Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

WIPP Employee Inducted Into Mine Rescue Hall of Fame - WIPP Teams...  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant Blue Mine Rescue Team Captain Gary Kessler (right) receives an award from Neal Merrifield, administrator for the Mine Safety and Health Administration...

2

WIPP Mine Rescue Team Sweeps Southeast Missouri Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApproved ModificationsTeam

3

Carlsbad Field Office Recognized by New Mexico and DOE for Environmental Excellence at WIPP  

Broader source: Energy.gov [DOE]

CARLSBAD, N.M. Ė The Department of Energy (DOE) Carlsbad Field Office (CBFO) was selected for top recognition for environmental stewardship and for reducing energy, water and paper usage at the DOEís Waste Isolation Pilot Plant (WIPP).

4

RightPath Team Recognized by Secretary Chu | National Nuclear...  

National Nuclear Security Administration (NNSA)

Project Team (IPT), a collaborative group of individuals from the Department of Energy (DOE) and NNSA, was awarded the Secretarial Achievement Award for its efforts to...

5

WIPP radiological assistance team dispatched to Los Alamos as precautionary measure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2,Radiological

6

Pollution prevention efforts recognized  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stories Pollution prevention efforts recognized Pollution prevention efforts recognized Pollution prevention awards recognize individuals or teams whose efforts minimize waste,...

7

WIPP Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply for a jobWIPP

8

WIPP Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply for a job at

9

Sandia WIPP calibration traceability  

SciTech Connect (OSTI)

This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)] [RE/SPEC, Inc., Albuquerque, NM (United States)

1996-05-01T23:59:59.000Z

10

WIPP Projects Interative Map  

Broader source: Energy.gov [DOE]

View WIPP Projects in a larger map. To report corrections, please email†WeatherizationInnovation@ee.doe.gov.

11

WIPP contractor receives VPP Legacy of Stars Award 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CARLSBAD, N.M., September 20, 2013 - The U.S. Department of Energy (DOE) recognized Nuclear Waste Partnership LLC (NWP), the Waste Isolation Pilot Plant (WIPP) management and...

12

WIPP missionMoment  

SciTech Connect (OSTI)

The video commemorates the ten-year anniversary of the Waste Isolation Pilot Plant (WIPP) and its first shipment of waste to the site.

2009-05-07T23:59:59.000Z

13

Achieving WIPP certification for software: A white paper  

SciTech Connect (OSTI)

The NMT-1 and NMT-3 organizations within the Chemical and Metallurgical Research (CMR) facility at the Los Alamos National Laboratory (LANL) is working to achieve Waste Isolation Pilot Plant (WIPP) certification to enable them to transport their TRU waste to WIPP. In particular, the NMT-1 management is requesting support from the Idaho National Engineering and Environmental Laboratory (INEEL) to assist them in making the Laboratory Information Management System (LIMS) software WIPP certifiable. Thus, LIMS must be compliant with the recognized software quality assurance (SQA) requirements stated within the QAPD. Since the Idaho National Engineering and Environmental Laboratory (INEEL) has achieved WIPP certification, INEEL personnel can provide valuable assistance to LANL by sharing lessons learned and recommendations. Thus, this white paper delineates the particular software quality assurance requirements required for WIPP certification.

Matthews, S.D.; Adams, K.; Twitchell, K.E.

1998-07-01T23:59:59.000Z

14

Overview of actinide chemistry in the WIPP  

SciTech Connect (OSTI)

The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important inorganic complexants are expected to be carbonate/bicarbonate and hydroxide. There are also organic complexants in TRU waste with the potential to strongly influence actinide solubility. (3) Intrinsic and pseudo-actinide colloid formation - Many actinide species in their expected oxidation states tend to form colloids or strongly associate with non actinide colloids present (e.g., microbial, humic and organic). In this context, the relative importance of actinides, based on the TRU waste inventory, with respect to the potential release of actinides from the WIPP, is greater for plutonium and americium, and to less extent for uranium and thorium. The most important oxidation states for WIPP-relevant conditions are III and IV. We will present an update of the literature on WIPP-specific data, and a summary of the ongoing research related to actinide chemistry in the WIPP performed by the Los Alamos National Laboratory (LANL) Actinide Chemistry and Repository Science (ACRSP) team located in Carlsbad, NM [Reed 2007, Lucchini 2007, and Reed 2006].

Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

15

WIPP Privacy Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply for a jobWIPP

16

WIPP Stakeholder Information Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply for a jobWIPP

17

WIPP Mine Rescue Team Wins Colorado Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApproved

18

WIPP Mine Rescue Team Wins Regional Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegional Competition

19

WIPP Mine Rescue Team Wins, Retires Trophy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegional

20

WIPP TRU TeamWorks - About Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOEI

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

WIPP TRU TeamWorks - Acronym List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOEIAcronym List

22

WIPP TRU TeamWorks - Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and WindArchives 2003 to

23

Radiological Monitoring Continues at WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Monitoring and Research Center (CEMRC) found some trace amounts of americium and plutonium from a sampling station located on the WIPP access road. This is...

24

WIPP WAC REV. 5 applicability  

SciTech Connect (OSTI)

The Department of Energy (DOE) is preparing for disposal operations at the Waste Isolation Pilot Plant (WIPP) in 1998. WIPP is a deep geological repository designed for the safe and efficient disposal of transuranic (TRU) wastes. The Waste Acceptance Criteria (WAC) for WIPP were initially developed by a DOE steering committee in 1980. Revision 5 reflects the latest negotiations and permit requirements from the Environmental Protection Agency (EPA), the State of New Mexico Environment Department (NMED), and the Nuclear Regulatory Commission (NRC). The regulatory requirements are combined with the requirements derived from the WIPP safety analysis performed for disposal operations and the original criteria established for safe waste handling operations. The WIPP WAC provides a comprehensive overview of the requirements and basis for developing waste acceptance criteria to meet today`s rules and regulations for transportation and disposal of TRU wastes. The authors believe that it is a comprehensive criteria and a guidance manual for generator/storage sites who must characterize and certify TRU waste for disposal at WIPP. It also provides valuable insight to future projects that may develop their own waste acceptance criteria. The WIPP WAC presents the requirements from the following sources: 1) Resource Conservation and Recovery Act (RCRA) Permit Application; 2) Land Disposal No-migration Variance Petition; 3) 40 CFR 191 Draft Compliance Certification Application; 4) Certificate of Compliance (C of C) from the NRC for a Type B shipping container; 5) Federal Land Withdrawal Act for WIPP; WIPP Safety Analysis Report; 7) WIPP System Design Descriptions (SDDs). The WIPP WAC combines operations and nuclear safety requirements with transportation and hazardous waste regulatory requirements to provide a comprehensive set of criteria and requirements that ensure the safe disposal of TRU waste.

Bisping, R.L. [U.S. Dept. of Energy, Carlsbad, NM (United States); Kelley, C.R.

1996-08-01T23:59:59.000Z

25

RECERTIFICATION OVERVIEW The WIPP Site  

E-Print Network [OSTI]

's only permanent disposal site for transuranic (TRU) radio- active waste created during the research and production of nuclear weapons. The WIPP site is located outside of Carlsbad, New Mexico, where TRU waste Facts Recertification requires DOE to submit documentation of WIPP began waste disposal operations

26

During Phase 3, WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommitteeDurable Fuel CellDurableMORE- WIPP

27

WIPP News Releases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind FOIA* (star) WIPP

28

WIPP News Releases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind FOIA* (star) WIPP10

29

WIPP News Releases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind FOIA* (star) WIPP101

30

WIPP News Releases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind FOIA* (star) WIPP1012

31

WIPP Stakeholder Information Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind FOIA*RCRAStart8 WIPP

32

WIPP Transportation (FINAL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and WindArchives 2003 toWIPP

33

Why WIPP (FINAL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhat MakesEnergyWhy LosWHY WIPP?

34

Careers at WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: CelebratingMissionat|planningCareers at WIPP

35

Science @WIPP: Underground Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzonExplore byScience HighlightsWIPP

36

WIPP - Joint Information Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNewsNews This pageRuralFactWIPP The

37

WIPP Information Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNewsNewsFederalQualityWIPP

38

WIPP Opportunities - Procurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply for a job

39

WIPP Opportunities -CBFO Procurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply for a job

40

WIPP Celebrates 14th Anniversary  

Broader source: Energy.gov [DOE]

CARLSBAD, N.M. Ė The Waste Isolation Pilot Plant (WIPP) recently marked its 14th year as Americaís only operational deep geologic repository for the disposal of radioactive waste.

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Recognizing and Helping  

E-Print Network [OSTI]

Recognizing and Helping Students in Distress A Guide for Faculty and Staff THE STUDENT BEHAVIOR CONSULTATION TEAM Rec&HelpStudDistressBklt 10/14/11 3:05 PM Page 1 #12;The Student Behavior Consultation Team the University of Delaware Police Department at 302-831-2222 or 911. Rec&HelpStudDistressBklt 10/14/11 3:05 PM

Firestone, Jeremy

42

Westinghouse Again Recognized For Safe Underground Operations at WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About | Careers NovemberTRU

43

WIPP Security Force Recognized for Outstanding Safety | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartment ofPanel Discussion The StatusOn Aprilof

44

Appendix DATA Attachment A: WIPP Borehole Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Appendix DATA-2014 Attachment A: WIPP Borehole Update Table of Contents DATA-A-1.0 WIPP Boreholes...

45

Status of the WIPP Project  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been constructed to be a repository for transuranic (TRU) radioactive wastes generated from the US defense activities. In order to use WIPP as a repository for permanent disposal of TRU waste, the US Department of Energy (DOE) has to demonstrate compliance with the Standards for the Management and Disposal of Spent Nuclear Fuel, High Level and Transuranic Radioactive Wastes'' promulgated by the US Environmental Protection Agency (EPA) in the US Code of Federal Regulations 40 CFR Part 191. The DOE initially plans to perform experiments with a small quantity of waste at WIPP and would like to bring additional quantities for operational demonstration'', before determining whether WIPP is to be a repository for permanent disposal. There are serious problems in pursuing this course of action from an operational point of view. It would be wiser to take the actions necessary to decide whether the facility should be used as a permanent repository, before emplacing a substantial quantity of waste in it. This report evaluates the status of the WIPP Project as of February 1991. 22 refs.

Neill, R.H.; Chaturvedi, L.

1991-01-01T23:59:59.000Z

46

2002 WIPP Environmental Monitoring Plan  

SciTech Connect (OSTI)

DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

Washington TRU Solutions LLC

2002-09-30T23:59:59.000Z

47

WIPP UPDATE: May 14, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414, 2014 WIPP

48

WIPP UPDATE: September 9, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 2014 Waste2,WIPP

49

WIPP 2004 Site Environmental Report  

SciTech Connect (OSTI)

The mission of Waste Isolation Pilot Plant (WIPP) is to safely and permanently dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States (U.S.). In 2004, 8,839 cubic meters (m3) of TRU waste were emplaced at WIPP. From the first receipt of waste in March 1999 through the end of 2004, 25,809 m3 of TRU waste had been emplaced at WIPP. The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of WIPP environmental resources. DOE Order 450.1, Environmental Protection Program; DOE Order 231.1A, Environment, Safety, and Health Reporting; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2004 Site Environmental Report (SER) summarizes environmental data from 2004 that characterize environmental management performance and demonstrate compliance with applicable federal and state regulations. This report was prepared in accordance with DOE Order 231.1A, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2004 (DOE, 2005). The order and the guidance require that DOE facilities submit an annual SER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) further requires that the SER be provided to the New Mexico Environment Department (NMED).

Washington TRU Solutions LLC, Washington Regulatory and Environmental Services

2005-09-30T23:59:59.000Z

50

New Mexico Environment Department Presents WIPP Its Highest Recognition for Environmental Excellence  

Broader source: Energy.gov [DOE]

CARLSBAD, N.M., April 30, 2013 Ė The U.S. Department of Energyís (DOE) Waste Isolation Pilot Plant (WIPP) was recognized by the New Mexico Environment Department (NMED) with Green Zia Environmental Leadership Program (GZELP) Gold Level membership for excellence.

51

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse...  

Energy Savers [EERE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 -...

52

WIPP Representative Selected For National Environmental Justice...  

Broader source: Energy.gov (indexed) [DOE]

a government affairs specialist with URS Washington TRU Solutions, the management and operating contractor for the DOE Waste Isolation Pilot Plant (WIPP), was recently...

53

Successes and Experiences of the WIPP Project  

SciTech Connect (OSTI)

In May 1998, the US Environmental Agency (EPA) certified the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) as being in compliance with all of the applicable regulations governing the permanent disposal of spent nuclear fuel, high-level waste, and transuranic radioactive waste. The WIPP, a transuranic waste repository, is the first deep geologic repository in the US to have successfully demonstrated regulatory compliance with long-term radioactive waste disposal regulations and be certified to receive wastes. Many lessons were learned throughout the 25-year history of the WIPP--from site selection to the ultimate successful certification. The experiences and lessons learned from the WIPP may be of general interest to other repository programs in the world. The lessons learned include all facets of a repository program: programmatic, managerial, regulatory, technical, and social. This paper addresses critical issues that arose during the 25 years of WIPP history and how they influenced the program.

CHU,MARGARET S. Y.; WEART,WENDELL D.

2000-09-06T23:59:59.000Z

54

Thermomechanical response of WIPP repositories  

SciTech Connect (OSTI)

Coarsely zoned STEALTH 2D calculations were used to investigate two candidate WIPP repositories. The grid was designed for one hundred thousand years of response with modest computing costs. As a result, the early time mechanical response was compromised by non-real oscillations that could not be damped completely before a few thousand years. In spite of these oscillations, it was possible to see that the dominant effects of stress and strain peaked between one and two thousand years, at the time of maximum heat in the site. This time corresponded to the condition that the surface heat loss rate balanced the heat generation rate. Though the creep strains were quite small, a large volume of salt was involved and the effects were significant. The peak surface uplift of 75HLW was increased by about 25% due to creep. However, the deviatoric stress relaxation due to creep produced large changes in the stress fields. The Rustler layer survived reasonable failure criterion for the 75HLW case with creep, and failed both in tension and shear, according to these same criterion, when the calculation was repeated without creep. The deviatoric stress fields, with and without salt creep, concentrated near the repository as expected and also in the Rustler layer due to its relatively high Young's modulus compared to the neighboring layers. Since the time of interest is so much smaller than the 100,000 years this calculation was designed to examine, it is possible to model the WIPP stratigraphy in much more detail and still be able to calculate the response for the time of interest. A finer zoned calculation of the response of the WIPP stratigraphy to a repository similar to the 75 K watt/acre repository is modeled in this report. In this calculation the Rustler formation is modeled as a five layered formation using material properties derived from data taken at the Nome site.

Maxwell, D.E.; Wahi, K.K.; Dial, B.

1980-05-01T23:59:59.000Z

55

WIPP Receives 100th Shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP

56

WIPP Receives 200th Shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP200 th

57

WIPP Receives Top Safety Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP

58

WIPP UPDATE: April 30, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts re-entry

59

WIPP UPDATE: April 6, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts re-entry6,

60

WIPP UPDATE: April 7, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts re-entry6,7,

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

WIPP UPDATE: April 9, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts

62

WIPP UPDATE: August 19, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts19, 2014

63

WIPP UPDATE: August 22, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts19, 201422,

64

WIPP UPDATE: August 26, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts19,

65

WIPP UPDATE: December 18, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts19,18, 2014

66

WIPP UPDATE: July 11, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts19,18,

67

WIPP UPDATE: July 15, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts19,18,15,

68

WIPP UPDATE: July 22, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP conducts19,18,15,22,

69

WIPP UPDATE: June 10, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP

70

WIPP UPDATE: June 13, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 2014 Filter

71

WIPP UPDATE: June 17, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 2014 FilterJune 17,

72

WIPP UPDATE: June 2, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 2014 FilterJune

73

WIPP UPDATE: June 4, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 2014 FilterJune4,

74

WIPP UPDATE: June 6, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 2014 FilterJune4,6,

75

WIPP UPDATE: March 5, 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 2014

76

WIPP UPDATE: May 19, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414, 2014

77

WIPP UPDATE: May 28, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414, 201428,

78

WIPP UPDATE: May 30, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414, 201428,30,

79

WIPP UPDATE: May 7, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414,

80

WIPP UPDATE: May 8, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414,8, 2014

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

WIPP UPDATE: November 19, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414,8,

82

WIPP UPDATE: October 21, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414,8,October

83

WIPP UPDATE: October 3, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3, 201414,8,October3,

84

WIPP UPDATE: October 7, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,

85

WIPP UPDATE: September 12, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 2014 Waste hoist

86

WIPP UPDATE: September 19, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 2014 Waste

87

WIPP UPDATE: September 2, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 2014 Waste2, 2014

88

WIPP UPDATE: September 23, 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 2014 Waste2,

89

WIPP Update 3 28 14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 2014

90

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5,2

91

WIPP_Marks_12_Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014WIPP's Scott Maxwell

92

WIPP_Panel_7_Approved  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014WIPP's Scott MaxwellPanel 7

93

WIPP News Release Archives Index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind FOIA* (star) WIPP

94

WIPP - Passive Institutional Controls (PICs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNewsNews This pageRuralFactWIPP

95

WIPP Employee Inducted Into Mine Rescue Hall of Fame - WIPP Teams  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storageMarch| Department

96

Basic data report for drillhole WIPP 11 (Waste Isolation Pilot Plant - WIPP)  

SciTech Connect (OSTI)

Seismic reflection data from petroleum industry sources showed anomalous reflectors in the Castile Formation over a small area about 3 miles north of the center of the Waste Isolation Pilot Plant (WIPP) site. Additional corroborative seismic reflection data were collected as part of WIPP investigations, and WIPP 11 was drilled to investigate the anomaly. WIPP 11 was drilled near the northwest corner of Section 9, T.22.S., R.31E. it penetrated, in descending order, sand dune deposits and the Gatuna Formation (29'), Santa Rosa Sandstone (132'), Dewey Lake Red Beds (502'), Rustler Formation (288'), Salado Formation (1379'), and most of the Castile Formation (1240'). Beds within the lower part of the Salado, and the upper anhydrite of the Castile, are thinner than normal; these beds are displaced upward structurally by the upper Castile halite which is highly thickened (about 968'). The lowest halite is thin (51') and the basal anhydrite was not completely penetrated. Subsequent seismic and borehole data has shown WIPP 11 to be in a structural complex now identified as the disturbed zone. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level waste, though there are no plans at this time to dispose of high level waste or spent fuel at WIPP.

Not Available

1982-02-01T23:59:59.000Z

97

WIPP's Mine Rescue Teams Lead Competition | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartment ofResponsible2013)EnergyUpdate

98

http://www.wipp.ws/TeamWorks/truteamworks.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From: JacksonIPI-143 Advice29

99

http://www.wipp.ws/TeamWorks/truteamworks.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From: JacksonIPI-143 Advice299/04

100

http://www.wipp.ws/TeamWorks/truteamworks.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From: JacksonIPI-143 Advice299/0426/04

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

http://www.wipp.ws/TeamWorks/truteamworks.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From: JacksonIPI-143

102

http://www.wipp.ws/TeamWorks/truteamworks.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From: JacksonIPI-1438/04 | Shipments

103

http://www.wipp.ws/TeamWorks/truteamworks.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From: JacksonIPI-1438/04 |

104

WIPP Receives Green Zia Award for Environmental Excellence |...  

Broader source: Energy.gov (indexed) [DOE]

WIPP Receives Green Zia Award for Environmental Excellence WIPP Receives Green Zia Award for Environmental Excellence August 16, 2012 - 12:00pm Addthis Media Contact Deb Gill U.S....

105

Waste Isolation Pilot Plant (WIPP) Waste Information System (Public Access)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Container data is available within 14 days after the container∆s emplacement in the WIPP Repository.

