demonstrate that the interferometer measures phase shifts with an uncertainty of approximately 5 deg. Plasma densities in LDX corresponding to phase shifts of up to 5{pi} are routinely and successfully measured.

  15. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  16. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  17. New measurements of the spectrum of the cosmic microwave background

    SciTech Connect (OSTI)

    Peterson, J.B.; Richards, P.L.; Bonomo, J.L.; Timusk, T.

    1984-06-01

    Accurate measurements of the spectrum of the cosmic microwave background (CMB) can provide useful tests of cosmological theories. The data set existing in 1982 has been summarized on a number of occasions and is shown. To first approximation the CMB is characterized by a single temperature and thus has a blackbody spectrum over the frequency range from 0.02 to 24 cm/sup -1/. The error limits given for these experiments are dominated by systematic errors and are often very subjective. Consequently, it is not clear how to analyze the data set in a valid way. The general impression, however, is of a scatter in the high frequency data that is somewhat larger than would be expected from the given error limits. We have designed a new apparatus to measure the spectrum of the CMB in the frequency range from 3 to 10 cm/sup -1/. 13 references, 5 figures.

  18. Decontamination of biological warfare agents by a microwave plasma torch

    SciTech Connect (OSTI)

    Lai, Wilson; Lai, Henry; Kuo, Spencer P.; Tarasenko, Olga; Levon, Kalle

    2005-02-01

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393 l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch.

  19. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect (OSTI)

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  20. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    SciTech Connect (OSTI)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  1. High power microwave generation from rotating e-layers in magnetron...

    Office of Scientific and Technical Information (OSTI)

    Approximately 10% of the injected electron beam power is converted to microwaves at 12 SUB c (10 GHz), 2% at 20 SUB c (17 GHz), and 1% at 40..omega.. SUB c (34 GHz). The ...

  2. Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and processes in liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Velmurugan, Jeyavel; Kalinin, Sergei V.; Kolmakov, Andrei; Tselev, Alexander; Ievlev, Anton V.

    2016-02-11

    Here, noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid–solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imagingmore » with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging.« less

  3. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  4. New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz announced today that the Energy Department has finalized new energy efficiency standards for microwave ovens that will save consumers nearly $3 billion on their energy bills through 2030.

  5. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  6. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOE Patents [OSTI]

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  7. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOE Patents [OSTI]

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  8. Microwave determination of location and speed of an object inside a pipe

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2010-12-14

    Apparatus and method are described for measuring the location and speed of an object, such as instrumentation on a movable platform, disposed within a pipe, using continuous-wave, amplitude-modulated microwave radiation.

  9. Microwave assisted growth of copper germanide thin films at very low temperatures

    SciTech Connect (OSTI)

    Das, Sayantan; Alford, T. L.

    2013-08-26

    Herein the synthesis of Cu{sub 3}Ge films by exposing Cu-Ge alloy films to microwave radiation is reported. It is shown that microwave radiation led to the formation of copper germanide at temperatures ca. 80 °C. The electrical properties of the Cu{sub 3}Ge films are presented and compared for various annealing times. X-ray diffraction shows that the Cu{sub 3}Ge films formed after microwave annealing is crystalline in the orthorhombic phase. Rutherford backscattering and X-ray photoelectron spectroscopy confirms the formation of copper oxide encapsulation layer. Despite the slight oxidation of Cu during the microwave anneal the lowest resistivity of Cu{sub 3}Ge films obtained is 14 μΩ-cm.

  10. A Comparison of Direct Heating During Radiofrequency and Microwave Ablation in Ex Vivo Liver

    SciTech Connect (OSTI)

    Andreano, Anita; Brace, Christopher L.

