Sample records for wire yields unprecedented

  1. Increasing the K-shell yield of line radiation in Z-pinch implosions using alloyed Al/Mg wire-arrays

    SciTech Connect (OSTI)

    Xiao Delong; Ding Ning; Xue Chuang; Huang Jun; Zhang Yang; Ning Cheng; Sun Shunkai [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2013-01-15T23:59:59.000Z

    The variation of the K-shell yield of pure aluminum wire-array Z-pinch implosions with load parameters is discussed. The mechanism and the efficiency of increasing the K-shell yield using alloyed Al/Mg wire-arrays are numerically investigated. It has been shown that the maximum K-shell yield from a pure aluminum wire-array Z-pinch implosion can be obtained at an optimal load mass for a given generator and at a fixed initial wire-array radius. This optimal load mass is determined by the load energy coupling with the generator, the capability of Z-pinch plasmas to emit the K-shell radiation, and the self absorption of K-shell lines. For different generators, the optimal load mass increases as the drive current increases, and the line absorption limits the further increase of K-shell radiation. The coupled energy per ion is likely decreasing with increased mass, so the plasma might not be able to ionize into the K-shell. Also, the ability of the plasma to radiatively cool can increase with mass, thus, making it difficult for the plasma to ionize into and remain in the K-shell during the stagnation phase of the implosion. Alloyed Al/Mg wire-arrays were thus suggested to be used to decrease the opacity of K-shell lines and to increase the overall K-shell yield. In this paper, we show that using alloyed Al/Mg wire-arrays will decrease the opacity and increase the K-shell yield remarkably if the plasma is optically thick. We will also show that the efficiency of increasing the K-shell yield with alloyed Al/Mg wire-arrays cannot increase indefinitely. The ratio of K-shell yield from an alloyed Al/Mg wire-array to that from a pure aluminum wire-array reaches a limit. For example, we show that when the mass share of magnesium is 10% then this limit is 1.2, and for a 50% mass share, the limit is 1.3.

  2. Unprecedented detail of intact neuronal receptor offers blueprint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne, Ill.- Scientists succeeded in obtaining an unprecedented view of a type of brain-cell receptor that is implicated in a range of neurological illnesses, including...

  3. Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

  4. Precision wire feeder for small diameter wire

    DOE Patents [OSTI]

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11T23:59:59.000Z

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  5. Precision wire feeder for small diameter wire

    DOE Patents [OSTI]

    Brandon, Eldon D. (Albuquerque, NM); Hooper, Frederick M. (Albuquerque, NM); Reichenbach, Marvin L. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  6. QER- Comment of WIRES

    Broader source: Energy.gov [DOE]

    Attached please find the components of WIRES Comment to the QER. Please direct any questions to Jim Hoecker, below.

  7. Sintered wire annode

    DOE Patents [OSTI]

    Falce, Louis R. (Surprise, AZ); Ives, R. Lawrence (Saratoga, CA)

    2007-12-25T23:59:59.000Z

    A plurality of high atomic number wires are sintered together to form a porous rod that is parted into porous disks which will be used as x-ray targets. A thermally conductive material is introduced into the pores of the rod, and when a stream of electrons impinges on the sintered wire target and generates x-rays, the heat generated by the impinging x-rays is removed by the thermally conductive material interspersed in the pores of the wires.

  8. Wire-inhomogeneity detector

    DOE Patents [OSTI]

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31T23:59:59.000Z

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  9. 1998 wire development workshop proceedings

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  10. Tantalum rod and wire

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The specification covers unalloyed and alloyed tantalum rod and wire of the following grades: R05200, unalloyed tantalum (vacuum arc melt or electron beam furnace melt); R05400, unalloyed tantalum (powder metallurgy consolidation); R05255, tantalum alloy (90% Ta to 10% W). The specification includes ordering information, manufacture, chemical requirements, tensile properties, dimensional tolerances, workmanship and finish, sampling, certification, marking, and packing. (JMT)

  11. 1997 wire development workshop: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This conference is divided into the following sections: (1) First Generation Wires I; (2) First Generation Wires II; (3) Coated conductors I; and (4) Coated conductors II. Applications of the superconducting wires include fault current limiters, superconducting motors, transformers, and power transmission lines.

  12. Superconducting magnet wire

    DOE Patents [OSTI]

    Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL); Banerjee, Indrajit (San Jose, CA)

    1986-01-01T23:59:59.000Z

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  13. Dual wire welding torch and method

    DOE Patents [OSTI]

    Diez, Fernando Martinez (Peoria, IL); Stump, Kevin S. (Sherman, IL); Ludewig, Howard W. (Groveland, IL); Kilty, Alan L. (Peoria, IL); Robinson, Matthew M. (Peoria, IL); Egland, Keith M. (Peoria, IL)

    2009-04-28T23:59:59.000Z

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  14. Earth'sFuture Multidecadal global cooling and unprecedented ozone loss

    E-Print Network [OSTI]

    Robock, Alan

    Earth'sFuture Multidecadal global cooling and unprecedented ozone loss following a regional nuclear inertia and albedo effects in the ocean and expanded sea ice. The combined cooling and enhanced UV would put significant pressures on global food supplies and could trigger a global nuclear famine. Knowledge

  15. Wire and column modeling 

    E-Print Network [OSTI]

    Mandal, Esan

    2004-09-30T23:59:59.000Z

    space and is a Hausdorff space. One such example is the surface of a 10 sphere such as Earth, which is not a plane, but small patches of it are homeomorphic to (i.e., topologically equivalent to) patches of the Euclidean plane. 3. 2-Manifold A 2-manifold... . . . . . . . . . . . . . . . . . . . . 25 III.1.1. Doo-Sabin modification in Wire modeling . . . . . . . 25 III.1.2. Rind modeling integration . . . . . . . . . . . . . . . 27 III.1.3. Dimension control of the 3D pipes . . . . . . . . . . 30 III.1.4. Self...

  16. Improved superconducting magnet wire

    DOE Patents [OSTI]

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16T23:59:59.000Z

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  17. Sintered wire cathode

    DOE Patents [OSTI]

    Falce, Louis R. (San Jose, CA); Ives, R. Lawrence (Saratoga, CA)

    2009-06-09T23:59:59.000Z

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  18. Smart Wire Grid: Resisting Expectations

    ScienceCinema (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  19. Method of manufacturing superconductor wire

    DOE Patents [OSTI]

    Motowidlo, Leszek

    2014-09-16T23:59:59.000Z

    A method for forming Nb.sub.3Sn superconducting wire is provided. The method employs a powder-in-tube process using a high-tin intermetallic compound, such as MnSn.sub.2, for producing the Nb.sub.3Sn. The use of a high-tin intermetallic compound enables the process to perform hot extrusion without melting the high-tin intermetallic compound. Alternatively, the method may entail drawing the wire without hot extrusion.

  20. Smart Wire Grid: Resisting Expectations

    SciTech Connect (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  1. HTS Wire Development Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  2. Plasma arc torch with coaxial wire feed

    DOE Patents [OSTI]

    Hooper, Frederick M (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  3. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

    1984-01-01T23:59:59.000Z

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  4. Spectroscopic properties of colloidal indium phosphide quantum wires

    E-Print Network [OSTI]

    Weng, Fudong

    2008-01-01T23:59:59.000Z

    Wires Fudong Wang, §‡ Heng Yu, §† Jingbo Li, ?? QinglingQuantum Wires Fudong Wang, Heng Yu, Jingbo Li, Qingling

  5. Wire core and coronal plasma expansion in wire-array Z pinches with small numbers of wires

    SciTech Connect (OSTI)

    Shelkovenko, T. A.; Pikuz, S. A.; Douglass, J. D.; Blesener, I. C.; Greenly, J. B.; McBride, R. D.; Hammer, D. A.; Kusse, B. R. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States)

    2007-10-15T23:59:59.000Z

    Wire core and coronal plasma formation and expansion in wire-array Z pinches with small numbers of wires have been studied on a 1 MA, 100 ns rise time pulsed power generator and a 500 kA, 50 ns generator. Two-frame point-projection x-ray imaging and three-frame laser optical imaging and interferometry were the principal diagnostic methods used for these studies. The x-ray images show that dense coronal plasma forms and is maintained close to each dense wire core in the array. A less dense, rapidly expanding ({approx}10 {mu}m/ns) coronal plasma, best seen in the laser images, surrounds the {approx}100 {mu}m radius dense corona. These results are in agreement with computer simulations and modeling carried out by Yu et al. [Phys. Plasmas 14, 022705 (2007)]. Results are also presented for the dependence of the wire core and coronal plasma expansion rates on the wire diameter, number of wires and current through individual wires and the overall configuration for Al, Cu, and W wire arrays. For example, the W wire dense core expansion rate increases with increasing initial wire diameter from 5.1 {mu}m (0.1 {mu}m/ns) to 12.7 {mu}m diameter (0.3 {mu}m/ns)

  6. The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both its magnitude --nearly 5

    E-Print Network [OSTI]

    Entekhabi, Dara

    PROBLEM The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both of Mexico during the Deepwater Horizon oil spill. This satellite image shows the oil slick off its magnitude -- nearly 5 million barrels of oil spilled over nearly three months -- and its location

  7. Sintered wire cesium dispenser photocathode

    DOE Patents [OSTI]

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04T23:59:59.000Z

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  8. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: Synthesis and structures of UFO-5, -6, and -7; Zero-, one-, and two-dimensional materials with unprecedented topologies

    SciTech Connect (OSTI)

    Francis, R.J.; Halasyamani, P.S.; Bee, J.S.; O'Hare, D.

    1999-02-24T23:59:59.000Z

    Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-, and two-dimensional materials.

  9. HTS wire requirements for SMES

    SciTech Connect (OSTI)

    Schoenung, S.; Schafer, W.J.

    1994-07-29T23:59:59.000Z

    This presentation/paper gives an overview of the Sandia National Lab`s sponsorship of W.J. Schafer Associates, Inc. to examine the following topics: the refrigeration savings possible by using high temperature superconductors (HTS) in Superconducting Magnetic Energy Storage (SMES), the impact of duty cycle on refrigeration requirements, and outline the required HTS wire performance. Included are specifications for SMES applications, advantages, cost components, assumed conductor performance parameters, and the effects of duty cycle and conductor twist pitch.

  10. Deformation processing of HTS wire

    SciTech Connect (OSTI)

    Bingert, J. [Los Alamos National Lab., NM (United States)

    1994-07-29T23:59:59.000Z

    Methods to understand, control, and optimize deformation processing of HTS wire are outlined. Topics discussed include: technical progress, deformation processing effects on HTS - core uniformity in composite tapes, effects of rolling on tapes, deformation process modeling, channel die powder compaction stress-strain data, microhardness versus rolling reduction, minimum bifurcation strain versus material state, roll gap geometries for large versus small rolls, interactions, hydrostatic extrusion, and tensile properties.

  11. Thermoelectric performance of various benzo-difuran wires

    SciTech Connect (OSTI)

    Péterfalvi, Csaba G.; Grace, Iain; Manrique, Dávid Zs.; Lambert, Colin J., E-mail: c.lambert@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-05-07T23:59:59.000Z

    Using a first principles approach to electron transport, we calculate the electrical and thermoelectrical transport properties of a series of molecular wires containing benzo-difuran subunits. We demonstrate that the side groups introduce Fano resonances, the energy of which is changing with the electronegativity of selected atoms in it. We also study the relative effect of single, double, or triple bonds along the molecular backbone and find that single bonds yield the highest thermopower, approximately 22 ?V/K at room temperature, which is comparable with the highest measured values for single-molecule thermopower reported to date.

  12. Method and apparatus for fabricating superconducting wire

    SciTech Connect (OSTI)

    Kumar, N.

    1993-07-20T23:59:59.000Z

    A method is described for fabricating a superconducting wire comprising the steps of: in a first means, sputter depositing on a base wire a partial superconduction layer consisting of at least some, but not all, of the elements of an HTS material; and in a second means, reacting said partial superconduction layer with the other element or elements, including at least one metallic element, of the HTS material so that a complete superconduction layer is formed on said base wire.

  13. Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    E-Print Network [OSTI]

    Curceanu, C; Bazzi, M; Berucci, C; Bosnar, D; Bragadireanu, A M; Clozza, A; Cargnelli, M; D'uffizi, A; Fabbietti, L; Fiorini, C; Ghio, F; Guaraldo, C; Iliescu, M; Sandri, P Levi; Marton, J; Pietreanu, D; Lener, M Poli; Quaglia, R; Vidal, A Romero; Sbardella, E; Scordo, A; Shi, H; Sirghi, D; Sirghi, F; Skurzok, M; Tucakovic, I; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2015-01-01T23:59:59.000Z

    The AMADEUS experiment aims to provide unique quality data of $K^-$ hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the $\\Lambda(1405)$ state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon $K^-$ absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DA$\\Phi$NE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for $K^-$ nuclear capture on H, ${}^4$He, ${}^{9}$Be and ${}^{12}$C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest $K^-$ nuclear i...

  14. Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    E-Print Network [OSTI]

    C. Curceanu; K. Piscicchia; M. Bazzi; C. Berucci; D. Bosnar; A. M. Bragadireanu; A. Clozza; M. Cargnelli; A. D'uffizi; L. Fabbietti; C. Fiorini; F. Ghio; C. Guaraldo; M. Iliescu; P. Levi Sandri; J. Marton; D. Pietreanu; M. Poli Lener; R. Quaglia; A. Romero Vidal; E. Sbardella; A. Scordo; H. Shi; D. Sirghi; F. Sirghi; M. Skurzok; I. Tucakovic; O. Vazquez Doce; E. Widmann; J. Zmeskal

    2015-01-23T23:59:59.000Z

    The AMADEUS experiment aims to provide unique quality data of $K^-$ hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the $\\Lambda(1405)$ state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon $K^-$ absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DA$\\Phi$NE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for $K^-$ nuclear capture on H, ${}^4$He, ${}^{9}$Be and ${}^{12}$C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest $K^-$ nuclear interactions. For the future dedicated setups involving cryogenic gaseous targets are under preparation.

  15. Thin californium-containing radioactive source wires

    DOE Patents [OSTI]

    Gross, Ian G (Clinton, TN); Pierce, Larry A (Kingston, TN)

    2012-01-03T23:59:59.000Z

    A cermet wire includes at least 1% californium-252 and is characterized by a diameter of no more than 0.0225 inch.

  16. Processing a printed wiring board by single bath electrodeposition

    DOE Patents [OSTI]

    Meltzer, Michael P. (Oakland, CA); Steffani, Christopher P. (Livermore, CA); Gonfiotti, Ray A. (Livermore, CA)

    2010-12-07T23:59:59.000Z

    A method of processing a printed wiring board. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from a bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  17. Processing A Printed Wiring Board By Single Bath Electrodeposition

    DOE Patents [OSTI]

    Meltzer, Michael P. (Oakland, CA); Steffani, Christopher P. (Livermore, CA); Gonfiotti, Ray A. (Livermore, CA)

    2003-04-15T23:59:59.000Z

    A method of processing a printed wiring board by single bath electrodeposition. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from the bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  18. arrester wires: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which every wire segment is set to the mini- mum Chu, Chris C.-N. 322 Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding Engineering Websites Summary: wire,...

  19. Superconducting wire with improved strain characteristics

    DOE Patents [OSTI]

    Luhman, Thomas (Westhampton Beach, NY); Klamut, Carl J. (E. Patchogue, NY); Suenaga, Masaki (Bellport, NY); Welch, David (Stony Brook, NY)

    1982-01-01T23:59:59.000Z

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  20. Superconducting wire with improved strain characteristics

    DOE Patents [OSTI]

    Luhman, Thomas (Westhampton Beach, NY); Klamut, Carl J. (East Patchogue, NY); Suenaga, Masaki (Bellport, NY); Welch, David (Stony Brook, NY)

    1982-01-01T23:59:59.000Z

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  1. Wired for the future JOHN CLARKE1

    E-Print Network [OSTI]

    Loss, Daniel

    Wired for the future JOHN CLARKE1 AND DAVID C. LARBALESTIER2 1 Department of Physics, University temperatures Tc of the order of 100 K -- Time magazine ran the coverline "Wiring the Future at the fabric of these HTS compounds gives an indication of where the difficulties lie: the materials

  2. Temperature Dependent Wire Delay Estimation in Floorplanning

    E-Print Network [OSTI]

    Nannarelli, Alberto

    Temperature Dependent Wire Delay Estimation in Floorplanning Andreas Thor Winther, Wei Liu, Alberto, Arizona State University, Tempe, USA Abstract--Due to large variations in temperature in VLSI cir- cuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length

  3. Conventional wire scanners for TESLA K. Wittenburg

    E-Print Network [OSTI]

    in the undulator section. The heat load of the wires is calculated in the following for the TESLA parameters to the high heat load. At some locations in TESLA both beam diameters are larger than a few microns. The heat load defines the wire scanner parameters, mainly the scanning speed, and other limitations

  4. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect (OSTI)

    Gruchalla, Michael E. [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  5. Microfabricated wire arrays for Z-pinch.

    SciTech Connect (OSTI)

    Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz

    2008-10-01T23:59:59.000Z

    Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

  6. HTS powder synthesis and wire sintering

    SciTech Connect (OSTI)

    Peterson, D. [Los Alamos National Lab., NM (United States)

    1994-07-29T23:59:59.000Z

    Successful processing of HTS wires that exhibit superconducting properties and lengths appropriate for applications requires thoroughly understanding and carefully controlling experimental parameters. Initial important processing considerations are the quality and nature of the powder used to produce the superconductor within the wire composite. Following fabrication of the wire, sintering conditions must be chosen based on a knowledge of the phase behavior of the associated materials. HTS wire studies with our industrial partners have involved Bi-2212, Bi-2223, and Tl-1223 based systems. The goals of this project`s efforts in these collaborations have been directed towards: (1) Establishing procedures for HTS powder syntheses that produce superconductors with optimal properties; (2) Studying conditions for HTS wire sintering that produce high current densities appropriate for conductor applications. The Los Alamos project involves 6 staff, 3 technicians, and 4 postdoctoral students.

  7. Method of preparing composite superconducting wire

    DOE Patents [OSTI]

    Verhoeven, John D. (Ames, IA); Gibson, Edwin D. (Ames, IA); Finnemore, Douglas K. (Ames, IA); Ostenson, Jerome E. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Owen, Charles V. (Ames, IA)

    1985-08-06T23:59:59.000Z

    An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  8. Possible Dynamically Gated Conductance along Heme Wires in Bacterial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme Cytochromes. Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme...

  9. Estimating Corn Grain Yields

    E-Print Network [OSTI]

    Blumenthal, Jurg M.; Thompson, Wayne

    2009-06-12T23:59:59.000Z

    can collect samples from a corn field and use this data to calculate the yield estimate. An interactive grain yield calculator is provided in the Appendix of the pdf version of this publication. The calculator is also located in the publication.... Plan and prepare for sample and data collection. 2. Collect field samples and record data. 3. Analyze the data using the interactive grain yield calculator in the Appendix. Plan and prepare for sample and data collection Predetermine sample locations...

  10. LANSCE wire scanning diagnostics device mechanical design

    SciTech Connect (OSTI)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  11. Plastic Deformation of 2D Crumpled Wires

    E-Print Network [OSTI]

    M A F Gomes; V P Brito; A S O Coelho; C C Donato

    2008-11-17T23:59:59.000Z

    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.

  12. Chemically etched modulation in wire radius for wire array Z-pinch perturbation studies.

    SciTech Connect (OSTI)

    Bland, Simon Nicholas (Blackett Laboratory, Imperial College, London, UK); Lebedev, S. V. (Blackett Laboratory, Imperial College, London, UK); Hall, G. (Blackett Laboratory, Imperial College, London, UK); Ramacciotti, J. P. (MPCL/Ktech Corp., Albuquerque, New Mexico); Griego, A. E. (MPCL/Ktech Corp., Albuquerque, New Mexico); Lobley, Dennis Keith (MPCL/Ktech Corp., Albuquerque, New Mexico); Martin, K. L. (MPCL/Ktech Corp., Albuquerque, New Mexico); Ampleford, David J. (Blackett Laboratory, Imperial College, London, UK); McKenney, John Lee; Bott, S. C. (Blackett Laboratory, Imperial College, London, UK); Garrity, James Emmett (MPCL/Ktech Corp., Albuquerque, New Mexico); Jones, B.; Rapley, J. (Blackett Laboratory, Imperial College, London, UK); Deeney, Christopher; Palmer, J. B. A. (Blackett Laboratory, Imperial College, London, UK)

    2004-06-01T23:59:59.000Z

    A technique for manufacturing wires with imposed modulation in radius with axial wavelengths as short as 1 mm is presented. Extruded aluminum 5056 with 15 {micro}m diameter was masked and chemically etched to reduce the radius by {approx}20% in selected regions. Characterized by scanning electron microscopy, the modulation in radius is a step function with a {approx}10 {micro}m wide conical transition between thick and thin segments, with some pitting in etched regions. Techniques for mounting and aligning these wires in arrays for fast z-pinch experiments will be discussed. Axially mass-modulated wire arrays of this type will allow the study of seeded Rayleigh-Taylor instabilities in z pinches, corona formation, wire initiation with varying current density in the wire core, and correlation of perturbations between adjacent wires. This tool will support magnetohydrodynamics code validation in complex three-dimensional geometries, and perhaps x-ray pulse shaping.

  13. Chemically etched modulation in wire radius for wire array Z-pinch perturbation studies

    SciTech Connect (OSTI)

    Jones, B.; Deeney, C.; McKenney, J.L.; Garrity, J.E.; Lobley, D.K.; Martin, K.L.; Griego, A.E.; Ramacciotti, J.P.; Bland, S.N.; Lebedev, S.V.; Bott, S.C.; Ampleford, D.J.; Palmer, J.B.A.; Rapley, J.; Hall, G. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); MPCL/Ktech Corp., Albuquerque, New Mexico 87123 (United States); Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2004-11-01T23:59:59.000Z

    A technique for manufacturing wires with imposed modulation in radius with axial wavelengths as short as 1 mm is presented. Extruded aluminum 5056 with 15 {mu}m diameter was masked and chemically etched to reduce the radius by {approx}20% in selected regions. Characterized by scanning electron microscopy, the modulation in radius is a step function with a {approx}10 {mu}m wide conical transition between thick and thin segments, with some pitting in etched regions. Techniques for mounting and aligning these wires in arrays for fast z-pinch experiments will be discussed. Axially mass-modulated wire arrays of this type will allow the study of seeded Rayleigh-Taylor instabilities in z pinches, corona formation, wire initiation with varying current density in the wire core, and correlation of perturbations between adjacent wires. This tool will support magnetohydrodynamics code validation in complex three-dimensional geometries, and perhaps x-ray pulse shaping.

  14. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    SciTech Connect (OSTI)

    Dr. Scott Campbell

    2012-06-30T23:59:59.000Z

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have the very significant advantage of an extremely high H{sub c2}. For this reason, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb{sub 3}Sn wires used in magnets in the 16-18 T range typically perform with J{sub E} in the range 200-500 A/mm{sup 2}; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J{sub E} (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent stress limitation of J{sub E} at the operating conditions, resistive transition index (n-value) suffic

  15. Improvements to Existing Jefferson Lab Wire Scanners

    SciTech Connect (OSTI)

    McCaughan, Michael D. [JLAB; Tiefenback, Michael G. [JLAB; Turner, Dennis L. [JLAB

    2013-06-01T23:59:59.000Z

    This poster will detail the augmentation of selected existing CEBAF wire scanners with commercially available hardware, PMTs, and self created software in order to improve the scanners both in function and utility.

  16. Exploiting level sensitive latches in wire pipelining 

    E-Print Network [OSTI]

    Seth, Vikram

    2005-02-17T23:59:59.000Z

    The present research presents procedures for exploitation of level sensitive latches in wire pipelining. The user gives a Steiner tree, having a signal source and set of destination or sinks, and the location in rectangular plane, capacitive load...

  17. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

    2000-11-07T23:59:59.000Z

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  18. INCOMING WIRE/ACH University units expecting to receive funds via wire or ACH (Automated Clearing House) should inform the

    E-Print Network [OSTI]

    Arnold, Jonathan

    INCOMING WIRE/ACH University units expecting to receive funds via wire or ACH (Automated Clearing form. The Bursar's Office cannot properly record there funds until University units provide deposit Transmittal and fax the completed form to 706-583-0832. OUTGOING WIRES University units needing to wire funds

  19. A scanning wire beam profile monitor

    SciTech Connect (OSTI)

    Steinbach, Ch.; van Rooij, M.

    1985-10-01T23:59:59.000Z

    The transverse profile of the circulating beam of the CERN PS is obtained from the interaction between the particles and a thin wire rapidly moving through it. The signal from a secondary particles monitor or the secondary emission current of the wire is sampled against the wire position every four beam revolutions in the machine. A stand-alone desk computer performs the real-time control of the wire displacement as well as the acquisitions and calculations necessary to display the profiles and the corresponding emittances. A traversing speed of 20 m/s in the measurement area is reached, using a high torque motor rigidly linked to a U shaped wire holder. All elements are carefully designed and chosen for low inertia and minimum load on the wire. This enables measurements of high energy beams of more than 10/sup 13/ p/p in the PS with negligible emittance blow-up due to multiple scattering. This blow-up is still acceptable at injection energy. A link to the PS main computer allows operation from any one of the main consoles.

  20. Stranded Wire With Uninsulated Strands as a Low-Cost Alternative to Litz Wire

    E-Print Network [OSTI]

    the power loss, is measured experimen- tally. The analytical model is solved to get an optimal pitch, which to 100 kHz. Compared with the same transformer using a solid wire winding, about 67 percent less power loss at 100 kHz is achieved using stranded wire. Using the loss-prediction model provided in this paper

  1. Wire scanner software and firmware issues

    SciTech Connect (OSTI)

    Gilpatrick, John Doug [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  2. LANSCE Wire Scanner System Prototype: Switchyard Test

    SciTech Connect (OSTI)

    Sedillo, James D [Los Alamos National Laboratory

    2012-04-11T23:59:59.000Z

    On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

  3. HTS Wire Development Group: Achievements, technology transfer, and plans

    SciTech Connect (OSTI)

    Riley, G.N. Jr. [American Superconductor Corp., Westborough, MA (United States)

    1994-07-29T23:59:59.000Z

    The objective of the HTS wire development group is to develop high performance HTS wire for use in electric power systems. The HTS wire development group personnel is listed. The HTS wire development group achievements are outlined. These achievements include: focusing on the development of high performance and cost effective HTS wire; HTS wires were fabricated in laboratory scale and production scale lengths; ACS has fabricated the only conductor in the world to meet or surpass the DOE FY94 goals for electric power applications development; these wire fabrication successes at ASC are a direct result of the long-term collaboration between ASC and the other HTS Wire Development Group members; and plans are in place for a successful FY95 program.

  4. automated wire tension: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and on top of electronic circuits. The Physarum wires can be insulated with a silicon oil without loss of functionality. We show that a Physarum wire self-heals: end of a cut...

  5. Accuracy of Reduced and Extended Thin-Wire Kernels

    SciTech Connect (OSTI)

    Burke, G J

    2008-11-24T23:59:59.000Z

    Some results are presented comparing the accuracy of the reduced thin-wire kernel and an extended kernel with exact integration of the 1/R term of the Green's function and results are shown for simple wire structures.

  6. atom wire formation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the atomic and solid-state systems. This is achieved by capacitively coupling a superconduct- ing wire van der Wal, Caspar H. 264 MFR PAPER 1069 Coded wire tagging...

  7. atomic gold wires: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the atomic and solid-state systems. This is achieved by capacitively coupling a superconduct- ing wire van der Wal, Caspar H. 232 Efficient Wire Formats for High Performance...

  8. atom wires assembled: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the atomic and solid-state systems. This is achieved by capacitively coupling a superconduct- ing wire van der Wal, Caspar H. 216 Efficient Wire Formats for High Performance...

  9. Porous coatings from wire mesh for bone implants

    DOE Patents [OSTI]

    Sump, Kenneth R. (Richland, WA)

    1986-01-01T23:59:59.000Z

    A method of coating areas of bone implant elements and the resulting implant having a porous coating are described. Preselected surface areas are covered by a preform made from continuous woven lengths of wire. The preform is compressed and heated to assure that diffusion bonding occurs between the wire surfaces and between the surface boundaries of the implant element and the wire surfaces in contact with it. Porosity is achieved by control of the resulting voids between the bonded wire portions.

  10. Logistical Networking Sharing More than the Wires

    E-Print Network [OSTI]

    Plank, Jim

    Network as approaches to flexible implementation of advanced network protocols. We describe the Internet. The goal of computer networking is typically taken to be communication, i.e. the transmission of data1 Logistical Networking Sharing More than the Wires Micah Beck, Terry Moore, Jim Plank, Martin

  11. MANAGING WIRE DELAY IN CHIP MULTIPROCESSOR CACHES Bradford M. Beckmann

    E-Print Network [OSTI]

    Wood, David A.

    . In contrast, transmission lines can reduce on-chip wire delay by an order of magnitude versus conventional wires and provide low latency to all shared cache banks. We demonstrate on-chip transmission lines provided by transmission lines and reduce off-chip misses versus a design using conventional wires. We

  12. High density harp or wire scanner for particle beam diagnostics

    DOE Patents [OSTI]

    Fritsche, Craig T. (Overland Park, KS); Krogh, Michael L. (Lee's Summit, MO)

    1996-05-21T23:59:59.000Z

    A diagnostic detector head harp (23) used to detect and characterize high energy particle beams using an array of closely spaced detector wires (21), typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit (25) formed on a ceramic substrate (26). A method to fabricate harps (23) to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit (25) disposed on the ceramic substrate (26) connects electrically between the detector wires (21) and diagnostic equipment (37) which analyzes pulses generated in the detector wires (21) by the high energy particle beams.

  13. High density harp or wire scanner for particle beam diagnostics

    DOE Patents [OSTI]

    Fritsche, C.T.; Krogh, M.L.

    1996-05-21T23:59:59.000Z

    Disclosed is a diagnostic detector head harp used to detect and characterize high energy particle beams using an array of closely spaced detector wires, typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit formed on a ceramic substrate. A method to fabricate harps to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit disposed on the ceramic substrate connects electrically between the detector wires and diagnostic equipment which analyzes pulses generated in the detector wires by the high energy particle beams. 6 figs.

  14. Packing of elastic wires in flexible shells

    E-Print Network [OSTI]

    Vetter, Roman; Herrmann, Hans J

    2015-01-01T23:59:59.000Z

    The packing problem of long thin filaments that are injected into confined spaces is of fundamental interest for physicists, biologists and materials engineers alike. How linear threads pack and coil is well known only for the ideal case of rigid containers, however. Here, we force long elastic rods into flexible spatial confinement borne by an elastic shell to examine under which conditions recently acquired knowledge on wire packing in rigid spheres breaks down. We find that unlike in rigid cavities, friction plays a key role by giving rise to the emergence of two distinct packing patterns. At low friction, the wire densely coils into an ordered toroidal bundle with semi-ellipsoidal cross section, while at high friction, it packs into a highly disordered, self-similar structure. These two morphologies are shown to be separated by a continuous phase transition.

  15. Packing of elastic wires in flexible shells

    E-Print Network [OSTI]

    Roman Vetter; Falk K. Wittel; Hans J. Herrmann

    2015-04-03T23:59:59.000Z

    The packing problem of long thin filaments that are injected into confined spaces is of fundamental interest for physicists, biologists and materials engineers alike. How linear threads pack and coil is well known only for the ideal case of rigid containers, however. Here, we force long elastic rods into flexible spatial confinement borne by an elastic shell to examine under which conditions recently acquired knowledge on wire packing in rigid spheres breaks down. We find that unlike in rigid cavities, friction plays a key role by giving rise to the emergence of two distinct packing patterns. At low friction, the wire densely coils into an ordered toroidal bundle with semi-ellipsoidal cross section, while at high friction, it packs into a highly disordered, self-similar structure. These two morphologies are shown to be separated by a continuous phase transition.

  16. Processing and properties of superconductor wires

    SciTech Connect (OSTI)

    Singh, J.P.; Dorris, S.E.; Lanagan, M.T.; Wu, C.T.; Goretta, K.C.; Joo, J.; Balachandran, U.; Poeppel, R.B.

    1991-10-01T23:59:59.000Z

    Variables in fabrication of superconductor wires by extrusion and by powder-in-tube processing are discussed. Decomposition of plastically extruded YBCO is minimized by firing at reduced total pressure. Extruded wires of YBCO were densified with fine-grained microstructures by sintering at an oxygen partial pressure of 10{sup {minus}3} MPa. A reduction in average grain size from 23 to 4 {mu}m increased strength from 83 to 191 MPa. Addition of 15 vol. % Ag particles further increased the strength to 220 MPa, with the increase resulting from compressive stresses in YBCO matrix due to the Ag. In powder-in-tube processing, primary considerations are the mechanical-working and heating schedules. The best properties in Ag-clad Bi-based superconductors were obtained with many small reductions during working and by use of liquid-phase formation during sintering to promote grain growth. 12 refs., 3 figs., 1 tab.

  17. HTS wire development at Intermagnetic General Corporation

    SciTech Connect (OSTI)

    Haldar, P. [Intermagnetics General Corp., Latham, NY (United States)

    1994-07-29T23:59:59.000Z

    The HTS wire development program at Intermagnetics General Corporation is outlined. Technical achievements in the Bi-2223, Tl-1223 and Tl-based conductor program are summarized. Long lengths of Tl-based HTS tapes with uniform transport properties have been fabricated. Multifilament samples of Tl-based HTS tapes have been fabricated for the first time. Optimization of thermomechanical processing is ongoing and weak links is still a major problem in P-I-T tapes. Future work is summarized.

  18. A Prototype Wire Position Monitoring System

    SciTech Connect (OSTI)

    Wang, Wei

    2010-12-07T23:59:59.000Z

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1{micro}m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1{micro}m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  19. Influence of insulating coating on aluminum wire explosions

    SciTech Connect (OSTI)

    Li, Yang; Wu, Jian, E-mail: jxjawj@gmail.com [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong [State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Li, Xingwen [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-10-15T23:59:59.000Z

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  20. System and method for evaluating a wire conductor

    DOE Patents [OSTI]

    Panozzo, Edward; Parish, Harold

    2013-10-22T23:59:59.000Z

    A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.

  1. Radiation from mixed multi-planar wire arrays

    SciTech Connect (OSTI)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shlyaptseva, V. V.; Shrestha, I.; Keim, S. F.; Stafford, A. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Chuvatin, A. S. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France)] [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Coverdale, C. A. [Sandia National Laboratories, Albuquerque, New Mexico (United States)] [Sandia National Laboratories, Albuquerque, New Mexico (United States); Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States)] [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States); Ouart, N. D.; Giuliani, J. L. [Naval Research Laboratory, Washington DC 20375 (United States)] [Naval Research Laboratory, Washington DC 20375 (United States)

    2014-03-15T23:59:59.000Z

    The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kinetic model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed.

  2. Alliant Energy (Wisconsin Power and Light) - Farm Wiring Financing...

    Broader source: Energy.gov (indexed) [DOE]

    Power and Light) offers a farm wiring financing program to increase farm safety, productivity and efficiency, while decreasing the potential for stray voltage on livestock...

  3. An Updated Assessement of Copper Wire Thefts from Electric Utilities...

    Office of Environmental Management (EM)

    from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. Department of Energy (DOE), Office of...

  4. Elastic anisotropy in multifilament Nb3Sn superconducting wires

    E-Print Network [OSTI]

    Scheuerlein, C; Alknes, P; Arnau, G; Bjoerstad, R; Bordini, B

    2015-01-01T23:59:59.000Z

    The elastic anisotropy caused by the texture in the Nb3Sn filaments of PIT and RRP wires has been calculated by averaging the estimates of Voigt and Reuss, using published Nb3Sn single crystal elastic constants and the Nb3Sn grain orientation distribution determined in both wire types by Electron Backscatter Diffraction. At ambient temperature the calculated Nb3Sn E-moduli in axial direction in the PIT and the RRP wire are 130 GPa and 140 GPa, respectively. The calculated E-moduli are compared with tensile test results obtained for the corresponding wires and extracted filament bundles.

  5. Achievable Qubit Rates for Quantum Information Wires

    E-Print Network [OSTI]

    Hulya Yadsan-Appleby; Tobias J. Osborne

    2011-02-15T23:59:59.000Z

    Suppose Alice and Bob have access to two separated regions, respectively, of a system of electrons moving in the presence of a regular one-dimensional lattice of binding atoms. We consider the problem of communicating as much quantum information, as measured by the qubit rate, through this quantum information wire as possible. We describe a protocol whereby Alice and Bob can achieve a qubit rate for these systems which is proportional to N^(-1/3) qubits per unit time, where N is the number of lattice sites. Our protocol also functions equally in the presence of interactions modelled via the t-J and Hubbard models.

  6. Superconducting wire and cable for RHIC

    SciTech Connect (OSTI)

    Garber, M.; Ghosh, A.K.; Greene, A.; McChesney, D.; Morgillo, A.; Shah, R. [Brookhaven National Lab., Upton, NY (United States); DelRe, S.; Epstein, G.; Hong, S.; Lichtenwalner, J. [Oxford Superconducting Technology, Carteret, NJ (United States)] [and others

    1994-06-01T23:59:59.000Z

    The superconducting dipole and quadrupole magnets in the RHIC accelerator ring are to be fabricated from 30-strand superconducting cable. The RHIC wire has a diameter of 0.65 mm, copper-to-superconductor ratio of 2.25, filament diameter of 6 {mu}m and high critical current density. Primary emphasis during manufacturing has been on uniformity of materials, processes and performance. Near final results are presented on a production program which has extended over two years. Measured parameters are described which are important for design of superconducting accelerator magnets.