106

WIPP Recertification - An Environmental Evaluation Group Perspective  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), a repository for defense transuranic (TRU) waste, was built and is operated by the U.S. Department of Energy (DOE). The WIPP Land Withdrawal Act (LWA) required initial certification of compliance of the WIPP by the U.S. Environmental Protection Agency (EPA). In addition, a recertification decision is required by the LWA every five years, dated from the initial receipt of TRU waste. The first TRU waste shipment arrived at the WIPP on March 26, 1999, and therefore the first recertification application is due from DOE to EPA by March 25, 2004. The Environmental Evaluation Group (EEG) provides technical oversight of the WIPP project on behalf of the State of New Mexico. The EEG considers the first recertification as a precedent setting event. Therefore, the EEG began the identification of recertification issues immediately following the initial certification decision. These issues have evolved since that time, based on discussions with the DOE and EEG's understanding of DOE's ongoing research. Performance assessment is required by the EPA certification and its results are needed to determine whether the facility remains in compliance at the time of the recertification application. The DOE must submit periodic change reports to the EPA which summarize activities and conditions that differ from the compliance application. Also, the EPA may request additional information from the DOE that may pertain to continued compliance. These changes and new information must be considered for recertification performance assessment.

Allen, L. E.; Silva, M. K.

2003-02-25T23:59:59.000Z

107

The WIPP journey to waste receipt  

SciTech Connect (OSTI)

In the early 1970s the federal government selected an area in southeastern New Mexico containing large underground salt beds as potentially suitable for radioactive waste disposal. An extensive site characterization program was initiated by the federal government. This site became the Waste Isolation Pilot Plant, better known as WIPP. It is now 1997, over two decades after the initial selection of the New Mexico site as a potential radioactive waste repository. Numerous scientific studies, construction activities, and environmental compliance documents have been completed. The US Department of Energy (DOE) has addressed all relevant issues regarding the safety of WIPP and its ability to isolate radioactive waste from the accessible environment. Throughout the last two decades up to the present time, DOE has negotiated through a political, regulatory, and legal maze with regard to WIPP. New regulations have been issued, litigation initiated, and public involvement brought to the forefront of the DOE decision-making process. All of these factors combined to bring WIPP to its present status--at the final stages of working through the licensing requirements for receipt of transuranic (TRU) waste for disposal. Throughout its history, the DOE has stayed true to Congress` mandates regarding WIPP. Steps taken have been necessary to demonstrate to Congress, the State of New Mexico, and the public in general, that the nation`s first radioactive waste repository will be safe and environmentally sound. DOE`s compliance demonstrations are presently under consideration by the cognizant regulatory agencies and DOE is closer than ever to waste receipt. This paper explores the DOE`s journey towards implementing a permanent disposal solution for defense-related TRU waste, including major Congressional mandates and other factors that contributed to program changes regarding the WIPP project.

Barnes, G.J.; Whatley, M.E.

1997-04-01T23:59:59.000Z

108

WIPP receives 9,000th shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2,RadiologicalWIPP

109

Certifying the Waste Isolation Pilot Plant: Lessons Learned from the WIPP Experience  

SciTech Connect (OSTI)

In May 1998, the US Environmental Protection Agency (EPA) certified the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) as being in compliance with applicable long-term regulations governing the permanent disposal of spent nuclear fuel, high-level, and transuranic radioactive wastes. The WIPP is the first deep geologic repository in the US to have successfully demonstrated regulatory compliance with long-term radioactive waste disposal requirements. The first disposal of TRU waste at WIPP occurred on March 26, 1999. Many of the lessons learned during the WIPP Project's transition from site characterization and experimental research to the preparation of a successful application may be of general interest to other repository programs. During a four-year period (1992 to 1996), the WIPP team [including the DOE Carlsbad Area Office (CAO), the science advisor to CAO, Sandia National Laboratories (SNL), and the management and operating contractor of the WIPP site, Westinghouse Electric Corporation (WID)] met its aggressive schedule for submitting the application without compromising the integrity of the scientific basis for the long-term safety of the repository. Strong leadership of the CAO-SNL-WID team was essential. Within SNL, a mature and robust performance assessment (PA) allowed prioritization of remaining scientific activities with respect to their impact on regulatory compliance. Early and frequent dialog with EPA staff expedited the review process after the application was submitted. Questions that faced SNL are familiar to geoscientists working in site evaluation projects. What data should be gathered during site characterization? How can we know when data are sufficient? How can we know when our understanding of the disposal system is sufficient to support our conceptual models? What constitutes adequate ''validation'' of conceptual models for processes that act over geologic time? How should we use peer review and expert judgment? Other lessons learned by SNL and the WIPP team are more specific to the regulatory context of the project and the demands imposed by pervasive review by the regulator and other external organizations. How should we document the relationship between site data and the parameter values used in computer models? How can we manage software configuration and use it to support the regulatory requirement that analyses be traceable and reproducible? Can we institute a quality assurance (QA) program that will meet the regulatory requirements and enhance the process without unreasonable budget and schedule impacts? How can we resolve technical disputes, both within the project and with external critics? How should we involve regulators and stakeholders in the compliance process? The WIPP teams answers to these questions, and others like them, were, in many cases, pragmatic solutions based on the needs of the pro-warn at the time. Some problems encountered and their solutions may be of limited interest. However, that it is possible to license a geologic repository in a regulatory proceeding while incorporating meaningful public review and criticism is a lesson of general interest to all radioactive waste management programs.

Anderson, D.R. (Rip); Chu, Margaret S.Y.; Froehlich, Gary K.; Howard, Bryan A.; Howarth, Susan M.; Larson, Kurt W.; Pickering, Susan Y.; Swift, Peter N.

1999-07-13T23:59:59.000Z

110

Actinide (III) solubility in WIPP Brine: data summary and recommendations  

SciTech Connect (OSTI)

The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

2009-09-01T23:59:59.000Z

111

Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

Silva, M.K.

1996-08-01T23:59:59.000Z

112

New Mexico Environment Department Presents WIPP Its Highest Recognitio...  

Office of Environmental Management (EM)

and businesses for their demonstration of environmental leadership in support of pollution prevention and sustainability. The Gold Level is the highest GZELP recognition. WIPP...

113

Sandia National Laboratories: Sandia Manager to Take Over WIPP...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

take on the role of Waste Isolation Pilot Plant (WIPP) Senior Recovery Manager under an IPA (Intergovernmental Personnel Act) arrangement between the DOE and Sandia. Sean...

114

WIPP Status and Plans - 2013 - 13379  

SciTech Connect (OSTI)

An up-to-date look at the many aspects of America's only deep geologic long-lived radioactive waste repository is presented in this paper. WIPP's mission includes coordination of all Department of Energy (DOE) sites to prepare, package and characterize defense transuranic waste for final shipment and emplacement in WIPP. The Waste Isolation Pilot Plant (WIPP) is completing its 14. year of operations. Five of the ten planned disposal panels have been filled and sealed from ventilation, with about half of the legislated volume capacity consumed. About 11,000 shipments have been made successfully, traveling more than 40 million kilometers across the nation's highways. A fleet of new Type B shipping packages, the TRUPACT-III, has been added to the transportation capability, with an ongoing campaign to de-inventory large waste items from the Savannah River Site, while minimizing size reduction and repackaging. A new shipping and emplacement method for remote handled waste in shielded containers has been approved for disposal, and will significantly improve operational efficiency. Remote handled waste packaged in these shielded containers will be shipped, handled and emplaced as contact handled waste. Also described is a new criticality control over-pack container, which will improve efficiency when shipping high fissile-content waste streams consisting of Special Nuclear Material declared as waste from nuclear weapons sites. The paper describes the importance of the infrastructure at WIPP to ensure disposal site availability for defense transuranic waste sites across the weapons complex. With the facility reaching its original design lifetime, there are many infrastructure maintenance and improvements being planned and performed. (authors)

Nelson, R.A.; Franco, J. [U.S. Department of Energy, PO Box 3090, Carlsbad, NM 88220 (United States)] [U.S. Department of Energy, PO Box 3090, Carlsbad, NM 88220 (United States)

2013-07-01T23:59:59.000Z

115

WIPP-025, Rev. 0 Summary of Nuclear Criticality Safety  

E-Print Network [OSTI]

at the Waste Isolation Pilot Plant #12;SUMMARY OF NUCLEAR CRITICALITY SAFETY EVALUATION FOR SHIELDED CONTAINERS PLANT WIPP-025, REV. 0 AUGUST 2009 Summary of Nuclear Criticality Safety Evaluation for Shielded ISOLATION PILOT PLANT WIPP-025, REV. 0 AUGUST 2009 ES-1 Executive Summary This report summarizes the nuclear

116

Leveraging Resources for Weatherization Innovation Pilot Projects (WIPP)  

Broader source: Energy.gov [DOE]

As a WIPP agency, reporting leveraged dollars is paramount to your entityźs success. This webinar will review the WIPP definition and policy, discuss leveraging items you may not have thought possible to claim, and show you ways to calculate accrued leveraged dollars.

117

Basic data report for drillhole WIPP 19 (Waste Isolation Pilot Plant-WIPP)  

SciTech Connect (OSTI)

WIPP 19 is an exploratory borehole whose objective was to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between April 6 and May 4, 1978. The hole was drilled to a depth of 1038.2 feet and encountered, from top to bottom, surficial Holocene deposits (7', including artificial fill for drill pad), the Mescalero caliche (7'), the Santa Rosa Sandstone (82'), the Dewey Lake Red Beds (494'), the Rustler Formation (315'), and the upper portion of the Salado Formation (143'). Cuttings were collected at 10-foot intervals. A suite of geophysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 19 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt.

Not Available

1980-03-01T23:59:59.000Z

118

WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed  

E-Print Network [OSTI]

of tank waste from the Hanford site that is currently managed as high-level waste. None of this waste has that these Hanford tank wastes will be treated and will eventually be able to meet the WIPP waste acceptance criteria on the Hanford Tank Waste and K-Basin Sludges that were included in the waste inventory for recertifica- tion

119

WIPP Receives 500th Waste Shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP200

120

WIPP Update 3_29_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 2 014

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

WIPP Update 3_30_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 2 014M

122

WIPP Update 3_31_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 2 014M1, 2

123

WIPP Update 4_01_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 2 014M1,

124

WIPP Update 4_02_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 2 014M1,,

125

WIPP Update 4_10_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 2

126

WIPP Update 4_11_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21, 2 014

127

WIPP Update 4_12_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21, 2

128

WIPP Update 4_22_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21, 22, 2

129

WIPP Update 4_23_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21, 22,

130

WIPP Update 4_25_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21, 22,5,

131

WIPP Update 4_26_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21,

132

WIPP Update 4_28_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21,pril 2

133

WIPP Update 5_01_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21,pril 2,

134

WIPP Update 5_09_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21,pril

135

WIPP Update 5_12_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149, 21,pril2,

136

WIPP Update 5_13_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,

137

WIPP Update 5_15_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5, 2 014

138

WIPP Update 5_21_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5, 2 0142

139

WIPP Update 5_27_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5, 2

140

WIPP Update 6_20-14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5, 2une 2

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

WIPP Update 7_18_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5, 2une

142

WIPP Update 7_28_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5,

143

WIPP Update 7_29_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5,2 9,

144

WIPP Update 8_15_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5,2 9,A

145

WIPP Update 9_5_14  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1 5,2 9,AS

146

WIPP's SCott Maxwell earns environmental training certification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014WIPP's Scott Maxwell Earns

147

DOE Issues WIPP Radiological Release Investigation Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014 DOE Issues WIPP

148

DOE/WIPP-13-3507  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S. DepartmentDOE/WIPP-13-3507 2

149

Appendix DATA Attachment A: WIPP Borehole Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes LaboratoryAntonyaAppeals4 STANDARD TERMS ANDA: WIPP

150

WIPP - Information on Proposed Permit Modifications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNewsNews This pageRuralFactWIPP

151

WIPP shaft seal system parameters recommended to support compliance calculations  

SciTech Connect (OSTI)

The US Department of Energy plans to dispose of transuranic waste at the Waste Isolation Pilot Plant (WIPP), which is sited in southeastern New Mexico. The WIPP disposal facility is located approximately 2,150 feet (650 m) below surface in the bedded halite of the Salado Formation. Prior to initiation of disposal activities, the Department of Energy must demonstrate that the WIPP will comply with all regulatory requirements. Applicable regulations require that contaminant releases from the WIPP remain below specified levels for a period of 10,000 years. To demonstrate that the WIPP will comply with these regulations, the Department of Energy has requested that Sandia National Laboratories develop and implement a comprehensive performance assessment of the WIPP repository for the regulatory period. This document presents the conceptual model of the shaft sealing system to be implemented in performance assessment calculations conducted in support of the Compliance Certification Application for the WIPP. The model was developed for use in repository-scale calculations and includes the seal system geometry and materials to be used in grid development as well as all parameters needed to describe the seal materials. These calculations predict the hydrologic behavior of the system. Hence conceptual model development is limited to those processes that could impact the fluid flow through the seal system.

Hurtado, L.D.; Knowles, M.K. [Sandia National Labs., Albuquerque, NM (United States); Kelley, V.A.; Jones, T.L.; Ogintz, J.B. [INTERA Inc., Austin, TX (United States); Pfeifle, T.W. [RE/SPEC, Inc., Rapid City, SD (United States)

1997-12-01T23:59:59.000Z

152

Initial Package Design Concepts Integrated Product Team (IPT) Summary Report  

SciTech Connect (OSTI)

Initially, the question of transporting TRU waste to WIPP was raised as part of the EM Integration activities. The issue was re-examined as part of the system-wide view to re-engineer the TRU waste program. Consequently, the National Transportation Program and the National TRU Waste Program, in a cooperative effort, made a commitment to EM-20 to examine the feasibility of using rail to transport TRU waste material to WIPP. In December of 1999 Mr. Philip Altomare assembled a team of subject matter experts (SME) to define initial concepts for a Type B package capable of shipping TRU waste by rail (see Attachment 1 for a list of team members). This same team of experts also provided input to a preliminary study to determine if shipping TRU waste by rail could offer cost savings or other significant advantages over the current mode of operation using TRUPACT-II packages loaded on truck. As part of the analysis, the team also identified barriers to implementing rail shipments to WIPP and outlined a path forward. This report documents the findings of the study and its initial set of recommendations. As the study progressed, it was expanded to include new packages for truck as well as rail in recognition of the benefits of shipping large boxes and contaminated equipment.

Moss, J.; Luke, Dale Elden

2000-03-01T23:59:59.000Z

153

Basic data report for Drillhole WIPP 33 (Waste Isolation Pilot Plant-WIPP)  

SciTech Connect (OSTI)

WIPP 33 is an exploratory borehole to investigate the nature of unusually thick fill material in the northwest portion of the WIPP site; a breccia pipe was considered a possible, though unlikely, cause of the fill. The borehole is located in Section 13, T22S, R30E, in east central Eddy County, New Mexico and was drilled during July, 1979. The hole was drilled to a depth of 840 feet, and encountered, from top to bottom, surficial Holocene deposits (44 ft including artificial fill for drill pad), the Dewey Lake Red Beds (457 ft), the Rustler Formation (276 ft) and the upper portion of the Salado Formation (163 ft). Selected intervals were cored, and cuttings were taken for examination by geologists. Geophysical logs were taken the full length of the borehole to measure radioactivity, resistivity and density. The stratigraphic profile was found to be normal, and no breccia was observed.

None

1981-02-01T23:59:59.000Z

154

Appendix DATA Attachment B: WIPP Waste Containers and Emplacement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Appendix DATA-2014 Attachment B: WIPP Waste Containers and Emplacement Table of Contents DATA-B-1.0...

155

WIPP-016, Rev. 0 Nuclear Criticality Safety Evaluation for  

E-Print Network [OSTI]

WIPP-016, Rev. 0 Nuclear Criticality Safety Evaluation for Contact-Handled Transuranic Waste/2008 Guidance (if applicable): _______________________ #12;NUCLEAR CRITICALITY SAFETY EVALUATION FOR CONTACT, directors, employees, agents, consultants or personal services contractors. #12;NUCLEAR CRITICALITY SAFETY

156

DOE/WIPP-12-3487 Waste Isolation Pilot Plant  

E-Print Network [OSTI]

AND RECOVERY ACT AND SOLID WASTE DISPOSAL ACTDraft DOE/WIPP-12-3487 Waste Isolation Pilot Plant Biennial Environmental Compliance Report United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico

157

WIPP Safety Is Paramount Top to Bottom, Literally | Department...  

Broader source: Energy.gov (indexed) [DOE]

shaft crew installs rigging onto a new 2,300-foot-long head rope on the first floor. CARLSBAD, N.M. - As part of the Waste Isolation Pilot Plant's (WIPP) preventive maintenance...

158

Radionuclide transport in sandstones with WIPP brine  

SciTech Connect (OSTI)

Retardation factors (R) have been measured for the transport of /sup 3/H, /sup 95m/Tc, and /sup 85/Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for /sup 85/Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for /sup 85/Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta.

Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

1981-02-01T23:59:59.000Z

159

Information Lag in Certification and Recertification of WIPP  

SciTech Connect (OSTI)

The DOE established a Waste Isolation Pilot Plant (WIPP) Recertification Project to ensure the timely completion of the documentation to meet the requirement of the WIPP Land Withdrawal Act (LWA) (1) to demonstrate continued compliance with U.S. Environmental Protection Agency (EPA) disposal regulations at five-year intervals. This paper describes the reason for the self-imposed ''blackout'' period and provides an outline of the compliance process.

Casey, S. C.; Patterson, R. L.; Shoemaker, P. E.

2003-02-25T23:59:59.000Z

160

Test Plan: WIPP bin-scale CH TRU waste tests  

SciTech Connect (OSTI)

This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

Molecke, M.A.

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect (OSTI)

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

162

WIPP Hazardous Waste Facility Permit Update  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

163

Los Alamos National Laboratory recognizes employee teams with 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearand LANSdescribesMay 14,marksnewopens

164

Los Alamos National Laboratory recognizes employee teams with 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A

165

Los Alamos National Laboratory recognizes employee teams with 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera APollution Prevention Awards 015

166

Waste Isolation Pilot Plant (WIPP) fact sheet  

SciTech Connect (OSTI)

Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all terms and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.

Not Available

1993-10-01T23:59:59.000Z

167

The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic  

E-Print Network [OSTI]

, New Mexico to dispose of this waste. The TRU waste being disposed at the WIPP is packaged into drums-level waste and spent nuclear fuel. The WIPP has a total capacity of 6.2 million cubic feet of TRU waste." Disposal of TRU mixed waste at the WIPP requires EPA and state approval. (EPA regulates the radioactive

168

Basic data report for drillhole WIPP 15 (Waste Isolation Pilot Plant-WIPP)  

SciTech Connect (OSTI)

WIPP 15 is a borehole drilled in Marformation.h, 1978, in section 18, T.23S., R. 35E. of south-central Lea County. The purpose of WIPP 15 was to examine fill in San Simon Sink in order to extract climatic information and to attempt to date the collapse of the sink. The borehole was cored to total depth (810.5 feet) and encountered, from top to bottom, Quaternary calcareous clay, marl and sand, the claystones and siltstones of the Triassic Santa Rosa Formation. Neutron and gamma ray geophysical logs were run to measure density and radioactivity. The sink was about 547 feet of Quaternary fill indicating subsidence and deposition. Diatomaceous beds exposed on the sink margin yielded samples dated by /sup 14/C at 20,570 +- 540 years BP and greater than 32,000 years BP; these beds are believed stratigraphically equivalent to ditomaceous beds at 153 to 266 feet depth in the core. Aquatic fauna and flora from the upper 98 feet of core indicate a pluvial period (probably Tohokan) followed by an arid or very arid time before the present climate was established. Aquifer pump tests performed in the Quaternary sands and clays show transmissivities to be as high as 600 feet squared per day. As the water quality was good, the borehole was released to the lessee as a potential water well.

Not Available

1981-11-01T23:59:59.000Z

169

Implementing 10 CFR Part 830 Subpart B at WIPP  

SciTech Connect (OSTI)

Implementation of Title 10 Code of Federal Regulations Part 830, Subpart B Nuclear Safety Management (1) was accomplished at the Waste Isolation Pilot Plant (WIPP) in a timely and efficient manner. The primary reason the transition went smoothly was that the existing safety analysis was relatively new, initially developed in 1995, and written in accordance with the safe harbor document DOE-STD-3009 (2). The WIPP Safety Analysis Report (SAR) (3) is kept up-to-date with the unreviewed safety question (USQ) process and thorough oversight and input provided by DOE-Carlsbad Field Office (CBFO) documented in the annual safety evaluation report (SER) process.