    2013-04-15

    This study was designed to determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. A total of 60 heating cycles (20 s at 90 W) were performed in normal, RF-ablated, and microwave-ablated liver tissues (n = 10 RF and n = 10 microwave in each tissue type). Heating cycles were performed using a 480-kHz generator and 3-cm cooled-tip electrode (RF) or a 2.45-GHz generator and 14-gauge monopole (microwave) and were designed to isolate direct heating from each energy type. Tissue temperatures were measured by using fiberoptic thermosensors 5, 10, and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates, and maximal temperatures were compared using mixed effects regression models. No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P > 0.05). Microwaves produced significantly more rapid heating than RF at 5, 10, and 15 mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21, and 0.17 vs. 0.09 Degree-Sign C/s; P < 0.05); and at 5 and 10 mm in ablated tissues (2.3 {+-} 1.4 vs. 0.7 {+-} 0.3, 0.5 {+-} 0.3 vs. 0.2 {+-} 0 Degree-Sign C/s, P < 0.05). The radial depth of heating was {approx}5 mm greater for microwaves than RF. Direct heating obtained with 2.45-GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480-kHz RF energy.

  11. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, T.L.

    1994-06-28

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  12. Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  13. The use of muffle furnaces with microwave heating in the analysis of natural and technological objects

    SciTech Connect (OSTI)

    Koshcheeva, I.Y.; Belenkaya, S.N.; Kubrakova, I.V.

    2008-12-15

    The analytical possibilities are considered of using a new type of equipment - microwave muffle furnaces - when performing the operations of incineration and roasting. A two- to threefold decrease in a warm-up time for a furnace with the use of microwave heating, a 3- to 16-fold decrease in the total duration of the analysis, and a twofold improvement in reproducibility of s{sub r} results are shown as exemplified by the processing of coal samples and technological products.

  14. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer J. C. Liljegren Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Radiometrics Corporation has developed a twelve-channel microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions (Solheim et al. 1998a). Since

  15. Phonon-deficit effect in superconductors in a strong microwave field

    SciTech Connect (OSTI)

    Gulyan, A.M.; Zharkov, G.F.

    1981-08-20

    The phonon flux from a thin superconducting film irradiated by a microwave field is derived. It is shown that in intense microwave fields, as in the case of weak fields, studied previously )A. M. Gulian (Gulyan) and G. F. Zharkov, Phys. Lett. 80A, 79 (1980); Zh. Eksp. Teor. Fiz. 80, 303 (1981) (Sov. Phys. JETP 53, 154 (1981))), phonons are not emitted in a narrow spectral interval of phonon frequencies and are instead absorbed from the heat reservoir by the film.

  16. Application of microwave energy for in-drum solidification of simulated precipitation sludge

    SciTech Connect (OSTI)

    Petersen, R.D.; Johnson, A.J.; Swanson, S.D.; Thomas, R.L.

    1987-08-17

    The application of microwave energy for in-container solidification of simulated transuranic contaminated precipitation sludges has been tested. Results indicate volume reductions to 83% are achievable by the continuous feeding of pre-dried sludge into a waste container while applying microwave energy. An economic evaluation was completed showing achievable volume and weight reductions to 87% compared with a current immobilization process for wet sludge. 7 refs., 15 figs., 16 tabs.

  17. Longevity and food consumption of microwave-treated (2. 45 GHz CW) honeybees in the laboratory

    SciTech Connect (OSTI)

    Westerdahl, B.B.; Gary, N.E.

    1981-01-01

    Adult honeybees, confined singly or in small clusters, were exposed for 0.5, 6, and 24 hours to 2.45-GHz continuous wave microwave radiation at power densities of 3, 6, 12, 25, and 50 mW/cm2. Following exposure, bees were held in the incubator for 21 days to determine the consumption of sucrose syrup and to observe mortality. No significant differences were found between microwave-treated and sham-treated or control bees.

  18. Cosmic microwave Background Map-making at the Petascale and Beyond |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Cosmic microwave Background Map-making at the Petascale and Beyond Authors: Sudarsan, R., Borrill, J., Cantalupo, C., Kisner, T., Madduri, K., Oliker, L., Simon, H., Zheng, Y. The analysis of Cosmic Microwave Background (CMB) observations is a long-standing computational challenge, driven by the exponential growth in the size of the data sets being gathered. Since this growth is projected to continue for at least the next decade, it will be critical to

  19. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect (OSTI)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  20. Microwave pulse compression from a storage cavity with laser-induced switching

    DOE Patents [OSTI]

    Bolton, Paul R.