  7. Wire-Net | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne,WinslowWinthrop,Wire-Net Jump to:

  8. Diamond Wire Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:ResearchWalnut BiomassWire

  9. Torpedo Speciality Wire Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldsonInformationTorpedo Speciality Wire Inc Jump to:

  10. Humidity effects on wire insulation breakdown strength.

    SciTech Connect (OSTI)

    Appelhans, Leah

    2013-08-01T23:59:59.000Z

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  11. Wire Position Monitoring with FPGA based Electronics

    SciTech Connect (OSTI)

    Eddy, N.; Lysenko, O.; /Fermilab

    2009-01-01T23:59:59.000Z

    This fall the first Tesla-style cryomodule cooldown test is being performed at Fermilab. Instrumentation department is preparing the electronics to handle the data from a set of wire position monitors (WPMs). For simulation purposes a prototype pipe with a WMP has been developed and built. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The wire is stretched along the pipe with a tensioning load of 9.07 kg. The WPM consists of four 50 {Omega} striplines spaced 90{sup o} apart. FPGA based digitizer scans the WPM and transmits the data to a PC via VME interface. The data acquisition is based on the PC running LabView. In order to increase the accuracy and convenience of the measurements some modifications were required. The first is implementation of an average and decimation filter algorithm in the integrator operation in the FPGA. The second is the development of alternative tool for WPM measurements in the PC. The paper describes how these modifications were performed and test results of a new design. The last cryomodule generation has a single chain of seven WPMs (placed in critical positions: at each end, at the three posts and between the posts) to monitor a cold mass displacement during cooldown. The system was developed in Italy in collaboration with DESY. Similar developments have taken place at Fermilab in the frame of cryomodules construction for SCRF research. This fall preliminary cryomodule cooldown test is being performed. In order to prepare an appropriate electronic system for the test a prototype pipe with a WMP has been developed and built, figure 1. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The 0.5 mm diameter Cu wire is stretched along the pipe with a tensioning load of 9.07 kg and has a length of 1.1 m. The WPM consists of four 50 {Omega} striplines spaced 90{sup o} apart. An FPGA based digitizer collects the WPM data and transmits it to the VME controller. The VME front-end processes the raw data to calculate positions and perform FFT. It is also provides the raw data to LabView running on a PC upon request. In order to increase the accuracy and convenience of the measurements some modifications were required. The first is connected with realization of average and decimation filter algorithm in the integrator operation in the FPGA. The second is connected with development of alternative tool for WPM measurements in the PC. We will discuss how these modifications were performed and test results of a new design.

  12. Plasticity of metal wires in torsion: molecular dynamics and dislocation dynamics simulations

    E-Print Network [OSTI]

    Cai, Wei

    Plasticity of metal wires in torsion: molecular dynamics and dislocation dynamics simulations-4040 Abstract The orientation dependent plasticity in metal nanowires is investigated using molecular dynamics metal wires controls the mechanisms of plastic deformation. For wires oriented along 110 , dislocations

  13. Microwave-Induced Dephasing 1D Metal Wires

    E-Print Network [OSTI]

    Fominov, Yakov

    ~ )()( TDTLL = Echternach et al. PRB 50, 5748 (1994) Ag wire ( )[ ] ( )TT EEIWL + #12;(T) in 1D wires µm 1.6 µm 0.4 µm 0.2 µm L(0.1K) = 2.3 µm d d = MG, P. Echternach et al., PRB 51,19256 (1995) One can

  14. Superconducting Wires Enabled by Nanodots wins Nano50TM Award

    E-Print Network [OSTI]

    includes nanoscale columns of non-superconducting material embedded within the superconductorSuperconducting Wires Enabled by Nanodots wins Nano50TM Award HTS Wires Enabled via 3D Self-Assembly of Insulating Nanodots Background · For most large-scale applications of high-temperature superconducting (HTS

  15. Design of automotive X-by-Wire systems Cdric Wilwert

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design of automotive X-by-Wire systems Cédric Wilwert PSA Peugeot - Citroën 92000 La Garenne Phone : +33 3 83 58 17 62 simonot@loria.fr CONTENTS Design of automotive X-by-Wire systems ................................................................................................................................ 9 3.2 Main time-triggered protocols for automotive industry

  16. Method and apparatus for diamond wire cutting of metal structures

    DOE Patents [OSTI]

    Parsells, Robert; Gettelfinger, Geoff; Perry, Erik; Rule, Keith

    2005-04-19T23:59:59.000Z

    A method and apparatus for diamond wire cutting of metal structures, such as nuclear reactor vessels, is provided. A diamond wire saw having a plurality of diamond beads with beveled or chamfered edges is provided for sawing into the walls of the metal structure. The diamond wire is guided by a plurality of support structures allowing for a multitude of different cuts. The diamond wire is cleaned and cooled by CO.sub.2 during the cutting process to prevent breakage of the wire and provide efficient cutting. Concrete can be provided within the metal structure to enhance cutting efficiency and reduce airborne contaminants. The invention can be remotely controlled to reduce exposure of workers to radioactivity and other hazards.

  17. Intermetallic alloy welding wires and method for fabricating the same

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  18. Proposal of thermal neutron flux monitors based on vibrating wire

    E-Print Network [OSTI]

    Arutunian, S G; Chung, M; Harutyunyan, G S; Lazareva, E G

    2015-01-01T23:59:59.000Z

    Two types of neutron monitors with fine spatial resolution are proposed based on vibrating wire. In the first type, neutrons interact with the vibrating wire, heat it, and lead to the change of natural frequency, which can be precisely measured. To increase the heat deposition during the neutron scattering, use of gadolinium layer which has the highest thermal neutron capture cross section among all elements is proposed. The second type of the monitor uses vibrating wire as a resonant target. Besides the measurement of beam profile according to the average signal, the differential signal synchronized with the wire oscillations defines the gradient of beam profile. Spatial resolution of the monitor is defined by the diameter of the wire.

  19. Intermetallic alloy welding wires and method for fabricating the same

    DOE Patents [OSTI]

    Santella, M.L.; Sikka, V.K.

    1996-06-11T23:59:59.000Z

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  20. Beam Position and Phase Monitor - Wire Mapping System

    SciTech Connect (OSTI)

    Watkins, Heath A [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory

    2012-04-10T23:59:59.000Z

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  1. Yield

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognized forCyclotron Chemistry

  2. Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis

    E-Print Network [OSTI]

    Agmon, Noam

    Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis Ai Shinobu developed an algorithm for mapping proton wires in proteins and applied it to the X-ray structures of human proteins, we find more extensive proton wires than typically reported. In CA-II the active site wire exits

  3. Current-Excited Magnetization Dynamics in Narrow Ferromagnetic Wires Yoshihiko TOGAWA1

    E-Print Network [OSTI]

    Otani, Yoshichika

    the magnetic field generated by the electromagnetic lenses.13) The sample is Permalloy zigzag wire OTANI1;2 1 Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Hirosawa to the observed magnetic wires and the wire resistance is measured to monitor the wire temperature.12

  4. X-ray backlighting density measurements of tungsten and aluminum wire and wire array z-pinches

    SciTech Connect (OSTI)

    Hammer, D.A.; Pikuz, S.A.; Shelkovenko, T.A.; Greenly, J.B.; Sinars, D.B.; Mingaleev, A.R.

    1999-07-01T23:59:59.000Z

    Calibrated density measurements in both the coronal plasmas and dense cores of exploding W wire and wire array Z-pinches, powered by the {approximately}450 kA, 100 ns XP-pulser at Cornell University, have been made using two-frame x-ray backlighting in conjunction with known thickness W step wedges. The backlighting images are made by Mo wire X-pinch radiation filtered by 12.5 {micro}m Ti impinging upon a sandwich of films (Micrat VR, Kodak GWL, Kodak DEF) which have different sensitivities to increase the dynamic range of the method. A W step wedge filter is placed in front of the films, giving absolute line density calibration of each exposure with estimated errors ranging from 20 to 50%. Assuming x-ray absorption by the W plasma is the same as for the solid material, the authors are able to measure W areal densities from 3.2 x 10{sup 19} to 2 x 10{sup 17}/cm{sup 2}. These can be converted to number density assuming azimuthal symmetry. For example, for an exploded 7.5 {micro}m wire with a 15--20 {micro}m diameter dense core and a 1 mm corona diameter, the implied W volume density ranges from 2x10{sup 18} to over 10{sup 22}/cm{sup 3}. Integration of the line density gives an estimate of the fraction of the wire mass in the corona and core. For example, with 100 kA peak current in a single 7.5 {micro}m W wire, {approximately}70% (>90%) of the W mass is in the corona after 53 ns (61 ns). The authors also observe that the corona has large, roughly axisymmetric axial nonuniformity both in radius and in mass density. In addition, the coronal plasma contains more of the W mass, expands faster and is more uniform when the wire is surface-cleaned by preheating. In arrays of 2--8 wires with the same 100 kA total current, detectable coronal plasma appears after 25--35 ns, and much of it is swept toward the center of the array, forming a dense channel. The portion of the initial wire mass in the coronal plasma increases with smaller wire diameter and decreases with greater wire number: 15% for 4 x 13.5 {micro}m, 35% for 4 x 7.5 {micro}m, and 25% for 8 x 7.5 {micro}m, at 46--48 ns (unheated). Similar measurements are now being made with Al wires and an Al step wedge. Results will be presented.

  5. Xcel Energy- Farm Re-Wiring Loan Program (Wisconsin)

    Broader source: Energy.gov [DOE]

    Xcel Energy operates the farm rewiring loan program to help its agricultural customers install safer and more energy efficient electrical wiring. The loan program charges 3% interest with terms of...

  6. alloy thin wires: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbulent flow of superfluid helium. We used a standard Pt-Rh hot-wire anemometer and overheat it up to 21 K in a pressurized liquid helium turbulent round jet at temperatures...

  7. anode wire grids: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray position detection, simulation study of the anode wire modulation effect of the detector was carried out with Garfield program. Different gas mixtures were used as the...

  8. Delivery optimization for a make to order custom wire mill

    E-Print Network [OSTI]

    Slivinskiy, Andrey L

    2005-01-01T23:59:59.000Z

    In the face of growing competition in the Tantalum business, H.C.Starck's management is minimizing the delivery time for custom-made capacitor-grade tantalum wire products. H.C. Starck, Inc., Newton, Massachusetts faces ...

  9. Alliant Energy (Wisconsin Power and Light) - Farm Wiring Grant...

    Broader source: Energy.gov (indexed) [DOE]

    Power and Light) offers a Farm Wiring Grant program to increase farm safety, productivity and efficiency. The first 1,000 of the cost of the project is covered by a grant,...

  10. Properties of plain weave metallic wire mesh screens Zenghui Zhao

    E-Print Network [OSTI]

    Peles, Yoav

    , heat pipes, solar energy collector, thermal insu- lation, etc. Structures or laminates made of wire heat transfer by coating the heat transfer surface with a mesh screen is found in [2]. In recent years

  11. Wide-Bandwidth Capture of Wire-Scanner Signals

    SciTech Connect (OSTI)

    Gruchalla, Michael E. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory

    2012-05-16T23:59:59.000Z

    Integrated charge collected on the sense wires of wire-scanner systems utilized to determine beam profile is generally the parameter of interest. The LANSCE application requires capturing the charge information macropulse-by-macropulse with macropulse lengths as long as 700 {micro}s at a maximum macropulse rate of 120 Hz. Also, for the LANSCE application, it is required that the integration be performed in a manner that does not require integrator reset between macropulses. Due to the long macropulse which must be accommodated and the 8.33 ms minimum pulse period, a simple R-C integrator cannot be utilized since there is insufficient time between macropulses to allow the integrator to adequately recover. The application of wide analog bandwidth to provide accurate pulse-by-pulse capture of the wire signals with digital integration of the wire signals to determine captured charge at each macropulse in applications with comparatively long macropulses and high pulse repetition rates is presented.

  12. Method of fabricating a homogeneous wire of inter-metallic alloy

    DOE Patents [OSTI]

    Ohriner, Evan Keith (Knoxville, TN); Blue, Craig Alan (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

  13. Models and Analysis of Wire Explosions Using TRAC II Simulations

    SciTech Connect (OSTI)

    Pekker, A.; Reisman, D.B.

    1999-09-10T23:59:59.000Z

    In order to understand the dynamics of Z-pinch imposions of thin wires in pulse-power accelerators, it is necessary to understand the physical process by which the initially solid wires are converted into plasma by rising current. For this purpose, we model wire explosions using TRAC II, a two-dimensional MHD code, in three distinct cases: pure tungsten, impure tungsten, and gold-plated tungsten. We compare our results--overall picture of the process, corona linear density, corona mass, and core expansion rate--to actual experiments performed at Sandia National Laboratory and Cornell University and present some explanations for the disagreements between our model and experimental observations. In Chapter 1, we discuss model results for several current waveforms (consisting of a 5 kA 50-150 ns pre-pulse and 80 kA 80 ns main pulse) for a pure tungsten wire, showing that the initial temperature of the wire does not affect the dynamics of the explosion. This suggests that different experimental results for unheated and preheated tungsten wires are due to the expulsion of impurities in the preheated wire and not to a change in the material properties of tungsten. To match the experimental set-up more accurately, we model the explosion of a tungsten wire with impurities in Chapter 2. The overall process predicted by the model agrees with experiment, namely the shunting of the current through the impurities region before tungsten expansion begins; however, quantitative results disagree with experimental observations mostly because of the extreme shunting of the current through the impurities in our model. Finally, in Chapter 3, we compare the explosions in gold-plated tungsten, pure tungsten, and pure gold wires under high (100 kA in 60 ns) and low (2 kA in 270 ns) currents, finding general agreement with experiment in the high-current case and a disagreement by a factor of ten in the low-current case. In addition, due to the similar properties of the two metals, we find no vast differences among the three cases in the high-current case, while the single-metal wire expand faster and farther than the gold-plated wire in the low-current case. We believe that the disagreement between our model and experiment can be decreased by better modeling of tungsten impurities and by improvements in the conductivity and bonding models.

  14. Quantum computer of wire circuit architecture

    E-Print Network [OSTI]

    S. A. Moiseev; F. F. Gubaidullin; S. N. Andrianov

    2010-01-07T23:59:59.000Z

    First solid state quantum computer was built using transmons (cooper pair boxes). The operation of the computer is limited because of using a number of the rigit cooper boxes working with fixed frequency at temperatures of superconducting material. Here, we propose a novel architecture of quantum computer based on a flexible wire circuit of many coupled quantum nodes containing controlled atomic (molecular) ensembles. We demonstrate wide opportunities of the proposed computer. Firstly, we reveal a perfect storage of external photon qubits to multi-mode quantum memory node and demonstrate a reversible exchange of the qubits between any arbitrary nodes. We found optimal parameters of atoms in the circuit and self quantum modes for quantum processing. The predicted perfect storage has been observed experimentally for microwave radiation on the lithium phthalocyaninate molecule ensemble. Then also, for the first time we show a realization of the efficient basic two-qubit gate with direct coupling of two arbitrary nodes by using appropriate atomic frequency shifts in the circuit nodes. Proposed two-qubit gate runs with a speed drastically accelerated proportionally to the number of atoms in the node. The direct coupling and accelerated two-qubit gate can be realized for large number of the circuit nodes. Finally, we describe two and three-dimensional scalable architectures that pave the road to construction of universal multi-qubit quantum computer operating at room temperatures.

  15. LANSCE wire scanner AFE: analysis, design, and fabrication

    SciTech Connect (OSTI)

    Gruchalla, Mike [Los Alamos National Laboratory; Chacon, Phillip [Los Alamos National Laboratory; Gilpatrick, John D [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Power, John F [Los Alamos National Laboratory; Smith, Brian [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The goal of the design LANSCE-R Wire-Scanner Analog Front-end Electronics is to develop a high-performance, dual-axis wire-scanner analog front-end system implemented in a single cRIO module. This new design accommodates macropulse widths as wide as 700 {mu}s at a maximum pulse rate of 120Hz. A lossey integrator is utilized as the integration element to eliminate the requirement for providing gating signals to each wire scanner. The long macropulse and the high repetition rate present conflicting requirements for the design of the integrator. The long macropulse requires a long integration time constant to assure minimum integrator droop for accurate charge integration, and the high repetition rate requires a short time constant to assure adequate integrator reset between macropulses. Also, grounding is a serious concern due to the small signal levels. This paper reviews the basic Wire Scanner AFE system design implemented in the cRIO-module form factor to capture the charge information from the wire sensors and the grounding topology to assure minimum noise contamination of the wire signals.

  16. The Air-Fluorescence Yield

    E-Print Network [OSTI]

    F. Arqueros; F. Blanco; D. Garcia-Pinto; M. Ortiz; J. Rosado

    2008-07-30T23:59:59.000Z

    Detection of the air-fluorescence radiation induced by the charged particles of extensive air showers is a well-established technique for the study of ultra-high energy cosmic rays. Fluorescence telescopes provide a nearly calorimetric measure of the primary energy. Presently the main source of systematic uncertainties comes from our limited accuracy in the fluorescence yield, that is, the number of fluorescence photons emitted per unit of energy deposited in the atmosphere by the shower particles. In this paper the current status of our knowledge on the fluorescence yield both experimental an theoretical will be discussed.

  17. Bi-2212 and Bi-2223 wire development

    SciTech Connect (OSTI)

    Willis, J.O.; Ray, R.D. II; Holesinger, T.G. [and others

    1995-12-01T23:59:59.000Z

    The results of innovative processing of Bi-2212 by isothermal melt processing and by controlled oxygen pressure cooling yield improved properties over the conventional routes. The addition of large grains of Ag has resulted in improved core/interface geometry and better performance in Bi-2212 and Bi-2223. A deformation processing study of Bi-2223 showed the effects of sheath material, relative core thickness, and reduction per pass on core/interface uniformity.

  18. UNCONVENTIONAL METHODS FOR YIELD IMPROVEMENT

    E-Print Network [OSTI]

    Beckermann, Christoph

    methods (active heating and cooling, directional solidifi- cation) Novel yield improvement techniques through a vari- ety of active heating and cooling schemes. It is envisioned that the techniques will allow techniques for decreasing the size and number of risers re- quired to produce quality castings

  19. Diamond Wire Saw for Precision Machining of Laser Target Components

    SciTech Connect (OSTI)

    Bono, M J; Bennett, D W

    2005-08-08T23:59:59.000Z

    The fabrication of precision laser targets requires a wide variety of specialized mesoscale manufacturing techniques. The diamond wire saw developed in this study provides the capability to precisely section meso-scale workpieces mounted on the assembly stations used by the Target Fabrication Group. This new capability greatly simplifies the fabrication of many types of targets and reduces the time and cost required to build the targets. A variety of materials are used to fabricate targets, including metals, plastics with custom designed chemical formulas, and aerogels of various densities. The materials are usually provided in the form of small pieces or cast rods that must be machined to the required shape. Many of these materials, such as metals and some plastics, can be trimmed using a parting tool on a diamond turning machine. However, other materials, such as aerogels and brittle materials, cannot be adequately cut with a parting tool. In addition, the geometry of the parts often requires that the workpieces be held in a special assembly station, which excludes the use of a parting tool. In the past, these materials were sectioned using a small, handheld coping saw that used a diamond-impregnated wire as a blade. This miniature coping saw was effective, but it required several hours to cut through certain materials. Furthermore, the saw was guided by hand and often caused significant damage to fragile aerogels. To solve these problems, the diamond wire saw shown in Figure 1 was developed. The diamond wire saw is designed to machine through materials that are mounted in the Target Fabrication Group's benchtop assembly stations. These assembly stations are the primary means of aligning and assembling target components, and there is often a need to machine materials while they are mounted in the assembly stations. Unfortunately, commercially available saws are designed for very different applications and are far too large to be used with the assembly stations. Therefore, a custom diamond wire saw was designed and constructed. The diamond wire saw cuts through workpieces using a continuous loop of diamond-impregnated wire of length 840 mm. The wire loop runs around several idler pulleys and is driven by a simple geared DC motor that rotates at 17 rpm. The linear speed of the wire is 107 inches/minute. The saw is oriented at an angle of 20{sup o} from horizontal, so the operator can view the wire through the cutout at the front end of the saw. When looking through a microscope or camera with a horizontal line of sight, the operator can clearly see the wire as it cuts through the workpiece, as shown in the right side of Figure 1. The saw is mounted on a two-axis stage that allows the operator to align the wire with the workpiece. To cut through the workpiece, the operator drives the wire through the workpiece by turning the feed micrometer. An image of the interior of the diamond wire saw appears in Figure 2. This picture was taken after removing the protective cover plate from the saw.

  20. Processing and fabrication of YBa sub 2 Cu sub 3 O sub x /Ag composite wires and coils

    SciTech Connect (OSTI)

    Ferrando, W.A.; Divecha, A.P.; Mansour, A.N.; Karmarkar, S.D. (Naval Surface Warfare Center, Silver Spring, MD (USA)); Balachandran, U.; Dorris, S.E.; Dusek, J.T.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B. (Argonne National Lab., IL (USA))

    1990-01-01T23:59:59.000Z

    Silver was added to YBa{sub 2}Cu{sub 3}O{sub x} (123) powder by a melt technique using AgNO{sub 3} and heated to {approximately}600{degree}C to decompose the nitrate. This process yields 123 powder that is uniformly coated with Ag, as indicated by optical and scanning electron microscopy (SEM). The composite power is formed into rods ({approximately}4 mm diameter) via drawing and swaging through conical converging dies. Wires of finer diameter ({approximately}1 mm) and substantially greater linear uniformity have been produced by slurry extrusion of the composite powder in a polymeric vehicle. Transport critical current density, J{sub c}, of these wires at present is about 750 A/cm{sup 2}. This value may be expected to rise due to further reduction of second phase impurities localized at grain boundaries and better understanding of the Ag/superconductor interface. This paper describes the wire fabrication in some detail and discusses the results of microscopic analyses by scanning electron microscopy (SEM), x-ray photoemission spectroscopy (XPS), and x-ray diffraction (XRD). 11 refs., 4 figs., 1 tab.

  1. Study of the implosion characteristics of quasi-spherical wire arrays on the Angara-5-1 facility at currents of up to 4 MA

    SciTech Connect (OSTI)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gribov, A. N.; Gritsuk, A. N.; Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M.; Sasorov, P. V.; Frolov, I. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2012-04-15T23:59:59.000Z

    Results are presented from experimental studies of the spatial distribution of the density of matter in the central part of the discharge gap and the formation of the temporal profile of the X-ray power in the course of implosion of quasi-spherical wire arrays at discharge currents of up to 4 MA. The spatial distribution of the X-ray intensity in the central part of the discharge gap and the temporal profile of the X-ray power are used as implosion characteristics of quasi-spherical wire arrays. The quasi-spherical arrays were formed by the radial stretching of unstrained wires of initially cylindrical and conical wire arrays under the action of the electrostatic field. The temporal profile of the output X-ray pulse in the photon energy range of 0.1-1 keV is shown to depend on both the geometrical parameters of the quasi-spherical array and the longitudinal distribution of its mass. It is found that a 40% increase in the wire mass due to deposition of an additional mass in the equatorial region of a quasi-spherical array leads to a 15% increase in the average current radius of the pinch and a 30% decrease in the X-ray yield. Experiments with quasi-spherical arrays made of kapron fibers with deposited Al and Bi conducting layers were also carried out. It is demonstrated that application of such arrays makes it possible to control the profile and duration of the generated X-ray pulse by varying the mass, material, and location of the deposited layer. It is found that deposition of an additional mass in the form of a thin Bi stripe on tungsten wires near the cathode end of the array allows one to mitigate the influence of the cathode zipper effect on the pinch compression and formation of the X-ray pulse in tungsten arrays.

  2. First Measurements and Results With a Stretched Wire Test Setup

    SciTech Connect (OSTI)

    Peters, Franz

    2010-12-13T23:59:59.000Z

    The LINAC Coherent Light Source [LCLS] is a free electron laser, designed to produce high brilliant X-ray beams using Self Amplified Spontaneous Emission [SASE]. Due to the physics of SASE, the electron beam has to be held very precisely on the same trajectory as the X-ray light beam generated by the undulator magnets. To optimize the SASE output, trajectory deviations between both beams have to be minimized to a few micrometers along the entire undulator section and held stable over the time period between beam-based-alignment processes. Consequently, extremely high position stability of all magnets in the undulator section is required to operate the LCLS successfully. The knowledge of any magnet movement exceeding few micrometers during periods of several weeks is essential for efficient X-ray generation. A well known principle of monitoring transverse component positions along beam lines is the application of stretched wires, associated with suitable wire position sensors and electronics. The particular challenge at LCLS is the required wire system performance in conjunction with the length of the undulator section and the large number of monitors. Verification of system stability and resolution under real conditions is the primary goal of this test setup. A stretched wire test setup has been implemented to gain experience for the final design of a wire system, which will meet the position monitoring requirements in the LCLS undulator section. The report briefly introduces the system's architecture and describes first measurements and results.

  3. Multisublevel Magnetoquantum Conductance in Single and Coupled Double Quantum Wires

    SciTech Connect (OSTI)

    Lyo, Sungkwun Ken; Huang, Danhong

    2001-09-15T23:59:59.000Z

    We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact geometry for single and tunnel-coupled double wires that are wide (less than or similar to1 mum) in one perpendicular direction with densely populated sublevels and extremely confined in the other perpendicular (i.e., growth) direction. A general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conductance such as a large enhancement and quantum oscillations of the conductance for various structures and field orientations. These phenomena originate from the following field-induced properties: magnetic confinement, displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass enhancement, depopulation of the sublevels and anticrossing (in double quantum wires). The magnetoconductance is strikingly different in long diffusive (or rough. dirty) wires from the quantized conductance in short ballistic (or clean) wires. Numerical results obtained for the rectangular confinement potentials in the growth direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement potentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are consistent with recent data from GaAs/AlxGa1-xAs double quantum wires.

  4. Mechanical optimisation of a high-precision fast wire scanner at CERN

    E-Print Network [OSTI]

    Samuelsson, Sebastian; Veness, Raymond

    Wire scanners are instruments used to measure the transverse beam prole in particle accelerators by passing a thin wire through the particle beam. To avoid the issues of vacuum leakage through the bellows and wire failure related to current designs of wire scanners, a new concept for a wire scanner has been developed at CERN. This design has all moving parts inside the beam vacuum and has a nominal wire scanning speed of 20 m/s. The demands on the design associated with this together with the high precision requirements create a need for\

  5. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    SciTech Connect (OSTI)

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong, E-mail: ouyang.jinsong@mgh.harvard.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States)] [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Ackerman, Jerome L. [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States)] [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)] [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2014-04-15T23:59:59.000Z

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from ?0.6% to 3.4% as compared to a bias ranging from ?25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  6. An Unprecedented Constraint on Water Content in the Sunlit Lunar Exosphere Seen by Lunar-Based Ultraviolet Telescope of Chang'e-3 Mission

    E-Print Network [OSTI]

    Wang, J; Qiu, Y L; Meng, X M; Cai, H B; Cao, L; Deng, J S; Han, X H; Wei, J Y

    2015-01-01T23:59:59.000Z

    The content of $\\mathrm{OH/H_2O}$ molecules in the tenuous exosphere of the Moon is still an open issue at present. We here report an unprecedented upper limit of the content of the OH radicals, which is obtained from the in-situ measurements carried out \\rm by the Lunar-based Ultraviolet Telescope, a payload of Chinese Chang'e-3 mission. By analyzing the diffuse background in the images taken by the telescope, the column density and surface concentration of the OH radicals are inferred to be $<10^{11}\\ \\mathrm{cm^{-2}}$ and $<10^{4}\\ \\mathrm{cm^{-3}}$ (by assuming a hydrostatic equilibrium with a scale height of 100km), respectively, by assuming that the recorded background is fully contributed by their resonance fluorescence emission. The resulted concentration is lower than the previously reported value by about two orders of magnitude, and is close to the prediction of the sputtering model. In addition, the same measurements and method allow us to derive a surface concentration of $<10^{2}\\ \\math...

  7. Annual Coded Wire Program Missing Production Groups, 1996 Annual Report.

    SciTech Connect (OSTI)

    Pastor, S.M. [Fish and Wildlife Service, Vancouver, WA (United States). Columbia River Fisheries Program Office

    1997-07-01T23:59:59.000Z

    In 1989 the Bonneville Power Administration (BPA) began funding the evaluation of production groups of juvenile anadromous fish not being coded-wire tagged for other programs. These groups were the ``Missing Production Groups``. Production fish released by the US Fish and Wildlife Service (USFWS) without representative coded-wire tags during the 1980`s are indicated as blank spaces on the survival graphs in this report. The objectives of the ``Missing Production Groups`` program are: to estimate the total survival of each production group, to estimate the contribution of each production group to various fisheries, and to prepare an annual report for all USFWS hatcheries in the Columbia River basin. Coded-wire tag recovery information will be used to evaluate the relative success of individual brood stocks. This information can also be used by salmon harvest managers to develop plans to allow the harvest of excess hatchery fish while protecting threatened, endangered, or other stocks of concern.

  8. Thermodynamic and kinetic control of the lateral Si wire growth

    SciTech Connect (OSTI)

    Dedyulin, Sergey N., E-mail: sdedyuli@uwo.ca; Goncharova, Lyudmila V. [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7 (Canada)

    2014-03-24T23:59:59.000Z

    Reproducible lateral Si wire growth has been realized on the Si (100) surface. In this paper, we present experimental evidence showing the unique role that carbon plays in initiating lateral growth of Si wires on a Si (100) substrate. Once initiated in the presence of ?5 ML of C, lateral growth can be achieved in the range of temperatures, T?=?450–650?°C, and further controlled by the interplay of the flux of incoming Si atoms with the size and areal density of Au droplets. Critical thermodynamic and kinetic aspects of the growth are discussed in detail.

  9. Tantalum wire product development strategy : gaining a competitive advantage in a commodity market

    E-Print Network [OSTI]

    Hovav, Michal

    2006-01-01T23:59:59.000Z

    In the face of growing competition and the commoditization in the Tantalum Wire business, H.C. Starck must find a way to differentiate their wire products from competitors in order to survive in this market. This thesis ...

  10. Coaxial Wire Impedance Measurements of BPM Buttons for the PEP-II B-FACTORY

    E-Print Network [OSTI]

    Corlett, J.N.

    2011-01-01T23:59:59.000Z

    GHz) Figure 5. 1.5 cm BPM button in HER arc chamber.Wire Impedance Measurements of BPM Buttons for the PEP-lIB-WIRE IMPEDANCE MEASUREMENTS OF BPM BUTTONS FOR THE PEP-II B-

  11. DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER SENSORS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER turbine blade. We compare the data collected from the wireless sensors against wired sensors for nonstationary blade excitations. KEYWORDS : Structural Health Monitoring, Damage Detection, Wind Turbine

  12. A Laser-Wire System at the ATF Extraction Line

    SciTech Connect (OSTI)

    Boogert, S.T.; Blair, G.; Boorman, G.; Bosco, A.; Deacon, L.; Driouichi, C.; Karataev, P.; /Royal Holloway, U. of London; Kamps, T.; /BESSY, Berlin; Delerue, N.; Dixit, S.; Foster, B.; Gannaway, F.; Howell, D.F.; Qureshi, M.; Reichold, A.; Senanayake, R.; /Oxford U.; Aryshev, A.; Hayano, H.; Kubo, K.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba /Liverpool

    2007-02-12T23:59:59.000Z

    A new laser-wire (LW) system has been installed at the ATF extraction line at KEK, Tsukuba. The system aims at a micron-scale laser spot size and employs a mode-locked laser system. The purpose-built interaction chamber, light delivery optics, and lens systems are described, and the first results are presented.

  13. On Communication Requirements for Control-by-Wire Applications

    E-Print Network [OSTI]

    Johansson, Roger

    distributed control systems for safety critical applications #12;2003-08-07 ISSC 21 2003-08-07 ISSC 21 Presentation Overview · Distributed By-Wire Control, background and motivation · Dependable Real -Time Control Device Implementation hydraulics/pneumaticshydraulics/pneumatics mechanicsmechanics

  14. An equivalent complex permeability model for litz-wire windings

    E-Print Network [OSTI]

    -603-646-3856 Abstract-- Previous methods for calculating power loss in litz- wire windings usually assume very fine effect, increase power loss in windings at high frequencies dramatically. Accurately analyzing eddy of a proximity-effect loss factor, which is power loss per length normalized to the square of external field

  15. Carbon Fiber Components with Integrated Wiring for Millirobot Prototyping *

    E-Print Network [OSTI]

    Fearing, Ron

    assembly tool. Index Terms ­ millimeter-scale robots, modular part construction, integrated wiring, flexure and develop a construction kit for fabricating almost any design, similar to the kits that are available even during large motions. Future work will include the automated assembly of the parts with a low cost

  16. Superradiance in a two-channel quantum wire

    SciTech Connect (OSTI)

    Tayebi, A. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA and Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Zelevinsky, V. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-10-15T23:59:59.000Z

    A one-dimensional, two-channel quantum wire is studied in the effective non-Hermitian Hamiltonian framework. Analytical expressions are derived for the band structure of the isolated wire. Quantum states and transport properties of the wire coupled to two ideal leads at the edges are studied in detail. The width distribution of the quasistationary states varies as a function of the coupling strength to the environment. At weak coupling, all the eigenenergies uniformly acquire small widths. The picture changes entirely at strong coupling, a certain number of states (“super-radiant”) are greatly broadened, while the rest remain long-lived states, a pure quantum mechanical effect as a consequence of quantum interference. The transition between the two regimes greatly influences the transport properties of the system. The maximum transmission through the wire occurs at the super-radiance transition. We consider also a realistic situation with energy-dependent coupling to the continuum due to the existence of decay threshold where super-radiance still plays a significant role in transport properties of the system.

  17. First Test Results of the New LANSCE Wire Scanner

    SciTech Connect (OSTI)

    Sedillo, James Daniel [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    The Beam Diagnostics and Instrumentation Team (BDIT) at Los Alamos National Laboratory's LANSCE facility is presently developing a new and improved wire scanner diagnostics system controlled by National Instrument's cRIO platform. This paper describes the current state of development of the control system along with the results gathered from the latest actuator motion performance and accelerator-beam data acquisition tests.

  18. An Environmental Monitoring System with Integrated Wired and Wireless Sensors

    E-Print Network [OSTI]

    Huang, Yan

    environmental monitoring cyber infrastruc- ture that features (1) soil moisture monitoring with flexible spatial Environmental Observatory (TEO) infrastructure [9] for long-term operation. The new WSN-based soil moistureAn Environmental Monitoring System with Integrated Wired and Wireless Sensors Jue Yang, Chengyang

  19. Page 4 Summer 2004Wetland Wire Revisiting the Iraqi Marshlands

    E-Print Network [OSTI]

    wetlands ecology and management. They encountered water treatment and sewage treatment facilities that hadPage 4 Summer 2004Wetland Wire Revisiting the Iraqi Marshlands DUWC Director says restoration efforts are progressing, but the record is mixed hen Duke University Wetland Center Director Curtis

  20. Electronic structures of one-dimension carbon nano wires and H. Ding and J. P. Maier

    E-Print Network [OSTI]

    Maier, John Paul

    molecular wires have been extensively investigated using various methods.[2] These wires consist electronic devices as replacements for the Al or Cu wiring used in logic and memory devices.[1] One aromatic structures.[3-4] They are ideal model systems for studying the electronic structure of low

  1. Analysis of Minimum Cost in Shape-Optimized Litz-Wire Inductor Windings

    E-Print Network [OSTI]

    Analysis of Minimum Cost in Shape-Optimized Litz-Wire Inductor Windings C. R. Sullivan J. D. Mc the IEEE. #12;Analysis of Minimum Cost in Shape-Optimized Litz-Wire Inductor Windings Charles R. Sullivan://engineering.dartmouth.edu/inductor Abstract--Litz-wire windings for gapped inductors are optimized for minimum cost within a loss constraint

  2. Active Position Control of a Shape Memory Alloy Wire Actuated Composite Beam

    E-Print Network [OSTI]

    Active Position Control of a Shape Memory Alloy Wire Actuated Composite Beam Gangbing Songa, Bth the design and experiment results of active position control of a shape memory alloy (SMA) wires actuated composite beam. The composite beam is honeycomb structured with shape memory alloy wires embedded in one

  3. DNA MOLECULAR WIRE-BASED NANOELECTRONICS: NEW INSIGHT AND HIGH FREQUENCY AC ELECTRICAL

    E-Print Network [OSTI]

    Kassegne, Samuel Kinde

    DNA MOLECULAR WIRE-BASED NANOELECTRONICS: NEW INSIGHT AND HIGH FREQUENCY AC ELECTRICAL the Thesis of Denni Ari Wibowo: DNA Molecular Wire-Based Nanoelectronics: New Insight and High Frequency AC alone. #12;v ABSTRACT OF THE THESIS DNA Molecular Wire-Based Nanoelectronics: New Insight and High

  4. Wire-grid diffraction gratings used as polarizing beam splitter for

    E-Print Network [OSTI]

    Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied of wire grid polarizers as efficient polarizing beam splitters for visible light is studied. The large of wire-grid polarizers in liquid crystal on silicon display systems is considered. © 2005 Optical Society

  5. Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations

    E-Print Network [OSTI]

    Cai, Wei

    Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations t The orientation dependent plasticity in metal nanowires is investigated using molecular dynamics and dislocation wires controls the mechanisms of plastic deformation. For wires oriented along /1 1 0S, dislocations

  6. Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding

    E-Print Network [OSTI]

    Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding C. R. Sullivan Found Choice for Number of Strands in a Litz-Wire Transformer Winding Charles R. Sullivan Thayer School/inductor Abstract -- The number of strands to minimize loss in a litz-wire transformer winding is determined

  7. Global Economy and IT IT: Recovery and Growth Government and IT IT and Society Strengthening Economies Innovation in information technology (IT) has fueled unprecedented economic gains in the last 30

    E-Print Network [OSTI]

    Narasayya, Vivek

    Global Economy and IT IT: Recovery and Growth Government and IT IT and Society Strengthening Economies Innovation in information technology (IT) has fueled unprecedented economic gains in the last 30-term stimulus to local economies but also position both developed and developing economies to compete

  8. The aging of tungsten filaments and its effect on wire surface kinetics in hot-wire chemical vapor deposition

    E-Print Network [OSTI]

    Atwater, Harry

    desorption kinetics. In particular, the Si signal exhibits a high temperature activation energy consistent vapor deposition growth have been measured by quadrupole mass spectrometry. New wires produce Si with previous measurements; the activation energy for the SiH3 signal suggests its formation is catalyzed. Aged

  9. Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells

    E-Print Network [OSTI]

    Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN based on radial p­i­n multi quantum well (QW) junctions have been realized from GaN wires grown by catalyst- free metal organic vapor phase epitaxy. The Inx Ga1Àx N/GaN undoped QW system is coated over both

  10. Determination of thermal neutron capture gamma yields.

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  11. Determination of thermal neutron capture gamma yields

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  12. Preparation of high temperature superconducting coated wires by dipping and post annealing

    SciTech Connect (OSTI)

    Provenzano, V.; Singh, A.K.; Imam, M.A.; Tritt, T.M.