McCormick, J.; Ortiz, C.; Carter, M.; Niemi, B.; Farrell, R.

2002-02-26T23:59:59.000Z

170

WIPP RCRA Documents - Class 2 Mods for comment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply for a jobWIPP

171

The Road to Re-certification: WIPP TRU Waste Inventory  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, is a deep geologic repository for the disposal of transuranic (TRU) wastes generated by atomic energy defense activities. The WIPP Land Withdrawal Act (LWA) [1] requires the U.S. Department of Energy (DOE) to submit documentation to the U.S. Environmental Protection Agency (EPA) that demonstrates WIPP's continuing compliance with the disposal regulations in Title 40 of the Code of Federal Regulations (CFR) Part 191 Subparts B and C, not later than five years after initial receipt of waste for disposal at the repository, and every five years thereafter until the decommissioning of the facility is completed. On May 18, 1998, after review of the Compliance Certification Application (CCA) (63 FR 27405), the EPA certified that the WIPP did comply with the final disposal regulations and criteria of 40 CFR parts 191 and 194. On March 26, 1999, the first receipt of contact-handled (CH) TRU waste was received at WIPP thus initiating the 5-year countdown to the first re-certification. Five years after the first receipt of waste at WIPP, on March 26, 2004, the DOE submitted a Compliance Re-certification Application (CRA) [2]. The CRA includes TRU waste inventory as a key factor. The TRU waste inventory defines what is expected to be emplaced in the repository; and, therefore, how the performance of the repository will be affected. Performance of the WIPP is determined via the Performance Assessment (PA), a set of complex algorithms used to model the long-term performance of the repository. The TRU waste inventory data that are important to this assessment include: 1) volumes of stored, projected and emplaced waste; 2) radionuclide activity concentrations; 3) waste material parameter densities; 4) estimates of the masses of chelating agents; 5) estimates of the oxyanions; 6) estimates of expected cement masses; and 7) estimates of the types and amounts of materials that will be used to emplace the waste. The data that are collected and maintained as the TRU waste inventory provide the waste source term used in the PA to model long-term repository performance. (authors)

Crawford, B.A.; Lott, S.A.; Sparks, L.D.; Van Soest, G.; Mclnroy, B. [Los Alamos National Laboratory -Carlsbad Operations, 115 N. Main St., Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

172

United States Environmental Protection Agency | Office of Air and Radiation (6608J) | EPA 402-F-06-009 | March 2006 www.epa.gov/radiation/wipp  

E-Print Network [OSTI]

.epa.gov/radiation/wipp Hanford Idaho Rocky Flats Los Alamos WIPP Oak Ridge Savannah River Legend Major DOE TRU Waste Sites Major- ed over 100 inspections at DOE waste generator sites. EPA also inspects operations at the WIPP site

173

Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.

Bradley, E.W. [Science Applications International Corp., Oak Ridge, TN (United States); Wu, C.F.; Goff, T.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1993-12-31T23:59:59.000Z

174

Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives  

SciTech Connect (OSTI)

WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs.

Not Available

1994-02-01T23:59:59.000Z

175

Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of new materials, technologies, behavior-change models, and processes.

Hollander, A.

2014-09-01T23:59:59.000Z

176

SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

Allender, J.; Mcclard, J.; Christopher, J.

2012-06-08T23:59:59.000Z

177

Constitutive representation of damage development and healing in WIPP salt  

SciTech Connect (OSTI)

There has been considerable interest in characterizing and modeling the constitutive behavior of rock salt with particular reference to long-term creep and creep failure. The interest is motivated by the projected use of excavated rooms in salt rock formations as repositories for nuclear waste. It is presumed that closure of those rooms by creep ultimately would encapsulate the waste material, resulting in its effective isolation. A continuum mechanics approach for treating damage healing is formulated as part of a constitutive model for describing coupled creep, fracture, and healing in rock salt. Formulation of the healing term is, described and the constitutive model is evaluated against experimental data of rock salt from the Waste Isolation Pilot Plant (WIPP) site. The results indicate that healing anistropy in WIPP salt can be modeled with an appropriate power-conjugate equivalent stress, kinetic equation, and evolution equation for damage healing.

Chan, K.S.; Bodner, S.R. [Southwest Research Inst., San Antonio, TX (United States); Fossum, A.F [RE/SPEC, Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-12-31T23:59:59.000Z

178

Permeability of WIPP Salt During Damage Evolution and Healing  

SciTech Connect (OSTI)

The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

1999-12-03T23:59:59.000Z

179

Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation  

SciTech Connect (OSTI)

A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area.

Barrows, L.J.; Fett, J.D.

1983-04-01T23:59:59.000Z

180

TRU TeamWorks - a biweekly e-newsletter for the Waste Isolation Pilot Plant (WIPP) team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S.EnergyTri-State, 20049,

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect (OSTI)

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilityís Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMEDís guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25T23:59:59.000Z

182

Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4  

SciTech Connect (OSTI)

Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

Not Available

1993-08-01T23:59:59.000Z

183

WIPP Team Chosen as Overall Champion at National Mine Rescue Competition |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storageMarch| DepartmentofCarlsbad

184

Technical Evaluations of Proposed Remote-Handled Transuranic Waste Characterization Requirements at WIPP  

SciTech Connect (OSTI)

Characterization, packaging, transport, handling and disposal of remotely handled transuranic (RH TRU) waste at WIPP will be different than similar operations with contact handled transuranic (CH TRU) waste. This paper presents results of technical evaluations associated with the planned disposal of remotely handled transuranic waste at the Waste Isolation Pilot Plant (WIPP).

Anastas, G.; Channell, J. K.

2002-02-26T23:59:59.000Z

185

Environmental management assessment of the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico  

SciTech Connect (OSTI)

This document contains the results of the Environmental Management Assessment of the Waste Isolation Pilot Plant (WIPP). This Assessment was conducted by EH-24 from July 19 through July 30, 1993 to advise the Secretary of Energy of the adequacy of management systems established at WIPP to ensure the protection of the environment and compliance with Federal, state, and DOE environmental requirements. The mission of WIPP is to demonstrate the safe disposal of transuranic (TRU) waste. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the management and operating contractors. This assessment revealed that WIPP`s environmental safety and health programs are satisfactory, and that all levels of the Waste Isolation Division (WID) management and staff consistently exhibit a high level of commitment to achieve environmental excellence.

Not Available

1993-07-01T23:59:59.000Z

186

WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard three source tubes seen in debris PDP drums. Available line sources (Eu-152) were placed in the spiral tubes to further accomplish the desired uniform distribution of radionuclides. The standard PDP drum (PDP matrix drum 005) and PDP sources were used to determine the lower limits of detection (LLD) and TMU. Analysis results for the sludge drum matrix case for two HPGe detectors were tabulated and evaluated. NNSS has accepted the methodology and results of the measurements towards demonstrating equivalence to CBFO certified systems. In conclusion, the WES-WGS and CMR-OPS gamma spectroscopy teams at LANL have defined and performed measurements that serve to establish and demonstrate equivalency with the processes used by CBFO certified NDA systems. The supplemental measurements address four key areas in Appendix A of DOE/WIPP-02-3122: Annual Calibration Confirmation and Performance Check measurements; LLD determination; and TMU definition. For these measurements the containers, matrices and activity loadings are selected to represent items being assayed in real LLW cases. The LLD and the TMU bounding measurements are to be performed one time and will not be required to be repeated in future campaigns. The annual calibration and performance check measurements were performed initially and planned to repeat in annual campaigns in order to maintain NNSS certification. PDP sources and a PDP sludge drum as well as Eu-152 line sources and a spiral sludge drum were used for the measurements. In all cases, the results for accuracy and precision (%R and %RSD, respectively) were within allowable ranges as defined by the WIPP PDP program. LLD (or MDC) results were established for all the ten WIPP reportable radionuclides and U-235, and the MDC for Pu-239 was established in all cases to be well under 100 nCi/g. Useful results for reducing estimated uncertainties were established and an interesting unexpected case of high bias was observed and will be applied toward this end. (authors)

Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lucero, Randy P. [Pajarito Scientific Corporation, Santa Fe, New Mexico 87507 (United States)

2012-07-01T23:59:59.000Z

187

WIPP Reaches Milestone ¬Ą First Disposal Room Filled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP Reaches

188

WIPP Receives First Shipment | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP200

189

WIPP contractor receives VPP Legacy of Stars Award 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1Management

190

WIPP personnel plan activities for national engineers week  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2,

191

WIPP Weatherization: Common Errors and Innovative Solutions Presentation |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof| Department of EnergyDepartment of5Department of Energy WIPP

192

Microsoft PowerPoint - WIPP Recovery Workshop_Final  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScattering Properties of Aggregates ofVicksburgWIPP

193

OE Grant Recipients, ISER Recognized for Innovation and Leadership  

Broader source: Energy.gov [DOE]

As part of its annual awards ceremony, the Institute of Electrical and Electronics Engineers (IEEE) recently honored three individuals working on projects funded by the Office of Electricity & Energy Reliability for their leadership and contributions to engineering. Additionally, an education industry publication recognized the Emergency Support Function #12 (ESF #12) team within OEís Infrastructure Security & Energy Restoration (ISER) Division with an annual Learning in Practice award for excellence in e-learning.

194

WIPP Benchmark calculations with the large strain SPECTROM codes  

SciTech Connect (OSTI)

This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.

Callahan, G.D.; DeVries, K.L. [RE/SPEC, Inc., Rapid City, SD (United States)

1995-08-01T23:59:59.000Z

195

WIPP Compliance Certification Application calculations parameters. Part 1: Parameter development  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed, which provided in-depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. Nearly 1,500 parameters were developed using information gathered from this program; the parameters were input to numerical models for WIPP Compliance Certification Application (CCA) Performance Assessment (PA) calculations. The CCA probabilistic codes frequently require input values that define a statistical distribution for each parameter. Developing parameter distributions begins with the assignment of an appropriate distribution type, which is dependent on the type, magnitude, and volume of data or information available. The development of the parameter distribution values may require interpretation or statistical analysis of raw data, combining raw data with literature values, scaling of lab or field data to fit code grid mesh sizes, or other transformation. Parameter development and documentation of the development process were very complicated, especially for those parameters based on empirical data; they required the integration of information from Sandia National Laboratories (SNL) code sponsors, parameter task leaders (PTLs), performance assessment analysts (PAAs), and experimental principal investigators (PIs). This paper, Part 1 of two parts, contains a discussion of the parameter development process, roles and responsibilities, and lessons learned. Part 2 will discuss parameter documentation, traceability and retrievability, and lessons learned from related audits and reviews.

Howarth, S.M.

1997-11-14T23:59:59.000Z

196

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect (OSTI)

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

197

TEAMS: Indoor Air Quality (IAR) Program  

E-Print Network [OSTI]

in place since April of 2002. Recognizing the need to expand the program in depth and breadth, we designed TEAMS. We were able to do this by assistance from Mike Miller and the EPA, who gave the District six ďTools for SchoolsĒ test kits (TfS Kit...

Melton, V.

198

Recognizing Wetlands An Informational Pamphlet  

E-Print Network [OSTI]

Recognizing Wetlands An Informational Pamphlet What is a Wetland? The US Army Corps of Engineers(Corps) and the US Environmental Protection Agency define wetlands as follows: Those areas that are inundated conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. Wetlands are areas

US Army Corps of Engineers

199

DOE Hosts German Energy Official, Signs MOU to Share WIPP Information  

Broader source: Energy.gov [DOE]

CARLSBAD, N.M. Ė A high-ranking energy official from Germany formalized a partnership between her country and the United States during a recent visit to the Waste Isolation Pilot Plant (WIPP).

200

Planned Emplacement of Magnesium Oxide in the WIPP Repository 1.0 Overview  

E-Print Network [OSTI]

Planned Emplacement of Magnesium Oxide in the WIPP Repository 1.0 Overview In December 2002 received approval to dispose of AMWTF's supercompacted waste provided magnesium oxide (MgO), the approved

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EA-1340: Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site, Carlsbad, New Mexico  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to make maximum use of existing U.S. Department of Energy Waste Isolation Pilot Plant (WIPP) facilities to further the scientific...

202

ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R.; Wrights, R. S.

2002-02-25T23:59:59.000Z

203

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect (OSTI)

This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilityís Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

Washington TRU Solutions LLC

2001-02-25T23:59:59.000Z

204

Actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP): FY94 results  

SciTech Connect (OSTI)

This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media.

Novak, C.F. [ed.

1995-08-01T23:59:59.000Z

205

Geothermal Energy Association Recognizes the National Geothermal...  

Energy Savers [EERE]

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

206

Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP  

SciTech Connect (OSTI)

This report summarizes the progress made in the ongoing task of characterizing the microbial community structures within the WIPP repository and in surrounding groundwaters. Through cultivation and DNA-based identification, the potential activity of these organisms is being inferred, thus leading to a better understanding of their impact on WIPP performance. Members of the three biological domains - Bacteria, Archaea, and Eukarya (in this case, Fungi) - that are associated with WIPP halite have been identified. Thus far, their activity has been limited to aerobic respiration; anaerobic incubations are underway. WIPP halite constitutes the near-field microbial environment. We expect that microbial activity in this setting will proceed from aerobic respiration, through nitrate reduction to focus on sulfate reduction. This is also the current WIPP performance assessment (PA) position. Sulfate reduction can occur at extremely high ionic strengths, and sulfate is available in WIPP brines and in the anhydrite interbeds. The role of methanogenesis in the WIPP remains unclear, due to both energetic constraints imposed by a high-salt environment and substrate selectivity, and it is no longer considered in PA. Archaea identified in WIPP halite thus far fall exclusively within the family Halobacteriaceae. These include Halobacterium noricense, cultivated from both low- and high-salt media, and a Halorubrum-like species. The former has also been detected in other salt mines worldwide; the latter likely constitutes a new species. Little is known of its function, but it was prevalent in experiments investigating the biodegradation of organic complexing agents in WIPP brines. Bacterial signatures associated with WIPP halite include members of the phylum Proteobacteria - Halomonas, Pelomonas, Limnobacter, and Chromohalobacter - but only the latter has been isolated. Also detected and cultivated were Salinicoccus and Nesterenkonia spp. Fungi were also isolated from halite. Although these were most likely introduced into the WIPP as contaminants from above-ground, their survival and potential role in the WIPP (e.g., cellulose degradation) is under investigation. WIPP groundwaters comprise the far-field microbial environment. Bacteria cultivated and identified from the overlying Culebra and nearby borehole groundwater are capable of aerobic respiration, denitrification, fermentation, metal reduction, and sulfate reduction and are distributed across many different phyla. Two of the Bacteria found in groundwater were also found in WIPP halite (Chromohalobacter sp. and Virgibacillus sp.). Archaea identified in groundwater include Halococcus saccharolyticus, Haloferax sp., and Natrinema sp. The differences in the microbial communities detected thus far in halite and groundwater suggest that there will be significant differences in the associated metabolic potential of the near- and far-field environments. Whereas the near-field is dominated by Archaea with more limited metabolic capabilities, the far-field is dominated by Bacteria with extremely broad capabilities. Because the majority of the repository's lifetime will be anoxic, ongoing and future work focuses on the presence and role of anaerobic organisms in WIPP. Further tasks on biosorption, cellulose degradation, and bioreduction are being performed using organisms obtained from this characterization work.

Swanson, Juliet S. [Los Alamos National Laboratory; Reed, Donald T. [Los Alamos National Laboratory; Ams, David A. [Los Alamos National Laboratory; Norden, Diana [Ohio State University; Simmons, Karen A. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

207

TRU drum corrosion task team report  

SciTech Connect (OSTI)

During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

1996-05-01T23:59:59.000Z

208

Resource Conservation and Recovery Act: Part B Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Revision 1  

SciTech Connect (OSTI)

This report, part of the permit application for the WIPP facility, presents engineering drawings and engineering change orders for the facility. (CBS)

Not Available

1991-12-31T23:59:59.000Z

209

Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 10, Revision 3  

SciTech Connect (OSTI)

This volume contains the continuation of Appendix D3, which consists of engineering drawings of engineering change orders and drawing change sheets for the WIPP underground facility.

Not Available

1993-03-01T23:59:59.000Z

210

The Engineering Team Todd Allen (Team Leader)  

E-Print Network [OSTI]

The Engineering Team Todd Allen (Team Leader) tallen@fit.edu Major: Ocean Engineering Speciality: Naval Architecture Sean Kuhn skuhn@fit.edu Major: Ocean Engineering Speciality: Naval Architecture Joseph Caldwell jcaldwel@fit.edu Major: Ocean Engineering Speciality: Underwater Technologies Seth Noyes

Wood, Stephen L.

211

Resource Conservation and Recovery Act, Part B Permit Application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Revision 1.0  

SciTech Connect (OSTI)

This report, Part B ( Vol. 2) of the permit application for the WIPP facility, contains information related to the WIPP site on hydrology, geology, maps, and rock salt properties.

Not Available

1990-12-31T23:59:59.000Z

212

WIPP Facility Work Plan for Solid Waste Management Units  

SciTech Connect (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-02-14T23:59:59.000Z

213

Ocean Engineering Development Team  

E-Print Network [OSTI]

Ocean Engineering Hydrofoil Development Team Justin Eickmeier Mirela Dalanaj Jason Gray Matt test bed for future hydrofoil designs. 5) To create future student interest in the Ocean Engineering Efficiency and Acceleration. #12;Design Team Justin Eickmeier Team Leader Major: Ocean Engineering, Junior

Wood, Stephen L.

214

Assessment of the potential for karst in the Rustler Formation at the WIPP site.  

SciTech Connect (OSTI)

This report is an independent assessment of the potential for karst dissolution in evaporitic strata of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site. Review of the available data suggests that the Rustler strata thicken and thin across the area in depositional patterns related to lateral variations in sedimentary accommodation space and normal facies changes. Most of the evidence that has been offered for the presence of karst in the subsurface has been used out of context, and the different pieces are not mutually supporting. Outside of Nash Draw, definitive evidence for the development of karst in the Rustler Formation near the WIPP site is limited to the horizon of the Magenta Member in drillhole WIPP-33. Most of the other evidence cited by the proponents of karst is more easily interpreted as primary sedimentary structures and the localized dissolution of evaporitic strata adjacent to the Magenta and Culebra water-bearing units. Some of the cited evidence is invalid, an inherited baggage from studies made prior to the widespread knowledge of modern evaporite depositional environments and prior to the existence of definitive exposures of the Rustler Formation in the WIPP shafts. Some of the evidence is spurious, has been taken out of context, or is misquoted. Lateral lithologic variations from halite to mudstone within the Rustler Formation under the WIPP site have been taken as evidence for the dissolution of halite such as that seen in Nash Draw, but are more rationally explained as sedimentary facies changes. Extrapolation of the known karst features in Nash Draw eastward to the WIPP site, where conditions are and have been significantly different for half a million years, is unwarranted. The volumes of insoluble material that would remain after dissolution of halite would be significantly less than the observed bed thicknesses, thus dissolution is an unlikely explanation for the lateral variations from halite to mudstone and siltstone. Several surficial depressions at WIPP, suggested to be sinkholes, do not have enough catchment area to form a sinkhole, and holes drilled to investigate the subsurface strata do not support a sinkhole interpretation. Surface drainage across the WIPP site is poorly developed because it has been disrupted by migrating sand dunes and because precipitation is not focused by defined catchment areas in this region of low precipitation and low-dip bedding, not because it has been captured by sinkholes. There are no known points of discharge from the Rustler Formation at WIPP that would indicate the presence of a subsurface karst drainage system. The existing drillholes across the WIPP site, though small in diameter, are sufficient to assess the probability of karst development along the horizontal fractures that are common in the Rustler Formation, and the area of investigation has been augmented significantly by the mapping of four large-diameter shafts excavated into the WIPP repository. The general absence of dissolution, karsting, and related conduits is corroborated by the pumping tests which have interrogated large volumes of the Rustler Formation between drillholes. Diffusion calculations suggest that separate isotopic signatures for the water found in the fractures and the water found in the pores of the matrix rock between fractures are unlikely, thus the isotopic evidence for ancient Rustler formation waters is valid. Geophysical techniques show a number of anomalies, but the anomalies do not overlap to portray consistent and mutually supporting patterns that can be definitively related to karst void space at any given location. The coincidence of the Culebra and Magenta potentiometric heads between Nash Draw and the WIPP site is the inevitable intersection of two non-parallel surfaces rather than an indication of karst-related hydraulic communication between the two units. The proponents of karst in the Rustler Formation at the WIPP site tend to mix data, to take data out of context, and to offer theory as fact. They do not analyze the data or synthesize

Lorenz, John Clay

2006-01-01T23:59:59.000Z

215

Preliminary identification of interfaces for certification and transfer of TRU waste to WIPP  

SciTech Connect (OSTI)

This study complements the national program to certify that newly generated and stored, unclassified defense transuranic (TRU) wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The objectives of this study were to identify (1) the existing organizational structure at each of the major waste-generating and shipping sites and (2) the necessary interfaces between the waste shippers and WIPP. The interface investigations considered existing waste management organizations at the shipping sites and the proposed WIPP organization. An effort was made to identify the potential waste-certifying authorities and the lines of communication within these organizations. The long-range goal of this effort is to develop practicable interfaces between waste shippers and WIPP to enable the continued generation, interim storage, and eventual shipment of certified TRU wastes to WIPP. Some specific needs identified in this study include: organizational responsibility for certification procedures and quality assurance (QA) program; simple QA procedures; and specification and standardization of reporting forms and procedures, waste containers, and container labeling, color coding, and code location.

Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.

1982-02-01T23:59:59.000Z

216

History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico  

SciTech Connect (OSTI)

A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports.

Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States). Geophysics Dept.

1997-03-05T23:59:59.000Z

217

MAGNESIUM OXIDE AN ENGINEERED BARRIER 2009 EPA WIPP RECERTIFICATION FACT SHEET United States Environmental Protection Agency | Office of Air and Radiation (6608J) | June 2009  

E-Print Network [OSTI]

MAGNESIUM OXIDE ­ AN ENGINEERED BARRIER 2009 EPA WIPP RECERTIFICATION FACT SHEET United States://www.epa.gov/radiation/wipp/index.html MAGNESIUM OXIDE ­ AN ENGINEERED BARRIER Why is MgO Used At WIPP? The U.S. Department of Energy (DOE) proposed the use of magnesium oxide (MgO) as an engineered barrier in the Compliance Certification

218

EPA's Response to the February 2014 Release of Radioactive Material from the Waste Isolation Pilot Plant (WIPP)  

E-Print Network [OSTI]

on the WIPP site detected very low levels of airborne americium and plutonium. It is believed that a small the WIPP site, all the results were considered "non-detect" for americium-241, plutonium-238 and plutonium* Location Name Collection Dates Sample Type Units Americium241 Plutonium238 Plutonium 239/240 1 Far

219

Assessment of near-surface dissolution at and near the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico  

SciTech Connect (OSTI)

The area at and near the WIPP site was examined for evidence of karst development on the geomorphic surface encompassing the site. Certain surficial depressions of initial concern were identified as blowouts in sand dune fields (shallow features unrelated to karstification). An ancient stream system active more than 500,000 yr ago contained more water than any system since. During that time (Gatuna, Middle Pleistocene), many karst features such as Clayton Basin and Nash Draw began to form in the region. Halite was probably dissolved from parts of the Rustler Formation at that time. Dissolution of halite and gypsum from intervals encountered in Borehole WIPP-33 west of the WIPP site occurred during later Pleistocene time (i.e., <450,000 yr ago). However, there is no evidence of active near-surface dissolution within a belt to the east of WIPP-33 in the vicinity of the WIPP shaft. 26 refs., 11 figs., 1 tab.

Bachman, G.O.

1985-07-01T23:59:59.000Z

220

The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project  

SciTech Connect (OSTI)

This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

2003-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Absorbing WIPP brines : a TRU waste disposal strategy.  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R. (David R.); Wright, R. (Robert)

2002-01-01T23:59:59.000Z

222

Project Team Participants Summary  

E-Print Network [OSTI]

-sponsored by Information, Society & Culture) Energy--7 project teams 15 Schools and Institutes Represented Trinity College-Year Seminar: Mapping and Modeling Early Modern Venice #12;

Ferrari, Silvia

223

Grid Interaction Tech Team  

Broader source: Energy.gov (indexed) [DOE]

Team 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Keith Hardy (PI) Argonne National Laboratory Sponsored by Lee Slezak This presentation does...

224

Bioenergy Knowledge Discovery Framework Recognized at National...  

Energy Savers [EERE]

Knowledge Discovery Framework (KDF) is bringing together the bioenergy community through Web-based tools, and was presented by Bioenergy KDF team members from Oak Ridge National...

225

IDConsultants Team(Blueand  

E-Print Network [OSTI]

IDConsultants Pla-orm Groups Func4onal Groups Team(Blueand Gold) Chassis DriveTrain Control Actua4on Mechanisms Pla-ormA Pla-ormB Pla-ormC Pla-ormD TEAM #12;1. EveryengineeringstudentispartofaFunc4onalGroupANDaPla-ormGroup. 2. StudentsareassignedtoFunc4onalGroupsbyinstructorsandtoPla

Batill, Stephen M.

226

EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999  

SciTech Connect (OSTI)

Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.

Channell, J.K.; Walker, B.A.

2000-05-01T23:59:59.000Z

227

WIPP Project Plan Descriptions Waste Characterization (LANL, SRS, Oak Ridge) Baseline Inspections  

E-Print Network [OSTI]

farm in Hanford, WA. As part of the 2006 WIPP Recertification Decision, DOE committed to implement a process for evaluating whether Hanford tank waste, and possibly other wastes, meets the definition of TRU (NMED). o For recertification purposes, the Hanford tank waste in question has been removed from

228

Database of Mechanical and Hydrological Properties of WIPP Anhydrite Derived from Laboratory-Scale Experiments  

SciTech Connect (OSTI)

The Department of Energy (DOE) has developed the Waste Isolation Pilot Plant (WIPP) for the purpose of demonstrating safe management, storage, and disposal of radioactive transuranic (TRU) waste generated by U.S. defense programs. The WIPP is located in southeastern New Mexico, and the underground facilities of the WIPP (i.e., experimental rooms, disposal rooms, etc.) are sited in the bedded salt of the Salado Formation at a depth of about 660 meters. The DOE has authorized the continuance of scientific research and engineering analysis related to the performance of the WIPP repository. One area of additional research relates to characterization of the mechanical and hydrological properties of anhydrite interbeds within the Salado Formation. These anhydrite interbeds have been penetrated by the shafts that provide access to the underground facilities and also lie in close proximity to the proposed radioactive waste disposal rooms at the repository horizon. Properties of particular interest are mechanical strength, deforrnational behavior, and fluid transport properties such as permeability. These properties will be used in calculationskmalyses of the mechanical and hydrological behavior of the anhydrite, in particular, and the shaft sealing system and disposal rooms, in general.

Hansen, F.D.; Pfeifle, T.W.

1998-10-01T23:59:59.000Z

229

Energy Department Employees Recognized for Power Restoration...  

Broader source: Energy.gov (indexed) [DOE]

and commercial equipment that will save consumers money and reduce energy consumption and air pollution. "The Samuel J. Heyman Service to America Medals recognize federal employees...

230

Quality New Mexico recognizes Community Programs Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quality New Mexico recognizes Community Programs Office March 6, 2012 LOS ALAMOS, New Mexico, March 6, 2012-Los Alamos National Laboratory's Community Programs Office received...

231

Quality New Mexico recognizes Community Programs Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CPO receives Pion recognition Quality New Mexico recognizes Community Programs Office LANL has received 14 Pion and Roadrunner recognitions from Quality New Mexico since 1997....

232

Proposed Changes to Simplify Review of the Next WIPP Compliance Re-certification Application  

SciTech Connect (OSTI)

The amended Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA) of 1996, P. L. 104-201, 110 Stat. 2422 [1], requires the U.S. Department of Energy (DOE) to prepare and submit documentation demonstrating continued compliance with the Environmental Protection Agency's (EPA's) radioactive waste disposal standard 40 CFR Part 191 [2] every five years starting after first waste receipt in accordance with the criteria of 40 CFR 194 [3]. The DOE submitted the WIPP Compliance Certification Application (CCA) [4] to EPA in 1996 and it was approved by EPA in 1998. The first shipment of waste was received for disposal at WIPP on March 26, 1999. Subsequently, the first Compliance Re-certification Application (CRA) [5] was submitted to EPA on March 26, 2004. Reflecting on lessons learned from the previous applications, the DOE is proposing a change in the format for the next CRA due on March 26, 2009. The DOE has an objective to communicate plans, schedules and re-certification methodology as early as possible to EPA and stakeholders. With that objective in mind, the DOE began communicating the proposed new application strategy to the EPA in mid- 2006. For the 2009 CRA submittal, the DOE is proposing to align the document's format to match each section to the requirements of the WIPP compliance criteria at 40 CFR Part 194 [3] and the EPA re-certification support documents. The benefits of the revised format include improved integration of all regulatory, operational, and programmatic activities; easier access to historical information and decisions; a decreased level of effort for DOE, EPA and Stakeholder review; enhancing the likelihood of a quicker re-certification decision; and potentially reducing DOE's post-submittal CRA tasks. This paper will provide insight to those wishing to understand and be kept abreast of changes in the WIPP's certification process. (authors)

Patterson, R. [Department of Energy, Carlsbad Field Office, Carlsbad, NM (United States); Kouba, St.; Kolander, M. [Washington Group International, Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

2008-07-01T23:59:59.000Z

233

Nuclear Emergency Search Team  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

1991-09-20T23:59:59.000Z

234

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

235

TEAM Technologies, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as a one-man operation in support of Sandia's Z Machine, a mainstay of the Lab's Pulsed Power program. No longer a one-man shop, TEAM employs more than 70 people and operates...

236

Team work: Construction  

E-Print Network [OSTI]

Team work: Construction Management The Division of Engineering Technology in an construction technology area, an associate degree in construction science, or college- level course work equivalent to an associate degree in construction related area

Berdichevsky, Victor

237

Sustainability Awards Recognize Energy Department Employees Who...  

Energy Savers [EERE]

Team that decreased petroleum use by 12 percent and led to nearly 4 million in avoided costs in fiscal year 2010. The Princeton Plasma Physics Laboratory also won for...

238

Nevada National Security Site Groundwater Program Welcomes Peer Review Team  

Broader source: Energy.gov [DOE]

Recently, an independent peer review team was invited to assess the groundwater characterization program at the Nevada National Security Site (NNSS). This nationally recognized group of experts, from various external organizations, will examine the computer modeling approach developed to better understand how historic underground nuclear testing in Yucca Flat affected the groundwater.

239

US Geological Survey, Geospatial Information Response Team Team Charter  

E-Print Network [OSTI]

US Geological Survey, Geospatial Information Response Team Team Charter Revised December 15, 2010 This charter outlines the purpose, responsibility and structure of the U.S. Geological Survey Geospatial Information Response Team (GIRT). Purpose--The primary purpose of the Geospatial Information Response Team

Torgersen, Christian

240

Y-12's Help the Smokies team recognized for tradition of service | Y-12  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNLSecurityNational Security Complex 's

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An I-P-O model of team goal, leader goal orientation, team cohesiveness, and team effectiveness  

E-Print Network [OSTI]

Based on a proposed input-process-output model of team goal, leader goal orientation, team cohesion, and team effectiveness, this study examined the influences of the leader trait goal orientation on the relationships between team goals and team...

Yu, Chien-Feng

2006-04-12T23:59:59.000Z

242

Energy Department's Portsmouth Site Recognized for Environmentally...  

Office of Environmental Management (EM)

All award winners were recognized in a ceremony Tuesday, March 25, 2014, by Andy Szilagyi, Director of D&D and Facility Management for DOE's Office of Environmental Management...

243

Supplements to the release scenario analyses for the waste isolation pilot plant (WIPP)  

SciTech Connect (OSTI)

This paper summarizes three analyses of long-term environmental impacts of the WIPP that were made subsequent to the publication of the DEIS in response to agency and public comments. Three supplemental scenarios are described in which activity is transported to the biosphere by groundwater. The scenarios are entitled: brine pocket rupture scenario, effects of water on domestic wells; and agricultural use of the Pecos River Water.

Bingham, F.W.; Merritt, M.L.; Tierney, M.S.

1980-01-01T23:59:59.000Z

244

Regulatory Considerations Of Waste Emplacement Within The WIPP Repository: Random Versus Non-Random Distribution  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is responsible for disposing of transuranic waste in the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. As part of that responsibility, DOE must comply with the U.S. Environmental Protection Agency's (EPA) radiation protection standards in Title 40 Code of Federal Regulations (CFR), Parts 191 and 194. This paper addresses compliance with the criteria of 40 CFR Section 194.24(d) and 194.24(f) that require DOE to either provide a waste loading scheme for the WIPP repository or to assume random emplacement in the mandated performance and compliance assessments. The DOE established a position on waste loading schemes during the process of obtaining the EPA's initial Certification in 1998. The justification for utilizing a random waste emplacement distribution within the WIPP repository was provided to the EPA. During the EPA rulemaking process for the initial certification, the EPA questioned DOE on whether waste would be loaded randomly as modeled in long-term performance assessment (PA) and the impact, if any, of nonrandom loading. In response, DOE conducted an impact assessment for non-random waste loading. The results of this assessment supported the contention that it does not matter whether random or non-random waste loading is assumed for the PA. The EPA determined that a waste loading plan was unnecessary because DOE had assumed random waste loading and evaluated the potential consequences of non-random loading for a very high activity waste stream. In other words, the EPA determined that DOE was not required to provide a waste loading scheme because compliance is not affected by the actual distribution of waste containers in the WIPP.

Casey, S. C.; Patterson, R. L.; Gross, M.; Lickliter, K.; Stein, J. S.

2003-02-25T23:59:59.000Z

245

Hydraulic fracturing tests in anhydrite interbeds in the WIPP, Marker Beds 139 and 140  

SciTech Connect (OSTI)

Hydraulic fracturing tests were integrated with hydrologic tests to estimate the conditions under which gas pressure in the disposal rooms in the Waste Isolation Pilot Plant, Carlsbad, NM (WIPP) will initiate and advance fracturing in nearby anhydrite interbeds. The measurements were made in two marker beds in the Salado formation, MB139 and MB140, to explore the consequences of existing excavations for the extrapolation of results to undisturbed ground. The interpretation of these measurements is based on the pressure-time records in two injection boreholes and several nearby hydrologic observation holes. Data interpretations were aided by post-test borehole video surveys of fracture traces that were made visible by ultraviolet illumination of fluorescent dye in the hydraulic fracturing fluid. The conclusions of this report relate to the upper- and lower-bound gas pressures in the WIPP, the paths of hydraulically and gas-driven fractures in MB139 and MB140, the stress states in MB139 and MB140, and the probable in situ stress states in these interbeds in undisturbed ground far away from the WIPP.

Wawersik, W.R., Carlson, L.W., Henfling, J.A., Borns, D.J., Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Howard, C.L. [RE/SPEC Inc., Albuquerque, NM (United States); Roberts, R.M., [INTERA Inc., Albuquerque, NM (United States)

1997-05-01T23:59:59.000Z

246

Correlation of drillhole and shaft logs. Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico  

SciTech Connect (OSTI)

This report on stratigraphic correlations from drillhole and shaft data along a generally north-south section across the potential extent of underground excavations of the Waste Isolation Pilot Plant (WIPP) facility was prepared as part of the Site Validation Field Program Plan. The results provide (1) input for the report entitled ''Results of Site Validation Experiments,'' (2) input for other WIPP-related investigations, including the Design Validation Program, and (3) a framework for further underground activities at WIPP. In general, this correlation study confirmed previous findings, including: relatively high consistency of thickness and lateral continuity of all beds within the Salado Formation, especially in the host rock interval; gentle, generally south and southeastward dips/slopes of the host rock interval strata; close correspondence between stratigraphic data obtained from the present underground excavations and data derived from the previous investigative drillholes and shafts; and depositional origin of the undulations on the top of Marker Bed (MB) 139 and relatively small variation in its thickness (1.2 to 4.1 feet).

Jarolimek, L.; Timmer, M.J.; Powers, D.W.

1983-03-01T23:59:59.000Z

247

Stability evaluation of the Panel 1 rooms and the E140 drift at WIPP  

SciTech Connect (OSTI)

WIPP, intended for underground permanent disposal of defense transuranic waste, is located 40 km east of Carlsbad at a depth of 655 m in the salt beds of the 600-m thick Permian Salado Formation. It will consist of 56 ``rooms`` each 91.5 m long, 10 m wide, and 4 m high, grouped in 8 ``panels`` of 7 rooms each. About 7.5 km of access drifts will also be provided. Excavation began in 1982 and surface/access/test facilities and one panel were completed by 1988, many years before it could be used. Current plans are to start emplacing waste in WIPP in 1998 and continue for 35 years. The north- south drift E140 is the widest (25 ft) of the four main north-south drifts and is the main north-south passage. Plans to conduct experiments with waste in 1993 were abandoned, and the plan now is to use panel 1 for permanent disposal of waste starting in 1998. The stability evaluation resulted in the conclusion that, while it would be possible to safely use portions of panel 1 for waste emplacement, it would be best to abandon panel 1 and mine a new panel after the decision has been made to use WIPP as a repository and the necessary permits obtained.

Maleki, H. [Maleki Technologies, Inc. (United States); Chaturvedi, L. [Environmental Evaluation Group, Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

248

The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors  

SciTech Connect (OSTI)

Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

Bartlett, W.T.; Walker, B.A.

1996-01-01T23:59:59.000Z

249

Creep-induced cleavage fracture in WIPP salt under indirect tension  

SciTech Connect (OSTI)

The phenomenon of cleavage fracture initiation in rock salt undergoing concurrent creep was studied experimentally using the Brazilian indirect tension test technique. The tensile creep and cleavage fracture behaviors were characterized for rock salt from the Waste Isolation Pilot Plant (WIPP) site. The Brazilian test consists of a compressive line load applied diametrically on a disk specimen to produce a region of tensile stress in the center of the disk. The damage processes were documented using video photography. The experimental results were analyzed in terms of a wing-crack fracture model and an independently developed, coupled time-dependent, mechanism-based constitutive model whose parameters were obtained from triaxial compression creep tests. Analytical results indicate that coupling between creep and cleavage fracture in WIPP salt results in a fracture behavior that exhibits time-dependent characteristics and obeys a failure criterion involving a combination of stress difference and tensile stress. Implications of creep-induced cleavage fracture to the integrity of WIPP structures are discussed.

Chan, K.S.; Bodner, S.R. [Southwest Research Inst., San Antonio, TX (United States); Brodsky, N.S.; Fossum, A.F.; Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

1997-10-01T23:59:59.000Z

250

Development of an alternate pathway for materials destined for disposition to WIPP  

SciTech Connect (OSTI)

The Los Alamos National Laboratory currently has an inventory of process residues that may be viable candidates for disposition to the Waste Isolation Pilot Project (WIPP) located at Carlsbad, New Mexico. A recent 'Attractiveness Level D' exemption allows for the discard of specified intractable materials regardless of the percent plutonium. However, the limits with respect to drum loadings must be met. Cementation is a key component of the aqueous nitrate flowsheet and serves as a 'bleed-off' stream for impurities separated from the plutonium during processing operations. The main 'feed' to the cementation operations are the 'bottoms' from the evaporation process. In the majority of cases, the cemented bottoms contain less than the allowed amount per drum for WIPP acceptance. This project would expand the route to WIPP for items that have no defined disposition path, are difficult to process, have been through multiple passes, have no current recovery operations available to recover the plutonium and that are amenable to cementation. This initial work will provide the foundation for a full scale disposition pathway of the candidate materials. Once the pathway has been expanded and a cementation matrix developed, routine discard activities will be initiated.