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  1. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    SciTech Connect (OSTI)

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-10-15

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.

  2. Dynamic Wireless Charging of Electric Vehicle Demonstrated at Oak Ridge National Laboratory: Benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller, John M; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene

    2014-01-01

    Abstract Wireless charging of an electric vehicle while in motion presents challenges in terms of low latency communications for roadway coil excitation sequencing, and maintenance of lateral alignment, plus the need for power flow smoothing. This paper summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at Oak Ridge National Laboratory using various combinations of electrochemical capacitors at the grid-side and in-vehicle. Electrochemical capacitors of the symmetric carbon-carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories fabricated the passive and active parallel lithium-capacitor unit used to smooth grid-side power. Power pulsation reduction was 81% on grid by LiC, and 84% on vehicle for both lithium-capacitor and the carbon ultracapacitors.

  3. Environmental professionals and the unlicensed practice of law: A surprising trap for the unwary

    SciTech Connect (OSTI)

    Moon, R.E.; Gibby, D.J.

    1995-10-01

    Since the enactment of the Resource Conservation and Recovery Act (RCRA), environmental consulting has emerged as a reputable profession that was estimated to employ more than 50,000 last year. Despite the importance and economic impact of environmental compliance, the environmental consulting industry remains relatively young and profuse in noncertified professionals. Environmental professionals (EPs) are faced with implementing a vast array of regulations that require expertise from a wide range of technical, scientific, and engineering staff, many of whom are not registered professionals. The result can leas to a professional overlap between the technical responsibilities and established legal principles. From the perspective of an EP, the line between sound consulting and legal advice can be easily blurred. Although not limited to the environmental industry, the problem of unknowingly rendering legal advice is evident in many other professions, including accounting and taxation, pension and group benefit plan counselling, real estate, financial and estate planning, and banking.

  4. Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese, lead, and zinc in sediments

    SciTech Connect (OSTI)

    Mahan, K.I.; Foderaro, T.A.; Garza, T.L.; Martinez, R.M.; Maroney, G.A.; Trivisonno, M.R.; Willging, E.M.

    1987-04-01

    The sequential extraction scheme of Tessier partitions metals in sediments into exchangeable, carbonate bound iron-manganese oxide bound, organic bound, and residual binding fractions. Extraction rate experiments using conventional and microwave heating showed that microwave heating produces results comparable to the conventional procedure. Sequential microwave extraction procedures were established from the results of the extraction rate experiments. Recoveries of total metals from NBS SRM 1645 ranged from 76% to 120% for the conventional procedure and 62% to 120% for the microwave procedure. Recoveries of total metals using the microwave and conventional techniques were reasonably comparable except for iron (62% by microwave vs. 76% by conventional). Substitution of an aqua regia/HF extraction for total/residual metals results in essentially complete recovery of metals. Precision obtained from 31 replicate samples of the California Gulch, Colorado, sediment yielded about an average 11% relative standard deviation excluding the exchangeable fraction which was more variable.

  5. Wireless Communication for Controlling Microgrids: Co-simulation and Performance Evaluation

    SciTech Connect (OSTI)

    Mao, Rukun; Xu, Yan; Li, Huijuan; Li, Husheng

    2013-01-01

    A microgrid with wireless communication links for microgrid control has been designed and developed. The complete simulation model has been developed in MatLab SimuLink with seamless integration of the power subsystem and the communication subsystem. Unlike the conventional co-simulators that usually glue two existing simulators together by creating an interface, which has a steep learning curve, the proposed simulator is a compact single-unit model. Detailed modeling of the power subsystem and communication system is presented as well as the microgrid control architecture and strategies. The impact of different communication system performances on microgrid control has been studied and evaluated in the proposed simulator.

  6. HTS thin films: Passive microwave components and systems integration issues

    SciTech Connect (OSTI)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  7. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOE Patents [OSTI]

    Hopkins, Donald B.

    1993-01-01

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  8. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOE Patents [OSTI]

    Hopkins, D.B.

    1993-01-26

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  9. Understanding the scabbling of concrete using microwave energy

    SciTech Connect (OSTI)

    Buttress, A.J.; Jones, D.A.; Dodds, C.; Dimitrakis, G.; Campbell, C.J.; Dawson, A.; Kingman, S.W.