    1992-04-14T23:59:59.000Z

    This patent describes a process for coating a film on a wire substrate, it comprises: melting a superconducting metal oxide mixture in a crucible to form a melt; coating the substrate with a diffusion barrier; dipping the coated wire substrate into the melt; cooling the coated wire substrate at a rate sufficiently slow to avoid thermal shock and hot cracking; and post-annealing the cooled, coated wire substrate to relieve thermal stresses in the coating, whereupon the superconducting metal-oxide mixture forms a perovskite coating upon the wire substrate.

  13. The Top 10 Green-Tech Breakthroughs of 2008 | Wired Science from Wired.com http://blog.wired.com/wiredscience/2008/12/the-top-10-gree.html[2/20/2009 7:23:39 PM

    E-Print Network [OSTI]

    Yaghi, Omar M.

    the other Wired feeds . Subscribe to WIRED Renew Give a gift Customer Service EDITOR: Betsy Mason | email Tech Breakthroughs of 2008, alternatively titled, The Great Green Hope. 10. THE ISLAND OF THE SOLAR With money flowing like milk and honey in the land of solar technology, all sorts of schemers and dreamers

  14. Growth and characterization of horizontal GaN wires on silicon

    SciTech Connect (OSTI)

    Zou, Xinbo; May Lau, Kei, E-mail: eekmlau@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon (Hong Kong); HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon (Hong Kong); Lu, Xing [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon (Hong Kong); Lucas, Ryan [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Kuech, Thomas F. [HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon (Hong Kong); Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Choi, Jonathan W.; Gopalan, Padma [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-06-30T23:59:59.000Z

    We report the growth of in-plane GaN wires on silicon by metalorganic chemical vapor deposition. Triangular-shaped GaN microwires with semi-polar sidewalls are observed to grow on top of a GaN/Si template patterned with nano-porous SiO{sub 2}. With a length-to-thickness ratio ?200, the GaN wires are well aligned along the three equivalent ? 112{sup ¯}0 ? directions. Micro-Raman measurements indicate negligible stress and a low defect density inside the wires. Stacking faults were found to be the only defect type in the GaN wire by cross-sectional transmission electron microscopy. The GaN wires exhibited high conductivity, and the resistivity was 20–30 m? cm, regardless of the wire thickness. With proper heterostructure and doping design, these highly aligned GaN wires are promising for photonic and electronic applications monolithically integrated on silicon.

  15. Ionisation losses and wire scanner heating evaluation, possible solutions, application to the LHC

    E-Print Network [OSTI]

    Fischer, C

    2000-01-01T23:59:59.000Z

    Harmful heating mechanisms, resulting in wire breakage, limit the utilisation of wire scanner monitors to below a given beam intensity. This threshold depends on the accelerator design parameters. In lepton colliders, the short beam bunches generate strong wake-fields inside the vacuum pipe which are sensed by the wire and are the predominant current limit. These effects can be minimised by a smooth design of the monitor cross section and by choosing a wire made of an insulating material [1]. A second source of energy deposition inside the wire, also present in hadron machines, and even when the wire material is insulating, results from collision and ionisation of the wire material atoms by the incident beam particles. Calculations are presented to evaluate the efficiency of this process and a possible solution is suggested which may reduce this limitation. An example is given for the case of the LHC.

  16. PARALLEL ION BEAM PROFILE SCAN USING LASER WIRE

    SciTech Connect (OSTI)

    Liu, Yun [ORNL; Aleksandrov, Alexander V [ORNL; Huang, Chunning [ORNL; Long, Cary D [ORNL; Dickson, Richard W [ORNL

    2013-01-01T23:59:59.000Z

    We report on the world s first experiment of a parallel profile scan of the hydrogen ion (H-) beam using a laser wire system. The system was developed at the superconducting linac of the Spallation Neutron Source (SNS) accelerator complex. The laser wire profile scanner is based on a photo-detachment process and therefore can be conducted on an operational H- beam in a nonintrusive manner. The parallel profile scanning system makes it possible to simultaneously measure profiles of the 1-MW neutron production H- beam at 9 different locations of the linac by using a single light source. This paper describes the design, optical system and software platform development, and measurement results of the parallel profile scanning system.

  17. Measurements of proportional scintillation in liquid xenon using thin wires

    E-Print Network [OSTI]

    Aprile, E; Goetzke, L W; Fernandez, A J Melgarejo; Messina, M; Naganoma, J; Plante, G; Rizzo, A; Shagin, P; Wall, R

    2014-01-01T23:59:59.000Z

    Proportional scintillation in liquid xenon has a promising application in the field of direct dark matter detection, potentially allowing for simpler, more sensitive detectors. However, knowledge of the basic properties of the phenomenon as well as guidelines for its practical use are currently limited. We report here on measurements of proportional scintillation light emitted in liquid xenon around thin wires. The maximum proportional scintillation gain of $287^{+97}_{-75}$ photons per drift electron was obtained using 10 $\\mu$m diameter gold plated tungsten wire. The thresholds for electron multiplication and proportional scintillation are measured as $725^{+48}_{-139}$ and $412^{+10}_{-133}$ kV/cm, respectively. The threshold for proportional scintillation is in good agreement with a previously published result, while the electron multiplication threshold represents a novel measurement. A complete set of parameters for the practical use of the electron multiplication and proportional scintillation processe...

  18. A-15 Superconducting composite wires and a method for making

    DOE Patents [OSTI]

    Suenaga, Masaki (Bellport, NY); Klamut, Carl J. (East Patchogue, NY); Luhman, Thomas S. (Westhampton Beach, NY)

    1984-01-01T23:59:59.000Z

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  19. Wrapping process for fabrication of A-15 superconducting composite wires

    DOE Patents [OSTI]

    Suenaga, M.; Klamut, C.J.; Luhman, T.S.

    1980-08-15T23:59:59.000Z

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  20. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect (OSTI)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15T23:59:59.000Z

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  1. Narrow gap welding with the hot wire GTA process

    SciTech Connect (OSTI)

    Cook, G.E.; Levick, P.C.

    1985-08-01T23:59:59.000Z

    Narrow gap welding offers the promise of dramatically improved weld completion rates and reduced heat input for welding of butt joints in materials of 10 mm (0.4 in.) section thickness and larger. Techniques for successful welding of narrow gap joint preparations have been discussed in the literature for approximately twenty years, with the majority of these based on the consumable electrode processes. Gas tungsten arc welding with cold wire filler addition has been shown to be capable of narrow gap welding although limited deposition rate capability has not made this a competitive alternative. The GTAW process offers the advantages of superior penetration control for one-sided welding of butt joints, as well as the potential for reducing incomplete fusion defects. The addition of hot wire filler metal to the gas tungsten arc provides an attractive alternative that combines high deposition rate capability and independent control of heat input.

  2. 10/10/2014 Your Beer Attracts Fruit Flies on Purpose | WIRED http://www.wired.com/2014/10/beer-yeast-attracts-fruit-flies/#disqus_thread 15/31

    E-Print Network [OSTI]

    10/10/2014 Your Beer Attracts Fruit Flies on Purpose | WIRED http://www.wired.com/2014/10/beer-yeast-attracts-fruit-flies/#disqus_thread 15/31 Insider Subscribe #12;10/10/2014 Your Beer Attracts Fruit Flies on Purpose | WIRED http://www.wired.com/2014/10/beer-yeast-attracts-fruit-flies/#disqus_thread 16/31 RSS Search Science beer Follow Wired

  3. Introduction to ANL`s effort in HTSc wire development

    SciTech Connect (OSTI)

    Balachandran, U.; Crabtree, G.W.; Dorris, S.E.; Ellingson, W.A.; Goretta, K.C.; Gray, K.E.; Kupperman, D.S.; Kampwirth, R.T.; Lanagan, M.T.; Maroni, V.A. [Argonne National Lab., IL (United States)] [and others

    1994-07-29T23:59:59.000Z

    The objective of this work is to develop, in the shortest possible time, methods to fabricate and use reliable HTS conductors in commercial applications for generation, transmission, and storage of electrical energy. The multiyear, experimental program focuses on improvement of materials properties, development of fabrication methods, and design and testing of HTS components and systems, with emphasis placed on wire and coil production. Collaborations with industry and academia are integral to the effort.

  4. Near net shape processing of continuous lengths of superconducting wire

    DOE Patents [OSTI]

    Danyluk, S.; McNallan, M.; Troendly, R.; Poeppel, R.; Goretta, K.; Lanagan, M.

    1997-08-26T23:59:59.000Z

    A system and method for mechanically forming a ceramic superconductor product are disclosed. A system for making the ceramic superconductor includes a metallic channel portion having a cross section for receiving a ceramic superconductor powder, a roll to mechanically reduce the channel cross section and included superconductor powder and a cap portion welded to the channel portion using a localized high energy source. The assembled bar is then mechanically reduced to form a tape or wire end product. 9 figs.

  5. Near net shape processing of continuous lengths of superconducting wire

    DOE Patents [OSTI]

    Danyluk, Steven (Atlanta, GA); McNallan, Michael (Oak Park, IL); Troendly, Robert (St. Charles, IL); Poeppel, Roger (Glen Ellyn, IL); Goretta, Kenneth (Downer Grove, IL); Lanagan, Michael (Woodridge, IL)

    1997-01-01T23:59:59.000Z

    A system and method for mechanically forming a ceramic superconductor product. A system for making the ceramic superconductor includes a metallic channel portion having a cross section for receiving a ceramic superconductor powder, a roll to mechanically reduce the channel cross section and included superconductor powder and a cap portion welded to the channel portion using a localized high energy source. The assembled bar is then mechanically reduced to form a tape or wire end product.

  6. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  7. Yield criteria for quasibrittle and frictional materials

    E-Print Network [OSTI]

    Davide Bigoni; Andrea Piccolroaz

    2010-10-09T23:59:59.000Z

    A new yield/damage function is proposed for modelling the inelastic behaviour of a broad class of pressure-sensitive, frictional, ductile and brittle-cohesive materials. The yield function allows the possibility of describing a transition between the shape of a yield surface typical of a class of materials to that typical of another class of materals. This is a fundamental key to model the behaviour of materials which become cohesive during hardening (so that the shape of the yield surface evolves from that typical of a granular material to that typical of a dense material), or which decrease cohesion due to damage accumulation. The proposed yield function is shown to agree with a variety of experimental data relative to soil, concrete, rock, metallic and composite powders, metallic foams, porous metals, and polymers. The yield function represents a single, convex and smooth surface in stress space approaching as limit situations well-known criteria and the extreme limits of convexity in the deviatoric plane. The yield function is therefore a generalization of several criteria, including von Mises, Drucker-Prager, Tresca, modified Tresca, Coulomb-Mohr, modified Cam-clay, and --concerning the deviatoric section-- Rankine and Ottosen. Convexity of the function is proved by developing two general propositions relating convexity of the yield surface to convexity of the corresponding function. These propositions are general and therefore may be employed to generate other convex yield functions.

  8. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil

    2007-06-01T23:59:59.000Z

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  9. Studies of IBL wire bonds operation in a ATLAS-like magnetic field.

    E-Print Network [OSTI]

    Alvarez Feito, D; Mandelli, B

    2015-01-01T23:59:59.000Z

    At the Large Hadron Collider (LHC) experiments, most of silicon detectors use wire bonds to connect front-end chips and sensors to circuit boards for the data and service trans- missions. These wire bonds are operated in strong magnetic field environments and if time varying currents pass through them with frequencies close to their mechanical resonance frequency, strong resonant oscillations may occur. Under certain conditions, this effect can lead to fatigue stress and eventually breakage of wire bonds. During the first LHC Long Shutdown, the ATLAS Pixel Detector has been upgraded with the addition of a fourth innermost layer, the Insertable B-Layer (IBL), which has more than 50000 wire bonds operated in the ATLAS 2 T magnetic field. The results of systematic studies of operating wire bonds under IBL-like conditions are presented. Two different solutions have been investigated to minimize the oscillation amplitude of wire bonds.

  10. Parallel-wire grid assembly with method and apparatus for construction thereof

    DOE Patents [OSTI]

    Lewandowski, Edward F. (Westmont, IL); Vrabec, John (South Holland, IL)

    1984-01-01T23:59:59.000Z

    Disclosed is a parallel wire grid and an apparatus and method for making the same. The grid consists of a generally coplanar array of parallel spaced-apart wires secured between metallic frame members by an electrically conductive epoxy. The method consists of continuously winding a wire about a novel winding apparatus comprising a plurality of spaced-apart generally parallel spindles. Each spindle is threaded with a number of predeterminedly spaced-apart grooves which receive and accurately position the wire at predetermined positions along the spindle. Overlying frame members coated with electrically conductive epoxy are then placed on either side of the wire array and are drawn together. After the epoxy hardens, portions of the wire array lying outside the frame members are trimmed away.

  11. Current shunting and formation of stationary shock waves during electric explosions of metal wires in air

    SciTech Connect (OSTI)

    Ivanenkov, G. V.; Gus'kov, S. Yu.; Barishpol'tsev, D. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2010-01-15T23:59:59.000Z

    Results of experiments on the generation of shock waves during electric explosions of fine copper and tungsten wires in air are analyzed. The generation mechanism of stationary shock wave by a plasma piston formed during the shunting breakdown of the electrode gap in the course of a wire explosion is investigated. The role of structural elements of such discharges, such as the core, corona, and wire environment, is analyzed.

  12. Study of plasma dynamics affected by a global magnetic field in linear wire array Z pinches

    SciTech Connect (OSTI)

    Hu Min; Kusse, Bruce R. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States)

    2005-10-01T23:59:59.000Z

    In the experiments described in this paper a linear wire array composed of several wires (e.g., four wires) was viewed as a small portion of a large cylindrical array. Comparing to cylindrical arrays, linear wire arrays have relatively simple geometry and therefore are much easier to diagnose. To simulate the global magnetic field present in a cylindrical array, a return current conductor was positioned near the linear wire array. A global magnetic field in the tens of Tesla was produced by the return current in the vicinity of the linear array. The plasma dynamics affected by the global magnetic field was studied using shearing interferometry and x-ray backlighting techniques. Experimental results on tungsten wire arrays (four wires, 1.4 cm long, 12.7 {mu}m diameter, 1 mm interwire gaps) are discussed. Current transfer from wire cores to the surrounding corona plasmas appeared to happen at around 10 ns relative to the start of the current pulse. After that, some of the wire plasma was swept away from the wire cores by the JxB force and formed a localized, high-density peak (precursor plasma). The motion of the precursor plasma was observed to accelerate for about 20 ns, indicating that current was present inside the precursor plasma during this time range. Using an x-ray backlighter and a laser interferometer, the resumption of wire core expansion, major mass ablation, and the termination of precursor plasma acceleration were observed to occur at 32-34 ns. These effects can be interpreted as evidence of the transfer of the current back to the wire cores from the precursor plasma.

  13. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    SciTech Connect (OSTI)

    Kaur, Jaskiran, E-mail: kaur.jaskiran@gmail.com; Kaur, Harmanmeet, E-mail: kaur.jaskiran@gmail.com; Singh, Surinder, E-mail: kaur.jaskiran@gmail.com [Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India); Kanjilal, Dinakar [Inter-University Accelerator Centre, New Delhi-110067 (India); Chakarvarti, Shiv Kumar [Manav Rachna International University, Faridabad-121003 (India)

    2014-04-24T23:59:59.000Z

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot.

  14. Advances in the development of wire mesh reactor for coal gasification studies - article no. 084102

    SciTech Connect (OSTI)

    Zeng, C.; Chen, L.; Liu, G.; Li, W.H.; Huang, B.M.; Zhu, H.D.; Zhang, B.; Zamansky, V. [GE Global Research Shanghai, Shanghai (China)

    2008-08-15T23:59:59.000Z

    In an effort to further understand the coal gasification behavior in entrained-flow gasifiers, a high pressure and high temperature wire mesh reactor with new features was recently built. An advanced LABVIEW-based temperature measurement and control system were adapted. Molybdenum wire mesh with aperture smaller than 70 {mu} m and type D thermocouple were used to enable high carbon conversion ({gt}90%) at temperatures {gt}1000 {sup o}C. Gaseous species from wire mesh reactor were quantified using a high sensitivity gas chromatography. The material balance of coal pyrolysis in wire mesh reactor was demonstrated for the first time by improving the volatile's quantification techniques.

  15. Fire Together --Wire Together --Come Together Cornelius Weber and Jochen Triesch

    E-Print Network [OSTI]

    Weber, Cornelius

    Fire Together -- Wire Together -- Come Together Cornelius Weber and Jochen Triesch Frankfurt­ mary Visual Cortex. C. Weber Proc. ICANN 1147­52, 2001. #12;

  16. Theory of AC Loss in Cables with 2G HTS Wire

    SciTech Connect (OSTI)

    Clem, J.R.; Malozemoff, A.P.

    2009-09-13T23:59:59.000Z

    While considerable work has been done to understand AC losses in power cables made of first generation (1G) high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer 2G wire reduces the surface superconductor hysteretic losses. Instead, gap and polygonal losses, flux transfer losses in imbalanced two layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward.

  17. Wire-shaped semiconductor light-emitting diodes for general-purpose lighting

    SciTech Connect (OSTI)

    Mauk, Michael G.

    2002-10-28T23:59:59.000Z

    The object of this work is to develop and optimize a new type of light-emitting diode (LED) with a wire-shaped, cylindrical geometry.

  18. Health Monitoring of Drive Connected Three-Phase Induction Motors ----- From Wired Towards Wireless Sensor Networks

    E-Print Network [OSTI]

    Xue, Xin

    2009-01-01T23:59:59.000Z

    A Statistical Evaluation," in Sensor, Mesh and Ad Hocmotor. Wireless sensor spectrum Evaluation board spectruminside Wired sensor outside Evaluation board outside (b)

  19. Final report on development of Pulse Arrested Spark Discharge (PASD) for aging aircraft wiring application.

    SciTech Connect (OSTI)

    Lockner, Thomas Ramsbeck; Howard, R. Kevin; Peña, Gary Edward; Schneider, Larry X.; Higgins, Matthew B.; Glover, Steven Frank

    2006-09-01T23:59:59.000Z

    Pulsed Arrested Spark Discharge (PASD) is a Sandia National Laboratories Patented, non-destructive wiring system diagnostic that has been developed to detect defects in aging wiring systems in the commercial aircraft fleet. PASD was previously demonstrated on relatively controlled geometry wiring such as coaxial cables and shielded twisted-pair wiring through a contract with the U.S. navy and is discussed in a Sandia National Laboratories report, SAND2001-3225 ''Pulsed Arrested Spark Discharge (PASD) Diagnostic Technique for the Location of Defects in Aging Wiring Systems''. This report describes an expansion of earlier work by applying the PASD technique to unshielded twisted-pair and discrete wire configurations commonly found in commercial aircraft. This wiring is characterized by higher impedances as well as relatively non-uniform impedance profiles that have been found to be challenging for existing aircraft wiring diagnostics. Under a three year contract let by the Federal Aviation Administration, Interagency Agreement DTFA-03-00X90019, this technology was further developed for application on aging commercial aircraft wiring systems. This report describes results of the FAA program with discussion of previous work conducted under U.S. Department of Defense funding.

  20. Risk of damaging the wires by edges of laser drilled holes in the end plugs

    E-Print Network [OSTI]

    Staude, A; Trefzger, T M

    1998-01-01T23:59:59.000Z

    No sign of damage to the wire by edges of the laser drilled hole has been seen, based on a sample of four end plugs.

  1. Synthesis of Superconducting MgB2 Wire, Tapes and Films - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Transmission Find More Like This Return to Search Synthesis of Superconducting MgB2 Wire, Tapes and Films Ames Laboratory Contact AMES About This Technology...

  2. Formulation of Molding Materials From Recycled Printed Wiring Boards

    SciTech Connect (OSTI)

    Lula, J.W.; Bohnert, G.W.

    1998-04-20T23:59:59.000Z

    The objective of this project was to formulate the pulverized electronic waste (PEW) stream derived from grinding obsolete electronic assemblies and combine this material with thermoplastic or thermosetting polymers into useful, high-value commercial products materials. PEW consists primarily of various thermoset plastic materials and glass fibers from the printed wiring boards, along with ceramic pieces from chip carriers and other electronic components. Typically, the thermosetting materials have the same desirable properties as in the original electronic assembly, including relatively high temperature resistance, excellent chemical resistance, and flame retardancy. These properties combine to make PEW an inherently good inert filler material for plastic composites.

  3. SpaceWire model development technology for satellite architecture.

    SciTech Connect (OSTI)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01T23:59:59.000Z

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  4. HTS wire irradiation test with 8 GeV protons

    SciTech Connect (OSTI)

    S. Feher; H. Glass; Y. Huang; P.J. Limon; D.F. Orris; P. Schlabach; M.A. Tartaglia; J.C. Tompkins

    1999-11-02T23:59:59.000Z

    The radiation level at High Energy Particle Accelerators (HEPA) is relatively high. Any active component which should be close to the accelerator has to be radiation hard. Since High Temperature Superconductors (HTS) have a great potential to be used in HEPAs (e.g., in superconducting magnets, current leads, RF cavities), it is important to understand the radiation hardness of these materials. A radiation test of HTS wire (Bi-2223) was performed at Fermilab. The HTS sample was irradiated with 8 GeV protons and the relative I{sub c} was measured during the irradiation. The total radiation dose was 10 Mrad, and no I{sub c} degradation was observed.

  5. Testing the 2-element 4-wire delta watthour meter 

    E-Print Network [OSTI]

    Grasshoff, Lynn Howard

    1950-01-01T23:59:59.000Z

    & and other material& and for affording valuable suggestions for the prepaxation of this thesis. Appreciation is also exnxressed to M! . R. H. Mighell and Mr. H. E. Trekell of the General Electric Company fax supplying a ~ire delta meter and various... four wire delta system is used to supply polyphase and single phase loads from a bank of delta-oonneeted transformers. The squit is illustrated in Pigure L, Polyphase loads are supplied in the usual manner from the three lines a b-o, and single phase...

  6. Effects of guy wires on SWECS tower dynamics. Technical report

    SciTech Connect (OSTI)

    Butterfield, C P; Pykkonen, K R; Sexton, J H

    1980-07-01T23:59:59.000Z

    The Rocky Flats (RF) Supporting Research and Technology (SRT) study for tower testing/analysis has led to some useful information concerning the effect of tower guy pretension on small wind system tower dynamics. The effect of guy-wire pretension on tower natural frequencies is usually considered negligible if the guy: (1) has no sag caused by gravity, and (2) the tension is not approaching the tower buckling load. At the rf test center it was found that, for the test tower even when these conditions were avoided, the guy fundamental frequency must be 30% greater than the tower fundamental frequency to maintain the fundamental's characteristics.

  7. Surface spin flip probability of mesoscopic Ag wires.

    SciTech Connect (OSTI)

    Mihajlovic, G.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.

    2010-06-08T23:59:59.000Z

    Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is studied via nonlocal spin valve and Hanle effect measurements performed on Permalloy/Ag lateral spin valves. The ratio between momentum and spin relaxation times is not constant at low temperatures. This can be explained with the Elliott-Yafet spin relaxation mechanism by considering the momentum surface relaxation time as being temperature dependent. We present a model to separately determine spin flip probabilities for phonon, impurity and surface scattering and find that the spin flip probability is highest for surface scattering.

  8. Yasunaga Wire Saw Systems Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower CoYasunaga Wire Saw Systems Co

  9. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict4VacancyVacancy-Induced Nanoscale Wire

  10. Electromechanical characterization of superconducting wires and tapes at 77 K

    E-Print Network [OSTI]

    Bjoerstad, Roger

    The strain dependency of the critical current in state-of-the-art cuprate high-temperature superconductors (HTS) has been characterized. A universal test machine (UTM) combined with a critical current measurement system has been used to characterize the mechanical and the superconducting properties of conductors immersed in an open liquid nitrogen dewar. A set-up has been developed in order to perform simultaneous measurements of the superconductor lattice parameter changes, critical current, as well as the stress and strain at 77 K in self-field in a high energy synchrotron beamline. The HTS tapes and wires studied were based on YBCO, Bi-2223 and Bi-2212. The YBCO tapes were produced by SuperPower and American Superconductors (AMSC). Two types of Bi-2223 tapes, HT and G, were produced by Sumitomo Electric Industries (SEI). The Bi-2212 wires were produced by Oxford Superconducting Technology (OST) using Nexans granulate precursor, before undergoing a specialized over pressure (OP) processing and heat treatmen...

  11. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect (OSTI)

    Bae, In-Tae; Young Jung, Dae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Chen, William T.; Du Yong [Advanced Semiconductor Engineering Inc., 1255 E Arques Ave, Sunnyvale, California 94085 (United States)

    2012-12-15T23:59:59.000Z

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  12. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    SciTech Connect (OSTI)

    Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15T23:59:59.000Z

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  13. Numerical investigation on the implosion dynamics of wire-array Z-pinches in (r, {theta}) geometry

    SciTech Connect (OSTI)

    Huang Jun; Ding Ning; Ning Cheng; Sun Shunkai; Zhang Yang; Xiao Delong; Xue Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2012-06-15T23:59:59.000Z

    The implosion dynamics of wire-array Z-pinches are investigated numerically in 2D (r, {theta}) geometry by using a resistive MHD code. It is assumed that the wires have expanded to plasmas with diameter d{sub 0}, which is used as the initial condition for the consequent implosion process. In fact, the explosion process of individual wires is not included. By changing d{sub 0}, the effects of the wire expansion degree on the implosion dynamics are analyzed. When d{sub 0} is larger, the current density is more concentrated at the outer side of the wires and the fraction of current flow around the wire plasmas is nearly in proportion to d{sub 0}. As a result, the ablation rate of wires is increased and the implosion phase starts earlier. This conclusion agrees with the simulation works of other authors [Chittenden et al., Phys. Plasmas 11(3), 1118 (2004)]. When the array radius and initial wire plasma diameter are fixed, the increase of wire number leads to the azimuthal merge of wires during implosion. When the wires number exceed a critical value, which is related to d{sub 0}, wire plasmas can merge to a continuous shell with an azimuthal perturbation in density, which depends on the initial wires number.

  14. Revenue impacts of airline yield management

    E-Print Network [OSTI]

    Mak, Chung Yu

    1992-01-01T23:59:59.000Z

    In the highly competitive airline industry today, Yield or Revenue Management is extremely important to the survival of any carrier. Since fares are generally matched by all carriers to be competitive, the ability of an ...

  15. Secondary Voltage Unbalance Compensation for Three-Phase Four-Wire Islanded Microgrids

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    as a cluster of distributed resources (DRs), i.e. distributed generation (DG), distributed storage (DSSecondary Voltage Unbalance Compensation for Three-Phase Four-Wire Islanded Microgrids Fen Tang four-wire islanded microgrid systems. It is implemented in the secondary control level of the microgrid

  16. Simplified High-Accuracy Calculation of Eddy-Current Losses in Round-Wire Windings

    E-Print Network [OSTI]

    Simplified High-Accuracy Calculation of Eddy-Current Losses in Round-Wire Windings Xi Nan C. R the IEEE. #12;Simplified High-Accuracy Calculation of Eddy-Current Loss in Round-Wire Windings Xi Nan-- It has recently been shown that the most commonly used methods for calculating high-frequency eddy-current

  17. THz Sommerfeld wave propagation on a single metal wire Tae-In Jeon,a

    E-Print Network [OSTI]

    THz Sommerfeld wave propagation on a single metal wire Tae-In Jeon,a Jiangquan Zhang, and D an experimental and theoretical study of THz Sommerfeld wave propagation on a single copper wire. THz pulses increasing interest on the guided wave propagation of THz pulses, and much effort and progress on THz

  18. Development and application of composite overhead ground wire with optical fibers

    SciTech Connect (OSTI)

    Tsujimoto, K.; Kato, T.; Okazato, A.; Sakurada, H.

    1983-05-01T23:59:59.000Z

    A overhead ground wire composed with optical fibers has been developed, as well as the accessories and the joints. The overhead ground wire is provided with an aluminum pipe at the core thereof in which the optical fibers are inserted. The composite overhead ground wire with optical fibers was installed for the Kaga-Reinan 500 kV overhead transmission line in autumn, 1981 for the purposes of observing lightning and using as telecommunication line, as well. After the successful performance of the optical fiber, especially in view of transmission loss after installation, has been proved, the composite overhead ground wire is now being checked for the purposes as stated above. The ground wire was also installed for the Tsuruga Test Line at about the same time and investigations were started to confirm the reliability of the optical fiber to be over a long period of time under severe meteorological conditions such as strong winds and icing. The construction of the composite ground wire with optical fibers is such that the optical fibers contained therein are not restrained by the ground wire itself. This enables insertion and pulling out of optical fiber cables. Tests were conducted at certain sections of the Kaga-Reinan Line to confirm that there was no change in the performance of the optical fibers due to such operations of insertion and pulling out. This report briefly discusses the development of the composite ground wire with optical fibers, its installation and the test results.

  19. On the Design of Shape Memory Alloy Wire Bundle Actuators Kathryn J. De Laurentis1

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    On the Design of Shape Memory Alloy Wire Bundle Actuators Kathryn J. De Laurentis1 , Avi Fisch2 the optimization of the design of Shape Memory Alloy (SMA) muscle wire bundle actuators. Current literature. In this paper, we studied the optimal design of Nickel Titanium Shape Memory Alloy (SMA) based actuators. SMAs

  20. Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic

    E-Print Network [OSTI]

    Napp, Nils

    Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic Leia Stirling, Chih-Han Yu muscle atrophy. In this study, we examined NiTi shape memory alloy (SMA) wires that were annealed material could be appropriate for slower timescale applications. Keywords gait, orthotic, shape memory

  1. Spin-dependent thermoelectric transport coefficients in near perfect quantum wires A. Ramsak,1,2

    E-Print Network [OSTI]

    Ramsak, Anton

    Spin-dependent thermoelectric transport coefficients in near perfect quantum wires T. Rejec,1 A 2002 Thermoelectric transport coefficients are determined for semiconductor quantum wires with weak in thermoelectric coefficients are also found in standard strongly correlated systems: the Anderson model,6

  2. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    SciTech Connect (OSTI)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01T23:59:59.000Z

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  3. Coulomb blockade effects in anodically oxidized titanium wires V. Schollmann,a)

    E-Print Network [OSTI]

    Haviland, David

    Coulomb blockade effects in anodically oxidized titanium wires V. Scho¨llmann,a) J. Johansson, K properties of narrow titanium Ti wires which are anodically oxidized through a resist mask. At temperatures- stricted to the temperature range where the charging energy is sufficiently large such that thermal

  4. Mechanical Properties of Controlled Memory and Superelastic Nickel-Titanium Wires Used in the Manufacture

    E-Print Network [OSTI]

    Zheng, Yufeng

    Mechanical Properties of Controlled Memory and Superelastic Nickel-Titanium Wires Used was to investigate the structure and mechanical properties of newly devel- oped controlled memory (CM) nickel-titanium transformation behavior of both types of wires were examined by x-ray energy dispersive spectroscopy

  5. Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding

    E-Print Network [OSTI]

    component of this work in other works must be obtained from the IEEE. #12;IEEE TRANSACTIONS ON POWER wire, magnet wire, power electronics, power transformers, proximity-effect losses, skin ef- fect of magnetic components for a solar-powered race vehicle [1] (the original impetus for this work) an optimal

  6. Addressing equipment set-up time and manufacturing cost through real time inline inspection in tantalum wire manufacturing

    E-Print Network [OSTI]

    González, Carlos A. (Carlos Alberto), 1972-

    2004-01-01T23:59:59.000Z

    For this study, a novel wire inspection system was developed to detect surface defects and monitor diameter real-time during the final wire drawing operation. Throughout his work, it was proven that the new inspection ...

  7. Evaluation of a 6-wire thermocouple psychrometer for determination of in-situ water potentials

    SciTech Connect (OSTI)

    Loskot, C.L.; Rousseau, J.P. [Geological Survey, Denver, CO (United States); Kurzmack, M.A. [Foothill Engineering Consultants, Golden, CO (United States)

    1994-12-31T23:59:59.000Z

    A 6-wire, Peltier-type thermocouple psychrometer was designed and evaluated by the U.S. Geological Survey for monitoring in-situ water potentials in dry-drilled boreholes in the unsaturated zone at Yucca Mountain, Nye County, Nevada. The psychrometer consists of a wet-bulb, chromel-constantan, sensing junction and a separate dry-bulb, copper-constantan, reference junction. Two additional reference junctions are formed where the chromel and constantan wires of the wet-bulb sensing junction are soldered to separate, paired, copper, lead wires. In contrast, in the standard 3-wire thermocouple psychrometer, both the wet bulb and dry bulb share a common wire. The new design has resulted in a psychrometer that has an expanded range and greater reliability, sensitivity, and accuracy compared to the standard model.

  8. V-1 TRANSITION AND N-VALUE OF MULTIFILAMENTARY LTS AND HTS WIRES AND CABLES.

    SciTech Connect (OSTI)

    GHOSH,A.K.

    2003-05-25T23:59:59.000Z

    For low T, multifilamentary conductors like NbTi and Nb{sub 3}Sn, the V-I transition to the normal state is typically quantified by the parameter, n, defined by ({rho}/{rho}{sub c})= (I/I{sub c}){sup n}. For NbTi, this parameterization has been very useful in the development of high Jc wires, where the n-value is regarded as an index of the filament quality. In copper-matrix wires with undistorted filaments, the n-value at 5T is {approx} 40-60, and drops monotonically with increasing field. However, n can vary significantly in conductors with higher resistivity matrices and those with a low copper fraction. Usually high n-values are associated with unstable resistive behavior and premature quenching. The n-value in NbTi Rutherford cables, when compared to that in the wires is useful in evaluating cabling degradation of the critical current due to compaction at the edges of the cable. In Nb{sub 3}Sn wires, n-value has been a less useful tool, since often the resistive transition shows small voltages {approx} a few {mu}V prior to quenching. However, in ''well behaved'' wires, n is {approx} 30-40 at 12T and also shows a monotonic behavior with field. Strain induced I{sub c} degradation in these wires is usually associated with lower n-values. For high T{sub c} multifilamentary wires and tapes, a similar power law often describes the resistive transition. At 4.2K, Bi-2223 tapes as well as Bi-2212 wires exhibit n-values {approx} 15-20. In either case, n does not change appreciably with field. Rutherford cables of Bi-2212 wire show lower values of n than the virgin wire.

  9. Fig. 1. Si wire array solar cell geometry modeled in this study. Inset: Scanning electron micrograph of polymer-

    E-Print Network [OSTI]

    Atwater, Harry

    Fig. 1. Si wire array solar cell geometry modeled in this study. Inset: Scanning electron-n junction PREDICTED EFFICIENCY OF SI WIRE ARRAY SOLAR CELLS M. D. Kelzenberg, M. C. Putnam, D. B. Turner cells based on arrays of CVD-grown Si nano- or micro-wires have attracted interest as potentially low-cost

  10. Method for producing strain tolerant multifilamentary oxide superconducting wire

    DOE Patents [OSTI]

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1994-07-19T23:59:59.000Z

    A strain tolerant multifilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments. 6 figs.