Ayers, Georgette Y [Los Alamos National Laboratory; Mckerley, Bill [Los Alamos National Laboratory; Veazey, Gerald W [Los Alamos National Laboratory; Ricketts, Thomas E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

251

Characterization of mixed CH-TRU waste at Argonne-West. A WIPP project update  

SciTech Connect (OSTI)

Argonne National Laboratory is participating in the Department of Energy`s Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Argonne`s initial activities in the Program were described last year at Waste Management `92. Since then, additional waste has been characterized and repackaged, resulting in six bins ready for shipment to WIPP upon the initiation of the bin tests. Lessons learned from these operations are being factored in the design and installation of a new characterization facility, the Enhanced Waste Characterization Facility (EWCF). The objectives of the WIPP Experimental Test Program have also undergone change since last year leading to an accelerated effort to factor sludge sampling capability into the EWCF. Consequently, the initiation of non-sludge operations in the waste characterization chamber has been delayed to Summer 1993 while the sludge sampling modifications are incorporated into the facility. Benefits in operational flexibility, effectiveness, and efficiency and reductions in potential facility and personnel contamination and exposure are expected from the enhanced waste characterization facility within the Hot Fuel Examination Facility at Argonne-West. This paper summarizes results and lessons learned from recent characterization and repackaging efforts and future plans for characterization. It also describes design features and status of the EWCF.

Dwight, C.C.; Guay, K.P. [Argonne National Lab., Idaho Falls, ID (United States); Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (US). Nuclear Science Center; Connolly, M.J. [EG and G Idaho, Inc., Idaho Falls, ID (US); Higgins, P.J. [USDOE Albuquerque Field Office, NM (United States). Waste Isolation Pilot Plant Project Integration Office

1993-01-29T23:59:59.000Z

252

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

253

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

254

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

255

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

256

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

257

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

258

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

259

The Revised WIPP Passive Institutional Controls Program - A Conceptual Plan - 13145  

SciTech Connect (OSTI)

The Department of Energy/Carlsbad Field Office (DOE/CBFO) is responsible for managing all activities related to the disposal of TRU and TRU-mixed waste in the geologic repository, 650 m below the land surface, at WIPP, near Carlsbad, New Mexico. The main function of the Passive Institutional Controls (PIC's) program is to inform future generations of the long-lived radioactive wastes buried beneath their feet in the desert. For the first 100 years after cessation of disposal operations, the rooms are closed and the shafts leading underground sealed, WIPP is mandated by law to institute Active Institutional Controls (AIC's) with fences, gates, and armed guards on patrol. At this same time a plan must be in place of how to warn/inform the future, after the AIC's are gone, of the consequences of intrusion into the geologic repository disposal area. A plan was put into place during the 1990's with records management and storage, awareness triggers, permanent marker design concepts and testing schedules. This work included the thoughts of expert panels and individuals. The plan held up under peer review and met the requirements of the U.S. Environmental Protection Agency (EPA). Today the NEA is coordinating a study called the 'Preservation of Records, Knowledge and Memory (RK and M) Across Generations' to provide the international nuclear waste repository community with a guide on how a nuclear record archive programs should be approached and developed. CBFO is cooperating and participating in this project and will take what knowledge is gained and apply that to the WIPP program. At the same time CBFO is well aware that the EPA and others are expecting DOE to move forward with planning for the future WIPP PIC's program; so a plan will be in place in time for WIPP's closure slated for the early 2030's. The DOE/CBFO WIPP PIC's program in place today meets the regulatory criteria, but complete feasibility of implementation is questionable, and may not be in conformance with the international guidance being developed. International guidance currently under development may suggest that the inter-generational equity principle strives to warn the future, however, in doing so not to unduly burden present generations. Building markers and monuments that are out of proportion to the risk being presented to the future is not in keeping with generational equity. With this in mind the DOE/CBFO is developing conceptual plans for re-evaluating and revising the current WIPP PIC's program. These conceptual plans will suggest scientific and technical work that must be completed to develop a 'new' PICs program that takes the best ideas of the present plan, blended with new ideas from the RK and M project, and proposed alternative permanent markers designs and materials in consideration. (authors)

Patterson, Russ [Department of Energy-Carlsbad Field Office, 4021 National Parks Highway Carlsbad, NM 88220 (United States)] [Department of Energy-Carlsbad Field Office, 4021 National Parks Highway Carlsbad, NM 88220 (United States); Klein, Thomas [URS-Professional Solutions, 4021 National Parks Highway Carlsbad, NM 88220 (United States)] [URS-Professional Solutions, 4021 National Parks Highway Carlsbad, NM 88220 (United States); Van Luik, Abraham [Department of Energy-Carlsbad Field Office, 4021 National Parks Highway Carlsbad, NM 88220 (United States)] [Department of Energy-Carlsbad Field Office, 4021 National Parks Highway Carlsbad, NM 88220 (United States)

2013-07-01T23:59:59.000Z

260

PI & Project Team PAF Changes  

E-Print Network [OSTI]

Proposal Management PI & Project Team PAF Changes Step-By-Step Procedures Last updated: 4/1/2013 1 of 10 http://eresearch.umich.edu PAF Changes This procedure details how the PI & Project Team can: Make Management PI & Project Team PAF Changes Step-By-Step Procedure Last updated: 4/1/2013 3 of 10 http

Shyy, Wei

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

1. Introduction Assign team leaders  

E-Print Network [OSTI]

/call/freq Indirect fire/call/freq Air support/call/freq Confirm dis/azimuth Notional security AA location PIR ROE1. Introduction Assign team leaders Assign map man and time keeper Security SOP specialty teams schedules j. PIR k.ROE l. Signals to initiate attack m. Specialty teams n.Contingency plans...indirect fire

de Lijser, Peter

262

Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests.

Munson, D.E.; Matalucci, R.V. [Sandia National Lab., Albuquerque, NM (United States)] [Sandia National Lab., Albuquerque, NM (United States); Hoag, D.L.; Blankenship D.A. [RE/SPEC Inc., Albuquerque, NM (United States)] [and others] [RE/SPEC Inc., Albuquerque, NM (United States); and others

1997-02-01T23:59:59.000Z

263

Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Chapter D, Appendix D1 (beginning), Revision 3  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), which is designed for receipt, handling, storage, and permanent isolation of defense-generated transuranic wastes, is being excavated at a depth of approximately 655 m in bedded halites of the Permian Salado Formation of southeastern New Mexico. Site-characterization activities at the present WIPP site began in 1976. Full construction of the facility began in 1983, after completion of ``Site and Preliminary Design Validation`` (SPDV) activities and reporting. Site-characterization activities since 1983 have had the objectives of updating or refining the overall conceptual model of the geologic, hydrologic, and structural behavior of the WIPP site and providing data adequate for use in WIPP performance assessment. This report has four main objectives: 1. Summarize the results of WIPP site-characterization studies carried out since the spring of 1983 as a result of specific agreements between the US Department of Energy and the State of New Mexico. 2. Summarize the results and status of site-characterization and facility-characterization studies carried out since 1983, but not specifically included in mandated agreements. 3. Compile the results of WIPP site-characterization studies into an internally consistent conceptual model for the geologic, hydrologic, geochemical, and structural behavior of the WIPP site. This model includes some consideration of the effects of the WIPP facility and shafts on the local characteristics of the Salado and Rustler Formations. 4. Discuss the present limitations and/or uncertainties in the conceptual geologic model of the WIPP site and facility. The objectives of this report are limited in scope, and do not include determination of whether or not the WIPP Project will comply with repository-performance criteria developed by the US Environmental Protection Agency (40CFR191).

Not Available

1993-03-01T23:59:59.000Z

264

Evaluation of the WIPP Project`s compliance with the EPA radiation protection standards for disposal of transuranic waste  

SciTech Connect (OSTI)

The US Environmental Protection Agency`s (EPA) proposed rule to certify that the Waste Isolation Pilot Plant (WIPP) meets compliance with the long-term radiation protection standards for geologic repositories (40CFR191 Subparts B and C), is one of the most significant milestones to date for the WIPP project in particular, and for the nuclear waste issue in general. The Environmental Evaluation Group (EEG) has provided an independent technical oversight for the WIPP project since 1978, and is responsible for many improvements in the location, design, and testing of various aspects of the project, including participation in the development of the EPA standards since the early 1980s. The EEG reviewed the development of documentation for assessing the WIPP`s compliance by the Sandia National Laboratories following the 1985 promulgation by EPA, and provided many written and verbal comments on various aspects of this effort, culminating in the overall review of the 1992 performance assessment. For the US Department of Energy`s (DOE) compliance certification application (CCA), the EEG provided detailed comments on the draft CCA in March, 1996, and additional comments through unpublished letters in 1997 (included as Appendices 8.1 and 8.2 in this report). Since the October 30, 1997, publication of the EPA`s proposed rule to certify WIPP, the EEG gave presentations on important issues to the EPA on December 10, 1997, and sent a December 31, 1997 letter with attachments to clarify those issues (Appendix 8.3). The EEG has raised a number of questions that may have an impact on compliance. In spite of the best efforts by the EEG, the EPA reaction to reviews and suggestions has been slow and apparently driven by legal considerations. This report discusses in detail the questions that have been raised about containment requirements. Also discussed are assurance requirements, groundwater protection, individual protection, and an evaluation of EPA`s responses to EEG`s comments.

Neill, R.H.; Chaturvedi, L.; Rucker, D.F.; Silva, M.K.; Walker, B.A.; Channell, J.K.; Clemo, T.M. [Environmental Evaluation Group, Albuquerque, NM (United States)] [Environmental Evaluation Group, Albuquerque, NM (United States); [Environmental Evaluation Group, Carlsbad, NM (United States)

1998-03-01T23:59:59.000Z

265

Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E({minus}7)(1/yr), rounded off from 1.32E({minus}7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E({minus}7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP`s hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE`s last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example.

Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J. [Univ. of Chicago, IL (United States)]|[Stanford Univ., CA (United States). Hoover Institution

1998-01-01T23:59:59.000Z

266

Review of the WIPP draft application to show compliance with EPA transuranic waste disposal standards  

SciTech Connect (OSTI)

The purpose of the New Mexico Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The EEG was established in 1978 with funds provided by the U.S. Department of Energy (DOE) to the State of New Mexico. Public Law 100-456, the National Defense Authorization Act, Fiscal Year 1989, Section 1433, assigned EEG to the New Mexico Institute of Mining and Technology and continued the original contract DE-AC04-79AL10752 through DOE contract DE-AC04-89AL58309. The National Defense Authorization Act for Fiscal Year 1994, Public Law 103-160, continues the authorization. EEG performs independent technical analyses of the suitability of the proposed site; the design of the repository, its planned operation, and its long-term integrity; suitability and safety of the transportation systems; suitability of the Waste Acceptance Criteria and the generator sites` compliance with them; and related subjects. These analyses include assessments of reports issued by the DOE and its contractors, other federal agencies and organizations, as they relate to the potential health, safety and environmental impacts from WIPP. Another important function of EEG is the independent environmental monitoring of background radioactivity in air, water, and soil, both on-site and off-site.

Neill, R.H.; Chaturvedi, L.; Clemo, T.M. [and others

1996-03-01T23:59:59.000Z

267

Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results  

SciTech Connect (OSTI)

Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

Ahrens, E.H.; Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States). Nuclear Waste Technology Repository Isolation Systems

1995-10-01T23:59:59.000Z

268

Summary of applications of TOUGH2 to the evaluation of multiphase flow processes at the WIPP  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) research and development facility for the underground disposal of transuranic waste in southeastern New Mexico. The WIPP repository is located 655 m below the land surface in the lower portion of the Salado Formation, which is comprised of beds of pure and impure halite with thin interbeds of anhydrite and related clay seams. The regional dip of the Salado Formation is approximately 1{degree} southeast in the vicinity of the repository. The proposed waste storage area has eight waste disposal panels, each of which will contain seven rooms. The repository is designed to follow a single stratigraphic horizon. Due to the dip, the north end of the repository will be about 10 meters higher than the south end. Waste that is emplaced in the disposal rooms will generate gas due to microbial degradation, anoxic corrosion, and radiolysis. Brine inflow to the rooms from the surrounding Salado Formation may significantly influence the gas generation rate and the total amount of gas generated. The salt surrounding the repository will creep in response to the excavation, reducing the room volume. Gas generation in the room may increase the pressure sufficiently to drive brine and gas into the surrounding Salado Formation. Migration of gas and brine in the Salado is an important factor in evaluating the performance of the repository. The studies summarized in this paper have. been performed to evaluate brine and gas flow processes in the WIPP disposal system and to identify some of the important processes. These studies are done in support of, but are not part of, the formal Performance Assessment (PA) effort. Because of probabilistic and system-scale requirements, the PA effort uses the Sandia-developed BRAGFLO (BRine And Gas FLOw) code for multiphase flow calculations.

Webb, S.W.; Larson, K.W. [Sandia National Labs., Albuquerque, NM (United States); Freeze, G.A. [Sandia National Labs., Albuquerque, NM (United States)]|[INTERA, Inc., Albuquerque, NM (United States); Christian-Frear, T.L. [Sandia National Labs., Albuquerque, NM (United States)]|[RE/SPEC, Inc., Albuquerque, NM (United States)

1995-04-01T23:59:59.000Z

269

Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3, Model parameters: Sandia WIPP Project  

SciTech Connect (OSTI)

This volume documents model parameters chosen as of July 1992 that were used by the Performance Assessment Department of Sandia National Laboratories in its 1992 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters in the current secondary data base are presented in tables for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. The 49 parameters sampled in the 1992 Preliminary Performance Assessment are given special emphasis with tables and graphics that provide insight and sources of data for each parameter.

Not Available

1992-12-29T23:59:59.000Z

270

Don Haward joins WIPP as manager of radiological control and emergency preparedness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocumentsDon Harward Joins WIPP

271

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP200 For

272

WIPP Workers Reach Two Million Man-Hours Without a Lost-Time Accident  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2, 20149,1

273

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storageMarch| Department ofThisEnergy WIPP

274

Brine transport studies in the bedded salt of the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

Brine flow has been measured to unheated boreholes for periods of a few days and to heated holes for two years in the WIPP facility. It is suggested that Darcy flow may dominate the observed influx of brine. Exact solutions to a linearized model for one-dimensional, radial flow are evaluated for conditions approximating the field experiments. Flow rates of the correct order of magnitude are calculated for permeabilities in the range 10/sup -21/ to 10/sup -20/ m/sup 2/ (1 to 10 nanodarcy) for both the unheated and heated cases. 20 refs., 3 figs., 1 tab.

McTigue, D.F.; Nowak, E.J.

1987-01-01T23:59:59.000Z

275

DOE/WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S. Department of4223WIPP-10-2225

276

Information Visualization for Agile Software Development Teams  

E-Print Network [OSTI]

Information Visualization for Agile Software Development Teams Julia Paredes Department of Computer software development teams. The results of the systematic mapping show that Agile teams use visualization artifacts amongst team members. Keywords--Agile software development, information visualiza- tion, software

Maurer, Frank

277

Solar Powering America by Recognizing Communities Funding Opportunity...  

Energy Savers [EERE]

Solar Powering America by Recognizing Communities Funding Opportunity Solar Powering America by Recognizing Communities Funding Opportunity March 5, 2015 5:00PM EST U.S. Department...

278

Two Tribes Recognized as Climate Action Champions During White...  

Office of Environmental Management (EM)

Two Tribes Recognized as Climate Action Champions During White House Tribal Nations Conference Two Tribes Recognized as Climate Action Champions During White House Tribal Nations...

279

LANL, Sandia National Lab recognize New Mexico small businesses...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL, Sandia National Lab recognize New Mexico small businesses for innovation LANL, Sandia recognized New Mexico small businesses for innovation Businesses include the Pueblo of...

280

New Mexico Small Business Assistance Program recognized by U...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NM Small Business assistance program recognized New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce Receives the 2012 Manufacturing Advocate of...

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

282

TEAM Technologies, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout ¬ĽLabSustainabilitySynthetic fuelTPension PlanTEAM

283

WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern.  

SciTech Connect (OSTI)

This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

Washington TRU Solutions LLC

2000-05-23T23:59:59.000Z

284

Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report  

SciTech Connect (OSTI)

This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.

LaVenue, A.M.; Haug, A.; Kelley, V.A.

1988-03-01T23:59:59.000Z

285

Volunteering employees, retirees recognized in June  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. |Volunteering employees, retirees recognized

286

Awards recognize outstanding innovation in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDearTechnicalAwards recognize outstanding innovation Awards

287

Meteorological and air quality data quarterly report. WIPP site: Eddy County, New Mexico. Summer quarter, June 1977-August 1977  

SciTech Connect (OSTI)

The purpose of the WIPP meteorological, air quality, and radiological measurements program was to support the environmental effort for the evaluation of the site suitability. This data report is the latest in a series of seasonal quarterly data summaries to be issued for the southeastern New Mexico site.

Pocalujka, L.P.; Babij, E.; Catizone, P.A.; Church, H.W.

1980-06-01T23:59:59.000Z

288

Clean Energy Resource Teams (Minnesota)  

Broader source: Energy.gov [DOE]

Clean Energy Resource Teams (CERTs) are community-based groups stemming from a state, university, and nonprofit partnership to encourage community energy planning and clean energy project...

289

2015 High School Team Photos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-School-Team-Photos- Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

290

2015 Middle School Team Photos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Middle-School-Team-Photos Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

291

Systematic Approach to the Development, Evolution, and Effectiveness of Integrated Product Development Teams (IPDTs)  

SciTech Connect (OSTI)

Integrated Product Development Teams (IPDT) are a key component of any systems engineering (SE) application, but since they are formed primarily from technical considerations, many IPDTs are far less productive than they otherwise could be. By recognizing specific personality types and skill sets, a random group of 'technical' individuals can be structured to become a highly effective team capable of delivering much more than the sum of its members.