    2015-09-15

    Concrete blocks supplied by the UK Sellafield nuclear site were treated with microwave energy using a 15 kW system operating at 2.45 GHz. The effect of aggregate type (Whinstone, Gravel and Limestone); standoff distance; and effect of surface coating were studied to determine their influence on the systems performance in terms of mass and area removal rates and evaluate the controllability of the process. All blocks were scabbled successfully, with mass and area removal rates averaging 11.3 g s{sup −} {sup 1} and 3 cm s{sup −} {sup 1} respectively on treating large areas to a depth of 25 mm. The use of a Kevlar barrier between the block and applicator was found to significantly reduce the generation of dust as only 1.6% of the scabbled mass was in the < 106 μm — that generally considered to be airborne. Importantly Brazilian disc testing of the scabbled block showed that the process did not adversely affect structural properties of the test blocks after treatment.

  10. A fuel pellet injector for the Microwave Tokamak Experiment (MTX)

    SciTech Connect (OSTI)

    Hibbs, S.M.; Allen, S.L.; Petersen, D.E.; Sewall, N.R.

    1990-09-01

    Unlike other fueling systems for magnetically confined fusion plasmas, a pellet injector can deliver many fuel gas particles to the core of the plasma, enhancing plasma confinement. We installed a new pellet injector on the MTX (formerly Alcator-O) to provide a plasma with a high core density for experiments both with and without ultrahigh-power microwave heating. Its four-barrel pellet generator is the first to be designed and built at LLNL. Based on pipe-gun'' technology originated at Oak Ridge National Laboratory (ORNL), it incorporates our structural and thermal engineering innovations and a unique control system. The pellet transport, differential vacuum-pumping stages, and fast-opening propellant valves are reused parts of the Impurity Study EXperiment (ISX) pellet injector built by ORNL. We tailored designs of all other systems and components to the MTX. Our injector launches pellets of frozen hydrogen or deuterium into the MTX, either singly or in timed bursts of up to four pellets at velocities of up to 1000 m/s. Pellet diameters range from 1.02 to 2.08 mm. A diagnostic stage measures pellet velocities and allows us to photograph the pellets in flight. We are striving to improve the injector's performance, but its operations is already very consistent and reliable.

  11. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    SciTech Connect (OSTI)

    Li, Yangmei; Zhang, Xiaoping Zhang, Jiande; Dang, Fangchao; Yan, Xiaolu

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675?kV and the guiding magnetic field is 0.8?T, a combined microwave with an average power of about 4.0?GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diode voltage range from 675?kV to 755?kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720?kV/cm, which is relatively low corresponding to an output power of 4.0?GW. The stable combined output suggests the probability of long-pulse operation for the combined source.

  12. Preliminary experimental investigation of a complex dual-band high power microwave source

    SciTech Connect (OSTI)

    Zhang, Xiaoping Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang

    2015-10-15

    In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.

  13. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect (OSTI)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  14. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, John M.; Onar, Omer C.; Chinthavali, Madhu

    2014-12-22

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less

  15. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    SciTech Connect (OSTI)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  16. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  17. Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors

    SciTech Connect (OSTI)

    Gong, Xun; An, Linan; Xu, Chengying

    2013-06-30

    The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300{degrees}C and pressure sensors up to 800oC. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in this project can survive harsh environments characterized by high temperatures (>1000{degrees}C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.

  18. Wireless Roadside Inspection Phase II Tennessee Commercial Mobile Radio Services Pilot Test Final Report

    SciTech Connect (OSTI)