  11. Effect of heat treatment temperature on nitinol wire

    SciTech Connect (OSTI)

    Cai, S.; Schaffer, J. E. [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Ave., Fort Wayne, Indiana 46809 (United States); Daymond, M. R. [Department of Mechanical and Materials Engineering, Queen's University, Nicol Hall, 60 Union Street, Kingston, Ontario K7L 3N6 (Canada); Yu, C. [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 102249 Beijing (China); Ren, Y. [Argonne National Laboratory, 9700 S. Cass Ave, 433/D008, Argonne, Illinois 60439 (United States)

    2014-08-18T23:59:59.000Z

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the (332){sub B2} fiber towards the (111){sub B2} fiber, and the texture of the Stress-Induced Martensite phase changed from the (1{sup ¯}40){sub B19'} to the (1{sup ¯}20){sub B19'} fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  12. Yield Stress Materials in Soft Condensed Matter

    E-Print Network [OSTI]

    Daniel Bonn; Jose Paredes; Morton M. Denn; Ludovic Berthier; Thibaut Divoux; Sébastien Manneville

    2015-02-18T23:59:59.000Z

    We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of soft materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear response to an external mechanical forcing, which results from the existence of a finite force threshold for flow to occur, the yield stress. We discuss both the physical origin and the rheological consequences associated with this nonlinear behavior. We give an overview of the different experimental techniques developed to measure the yield stress. We discuss extensively the recent progress concerning a microscopic description of the flow dynamics of yield stress materials, emphasizing in particular the role played by relaxation timescales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects in confined geometries. We finally review the status of modeling of the shear rheology of yield stress materials in the framework of continuum mechanics.

  13. Simulation of blast-furnace tuyere and raceway conditions in a wire mesh reactor: extents of combustion and gasification

    SciTech Connect (OSTI)

    Long Wu; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2007-08-15T23:59:59.000Z

    A wire mesh reactor has been modified to investigate reactions of coal particles in the tuyeres and raceways of blast furnaces. At temperatures above 1000{sup o}C, pyrolysis reactions are completed within 1 s. The release of organic volatiles is probably completed by 1500{sup o}C, but the volatile yield shows a small increase up to 2000{sup o}C. The additional weight loss at the higher temperature may be due to weight loss from inorganic material. The residence time in the raceway is typically 20 ms, so it is likely that pyrolysis of the coal will continue throughout the passage along the raceway and into the base of the furnace shaft. Combustion reactions were investigated using a trapped air injection system, which admitted a short pulse of air into the wire mesh reactor sweep gas stream. In these experiments, the temperature and partial pressure of O{sub 2} were limited by the oxidation of the molybdenum mesh. However, the tests have provided valid insight into the extent of this reaction at conditions close to those experienced in the raceway. Extents of combustion of the char were low (mostly, less than 5%, daf basis). The work indicates that the extent of this reaction is limited in the raceway by the low residence time and by the effect of released volatiles, which scavenge the O{sub 2} and prevent access to the char. CO{sub 2} gasification has also been studied and high conversions achieved within a residence time of 5-10 s. The latter residence time is far longer than that in the raceway and more typical of small particles travelling upward in the furnace shaft. The results indicate that this reaction is capable of destroying most of the char. However, the extent of the gasification reaction appears limited by the decrease in temperature as the material moves up through the furnace. 44 refs., 12 figs., 6 tabs.

  14. Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

    SciTech Connect (OSTI)

    Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B. [Sandia National Labs., Albuquerque, NM (United States); Mock, R.C. [Ktech Corp., Albuquerque, NM (United States)

    1994-06-01T23:59:59.000Z

    The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

  15. LANSCE-R WIRE-SCANNER ANALOG FRONT-END ELECTRONICS

    SciTech Connect (OSTI)

    Gruchalla, Michael E. [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    A new AFE is being developed for the new LANSCE-R wire-scanner systems. The new AFE is implemented in a National Instruments Compact RIO (cRIO) module installed a BiRa 4U BiRIO cRIO chassis specifically designed to accommodate the cRIO crate and all the wire-scanner interface, control and motor-drive electronics. A single AFE module provides interface to both X and Y wire sensors using true DC coupled transimpedance amplifiers providing collection of the wire charge signals, real-time wire integrity verification using the normal dataacquisition system, and wire bias of 0V to +/-50V. The AFE system is designed to accommodate comparatively long macropulses (>1ms) with high PRF (>120Hz) without the need to provide timing signals. The basic AFE bandwidth is flat from true DC to 50kHz with a true first-order pole at 50kHz. Numeric integration in the cRIO FPGA provides real-time pulse-to-pulse numeric integration of the AFE signal to compute the total charge collected in each macropulse. This method of charge collection eliminates the need to provide synchronization signals to the wire-scanner AFE while providing the capability to accurately record the charge from long macropulses at high PRF.

  16. X-ray imaging of extended magnetic domain walls in Ni80Fe20 wires

    SciTech Connect (OSTI)

    Basu, S.; Fry, P. W.; Allwood, D. A.; Bryan, M. T.; Gibbs, M. R. J.; Schrefl, T.; Im, M.-Y.; Fischer, P.

    2009-06-20T23:59:59.000Z

    We have used magnetic transmission X-ray microscopy to image magnetization configurations in 700 nm wide Ni{sub 80}Fe{sub 20} planar wires attached to 'nucleation' pads Domain walls were observed to inject only across half of the wire width but extend to several micrometers in length. Magnetostatic interactions with adjacent wires caused further unusual domain wall behavior. Micromagnetic modeling suggests the extended walls have Neel-like structure along their length and indicates weaker exchange coupling than is often assumed. These observations explain previous measurements of domain wall injection and demonstrate that magnetic domain walls in larger nanowires cannot always be considered as localized entities.

  17. Right Ventricular Migration of a Recovery IVC Filter's Fractured Wire with Subsequent Pericardial Tamponade

    SciTech Connect (OSTI)

    Saeed, Imran [Christiana Hospital, MAP 2, Suite 2121 (United States)], E-mail: isaeed@christianacare.org; Garcia, Mark [Christiana Hospital, Department of Radiology (United States); McNicholas, Kathleen [Christiana Hospital, MAP 1, Suite 205 (United States)

    2006-08-15T23:59:59.000Z

    A Recovery filter (C.R. Bard, Tempe, AZ, USA) is a device for pulmonary embolism prophylaxis. There have been few case reports involving the migration of this particular filter or of a broken wire migrating to the heart. We report a case of right ventricular migration of a fractured wire from this filter in a patient who subsequently developed pericardial tamponade and required open heart surgery to extract the fractured wire. We discuss the current US Food and Drug Administration (FDA)-approved nonpermanent inferior vena cava filters and their reported complications. These complications can be life-threatening and may require immediate surgical intervention.

  18. Maximum Economic Yield R. Quentin Grafton*

    E-Print Network [OSTI]

    Botea, Adi

    in the biomass or stock size, the intrinsic growth rate, the discount rate 1 #12;and output and input price-state values of the biomass that maximises the sum of inter- temporal economic profits (dynamic b the biomass that maximises the sustained yield (bMSY) are evaluated under a range of conditions including when

  19. Ecosystem Viable Yields Michel De Lara

    E-Print Network [OSTI]

    Ecosystem Viable Yields Michel De Lara Eladio Oca~na Ricardo Oliveros-Ramos Jorge Tam April 21- cation of the ecosystem approach by 2010. However, at the same Summit, the signatory States undertook ecosystemic dimension, since MSY is computed species by species, on the basis of a monospecific model

  20. Ecosystem Viable Yields Michel De Lara

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Ecosystem Viable Yields Michel De Lara Eladio Oca~na Ricardo Oliveros-Ramos Jorge Tam November the appli- cation of the ecosystem approach by 2010. However, at the same Summit, the signatory States without ecosystemic dimension, since MSY is computed species by species, on the basis of a monospecific

  1. Original article Enhancement of yield and persistence

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    endophyte isolate in France Catherine Ravela François Balfouriera Jean Jacques Guillauminb aUnité d March 1999; accepted 6 July 1999) Abstract - The contribution of Neotyphodium endophytes the yield and persistence of three endophyte-infected (E.I.) and endophyte-free (E.F.) perennial ryegrass

  2. Impossible Bean Burrito Bake Yield: 6 servings

    E-Print Network [OSTI]

    Florida, University of

    Impossible Bean Burrito Bake Yield: 6 servings 1- 16 ounce can refried beans 1 cup MASTER MIX ¼ cup over medium heat, brown ground meat. Drain fat. Remove from heat. 3. Mix refried beans, MASTER MIX and water in a mixing bowl. Spread mixture in bottom and halfway up sides of pie pan. 4. On top of bean

  3. Yield learning model for integrated circuit package

    E-Print Network [OSTI]

    Balasubramaniam, Gaurishankar

    1996-01-01T23:59:59.000Z

    , the Plastic Quad Flat Pack and the Ceramic Ball Grid Array at IBM, and the Plastic Ball Grid Array at Motorola. This model has been used as a management toot for making yield predictions, resource allocations, understanding operating practices and provide what...

  4. Eect of imperfections on the yielding of two-dimensional foams

    E-Print Network [OSTI]

    Fleck, Norman A.

    ®cation. For instance, a batch casting method is used by Shinko Wire to manufacture a closed cell aluminium alloy foa

  5. Analytical estimation of neutron yield in a micro gas-puff X pinch

    SciTech Connect (OSTI)

    Derzon, M. S.; Galambos, P. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Hagen, E. C. [NSTec, North Las Vegas, Nevada 89031 (United States)

    2012-12-01T23:59:59.000Z

    In this paper, we present the basic concepts for developing a micro x pinch as a small-scale neutron source. For compact sources, these concepts offer repetitive function at higher yields and pulsing rates than competing methods. The uniqueness of these concepts arises from the use of microelectronic technology to reduce the size of the target plasma and to efficiently heat the target gas. The use of repetitive microelectromechanical systems (MEMs) gas puff technology, as compared to cryogenic wires or solid targets (for the beam-target alternatives), has the potential to be robust and have a long lifetime because the plasma is not created from solid surfaces. The modeling suggests that a 50 J at the wall plug pulse could provide >10{sup 5} tritium (DT) neutrons and 10{sup 3} deuterium (DD) neutrons at temperatures of a few keV. At 1 kHz, this would be >10{sup 8} and 10{sup 6} neutrons per second, DT and DD, respectively, with a 250 {mu}m anode-cathode gap. DT gas puff devices may provide >10{sup 12} neutrons/s operating at 1 kHz and requiring 100 kW. The MEMs approach offers potentially high pulse rates and yields.

  6. applications diagnostic yields: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    filtering for nonlinear parameter estimation and data assimilation with application to crop yield prediction Physics Websites Summary: candidate for yield prediction applications...

  7. Entrapment of Guide Wire in an Inferior Vena Cava Filter: A Technique for Removal

    SciTech Connect (OSTI)

    Abdel-Aal, Ahmed Kamel, E-mail: akamel@uabmc.edu; Saddekni, Souheil [University of Alabama at Birmingham, Department of Radiology (United States)] [University of Alabama at Birmingham, Department of Radiology (United States); Hamed, Maysoon Farouk [University of Alabama at Birmingham, Department of Anesthesia (United States)] [University of Alabama at Birmingham, Department of Anesthesia (United States); Fitzpatrick, Farley [Radiology Specialists of Louisville (United States)] [Radiology Specialists of Louisville (United States)

    2013-04-15T23:59:59.000Z

    Entrapment of a central venous catheter (CVC) guide wire in an inferior vena cava (IVC) filter is a rare, but reported complication during CVC placement. With the increasing use of vena cava filters (VCFs), this number will most likely continue to grow. The consequences of this complication can be serious, as continued traction upon the guide wire may result in filter dislodgement and migration, filter fracture, or injury to the IVC. We describe a case in which a J-tipped guide wire introduced through a left subclavian access without fluoroscopic guidance during CVC placement was entrapped at the apex of an IVC filter. We describe a technique that we used successfully in removing the entrapped wire through the left subclavian access site. We also present simple useful recommendations to prevent this complication.

  8. Nonequilibrium transport through quantum-wire junctions and boundary defects for free massless bosonic fields

    E-Print Network [OSTI]

    Gaw?dzki, Krzysztof

    2015-01-01T23:59:59.000Z

    We consider a model of quantum-wire junctions where the latter are described by conformal-invariant boundary conditions of the simplest type in the multicomponent compactified massless scalar free field theory representing the bosonized Luttinger liquids in the bulk of wires. The boundary conditions result in the scattering of charges across the junction with nontrivial reflection and transmission amplitudes. The equilibrium state of such a system, corresponding to inverse temperature $\\beta$ and electric potential $V$, is explicitly constructed both for finite and for semi-infinite wires. In the latter case, a stationary nonequilibrium state describing the wires kept at different temperatures and potentials may be also constructed. The main result of the present paper is the calculation of the full counting statistics (FCS) of the charge and energy transfers through the junction in a nonequilibrium situation. Explicit expressions are worked out for the generating function of FCS and its large-deviations asym...

  9. Water/Wastewater Treatment Plant Field Device Wiring Method Decision Analysis

    E-Print Network [OSTI]

    Dicus, Scott C.

    2011-12-16T23:59:59.000Z

    The choice of field device wiring method for water and wastewater treatment plant design is extremely complex and contains many variables. The choice not only affects short-term startup and equipment costs, but also ...

  10. We Energies- Livestock and Dairy Farm Electrical Re-wiring Program

    Broader source: Energy.gov [DOE]

    Any We Energies dairy farm customer can apply for assistance with a re-wiring project. We Energies would pay the first $1,000 of the project and 50 percent of remaining costs up to a total grant of...

  11. Experimental evaluation of wire mesh for design as a bearing damper

    E-Print Network [OSTI]

    Choudhry, Vivek Vaibhav

    2004-11-15T23:59:59.000Z

    Wire mesh vibration dampers have been the subject of some very encouraging experiments at the Texas A&M Turbomachinery laboratories for the past several years and have emerged as an excellent replacement for squeeze film dampers. Their capability...

  12. Adaptive inverse modeling of a shape memory alloy wire actuator and tracking control with the model

    E-Print Network [OSTI]

    Koh, Bong Su

    2009-06-02T23:59:59.000Z

    It is well known that the Preisach model is useful to approximate the effect of hysteresis behavior in smart materials, such as piezoactuators and Shape Memory Alloy(SMA) wire actuators. For tracking control, many researchers estimate a Preisach...

  13. Two-dimensional magnetohydrodynamic studies of implosion modes of nested wire array z-pinches

    SciTech Connect (OSTI)

    Huang, Jun; Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Xue, Chuang; Sun, Shunkai [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-07-15T23:59:59.000Z

    Implosion dynamics of nested wire arrays in (r, ?) geometry was studied with two-dimensional magnetohydrodynamic (2D MHD) simulations. Three different implosion modes are obtained by just changing the wire number of the outer array, when the other conditions, such as the initial radius, length, mass of each array, the wire number of the inner array, and the discharge voltage waveform, are fixed. Simulation results show that the effect of discrete wires, which cannot be described by the thin shell inductive model, will influence the distribution of current between the outer and inner arrays at the early stage, and the discrepancy between results from MHD and thin shell model increases with the interwire gap of the outer array.

  14. Converting Hybrid Wire-frames to B-rep Models Jie-Hui Gong

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Converting Hybrid Wire-frames to B-rep Models Jie-Hui Gong Dept. of Comp. Sci. and Technol of curved surfaces [Liu et al. 2001; Gong et al. 2006b]. The CSG oriented approach, however, is generally

  15. Fire Together Wire Together Come Together Cornelius Weber and Jochen Triesch

    E-Print Network [OSTI]

    Weber, Cornelius

    Fire Together ­ Wire Together ­ Come Together Cornelius Weber and Jochen Triesch Frankfurt-Organization of Orientation Maps, Lateral Connections, and Dynamic Receptive Fields in the Pri- mary Visual Cortex. C. Weber

  16. Investigation of ignition of thermoplastics through the Hot Wire Ignition Test

    E-Print Network [OSTI]

    De Araujo, Luiz Claudio Bonilla

    1998-01-01T23:59:59.000Z

    The purpose of this research was to investigate the ignition phenomena of selected polymeric materials using the Hot Wire Ignition Test. This test is prescribed by Underwriters Laboratories as one of various requirements for polymeric materials used...

  17. Experimental examination of wire mesh dampers subjected to large amplitude displacements

    E-Print Network [OSTI]

    Jones, Adam Matthew

    2009-06-02T23:59:59.000Z

    , including: temperature insensitivity, oil-free operation, and the ability to contain large amplitude vibrations. Furthermore, due to their direct damping and lack of cross-coupled stiffness, the wire mesh reduces the response to imbalance and increases...

  18. Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire

    E-Print Network [OSTI]

    Bjoerstad, R; Rikel, M.O.; Ballarino, A; Bottura, L; Jiang, J; Matras, M; Sugano, M; Hudspeth, J; Di Michiel, M; 10.1088/0953-2048/28/6/062002

    2015-01-01T23:59:59.000Z

    The strain induced critical current degradation of overpressure processed straight Bi 2212/Ag wires has been studied at 77 K in self-field. For the first time superconducting properties, lattice distortions, composite wire stress and strain have been measured simultaneously in a high energy synchrotron beamline. A permanent Ic degradation of 5% occurs when the wire strain exceeds 0.60%. At a wire strain of about 0.65% a drastic n value and Ic reduction occur, and the composite stress and the Bi-2212 lattice parameter reach a plateau, indicating Bi-2212 filament fracturing. The XRD measurements show that Bi-2212 exhibits linear elastic behaviour up to the irreversible strain limit.

  19. Characterizations of a CERN NbTi Reference Wire at LBNL

    E-Print Network [OSTI]

    Godeke, A.; Dietderich, D.R.; Higley, H.C.; Liggins, N.L.

    2007-01-01T23:59:59.000Z

    et al. , report number LBNL-62392 Characterizations of aNbTi Reference Wire at LBNL ? A. Godeke † D. R. Dietderich,tests – and analysis – between LBNL, BNL and Fermilab within

  20. A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system

    SciTech Connect (OSTI)

    Michnoff R.; Biscardi, C.; Cerniglia, P.; Degen, C.; Gassner, D.; Hoff, L.; Hulsart, R.

    2012-04-15T23:59:59.000Z

    A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scanner assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.

  1. Optimization studies on thermal and mechanical manufacturing processes for multifilament superconducting tape and wire 

    E-Print Network [OSTI]

    Basaran, Burak

    2004-11-15T23:59:59.000Z

    There are many parameters that significantly affect the electrical performance of ceramic-core superconducting composite wire and tapes, which remain ambiguous and require more labor on their optimization. BSCCO 2212 has ...

  2. A Superconducting Joint Technique for MgB[subscript 2] Round Wires

    E-Print Network [OSTI]

    Yao, Weijun

    This paper describes a technique to superconductively splice multifilament MgB2 wires. To date the technique has achieved joints capable of carrying a superconducting current of 200 A at 10 K in self field. Joints details, ...

  3. Sheepdogs and Barbed Wire: An Environmental History of Grazing on the High Plains

    E-Print Network [OSTI]

    Kerr, Daniel Stewart

    2010-05-31T23:59:59.000Z

    An environmental history of High Plains grazing that focused on transhumant sheepherding of New Mexico, watershed cattle ranching of the open range, and barbed-wire stock-farming of the privatized plains--all systems of ...

  4. Quantum noise and dynamics in quantum well and quantum wire lasers

    SciTech Connect (OSTI)

    Arakawa, Y.; Vahala, K.; Yariv, A.

    1984-11-01T23:59:59.000Z

    We calculate the relaxation oscillation corner frequency f/sub r/ and the linewidth enhancement factor ..cap alpha.. for both a quantum well and a quantum wire semiconductor laser. A comparison of the results to those of a conventional double heterostructure device indicates that f/sub r/ can be enhanced by 2 x in the quantum well case and 3 x in the quantum wire case while ..cap alpha.. is reduced in both cases.

  5. Method for wiring allocation and switch configuration in a multiprocessor environment

    DOE Patents [OSTI]

    Aridor, Yariv (Zichron Ya'akov, IL); Domany, Tamar (Kiryat Tivon, IL); Frachtenberg, Eitan (Jerusalem, IL); Gal, Yoav (Haifa, IL); Shmueli, Edi (Haifa, IL); Stockmeyer, legal representative, Robert E. (San Jose, CA); Stockmeyer, Larry Joseph (San Jose, CA)

    2008-07-15T23:59:59.000Z

    A method for wiring allocation and switch configuration in a multiprocessor computer, the method including employing depth-first tree traversal to determine a plurality of paths among a plurality of processing elements allocated to a job along a plurality of switches and wires in a plurality of D-lines, and selecting one of the paths in accordance with at least one selection criterion.

  6. Long-distance photoinitiated electron transfer through polyene molecular wires

    SciTech Connect (OSTI)

    Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.; Kersey, K.M.; Cragg, D.E.; Minsek, D.W.

    1988-01-01T23:59:59.000Z

    Long-chain polyenes can be used as molecular wires to facilitate electron transfer between a photo-excited donor and an acceptor in an artificial photosynthetic system. The authors present data here on two Zn-porphyrin-polyene-anthraquinone molecules possessing either 5 or 9 all trans double bonds between the donor and acceptor, 1 and 2. The center-to-center distances between the porphyrin and the quinone in these relatively rigid molecules are 25 A for 1 and 35 A for 2. Selective picosecond laser excitation of the Zn-porphyrin in 1 and 2 results in the very rapid transfer of an electron to the anthraquinone in < 2 ps and 10 ps, respectively. The resultant radical ion pairs recombine with tau = 10 ps for 1 and tau = 25 ps for 2. The electron transfer rates remain remarkably rapid over these long distances. The involvement of polyene radical cations in the mechanism of the radical ion pair recombination reaction is clear from the transient absorption spectra of 1 and 2, which show strong absorbances in the near-infrared. The strong electronic coupling between the Zn-porphyrin and the anthraquinone provided by low-lying states of the polyene make it possible to transfer an electron rapidly over very long distances.

  7. Method and apparatus for improved wire saw slurry

    DOE Patents [OSTI]

    Costantini, Michael A. (Hudson, NH); Talbott, Jonathan A. (Amherst, NH); Chandra, Mohan (Merrimack, NH); Prasad, Vishwanath (East Setauket, NY); Caster, Allison (Nashua, NH); Gupta, Kedar P. (Merrimack, NH); Leyvraz, Philippe (Nashua, NH)

    2000-09-05T23:59:59.000Z

    A slurry recycle process for use in free-abrasive machining operations such as for wire saws used in wafer slicing of ingots, where the used slurry is separated into kerf-rich and abrasive-rich components, and the abrasive-rich component is reconstituted into a makeup slurry. During the process, the average particle size of the makeup slurry is controlled by monitoring the condition of the kerf and abrasive components and making necessary adjustments to the separating force and dwell time of the separator apparatus. Related pre-separator and post separator treatments, and feedback of one or the other separator slurry output components for mixing with incoming used slurry and recirculation through the separator, provide further effectiveness and additional control points in the process. The kerf-rich component is eventually or continually removed; the abrasive-rich component is reconstituted into a makeup slurry with a controlled, average particle size such that the products of the free-abrasive machining method using the recycled slurry process of the invention are of consistent high quality with less TTV deviation from cycle to cycle for a prolonged period or series of machining operations.

  8. Seismic Risk Mitigation of Historical Minarets Using SMA Wire Dampers

    SciTech Connect (OSTI)

    El-Attar, Adel G.; Saleh, Ahmed M.; El-Habbal, Islam R. [Structural Engineering Department, Cairo University, Giza (Egypt)

    2008-07-08T23:59:59.000Z

    This paper presents the results of a research program sponsored by the European Commission through project WIND-CHIME (Wide Range Non-INtrusive Devices toward Conservation of HIstorical Monuments in the MEditerranean Area), in which the possibility of using advanced seismic protection technologies to preserve historical monuments in the Mediterranean area is investigated. In the current research, two outstanding Egyptian Mamluk-Style minarets, are investigated. The first is the southern minaret of Al-Sultaniya (1340 A.D, 739 Hijri Date (H.D.)), the second is the minaret of Qusun minaret (1337 A.D, 736 H.D.), both located within the city of Cairo. Based on previous studies on the minarets by the authors, a seismic retrofit technique is proposed. The technique utilizes shape memory alloy (SMA) wires as dampers for the upper, more flexible, parts of the minarets in addition to vertical pre-stressing of the lower parts found to be prone to tensile cracking under ground excitation. The effectiveness of the proposed technique is numerically evaluated via nonlinear transient dynamic analyses. The results indicate the effectiveness of the technique in mitigating the seismic hazard, demonstrated by the effective reduction in stresses and in dynamic response.

  9. Low Odor, High Yield Kraft Pulping

    SciTech Connect (OSTI)

    W.T. McKean

    2000-12-15T23:59:59.000Z

    In laboratory cooks pure oxygen was profiled into the circulation line of a batch digester during two periods of the cooking cycle: The first injection occurred during the heating steps for the purpose of in-situ generation of polysulfide. This chip treatment was studied to explore stabilization against alkaline induced carbohydrate peeling and to increase pulp yield. Under optimum conditions small amounts of polysulfide were produced with yield increase of about 0.5% These increases fell below earlier reports suggesting that unknown differences in liquor composition may influence the relative amounts of polysulfide and thiosulfate generated during the oxidation. Consequently, further studies are required to understand the factors that influence the ratios of those two sulfur species.

  10. Modeling the Yield Curve Statistics Department, Wharton

    E-Print Network [OSTI]

    Stine, Robert A.

    makes it interesting and important? Examples Cash Commodities (primarily crude oil) Data analysis. Light crude oil, same date as prior slide 6 2 4 6 8 0.03 0.02 0.01 0.01 2008.16 #12;Questions What 9 2 4 6 8 10 3.0 3.5 4.0 4.5 5.0 5.5 6.0 #12;Plots: Light Crude Yields on crude over same 100 days

  11. Unprecedented Press Attack on WSG Emblem

    E-Print Network [OSTI]

    Journal:  Wader Study Group Bulletin Attachment Size p00040-p00040.pdf 145.38 KB Issue:  38 Year:  1983 Pages:  40

  12. Elastic strain engineering for unprecedented materials properties

    E-Print Network [OSTI]

    Li, Ju

    “Smaller is stronger.” Nanostructured materials such as thin films, nanowires, nanoparticles, bulk nanocomposites, and atomic sheets can withstand non-hydrostatic (e.g., tensile or shear) stresses up to a significant ...

  13. Polymer Growth Rate in a Wire Chamber with Oxygen,Water, or Alcohol Gas Additives

    SciTech Connect (OSTI)

    Boyarski, Adam; /SLAC

    2008-07-02T23:59:59.000Z

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium-isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a SEM/EDX instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is stored in the polymer layer and that a high electric field is necessary to remove the charge.

  14. Towards a unified x-by-wire solution with HUMS, HM & TTP: Lessons learned in implementing it to a drive-by-wire vehicle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it to a drive-by-wire vehicle John Melentis Elias Stipidis Periklis Charchalakis Falah Ali Vetronics Research capability for vehicles. TTP is a safety-critical network, designed specifically to meet requirements for fault-tolerant systems. A TbW system replaces the me- chanical connection in a vehicle, from

  15. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    SciTech Connect (OSTI)

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26T23:59:59.000Z

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis that U.S. industry is ill prepared to handle which could further challenge U.S. competitiveness.

  16. Can Naked Singularities Yield Gamma Ray Bursts?

    E-Print Network [OSTI]

    H. M. Antia

    1998-07-09T23:59:59.000Z

    Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\\approx2\\times 10^{16} ergs, where M_p is the Planck mass.

  17. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    SciTech Connect (OSTI)

    Peter K. F. Hwang

    2007-10-22T23:59:59.000Z

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  18. Scintillation counter and wire chamber front end modules for high energy physics experiments

    SciTech Connect (OSTI)

    Baldin, Boris; DalMonte, Lou; /Fermilab

    2011-01-01T23:59:59.000Z

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of {approx}20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with {approx}100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of {approx}4 {micro}s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of {approx}0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  19. Nano-Structured Mesoporous Silica Wires with Intra-Wire Lamellae via Evaporation-Induced Self-Assembly in Space-Confined Channels

    SciTech Connect (OSTI)

    Hu, Michael Z. [ORNL; Shi, Donglu [University of Cincinnati; Blom, Douglas Allen [ORNL

    2014-01-01T23:59:59.000Z

    Evaporation-induced self-assembly (EISA) of silica sol-gel ethanol-water solution mixtures with block-copolymer were studied inside uniform micro/nano channels. Nano-structured mesoporous silica wires, with various intra-wire self-assembly structures including lamellae, were prepared via EISA process but in space-confined channels with the diameter ranging from 50 nm to 200 nm. Membranes made of anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC) were utilized as the arrays of space-confined channels (i.e., 50, 100, and 200-nm EPC and 200-nm AAO) for infiltration and drying of mixture solutions; these substrate membranes were submerged in mixture solutions consisting of a silica precursor, a structure-directing agent, ethanol, and water. After the substrate channels were filled with the solution under vacuum impregnation, the membrane was removed from the solution and dried in air. The silica precursor used was tetra-ethyl othosilicate (TEOS), and the structure-directing agent employed was triblock copolymer Pluronic-123 (P123). It was found that the formation of the mesoporous nanostructures in silica wires within uniform channels were significantly affected by the synthesis conditions including (1) pre-assemble TEOS aging time, (2) the evaporation rate during the vacuum impregnation, and (3) the air-dry temperature. The obtained intra-wire structures, including 2D-hexagonal rods and lamellae, were studied by scanning transmission electron microscopy (STEM). A steric hindrance effect seems to explain well the observed polymer-silica mesophase formation tailored by TEOS aging time. The evaporation effect, air-drying effect, and AAO-vs-EPC substrate effect on the mesoporous structure of the formed silica wires were also presented and discussed.

  20. Laser radiation scattering from the wires and fibers of imploding arrays on the Angara-5-1 facility

    SciTech Connect (OSTI)

    Grabovski, E. V.; Gritsuk, A. N.; Smirnov, V. P.; Aleksandrov, V. V.; Oleinik, G. M. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Oreshkin, V. I. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Frolov, I. N.; Laukhin, Ya. N.; Gribov, A. N.; Samokhin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Sasorov, P. V. [Alikhanov Institute for Theoretical and Experimental Physics (Russian Federation); Mitrofanov, K. N.; Medovshchikov, S. F. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Khishchenko, K. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Rupasov, A. A.; Bolkhovitinov, E. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2011-11-15T23:59:59.000Z

    A method is developed for measurements of laser radiation scattering by wires and fibers in different types of imploding arrays in the initial stage of plasma production at discharge currents per wire of up to 2 kA for aluminum arrays and up to 8 kA for tungsten arrays. The experiments were carried out on the Angara-5-1 facility at a current density in the wires of 10{sup 8} A/cm{sup 2} and current growth rate of {approx}10{sup 13} A/s. It is found that the indicatrix of laser radiation reflected from the wires (fibers) in cylindrical and conical arrays is modified at currents of 0.1-10 kA per wire (fiber). The experimental data on the reflection and scattering of laser radiation from wires and fibers are compared with the results of numerical simulations of their electric explosion in vacuum. It is proposed that the change in the reflection indicatrix of laser radiation is caused by the onset of thermal instabilities. The typical size of density and temperature inhomogeneities on the wire surface is in a range of 10-20 {mu}m, which probably results in a transition from specular to diffuse reflection of laser radiation. A simultaneous abrupt (over 2-3 ns) reduction in the reflection intensity from several wires of an array indicates a homogeneous distribution of the discharge current over the irradiated wires. This closes the issue of the quality of the contact between the wires and the electrodes. The obtained experimental information is of considerable importance for the development of numerical codes for simulations of the implosion of wire arrays and the refinement of the wire parameters in the initial stage of plasma production.

  1. Ashland's new process could boost gasoline yield

    SciTech Connect (OSTI)

    Atkins, O.E.

    1980-04-07T23:59:59.000Z

    According to O. E. Atkins (Ashland Oil Co.), Ashland's new fluid catalytic cracking process will convert heavy residual oil to (% by vol) 11% fuel gas, 4.8% LNG, 75.7% gasoline (if all the produced olefins are converted to gasoline), 9% distillates, and 8.1% heavy fuel oil. Ashland is building a $70 million, 40,000 bbl/day unit at its 215,000 bbl/day Catlettsburg, Ky., refinery which will increase the present 90,000 bbl/day gasoline yield by 25,000 bbl/day for the same amount of feedstock. The increased gasoline yield (no-lead octane rating of 94) is expected to increase the net margin on a barrel of feed from $8 up to $12, at the present prices of $11.50/bbl of residual oil and $40/bbl of gasoline. Ashland has not disclosed detailed information on the new process, which: can accommodate atmospheric residua that are high in sulfur and metals; is a high temperature, low (about 1 atm) pressure process; does not use hydrogen; uses a proprietary new crystalline silica-alumina microspherical (zeolite) catalyst which, via a proprietary passivating technique, will demetalize crude oil fractions of vanadium and nickel. Residuum cracking processes developed by other companies are briefly discussed.

  2. Wire inhomogeneity detector having a core with opposing pole pieces and guide pieces adjacent the opposing pole pieces

    DOE Patents [OSTI]

    Gibson, George H. (Lafayette, CA); Smits, Robert G. (Lafayette, CA); Eberhard, Philippe H. (El Cerrito, CA)

    1989-01-01T23:59:59.000Z

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  3. Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in SC Wires and Tapes

    SciTech Connect (OSTI)

    Dhanaraj, N.; Barzi, E.; Turrioni, D.; Rusy, A.; Lombardo, V.; /Fermilab

    2011-07-01T23:59:59.000Z

    The design of a variable-temperature probe used to perform strain sensitivity measurements on LTS wires and HTS wires and tapes is described. The measurements are intended to be performed at liquid helium temperatures (4.2 K). The wire or tape to be measured is wound and soldered on to a helical spring device, which is fixed at one end and subjected to a torque at the free end. The design goal is to be able to achieve {+-} 0.8 % strain in the wire and tape. The probe is designed to carry a current of 2000A.

  4. Vehicle Technologies Office Merit Review 2014: Wiring Up Silicon Nanostructures for High Energy Lithium-Ion Battery Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Stanford University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wiring up silicon...

  5. Experimental investigation of copper matrix longitudinal resistance in a composite Nb-Ti wire

    SciTech Connect (OSTI)

    Gubkin, I.N.; Kozlenkova, N.I.; Nikulin, A.D.; Polikarpova, M.V.; Filkin, V.Ya. (A.A. Bochvar Inst. of Inorganic Materials, Moscow (Russian Federation))

    1994-07-01T23:59:59.000Z

    The longitudinal resistance of multifilamentary superconducting wires is among the major parameters used in design and optimization of superconducting magnetic systems. To enhance the conductivity of the copper matrix, it is made of pipes and rods of enhanced quality copper produced by electron beam melting (resistance ratio between two temperatures, 295 K and 4.2 K, R[sub 295]/R[sub 4.2] > 200). Yet for readily obtainable conductors this parameter is much lower. The reduction of the copper-matrix electrical conductivity may be attributed to wire-production technology involving processes such as extrusion, drawing and intermediate thermal processing, as well as to the size effect. Copper-matrix longitudinal resistance was studied as a function of wire diameter on specimens of multifilamentary Nb-Ti wire with filaments coated by a Nb layer. Experimental results are compared with the Sondheimer calculations for a monofilament conductor as well as with the Gavalloni calculations for an ideal wire with hexagonally located filaments. It has been shown that the best fit with the experiment is provided by the Sondheimer approximation. Comparison of the results of this work with other authors' data obtained for the specimens with no niobium barrier, allows the authors to single out the influence of a pure size effect and diffusion of Ti on the resistivity.

  6. Nanosecond electrical explosion of thin aluminum wire in vacuum : experimental and computational investigations.

    SciTech Connect (OSTI)

    Cochrane, Kyle Robert (Ktech Corporation, Albuquerque, NM); Struve, Kenneth William; Rosenthal, Stephen Edgar; McDaniel, Dillon Heirman; Sarkisov, Gennady Sergeevich (Ktech Corporation, Albuquerque, NM); Deeney, Christopher

    2004-06-01T23:59:59.000Z

    The experimental and computational investigations of nanosecond electrical explosion of thin Al wire in vacuum are presented. We have demonstrated that increasing the current rate leads to increased energy deposited before voltage collapse. Laser shadowgrams of the overheated Al core exhibit axial stratification with a {approx}100 {micro}m period. The experimental evidence for synchronization of the wire expansion and light emission with voltage collapse is presented. Two-wavelength interferometry shows an expanding Al core in a low-ionized gas condition with increasing ionization toward the periphery. Hydrocarbons are indicated in optical spectra and their influence on breakdown physics is discussed. The radial velocity of low-density plasma reaches a value of {approx}100 km/s. The possibility of an overcritical phase transition due to high pressure is discussed. 1D MHD simulation shows good agreement with experimental data. MHD simulation demonstrates separation of the exploding wire into a high-density cold core and a low-density hot corona as well as fast rejection of the current from the wire core to the corona during voltage collapse. Important features of the dynamics for wire core and corona follow from the MHD simulation and are discussed.