Margie Jeffs; R. Douglas Hamelin

2011-06-01T23:59:59.000Z

292

2008 TEAM BUILDING DAY For the teams of the  

E-Print Network [OSTI]

2008 TEAM BUILDING DAY For the teams of the DST/NRF CENTRE OF EXCELLENCE IN TREE HEALTH BIOTECHNOLOGY (CTHB) AND THE TREE PROTECTION COOPERATIVE PROGRAMME (TPCP) AT FABI Prepared by James Mehl, administrative and technical personnel, research and postdoctoral fellows, and postgraduate students (MSc and Ph

293

In-Situ Testing and Performance Assessment of a Redesigned WIPP Panel Closure - 13192  

SciTech Connect (OSTI)

There are two primary regulatory requirements for Panel Closures at the Waste Isolation Pilot Plant (WIPP), the nation's only deep geologic repository for defense related Transuranic (TRU) and Mixed TRU waste. The Federal requirement is through 40 CFR 191 and 194, promulgated by the U.S. Environmental Protection Agency (EPA). The state requirement is regulated through the authority of the Secretary of the New Mexico Environment Department (NMED) under the New Mexico Hazardous Waste Act (HWA), New Mexico Statutes Annotated (NMSA) 1978, chap. 74-4-1 through 74-4-14, in accordance with the New Mexico Hazardous Waste Management Regulations (HWMR), 20.4.1 New Mexico Annotated Code (NMAC). The state regulations are implemented for the operational period of waste emplacement plus 30 years whereas the federal requirements are implemented from the operational period through 10,000 years. The 10,000 year federal requirement is related to the adequate representation of the panel closures in determining long-term performance of the repository. In Condition 1 of the Final Certification Rulemaking for 40 CFR Part 194, the EPA required a specific design for the panel closure system. The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) has requested, through the Planned Change Request (PCR) process, that the EPA modify Condition 1 via its rulemaking process. The DOE has also requested, through the Permit Modification Request (PMR) process, that the NMED modify the approved panel closure system specified in Permit Attachment G1. The WIPP facility is carved out of a bedded salt formation 655 meters below the surface of southeast New Mexico. Condition 1 of the Final Certification Rulemaking specifies that the waste panels be closed using Option D which is a combination of a Salado mass concrete (SMC) monolith and an isolation/explosion block wall. The Option D design was also accepted as the panel closure of choice by the NMED. After twelve years of waste handling operations and a greater understanding of the waste and the behavior of the underground salt formation, the DOE has established a revised panel closure design. This revised design meets both the short-term NMED Permit requirements for the operational period, and also the Federal requirements for long-term repository performance. This new design is simpler, easier to construct and has less of an adverse impact on waste disposal operations than the originally approved Option D design. The Panel Closure Redesign is based on: (1) the results of in-situ constructability testing performed to determine run-of-mine salt reconsolidation parameters and how the characteristics of the bedded salt formation affect these parameters and, (2) the results of air flow analysis of the new design to determine that the limit for the migration of Volatile Organic Compounds (VOCs) will be met at the compliance point. Waste panel closures comprise a repository feature that has been represented in WIPP performance assessment (PA) since the original Compliance Certification Application of 1996. Panel closures are included in WIPP PA models principally because they are a part of the disposal system, not because they play a substantive role in inhibiting the release of radionuclides to the outside environment. The 1998 rulemaking that certified WIPP to receive transuranic waste placed conditions on the panel closure design to be implemented in the repository. The revised panel closure design, termed the Run-of-Mine (ROM) Panel Closure System (ROMPCS), is comprised of 30.48 meters of ROM salt with barriers at each end. The ROM salt is generated from ongoing mining operations at the WIPP and may be compacted and/or moistened as it is emplaced in a panel entry. The barriers consist of bulkheads, similar to those currently used in the panels as room closures. A WIPP performance assessment has been completed that incorporates the ROMPCS design into the representation of the repository, and compares repository performance to that achieved with the approved Option D design. Several key physical process

Klein, Thomas [URS-Professional Solutions, 4021 National Parks Highway Carlsbad, NM 88220 (United States)] [URS-Professional Solutions, 4021 National Parks Highway Carlsbad, NM 88220 (United States); Patterson, Russell [Department of Energy-Carlsbad Field Office, 4021 National Parks Highway Carlsbad, NM 88220 (United States)] [Department of Energy-Carlsbad Field Office, 4021 National Parks Highway Carlsbad, NM 88220 (United States); Camphouse, Chris; Herrick, Courtney; Kirchner, Thomas; Malama, Bwalya; Zeitler, Todd [Sandia National Laboratories-Carlsbad, 4100 National Parks Highway Carlsbad, NM 88220 (United States)] [Sandia National Laboratories-Carlsbad, 4100 National Parks Highway Carlsbad, NM 88220 (United States); Kicker, Dwayne [SM Stoller Corporation-Carlsbad, 4100 National Parks Highway Carlsbad, NM (United States)] [SM Stoller Corporation-Carlsbad, 4100 National Parks Highway Carlsbad, NM (United States)

2013-07-01T23:59:59.000Z

294

Position, rotation, and intensity invariant recognizing method  

DOE Patents [OSTI]

A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

Ochoa, Ellen (Pleasanton, CA); Schils, George F. (San Ramon, CA); Sweeney, Donald W. (Alamo, CA)

1989-01-01T23:59:59.000Z

295

Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 7: Revision 1.0  

SciTech Connect (OSTI)

This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards.

Not Available

1992-07-01T23:59:59.000Z

296

Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter D, Appendix D1 (conclusion): Volume 3, Revision 1.0  

SciTech Connect (OSTI)

This report, Part B (Vol. 3) of the permit application for the WIPP facility, contains information related to the site characterization of the facility, including geology, design, rock salt evaluations, maps, drawings, and shaft excavations. (CBS)

Not Available

1992-06-01T23:59:59.000Z

297

Resource Conservation and Recovery Act: Part B, Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revison 1.0  

SciTech Connect (OSTI)

This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements.

Not Available

1992-03-01T23:59:59.000Z

298

United States Environmental Protection Agency | Office of Air and Radiation (6608J) | EPA 402-F-06-006 | March 2006 www.epa.gov/radiation/wipp  

E-Print Network [OSTI]

the research and production of nuclear weapons. The WIPP site is located 26 miles east of Carlsbad, New Mexico Level 2150 ft. Waste Disposal Area Test Area (No Waste Disposal) Approx. 1/2 mile Airflow and access

299

Setting the stage for effective teams: a meta-analysis of team design variables and team effectiveness  

E-Print Network [OSTI]

and is inconsistent, and conclusions regarding optimal team design are difficult to make. The present study sought to unify the team design research by proposing a conceptual model and testing hypothesized relationships between specified design variables and team...

Bell, Suzanne Tamara

2004-11-15T23:59:59.000Z

300

Hanford Tank Waste to WIPP - Maximizing the Value of our National Repository Asset  

SciTech Connect (OSTI)

Preplanning scope for the Hanford tank transuranic (TRU) waste project was authorized in 2013 by the Department of Energy (DOE) Office of River Protection (ORP) after a project standby period of eight years. Significant changes in DOE orders, Hanford contracts, and requirements at the Waste Isolation Pilot Plant (WIPP) have occurred during this time period, in addition to newly implemented regulatory permitting, re-evaluated waste management strategies, and new commercial applications. Preplanning has identified the following key approaches for reactivating the project: qualification of tank inventory designations and completion of all environmental regulatory permitting; identifying program options to accelerate retrieval of key leaking tank T-111; planning fully compliant implementation of DOE Order 413.3B, and DOE Standard 1189 for potential on-site treatment; and re-evaluation of commercial retrieval and treatment technologies for better strategic bundling of permanent waste disposal options.

Tedeschi, Allan R. [Washington River Protection Systems, Richland, WA (United States); Wheeler, Martin [Washington River Protection Systems, Richland, WA (United States)

2013-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Identification and evaluation of appropriate backfills for the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

A backfill system has been designed for the Waste Isolation Pilot Plant (WIPP) which will control the chemical environment of the post-closure repository to a domain where the actinide solubility is within its lowest region. The actinide solubility is highly dependent on the chemical species which constitute the fluid, the resulting pH of the fluid, and the oxidation state of the actinide which is stable under the specific conditions. The use of magnesium oxide (MgO) has the backfill material not only controls the pH of the expected fluids, but also effectively removes carbonate from the system, which has a significant impact on actinide solubility. The backfill selection process, emplacement system design, and confirmatory experimental results are presented.

Bynum, R.V. [Science Applications International Corp. (United States); Stockman, C.; Papenguth, H. [Sandia National Labs., Albuquerque, NM (United States)] [and others

1998-08-01T23:59:59.000Z

302

Implementation of chemical controls through a backfill system for the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

A backfill system has been designed for the WIPP which will control the chemical environment of the post-closure repository to a domain where the actinide solubility is within its lowest region. The actinide solubility is highly dependent on the chemical species which constitute the fluid, the resulting pH of the fluid, and oxidation state of the actinide which is stable under the specific conditions. The implementation of magnesium oxide (MgO) as the backfill material not only controls the pH of the expected fluids but also effectively removes the carbonate from the system, which has a significant impact for actinide solubility. The selection process, emplacement system, design, and confirmatory experimental results are presented.

Bynum, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Stockman, C.; Wang, Yifeng; Peterson, A.; Krumhansl, J.; Nowak, J.; Chu, M.S.Y. [Sandia National Labs., Albuquerque, NM (United States); Cotton, J.; Patchet, S.J. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1997-06-01T23:59:59.000Z

303

The influence of team mental models and team planning on team performance  

E-Print Network [OSTI]

approaches on post-planning MM similarity. Third, I examined the influence of post-planning teamwork and taskwork MM similarity on team performance. I tested these relationships with 172 three-person ad hoc teams performing a problem-solving execution task...

Leiva Neuenschwander, Pedro Ignacio

2009-06-02T23:59:59.000Z

304

Fuzzy Teams: Why do teams disagree on their membership, and what does it mean?  

E-Print Network [OSTI]

Organizations increasingly rely on teams as fundamental building blocks - a focus mirrored by a long legacy of research on teams. Due to the complexity of team dynamics and processes within teams

Mortensen, Mark

2008-02-01T23:59:59.000Z

305

Preoperational radiation surveillance of the WIPP project by EEG during 1992  

SciTech Connect (OSTI)

The purpose of the EEG preoperational monitoring program is to document the existing concentrations of selected radionuclides in various environmental media collected from the vicinity of the WIPP site to provide a basis of comparison of any effects of future WT-PP operations. The basic methodology for conducting environmental surveillance both on-site and off-site was outlined by Spiegler (1984). This report represents a continuation of the EEG baseline data beginning in 1985, previously reported in EEG-43, EEG-47, EEG-49 and EEG-51. Such radionuclide baseline data are important in order to determine whether future WIPP operations with radioactive waste have affected concentrations of these radionuclides in the environment. EEG data are consistent with similar environmental measurements obtained by DOE beginning in 1985. Since late 1985, the EEG has collected or received as split samples 2 443 air filters with particulates, 202 water samples, 16 biota samples and 13 soil/sediment samples. A total of 5,946 specific radionuclide analyses have been performed on these samples. As reported previously by EEG (EEG-43, EEG-47, EEG-49 and EEG-51), observed concentrations of U-238 daughter radionuclides were not in equilibrium with the parent radionuclide in water samples. This observation is consistent with different radionuclide mobility in the environment. In a notice of proposed rule making for 40 CFR 141 (US EPA 1991), the Environmental Protection Agency (EPA) National Primary Drinking Water Regulations reflect this in the calculated activity-to-mass ratio of 1.3 pCi/{mu}g of uranium using a geometric mean of the U-234:U-238 ratio in water supplies of 2.7. Ra-226 and Ra- 228 were reported in a number of water samples in concentrations similar to those previously published by EEG and DOE.

Kenney, J.W.

1994-02-01T23:59:59.000Z

306

Basic data report for drillhole ERDA 9 (Waste Isolation Pilot Plant WIPP)  

SciTech Connect (OSTI)

ERDA 9 was drilled in eastern Eddy County, New Mexico, to investigate and test salt beds for the disposal of nuclear wastes. The hole was placed near the SE corner of section 20, T22S,R31E. It was drilled between April 28 and June 4, 1976, to a depth of 2889 ft (measured from a kelly bushing altitude of 3,420.4 ft MSL). The borehole encountered, from top to bottom, Holocene deposits (including artificial fill) of 22 ft, the Pleistocene Mescalero Caliche (5 ft) and Gatuna Formation (27 ft), 9 ft of the Triassic Santa Rosa Sandstone, and 487 ft of the Dewey Lake Red Beds, 290 ft of the Rustler Formation, 1976 ft of the Salado Formation and 53 ft of the Castile Formation, all of Permian age. Cuttings were collected at 5-ft intervals for the land surface to a depth of 1090 ft, and consecutive cores were taken to a depth of 2876.6 ft. A suite of wireline geophysical logs was run the full length of the borehole to measure distribution of radioactive elements and hydrogen, and variations in rock density and elastic velocity. On the basis of the borehole findings and related hydrological and geophysical programs, the site was judged suitable to pursue the extensive geological characterization program which followed. The core from ERDA 9 provided a suite of samples extensively tested for rock mechanics, physical properties, and mineralogy. Drill-stem tests in ERDA 9 indicated no significant fluids or permeability in the Salado beds of interest. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes.

Not Available

1983-01-01T23:59:59.000Z

307

Structural evaluation of WIPP disposal room raised to Clay Seam G.  

SciTech Connect (OSTI)

An error was discovered in the ALGEBBRA script used to calculate the disturbed rock zone around the disposal room and the shear failure zone in the anhydrite layers in the original version. To correct the error, a memorandum of correction was submitted according to the Waste Isolation Pilot Plant (WIPP) Quality Assurance program. The recommended course of action was to correct the error, to repeat the post-process, and to rewrite Section 7.4, 7.5, 8, and Appendix B in the original report. The sections and appendix revised by the post-process using the corrected ALGEBRA scripts are provided in this revision. The original report summarizes a series of structural calculations that examine effects of raising the WIPP repository horizon from the original design level upward 2.43 meters. Calculations were then repeated for grid changes appropriate for the new horizon raised to Clay Seam G. Results are presented in three main areas: (1) Disposal room porosity, (2) Disturbed rock zone characteristics, and (3) Anhydrite marker bed failure. No change to the porosity surface for the compliance re-certification application is necessary to account for raising the repository horizon, because the new porosity surface is essentially identical. The disturbed rock zone evolution and devolution are charted in terms of a stress invariant criterion over the regulatory period. This model shows that the propagation of the DRZ into the surrounding rock salt does not penetrate through MB 139 in the case of both the original horizon and the raised room. Damaged salt would be expected to heal in nominally 150 years. The shear failure does not occur in either the upper or lower anhydrite layers at the moment of excavation, but appears above and below the middle of the pillar one day after the excavation. The damaged anhydrite is not expected to heal as the salt in the DRZ is expected to.

Park, Byoung Yoon (Sandia National Laboratories, Carlsbad, NM); Holland, John F. (Sandia National Laboratories, Albuquerque, NM)

2007-09-01T23:59:59.000Z

308

WIPP Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNewsNews ThisPrivacyLarge file size

309

Adequacy of a Small Quantity Site RH-TRU Waste Program in Meeting Proposed WIPP Characterization Objectives  

SciTech Connect (OSTI)

The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste prior to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.

Biedscheid, J.; Stahl, S.; Devarakonda, M.; Peters, K.; Eide, J.

2002-02-26T23:59:59.000Z

310

RH-TRU Waste Inventory Characterization by AK and Proposed WIPP RH-TRU Waste Characterization Objectives  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. The DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.

Most, W. A.; Kehrman, R.; Gist, C.; Biedscheid, J.; Devarakonda, J.; Whitworth, J.

2002-02-26T23:59:59.000Z

311

Recognizing Innovation in Green Building | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recognizing Innovation in Green Building Recognizing Innovation in Green Building February 6, 2013 - 8:45am Addthis Visitors tour the U.S. Department of Energy Solar Decathlon 2011...

312

New Mexico Small Business Assistance Program recognized by U...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce May...

313

Determining Team Hierarchy from Broadcast Communications  

E-Print Network [OSTI]

on the Enron corpus of corporate email. 1 Introduction In an organization, a team is a purposeful social system team members. Eaton [4] provides insight that communication is essential for team members to build

314

Understanding the Team Dynamics of an Executive Virtual Team  

E-Print Network [OSTI]

multinational executive virtual team best works. The findings of this study reveal that there are many ways to communicate utilizing technology, but the objective for this virtual team is to be multidimensional in use. That means that honest communication... Within This Study ????????????? 77 4 Advantages and Disadvantages of Working Virtually Associated With Technology??????????????????????... 133 1 CHAPTER I INTRODUCTION Organizations of all types are now able to operate in virtual...

Riley, Ramona Leonard

2011-10-21T23:59:59.000Z

315

Solar Powering America by Recognizing Communities Funding Opportunity  

Broader source: Energy.gov [DOE]

DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

316

PIR: PMaC's Idiom Recognizer Catherine Olschanowsky, Allan Snavely  

E-Print Network [OSTI]

PIR: PMaC's Idiom Recognizer Catherine Olschanowsky, Allan Snavely Department of Computer Science. PIR, PMaC's Static Idiom Recognizer, automates the pattern recognition process. PIR recognizes the PIR implementation and defines a subset of idioms commonly found in HPC applications. We examine

Snavely, Allan

317

Manufacturing Tech Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Tech Team Manufacturing Tech Team Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy...

318

Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Div.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Baird, G.T. [Tech Reps, Inc., Albuquerque, NM (United States)

1997-04-01T23:59:59.000Z

319

PROBABILITY OF FAILURE OF THE TRUDOCK CRANE SYSTEM AT THE WASTE ISOLATION PILOT PLANT (WIPP)  

SciTech Connect (OSTI)

This probabilistic analysis of WIPP TRUDOCK crane failure is based on two sources of failure data. The source for operator errors is the report by Swain and Guttman, NUREG/CR-1278-F, August 1983. The source for crane cable hook breaks was initially made by WIPP/WID-96- 2196, Rev. O by using relatively old (1970s) U.S. Navy data (NUREG-0612). However, a helpful analysis by R.K. Deremer of PLG guided the authors to values that were more realistic and more conservative, with the recommendation that the crane cable/hook failure rate should be 2.5 x 10-6 per demand. This value was adopted and used. Based on these choices a mean failure rate of 9.70 x 10-3(1/yr) was calculated. However, a mean rate by itself does not reveal the level of confidence to be associated with this number. Guidance to making confidence calculations came from the report by Swain and Guttman, who stated that failure data could be described by lognormal distributions. This is in agreement with the widely use d reports (by DOE and others) NPRD-95 and NPRD-91, on failure data. The calculations of confidence levels showed that the mean failure rate of 9.70x 10-3(1/yr) corresponded to a percentile value of approximately 71; i.e. there is a 71% likelihood that the failure rate is less than 9.70x 10-3(1/yr). One also calculated that there is a 95% likelihood that the failure rate is less than 29.6x 10-3(1/yr). Or, as stated previously, there is a 71% likelihood that not more than one dropped load will occur in 103 years. Also, there is a 95% likelihood that not more than one dropped load will occur in approximately 34 years. It is the responsibility of DOE to select the confidence level at which it desires to operate.

Greenfield, M.A.; Sargent, T.J.

2000-05-01T23:59:59.000Z

320

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern  

SciTech Connect (OSTI)

his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-03-05T23:59:59.000Z

322

Basic Data Report for Drillholes on the H-19 Hydropad (Waste Isolation Pilot Plant--WIPP)  

SciTech Connect (OSTI)

Seven holes were drilled and wells (H-19b0, H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7) were constructed on the H-19 hydropad to conduct field activities in support of the Culebra Transport Program. These wells were drilled and completed on the Waste Isolation Pilot Plant (WIPP) site during February to September 1995. An eighth hole, H-19b1, was drilled but had to be abandoned before the target depth was reached because of adverse hole conditions. The geologic units penetrated at the H-19 location include surficial deposits of Holocene age, rocks from the Dockum Group of Upper Triassic age, the Dewey Lake Redbeds, and Rustler Formation of the Permian age. The Rustler Formation has been further divided into five informal members which include the Forty-niner Member, Magenta Member, Tamarisk Member, Culebra Dolomite Member, and an unnamed lower member. The Rustler Formation, particularly the Culebra Dolomite Member, is considered critical for hydrologic site characterization. The Culebra is the most transmissive saturated unit above the WIPP repository and, as such, is considered to be the most likely pathway for radionuclide transport to the accessible environment in the unlikely event the repository is breached. Seven cores from the Culebra were recovered during drilling activities at the H-19 hydropad and detailed descriptions of these cores were made. On the basis of geologic descriptions, four hydrostratigraphic units were identified in the Culebra cores and were correlated with the mapping units from the WFP air intake shaft. The entire length of H-19b1 was cored and was described in detail. During coring of H-19b1, moisture was encountered in the upper part of the Dewey Lake Redbeds. A 41-ft-thick section of this core was selected for detailed description to qualify the geologic conditions related to perched water in the upper Dewey Lake. In addition to cuttings and core, a suite of geophysical logs run on the drillholes was used to identify and correlate different lithologies among the seven wells.

Mercer, J.W.; Cole, D.L.; Holt, R.M.

1998-10-09T23:59:59.000Z

323

Extreme Work Teams: Using SWAT Teams As a Model for Coordinating Distributed Robots  

E-Print Network [OSTI]

Extreme Work Teams: Using SWAT Teams As a Model for Coordinating Distributed Robots Hank Jones phinds@leland.stanford.edu ABSTRACT We present a field study of police SWAT teams for the purpose observations. Keywords Distributed work, distributed teams, leadership, extreme work teams, field robotics

324

antibody recognizing streptococcal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the users' touch screen behavior on standard UI elements. To do so we 105 Health Care Providers On the Frontline of Recognizing Engineering Websites Summary: Health Care...

325

Energy Department Recognizes Cities of Beaverton and Hillsboro...  

Broader source: Energy.gov (indexed) [DOE]

today recognized the cities of Beaverton and Hillsboro, as well as the Portland Public School District for their leadership in reducing energy use. As Better Buildings Challenge...

326

Y-12 Site Office Recognized For Contributions To Combined Federal...  