    Franzese, Oscar; Lascurain, Mary Beth; Capps, Gary J; Siekmann, Adam

    2011-05-01

    The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is researching the feasibility and value of electronically assessing truck and bus driver and vehicle safety at least 25 times more often than is possible using only roadside physical inspections. The WRI program is evaluating the potential benefits to both the motor carrier industry and to government. These potential benefits include reduction in accidents, fatalities and injuries on our highways and keeping safe and legal drivers and vehicles moving on the highways. WRI Pilot tests were conducted to prototype, test and demonstrate the feasibility and benefits of electronically collecting safety data message sets from in-service commercial vehicles and performing wireless roadside inspections using three different communication methods. This report summarizes the design, conduct and results of the Tennessee CMRS WRI Pilot Test. The purpose of this Pilot test was to demonstrate the implementation of commercial mobile radio services to electronically request and collect safety data message sets from a limited number of commercial vehicles operating in Tennessee. The results of this test have been used in conjunction with the results of the complimentary pilot tests to support an overall assessment of the feasibility and benefits of WRI in enhancing motor carrier safety (reduction in accidents) due to increased compliance (change in motor carrier and driver behavior) caused by conducting frequent safety inspections electronically, at highway speeds, without delay or need to divert into a weigh station

  19. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles

    SciTech Connect (OSTI)

    Batra, T. Schaltz, E.

    2015-05-07

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometriesno shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in the vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.

  20. Numerical study on microwave-sustained argon discharge under atmospheric pressure

    SciTech Connect (OSTI)

    Yang, Y.; Hua, W. Guo, S. Y.

    2014-04-15

    A numerical study on microwave sustained argon discharge under atmospheric pressure is reported in this paper. The purpose of this study is to investigate both the process and effects of the conditions of microwave-excited gas discharge under atmospheric pressure, thereby aiding improvements in the design of the discharge system, setting the appropriate working time, and controlling the operating conditions. A 3D model is presented, which includes the physical processes of electromagnetic wave propagation, electron transport, heavy species transport, gas flow, and heat transfer. The results can be obtained by means of the fluid approximation. The maxima of the electron density and gas temperature are 4.96 × 10{sup 18} m{sup −3} and 2514.8 K, respectively, and the gas pressure remains almost unchanged for typical operating conditions with a gas flow rate of 20 l/min, microwave power of 1000 W, and initial temperature of 473 K. In addition, the conditions (microwave power, gas flow rate, and initial temperature) of discharge are varied to obtain deeper information about the electron density and gas temperature. The results of our numerical study are valid and clearly describe both the physical process and effects of the conditions of microwave-excited argon discharge.

  1. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect (OSTI)

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  2. Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging

    SciTech Connect (OSTI)

    Nan, Hao Arbabian, Amin

    2014-06-02

    Microwave-induced thermoacoustic (TA) imaging combines the dielectric contrast of microwave imaging with the resolution of ultrasound imaging. Prior studies have only focused on time-domain techniques with short but powerful microwave pulses that require a peak output power in excess of several kilowatts to achieve sufficient signal-to-noise ratio (SNR). This poses safety concerns as well as to render the imager expensive and bulky with requiring a large vacuum radio frequency source. Here, we propose and demonstrate a coherent stepped-frequency continuous-wave (SFCW) technique for TA imaging which enables substantial improvements in SNR and consequently a reduction in peak power requirements for the imager. Constructive and destructive interferences between TA signals are observed and explained. Full coherency across microwave and acoustic domains, in the thermo-elastic response, is experimentally verified and this enables demonstration of coherent SFCW microwave-induced TA imaging. Compared to the pulsed technique, an improvement of 17 dB in SNR is demonstrated.

  3. Processing aersols and filaments in a TM sub 010 microwave cavity at 2. 45 GHz

    SciTech Connect (OSTI)

    Vogt, G.J.; Unruh, W.P.

    1992-01-01

    As part of the development of generic microwave processes for spray-drying of homogeneous complex metal oxide powders and for inorganic fiber processing, we have investigated the use of 2.45 GHz microwaves in a high-Q single-mode TM{sub 010} cavity coupled directly to aerosols and fibers. Aqueous and ethanol aerosols of ferric nitrate solutions have been successfully dried at 1.8 kW of cavity power for a loaded Q greater than 6000 in flowing nitrogen gas. Similarly, we have observed extremely rapid heating rates in the TM{sub 010} cavity for small-diameter confined cylinders of water and lossy inorganic fibers. These observations suggest using 2.45 GHz microwave power for drying, calcining, and sintering extruded ceramic filaments. Droplet modeling indicates that the large dielectric shielding for spherical droplets can significantly limit the coupling of 2.45 GHz microwave with spherical aerosols, but not with fibers. Experimental observations on the microwave interactions with ferric nitrate aerosols and with ceramic filaments in the TM{sub 010} cavity are described.