  7. Nanosecond electrical explosion of thin aluminum wires in a vacuum: Experimental and computational investigations

    SciTech Connect (OSTI)

    Sarkisov, G.S.; Rosenthal, S.E.; Cochrane, K.R.; Struve, K.W.; Deeney, C.; McDaniel, D.H. [Ktech Corporation, Albuquerque, New Mexico 87123 (United States); Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Ktech Corporation, Albuquerque, New Mexico 87123 (United States); Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2005-04-01T23:59:59.000Z

    Experimental and computational investigations of nanosecond electrical explosion of a thin Al wire in vacuum are presented. We have demonstrated that increasing the current rate leads to increased energy deposited before voltage collapse. The experimental evidence for synchronization of the wire expansion and light emission with voltage collapse is presented. Hydrocarbons are indicated in optical spectra and their influence on breakdown physics is discussed. The radial velocity of low-density plasma reaches a value of {approx}100 km/s. The possibility of an overcritical phase transition due to high pressure is discussed. A one-dimensional magnetohydrodynamic (MHD) simulation shows good agreement with experimental data. The MHD simulation demonstrates separation of the exploding wire into a high-density cold core and a low-density hot corona as well as fast rejection of the current from the wire core to the corona during voltage collapse. Important features of the dynamics for the wire core and corona follow from the MHD simulation and are discussed.

  8. Assessment of Proton Deflectometry for Exploding Wire Experiments

    SciTech Connect (OSTI)

    Beg, Farhat Nadeem [University of California San Diego] [University of California San Diego

    2013-09-25T23:59:59.000Z

    This project provides the first demonstration of the application of proton deflectometry for the diagnosis of electromagnetic field topology and current-carrying regions in Z-pinch plasma experiments. Over the course of this project several milestones were achieved. High-energy proton beam generation was demonstrated on the short-pulse high-intensity Leopard laser, (10 Joules in ~350 femtoseconds, and the proton beam generation was shown to be reproducible. Next, protons were used to probe the electromagnetic field structure of short circuit loads in order to benchmark the two numerical codes, the resistive-magnetohydrodynamics (MHD) code, Gorgon, and the hybrid particle-in-cell code, LSP for the interpretation of results. Lastly, the proton deflectometry technique was used to map the magnetic field structure of pulsed-power-driven plasma loads including wires and supersonic jets formed with metallic foils. Good agreement between the modeling and experiments has been obtained. The demonstrated technique holds great promise to significantly improve the understanding of current flow and electromagnetic field topology in pulsed power driven high energy density plasmas. Proton probing with a high intensity laser was for the first time implemented in the presence of the harsh debris and x-ray producing z-pinch environment driven by a mega-ampere-scale pulsed-power machine. The intellectual merit of the program was that it investigated strongly driven MHD systems and the influence of magnetic field topology on plasma evolution in pulsed power driven plasmas. The experimental program involved intense field-matter interaction in the generation of the proton probe, as well as the generation of plasma subjected to 1 MegaGauss scale magnetic fields. The computational aspect included two well-documented codes, in combination for the first time to provide accurate interpretation of the experimental results. The broader impact included the support of 2 graduate students, one at UCSD and one at NTF, who were exposed to both the experimental physics work, the MHD and PIC modeling of the system. A first generation college undergraduate student was employed to assist in experiments and data analysis throughout the project. Data resulting from the research program were broadly disseminated by publication in scientific journals, and presentation at international and national conferences and workshops.

  9. X-ray radiographic expansion measurements of isochorically heated thin wire targets

    SciTech Connect (OSTI)

    Hochhaus, D. C. [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany) [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Goethe-Universität, 60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main (Germany); Aurand, B. [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany) [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Johannes Gutenberg-Universität, 55099 Mainz (Germany); Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main (Germany); Basko, M. [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany) [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Alikhanov Institute for Theoretical and Experimental Physics, 117218 Moscow (Russian Federation); Ecker, B. [Johannes Gutenberg-Universität, 55099 Mainz (Germany) [Johannes Gutenberg-Universität, 55099 Mainz (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main (Germany); Kühl, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Johannes Gutenberg-Universität, 55099 Mainz (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Ma, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Rosmej, F. [UPMC, UMR7605, LULI, case 128, 4 Place Jussieu, 75252 Paris Cedex 05 (France) [UPMC, UMR7605, LULI, case 128, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Ecole Polytechnique, LULI, PAPD, Route de Saclay, 91128 Palaiseau Cedex (France); Zielbauer, B. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Neumayer, P. [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany) [ExtreMe Matter Institute EMMI, GSI, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main (Germany)

    2013-06-15T23:59:59.000Z

    Solid density matter at temperatures ranging from 150 eV to <5 eV has been created by irradiating thin wire targets with high-energy laser pulses at intensities ?10{sup 18}W/cm{sup 2}. Energy deposition and transport of the laser-produced fast electrons are inferred from spatially resolved K{sub ?}-spectroscopy. Time resolved x-ray radiography is employed to image the target mass density up to solid density and proves isochoric heating. The subsequent hydrodynamic evolution of the target is observed for up to 3 ns and is compared to radiation-hydrodynamic simulations. At distances of several hundred micrometers from the laser interaction region, where temperatures of 5–20 eV and small temperature gradients are found, the hydrodynamic evolution of the wire is a near axially symmetric isentropic expansion, and good agreement between simulations and radiography data confirms heating of the wire over hundreds of micrometers.

  10. Experimental and Computational Studies of High Energy Density Plasma Streams Ablated from Fine Wires

    SciTech Connect (OSTI)

    Greenly, John B. [Cornell University; Seyler, Charles [Cornell University

    2014-03-30T23:59:59.000Z

    Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated from the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and thermal energy; reconnection and outflow are triggered when the current begins to decrease and the electric field reverses. The reconnecting flow is driven by both magnetic and thermal pressure forces, and it has been found to be possible to vary the configuration so that one or the other dominates. The magnetic null extends into a current sheet that is heated and radiates strongly, with supersonic outflows. This is the first study of reconnection in this HED plasma regime. This compressible, radiative regime, and the triggering mechanism, may be relevant to solar and astrophysical processes. The PERSEUS extended MHD code has been developed for simulation of these phenomena, and will continue to be used and further developed to help interpret and understand experimental results, as well as to guide experimental design. The code is well-suited to simulations of shocks, and includes Hall and electron inertia physics that appear to be of importance in a number of ablation flow regimes, and definitely in the reconnection regime when gradient scales are comparable to the ion inertial scale. During the final year, our graduate student supported by this grant completed a new version of PERSEUS with the finite volume computational scheme replaced by a discontinuous Galerkin method that gives much less diffusive behavior and allows faster run time and higher spatial resolution. Thecode is now being used to study shock structures produced in the outflow region of the reconnection regime.

  11. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect (OSTI)

    None

    2012-04-24T23:59:59.000Z

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  12. Problem Description:Problem Description: Installing traditional, wired, structural health monitoring netwInstalling traditional, wired, structural health monitoring networks has severeorks has severe physical, hardware, cost, and time limitations.physical

    E-Print Network [OSTI]

    Heaton, Thomas H.

    monitoring netwInstalling traditional, wired, structural health monitoring networks has severeorks has severeProblem Description:Problem Description: Installing traditional, wired, structural health network for assessing pre- and post-event structural state of health. · Rapid deployment for aftershock

  13. Yield, variance and spatial distribution of electron–hole...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yield, variance and spatial distribution of electron–hole pairs in CsI. Yield, variance and spatial distribution of electron–hole pairs in CsI. Abstract: A Monte Carlo...

  14. Estimation of dibaryon (OO) yields at RHIC energies

    E-Print Network [OSTI]

    Zhong-Dao Lu

    2002-07-02T23:59:59.000Z

    The yields of dibaryon (Omega-Omega) in relativistic heavy ion collisions, especially at RHIC energies, are estimated by statistical model. The yields of hyperon Omega- and the ratio of dibaryon to Omega are also given.

  15. Sandia National Laboratories: high quantum yield under blue excitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantum yield under blue excitation Sandia Develops a Synthesis of Quantum Dots that Increases the Quantum Yield to 95.5% On May 23, 2013, in Energy, Energy Efficiency, Materials...

  16. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOE Patents [OSTI]

    Musket, Ronald G. (Danville, CA); Felter, Thomas E. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  17. Minimal performances of high Tc wires for cost effective SMES compared with low Tc`s

    SciTech Connect (OSTI)

    Levillain, C.; Therond, P.G. [Electricite de France, Clamart (France). Direction des Etudes et Recherches] [Electricite de France, Clamart (France). Direction des Etudes et Recherches

    1996-07-01T23:59:59.000Z

    On the basis of a 22MJ/10MVA unit without stray field, the authors determine minimal performances for High {Tc} Superconducting (HTS) wires, in order to obtain HTS Superconducting Magnetic Energy Storage (SMES) competitive compared with Low {Tc} Superconducting (LTS) ones. The cost equation mainly considers the wire volume, the fabrication process and losses. They then recommend HTS critical current densities and operating magnetic fields close to the present state of the art for short samples. A 30% gain for HTS SMES compared with LTS one could be expected.

  18. Ratchet propagation of a magnetic domain wall in a single magnetic wire with quantum interference

    E-Print Network [OSTI]

    Yamaguchi, Akinobu; Miyajima, Hideki

    2010-01-01T23:59:59.000Z

    Quantum interference incorporating spatially asymmetric potential profiles is realized experimentally to manipulate a magnetic domain wall (DW) into a single multilayered wire whose spacer has a thickness gradient for generating asymmetrical interlayer exchange coupling from side to side. We demonstrate experimentally how to guide a DW in a micron-scale ferromagnetic wire without reflection symmetry of the interlayer exchange coupling. This is the ratcheting of a DW in a form of ratchet potential using quantum interference. The experimental results can be described well by numerical simulations considering spatially asymmetric potential profiles due to quantum interference.

  19. Ratchet propagation of a magnetic domain wall in a single magnetic wire with quantum interference

    E-Print Network [OSTI]

    Akinobu Yamaguchi; Tomoaki Kishimoto; Hideki Miyajima

    2010-07-13T23:59:59.000Z

    Quantum interference incorporating spatially asymmetric potential profiles is realized experimentally to manipulate a magnetic domain wall (DW) into a single multilayered wire whose spacer has a thickness gradient for generating asymmetrical interlayer exchange coupling from side to side. We demonstrate experimentally how to guide a DW in a micron-scale ferromagnetic wire without reflection symmetry of the interlayer exchange coupling. This is the ratcheting of a DW in a form of ratchet potential using quantum interference. The experimental results can be described well by numerical simulations considering spatially asymmetric potential profiles due to quantum interference.

  20. High strength, low carbon, dual phase steel rods and wires and process for making same

    DOE Patents [OSTI]

    Thomas, Gareth (Berkeley, CA); Nakagawa, Alvin H. (Campbell, CA)

    1986-01-01T23:59:59.000Z

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  1. Tunable plasmonic enhancement of light scattering and absorption in graphene-coated subwavelength wires

    E-Print Network [OSTI]

    Riso, Máximo; Depine, Ricardo A

    2015-01-01T23:59:59.000Z

    The electromagnetic response of subwavelength wires coated with a graphene monolayer illuminated by a linearly polarized plane waves is investigated. The results show that the scattering and extintion cross-sections of the coated wire can be dramatically enhanced when the incident radiation resonantly excites localized surface plasmons. The enhancements occur for p--polarized incident waves and for excitation frequencies that correspond to complex poles in the coefficients of the multipole expansion for the scattered field. By dynamically tuning the chemical potential of graphene, the spectral position of the enhancements can be chosen over a wide range.

  2. Wire-Bonding on Inkjet-Printed Silver Pads Reinforced by Electroless Plating for Chip on Flexible Board Packages

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with pads that are suitable for wire-bonding in electronic packaging. Electroless nickel platingWire-Bonding on Inkjet-Printed Silver Pads Reinforced by Electroless Plating for Chip on Flexible processing. Here, a 1.7 µm thick nickel layer is deposited on top of 600 nm thick printed and sintered silver

  3. Fusion yield: Guderley model and Tsallis statistics

    E-Print Network [OSTI]

    Haubold, H J

    2010-01-01T23:59:59.000Z

    The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai [Mathai A.M.:2005, A pathway to matrix-variate gamma and normal densities, Linear Algebra and Its Applications}, 396, 317-328]. The extended thermonuclear reaction rate is obtained in closed form via a Meijer's G-function and the so obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981.[Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 23, 399-...

  4. Optimizing Doppler Surveys for Planet Yield

    E-Print Network [OSTI]

    Bottom, Michael; Johnson, John Asher; Blake, Cullen H

    2013-01-01T23:59:59.000Z

    One of the most promising methods of discovering nearby, low-mass planets in the habitable zones of stars is the precision radial velocity technique. However, there are many challenges that must be overcome to efficiently detect low-amplitude Doppler signals. This is both due to the required instrumental sensitivity and the limited amount of observing time. In this paper, we examine statistical and instrumental effects on precision radial velocity detection of extrasolar planets, an approach by which we maximize the planet yield in a fixed amount of observing time available on a given telescope. From this perspective, we show that G and K dwarfs observed at 400-600 nm are the best targets for surveys complete down to a given planet mass and out to a specified orbital period. Overall we find that M dwarfs observed at 700-800 nm are the best targets for habitable-zone planets, particularly when including the effects of systematic noise floors. Also, we give quantitative specifications of the instrumental stabil...

  5. A versatile detector for total fluorescence and electron yield experiments

    SciTech Connect (OSTI)

    Thielemann, N. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Hoffmann, P. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Foehlisch, A. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany)

    2012-09-15T23:59:59.000Z

    The combination of a non-coated silicon photodiode with electron repelling meshes makes a versatile detector for total fluorescence yield and electron yield techniques highly suitable for x-ray absorption spectroscopy. In particular, a copper mesh with a bias voltage allows to suppress or transmit the electron yield signal. The performance of this detection scheme has been characterized by near edge x-ray absorption fine structure studies of thermal oxidized silicon and sapphire. The results show that the new detector probes both electron yield and for a bias voltage exceeding the maximum photon energy the total fluorescence yield.

  6. Solvent dehydration system cuts energy use, improves dewaxed oil yield

    SciTech Connect (OSTI)

    Scalise, J.M.; Button, H.O.; Graves, D.C.

    1984-08-27T23:59:59.000Z

    A recent development can be applied in solvent dewaxing plants to reduce energy requirements, simplify operations, reduce maintenance, improve oil yields, and offer capacity gains. Known as the Nofsinger Solvent Dehydration System, this development is being successfully utilized by Ashland Oil Inc. in its Catlettsburg, Ky., refinery to achieve several of these goals. A net savings of approximately $490,000/year was calculated at design throughput. This yields a return on investment of approximately 20% without consideration of any yield effects. Improvements in yield were not included because simultaneous design changes in the unit did not permit Ashland to quantify any yield savings that may have occurred.

  7. Tool fabrication system for micro/nano milling—function analysis and design of a six-axis Wire EDM machine

    E-Print Network [OSTI]

    Cheng, X.; Wang, Z. G.; Kobayashi, S.; Nakamoto, K.; Yamazaki, K.

    2010-01-01T23:59:59.000Z

    axis Wire EDM machine X. Cheng & Z. G. Wang & S. Kobayashi &Tool fabrication X. Cheng (*) : Z. G. Wang : K. Yamazaki

  8. 3 September 2014 Are our brains wired to ignore climate change?

    E-Print Network [OSTI]

    Pedersen, Tom

    Klein. The book examines the psychology of climate change denial, following discussions with Nobel Prize eyes? "Environmentalists and scientists alike continue to assume that climate change denial canMEDIA TIP 3 September 2014 Are our brains wired to ignore climate change? "Why, when the evidence

  9. Nano-wires with surface disorder: Giant localization lengths and quantum-to-classical crossover

    E-Print Network [OSTI]

    J. Feist; A. Bäcker; R. Ketzmerick; S. Rotter; B. Huckestein; J. Burgdörfer

    2006-09-14T23:59:59.000Z

    We investigate electronic quantum transport through nano-wires with one-sided surface roughness. A magnetic field perpendicular to the scattering region is shown to lead to exponentially diverging localization lengths in the quantum-to-classical crossover regime. This effect can be quantitatively accounted for by tunneling between the regular and the chaotic components of the underlying mixed classical phase space.

  10. Nonequilibrium transport through quantum-wire junctions and boundary defects for free massless bosonic fields

    E-Print Network [OSTI]

    Krzysztof Gaw?dzki; Clément Tauber

    2015-01-29T23:59:59.000Z

    We consider a model of quantum-wire junctions where the latter are described by conformal-invariant boundary conditions of the simplest type in the multicomponent compactified massless scalar free field theory representing the bosonized Luttinger liquids in the bulk of wires. The boundary conditions result in the scattering of charges across the junction with nontrivial reflection and transmission amplitudes. The equilibrium state of such a system, corresponding to inverse temperature $\\beta$ and electric potential $V$, is explicitly constructed both for finite and for semi-infinite wires. In the latter case, a stationary nonequilibrium state describing the wires kept at different temperatures and potentials may be also constructed. The main result of the present paper is the calculation of the full counting statistics (FCS) of the charge and energy transfers through the junction in a nonequilibrium situation. Explicit expressions are worked out for the generating function of FCS and its large-deviations asymptotics. For the purely transmitting case they coincide with those obtained in the litterature, but numerous cases of junctions with transmission and reflection are also covered. The large deviations rate function of FCS for charge and energy transfers is shown to satisfy the fluctuation relations and the expressions for FCS obtained here are compared with the Levitov-Lesovic formulae.

  11. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOE Patents [OSTI]

    Travelli, A.

    1985-10-25T23:59:59.000Z

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  12. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOE Patents [OSTI]

    Travelli, Armando (Hinsdale, IL)

    1988-01-01T23:59:59.000Z

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  13. Influence of a surfactant on single ion track etching: Preparing and manipulating cylindrical micro wires

    E-Print Network [OSTI]

    Yu, K.N.

    surfactant Dowfax 2A1 on single ion track etching in 30 lm polycarbonate foils is studied at low etch rate (5 M NaOH at 41.5 ± 2 °C) using electro conductivity measurements. At surfactant concentrations above conduction; Cylinder; Track etching; Ion track; Real-time measurement; Electro replication; Micro wire; Micro

  14. ROLE OF VEHICLE DYNAMIC MODELING FIDELITY WITH HAPTIC COLLABORATION IN STEER BY WIRE

    E-Print Network [OSTI]

    Krovi, Venkat

    ROLE OF VEHICLE DYNAMIC MODELING FIDELITY WITH HAPTIC COLLABORATION IN STEER BY WIRE SYSTEMS control back to the driver. Candidate solutions for mimicking the steering feel have ranged from direct torque prediction schemes based on mathematical dynamics models (of tire-road, suspension, power-steering

  15. Monitoring Battery System for Electric Vehicle, Based On "One Wire" Technology

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Monitoring Battery System for Electric Vehicle, Based On "One Wire" Technology Javier Ibáñez Vial Santiago, Chile jdixon@ing.puc.cl Abstract-- A monitoring system for a battery powered electric vehicle (EV- powered electric vehicles, the need for fast information related to different components and equipment

  16. A Two-Dimensional Equivalent Complex Permeability Model for Round-Wire Windings

    E-Print Network [OSTI]

    for calculating power loss in round-wire windings was introduced and was shown to have higher accuracy than of not only how the eddy currents in windings affect power loss but also how they affect the field is power loss per length normalized to the square of external field magnitude. The proximity-effect loss

  17. A New Ischemic Model Using a Radiofrequency Wire Electrode in a Rabbit Hindlimb

    SciTech Connect (OSTI)

    Baik, Hye Won, E-mail: hyewonbaik@hanmail.net; Kwak, Byung Kook, E-mail: kwakbk@cau.ac.k [Chung-Ang University College of Medicine, Department of Radiology, Chung-Ang University Hospital (Korea, Republic of); Shim, Hyung Jin [Chung-Ang University College of Medicine, Department of Radiology, Yongsan Hospital (Korea, Republic of); Kim, Yang Soo [Chung-Ang University College of Medicine, Department of Radiology, Chung-Ang University Hospital (Korea, Republic of); Lee, Jong Beom; Kim, Kun Sang [Chung-Ang University College of Medicine, Department of Radiology, Yongsan Hospital (Korea, Republic of)

    2008-07-15T23:59:59.000Z

    The purpose of this study was to establish an ischemic rabbit hindlimb model using a radiofrequency (RF) wire electrode. We inserted a polytetrafluoroethylene-coated wire with a 2-cm exposed tip into the left superficial femoral artery of seven New Zealand white rabbits and performed RF ablation (RFA) while pulling the wire back. We assessed the clinical findings, angiography, computed tomography perfusion, and permeability surface until 6 weeks after RFA. The angiography demonstrated complete obstruction from the proximal external iliac artery to the distal superficial femoral artery and showed a gradual increment in the angiogenic score, which represents the degree of angiogenesis (r = 0.86, p < 0.0001). The left-to-right ratios of the computed tomography perfusion and permeability surface were significantly reduced after 4 days (p < 0.05), and then they gradually increased with time. We conclude that endovascular RFA using an RF wire electrode is a reproducible and measurable way to create an ischemic rabbit hindlimb model.

  18. Final Technical Report: The Water-to-Wire (W2W) Project

    SciTech Connect (OSTI)

    Lissner, Daniel N.; Edward, Lovelace C.

    2013-12-24T23:59:59.000Z

    The purpose of the Free Flow Power (FFP) Water-to-Wire Project (Project) was to evaluate and optimize the performance, environmental compatibility, and cost factors of FFP hydrokinetic turbines through design analyses and deployments in test flumes and riverine locations.

  19. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  20. Low temperature junction growth using hot-wire chemical vapor deposition

    DOE Patents [OSTI]

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04T23:59:59.000Z

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  1. Nondestructive x-ray Scattering Characterization of High Temperature Superconducting Wires

    SciTech Connect (OSTI)

    Thurston, T R

    1997-10-21T23:59:59.000Z

    The purpose of this CRADA was to characterize the structural properties of the superconductor material within the wires in order to determine which processing procedures produce the best superconductor texture and phase development, and hence the best ultimate current carrying capacity.

  2. EXISTENCE AND NONEXISTENCE FOR THE FULL THERMOMECHANICAL SOUZA-AURICCHIO MODEL OF SHAPE MEMORY WIRES

    E-Print Network [OSTI]

    Stefanelli, Ulisse

    EXISTENCE AND NONEXISTENCE FOR THE FULL THERMOMECHANICAL SOUZA-AURICCHIO MODEL OF SHAPE MEMORY thermomechanical quasi-static evolution of a shape memory wire described by the Souza-Auricchio constitutive model no such restriction, the original Souza-Auricchio model is ill-posed. Key words. Shape Memory Alloys, Thermomechanics

  3. Modeling of dual-metal Schottky contacts based silicon micro and nano wire solar cells

    E-Print Network [OSTI]

    Anantaram, M. P.

    Modeling of dual-metal Schottky contacts based silicon micro and nano wire solar cells M. Golam Work function Lifetime Diffusion length Interdigitated solar cell a b s t r a c t We study solar cell nanowires and nanotubes are considered to be potential candidates for low cost and high efficiency solar

  4. Transition in the Temperature-Dependence of GFP Fluorescence: From Proton Wires to Proton Exit

    E-Print Network [OSTI]

    Agmon, Noam

    Transition in the Temperature-Dependence of GFP Fluorescence: From Proton Wires to Proton Exit protein, photo-excitation leads to excited-state proton transfer from its chromophore, leaving behind a strongly fluorescing anion, while the proton is commonly thought to migrate internally to Glu-222. X

  5. Heat treatment control of AgBi x multifilamentary round wire: investigation of

    E-Print Network [OSTI]

    , FL 32310, USA Received 25 April 2011, in final form 6 September 2011 Published 17 October 2011 Online parameter for optimizing Jc and may serve as a general guide for heat treating 2212 coils. (Some figures. in Japan [5]. Recently, solenoid inserts wound from 2212 round wire reached 32 T in a resistive magnetic

  6. Metallurgical Characterization of Controlled Memory Wire Nickel-Titanium Rotary Instruments

    E-Print Network [OSTI]

    Zheng, Yufeng

    Metallurgical Characterization of Controlled Memory Wire Nickel-Titanium Rotary Instruments Ya Shen Haapasalo, DDS, PhD* Abstract Introduction: To improve the fracture resistance of nickel-titanium (Ni- tron microscopy with x-ray energy-dispersive spectro- metric (EDS) analyses. Results: The DSC analyses

  7. Demonstration of 300 Gbps Error-Free Transmission of WDM Data Stream in Silicon Photonic Wires

    E-Print Network [OSTI]

    Bergman, Keren

    -to-chip interconnection network, which would provide an attractive solution to an electronic bottleneck in high-performance computing- system interconnects [6]. Silicon photonic wires, which have very low scattering loss and sub. No noticeable signal degradation is incurred on the datstream, in agreement with predictions from previously

  8. Microstructure development in Nb3Sn(Ti) internal tin superconducting wire

    E-Print Network [OSTI]

    Elliott, James

    Microstructure development in Nb3Sn(Ti) internal tin superconducting wire I. Pong Æ S. C. Hopkins Æ have studied the phase formation sequences in a Nb3Sn `internal tin' process superconductor. Heat treatments were performed to convert the starting materials of tin, Ti­Sn, copper and niobium, to bronze

  9. The Design and Performance of SpaceWire Router-network using CSP

    E-Print Network [OSTI]

    Fukunaga, Chikara

    The Design and Performance of SpaceWire Router-network using CSP Session:Components Short Paper the point of view of robustness and security using CSP (Communication Sequential Processes) method, one Correspondong author:fukunaga@tmu.ac.jp 1 Occam has been originally developed by Inmos Limited inspired by CSP[3

  10. Modelling the mechanical interaction between flowing materials and retaining wire structures

    E-Print Network [OSTI]

    Gagliardini, Olivier

    Recherche Erosion Torrentielle Neige et Avalanches, Grenoble, France b EI Montagne, Grenoble, France c material and an open structure made of a metallic mesh. This paper presents some theoretical results, first material maintained in part by an open structure, for instance a wire mesh, is frequently encountered

  11. Giant higher harmonic generation in mesoscopic metal wires and rings interrupted by tunnel junctions

    E-Print Network [OSTI]

    van Oudenaarden, Alexander

    Giant higher harmonic generation in mesoscopic metal wires and rings interrupted by tunnel 5046, 2600 GA Delft, The Netherlands Received 19 December 1997 Higher harmonic generation in mesoscopic is biased with a sinusoidal varying current, we observe giant higher harmon- ics in the conductance

  12. Gyrotropy of a Metamolecule: Wire on a Torus N. Papasimakis,* V. A. Fedotov, K. Marinov,

    E-Print Network [OSTI]

    Zheludev, Nikolay

    . Zheludev Optoelectronics Research Centre, University of Southampton, SO17 1BJ, United Kingdom (Received 11 in principle allowing for asymmetric energy and information transfer between biological molecules. Nevertheless consisting of toroidal wire windings. In contrast to ``helical'' gyrotropic media, where hand- edness

  13. Computerized, Transient Hot-Wire Thermal Conductivity (HWTC) Apparatus for Nanofluids

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Computerized, Transient Hot-Wire Thermal Conductivity (HWTC) Apparatus for Nanofluids M. KOSTIC for thermal conductivity measurements of common fluids and nanofluids has been recently developed, designed nanofluids of 1 % volumetric concentration of 35 nm size copper nanoparticles in ethylene glycol and in water

  14. MICROWAVE PROPERTIES OF DILUTED COMPOSITESMADE OF MAGNETIC WIRES WITH GlANT MAGNETO IMPEDANCEEFFECT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    pnrpcrlic.; are cnmnionly achicvcd thmugh a w i i r media consisting of an amy of wires. We report here with an axial magnetization is reported in fig. 2. Unlike traditional metallic lattices [I], thc diclcctric resistance. This is the same quantity that cm be mcerured thmugh CMI experiments.

  15. "De-randomizing" Congestion Losses To Improve TCP Performance over Wired-Wireless

    E-Print Network [OSTI]

    "De-randomizing" Congestion Losses To Improve TCP Performance over Wired-Wireless Networks Sa-Champaign sbiaz@eng.auburn.edu nhv@crhc.uiuc.edu Technical Report CSSE03-10 (October 30, 2003) Abstract Currently, a TCP sender considers all losses as congestion signals and reacts to them by throt- tling its sending

  16. Self-Organized GaN Quantum Wire UV Lasers Heon-Jin Choi,, Justin C. Johnson, Rongrui He, Sang-Kwon Lee,, Franklin Kim,

    E-Print Network [OSTI]

    Yang, Peidong

    Self-Organized GaN Quantum Wire UV Lasers Heon-Jin Choi,, Justin C. Johnson, Rongrui He, Sang quantum wire lasers based on the Al-Ga-N system. A novel quantum-wire-in-optical- fiber (Qwof) nanostructure was obtained as a result of spontaneous Al-Ga-N phase separation at the nanometer scale in one

  17. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect (OSTI)

    Levashov, Michael Y.

    2010-12-01T23:59:59.000Z

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance. A vibrating wire system was constructed to fiducialize the quadrupoles between undulator segments in the LCLS. This note studies the ability of the system to fulfill the fiducialization requirements.

  18. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect (OSTI)

    Not Available

    2010-11-29T23:59:59.000Z

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance. A vibrating wire system was constructed to fiducialize the quadrupoles between undulator segments in the LCLS. This note studies the ability of the system to fulfill the fiducialization requirements.

  19. Annual Coded Wire Tag Program : Missing Production Groups, 1995 Annual Report.

    SciTech Connect (OSTI)

    Pastor, Stephen M.

    1995-12-01T23:59:59.000Z

    In 1989 the Bonneville Power Administration (BPA) began funding the evaluation of production groups of juvenile anadromous fish not being coded-wire tagged for other programs. These groups were the ''Missing Production Groups''. Production fish released by the U.S. Fish and Wildlife Service (USFWS) without representative coded-wire tags during the 1980's are indicated as blank spaces on the survival graphs in this report. The objectives of the ''Missing Production Groups'' program are: (1) to estimate the total survival of each production group, (2) to estimate the contribution of each production group to various fisheries, and (3) to prepare an annual report for all USFWS hatcheries in the Columbia River Basin. Coded-wire tag recovery information will be used to evaluate the relative success of individual brood stocks. It can also be used by salmon harvest managers to develop plans to allow the harvest of excess hatchery fish while protecting threatened or endangered stocks. In order to meet these objectives, a minimum of one marked group of fish is necessary for each production release. The level of marking varies according to location, species, and age at release. In general, 50,000 fish are marked with a coded-wire tag (CWT) to represent each production release group at hatcheries below John Day Dam. Between 120,000 and 200,000 fish are marked for groups at hatcheries above John Day Dam. All fish release information, including marked/unmarked ratios, is reported to the Pacific States Marine Fisheries Commission (PSMFC). Fish recovered in the various fisheries or at the hatcheries are sampled to recover coded-wire tags. This recovery information is also reported to PSMFC.

  20. Annual Coded Wire Tag Program; Missing Production Groups, 1996 Annual Report.

    SciTech Connect (OSTI)

    Pastor, Stephen M.

    1997-01-01T23:59:59.000Z

    In 1989 the Bonneville Power Administration (BPA) began funding the evaluation of production groups of juvenile anadromous fish not being coded-wire tagged for other programs. These groups were the ''Missing Production Groups''. Production fish released by the U.S. Fish and Wildlife Service (USFWS) without representative coded-wire tags during the 1980's are indicated as blank spaces on the survival graphs in this report. The objectives of the ''Missing Production Groups'' program are: (1) to estimate the total survival of each production group, (2) to estimate the contribution of each production group to various fisheries, and (3) to prepare an annual report for all USFWS hatcheries in the Columbia River basin. Coded-wire tag recovery information will be used to evaluate the relative success of individual brood stocks. This information can also be used by salmon harvest managers to develop plans to allow the harvest of excess hatchery fish while protecting threatened, endangered, or other stocks of concern. In order to meet these objectives, a minimum of one marked group of fish is necessary for each production release. The level of marking varies according to location, species, and age at release. In general, 50,000 fish are marked with a coded-wire tag (CWT) to represent each production release group at hatcheries below John Day Dam. More than 100,000 fish per group are usually marked at hatcheries above John Day Dam. All fish release information, including marked/unmarked ratios, is reported to the Pacific States Marine Fisheries Commission (PSMFC). Fish recovered in the various fisheries or at the hatcheries are sampled to recover coded-wire tags. This recovery information is also reported to PSMFC.

  1. Proton irradiation effects on critical current of bulk single-crystal superconducting YBCO wire

    SciTech Connect (OSTI)

    Khanna, S.M. [Defence Research Establishment Ottawa, Ontario (Canada)] [Defence Research Establishment Ottawa, Ontario (Canada); Figueredo, A.M. [National Research Council, Boucherville, Quebec (Canada). Industrial Materials Inst.] [National Research Council, Boucherville, Quebec (Canada). Industrial Materials Inst.

    1997-12-01T23:59:59.000Z

    The authors have investigated the effects of 10 MeV proton irradiation on the magnetization M and critical current density J{sub c} of bulk single-crystal YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) superconducting thick wire filaments produced through laser-heated floating zone (LHFZ) technique. M and J{sub c} were determined both along the length and perpendicular to the length of the wire. Radiation-induced enhancement of J{sub c} along the length of the wire was observed while there was a small decrease in J{sub c} {perpendicular} to its length. J{sub c} values along the length of the wire up to {approximately}1.4 {times} 10{sup 5} A/cm{sup 2} at 77K and {approximately}1.3 {times} 10{sup 6} A/cm{sup 2} at 30K and in applied magnetic field H = 1 T were observed in the irradiated samples. In the unirradiated sample, the difference in magnetization {Delta}M at a given field in the magnetic hysteresis loop for increasing and decreasing field applied {perpendicular} to the sample length was observed to depend on the orientation of the sample about its axis. This indicates anisotropy in J{sub c} along the sample length. This anisotropy increased on irradiation relative to the direction of irradiation. They believe that these J{sub c} values along the length are amongst the highest published J{sub c} values for bulk high temperature superconductor (HTS) thick wire filament.

  2. Effects of mesh density and flow conditioning in simulating 7-pin wire wrapped fuel pins.

    SciTech Connect (OSTI)

    Smith, J. G.; Babin, B. R.; Pointer, W. D.; Fischer, P. F. (Mathematics and Computer Science); ( NE); (Kansas State Univ.)

    2008-01-01T23:59:59.000Z

    In response to the goals outlined by the U.S. Department of Energy's Global Nuclear Energy Partnership program, Argonne National Laboratory has initiated an effort to create an integrated multi-physics multi-resolution thermal hydraulic simulation tool package for the evaluation of nuclear power plant design and safety. As part of this effort, the applicability of a variety of thermal hydraulic analysis methods for the prediction of heat transfer and fluid dynamics in the wire-wrapped fuel-rod bundles found in a fast reactor core is being evaluated. The work described herein provides an initial assessment of the capabilities of the general purpose commercial computational fluid dynamics code Star-CD for the prediction of fluid dynamic characteristics in a wire wrapped fast reactor fuel assembly. A 7-pin wire wrapped fuel rod assembly based on the dimensions of fuel elements in the concept Advanced Burner Test Reactor [1] was simulated for different mesh densities and domain configurations. A model considering a single axial span of the wire wrapped fuel assembly was initially used to assess mesh resolution effects. The influence of the inflow/outflow boundary conditions on the predicted flow fields in the single-span model were then investigated through comparisons with the central span region of models which included 3 and 5 spans. The change in grid refinement had minimal impact on the inter-channel exchange within the assembly resulting in roughly a 5 percent maximum difference. The central span of the 3-span and 5-span cases exhibits much higher velocities than the single span case,, with the largest deviation (15 to 20 percent) occurring furthest away from the wire spacer grids in the higher velocity regions. However, the differences between predicted flow fields in the 3-span and 5-span models are minimal.

  3. Effect of row spacing on yield and yield components of winter wheat cultivars

    E-Print Network [OSTI]

    Peters, Ross Jay

    1977-01-01T23:59:59.000Z

    OF SCIENCE August 19I7 Nsj or Subject: Plant Breeding EFFECT OF ROii SPACING GN YIELD AND YLELD GGMPONENFS OF WINIER WHEAT CULTIVARS A Thesis ROSS JAY PETERS (Chairman of Committee of De artme t) p( (Member (Membe r) August 1977 EFFECT OF BC...!A SPACINC ON YL LD AND YLELD C(24PONENJS OF MINTER VREAT CDLTIVABS. (August 19i7) BOSS . TAY PETERS S. S. , Arisona State University Chairman of Adviso"y Commi t tee; Dr. Earl Gilmore Tn 197 ~ six locally adapted winter w! est (Trit'. curn acstiv::m L...

  4. Structures for Three Membrane Transport Proteins Yield Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate...

  5. Innovative, lower cost sensors and controls yield better energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and controls yield better energy efficiency ORNL researchers are experimenting with additive roll-to-roll manufacturing techniques to develop low-cost wireless sensors....

  6. Profitable Biodiesel Potential from Increased Agricultural Yields Country Name

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Profitable Biodiesel Potential from Increased Agricultural Yields Country Name Production Cost ($/liter) Potential Biodiesel Volume (liters) Total Export Profits ($) HDI Rank GDP/ cap Corrupt Rank FDI

  7. approach yields decreased: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taberlet; Sbastien Manneville 2013-11-27 32 Yield Enhancement of Reconfigurable Microfluidics-Based Biochips Using Computer Technologies and Information Sciences Websites...

  8. Solar Decathlon house continues to yield data | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Decathlon house continues to yield data ORNL, University of Tennessee to continue lessons learned in DOE solar energy competition Courtesy of: UT College of Architecture and...