National Nuclear Security Administration (NNSA)

To ... Y-12 Site Office Recognized For Contributions To Combined Federal Campaign OAK RIDGE, Tenn. -- Employees of the National Nuclear Security Administration's Y-12 Site...

327

ESnet's Michael Bennett Recognized by IEEE for Work in Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael Bennett Recognized by IEEE for Work in Energy Efficiency News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors...

328

SUN Attribute Database: Discovering, Annotating, and Recognizing Scene Attributes  

E-Print Network [OSTI]

SUN Attribute Database: Discovering, Annotating, and Recognizing Scene Attributes Genevieve attributes. Next, we build the "SUN attribute database" on top of the diverse SUN categorical database. Our

Hays, James

329

White House Women's Leadership Summit on Climate and Energy recognizes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is an energy policy scientist in Argonne's Decision and Information Sciences division. White House Women's Leadership Summit on Climate and Energy recognizes Argonne scientists By...

330

Oregon Institute of Technology Recognized for Increasing its...  

Energy Savers [EERE]

America's First Geothermally Heated University Campus Adds 3.5 Megawatts of Clean Electricity Generation WASHINGTON-Today, the Department of Energy recognized the Oregon...

331

Energy Department Employee Recognized for Eliminating One Million...  

Broader source: Energy.gov (indexed) [DOE]

greenhouse gas emissions. Silverman is being recognized for identifying gaps in air pollution controls at Department facilities where he initiated steps to prevent the...

332

Vehicle Technologies Office's Research Recognized by R&D 100...  

Broader source: Energy.gov (indexed) [DOE]

R&D Magazine recently recognized four technologies supported by the Vehicle Technologies Office as some of the most significant products introduced in the marketplace over the last...

333

DOI Recognizes Interagency Collaboration with a 2013 Partners...  

Broader source: Energy.gov (indexed) [DOE]

with the common goal of supporting the sustainable development of renewable energy. For more information, see the press release. Addthis Related Articles DOI Recognizes...

334

Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)  

SciTech Connect (OSTI)

Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs.

Mercer, J.W. (Sandia National Labs., Albuquerque, NM (USA)); Snyder, R.P. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

335

Preoperational radiation surveillance of the WIPP (Waste Isolation Pilot Plant) Project by EEG, 1985--1988  

SciTech Connect (OSTI)

Since the beginning of the preoperational radiation monitoring program in late 1985, the EEG has collected 815 air particulate samples, 123 water samples, 12 biota samples and three sediment samples. Analysis of the majority of these samples have provided 3749 specific radionuclide concentrations in the WIPP environment and in surrounding communities. As would be expected, analyses of air particulates frequently indicated a detectable presence of naturally occurring Ra-226, Ra-228, Th-228, Th-230, and Th-232. Cs-137 was detected in air samples collected during the calendar quarter of the Soviet disaster at Chernobyl. Fallout from this event was detected by air surveillance networks worldwide. Radionuclide data from the analyses of water samples were consistent with other published findings for water from this area. Observed concentration of naturally occurring decay products of U-238 were not in equilibrium with the parent. This is consistent with differential radionuclide mobility in the environment. Ra-226 and Ra-228 were detected in a large number of samples with a high chloride content. 27 refs., 21 figs., 24 tabs.

Kenney, J.; Shenk, K. (Environmental Evaluation Group, Carlsbad, NM (USA)); Rodgers, J. (Los Alamos National Lab., NM (USA)); Chapman, J. (Nevada Univ., Las Vegas, NV (USA). Desert Research Inst.)

1990-01-01T23:59:59.000Z

336

Preoperational radiation surveillance of the WIPP Project by EEG for the years 1993 - 1995  

SciTech Connect (OSTI)

Average {sup 241}Am, {sup 239+240}Pu and {sup 238}Pu concentrations measured in ambient air near the Waste Isolation Pilot Plant (WIPP) site during 1993, 1994 and 1995 are consistent with similar data reported by the U.S. Environmental Protection Agency (EPA) and Los Alamos National Laboratory (LANL) for Espanola, Pojoaque and Santa Fe, New Mexico. Through the use of replicate analyses of matrix blanks minimum detectable activity (MDA), minimum detectable concentration (MDC) and action levels (ACTL) were established for the Environmental Evaluation Group (EEG) measurement system. Using MDA data from fixed air sampler (FAS) filters and conservative assumptions applied in the National Council on Radiation Protection and Measurements (NCRP) Report 123 (NCRP 1996), it is shown that the EEG sampling and measurement methodology is capable of detecting effluent air emissions which would produce a dose that is approximately 1000 times below the 40 CFR 191 Subpart A limit of 2.5E{sup -4} Sv/y (25 mrem/y). A similar calculation using the NCRP worksheet with storm water effluent MDCs found the EEG measurement program capable of detecting actinide emissions which would result in a dose that is approximately 10 times below the dose limits in 40 CFR 191 Subpart A and 40 CFR 61 Subpart H.

Kenney, J.W.; Gray, D.H.; Ballard, S.C. [Environmental Evaluation Group, Carlsbad, NM (United States)

1998-03-01T23:59:59.000Z

337

Joseph M. Juran Team Members  

E-Print Network [OSTI]

Joseph M. Juran I E 361 Fall 2002 Team Members: Dragui Nestorovic Gonzalo Rodriguez Monica Kroh Jaroslav Sebek #12;Introduction Joseph M. Juran has led a life of success and accomplishments. Using his. Background Joseph M. Juran was born in Brailia, Romania, during December of 1904. When Joseph was five years

Vardeman, Stephen B.

338

Education Strategy Team Policy Division  

E-Print Network [OSTI]

Education Strategy Team Policy Division DFID 1 Palace Street London SW1E 5HE 30 October 2009 TEL fellowships in India under the Wellcome Trust/DBT India Alliance2 . We believe that such investment is vital/Global-health-research/WTX055734.htm 2 Wellcome Trust/DBT India Alliance: http://www.wellcomedbt.org/index.htm #12;to support

Rambaut, Andrew

339

Exploiting Cognitive Psychology Research for Recognizing Intention in Information Graphics  

E-Print Network [OSTI]

Exploiting Cognitive Psychology Research for Recognizing Intention in Information Graphics, recognizing the intended message of an information graphic, focusing on how results from re- search for individuals with sight-impairments to access the content of informa- tion graphics. Introduction Information

Carberry, Sandra

340

The Relationship Between Team Sex Composition and Team Performance in the Context of Training Complex, Psychomotor, TeamĖbased Tasks  

E-Print Network [OSTI]

The objective of this study was to investigate the role of team sex composition in team training performance and team processes in the context of a complex, psychomotor, informationĖprocessing task. With the growing number of women in the workplace...

Jarrett, Steven

2011-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

TRU waste certification compliance requirements for contact-handled wastes retrieved from storage for shipment to the WIPP  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE Orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste.

Not Available

1982-09-01T23:59:59.000Z

342

Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978  

SciTech Connect (OSTI)

The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed.

Best, T.L.; Neuhauser, S. (eds.)

1980-03-01T23:59:59.000Z

343

Learning strategies and performance in organizational teams  

E-Print Network [OSTI]

(cont.) shows that vicarious learning is positively associated with performance. I argue that vicarious team learning is an under-explored dimension of what makes teams and organizations competitive. The chapter concludes ...

Bresman, Henrik M

2005-01-01T23:59:59.000Z

344

Team Bug Bag Biogas For Nicaragua  

E-Print Network [OSTI]

Team Bug Bag Biogas For Nicaragua Project Recap The task for Team Bug Bag was to create for under $100 (USD), and be able to produce biogas that could boil water for a thirty minute time period

Demirel, Melik C.

345

US DRIVE Materials Technical Team Roadmap | Department of Energy  

Energy Savers [EERE]

Materials Technical Team Roadmap US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) focuses primarily on reducing the mass of structural systems such as...

346

Vehicle Technologies Office: US DRIVE Materials Technical Team...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership...

347

Hydrogen Production Technical Team Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProduction Technical Team Roadmap June 2013 This

348

National Construction Safety Team Act Annual Report  

E-Print Network [OSTI]

National Construction Safety Team Act Annual Report Fiscal Year 2007 Introduction In October 2002, the President signed into law the National Construction Safety Team (NCST) Act (P.L. 107 National Construction Safety Teams for deployment after events causing the failure of a building

Magee, Joseph W.

349

Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-InactiveLaboratory TeVTeacher

350

Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-InactiveLaboratory

351

Universitt Mannheim Paulheim, Bizer: Team Project Introduction FSS2013 Slide 1 Team Project  

E-Print Network [OSTI]

Universität Mannheim ­ Paulheim, Bizer: Team Project Introduction ­ FSS2013 ­ Slide 1 Team Project;Universität Mannheim ­ Paulheim, Bizer: Team Project Introduction ­ FSS2013 ­ Slide 2 Ingredients A hot topic;Universität Mannheim ­ Paulheim, Bizer: Team Project Introduction ­ FSS2013 ­ Slide 3 Ingredient 1: A Hot

Mannheim, Universität

352

allergenic molecules recognized: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of task: deciding whether a phone is present or not. Mirjam Wester; Judith M. Kessens; Catia Cucchiarini; Helmer Strik 2001-01-01 469 A robot vision system for recognizing 3-D...

353

Department of Energy Recognizes Winners of 2011 Federal Energy...  

Energy Savers [EERE]

Winners of 2011 Federal Energy and Water Management Awards Department of Energy Recognizes Winners of 2011 Federal Energy and Water Management Awards October 13, 2011 - 1:18pm...

354

3-minute diagnosis: Researchers develop new method to recognize pathogens  

ScienceCinema (OSTI)

Imagine knowing precisely why you feel sick ... before the doctor's exam is over. Lawrence Livermore researcher Reg Beer and his engineering colleagues have developed a new method to recognize disease-causing pathogens quicker than ever before.

Beer, Reg

2014-05-30T23:59:59.000Z

355

AHA Recognizes Fit-Friendly Worksites at SRS  

Broader source: Energy.gov [DOE]

AIKEN, S.C. Ė Two contractors supporting the EM program at the Savannah River Site (SRS) were recognized recently as Fit-Friendly Worksites by the American Heart Association (AHA).

356

Preservation of artifacts in salt mines as a natural analog for the storage of transuranic wastes at the WIPP repository  

SciTech Connect (OSTI)

Use of nature`s laboratory for scientific analysis of complex systems is a largely untapped resource for understanding long-term disposal of hazardous materials. The Waste Isolation Pilot Plant (WIPP) in the US is a facility designed and approved for storage of transuranic waste in a salt medium. Isolation from the biosphere must be ensured for 10,000 years. Natural analogs provide a means to interpret the evolution of the underground disposal setting. Investigations of ancient sites where manmade materials have experienced mechanical and chemical processes over millennia provide scientific information unattainable by conventional laboratory methods. This paper presents examples of these pertinent natural analogs, provides examples of features relating to the WIPP application, and identifies potential avenues of future investigations. This paper cites examples of analogical information pertaining to the Hallstatt salt mine in Austria and Wieliczka salt mine in Poland. This paper intends to develop an appreciation for the applicability of natural analogs to the science and engineering of a long-term disposal facility in geomedia.

Martell, M.A.; Hansen, F.; Weiner, R.

1998-10-01T23:59:59.000Z

357

Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing  

SciTech Connect (OSTI)

The US Department of Energy has developed the Waste Isolation Pilot Plant (WIPP) in the bedded salt of southeastern New Mexico to demonstrate the safe disposal of radioactive transuranic wastes. Four vertical shafts provide access to the underground workings located at a depth of about 660 meters. These shafts connect the underground facility to the surface and potentially provide communication between lithologic units, so they will be sealed to limit both the release of hazardous waste from and fluid flow into the repository. The seal design must consider the potential for fluid flow through a disturbed rock zone (DRZ) that develops in the salt near the shafts. The DRZ, which forms initially during excavation and then evolves with time, is expected to have higher permeability than the native salt. The closure of the shaft openings (i.e., through salt creep) will compress the seals, thereby inducing a compressive back-stress on the DRZ. This back-stress is expected to arrest the evolution of the DRZ, and with time will promote healing of damage. This paper presents laboratory data from tertiary creep and hydrostatic compression tests designed to characterize damage evolution and healing in WIPP salt. Healing is quantified in terms of permanent reduction in permeability, and the data are used to estimate healing times based on considerations of first-order kinetics.

Pfeifle, T.W. [RE/SPEC Inc., Rapid City, SD (United States); Hurtado, L.D. [Sandia National Lab., Albuquerque, NM (United States)

1998-06-01T23:59:59.000Z

358

The ďIĒ in Team: Coach Incivility, Coach Sex, and Team Performance in Female Basketball Teams  

E-Print Network [OSTI]

that experiences of incivility incited feelings of rejection and ostracism for targets. Taken together, these findings highlight the particularly negative effects of incivility on individual attitudes and well-being. Research extending these effects to team... of the incivility-commitment relationship. Tepper (2000) found that targets who experienced abusive supervision had lower affective and normative commitment towards their organization. Similarly, at the individual level, incivility has been shown to negatively...

Smittick, Amber Leola

2012-10-19T23:59:59.000Z

359

Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA.  

SciTech Connect (OSTI)

This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of room closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper has been improved by these individuals.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94Al850005 Intentionally Blank6

Park, Byoung; Hansen, Francis D.

2005-07-01T23:59:59.000Z

360

Team | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8, 2013Battelle: How to start a projectTeam

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Intelligence team given national honor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with0, FirstIntelligence team given

362

Team Summary | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallengeCompliance7/109THETTU UTeam Summary Team

363

Sandia National Laboratories: Our Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong Range RadarFacilityOpticsEFRCOur Team

364

Development and application of an analysis methodology for interpreting ambiguous historical pressure data in the WIPP gas-generation experiments.  

SciTech Connect (OSTI)

The potential for generation of gases in transuranic (TRU) waste by microbial activity, chemical interactions, corrosion, and radiolysis was addressed in the Argonne National Laboratory-West (ANL-West) Gas-Generation Experiments (GGE). Data was collected over several years by simulating the conditions in the Waste Isolation Pilot Plant (WIPP) after the eventual intrusion of brine into the repository. Fourteen test containers with various actual TRU waste immersed in representative brine were inoculated with WIPP-relevant microbes, pressurized with inert gases, and kept in an inert-atmosphere environment for several years to provide estimates of the gas-generation rates that will be used in computer models for future WIPP Performance Assessments. Modest temperature variations occurred during the long-term ANL-West experiments. Although the experiment temperatures always remained well within the experiment specifications, the small temperature variation was observed to affect the test container pressure far more than had been anticipated. In fact, the pressure variations were so large, and seemingly erratic, that it was impossible to discern whether the data was even valid and whether the long-term pressure trend was increasing, decreasing, or constant. The result was that no useful estimates of gas-generation rates could be deduced from the pressure data. Several initial attempts were made to quantify the pressure fluctuations by relating these to the measured temperature variation, but none was successful. The work reported here carefully analyzed the pressure measurements to determine if these were valid or erroneous data. It was found that a thorough consideration of the physical phenomena that were occurring can, in conjunction with suitable gas laws, account quite accurately for the pressure changes that were observed. Failure of the earlier attempts to validate the data was traced to the omission of several phenomena, the most important being the variation in the headspace volume caused by thermal expansion and contraction within the brine and waste. A further effort was directed at recovering useful results from the voluminous archived pressure data. An analytic methodology to do this was developed. This methodology was applied to each archived pressure measurement to nullify temperature and other effects to yield an adjusted pressure, from which gas-generation rates could be calculated. A review of the adjusted-pressure data indicated that generated-gas concentrations among these containers after approximately 3.25 years of test operation ranged from zero to over 17,000 ppm by volume. Four test containers experienced significant gas generation. All test containers that showed evidence of significant gas generation contained carbon-steel in the waste, indicating that corrosion was the predominant source of gas generation.

Felicione, F. S.

2006-01-23T23:59:59.000Z

365

Advanced Vehicle Technology Analysis & Evaluation Team  

Broader source: Energy.gov [DOE]

Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

366

Solar Decathlon 2013: New Teams! New Location!  

Broader source: Energy.gov [DOE]

In addition to welcoming 20 new collegiate teams and hundreds of new student decathletes to our 2013 competition, we are announcing a new site.

367

Nuclear / Radiological Advisory Team | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

as needed. The NRAT is composed of scientists and technicians who can provide advice or conduct limited operations. NRAT Team performing analysis Mission The NRAT's mission is to...

368

Nuclear Incident Team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Incident Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

369

Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 6, Chapter D, Appendices D4--D13: Revision 1.0  

SciTech Connect (OSTI)

This report (Vol. 6) for the WIPP facility contains appendices on the following information: Site characterization; general geology; ecological monitoring; and chemical compatibility of waste forms and container materials.

Not Available

1991-12-31T23:59:59.000Z

370

United States Environmental Protection Agency | Office of Radiation and Indoor Air (6608J) | EPA 402-F-07-010 | May 2007 WIPP: Planned Change Request for Magnesium Oxide (MgO)  

E-Print Network [OSTI]

402-F-07-010 | May 2007 WIPP: Planned Change Request for Magnesium Oxide (MgO) The U.S. Department Request for Magnesium Oxide." The document includes information regarding the detailed proposal

371

HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP  

SciTech Connect (OSTI)

The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

2006-01-18T23:59:59.000Z

372

Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States  

SciTech Connect (OSTI)

The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

RECHARD,ROBERT P.

2000-03-01T23:59:59.000Z

373

Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States  

SciTech Connect (OSTI)

Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

Rechard, R.P.

1998-04-01T23:59:59.000Z

374

Aptamer Directly Evolved from Live Cells Recognizes Membrane Bound Immunoglobin  

E-Print Network [OSTI]

. These include cell signaling, cell-cell interactions, ion/solute transport that facilitates the exchangeAptamer Directly Evolved from Live Cells Recognizes Membrane Bound Immunoglobin Heavy Mu Chain, and Weihong Tan The identification of tumor related cell membrane protein targets is important

Tan, Weihong

375

Our Local Story SU Food Services recognizes the positive environmental  

E-Print Network [OSTI]

Our Local Story SU Food Services recognizes the positive environmental and economic impact comes from local dairies. By buying these local products, Food Services is sup- porting local farmers Paper ­ paper products, food service supplies Madina Halal Meat & Grocery Store ­ Halal foods Mimi

Mather, Patrick T.

376

WHY MAJOR IN MATHEMATICS? Mathematics has commonly been recognized  

E-Print Network [OSTI]

WHY MAJOR IN MATHEMATICS? Mathematics has commonly been recognized as the queen of science. But more than its role as a mere language and foundation of scientific studies and computing, Mathematics to medicine and from government to psychology. An undergraduate degree in Mathematics will open the way

377

Leveraging smart meter data to recognize home appliances Markus Weiss+#  

E-Print Network [OSTI]

Leveraging smart meter data to recognize home appliances Markus Weiss+# , Adrian Helfenstein -- The worldwide adoption of smart meters that measure and communicate residential electricity consumption gives demand. In this paper we present an infrastructure and a set of algorithms that make use of smart meters

378

Extending Plan Inference Techniques to Recognize Intentions in Information Graphics  

E-Print Network [OSTI]

Extending Plan Inference Techniques to Recognize Intentions in Information Graphics Stephanie Elzer information graphics. Our work is part of a larger project to de- velop an interactive natural language system graphics. 1 Introduction The amount of information available electronically has increased dramatically over

Carberry, Sandra

379

A Personal Touch -Recognizing Users Based on Touch Screen Behavior  

E-Print Network [OSTI]

of user interaction of personal smart phones and touch screen based devices are often shared among severalA Personal Touch - Recognizing Users Based on Touch Screen Behavior Sarah Martina Kolly Computer, there are still many open research questions concerning the basic input properties of these devices. We performed

380

Free agents are not guaranteed a position on a team. Every effort will be made to place you on a team or create a team comprised of other  

E-Print Network [OSTI]

FREE AGENT Free agents are not guaranteed a position on a team. Every effort will be made to place you on a team or create a team comprised of other free agents. Please fill out this form COMPLETELY

Mitchison, Tim

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2013MIT SOLAR ELECTRIC VEHICLE TEAM The MIT Solar Electric Vehicle Team (SEVT)  

E-Print Network [OSTI]

Challenge in Australia, and the North American Solar Challenge. The vehicles drive during the day and stop2013MIT SOLAR ELECTRIC VEHICLE TEAM #12;The MIT Solar Electric Vehicle Team (SEVT) is a student organization dedicated to demonstrating the viability of alternative energy-based transportation. The team

Williams, Brian C.