  4. Analysis of Femtosecond Timing Noise and Stability in Microwave Components

    SciTech Connect (OSTI)

    Whalen, Michael R.; /Stevens Tech. /SLAC

    2011-06-22

    To probe chemical dynamics, X-ray pump-probe experiments trigger a change in a sample with an optical laser pulse, followed by an X-ray probe. At the Linac Coherent Light Source, LCLS, timing differences between the optical pulse and x-ray probe have been observed with an accuracy as low as 50 femtoseconds. This sets a lower bound on the number of frames one can arrange over a time scale to recreate a 'movie' of the chemical reaction. The timing system is based on phase measurements from signals corresponding to the two laser pulses; these measurements are done by using a double-balanced mixer for detection. To increase the accuracy of the system, this paper studies parameters affecting phase detection systems based on mixers, such as signal input power, noise levels, temperature drift, and the effect these parameters have on components such as the mixers, splitters, amplifiers, and phase shifters. Noise data taken with a spectrum analyzer show that splitters based on ferrite cores perform with less noise than strip-line splitters. The data also shows that noise in specific mixers does not correspond with the changes in sensitivity per input power level. Temperature drift is seen to exist on a scale between 1 and 27 fs/{sup o}C for all of the components tested. Results show that any components using more metallic conductor tend to exhibit more noise as well as more temperature drift. The scale of these effects is large enough that specific care should be given when choosing components and designing the housing of high precision microwave mixing systems for use in detection systems such as the LCLS. With these improvements, the timing accuracy can be improved to lower than currently possible.

  5. Microwave vitrification of Rocky Flats hydroxide precipitation sludge, Building 774. Progress report

    SciTech Connect (OSTI)

    Eschen, V.G.; Sprenger, G.S.; Fenner, G.S.; Corbin, I.E.

    1995-04-01

    This report describes the first set of experiments performed on transuranic (TRU) precipitation sludge produced in Building 774, to determine the operating parameters for the microwave vitrification process. Toxicity Characteristic Leach Procedure (TCLP) results of the raw sludge showed concentrations of lead, silver and cadmium which were in excess of land disposal restrictions (LDR). Crushed, borosilicate glass was used as a frit source to produce a highly desirable, vitrified, product that required less energy to produce. TCLP testing, of microwaved samples, showed favorable results for 40 and 50% waste loading. The results of this study are encouraging and support the development of microwave vitrification technology for the treatment of various mixed waste streams at Rocky Flats Environmental Technology Site. However, additional experiments are required to fully define the operating parameters for a production-scale system.

  6. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOE Patents [OSTI]

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  7. Evaluation the microwave heating of spinel crystals in high-level waste glass

    SciTech Connect (OSTI)

    Christian, J. H.; Washington, A. L.

    2015-08-18

    In this report, the microwave heating of a crystal-free and a partially (24 wt%) trevorite-crystallized waste glass simulant were evaluated. The results show that a 500 mg piece of partially crystallized waste glass can be heated from room-temperature to above 1600 °C (as measured by infrared radiometry) within 2 minutes using a single mode, highly focused, 2.45 GHz microwave, operating at 300 W. X-ray diffraction measurements show that the partially crystallized glass experiences an 87 % reduction in trevorite following irradiation and thermal quenching. When a crystal-free analogue of the same waste glass simulant composition is exposed to the same microwave radiation it could not be heated above 450 °C regardless of the heating time.

  8. Relativistic effects on the Weibel instability of circularly polarized microwave produced plasmas

    SciTech Connect (OSTI)

    Shokri, B.; Ghorbanalilu, M.