  9. Increasing Sugar Yields with IL-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ionic Liquid Processing Increasing sugar yields from diverse biomass feedstock with ionic liquid processing and cultivation of renewable ionic liquids Liberating Sugars from...

  10. Robust Diamond-Based RF Switch Yields Enhanced Communication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust Diamond-Based RF Switch Yields Enhanced Communication Capabilities Technology available for licesning: A radio frequency (RF) microelectromechanical system (MEMS) switch...

  11. 2D monolayers could yield thinnest solar cells ever

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have shown how using a different type of material could yield thinner, more lightweight solar panels that provide power densities - watts per kilogram of material - orders of...

  12. Strontium and barium iodide high light yield scintillators

    SciTech Connect (OSTI)

    Moses, William W; Cherepy, Nerine; Hull, Giulia; Drobshoff, Alexander; Payne, Stephen; van Loef, Edgar; Wilson, Cody; Shah, Kanai; Roy, Utpal N.; Burger, Arnold; Boatner, Lynn; Choong, Woon-Seng; Moses, William

    2008-04-18T23:59:59.000Z

    Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields.

  13. Weather-based yield forecasts developed for 12 California crops

    E-Print Network [OSTI]

    Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

    2006-01-01T23:59:59.000Z

    RESEARCH ARTICLE Weather-based yield forecasts developed fordepend largely on the weather, measurements from existingpredictions. We developed weather-based models of statewide

  14. Rapid embedded wire heating via resistive guiding of laser-generated fast electrons as a hydrodynamic driver

    SciTech Connect (OSTI)

    Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Pasley, J. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom) [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom); York Plasma Institute, University of York, York YO10 5DD (United Kingdom)

    2013-12-15T23:59:59.000Z

    Resistively guiding laser-generated fast electron beams in targets consisting of a resistive wire embedded in lower Z material should allow one to rapidly heat the wire to over 100 eV over a substantial distance without strongly heating the surrounding material. On the multi-ps timescale, this can drive hydrodynamic motion in the surrounding material. Thus, ultra-intense laser solid interactions have the potential as a controlled driver of radiation hydrodynamics in solid density material. In this paper, we assess the laser and target parameters needed to achieve such rapid and controlled heating of the embedded wire.

  15. Search for the decays J/{psi}{yields}{gamma}{rho}{phi} and J/{psi}{yields}{gamma}{rho}{omega}

    SciTech Connect (OSTI)

    Ablikim, M.; Bai, J. Z.; Cai, X.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chu, Y. P.; Deng, Z. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Gao, C. S.; Gu, S. D.; Guo, Y. N.; He, K. L.; Heng, Y. K.; Hu, H. M.; Hu, T. [Institute of High Energy Physics, Beijing 100049 (China)] (and others)

    2008-01-01T23:59:59.000Z

    Using 58x10{sup 6} J/{psi} events collected with the Beijing Spectrometer (BESII) at the Beijing Electron-Positron Collider, the decays J/{psi}{yields}{gamma}{phi}{rho} and J/{psi}{yields}{gamma}{omega}{rho} are searched for, and upper limits on their branching fractions are reported at the 90% C.L. No clear structures are observed in the {gamma}{rho}, {gamma}{phi}, or {rho}{phi} mass spectra for J/{psi}{yields}{gamma}{phi}{rho} nor in the {gamma}{rho}, {gamma}{omega}, or {rho}{omega} mass spectra for J/{psi}{yields}{gamma}{omega}{rho}.

  16. Introducing the Canadian Crop Yield Forecaster Aston Chipanshi1

    E-Print Network [OSTI]

    Miami, University of

    for crop yield forecasting and risk analysis. Using the Census Agriculture Region (CAR) as the unit Climate Decision Support and Adaptation, Agriculture and Agri-Food Canada, 1011, Innovation Blvd, Saskatoon, SK S7V 1B7, Canada The Canadian Crop Yield Forecaster (CCYF) is a statistical modelling tool

  17. Metabolic Engineering for Improved Biofuel Yield in a Marine

    E-Print Network [OSTI]

    Petta, Jason

    Metabolic Engineering for Improved Biofuel Yield in a Marine Cyanobacterium/conclusion · future work that will be done to increase biofuel yield #12;Problems? · Many na@al renewable source of energy -Biofuel produc@on from aqua@c photoautotroph

  18. Macroscopic yield criteria for plastic anisotropic materials containing spheroidal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids Vincent-Leblond-Devaux's (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids

  19. assessing yield optimization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assessing yield optimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Sensitivity of Yield...

  20. Simulations of beam-beam and beam-wire interactions in RHIC

    SciTech Connect (OSTI)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01T23:59:59.000Z

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  1. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect (OSTI)

    Kunets, Vas. P., E-mail: vkunets@uark.edu; Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J. [Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Mortazavi, M. [Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas 71601 (United States)

    2014-08-28T23:59:59.000Z

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  2. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    DOE Patents [OSTI]

    Fernandez, Felix E. (Mayaguez, PR)

    2003-01-01T23:59:59.000Z

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  3. Effective Field Theory for the Quantum Electrodynamics of a Graphene Wire

    E-Print Network [OSTI]

    P. Faccioli; E. Lipparini

    2009-06-30T23:59:59.000Z

    We study the low-energy quantum electrodynamics of electrons and holes, in a thin graphene wire. We develop an effective field theory (EFT) based on an expansion in p/p_T, where p_T is the typical momentum of electrons and holes in the transverse direction, while p are the momenta in the longitudinal direction. We show that, to the lowest-order in (p/p_T), our EFT theory is formally equivalent to the exactly solvable Schwinger model. By exploiting such an analogy, we find that the ground state of the quantum wire contains a condensate of electron-hole pairs. The excitation spectrum is saturated by electron-hole collective bound-states, and we calculate the dispersion law of such modes. We also compute the DC conductivity per unit length at zero chemical potential and find g_s =e^2/h, where g_s=4 is the degeneracy factor.

  4. A reassessment of equivalence in yield from marine reserves and traditional fisheries management

    E-Print Network [OSTI]

    White, Crow; Kendall, Bruce E.

    2007-01-01T23:59:59.000Z

    and Botsford, L. W. 1999. Equivalence in yield from marineJune 2007 A reassessment of equivalence in yield from marineidentical model generates equivalence in yield between the

  5. Evaluation of the Thermal Performance for a Wire Mesh/Hollow Glass Microsphere Composite Structure as a Conduction Barrier

    E-Print Network [OSTI]

    Mckenna, Sean

    2010-01-15T23:59:59.000Z

    An experimental investigation exploring the use of wire mesh/hollow glass microsphere combination for use as thermal insulation was conducted with the aim to conclude whether or not it represents a superior insulation technology to those...

  6. In-situ neutron diffraction study of a heating treatment for Nb3Sn ITER superconducting wires.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is composed of tantalum and the inner core of copper. For the neutron experiment, 40 wires of 0.815mm have.524Å in a dedicated furnace. Refinements have been done by the sequential Rietveld technique using

  7. Comparison of Molecular-Wires for Enhancing Charge Transport of Enzymatic Electrode Assemblies: A Glycerol Bioanode Model 

    E-Print Network [OSTI]

    Mahadevan, Aishwarya

    2014-12-12T23:59:59.000Z

    challenge. A novel iron (II) sulfide (FeS) based molecular wiring system was developed for immobilizing glycerol dehydrogenase on a gold electrode surface. Amperometric and potentiometric analyses with glycerol dehydrogenase-based model electrodes confirmed...

  8. Annual Stock Assessment - CWT [Coded Wire Tag program] (USFWS), Annual Report 2007.

    SciTech Connect (OSTI)

    Pastor, Stephen M. [U.S. Fish and Wildlife Service, Columbia River Fisheries Program Office

    2009-07-21T23:59:59.000Z

    In 1989 the Bonneville Power Administration (BPA) began funding the evaluation of production groups of juvenile anadromous fish not being coded-wire tagged for other programs. These groups were the 'Missing Production Groups'. Production fish released by the U.S. Fish and Wildlife Service (FWS) without representative coded-wire tags during the 1980s are indicated as blank spaces on the survival graphs in this report. This program is now referred to as 'Annual Stock Assessment - CWT'. The objectives of the 'Annual Stock Assessment' program are to: (1) estimate the total survival of each production group, (2) estimate the contribution of each production group to fisheries, and (3) prepare an annual report for USFWS hatcheries in the Columbia River basin. Coded-wire tag recovery information will be used to evaluate the relative success of individual brood stocks. This information can also be used by salmon harvest managers to develop plans to allow the harvest of excess hatchery fish while protecting threatened, endangered, or other stocks of concern. All fish release information, including marked/unmarked ratios, is reported to the Pacific States Marine Fisheries Commission (PSMFC). Fish recovered in the various fisheries or at the hatcheries are sampled to recover coded-wire tags. This recovery information is also reported to PSMFC. This report has been prepared annually starting with the report labeled 'Annual Report 1994'. Although the current report has the title 'Annual Report 2007', it was written in fall of 2008 using data available from RMIS that same year, and submitted as final in January 2009. The main objective of the report is to evaluate survival of groups which have been tagged under this ongoing project.

  9. Study on the recycling of waste PVC compounds from electrical wires

    SciTech Connect (OSTI)

    Roman Jr, Celso, E-mail: romancelso@gmail.com; Zattera, Ademir José, E-mail: romancelso@gmail.com [Center for Exact Sciences and Technology (CCET), University of Caxias do Sul (UCS), Caxias do Sul-RS (Brazil)

    2014-05-15T23:59:59.000Z

    The good mechanical, thermal and electrical properties of poly (vinyl chloride) (PVC) make it a polymer used in many applications, among which is the coating of wires and cables. The processing of PVC for this application is made using the extrusion process. The PVC waste resulting from extrusion can be recycled or placed on landfills. The objective of this work is to develop recycling methods to decrease the amount of PVC stored in landfills. This work evaluated the influence of successive processing of PVC on the final properties of the obtained compound, which will be used in the process of coating wire and cable by extrusion. The mechanical properties of the electrical wires were assessed according to the Brazilian Association of Technical Standards (ABNT NBR 6251). Tests of tensile strength, elongation at break, before and after thermal aging in an oven with air circulation for a period of 168 hours at 100 °C were performed. The degradation of the PVC compound was carried out through Fourier transform infrared spectroscopy (FTIR) and mechanical properties evaluation. The results showed that the compound can be reprocessed five times keeping the minimum requirements of the ABNT NBR 6251 Standard. Reprocessing was stopped upon color changing (yellowing) of the compound. Yellowing is a characteristic degradation behavior by dehydrochlorination of PVC. FTIR analysis showed changes at 1600 cm{sup ?1}, 1430 cm{sup ?1}, 685 cm{sup ?1} and 614 cm{sup ?1} bands. The performance of the PVC compound for coating electrical wire and cable was fair, meeting the requirements of the ABNT NBR 6251 Standard even after five reprocessing cycles.

  10. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    SciTech Connect (OSTI)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.; Gleizer, S.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)] [Physics Department, Technion, Haifa 32000 (Israel)

    2013-05-15T23:59:59.000Z

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50?m

  11. High Performance Superconducting Wire in High Applied Magnetic Fields via Nanoscale Defect Engineering

    SciTech Connect (OSTI)

    Goyal, Amit [ORNL; Wee, Sung Hun [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL

    2008-01-01T23:59:59.000Z

    High temperature superconducting (HTS) wires capable of carrying large critical currents with low dissipation levels in high applied magnetic fields are needed for a wide range of applications. In particular, for electric power applications involving rotating machinery, such as large-scale motors and generators, a high critical current, Ic, and a high engineering critical current density, JE, in applied magnetic fields in the range of 3 5 Tesla (T) at 65 K are required. In addition, exceeding the minimum performance requirements needed for these applications results in a lower fabrication cost, which is regarded as crucial to realize or enable many large-scale bulk applications of HTS materials. Here we report the fabrication of short segments of a potential superconducting wire comprised of a 4 m thick YBa2Cu3O7? (YBCO) layer on a biaxially textured substrate with a 50% higher Ic and JE than the highest values reported previously. The YBCO film contained columns of self-assembled nanodots of BaZrO3 (BZO) roughly oriented along the c-axis of YBCO. Although the YBCO film was grown at a high deposition rate, three-dimensional self-assembly of the insulating BZO nanodots still occurred. For all magnetic field orientations, minimum Ic and JE at 65 K, 3 T for the wire were 353 A cm?1 and 65.4 kA cm?2, respectively.

  12. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE)

    SciTech Connect (OSTI)

    Savi, Daniel, E-mail: d.savi@umweltchemie.ch [Dipl. Environmental Sci. ETH, büro für umweltchemie, Zurich (Switzerland); Kasser, Ueli [Lic. Phil. Nat. (Chemist), büro für umweltchemie, Zurich (Switzerland); Ott, Thomas [Dipl. Phys. ETH, Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil (Switzerland)

    2013-12-15T23:59:59.000Z

    Highlights: • We’ve analysed data on the dismantling of electronic and electrical appliances. • Ten years of mass balance data of more than recycling companies have been considered. • Percentages of dismantled batteries, capacitors and PWB have been studied. • Threshold values and benchmarks for batteries and capacitors have been identified. • No benchmark for the dismantling of printed wiring boards should be set. - Abstract: The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given.

  13. Silicon ingot casting: Heat Exchanger Method (HEM)/multi-wire slicing: Fixed Abrasive Slicing Technique (FAST), Phase IV. Quarterly progress report No. 2, April 1, 1980-June 30, 1980

    SciTech Connect (OSTI)

    Schmid, F.; Khattak, C.P.; Basaran, M.

    1980-08-01T23:59:59.000Z

    Silicon ingot size cast by HEM has been extended to 34 cm x 34 cm x 10 cm. A 20 kg ingot has been solidified at 3 kg/hr with no crucible attachment or ingot cracking problems. Another ingot of 26 kg weight has also been solidified. The heat treatment used to develop a graded structure caused cracking on the inside surface of the first large crucibles. The thermal conditions were altered to minimize high gradients and the cracking was eliminated. A high degree of single crystallinity has been maintained as the size of the ingots has been increased. A graphite retainer made out of flat plates was used to produce an ingot with flat sides and rounded curves. It is now possible to electroplate diamonds only on the cutting edge of the wire. The advantages associated with diamonds on the cutting edge only are lower kerf, improved accuracy by improved seating in the support rollers, and less degradation of the rollers. This has resulted in less wander of wires and will reduce costs by using less diamonds and less degradation of rollers. The main failure mechanism of wires - diamond pullout - has been minimized by using filler diamonds to prevent erosion of the nickel matrix. It has been shown that an electroplated wirepack can be used to slice three 10 cm diameter silicon ingots without significant diamond pullout. IPEG analysis of value added costs of sheet formation using conservative and optimistic extension of HEM and FAST technologies yields $27.05/m/sup 2/ ($0.191/w) and $13.49/m/sup 2/ (0.095/w), respectively. Assuming cost goals of other tasks are met, the projected costs are $0.654/w, conservatively, and $0.539/w, optimistically, for photovoltaic modules.

  14. Search for B{sup +}{yields}X(3872)K{sup +}, X(3872){yields}J/{psi}{gamma}

    SciTech Connect (OSTI)

    Aubert, B.; Barate, R.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A. [Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux (France); Grauges, E. [Universitat de Barcelona, Facultat de Fisica Departamento ECM, E-08028 Barcelona (Spain); Palano, A. [Universita di Bari, Dipartimento di Fisica and INFN, I-70126 Bari (Italy); Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S. [Institute of High Energy Physics, Beijing 100039 (China); Eigen, G.; Ofte, I.; Stugu, B. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway)] (and others)

    2006-10-01T23:59:59.000Z

    In a study of B{sup +}{yields}J/{psi}{gamma}K{sup +} decays, we find evidence for the radiative decay X(3872){yields}J/{psi}{gamma} with a statistical significance of 3.4{sigma}. We measure the product of branching fractions B(B{sup +}{yields}X(3872)K{sup +}){center_dot}B(X(3872){yields}J/{psi}{gamma})=(3.3{+-}1.0{+-}0.3)x10{sup -6}, where the uncertainties are statistical and systematic, respectively. We also measure the branching fraction B(B{sup +}{yields}{chi}{sub c1}K{sup +})=(4.9{+-}0.2{+-}0.4)x10{sup -4}. These results are obtained from (287{+-}3) million BB decays collected at the {upsilon}(4S) resonance with the BABAR detector at the PEP-II B Factory at SLAC.

  15. Dynamic and rate-dependent yielding in model cohesive suspensions

    E-Print Network [OSTI]

    Richard Buscall; Peter J. Scales; Anthony D. Stickland; Hui-En Teo; Tiara E. Kusuma; Daniel R. Lester

    2015-02-02T23:59:59.000Z

    An experimental system has been found recently, a coagulated CaCO3 suspension system, which shows very variable yield behaviour depending upon how it is tested and, specifically, at what rate it is sheared. At P\\'eclet numbers Pe > 1 it behaves as a simple Herschel Bulkley liquid, whereas at Pe < 1 highly non-monotonic flow curves are seen. In controlled stress testing it shows hysteresis and shear banding and in the usual type of stress scan, used to measure flow curves in controlled stress mode routinely, it can show very erratic and irreproducible behaviour. All of these features will be attributed here to a dependence of the solid phase, or, yield stress, on the prevailing rate of shear at the yield point. Stress growth curves obtained from step strain-rate testing showed that this rate-dependence was a consequence of P\\'eclet number dependent strain softening. At very low Pe, yield was cooperative and the yield strain was order-one, whereas as Pe approached unity, the yield strain reduced to that needed to break interparticle bonds, causing the yield stress to be greatly reduced. It is suspected that rate-dependent yield could well be the rule rather than the exception for cohesive suspensions more generally. If so, then the Herschel-Bulkley equation can usefully be generalized to read (in simple shear). The proposition that rate-dependent yield might be general for cohesive suspensions is amenable to critical experimental testing by a range of means and along lines suggested.

  16. Observation of J/{psi}{yields}3{gamma}

    SciTech Connect (OSTI)

    Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F. [University of Rochester, Rochester, New York 14627 (United States); Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K. [Syracuse University, Syracuse, New York 13244 (United States)] (and others)

    2008-09-05T23:59:59.000Z

    We report the first observation of the decay J/{psi}{yields}3{gamma}. The signal has a statistical significance of 6{sigma} and corresponds to a branching fraction of B(J/{psi}{yields}3{gamma})=(1.2{+-}0.3{+-}0.2)x10{sup -5}, in which the errors are statistical and systematic, respectively. The measurement uses {psi}(2S){yields}{pi}{sup +}{pi}{sup -}J/{psi} events acquired with the CLEO-c detector operating at the CESR e{sup +}e{sup -} collider.

  17. Plasmonic light yield enhancement of a liquid scintillator

    SciTech Connect (OSTI)

    Bignell, Lindsey J.; Jackson, Timothy W. [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia)] [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Mume, Eskender [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia) [Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Center of Excellence in Anti-matter Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Lee, George P. [Department of Materials Engineering, Monash University, Melbourne (Australia)] [Department of Materials Engineering, Monash University, Melbourne (Australia)

    2013-05-27T23:59:59.000Z

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  18. Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry

    SciTech Connect (OSTI)

    Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

    2009-11-01T23:59:59.000Z

    Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

  19. Study of B{yields}X(3872)K, with X(3872){yields}J/{psi}{pi}{sup +}{pi}{sup -}

    SciTech Connect (OSTI)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V. [Laboratoire de Physique des Particules, IN2P3/CNRS et Universite de Savoie, F-74941 Annecy-Le-Vieux (France); Garra Tico, J.; Grauges, E. [Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona (Spain); Lopez, L.; Palano, A.; Pappagallo, M. [Universita di Bari, Dipartimento di Fisica and INFN, I-70126 Bari (Italy); Eigen, G.; Stugu, B.; Sun, L. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway); Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J. [Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720 (United States)] (and others)

    2008-06-01T23:59:59.000Z

    We present measurements of the decays B{sup +}{yields}X(3872)K{sup +} and B{sup 0}{yields}X(3872)K{sup 0} with X(3872){yields}J/{psi}{pi}{sup +}{pi}{sup -}. The data sample used, collected with the BABAR detector at the PEP-II e{sup +}e{sup -} asymmetric-energy storage ring, corresponds to 455x10{sup 6}BB pairs. Branching fraction measurements of B(B{sup +}{yields}X(3872)K{sup +})xB(X(3872){yields}J/{psi}{pi}{sup +}{pi}{sup -})=(8.4{+-}1.5{+-}0.7)x10{sup -6} and B(B{sup 0}{yields}X(3872)K{sup 0})xB(X(3872){yields}J/{psi}{pi}{sup +}{pi}{sup -})=(3.5{+-}1.9{+-}0.4)x10{sup -6} are obtained. We set an upper limit on the natural width of the X(3872) of {gamma}<3.3 MeV/c{sup 2} at the 90% confidence level.

  20. A Computational Study of Feeding Rules and Yield Improvement Techniques

    E-Print Network [OSTI]

    Beckermann, Christoph

    A Computational Study of Feeding Rules and Yield Improvement Techniques Christoph Beckermann improvement techniques is presented. The computer simulations were performed using a commercial solidification chills (termed passive methods), and active heating and cooling are presented and compared. The benefits

  1. Future Yield Growth: What Evidence from Historical Data?

    E-Print Network [OSTI]

    Gitiaux, Xavier

    The potential future role of biofuels has become an important topic in energy legislation as it is seen as a potential low carbon alternative to conventional fuels. Hence, future yield growth is an important topic from ...

  2. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    E-Print Network [OSTI]

    Turner, Monica G.

    providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservationBird Communities and Biomass Yields in Potential Bioenergy Grasslands Peter J. Blank1 *, David W, Wisconsin, United States of America Abstract Demand for bioenergy is increasing, but the ecological

  3. Plant-Wide Energy Conservation Program Yields Impressive Results 

    E-Print Network [OSTI]

    Adlkes, R. P.; Zupko, A. J.; Adams, J. W.

    1980-01-01T23:59:59.000Z

    to heating system and process changes by Installing improved boiler control systems and Initiating operator training programs. ? When rebuilding heat treating equipment, ceramic fiber insulation was used, yielding reduced heat losses and faster...

  4. Genome sequence of the Brown Norway rat yields insights into

    E-Print Network [OSTI]

    Pachter, Lior

    Genome sequence of the Brown Norway rat yields insights into mammalian evolution Rat Genome Norway (BN) rat strain. The sequence represents a high-quality `draft' covering over 90% of the genome

  5. Hierarchy of scales in B{yields}PS decays

    SciTech Connect (OSTI)

    Delepine, D.; Lucio M, J. L. [Instituto de Fisica, Universidad de Guanajuato Loma del Bosque no 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Mendoza S, J. A. [Depto. de Fisica-Matematicas, Universidad de Pamplona Pamplona, Norte de Santander (Colombia); Ramirez, Carlos A. [Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2008-08-31T23:59:59.000Z

    We show that the naive factorization approach can accommodate the existence of the observed hierarchy of branching ratios for the B{yields}PS decays (P stands for pseudoscalar and S for scalar mesons respectively.

  6. analysis yields potential: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the a3 R u and 13 R g states of Li2 has yielded accurate analytic potential energy functions for both states. The recommended M3LR8:0 5;33? potential for the a3...

  7. Yield Enhancement of Reconfigurable Microfluidics-Based Biochips Using

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Yield Enhancement of Reconfigurable Microfluidics-Based Biochips Using Interstitial Redundancy FEI SU and KRISHNENDU CHAKRABARTY Duke University Microfluidics-based biochips for biochemical analysis cumbersome equipment with minia- turized and integrated systems. As these microfluidics-based microsystems

  8. TOWARDS STANDARDIZATION OF CSP YIELD ASSESSMENTS Richard Meyer

    E-Print Network [OSTI]

    Heinemann, Detlev

    TOWARDS STANDARDIZATION OF CSP YIELD ASSESSMENTS Richard Meyer 1 , Hans Georg Beyer 2 , Jörg Schmidt 1 , and Marko Schwandt 5 1 EPURON GmbH, Anckelmannsplatz 1, 20537 Hamburg, Germany, r.meyer

  9. Bubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect on the critical current density

    E-Print Network [OSTI]

    the Jc of Bi2212 round wires. 1. Introduction The high-temperature superconductor (HTS) Bi2Sr2CaCu2Ox (BiBubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect.1088/0953-2048/24/7/075009 Bubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect

  10. Proposal for the award of a contract for the supply of Nb3Sn superconducting wire for the 11 T project at CERN

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Proposal for the award of a contract for the supply of Nb3Sn superconducting wire for the 11 T project at CERN

  11. Proposal to negotiate a collaboration agreement for R&D activities relating to Nb3Sn superconducting wire for the High Luminosity LHC project

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Proposal to negotiate a collaboration agreement for R&D activities relating to Nb3Sn superconducting wire for the High Luminosity LHC project

  12. Proposal for the award of a contract for the supply of Nb3Sn superconducting wire for the MQXF project at CERN

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Proposal for the award of a contract for the supply of Nb3Sn superconducting wire for the MQXF project at CERN

  13. JAG Tearing Technique with Radiofrequency Guide Wire for Aortic Fenestration in Thoracic Endovascular Aneurysm Repair

    SciTech Connect (OSTI)

    Ricci, Carmelo [Azienda Ospedaliera Universitaria Senese, Policlinico Santa Maria alle Scotte, Radiologia Interventistica (Italy); Ceccherini, Claudio, E-mail: claudiocec@hotmail.it; Leonini, Sara [Radiologia Universitaria, Azienda Ospedaliera Universitaria Senese, Policlinico Santa Maria alle Scotte (Italy); Cini, Marco; Vigni, Francesco [Azienda Ospedaliera Universitaria Senese, Policlinico Santa Maria alle Scotte, Radiologia Interventistica (Italy); Neri, Eugenio; Tucci, Enrico; Benvenuti, Antonio; Tommasino, Giulio; Sassi, Carlo [Azienda Ospedaliera Universitaria Senese, Policlinico Santa Maria alle Scotte, Chirurgia dell'Aorta Toracica (Italy)

    2012-02-15T23:59:59.000Z

    An innovative approach, the JAG tearing technique, was performed during thoracic endovascular aneurysm repair in a patient with previous surgical replacement of the ascending aorta with a residual uncomplicated type B aortic dissection who developed an aneurysm of the descending thoracic aorta with its lumen divided in two parts by an intimal flap. The proximal landing zone was suitable to place a thoracic stent graft. The distal landing zone was created by cutting the intimal flap in the distal third of the descending thoracic aorta with a radiofrequency guide wire and intravascular ultrasound catheter.

  14. Shock-less interactions of ablation streams in tungsten wire array z-pinches

    SciTech Connect (OSTI)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G.; Harvey-Thompson, A. J.; Bland, S. N.; De Grouchy, P.; Khoory, E.; Pickworth, L.; Skidmore, J.; Suttle, L. [The Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)] [The Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2013-06-15T23:59:59.000Z

    Shock-less dynamics were observed during the ablation phase in tungsten wire array experiments carried out on the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. This behaviour contrasts with the shock structures which were seen to dominate in previous experiments on aluminium arrays [Swadling et al., Phys. Plasmas 20, 022705 (2013)]. In this paper, we present experimental results and make comparisons both with calculations of the expected mean free paths for collisions between the ablation streams and with previously published Thomson scattering measurements of the plasma parameters in these arrays [Harvey-Thompson et al., Phys. Plasmas 19, 056303 (2012)].

  15. Software Development for a CompactRIO-Based Wire Scanner Control and Data Acquisition SYstem

    SciTech Connect (OSTI)

    Sedillo, James Daniel [Los Alamos National Laboratory

    2012-05-16T23:59:59.000Z

    The Beam Diagnostics and Instrumentation Team at the Los Alamos Neutron Science Center is developing a wire scanner data acquisition and control system with a National Instrument's compactRIO at its core. For this application, the compactRIO controller not only requires programming the FPGA and RT computer internal to the compactRIO, but also requires programming a client computer and a touch panel display. This article will summarize the hardware interfaces and describe the software design approach utilized for programming and interfacing the four systems together in order to fulfill the design requirements and promote reliable interoperability.

  16. On the possibility to grow zinc oxide-based transparent conducting oxide films by hot-wire chemical vapor deposition

    SciTech Connect (OSTI)

    Abrutis, Adulfas, E-mail: adulfas.abrutis@chf.vu.lt; Silimavicus, Laimis; Kubilius, Virgaudas; Murauskas, Tomas; Saltyte, Zita; Kuprenaite, Sabina; Plausinaitiene, Valentina [Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2014-03-15T23:59:59.000Z

    Hot-wire chemical vapor deposition (HW-CVD) was applied to grow zinc oxide (ZnO)-based transparent conducting oxide (TCO) films. Indium (In)-doped ZnO films were deposited using a cold wall pulsed liquid injection CVD system with three nichrome wires installed at a distance of 2?cm from the substrate holder. The wires were heated by an AC current in the range of 0–10 A. Zn and In 2,2,6,6-tetramethyl-3,5-heptanedionates dissolved in 1,2-dimethoxyethane were used as precursors. The hot wires had a marked effect on the growth rates of ZnO, In-doped ZnO, and In{sub 2}O{sub 3} films; at a current of 6–10 A, growth rates were increased by a factor of ?10–20 compared with those of traditional CVD at the same substrate temperature (400?°C). In-doped ZnO films with thickness of ?150?nm deposited on sapphire-R grown at a wire current of 9?A exhibited a resistivity of ?2?×?10{sup ?3} ?cm and transparency of >90% in the visible spectral range. These initial results reveal the potential of HW-CVD for the growth of TCOs.

  17. National Dioxin Study Tier 4 - combustion sources: final test report - Site 6, wire reclamation incinerator WRI-A

    SciTech Connect (OSTI)

    Keller, L.E.; McReynolds, J.R.; Benson, D.J.

    1987-04-01T23:59:59.000Z

    This report summarizes the results of a dioxin/furan emissions test of a wire-reclamation incinerator equipped with an afterburner for hydrocarbon emissions control. The wire reclamation incinerator is used for recovery of copper from coated copper wire and drained transformer cores. The test was the sixth in a series of several dioxin/furan emissions tests conducted under Tier 4 of the National Dioxin Study. The primary objective of Tier 4 is to determine if various combustion sources are sources of dioxin and/or furan emissions. If any of the combustion sources are found to emit dioxin or furan, the secondary objective of Tier 4 is to quantify these emissions. Wire reclamation incinerators are one of 8 combustion-source categories that have been tested in the Tier 4 program. The tested incinerator WRI-A was selected for the test after an initial information screening and a one-day pretest survey visit. Incinerator WRI-A is considered representative of the wire-reclamation incinerator population in the United States. Data presented in the report include dioxin (tetra through octa homologue + 2378 TCDD) and furan (tetra through octa homologue + 2378 TCDF) results for both stack samples and ash samples. In addition, process data collected during sampling are also presented.

  18. Superconductive wire

    DOE Patents [OSTI]

    Korzekwa, David A. (Los Alamos, NM); Bingert, John F. (Jemez Springs, NM); Peterson, Dean E. (Los Alamos, NM); Sheinberg, Haskell (Santa Fe, NM)

    1995-01-01T23:59:59.000Z

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  19. Stress localization, stiffening and yielding in a model colloidal gel

    E-Print Network [OSTI]

    Jader Colombo; Emanuela Del Gado

    2014-06-16T23:59:59.000Z

    We use numerical simulations and an athermal quasi-static shear protocol to investigate the yielding of a model colloidal gel. Under increasing deformation, the elastic regime is followed by a significant stiffening before yielding takes place. A space-resolved analysis of deformations and stresses unravel how the complex load curve observed is the result of stress localization and that the yielding can take place by breaking a very small fraction of the network connections. The stiffening corresponds to the stretching of the network chains, unbent and aligned along the direction of maximum extension. It is characterized by a strong localization of tensile stresses, that triggers the breaking of a few network nodes at around 30% of strain. Increasing deformation favors further breaking but also shear-induced bonding, eventually leading to a large-scale reorganization of the gel structure at the yielding. At low enough shear rates, density and velocity profiles display significant spatial inhomogeneity during yielding in agreement with experimental observations.

  20. Neutron emission and fragment yield in high-energy fission

    SciTech Connect (OSTI)

    Grudzevich, O. T., E-mail: ogrudzevich@ippe.ru; Klinov, D. A. [Institute for Physics and Power Engineering (Russian Federation)] [Institute for Physics and Power Engineering (Russian Federation)

    2013-07-15T23:59:59.000Z

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of {sup 235}U nuclei.

  1. A method for relating impacts with yielding and unyielding targets

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1991-01-01T23:59:59.000Z

    The public has questioned the severity of the regulatory 9 meter drop onto an unyielding target required for Type B radioactive material shipping packages since this drop height results in an impact velocity of only 13.3 m/s (30 MPH). It is the unyielding nature of the regulatory target which makes the 9 meter drop so severe. In this paper a method for relating higher velocity impacts with yielding targets to impacts onto an unyielding target is developed. The severity of impacts with yielding targets is decreased by the amount of the impact energy absorbed in damaging the target. There have been previous attempts to correlate impacts with yielding targets to lower velocity impacts onto an unyielding target, and this work is an expansion of those efforts.

  2. A method for relating impacts with yielding and unyielding targets

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1991-12-31T23:59:59.000Z

    The public has questioned the severity of the regulatory 9 meter drop onto an unyielding target required for Type B radioactive material shipping packages since this drop height results in an impact velocity of only 13.3 m/s (30 MPH). It is the unyielding nature of the regulatory target which makes the 9 meter drop so severe. In this paper a method for relating higher velocity impacts with yielding targets to impacts onto an unyielding target is developed. The severity of impacts with yielding targets is decreased by the amount of the impact energy absorbed in damaging the target. There have been previous attempts to correlate impacts with yielding targets to lower velocity impacts onto an unyielding target, and this work is an expansion of those efforts.

  3. Yield Strength as a Thermodynamic Consequence of Information Erasure

    E-Print Network [OSTI]

    Katira, Parag

    2015-01-01T23:59:59.000Z

    We observe that the yield strength of a variety of materials, including highly structured and densely packed metals, alloys and semi-crystalline polymers is reasonably approximated by the thermal energy density of the material. This suggests that it is related to the entropic cost of the irreversible work done during plastic deformation rather than the enthalpic cost that depends on the elastic modulus of the material. Here we propose that the entropic cost of material rearrangement in crystalline solids arises from the difference in the uncertainty in building block positions before and after yielding and estimate it using Landauer's principle for information processing. The yield strength thus obtained in given by the thermal energy density of the material multiplied by ln(2) and provides a guidepost in estimating the strength of materials complementary to the "theoretical strength of solids".

  4. Sputtering yield of Pu bombarded by fission Fragments from Cf

    SciTech Connect (OSTI)

    Danagoulian, Areg [Los Alamos National Laboratory; Klein, Andreas [Los Alamos National Laboratory; Mcneil, Wendy V [Los Alamos National Laboratory; Yuan, Vincent W [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    We present results on the yield of sputtering of Pu atoms from a Pu foil, bombarded by fission fragments from a {sup 252}Cf source in transmission geometry. We have found the number of Pu atoms/incoming fission fragments ejected to be 63 {+-} 1. In addition, we show measurements of the sputtering yield as a function of distance from the central axis, which can be understood as an angular distribution of the yield. The results are quite surprising in light of the fact that the Pu foil is several times the thickness of the range of fission fragment particles in Pu. This indicates that models like the binary collision model are not sufficient to explain this behavior.

  5. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    SciTech Connect (OSTI)

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo [Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Key State Laboratory of Simulation and Effect for Intense Pulse Radiation, Xi'an 710024 (China); Jian, Wu [Xi'an Jiaotong University, Xi'an 710049 (China); Aici, Qiu [Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-06-15T23:59:59.000Z

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100?ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 ? in about 10–20?ns.

  6. Evaluation and compilation of fission product yields 1993

    SciTech Connect (OSTI)

    England, T.R.; Rider, B.F.

    1995-12-31T23:59:59.000Z

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  7. Demonstration of Smart Building Controls to Manage Building Peak Loads: Innovative Non-Wires Technologies

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Hatley, Darrel D.

    2004-12-22T23:59:59.000Z

    As a part of the non-wires solutions effort, BPA in partnership with Pacific Northwest National Laboratory (PNNL) is exploring the use of two distributed energy resources (DER) technologies in the City of Richland. In addition to demonstrating the usefulness of the two DER technologies in providing peak demand relief, evaluation of remote direct load control (DLC) is also one of the primary objectives of this demonstration. The concept of DLC, which is used to change the energy use profile during peak hours of the day, is not new. Many utilities have had success in reducing demand at peak times to avoid building new generation. It is not the need for increased generation that is driving the use of direct load control in the Northwest, but the desire to avoid building additional transmission capacity. The peak times at issue total between 50 and 100 hours a year. A transmission solution to the problem would cost tens of millions of dollars . And since a ?non wires? solution is just as effective and yet costs much less, the capital dollars for construction can be used elsewhere on the grid where building new transmission is the only alternative. If by using DLC, the electricity use can be curtailed, shifted to lower use time periods or supplemented through local generation, the existing system can be made more reliable and cost effective.

  8. Radiative cooling of two-component wire-array Z-pinch plasma

    SciTech Connect (OSTI)

    Ivanov, V. V.; Mancini, R. C.; Papp, D.; Hakel, P.; Durmaz, T. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Florido, R. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria (Spain)

    2014-08-15T23:59:59.000Z

    Wire-array two-component Z-pinch plasmas containing Al and other elements were studied experimentally and the observations interpreted with the help of theoretical modeling. Special attention was given to achieving reproducible implosions. Cascading implosions in star wire arrays mix components during the implosion phase and implosion dynamics were not affected by changes in concentration. A reduction in Al K-shell radiation and an increase in soft x-ray radiation emission were observed in Al-W plasma with 84% concentration of Al ions compared to only-Al plasma. Plasma with 84% of Al ions has radiative properties like those of W Z-pinches. The analysis of Al K-shell x-ray spectra with a collisional-radiative atomic kinetics model shows a drop of the electron temperature from 400?eV in pure Al plasma to below 300?eV in the Al-W mix. Al-Au Z-pinches present radiation features similar to Al-W plasma. This is indicative of a similar plasma cooling effect due to the presence of a high-Z element.

  9. Second Generation HTs Wire Based on RABiTS Substrates and MOD YBCO

    SciTech Connect (OSTI)

    Schoop, U. [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Thieme, C. L. H. [American Superconductor Corporation, Westborough, MA; Verebelyi, D. T. [American Superconductor Corporation, Westborough, MA; Zhang, W. [American Superconductor Corporation, Westborough, MA; Li, Xiaoping [American Superconductor Corporation, Westborough, MA; Kodenkandath, Thomas [American Superconductor Corporation, Westborough, MA; Nguyen, N. [American Superconductor Corporation, Westborough, MA; Siegal, E. E. [American Superconductor Corporation, Westborough, MA; Civale, L. [Los Alamos National Laboratory (LANL); Holesinger, T. G. [Los Alamos National Laboratory (LANL); Maiorov, B. [Los Alamos National Laboratory (LANL); Goyal, Amit [ORNL; Paranthaman, Mariappan Parans [ORNL

    2005-01-01T23:59:59.000Z

    The performance of Second Generation (2G) high temperature superconducting wire manufactured by continuous reel-to-reel processes is nearing the 300 A/cm-width (77 K, self field) performance threshold for commercial power cable applications. The 2G manufacturing approach under development at American Superconductor is based on the combination of the RABiTS substrate-buffer technology with metal organic deposition (MOD) of the YBCO layer. The capability of this process has been demonstrated in multiple 10 meter lengths with critical currents exceeding 250 A/cm-width with high uniformity and reproducibility. Critical currents of 380 A/cm-width have been achieved in short length samples prepared by the same basic process. The incorporation of nanoparticles ('nanodots') into the YBCO layer using the MOD process has resulted in a 2-fold improvement in the critical current at 65 K in a 3 T field. The research and development focus at ASMC is now directed toward the economical scale-up of the RABiTS/MOD process, optimization of the conductor properties for targeted applications and the use of 2G wire in initial demonstration applications.

  10. Probing Martensitic Transition in Nitinol Wire: A Comparison of X-ray Diffraction and Other Techniques

    SciTech Connect (OSTI)

    Butler, J.; Tiernan, P.; Tofail, S. A. M.; Ghandi, A. A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

    2011-01-17T23:59:59.000Z

    Martensitic to austenite transformation in Nitinol wire can be measured by a number of techniques such as XRD (X-Ray Diffraction), DSC (Differential Scanning Calorimetry), BFR (Bend and Free Recovery) and Vickers indentation recovery. A comparison of results from these varied characterisation techniques is reported here to obtain a greater understanding of the thermal-elastic-structural changes associated with martensitic transformation. The transformation temperatures measured by DSC were found to correspond well with the structural and mechanical information obtained from XRD, BFR and Vickers indent recovery methods. Indent recovery is a relatively new and accurate method of monitoring stress induced martensitic transformations in NiTi and is one of only a few methods of stress inducing martensitic transformation in large scale samples. It is especially useful for NiTi in the as-cast billet form, where tensile testing is impossible. BFR is uniquely popular in the NiTi wire manufacturing sector and is recognised as the most accurate method of measuring the transformation temperature. Here the material is stressed to a representative in-service stress level during the test. No other test uses the shape memory effect for measuring the transformation temperature of NiTi. The results show that the DSC thermogram and XRD diffractogram have a peak overlap which is a common occurrence in NiTi that has been extensively processed. The XRD method further explains the observations in the DSC thermogram and in combination they confirm the transformation temperature.

  11. Influence of fatigue on the nanohardness of NiTiCr-wires

    SciTech Connect (OSTI)

    Frotscher, M. [Ruhr University, Bochum, Germany; Young, M. L. [Ruhr University, Bochum, Germany; Bei, Hongbin [ORNL; George, Easo P [ORNL; Neuking, K. [Ruhr University, Bochum, Germany; Eggeler, G. [Ruhr University, Bochum, Germany

    2009-01-01T23:59:59.000Z

    Testing parameters, such as rotational speed and bending radius, have a strong influence on the fatigue life of pseudoelastic NiTi shape-memory alloys during bending rotation fatigue (BRF) experiments [M. F. X. Wagner, Int. J. Mat. Res. 97 (2006), p. 1687-1696. and M. Frotscher, et al., Thermomechanical processing, microstructure and bending rotation fatigue of ultra-fine grained NiTiCr-wires, Proceedings of the International Conference for Shape Memory and Superelastic Technologies (SMST 2007), Tsukuba, Japan, ASM International, (2008), p. 149-158.]. Previous studies showed a decrease in the fatigue life for smaller bending radius (i.e. higher equivalent strain) and larger rotational speed. This observation is associated with an increase of dislocation density, the stabilization of stressinduced martensite during cycling, and an increase of the plateau stresses due to self-heating. In the present study, we examine the influence of these fatigue parameters on the nanohardness and shape recovery of pseudoelastic NiTiCr shape-memory alloy wires by nanoindentation. We show that nanoindentation is a suitable method for the characterization of fatigue-related microstructural changes, which affect the mechanical properties.

  12. Use of Cryoablation and Osteoplasty Reinforced with Kirschner Wires in the Treatment of Femoral Metastasis

    SciTech Connect (OSTI)

    Abdel-Aal, Ahmed Kamel, E-mail: akamel@uabmc.edu; Underwood, Edgar S.; Saddekni, Souheil [University of Alabama at Birmingham, Department of Radiology (United States)

    2012-10-15T23:59:59.000Z

    Purpose: We report the case of a 43-year-old man with metastatic breast carcinoma to the proximal right femur resulting in severe painful pathological fracture. The patient experienced severe pain despite large doses of analgesia, resulting in impaired functionality and quality of life. The patient had significant comorbidities, making him a high surgical risk. Materials and Methods: The patient was treated with cryoablation and osteoplasty, followed by a novel technique consisting of osteoplasty reinforced with bone marrow Kirschner wires (K-wires) which will be described in details in this report. Results: The patient reported significant pain relief after the procedure, and gained right lower extremity functionality, as compared to total immobility before the procedure. Conclusion: Our technique offers an alternative feasible treatment for patients at high surgical risk with pathological fractures in weight-bearing bones, in which osteoplasty alone has a high risk of cement leakage, inadequate fracture reduction, and early refracture. To our knowledge, our technique has not been previously described.

  13. Mechanical Design and Evaluation of the MP-11-Like Wire Scanner Prototype

    SciTech Connect (OSTI)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Martinez, Jason P. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory

    2012-05-16T23:59:59.000Z

    A wire scanner (WS) is a linearly actuated diagnostic device that uses fiber wires (such as Tungsten or Silicon Carbide) to obtain the position and intensity profile of the proton beam at the Los Alamos Neutron Science Center (LANSCE) particle accelerator. LANSCE will be installing approximately 86 new WS in the near future as part of the LANSCE Risk Mitigation project. These 86 new WS include the replacement of many current WS and some newly added to the current linear accelerator and other beam lines. The reason for the replacement and addition of WS is that many of the existing actuators have parts that are no longer readily available and are difficult to find, thus making maintenance very difficult. One of the main goals is to construct the new WS with as many commercially-available-off-the-shelf components as possible. In addition, faster beam scans (both mechanically and in term of data acquisition) are desired for better operation of the accelerator. This document outlines the mechanical design of the new MP-11-like WS prototype and compares it to a previously built and tested SNS-like WS prototype.

  14. Position-sensitive proportional counter with low-resistance metal-wire anode

    DOE Patents [OSTI]

    Kopp, Manfred K. (Oak Ridge, TN)

    1980-01-01T23:59:59.000Z

    A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

  15. Executive Summary High-Yield Scenario Workshop Series Report

    SciTech Connect (OSTI)

    Leslie Park Ovard; Thomas H. Ulrich; David J. Muth Jr.; J. Richard Hess; Steven Thomas; Bryce Stokes

    2009-12-01T23:59:59.000Z

    To get a collective sense of the impact of research and development (R&D) on biomass resource availability, and to determine the feasibility that yields higher than baseline assumptions used for past assessments could be achieved to support U.S. energy independence, an alternate “High-Yield Scenario” (HYS) concept was presented to industry experts at a series of workshops held in December 2009. The workshops explored future production of corn/agricultural crop residues, herbaceous energy crops (HECs), and woody energy crops (WECs). This executive summary reports the findings of that workshop.

  16. Bushland Management For Water Yield: Prospects for Texas.

    E-Print Network [OSTI]

    McCarl, Bruce A.; Griffin, Ronald C.; Kaiser, Ronald A.; Freeman, Lansingh S.; Blackburn, Wilbert H.; Jordan, Wayne R.

    1987-01-01T23:59:59.000Z

    TDOC Z TA245.7 B873 no.1569 LIBRARY :JUNo 91987 I 1 Texas A&M University Brushland Management for Water Yield: Prospects for Texas THE TEXAS AGRICULTURAL EXPERIMENT STATION/Neville P. Clarke, Director/The Texas A&M University System.../College Station, Texas B-1569 May 1987 [Blank Page in Original Bulletin] BRUSHLAND MANAGEMENT FOR WATER YIELD: PROSPECTS FOR TEXAS Bruce A. McCarl Professor- Agricultural Economics Ronald C. Griffin Associate Professor- Agricultural Economics Ronald A...

  17. Neutron source capability assessment for cumulative fission yields measurements

    SciTech Connect (OSTI)

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06T23:59:59.000Z

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources are available that could support these fission yield experiments in the US, as well as at AWE and CEA. Considerations that will impact the final choice of experimental venues are: (1) Availability during the timeframe of interest; (2) Ability to accommodate special nuclear materials; (3) Cost; (4) Availability of counting facilities; and (5) Expected experimental uncertainties.

  18. Up-conversion yield in glass ceramics containing silver

    SciTech Connect (OSTI)

    Malta, O.L.; Santa-Cruz, P.A.; De Sa, G.F.; Auzel, F.

    1987-06-01T23:59:59.000Z

    Small silver particles are known to increase the fluorescence yield in rare-earth-doped glasses. These particles can be grown easily in glass ceramics of general composition (PbF2, GeO2, YbF3, ErF3). The authors have studied the effect of the addition of silver on the up-conversion yield due to sequential energy transfer between YbT and ErT ions. The origin and the information that can be obtained from this effect are discussed.

  19. Simultaneous deposition of Ni nanoparticles and wires on a tubular halloysite template: A novel metallized ceramic microstructure

    SciTech Connect (OSTI)

    Fu Yubin [Institute of Solid State Physics, China Academy of Sciences, Hefei 230031 (China) and Luoyang Ship Material Research Institute, Luoyang 471039 (China)]. E-mail: ffyybb725@vip.sina.com; Zhang Lide [Institute of Solid State Physics, China Academy of Sciences, Hefei 230031 (China)

    2005-11-15T23:59:59.000Z

    Tubular halloysite can be used as a template to fabricate a novel metallized ceramic microstructure through electroless plating. Reduction of Pd ions by methanol is conducted to initiate Ni plating. There is a simultaneous deposition of Ni nanoparticles on the outer surface and discontinuous wires in the lumen site of the halloysite template obtained. The different deposition could be caused by the different composition distribution of ferric oxide impurity in the wall due to the isomorphic substitution during the formation of halloysite template. Its magnetic property is mainly attributed to the Ni nanoparticles, not the wires. The metallized ceramic microstructure has the potential to be utilized as a novel magnetic material.

  20. Laser Wire Scanner Compton Scattering Techniques for the Measurement of the Transverse Beam Size of Particle Beams at Future Linear Colliders

    E-Print Network [OSTI]

    Agapov, I; Blair, G A; Bosser, J; Braun, H H; Bravin, E; Boorman, G; Boogert, S T; Carter, J; D'amico, E; Delerue, N; Howell, D F; Doebert, S; Driouichi, C; Frisch, J; Hutchins, K Honkavaaram S; Kamps, T; Lefevre, T; Lewin, H; Paris, T; Poirier, F; Price, M T; Maccaferi, R; Malton, S; Penn, G; Ross, I N; Ross, M; Schlarb, H; Schmueser, P; Schreiber, S; Sertore, D; Walker, N; Wendt, M; Wittenburg, K

    2014-01-01T23:59:59.000Z

    This archive summarizes a working paper and conference proceedings related to laser wire scanner development for the Future Linear Collider (FLC) in the years 2001 to 2006. In particular the design, setup and data taking for the laser wire experiments at PETRA II and CT2 are described. The material is focused on the activities undertaken by Royal Holloway University of London (RHUL).

  1. Pumping in an interacting quantum wire Dipartimento di Fisica ``E. R. Caianiello'' and Unita` I.N.F.M. di Salerno, Universita` di Salerno, Via S. Allende,

    E-Print Network [OSTI]

    Niu, Qian

    Pumping in an interacting quantum wire R. Citro Dipartimento di Fisica ``E. R. Caianiello 22 May 2003; published 14 October 2003 We study charge and spin pumping in an interacting one-dimensional wire. We show that a spatially periodic potential modulated in space and time acts as a quantum pump

  2. Heat Transfer -2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature T = 10o C. The heat transfer coefficient at the wire's surface h equation that includes all heat transfer mechanisms involved in this problem. Write this energy balance

  3. Aluminum arsenide cleaved-edge overgrown quantum wires T. Zibold, D. Schuh, M. Bichler, F. Ertl, G. Abstreiter, and M. Grayson

    E-Print Network [OSTI]

    Grayson, Matthew

    Aluminum arsenide cleaved-edge overgrown quantum wires J. Moser,a T. Zibold, D. Schuh, M. Bichler measurements in quantum wires made of aluminum arsenide, a heavy-mass, multivalley one-dimensional 1D system, and G0=2e2 /h was observed in the presence of disorder.3 Aluminum arsenide AlAs is an alternate heavy

  4. Yield Strength as a Function of Dislocation Density

    E-Print Network [OSTI]

    Collins, Gary S.

    -displacement graphs as well as obvious excursions and yield points ·These perfect indents give a guideline for what a micro-hardness indenter, which uses a square pyramidal indenter tip. 10 m Procedures and Methods Before/23/2, using known elastic modulus to find tip radius. E* is the elastic modulus, R is the indenter tip radius

  5. 2005 Nature Publishing Group Photosynthesis genes in marine viruses yield

    E-Print Network [OSTI]

    Church, George M.

    © 2005 Nature Publishing Group Photosynthesis genes in marine viruses yield proteins during host­6 probably influences the genetic and functional diversity of both. For example, photosynthesis genes period. We also show that the expression of host photosynthesis genes declines over the course

  6. Consistent scenario for B{yields}PS decays

    SciTech Connect (OSTI)

    Delepine, D.; Lucio M, J. L.; Mendoza S, J. A.; Ramirez, Carlos A. [Instituto de Fisica, Universidad de Guanajuato Loma del Bosque 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Depto. de Fisica-Matematicas, Universidad de Pamplona Pamplona, Norte de Santander (Colombia); Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2008-12-01T23:59:59.000Z

    We consider B{yields}PS decays where P stands for pseudoscalar and S for a heavy (1500 MeV) scalar meson. We achieve agreement with available experimental data, which includes two orders of magnitude hierarchy, assuming the scalars mesons are two quark states. The contribution of the dipolar penguin operator O{sub 11} is quantified.

  7. Influence of Vegetation Management on Yield and Quality Surface Runoff

    E-Print Network [OSTI]

    Smeins, F. E.

    of this study was to determine the influence of vegetation characteristics, grazing systems and precipitation on surface runoff from rangeland on the Edwards Plateau region of Texas. Water yield, organic-N, N03-N, NH4-N, N02-N, total and ortho-P, Ca, Mg, K, p...

  8. RESEARCH ARTICLE Impact of water stress on citrus yield

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    October 2011 # INRA and Springer-Verlag, France 2011 Abstract Water shortage is becoming a severe problemRESEARCH ARTICLE Impact of water stress on citrus yield Iván García-Tejero & Victor Hugo Durán in arid and semi-arid regions worldwide, reducing the avail- ability of agricultural land and water

  9. Less Acres and Variable Yield Mark Ohio's Crops

    E-Print Network [OSTI]

    Jones, Michelle

    developing technologies and cropping systems that are efficient in capturing solar energy, sus- tainable overLess Acres and Variable Yield Mark Ohio's Crops From 1994 to 2004, the combined acreage of soybean Pathology Dr. Mark Loux Horticulture and Crop Science Dr. Robert Mullen School of Natural Resources Dr. Mark

  10. The Impacts and Benefits Yielded from the Sport of Quidditch

    E-Print Network [OSTI]

    Cohen, Adam

    2013-08-06T23:59:59.000Z

    grounded theory approach and examined the impact and benefits for volunteers who chose to work for the IQA. Findings suggested the unique atmosphere of quidditch was able to produce an environment that yielded positive impact on the volunteers. It was found...

  11. A new yield function for geomaterials. Davide Bigoni , Andrea Piccolroaz

    E-Print Network [OSTI]

    Bigoni, Davide

    and frictional materials, including soils, rocks, concrete, metallic and composite powders, metallic foams, porous metals, and polymers. The yield func- tion represents a single, convex and smooth surface of quasibrittle and frictional materials (a collective denom- ination for soil, concrete, rock, granular media

  12. MFR PAPER 1132 The ocean's yield of seafood

    E-Print Network [OSTI]

    MFR PAPER 1132 The ocean's yield of seafood depends on international cooperation. An integrated management system for salmon could be a beginning. Toward a Planetary Aquaculture- the Seas as Range will never reach its potential as a reservoir of protein-protein sorely needed in a world increasingly beset

  13. Shear-induced sedimentation in yield stress fluids Guillaume Ovarlez

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    if a given material will remain ho- mogeneous during a flow. Using MRI techniques, we study the time the local shear rate in the interstitial fluid. Keywords: Sedimentation; Yield stress fluid; Suspension; MRI some lift or dispersion forces to the particles. This principle is typically used in fluidization

  14. 3/6/13 NetflixSpilled Your BrokebackMountain Secret, Lawsuit Claims | Threat Level | Wired.com www.wired.com/threatlevel/2009/12/netflix-privacy-lawsuit 1/13

    E-Print Network [OSTI]

    Sandhu, Ravi

    3/6/13 NetflixSpilled Your BrokebackMountain Secret, Lawsuit Claims | Threat Level | Wired.com wwwTweet 18 0 Netflix Spilled Your Brokeback Mountain Secret, Lawsuit Claims By Ryan Singel 12.17.09 4:29 PM on Thursday, alleging that Netflix violated fair-trade laws and a federal privacy law protecting video rental

  15. Xylose Monomer and Oligomer Yields for Uncatalyzed Hydrolysis of Sugarcane Bagasse Hemicellulose at Varying Solids Concentration

    E-Print Network [OSTI]

    California at Riverside, University of

    Xylose Monomer and Oligomer Yields for Uncatalyzed Hydrolysis of Sugarcane Bagasse Hemicellulose of varying sugarcane bagasse concentrations on xylose monomer and oligomer yields was experimentally measured

  16. A statistical study of conductance properties in one-dimensional quantum wires, focusing on the 0.7 anomaly

    E-Print Network [OSTI]

    Smith, L. W.; Al-Taie, H.; Sfigakis, F.; See, P.; Lesage, A. A. J.; Xu, B.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2014-07-28T23:59:59.000Z

    The properties of conductance in one-dimensional (1D) quantum wires are statistically investigated using an array of 256 lithographically-identical split gates, fabricated on a GaAs/AlGaAs heterostructure. All the split gates are measured during a...

  17. Conductance anomalies and the extended Anderson model for nearly perfect quantum wires and A. Ramsak1,2

    E-Print Network [OSTI]

    Ramsak, Anton

    on gate voltage, source-drain voltage and magnetic field is discussed within the framework of an extended source-drain bias, even when the conductance plateau has disappeared. Under in- creasing in in back-gated,12 in shallow-etched13 point contacts and in a bal- listic quantum wire.14 At low

  18. Thermoelectric and micro-Raman measurements of carrier density and mobility in heavily Si-doped GaN wires

    E-Print Network [OSTI]

    Boyer, Edmond

    Thermoelectric and micro-Raman measurements of carrier density and mobility in heavily Si-doped Ga (Received 19 July 2013; accepted 28 October 2013; published online 11 November 2013) Combined thermoelectric epitaxy (MOVPE). These highly conductive Si-doped GaN wires were studied by means of thermoelectrical

  19. Nuclear Instruments and Methods in Physics Research A 478 (2002) 158162 Study of high-pressure hydrogen-operated wire

    E-Print Network [OSTI]

    Kammel, Peter

    diameter, 1 mm wire spacing. Anode­cathode gaps: 3:5 mm The chambers were tested in a vessel filledNuclear Instruments and Methods in Physics Research A 478 (2002) 158­162 Study of high. Sorokaa , A.A. Vorobyova , N.I. Voropaeva a High Energy Physics Division (HEPD), Petersburg Nuclear

  20. Contrasting physics in wire array z pinch sources of 1-20?keV emission on the Z facility

    SciTech Connect (OSTI)

    Ampleford, D. J., E-mail: damplef@sandia.gov; Jones, B.; Jennings, C. A.; Hansen, S. B.; Cuneo, M. E.; Harvey-Thompson, A. J.; Rochau, G. A.; Coverdale, C. A.; Laspe, A. R.; Flanagan, T. M.; Moore, N. W.; Sinars, D. B.; Lamppa, D. C.; Harding, E. C.; Sygar, W. A.; Savage, M. E.; Moore, J. K.; Focia, R.; Wagoner, T. C.; Killebrew, K. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); and others

    2014-05-15T23:59:59.000Z

    Imploding wire arrays on the 20 MA Z generator have recently provided some of the most powerful and energetic laboratory sources of multi-keV photons, including ?375?kJ of Al K-shell emission (h????1–2?keV), ?80?kJ of stainless steel K-shell emission (h????5–9?keV) and a kJ-level of Mo K-shell emission (h????17?keV). While the global implosion dynamics of these different wire arrays are very similar, the physical process that dominates the emission from these x-ray sources fall into three broad categories. Al wire arrays produce a column of plasma with densities up to ?3?×?10{sup 21} ions/cm{sup 3}, where opacity inhibits the escape of K-shell photons. Significant structure from instabilities can reduce the density and increase the surface area, therefore increase the K-shell emission. In contrast, stainless steel wire arrays operate in a regime where achieving a high pinch temperature (achieved by thermalizing a high implosion kinetic energy) is critical and, while opacity is present, it has less impact on the pinch emissivity. At higher photon energies, line emission associated with inner shell ionization due to energetic electrons becomes important.

  1. Characterization of Gas Metal Arc Welding welds obtained with new high Cr-Mo ferritic stainless steel filler wires

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Characterization of Gas Metal Arc Welding welds obtained with new high Cr-Mo ferritic stainless Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel

  2. protection for the wire, while the UL standard addresses protecting the module. Without an OCPD, the module can be

    E-Print Network [OSTI]

    Johnson, Eric E.

    modules and utility- interactive inverters is one in particular that plagues PV pros, since the solution from the inverter's manufacturer. If the inverter can backfeed utility currents into the DC PV wiring currents backfeeding through utility-interactive inverters. (Note that the scenarios discussed below apply

  3. Unifying the strain and temperature scaling laws for the pinning force density in superconducting niobium-tin multifilamentary wires

    E-Print Network [OSTI]

    Hampshire, Damian

    niobium-tin multifilamentary wires Najib Cheggoura) and Damian P. Hampshire Superconductivity Group critical current density (Jc) tolerance to strain , performed on a bronze processed niobium force Fp( Jc B) in a series of niobium alloys.3 Later, several authors4­6 found that variable tem

  4. Three-wire magnetic trap for direct forced evaporative cooling Shengwang Du1,* and Eun Oh2

    E-Print Network [OSTI]

    Du, Shengwang

    Three-wire magnetic trap for direct forced evaporative cooling Shengwang Du1,* and Eun Oh2 1 Kong, China 2 U.S. Naval Research Laboratory, Remote Sensing Division, Washington, D.C. 20375, USA potential for direct forced evaporative cooling of neutral atoms without using induced spin

  5. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect (OSTI)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China)

    2014-07-15T23:59:59.000Z

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0?cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  6. Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells

    E-Print Network [OSTI]

    Deng, Xunming

    Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical in an a-Si based multiple- junction solar cell. 1. INTRODUCTION Narrow bandgap amorphous SiGe (a

  7. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion

    SciTech Connect (OSTI)

    Shi, Wei; Dong, Ze Hua, E-mail: zehua.dong@gmail.com; Kong, De Jie; Guo, Xing Peng

    2013-06-15T23:59:59.000Z

    Multi-electrode technique named as wire beam electrode (WBE) was used to study pitting corrosion of rebar under concrete cover. When WBE embedded mortar sample was immersed in NaCl solution, uneven distributions of galvanic current and open circuit potential (OCP) on the WBE were observed due to the initiation of pitting corrosion. The following oxygen depletion in mortar facilitated the negative shift of the OCP and the smoothing of the current and potential distributions. Wetting–drying cycle experiments showed that corrosion products instead of oxygen in wet mortar specimen sustained the propagation of pitting corrosion due to Fe (III) taking part in cathodic depolarization during oxygen-deficient wet period, which was confirmed by micro-Raman spectroscopy. In addition, new pitting corrosion occurred mainly near the corrosion products, leading to preferentially horizontal propagation of rust layer on the WBE. A localized corrosion factor was further presented to quantify the localised corrosion based on galvanic current maps.

  8. Front-end Electronics Test for the LHCb Muon Wire Chambers

    E-Print Network [OSTI]

    Nobrega, R; Carboni, G; Massafferri, A; Santovetti, E

    2007-01-01T23:59:59.000Z

    This document describes the apparatus and procedures implemented to test Multi Wire Proportional Chambers (MWPC) after front-end assembly for the LHCb Muon Detector. Results of measurements of key noise parameters are also described. Given a fully equipped chamber, this system is able to diagnose every channel performing an analysis of front-end output drivers’ response and noise rate versus threshold. Besides, it allows to assess if the noise rate at the experiment threshold region is within appropriate limits. Aiming at an automatic, fast and user-friendly system for mass production tests of MWPC, the project has foreseen as well electronic identification of every chamber and front-end board, and data archiving in such a way to make it available to the Experiment Control System (ECS) while in operation.

  9. Critical currents of YBCO tapes and Bi-2212 wires at different temperatures and magnetic fields

    SciTech Connect (OSTI)

    Lombardo, V.; Barzi, e.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2010-08-01T23:59:59.000Z

    Design studies for the cooling channel of a Muon Collider call for straight and helical solenoids generating field well in excess of the critical fields of state of the art Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn or NbTi. Therefore, High Temperature Superconductors (HTS) will need to be used for the manufacturing of all or certain sections of such magnets to be able to generate and withstand the field levels at the cryogenic temperatures required by the new machine. In this work, two major High Temperature Superconductors - Bi2212 round wires and YBCO coated conductor tapes - are investigated to understand how critical current density of such conductors scales as a function of external field and operating temperature. This is vital information to make conductor choices depending on the application and to proceed with the design of such magnets.

  10. Tunable nanostructured composite with built-in metallic wire-grid electrode

    SciTech Connect (OSTI)

    Micheli, Davide, E-mail: davide.micheli@uniroma1.it; Pastore, Roberto; Marchetti, Mario [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy)] [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy); Gradoni, Gabriele [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)] [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)

    2013-11-15T23:59:59.000Z

    In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ?20 dB, and a “blueshift” of ?600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

  11. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOE Patents [OSTI]

    Thomas, Gareth (Berkeley, CA); Ahn, Jae-Hwan (Albany, CA); Kim, Nack-Joon (Laramie, WY)

    1986-01-01T23:59:59.000Z

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  12. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOE Patents [OSTI]

    Thomas, G.; Ahn, J.H.; Kim, N.J.

    1986-10-28T23:59:59.000Z

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.

  13. Air emissions from laser drilling of printed wiring board materials. Report for May 1995--July 1997

    SciTech Connect (OSTI)

    Darvin, C.H.; Kershner, C.J.

    1999-05-01T23:59:59.000Z

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. The electronics packaging industry has traditionally relied on mechanical drilling systems to prepare holes in PWB material. Recently, however, a potentially new and innovative application for laser technology was developed for drilling PWB holes. This application of lasers has the potential to significantly reduce the time and cost of producing PWBs. The process is also predicted to reduce the volume of solid waste product generated during PWB manufacture. The continuing question presented on the use of laser drilling is its potential for producing air pollution which may be generated from thermal decomposition at the laser drilling site.

  14. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect (OSTI)

    Mirmoosa, M. S., E-mail: mohammad.mirmoosa@aalto.fi; Nefedov, I. S., E-mail: igor.nefedov@aalto.fi; Simovski, C. R., E-mail: konstantin.simovski@aalto.fi [Department of Radio Science and Engineering, School of Electrical Engineering, Aalto University, P. O. Box 13000, 00076 Aalto (Finland); Rüting, F., E-mail: felix.ruting@uam.es [Departamento de Física Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, E-28049 (Spain)

    2014-06-21T23:59:59.000Z

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  15. MOD Buffer/YBCO Approach to Fabricate Low-Cost Second Generation HTS Wires

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans [ORNL; Sathyamurthy, Srivatsan [ORNL; Bhuiyan, Md S [ORNL; Martin, Patrick M [ORNL; Aytug, Tolga [ORNL; Kim, Kyunghoon [ORNL; Fayek, Mostafa [ORNL; Leonard, Keith J [ORNL; Li, Jing [ORNL; Zhang, W. [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA

    2007-01-01T23:59:59.000Z

    The metal organic deposition (MOD) of buffer layers on RABiTS substrates is considered a potential, low-cost approach to manufacturing high performance Second Generation (2G) high temperature superconducting (HTS) wires. The typical architecture used by American Superconductor in their 2G HTS wire consists of a Ni-W (5 at.%) substrate with a reactively sputtered Y2O3 seed layer, YSZ barrier layer and a CeO2 cap layer. This architecture supports critical currents of over 300 A/cm-width (77 K, self-field) with 0.8 mum YBCO films deposited by the TFA-MOD process. The main challenge in the development of the MOD buffers is to match or exceed the performance of the standard vacuum deposited buffer architecture. We have recently shown that the texture and properties of MOD - La2Zr2Ogamma (LZO) barrier layers can be improved by inserting a thin sputtered Y2O3 seed layer and prepared MOD deposited LZO layers followed by MOD or RF sputtered CeO2 cap layers that support MOD-YBCO films with Ic's of 200 and 255 A/cm-width, respectively. Detailed X-ray and microstructural characterizations indicated that MOD - CeO2 cap reacted completely with MOD YBCO to form BaCeOs. However, sputtered CeO2 cap/MOD YBCO interface remains clean. By further optimizing the coating conditions and reducing the heat-treatment temperatures, we have demonstrated an Ic of 336 A/cm with improved LZO layers and sputtered CeO2 cap and exceeded the performance of that of standard vacuum deposited buffers.

  16. Comparison of Fission Product Yields and Their Impact

    SciTech Connect (OSTI)

    S. Harrison

    2006-02-01T23:59:59.000Z

    This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.

  17. Lithium: Measurement of Young's Modulus and Yield Strength

    SciTech Connect (OSTI)

    Ryan P Schultz

    2002-11-07T23:59:59.000Z

    The Lithium Collection Lens is used for anti-proton collection. In analyzing the structural behavior during operation, various material properties of lithium are often needed. properties such as density, coefficient of thermal expansion, thermal conductivity, specific heat, compressability, etc.; are well known. However, to the authors knowledge there is only one published source for Young's Modulus. This paper reviews the results from the testing of Young's Modulus and the yield strength of lithium at room temperature.

  18. Direct measurement of yield stress of discrete materials

    E-Print Network [OSTI]

    S. H. Ebrahimnazhad Rahbari; J. Vollmer; S. Herminghaus; M. Brinkmann

    2012-06-09T23:59:59.000Z

    We present a novel computational method for direct measurement of yield stress of discrete materials. The method is well-suited for the measurement of jamming phase diagram of a wide range of discrete particle systems such as granular materials, foams, and colloids. We further successfully apply the method to evaluate the jamming phase diagram of wet granular material in order to demonstrates the applicability of the model.

  19. Pulse Radiolysis of Gases H atom yields, OH reactions,

    E-Print Network [OSTI]

    PULSE RADIOLYSIS OP GASES H atom yields, OH reactions, and kinetics of H2S systems Ole John Nielsen, M, in the reaction OH + OH + M · H2O2 + M. 3) In the H2S systems the HS extinction coefficient determined: k(H + H2S · H2 + HS) = 4-6 x 108 M ^ s " 1 k(HS + HS · products) = (1.9 ± 0.1) x io1 0 M ^ s " 1

  20. The Effect of Sulphur on Yield of Certain Crops.

    E-Print Network [OSTI]

    Reynolds, E. B. (Elbert Brunner)

    1930-01-01T23:59:59.000Z

    TFXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR College Station, Brazos County, Texas BUL - LETIN NO. 408 FEBRUARY, 1930 DIVISION OF AGRONOMY THE EFFECT OF SULPHUR ON YIELD OF CERTAIN CROPS -- AGRICULTURAL AND MECHANICAL.... H. ROGERS, Feed Inspector W. H. WOOD, Feed Inspector I<. I,. KIRKLAND. B. S., Fred Inspector . W. D. NORTHCUTT, JR., B. S., Feed Inspector SIDNEY D. REYNOLDS, JR., Feed Inspector P. A. MOORE, Feed Inspector SUBSTATIONS No. 1, Beeville, Bee...

  1. A critical evaluation of factors affecting reservoir yield estimates

    E-Print Network [OSTI]

    Bergman, Carla Elaine

    1987-01-01T23:59:59.000Z

    Statement of Problem Estimation of reservoir yield is fundamental to water resources planning and management. Effective management of the surface water resource of a river basin requires an understanding of the amount of water which can be provided... and approaches used in handling various complicating factors. Water supply planning and management involves complex institutional, legal, hydrologic, and physical systems. Streamflow, reservoir sedimentation, evaporation, water demands, and other variables...

  2. Symmetry relations in charmless B{yields}PPP decays

    SciTech Connect (OSTI)

    Gronau, Michael; Rosner, Jonathan L. [Department of Physics, Technion-Israel Institute of Technology, Technion City, 32000 Haifa (Israel); Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States)

    2005-11-01T23:59:59.000Z

    Strangeness-changing decays of B mesons to three-body final states of pions and kaons are studied, assuming that they are dominated by a {delta}I=0 penguin amplitude with flavor structure b{yields}s. Numerous isospin relations for B{yields}K{pi}{pi} and for underlying quasi-two-body decays are compared successfully with experiment, in some cases resolving ambiguities in fitting resonance parameters. The only exception is a somewhat small branching ratio noted in B{sup 0}{yields}K*{sup 0}{pi}{sup 0}, interpreted in terms of destructive interference between a penguin amplitude and an enhanced electroweak penguin contribution. Relations for B decays into three kaons are derived in terms of final states involving K{sub S} or K{sub L}, assuming that {phi}K-subtracted decay amplitudes are symmetric in K and K, as has been observed experimentally. Rates due to nonresonant backgrounds are studied using a simple model, which may reduce discrete ambiguities in Dalitz plot analyses.

  3. Evidence for X(3872){yields}{psi}(2S){gamma} in B{sup {+-}}{yields}X(3872)K{sup {+-}} Decays and a Study of B{yields}cc{gamma}K

    SciTech Connect (OSTI)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V. [Laboratoire de Physique des Particules, IN2P3/CNRS et Universite de Savoie, F-74941 Annecy-Le-Vieux (France); Tico, J. Garra; Grauges, E. [Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona (Spain); Lopez, L.; Palano, A.; Pappagallo, M. [INFN Sezione di Bari, I-70126 Bari (Italy); Dipartmento di Fisica, Universita di Bari, I-70126 Bari (Italy); Eigen, G.; Stugu, B.; Sun, L. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway); Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States)] (and others)

    2009-04-03T23:59:59.000Z

    In a search for B{yields}cc{gamma}K decays with the BABAR detector, where cc includes J/{psi} and {psi}(2S), and K includes K{sup {+-}}, K{sub S}{sup 0}, and K*(892), we find evidence for X(3872){yields}J/{psi}{gamma} and X(3872){yields}{psi}(2S){gamma} with 3.6{sigma} and 3.5{sigma} significance, respectively. We measure the product of branching fractions B(B{sup {+-}}{yields}X(3872)K{sup {+-}})xB(X(3872){yields}J/{psi}{gamma})=[2.8{+-}0.8(stat){+-}0.1(syst)]x10{sup -6} and B(B{sup {+-}}{yields}X(3872)K{sup {+-}})xB(X(3872){yields}{psi}(2S){gamma})=[9.5{+-}2.7(stat){+-}0.6(syst)]x10{sup -6}.