    2004-12-01

    Analyzing the production of a weakly relativistic plasma produced by microwave fields with circular polarization in the adiabatic approximation, the electron distribution function is obtained, which is nonequilibrium and anisotropic. Furthermore, it is shown that the produced plasma is accelerated in the direction of propagating microwave electric fields. The electron velocity in this direction strongly depends on electron origination phase, electric field phase, and amplitude of the microwave electric field. Making use of the dielectric tensor obtained for this plasma, it is shown that the Weibel instability develops due to the anisotropic property of the distribution function. It is shown that the growth rate in the relativistic case is higher than that obtained for the nonrelativistic case by a factor depending on the electric field strength and plasma frequency.

  9. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  10. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  11. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  12. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  13. A comparative study of conventionally sintered and microwave sintered nickel zinc ferrite

    SciTech Connect (OSTI)

    Rani, Rekha; Juneja, J. K.; Raina, K. K.; Kotnala, R. K.; Prakash, Chandra

    2014-04-24

    For the present work, nickel zinc ferrite having compositional formula Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} was synthesized by conventional solid state method and sintered in conventional and microwave furnaces. Pellets were sintered with very short soaking time of 10 min at 1150 °C in microwave furnace whereas 4 hrs of soaking time was selected for conventional sintering at 1200 °C. Phase formation was confirmed by X-ray diffraction analysis technique. Scanning electron micrographs were taken for microstructural study. Dielectric properties were studied as a function of temperature. To study magnetic behavior, M-H hysteresis loops were recorded for both samples. It is observed that microwave sintered sample could obtain comparable properties to the conventionally sintered one in lesser soaking time at lower sintering temperature.

  14. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    SciTech Connect (OSTI)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  15. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jürgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3 nm. Layer-by-layer growth could be achieved for film thicknesses up to 400 nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29 μΩ·cm between 0.1 and 20 GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  16. Influence of ponderomotive force on the microwave and plasma interaction in an elliptical waveguide

    SciTech Connect (OSTI)

    Abdoli-Arani, A., E-mail: abdoliabbas@kashanu.ac.ir [Department of Photonics, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-02-15

    The interaction effect of a high-power microwave with the plasma in an elliptical waveguide taking into account the ponderomotive force is presented. Here, we assume the fundamental mode that propagates in an evacuated elliptical waveguide and encounters a plasma, which is filled in another elliptical waveguide of the same size. Here, we consider a balance between the effects of ponderomotive force and the electron pressure and consider the plasma effect through its dielectric permittivity because the electron density distribution of the plasma is modified. The propagation of the mode is described by two nonlinear coupled differential equations obtained using the Maxwell's equations. These equations are solved numerically using fourth order Runge-Kutta method for the field amplitude of the microwave in the waveguide considering the waveguide to be made up of a perfect conductor and filled with homogeneous plasma density distribution. The effects of the electron temperature, the microwave filed, and the frequency on the perturbed density profile are studied.

  17. Current-driven domain wall motion enhanced by the microwave field

    SciTech Connect (OSTI)

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Wang, Dao-wei; Li, Zhi-xiong; Tang, Wei; Zeng, Zhong-ming

    2014-07-14

    The magnetic domain wall (DW) motion driven by a spin-polarized current opens a new concept for memory and logic devices. However, the critical current density required to overcome the intrinsic and/or extrinsic pinning of DW remains too large for practical applications. Here, we show, by using micromagnetic simulations and analytical approaches, that the application of a microwave field offers an effective solution to this problem. When a transverse microwave field is applied, the adiabatic spin-transfer torque (STT) alone can sustain a steady-state DW motion without the sign of Walker breakdown, meaning that the intrinsic pinning disappears. The extrinsic pinning can also be effectively reduced. Moreover, the DW velocity is increased greatly for the microwave-assisted DW motion. This provides a new way to manipulate the DW motion at low current densities.

  18. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOE Patents [OSTI]

    White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  19. Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process

    SciTech Connect (OSTI)

    Grimes, R.W.

    1992-12-01

    This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

  20. Electron heating due to microwave photoexcitation in the high mobility GaAs/AlGaAs two dimensional electron system

    SciTech Connect (OSTI)

    Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.

    2013-12-04

    We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ?{sub c}, and the microwave angular frequency, ?, satisfy 2? ? ?{sub c} ? 3.5? The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modest microwave photo-excitation, in good agreement with theoretical predictions.