  4. EXPERIMENT 5101 STANDARD NAVY YIELD TRIAL PLANTING DATE 06/01/05 ENTRY NAMES NO. YIELD CWT 100 SEED DAYS TO DAYS TO LODGING HEIGHT DES.

    E-Print Network [OSTI]

    EXPERIMENT 5101 STANDARD NAVY YIELD TRIAL PLANTING DATE 06/01/05 ENTRY NAMES NO. YIELD CWT 100 SEED-242 NAVY GENTEC, VISTA 23 31.6 19.9 44.0 96.2 3.0 48.1 4.0 N00762 VISTA/MACKINAC//N94080 3 31.5 18.6 43;EXPERIMENT 5101 STANDARD NAVY YIELD TRIAL PLANTING DATE 06/01/05 ENTRY NAMES NO. YIELD CWT 100 SEED DAYS

  5. Observation of Y(3940){yields}J/{psi}{omega} in B{yields}J/{psi}{omega}K at BABAR

    SciTech Connect (OSTI)

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A. [Laboratoire de Physique des Particules, IN2P3/CNRS et Universite de Savoie, F-74941 Annecy-Le-Vieux (France); Garra Tico, J.; Grauges, E. [Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona (Spain); Lopez, L.; Palano, A.; Pappagallo, M. [Universita di Bari, Dipartimento di Fisica and INFN, I-70126 Bari (Italy); Eigen, G.; Stugu, B.; Sun, L. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway); Abrams, G. S.; Battaglia, M.; Brown, D. N. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States)] (and others)

    2008-08-22T23:59:59.000Z

    We present a study of the decays B{sup 0,+}{yields}J/{psi}{omega}K{sup 0,+} using 383x10{sup 6} BB events obtained with the BABAR detector at PEP-II. We observe Y(3940){yields}J/{psi}{omega}, with mass 3914.6{sub -3.4}{sup +3.8}(stat){+-}2.0(syst) MeV/c{sup 2}, and width 34{sub -8}{sup +12}(stat){+-}5(syst) MeV. The ratio of B{sup 0} and B{sup +} decay to YK is 0.27{sub -0.23}{sup +0.28}(stat){sub -0.01}{sup +0.04}(syst), and the relevant B{sup 0} and B{sup +} branching fractions are reported.

  6. Emulating maize yields from global gridded crop models using statistical estimates

    E-Print Network [OSTI]

    Blanc, E.

    This study estimates statistical models emulating maize yield responses to changes in temperature and

  7. Measurement of the Fractional Thermonuclear Neutron Yield during Deuterium Neutral-Beam Injection into Deuterium Plasmas

    E-Print Network [OSTI]

    Measurement of the Fractional Thermonuclear Neutron Yield during Deuterium Neutral-Beam Injection into Deuterium Plasmas

  8. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

    SciTech Connect (OSTI)

    Aleksandrov, V. V., E-mail: alexvv@triniti.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gasilov, V. A. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Grabovski, E. V.; Gritsuk, A. N., E-mail: griar@triniti.ru; Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Ol’khovskaya, O. G. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Sasorov, P. V.; Smirnov, V. P.; Frolov, I. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Shevel’ko, A. P. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup ?3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

  9. Yield improvement and defect reduction in steel casting

    SciTech Connect (OSTI)

    Kent Carlson

    2004-03-16T23:59:59.000Z

    This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

  10. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser Seeding Yields

  11. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser Seeding YieldsLaser

  12. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser Seeding YieldsLaserLaser

  13. Potential Yield Mapping of Dedicated Energy Crops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartment ofPotentialYield Mapping of

  14. High-Pressure MOF Research Yields Structural Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School footballHigh-Pressure MOF Research Yields

  15. Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets

    SciTech Connect (OSTI)

    Kennth Marken

    2006-08-11T23:59:59.000Z

    The original goal of this Phase II Superconductivity Partnership Initiative project was to build and operate a prototype Magnetic Resonance Imaging (MRI) system using high temperature superconductor (HTS) coils wound from continuously processed dip-coated BSCCO 2212 tape conductor. Using dip-coated tape, the plan was for MRI magnet coils to be wound to fit an established commercial open geometry, 0.2 Tesla permanent magnet system. New electronics and imaging software for a prototype higher field superconducting system would have added significantly to the cost. However, the use of the 0.2 T platform would allow the technical feasibility and the cost issues for HTS systems to be fully established. Also it would establish the energy efficiency and savings of HTS open MRI compared with resistive and permanent magnet systems. The commercial goal was an open geometry HTS MRI running at 0.5 T and 20 K. This low field open magnet was using resistive normal metal conductor and its heat loss was rather high around 15 kolwatts. It was expected that an HTS magnet would dissipate around 1 watt, significantly reduce power consumption. The SPI team assembled to achieve this goal was led by Oxford Instruments, Superconducting Technology (OST), who developed the method of producing commercial dip coated tape. Superconductive Components Inc. (SCI), a leading US supplier of HTS powders, supported the conductor optimization through powder optimization, scaling, and cost reduction. Oxford Magnet Technology (OMT), a joint venture between Oxford Instruments and Siemens and the world’s leading supplier of MRI magnet systems, was involved to design and build the HTS MRI magnet and cryogenics. Siemens Magnetic Resonance Division, a leading developer and supplier of complete MRI imaging systems, was expected to integrate the final system and perform imaging trials. The original MRI demonstration project was ended in July 2004 by mutual consent of Oxford Instruments and Siemens. Between the project start and that date a substantial shift in the MRI marketplace occurred, with rapid growth for systems at higher fields (1.5 T and above) and a consequent decline in the low field market (<1.0 T). While the project aim appeared technically attainable at that time, the conclusion was reached that the system and market economics do not warrant additional investment. The program was redirected to develop BSCCO 2212 multifilament wire development for high field superconducting magnets for NMR and other scientific research upon an agreement between DOE and Oxford Instruments, Superconducting Technology. The work t took place between September, 2004 and the project end in early 2006 was focused on 2212 multifilamentary wire. This report summarizes the technical achievements both in 2212 dip coated for an HTS MRI system and in BSCCO 2212 multifilamentary wire for high field magnets.

  16. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A so-called hollow ion is formed when core electrons are removed or excited to higher energy levels, leaving an empty inner shell. Such states can be produced in He-, a...

  17. The new Integrated Biorefinery Research Facility (IBRF) offers an unprecedented

    E-Print Network [OSTI]

    Advance Commercial Success of Thin-Film PV Cells The thin-film solar cells in use today could not function and are used to form the front of the solar cell. Improving the quality and properties of TCOs is widely of flexibility for NREL's science and technology experts to develop cost-effec- tive biofuels processes and move

  18. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2you aADepartmentA Hollow-Ion

  19. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2you aADepartmentA

  20. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2you aADepartmentAA

  1. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2you aADepartmentAAA

  2. Mesh Generation for SHARP: Unprecedented Complexity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,Department ofEnergyMesh Generation

  3. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember8threbuildAA Greener PARC A

  4. DESIGN OF WIRE-WRAPPED ROD BUNDLE MATCHED INDEX-OF-REFRACTION EXPERIMENTS

    SciTech Connect (OSTI)

    Hugh McIlroy; Hongbin Zhang; Kurt Hamman

    2008-05-01T23:59:59.000Z

    Experiments will be conducted in the Idaho National Laboratory (INL) Matched Index-of-Refraction (MIR) Flow Facility [1] to characterize the three-dimensional velocity and turbulence fields in a wire-wrapped rod bundle typically employed in liquid-metal cooled fast reactors and to provide benchmark data for computer code validation. Sodium cooled fast reactors are under consideration for use in the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program. The experiment model will be constructed of quartz components and the working fluid will be mineral oil. Accurate temperature control (to within 0.05 oC) matches the index-of-refraction of mineral oil with that of quartz and renders the model transparent to the wavelength of laser light employed for optical measurements. The model will be a scaled 7-pin rod bundle enclosed in a hexagonal canister. Flow field measurements will be obtained with a LaVision 3-D particle image velocimeter (PIV) and complimented by near-wall velocity measurements obtained from a 2-D laser Doppler velocimeter (LDV). These measurements will be used as benchmark data for computational fluid dynamics (CFD) validation. The rod bundle model dimensions will be scaled up from the typical dimensions of a fast reactor fuel assembly to provide the maximum Reynolds number achievable in the MIR flow loop. A range of flows from laminar to fully-turbulent will be available with a maximum Reynolds number, based on bundle hydraulic diameter, of approximately 22,000. The fuel pins will be simulated by 85 mm diameter quartz tubes (closed on the inlet ends) and the wire-wrap will be simulated by 25 mm diameter quartz rods. The canister walls will be constructed from quartz plates. The model will be approximately 2.13 m in length. Bundle pressure losses will also be measured and the data recorded for code comparisons. The experiment design and preliminary CFD calculations, which will be used to provide qualitative hydrodynamic information, are presented in this paper.

  5. Infrared scintillation yield in gaseous and liquid argon

    E-Print Network [OSTI]

    A. Buzulutskov; A. Bondar; A. Grebenuk

    2011-04-19T23:59:59.000Z

    The study of primary and secondary scintillations in noble gases and liquids is of paramount importance to rare-event experiments using noble gas media. In the present work, the scintillation yield in gaseous and liquid Ar has for the first time been measured in the near infrared (NIR) and visible region, both for primary and secondary (proportional) scintillations, using Geiger-mode avalanche photodiodes (G-APDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast component was measured to be 17000 photon/MeV in gaseous Ar in the NIR, in the range of 690-1000 nm, and 510 photon/MeV in liquid Ar, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar have been also observed; their amplification parameter at 163 K was measured to be 13 photons per drifting electron per kV. Possible applications of NIR scintillations in high energy physics experiments are discussed.

  6. Free ion yields in liquids: Molecular structure and track effects

    SciTech Connect (OSTI)

    Holroyd, R.

    1992-05-01T23:59:59.000Z

    The signal generated in a liquid-filled ionization chamber is proporational to the ions that escape, the free ion yield or, G{sub fi}. Recent results show how molecular structure, rate of energy loss (dE/dx) and pressure affect G{sub fi} and give further insight into the ionization process in liquids. As a consequence of the passage of high energy charged particles through a liquid, molecules are ionized and excited. The electrons have kinetic energy initially which allow them to travel some distance away from their geminate cations. The electrons may lose energy to vibrational modes but a significant fraction of the separation occurs while the electrons have subvibrational (near thermal) energy. When the electron finally thermalizes it is within the coulombic field of its parent cation and the two ions constitute a geminate pair. The free ion yield is determined by the fraction of geminate pairs which separate to form free ions as against those that recombine to form excited states.

  7. Free ion yields in liquids: Molecular structure and track effects

    SciTech Connect (OSTI)

    Holroyd, R.

    1992-01-01T23:59:59.000Z

    The signal generated in a liquid-filled ionization chamber is proporational to the ions that escape, the free ion yield or, G{sub fi}. Recent results show how molecular structure, rate of energy loss (dE/dx) and pressure affect G{sub fi} and give further insight into the ionization process in liquids. As a consequence of the passage of high energy charged particles through a liquid, molecules are ionized and excited. The electrons have kinetic energy initially which allow them to travel some distance away from their geminate cations. The electrons may lose energy to vibrational modes but a significant fraction of the separation occurs while the electrons have subvibrational (near thermal) energy. When the electron finally thermalizes it is within the coulombic field of its parent cation and the two ions constitute a geminate pair. The free ion yield is determined by the fraction of geminate pairs which separate to form free ions as against those that recombine to form excited states.

  8. Analysis of fragment yield ratios in the nuclear phase transition

    E-Print Network [OSTI]

    R. Tripathi; A. Bonasera; S. Wuenschel; L. W. May; Z. Kohley; G. A. Souliotis; S. Galanopoulos; K. Hagel; D. V. Shetty; K. Huseman; S. N. Soisson; B. C. Stein; S. J. Yennello

    2010-10-11T23:59:59.000Z

    The critical phenomena of the liquid-gas phase transition has been investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon using the Landau free energy approach with isospin asymmetry as an order parameter. Fits to the free energy of fragments showed three minima suggesting the system to be in the regime of a first order phase transition. The relation m =-{\\partial}F/{\\partial}H, which defines the order parameter and its conjugate field H, has been experimentally verified from the linear dependence of the mirror nuclei yield ratio data, on the isospin asymmetry of the source. The slope parameter, which is a measure of the distance from a critical temperature, showed a systematic decrease with increasing excitation energy of the source. Within the framework of the Landau free energy approach, isoscaling provided similar results as obtained from the analysis of mirror nuclei yield ratio data. We show that the external field is primarily related to the minimum of the free energy, which implies a modification of the source concentration \\Delta used in isospin studies.

  9. Modern yields per stellar generation: the effect of the IMF

    E-Print Network [OSTI]

    Vincenzo, Fiorenzo; Belfiore, Francesco; Maiolino, Roberto

    2015-01-01T23:59:59.000Z

    Gaseous and stellar metallicities in galaxies are nowadays routinely used to constrain the evolutionary processes in galaxies. This requires the knowledge of the average yield per stellar generation, $y_{\\text{Z}}$, i.e. the quantity of metals that a stellar population releases into the interstellar medium (ISM), which is generally assumed to be a fixed fiducial value. Deviations of the observed metallicity from the expected value of $y_{\\text{Z}}$ are used to quantify the effect of outflows or inflows of gas, or even as evidence for biased metallicity calibrations or inaccurate metallicity diagnostics. Here we show that $\\rm y_{\\text{Z}}$ depends significantly on the Initial Mass Function (IMF), varying by up to a factor larger than three, for the range of IMFs typically adopted in various studies. This, along with the variation of the gas mass fraction restored into the ISM by supernovae ($R$, which also depends on the IMF), may yield to deceiving results, if not properly taken into account. In particular, ...

  10. Uncertainty in Simulating Wheat Yields Under Climate Change

    SciTech Connect (OSTI)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01T23:59:59.000Z

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  11. Characterization of High Current RRP(R) Wires as a Function of Magnetic Field, Temperature and Strain

    SciTech Connect (OSTI)

    Godeke, A.; Mentink, M.G.T.; Dietderich, D. R.; den Ouden, A.

    2009-08-16T23:59:59.000Z

    A new instrument for the characterization of superconducting materials as a function of Magnetic Field, Temperature and Strain, was designed, constructed and tested at Lawrence Berkeley National Laboratory (LBNL). A U-shaped bending spring was selected, since that design has proven to enable accurate characterizations of a multitude of superconducting materials for more than a decade. The new device is validated though measurements on very high current Rod Restack Processed (RRP) Internal-Tin (IT) wires, for which we will present initial results, including parameterizations of the superconducting phase boundaries and comparisons with other wire types. Accurate parametrization of modern high magnetic field conductors is important for the analysis of the performance of magnet systems.

  12. Study of the core-corona structure formed during the explosion of an aluminum wire in vacuum

    SciTech Connect (OSTI)

    Tkachenko, S. I. [Moscow Institute of Physics and Technology (Russian Federation); Mingaleev, A. R. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Pikuz, S. A.; Romanova, V. M. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Khattatov, T. A. [Moscow Institute of Physics and Technology (Russian Federation); Shelkovenko, T. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Ol'khovskaya, O. G.; Gasilov, V. A. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Kalinin, Yu. G. [National Research Centre Kurchatov Institute (Russian Federation)

    2012-01-15T23:59:59.000Z

    The time evolution of the matter parameters and current distribution in the discharge channel formed during a nanosecond explosion of a 25-{mu}m-diameter 12-mm-long aluminum wire was studied in a series of experiments with the following parameters: the discharge voltage was U{sub 0} = 20 kV, the current amplitude was I{sub max} {approx} 8 kA, and the current rise rate was dI/dt {approx} 40 A/ns. Optical shadow and schlieren images of the discharge channel were obtained using the second harmonic of a YAG: Nd{sup +3} laser, and UV images of the discharge channel self-radiation were recorded using a four-frame camera with a microchannel plate. The process of aluminum wire explosion was simulated numerically (including simulations performed from the 'cold start'). The numerical results were compared with the experimental data.

  13. Study on reduction in electric field, charged voltage, ion current and ion density under HVDC transmission lines by parallel shield wires

    SciTech Connect (OSTI)

    Amano, Y.; Sunaga, Y.

    1989-04-01T23:59:59.000Z

    An important problem in the design and operation of HVDC transmission lines is to reduce electrical field effects such as ion flow electrification of objects, electric field, ion current and ion density at ground level in the vicinity of HVDC lines. Several models of shield wire were tested with the Shiobara HVDC test line. The models contain typical stranded wires that are generally used to reduce field effects at ground level, neutral conductors placed at lower parts of the DC line, and an ''earth corona model'' to cancel positive or negative ions intentionally by generating ions having opposite polarity to ions flowing into the wire. This report describes the experimental results of the effects of these shield wires and a method to predict shielding effects.

  14. Numerical and experimental investigations on the interaction of light wire-array Z-pinches with embedded heavy foam converters

    SciTech Connect (OSTI)

    Xiao, Delong; Ding, Ning; Sun, Shunkai [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Ye, Fan; Ning, Jiamin; Hu, Qingyuan; Chen, Faxin; Qin, Yi; Xu, Rongkun; Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)] [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-04-15T23:59:59.000Z

    The interaction of a light tungsten wire-array Z-pinch with an embedded heavy foam converter, whose mass ratio is typically less than 0.16, is numerically analyzed and experimentally investigated on the 1.3 MA “QiangGuang I” facility. Computational results show that this implosion process can be divided into three stages: acceleration of the tungsten wire-array plasma, collision, and stagnation. The tungsten plasma is accelerated to a high speed by the J?×?B force and interacts weakly with the foam plasma in the first stage. Strong energy conversions take place in the second collision stage. When the high speed tungsten plasma impacts on the foam converter, the plasma is thermalized and a radial radiation peak is produced. Meanwhile, a shock wave is generated due to the collision. After the shock rebounds from the axis and meets the W/Foam boundary, the plasma stagnates and the second radial radiation peak appears. The collision and stagnation processes were observed and the two-peak radial radiation pulse was produced in experiments. Increasing the wire-array radius from 4?mm to 6?mm, the kinetic energy of the tungsten plasma is increased, causing a stronger thermalization and generating a higher first radiation peak. Experimental results also showed a higher ratio of the first peak to the second peak in the case of larger wire-array radius. If we add a thin CH film cover onto the surface of the embedded foam converter, the first radiation peak will be hardly changed, because the acceleration of the tungsten plasma is not evidently affected by the film cover. However, the second radiation peak decreases remarkably due to the large load mass and the corresponding weak compression.

  15. Usefulness of Grasping a Guiding Catheter with a Loop-Snare Wire for Stent Placement into the Vertebrobasilar Artery

    SciTech Connect (OSTI)

    Yoneda, Kenji, E-mail: yoneda_ken@rad.m.kanazawa-u.ac.jp; Matsui, Osamu; Sanada, Junichiro; Kusanagi, Miho [Kanazawa University School of Medicine, Department of Radiology (Japan); Okamoto, Yoshikazu; Kida, Shinya [Kanazawa University School of Medicine, Department of Neurosurgery (Japan)

    2006-08-15T23:59:59.000Z

    In cases in which the subclavian artery is severely tortuous or branches with an extremely angulated origin, stent placement in the vertebrobasilar artery on the approach from the femoral artery is often technically difficult. We report two cases in which a stent placement procedure for the vertebrobasilar artery was successfully performed by grasping a guiding catheter with a loop-snare wire. This technique is useful for tortuous arteries or arteries branching with an extremely angulated origin.

  16. Methods of Using Existing Wire Lines (power lines, phone lines, internet lines) for Totally Secure Classical Communication Utilizing Kirchoff's Law and Johnson-like Noise

    E-Print Network [OSTI]

    Laszlo B. Kish

    2006-10-02T23:59:59.000Z

    We outline some general solutions to use already existing and currently used wire lines, such as power lines, phone lines, internet lines, etc, for the unconditionally secure communication method based on Kirchoff's Law and Johnson-like Noise (KLJN). Two different methods are shown. One is based on filters used at single wires and the other one utilizes a common mode voltage superimposed on a three-phase powerline.

  17. Methods of Using Existing Wire Lines (power lines, phone lines, internet lines) for Totally Secure Classical Communication Utilizing Kirchoff's Law and Johnson-like Noise

    E-Print Network [OSTI]

    Kish, L B

    2006-01-01T23:59:59.000Z

    We outline some general solutions to use already existing and currently used wire lines, such as power lines, phone lines, internet lines, etc, for the unconditionally secure communication method based on Kirchoff's Law and Johnson-like Noise (KLJN). Two different methods are shown. One is based on filters used at single wires and the other one utilizes a common mode voltage superimposed on a three-phase powerline.

  18. Inner-shell radiation from wire array implosions on the Zebra generator

    SciTech Connect (OSTI)

    Ouart, N. D.; Giuliani, J. L.; Dasgupta, A. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)] [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Weller, M. E.; Shlyaptseva, V.; Osborne, G. C.; Stafford, A.; Keim, S. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States)] [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States); Clark, R. W. [Berkeley Research Associates, Beltsville, Maryland 20705 (United States)] [Berkeley Research Associates, Beltsville, Maryland 20705 (United States)

    2014-03-15T23:59:59.000Z

    Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell K? and K? transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport is used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the K? radiation, but it is found to be insufficient.

  19. Localized states in a semiconductor quantum ring with a tangent wire

    SciTech Connect (OSTI)

    Yang, F.; Wu, M. W., E-mail: mwwu@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-08-28T23:59:59.000Z

    We extend a special kind of localized state trapped at the intersection due to the geometric confinement, first proposed in a three-terminal-opening T-shaped structure [L. A. Openov, Europhys. Lett. 55, 539 (2001)], into a ring geometry with a tangent connection to the wire. In this ring geometry, there exists one localized state trapped at the intersection with energy lying inside the lowest subband. We systematically study this localized state and the resulting Fano-type interference due to the coupling between this localized state and the continuum ones. It is found that the increase of inner radius of the ring weakens the coupling to the continuum ones and the asymmetric Fano dip fades away. A wide energy gap in transmission appears due to the interplay of two types of antiresonances: the Fano-type antiresonance and the structure antiresonance. The size of this antiresonance gap can be modulated by adjusting the magnetic flux. Moreover, a large transmission amplitude can be obtained in the same gap area. The strong robustness of the antiresonance gap is demonstrated and shows the feasibility of the proposed geometry for a real application.

  20. Printed wiring board fabrication and lead elimination via single-bath electrodeposition

    SciTech Connect (OSTI)

    Meltzer, M P; Steffani, C P

    2001-02-21T23:59:59.000Z

    Printed wiring board (PWB) fabrication, an operation performed both at LLNL and throughout the electronics industry, generates considerable quantities of hazardous waste, notably lead-bearing materials used for soldering, tinning, and finish coating the circuits of the board. Hot-air solder leveling (HASL), the most common method of finishing is one of the main sources of hazardous lead-bearing wastes in traditional PWB manufacturing. The development of a safer finishing method will lead to employee health and environmental benefits. In addition, there is a production advantage to eliminating HASL, for it provides a fairly uneven surface that is problematic for mounting very small components. In this project, we developed ''single-bath electroplating'' as a potential HASL replacement technology for many applications. Single-bath electroplating involves alternating deposition of one or the other metal component of a bimetal bath, through control of plating potential and mass transport. It employs a nickel layer as both etch resist and finish coat and has the potential for lowering environmental and human-health risks associated with PWB manufacture--while at the same time reconfiguring the process for greater efficiency and profitability.

  1. Effect of the fissile bead's and thermocouple wires’ sizes on the response time of a fission couple

    SciTech Connect (OSTI)

    Liang, Wenfeng, E-mail: liang-wen-feng@163.com; Lu, Yi; Li, Meng; Fan, Xiaoqiang; Lu, Wei [CAEP Key Laboratory of Neutron Physics, Mianyang 621900 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-05-15T23:59:59.000Z

    The fission couple is proposed as a fast response miniature neutron detector in the measurement of time dependent energy depositions within the fissile material based on theoretical analysis, but the response time of a fission couple is relatively slow in practice. The time lag originated from heat transfer process was demonstrated to be the dominating factor by theoretical simulations and experimental verification in this paper. The response of a fission couple as a function of the bead size and the thermocouple wires’ sizes are simulated using ANSYS workbench. The decrease of wires’ diameter results in the decrease of response time, and the increase of bead's diameter leads to a slight increase of response time. During a pulse heating transient in the fuel of Chinese Fast Burst Reactor II with a FWHM of 181?s, the time lag originated from heat transfer process is about tens of microseconds for the peaks of the change rate of temperature, and is of the order of milliseconds to achieve 85% of the temperature rise for a typical fission couple with a ? 1 mm fissile bead and two ? 0.05 mm thermocouple wires. The results obtained provide foundation for the optimization of fission couples.

  2. Method and apparatus for sampling low-yield wells

    DOE Patents [OSTI]

    Last, George V. (Richland, WA); Lanigan, David C. (Kennewick, WA)

    2003-04-15T23:59:59.000Z

    An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

  3. Microscopic description of Cf-252 cold fission yields

    E-Print Network [OSTI]

    M. Mirea; D. S. Delion; A. Sandulescu

    2009-07-20T23:59:59.000Z

    We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioactivity, related the other two "magic radioactivities", namely alpha-decay and heavy-cluster decay, called also Pb-like radioactivity. This calculation provides the necessary theoretical confidence to estimate the penetration cross section in producing superheavy nuclei, by using the inverse fusion process.

  4. Microscopic description of Cf-252 cold fission yields

    E-Print Network [OSTI]

    Mirea, M; Sandulescu, A

    2009-01-01T23:59:59.000Z

    We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioactivity, related the other two "magic radioactivities", namely alpha-decay and heavy-cluster decay, called also Pb-like radioactivity. This calculation provides the necessary theoretical confidence to estimate the penetration cross section in producing superheavy nuclei, by using the inverse fusion process.

  5. High-Yield D-T Neutron Generator

    SciTech Connect (OSTI)

    Ludewigt, B.A.; Wells, R.P.; Reijonen, J.

    2006-11-15T23:59:59.000Z

    A high-yield D-T neutron generator has been developed for neutron interrogation in homeland security applications such as cargo screening. The generator has been designed as a sealed tube with a performance goal of producing 5 {center_dot} 10{sup 11} n/s over a long lifetime. The key generator components developed are a radio-frequency (RF) driven ion source and a beam-loaded neutron production target that can handle a beam power of 10 kW. The ion source can provide a 100 mA D{sup +}/T{sup +} beam current with a high fraction of atomic species and can be pulsed up to frequencies of several kHz for pulsed neutron generator operation. Testing in D-D operation has been started.

  6. Astroparticle yield and transport from extragalactic jet terminal shocks

    E-Print Network [OSTI]

    Fabien Casse; Alexandre Marcowith

    2004-11-15T23:59:59.000Z

    The present paper deals with the yield and transport of high-energy particle within extragalactic jet terminal shocks, also known as hotspots. We investigate in some details the cosmic ray, neutrinos and high-energy photons yield in hotspots of powerful FRII radio-galaxies by scanning all known spatial transport regimes, adiabatic and radiative losses as well as Fermi acceleration process. Since both electrons and cosmic rays are prone to the same type of acceleration, we derive analytical estimates of the maximal cosmic ray energy attainable in both toroidal and poloidal magnetic field dominated shock structures by using observational data on synchrotron emission coming from various hot-spots. One of our main conclusions is that the best hot-spot candidates for high energy astroparticle production is the extended ($L_{HS}\\geq 1kpc$), strongly magnetized ($B> 0.1mG$) terminal shock displaying synchrotron emission cut-off lying at least in the optical band. We found only one object (3C273A) over the six objects in our sample being capable to produce cosmic rays up to $10^{20}$ eV. Secondly, we investigate the astroparticle spectra produced by two characteric hot-spots (Cygnus A and 3C273 A) by applying a multi-scale MHD-kinetic scheme, coupling MHD simulations to kinetic computations using stochastic differential equations. We show that 3C273 A, matching the previous properties, may produce protons up to $10^{20}$ eV in a Kolmogorov type turbulence by both computing electron and cosmic ray acceleration. We also calculate the high-energy neutrino and gamma-ray fluxes on Earth produced through p-$\\gamma$ and p-p processes and compare them to the most sensitive astroparticle experiments.

  7. Observation of B{sup -}{yields}J/{psi}{lambda}p and searches for B{sup -}{yields}J/{psi}{sigma}{sup 0}p and B{sup 0}{yields}J/{psi}pp decays

    SciTech Connect (OSTI)

    Xie, Q.L.; Dong, L.Y.; Yuan, Y.; Zang, S.L.; Zhang, C.C. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Abe, K.; Adachi, I.; Gershon, T.; Haba, J.; Hazumi, M.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Nishida, S.; Nozaki, T.; Ozaki, H.; Sakai, Y.; Takasaki, F. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)] [and others

    2005-09-01T23:59:59.000Z

    We report the observation of B{sup -}{yields}J/{psi}{lambda}p and searches for B{sup -}{yields}J/{psi}{sigma}{sup 0}p and B{sup 0}{yields}J/{psi}pp decays, using a sample of 275x10{sup 6} BB pairs collected with the Belle detector at the {upsilon}(4S) resonance. We observe a signal of 17.2{+-}4.1 events with a significance of 11.1{sigma} and obtain a branching fraction of B(B{sup -}{yields}J/{psi}{lambda}p)=11.6{+-}2.8(stat){sub -2.3}{sup +1.8}(sys)x10{sup -6}. No signal is found for either of the two decay modes, B{sup -}{yields}J/{psi}{sigma}{sup 0}p and B{sup 0}{yields}J/{psi}pp, and upper limits for the branching fractions are determined to be B(B{sup -}{yields}J/{psi}{sigma}{sup 0}p)<1.1x10{sup -5} and B(B{sup 0}{yields}J/{psi}pp)<8.3x10{sup -7} at 90% confidence level.

  8. Search for the C-parity violating process J/{psi}{yields}{gamma}{gamma} via {psi}(2S){yields}{pi}{sup +}{pi}{sup -}J/{psi}

    SciTech Connect (OSTI)

    Ablikim, M.; Bai, J. Z.; Cai, X.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chu, Y. P.; Deng, Z. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Gao, C. S.; Gu, S. D.; Guo, Y. N.; He, K. L.; Heng, Y. K.; Hu, H. M.; Hu, T. [Institute of High Energy Physics, Beijing 100049 (China)] (and others)

    2007-12-01T23:59:59.000Z

    Using 14.0x10{sup 6}{psi}(2S) events collected with the BES-II detector, the C-parity violating process J/{psi}{yields}{gamma}{gamma} via {psi}(2S){yields}{pi}{sup +}{pi}{sup -}J/{psi} is studied. We determine a new upper limit for the J/{psi}{yields}{gamma}{gamma} branching ratio of B(J/{psi}{yields}{gamma}{gamma})<2.2x10{sup -5} at the 90% C.L., which is about 20 times lower than the previous measurement.

  9. EXPERIMENT 6101 STANDARD NAVY YIELD TEST DATE 06/06/06 ENTRY NAMES NO. YIELD CWT 100 SEED DAYS TO DAYS TO LODGING HEIGHT DES.

    E-Print Network [OSTI]

    EXPERIMENT 6101 STANDARD NAVY YIELD TEST DATE 06/06/06 ENTRY NAMES NO. YIELD CWT 100 SEED DAYS.9 50.0 4.1 #12;EXPERIMENT 6101 STANDARD NAVY YIELD TEST DATE 06/06/06 ENTRY NAMES NO. YIELD CWT 100*6/CN49-242 NAVY GENTEC, VISTA 3 25.8 17.9 42.7 88.8 2.0 50.0 3.9 N05305 N00838/B98304//N00792 44 25

  10. Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

  11. The role of yield grade and fat deposition on the cutability of lamb carcasses

    E-Print Network [OSTI]

    Fritz, Kristina Danielle

    1996-01-01T23:59:59.000Z

    assigned randomly to one of five yield grade treatment groups (n=18), devised to simulate the fat thickness ranges designated by the USDA yield grade equation. The lambs were evaluated periodically and visually appraised by a team of three experienced...

  12. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol...

  13. Dramatically Improved Yields in Molecular Scale Electronic Devices Using Ultra-smooth Platinum Electrodes Prepared By

    E-Print Network [OSTI]

    Islam, M. Saif

    Dramatically Improved Yields in Molecular Scale Electronic Devices Using Ultra-smooth Platinum scale electronic devices by using ultra- smooth platinum (Pt) electrodes made with chemical mechanically Terms -- Molecular electronics, CMP, SAM, Langmuir-Blodgett, Device yields. I. INTRODUCTION Molecular

  14. The Effects of Nitrogen Fertilization on Bioenergy Sorghum Yield and Quality

    E-Print Network [OSTI]

    Zilahi-Sebess, Szilvia

    2012-07-16T23:59:59.000Z

    ................................................................................................... 77 Economics of fertilizing biomass feedstocks ................................................. 77 Biomass feedstock yield response to applied nitrogen: An example ........... 79 CONCLUSIONS...

  15. Hot wire needle probe for in-reactor thermal conductivity measurement

    SciTech Connect (OSTI)

    JE Daw; JL Rempe; DL Knudson

    2012-08-01T23:59:59.000Z

    Thermal conductivity is a key property that must be known for proper design, test, and application of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are measured out-of-pile by Post Irradiated Examination (PIE) using a “cook and look” approach in hot-cells. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for simulation design codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses recent efforts to develop and evaluate an in-pile thermal conductivity sensor based on a hot wire needle probe. Testing has been performed on samples with thermal conductivities ranging from 0.2 W/m-K to 22 W-m-K in temperatures ranging from 20 °C to 600 °C. Thermal conductivity values measured using the needle probe match data found in the literature to within 5% for samples tested at room temperature, 5.67% for low thermal conductivity samples tested at high temperatures, and 10% for high thermal conductivity samples tested at high temperatures. Experimental results also show that this sensor is capable of operating in various test conditions and of surviving long duration irradiations.

  16. Field effect in the quantum Hall regime of a high mobility graphene wire

    SciTech Connect (OSTI)

    Barraud, C., E-mail: cbarraud@phys.ethz.ch, E-mail: clement.barraud@univ-paris-diderot.fr; Choi, T.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich (Switzerland); Butti, P.; Shorubalko, I. [Swiss Federal Laboratories of Materials Science and Technologies, EMPA Elect. Metrol. Reliabil. Lab., CH-8600 Dübendorf (Switzerland); Taniguchi, T.; Watanabe, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-08-21T23:59:59.000Z

    In graphene-based electronic devices like in transistors, the field effect applied thanks to a gate electrode allows tuning the charge density in the graphene layer and passing continuously from the electron to the hole doped regime across the Dirac point. Homogeneous doping is crucial to understand electrical measurements and for the operation of future graphene-based electronic devices. However, recently theoretical and experimental studies highlighted the role of the electrostatic edge due to fringing electrostatic field lines at the graphene edges [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008); F. T. Vasko and I. V. Zozoulenko, Appl. Phys. Lett. 97, 092115 (2010)]. This effect originates from the particular geometric design of the samples. A direct consequence is a charge accumulation at the graphene edges giving a value for the density, which deviates from the simple picture of a plate capacitor and also varies along the width of the graphene sample. Entering the quantum Hall regime would, in principle, allow probing this accumulation thanks to the extreme sensitivity of this quantum effect to charge density and the charge distribution. Moreover, the presence of an additional and counter-propagating edge channel has been predicted [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008)] giving a fundamental aspect to this technological issue. In this article, we investigate this effect by tuning a high mobility graphene wire into the quantum Hall regime in which charge carriers probe the electrostatic potential at high magnetic field close to the edges. We observe a slight deviation to the linear shift of the quantum Hall plateaus with magnetic field and we study its evolution for different filling factors, which correspond to different probed regions in real space. We discuss the possible origins of this effect including an increase of the charge density towards the edges.

  17. STORAGE-YIELD CURVES WITH INFLOWS FROM A DIVERSION PIERLUIGI CLAPS

    E-Print Network [OSTI]

    Poggi, Davide

    1 STORAGE-YIELD CURVES WITH INFLOWS FROM A DIVERSION CHANNEL PIERLUIGI CLAPS DIFA, Università della Probabilistic analytical methods for building storage-yield curves provide reliable preliminary design condition of storage-yield curves of reservoirs when additional inflows from a diversion channel are available

  18. NEANDC specialists meeting on yields and decay data of fission product nuclides

    SciTech Connect (OSTI)

    Chrien, R.E.; Burrows, T.W. (eds.)

    1983-01-01T23:59:59.000Z

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  19. Yield Enhancement of Digital Microfluidics-Based Biochips Using Space Redundancy and Local Reconfiguration*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Yield Enhancement of Digital Microfluidics-Based Biochips Using Space Redundancy and Local to avoid faulty elements. Digital microfluidics- based biochips are also amenable to redundancy-based yield. As microfluidics-based biochips become more complex, manufacturing yield will have significant influence

  20. agronomie: agriculture and environment Dry matter accumulation and seed yield in faba bean

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    agronomie: agriculture and environment Dry matter accumulation and seed yield in faba bean ( Vicia; Fifteen genotypes of spring faba bean, differing in flowering earliness, in growth habit (one determinate = faba bean / genetic variability / dry matter accumulation / yield / yield components / early indicator