382

MMS establishes team to resolve royalty disputes  

SciTech Connect (OSTI)

This paper reports that the U.S. Minerals Management Service has set up a permanent negotiating team to resolve royalty disputes with producers. MMS plans to use the team approach to negotiate multiple settlements in single, marathon negotiations covering issues such as production monitoring, production valuation, royalty reporting, and royalty payments.

Not Available

1992-06-22T23:59:59.000Z

383

Contract Team Update Presented by Connie Motoki  

E-Print Network [OSTI]

Contract Team Update Presented by Connie Motoki January 15, 2008 #12;STC Form #12;#12;· Summary of Terms & Conditions · A Contract Manager initiates the STC. · STC is required for: New incoming subagreements & contracts Amendments to the existing agreement · Grants Team profiler cannot add money or date

Kroll, Kristen L.

384

August 1993 INTEGRATED HATCHERY OPERATIONS TEAM  

E-Print Network [OSTI]

August 1993 INTEGRATED HATCHERY OPERATIONS TEAM OPERATION PLANS FOR ANADROMOUS FISH PRODUCTION.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected as follows: Shelldrake, Tom, U.S. Fish and Wildlife Service Hatcheries, Integrated Hatchery Operations Team

385

Solar Technical Assistance Team (Fact Sheet)  

SciTech Connect (OSTI)

The Solar Technical Assistance Team (STAT) is a team of solar technology and deployment experts who ensure that the best information on policies, regulations, financing, and other issues is getting into the hands of state government decision makers whey they need it. This fact sheet provides information about STAT and the STAT webinar series for the summer of 2012.

Not Available

2012-07-01T23:59:59.000Z

386

National Construction Safety Teams Annual Report  

E-Print Network [OSTI]

National Construction Safety Teams Annual Report Fiscal Year 2006 Introduction In October 2002, the President signed into law the National Construction Safety Team (NCST) Act (P.L. 107-231), which authorized the Director of the National Institute of Standards and Technology (NIST) to establish National Construction

Magee, Joseph W.

387

National Construction Safety Team Act Annual Report  

E-Print Network [OSTI]

National Construction Safety Team Act Annual Report Fiscal Year 2008 Summary This annual report to Congress for FY 2008 is required by the National Construction Safety Team Act. NIST completed its federal report. The ICC Codes are widely adopted and used as the basis for state and local construction codes

Magee, Joseph W.

388

Palouse Team PhD Assistantship Announcements  

E-Print Network [OSTI]

Palouse Team PhD Assistantship Announcements Interdisciplinary PhD Research Assistantships in Conservation Biology, Sustainable Production and Social-Ecological Resilience of the Palouse Prairie Ecosystem team working on aspects of conservation of the endangered Palouse Prairie ecosystem in the context

Waits, Lisette

389

Solar Technical Assistance Team (STAT) (Fact Sheet)  

SciTech Connect (OSTI)

The Solar Technical Assistance Team (STAT) is a team of solar technology and deployment experts who ensure that the best information on policies, regulations, financing, and other issues is getting into the hands of state government decision makers when they need it.

Not Available

2014-05-01T23:59:59.000Z

390

The Environment Team to Waste & Recycling  

E-Print Network [OSTI]

The Environment Team A-Z Guide to Waste & Recycling www.le.ac.uk/environment #12;Welcome ...to the University of Leicester's `A-Z Guide to Waste and Recycling'. Over the last 3 years, the Environment Team has introduced an award- winning recycling scheme across the campus that allows us to recycle paper, plastics

St Andrews, University of

391

eRA Training Team1 Terminations  

E-Print Network [OSTI]

eRA Training Team1 xTrain Terminations Electronic Research Administration Sponsored by: The National Institutes of Health, Office of Extramural Research March 2012 #12;eRA Training Team2 xTrain General Information xTrain Overview The following section provides general information on the xTrain

Baker, Chris I.

392

eRA Training Team1 Terminations  

E-Print Network [OSTI]

eRA Training Team1 xTrain Terminations Electronic Research Administration Sponsored by: The National Institutions of Health, Office of Extramural Research April 2010 #12;eRA Training Team2 xTrain General Information xTrain Overview The following section provides general information on the xTrain

Baker, Chris I.

393

Federally-Recognized Tribes of the Columbia-Snake Basin.  

SciTech Connect (OSTI)

This is an omnibus publication about the federally-recognized Indian tribes of the Columbia-Snake river basin, as presented by themselves. It showcases several figurative and literal snapshots of each tribe, bits and pieces of each tribe`s story. Each individual tribe or tribal confederation either submitted its own section to this publication, or developed its own section with the assistance of the writer-editor. A federally-recognized tribe is an individual Indian group, or confederation of Indian groups, officially acknowledged by the US government for purposes of legislation, consultation and benefits. This publication is designed to be used both as a resource and as an introduction to the tribes. Taken together, the sections present a rich picture of regional indian culture and history, as told by the tribes.

United States. Bonneville Power Administration

1997-11-01T23:59:59.000Z

394

Worker Safety and Security Teams Team Member Handbook  

SciTech Connect (OSTI)

Worker Safety and Security Teams (WSSTs) are an effective way to promote safe workplaces. While WSSTs have a variety of structures and roles, they have one thing in common - employees and management collaborate to find ways to prevent accidents, injuries, and illnesses on the job. The benefits for all concerned are obvious in that employees have a safe place to work, employers save money on lost work time and workers compensation costs, and everyone returns home safe and healthy each day. A successful WSST will have the support and wholehearted participation of management and employees. LANL has a WSST at the institutional level (IWSST) and at all directorates and many divisions. The WSSTs are part of LANL's Voluntary Protection Program (VPP). The WSSTs meet at least monthly and follow an agenda covering topics such as safety shares, behavior based safety (BBS) observations, upcoming events or activities, issues, etc. A WSST can effectively influence safety programs and provide recommendations to managers, who have the resources and authority to implement changes in the workplace. WSSTs are effective because they combine the knowledge, expertise, perspective, enthusiasm, and effort of a variety of employees with diverse backgrounds. Those with experience in a specific job or work area know what the hazards or potential hazards are, and generally have ideas how to go about controlling them. Those who are less familiar with a job or area play a vital role too, by seeing what others may have overlooked or taken for granted. This booklet will cover the structure and operations of WSSTs, what needs to be done in order to be effective and successful, and how you can help, whether you're a WSST member or not.

Sievers, Cindy S. [Los Alamos National Laboratory

2012-06-11T23:59:59.000Z

395

Tracing early breccia pipe studies, Waste Isolation Pilot Plant, southeastern New Mexico: A study of the documentation available and decision-making during the early years of WIPP  

SciTech Connect (OSTI)

Breccia pipes in southeastern New Mexico are local dissolution-collapse features that formed over the Capitan reef more than 500,000 years ago. During early site studies for the Waste Isolation Pilot Plant (WIPP), the threat to isolation by these features was undetermined. Geophysical techniques, drilling, and field mapping were used beginning in 1976 to study breccia pipes. None were found at the WIPP site, and they are considered unlikely to be a significant threat even if undetected. WIPP documents related to breccia pipe studies were assembled, inspected, and analyzed, partly to present a history of these studies. The main objective is to assess how well the record reflects the purposes, results, and conclusions of the studies from concept to decision-making. The main record source was the Sandia WIPP Central File (SWCF). Early records (about 1975 to 1977) are very limited, however, about details of objectives and plans predating any investigation. Drilling programs from about 1977 were covered by a broadly standardized statement of work, field operations plan, drilling history, and basic data report. Generally standardized procedures for peer, management, and quality assurance review were developed during this time. Agencies such as the USGS conducted projects according to internal standards. Records of detailed actions for individual programs may not be available, though a variety of such records were found in the SWCF. A complete written record cannot be reconstructed. With persistence, a professional geologist can follow individual programs, relate data to objectives (even if implied), and determine how conclusions were used in decision-making. 83 refs.

Power, D.W. [HC 12, Anthony, TX (United States)

1996-01-01T23:59:59.000Z

396

Performance assessment task team progress report  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Headquarters EM-35, established a Performance Assessment Task Team (referred to as the Team) to integrate the activities of the sites that are preparing performance assessments (PAs) for disposal of new low-level waste, as required by Chapter III of DOE Order 5820.2A, {open_quotes}Low-Level Waste Management{close_quotes}. The intent of the Team is to achieve a degree of consistency among these PAs as the analyses proceed at the disposal sites. The Team`s purpose is to recommend policy and guidance to the DOE on issues that impact the PAs, including release scenarios and parameters, so that the approaches are as consistent as possible across the DOE complex. The Team has identified issues requiring attention and developed discussion papers for those issues. Some issues have been completed, and the recommendations are provided in this document. Other issues are still being discussed, and the status summaries are provided in this document. A major initiative was to establish a subteam to develop a set of test scenarios and parameters for benchmarking codes in use at the various sites. The activities of the Team are reported here through December 1993.

Wood, D.E.; Curl, R.U.; Armstrong, D.R.; Cook, J.R.; Dolenc, M.R.; Kocher, D.C.; Owens, K.W.; Regnier, E.P.; Roles, G.W.; Seitz, R.R. [and others

1994-05-01T23:59:59.000Z

397

Shedding Light on the Solar Decathlon 2013 Teams | Department...  

Broader source: Energy.gov (indexed) [DOE]

Shedding Light on the Solar Decathlon 2013 Teams Shedding Light on the Solar Decathlon 2013 Teams August 29, 2012 - 10:13am Addthis Meet the teams competing in the Solar Decathlon...

398

National Science Bowl Update: Middle School Teams from Maryland...  

Broader source: Energy.gov (indexed) [DOE]

Science Bowl Update: Middle School Teams from Maryland and Indiana to Compete for National Championship on Monday National Science Bowl Update: Middle School Teams from Maryland...

399

Delegation of Approval Authority for Integrated Project Team...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Charter Documents for Office of Environmental Management Major System Projects by surash DelegationApprovalAuthorityIntegratedProjectTeamCharterDocuments-EMMajorSysProject-Sur...

400

NERSC Science Gateways Open New Pathways to 'Team Science'  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC's Science Gateways Pave Way for 'Team Science' NERSC Gateways Pave Way for 'Team Science' Computational scientists at NERSC work with researchers around the globe to develop...

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nine teams compete in Virginia Middle School Science Bowl competition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nine teams compete in Virginia Middle School Science Bowl competition at Jefferson Lab on March 11 March 17, 2006 Peasley Middle School The Peasley Middle School Team from...

402

2014 Race to Zero Student Design Competition: Grand Winner Teams...  

Office of Environmental Management (EM)

2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition:...

403

Teaming Partner List Available for the Innovative Composites...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teaming Partner List Available for the Innovative Composites Institute FOA Teaming Partner List Available for the Innovative Composites Institute FOA March 26, 2014 - 12:34pm...

404

Joint Technical Operations Team | National Nuclear Security Administra...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blog Home About Us Our Programs Emergency Response Responding to Emergencies Render Safe Joint Technical Operations Team Joint Technical Operations Team JTOT Logo...

405

Grid Interaction Tech Team, and International Smart Grid Collaboration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

406

Small Business Teaming Workshop Program | National Nuclear Security...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Small Business Teaming Workshop Program Small Business Teaming Workshop Program To increase small...

407

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...  

Energy Savers [EERE]

Vehicle Systems and Analysis Technical Team Roadmap US DRIVE Vehicle Systems and Analysis Technical Team Roadmap VSATT provides the analytic support and subsystem characterizations...

408

Our Teams | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Overview History Staff Directory Our Teams User Advisory Council Careers Margaret Butler Fellowship Visiting Us Contact Us Need Help? support@alcf.anl.gov 630-252-3111...

409

Integrated Initiative Teams and Working Groups  

E-Print Network [OSTI]

Initiative Team Mark McFarland, chair Juan Anciso Todd Bilby Diane Boellstorff Gary Bryant Anthony Camerino Todd Bilby Diane Boellstorff Elizabeth Brown John Carey Alex Castillo Rudy Dunlap Gary Ellis Morgan

410

DOE Recognizes Green Power Network Leaders | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department of Energy Secretary Steven Chu today recognized

411

Top 500 Recognizes Fastest Supercomputers | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday in EnergyTop 500 Recognizes Fastest

412

Jefferson Lab Recognizes Top Small Business Subcontractor for 2008 |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson Lab Click onLaser TwinklesJefferson Lab Recognizes

413

Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)  

SciTech Connect (OSTI)

The Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO) program brought together a team of representatives from government, academia, and private industry to enhance the availability of energy efficiency services for small livestock producers in the State of Missouri. The Missouri Department of Agriculture (MDA) managed the project via a subcontract with the University of Missouri (MU), College of Agriculture Food and Natural Resources, MU Extension, the MU College of Human Environmental Sciences, the MU College of Engineering, and the Missouri Agricultural and Small Business Development Authority (MASBDA). MU teamed with EnSave, Inc, a nationally-recognized expert in agricultural energy efficiency to assist with marketing, outreach, provision of farm energy audits and customer service. MU also teamed with independent home contractors to facilitate energy audits of the farm buildings and homes of these livestock producers. The goals of the project were to: (1) improve the environment by reducing fossil fuel emissions and reducing the total energy used on small animal farms; (2) stimulate the economy of local and regional communities by creating or retaining jobs; and (3) improve the profitability of Missouri livestock producers by reducing their energy expenditures. Historically, Missouri scientists/engineers conducted programs on energy use in agriculture, such as in equipment, grain handling and tillage practices. The MAESTRO program was the first to focus strictly on energy efficiency associated with livestock production systems in Missouri and to investigate the applicability and potential of addressing energy efficiency in animal production from a building efficiency perspective. A. Project Objectives The goal of the MAESTRO program was to strengthen the financial viability and environmental soundness of Missouri's small animal farms by helping them implement energy efficient technologies for the production facility, farm buildings, and the homes on these farms. The expected measurable outcomes of the project were to improve the environment and stimulate the economy by: ē Reducing annual fossil fuel emissions by 1,942 metric tons of carbon dioxide equivalent, reducing the total annual energy use on at least 323 small animal farms and 100 farm homes by at least 8,000 kWh and 2,343 therms per farm. ē Stimulating the economy by creating or retaining at least 69 jobs, and saving small animal farmers an average of $2,071 per farm in annual energy expenditures. B. Project Scope The MAESTRO team chose the target population of small farms because while all agriculture is traditionally underserved in energy efficiency programs, small farms were particularly underserved because they lack the financial resources and access to energy efficiency technologies that larger farms deploy. The MAESTRO team reasoned that energy conservation, financial and educational programs developed while serving the agricultural community could serve as a national model for other states and their agricultural sectors. The target population was approximately 2,365 small animal farm operations in Missouri, specifically those farms that were not by definition a confined animal feeding operation (CAFO). The program was designed to create jobs by training Missouri contractors and Missouri University Extension staff how to conduct farm audits. The local economy would be stimulated by an increase in construction activity and an increasing demand for energy efficient farm equipment. Additionally, the energy savings were deemed critical in keeping Missouri farms in business. This project leveraged funds using a combination of funds from the Missouri Department of Natural Resourcesí Missouri Energy Center and its Soil and Water Conservation Program, from the state's Linked Deposits, MASBDA's agricultural loan guarantee programs, and through the in-kind contribution of faculty and staff time to the project from these agencies and MU. Several hundred Missouri livestock producers were contacted during the MAESTRO project. Of the

McIntosh, Jane [MDA; Schumacher, Leon [University of Missouri

2014-10-23T23:59:59.000Z

414

Nuclear Nonproliferation Ontology Assessment Team Final Report  

SciTech Connect (OSTI)

Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importance of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.

Strasburg, Jana D.; Hohimer, Ryan E.

2012-01-01T23:59:59.000Z

415

Program Development Plan and Team up  

SciTech Connect (OSTI)

The final summary report is a comprehensive view of TEAM-UP, with documented data, information, and experiences that SEPA has collected throughout the program, including lessons learned by participating ventures, and sections covering costs and other information on both large and small systems. This report also covers the barriers that TEAM-UP faced to PV commercialization at the beginning of the program, barriers the project was able to remove or reduce, and what barriers remain on the road ahead.

Solar Electric Power Association

2001-12-01T23:59:59.000Z

416

Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter E, Appendix E1, Chapter L, Appendix L1: Volume 12, Revision 3  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Project was authorized by the US Department of Energy 5 (DOE) National Security and Military Applications of the Nuclear Energy Authorization Act of 1980 (Public Law 96-164). Its legislative mandate is to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from national defense programs and activities. To fulfill this mandate, the WIPP facility has been designed to perform scientific investigations of the behavior of bedded salt as a repository medium and the interactions between the soft and radioactive wastes. In 1991, DOE proposed to initiate a experimental Test Phase designed to demonstrate the performance of the repository. The Test Phase activities involve experiments using transuranic (TRU) waste typical of the waste planned for future disposal at the WIPP facility. Much of this TRU waste is co-contaminated with chemical constituents which are defined as hazardous under HWMR-7, Pt. II, sec. 261. This waste is TRU mixed waste and is the subject of this application. Because geologic repositories, such as the WIPP facility, are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities, the groundwater monitoring requirements of HWMR-7, PLV, Subpart X, must be addressed. HWMR-7, Pt. V, Subpart X, must be addressed. This appendix demonstrates that groundwater monitoring is not needed in order to demonstrate compliance with the performance standards; therefore, HWMR-7, Pt.V, Subpart F, will not apply to the WIPP facility.

Not Available

1993-01-01T23:59:59.000Z

417

Conversion of historic waste treatment process for production of an LDR and WIPP/WAC compliant TRU wasteform  

SciTech Connect (OSTI)

In support of the historic weapons production mission at the, Rocky Flats Environmental Technology Site (RFETS), several liquid waste treatment processes were designed, built and operated for treatment of plutonium-contaminated aqueous waste. Most of these @ processes ultimately resulted in the production of a cemented wasteform. One of these treatment processes was the Miscellaneous Aqueous Waste Handling and Solidification Process, commonly referred to as the Bottlebox process. Due to a lack of processing demand, Bottlebox operations were curtailed in late 1989. Starting in 1992, a treatment capability for stabilization of miscellaneous, Resource Conservation and Recovery Act (RCRA) hazardous, plutonium-nitrate solutions was identified. This treatment was required to address potentially unsafe storage conditions for these liquids. The treatment would produce a TRU wasteform. It thus became necessary to restart the Bottlebox process, but under vastly different conditions and constraints than existed prior to its curtailment. This paper provides a description of the historical Bottlebox process and process controls; and then describes, in detail, all of the process and process control changes that were implemented to convert the treatment system such that a Waste Isolation Pilot Plant (WIPP) and a Land Disposal Requirements (LDR) compliant wasteform would be produced. The rationale for imposition of LDRs on a TRU wasteform is discussed. In addition, this paper discusses the program changes implemented to meet modem criticality safety, Conduct of Operations, and Department of Energy Nuclear Facility restart requirements.

Dunn, R.P.; Wagner, R.A.

1997-03-01T23:59:59.000Z

418

2013 Team UniSA-Australia World class thinking.  

E-Print Network [OSTI]

2013 Team UniSA-Australia guide World class thinking. World class talent. #12;Intoduction A message from Patrick Jonker, Team UniSA-Australia Ambassador Rider Profiles > Bernard Sulzberger > Adam Phelan and contacts 3 4 5 6 7 8 9 10 11 12 Team UniSA-Australia contents #12;3 Team UniSA-Australia A modern, vibrant

Li, Jiuyong "John"

419

Communications and Outreach K. L. Bethea1 Team Lead/  

E-Print Network [OSTI]

. Ren Team Leader K. Danilova Software Engineer D. Purcell Software Engineer J. Patton DB Engineer B

420

Presented by Y.Shimomura ITER Joint Central Team and Home Teams  

E-Print Network [OSTI]

of reliability of the operation Full commissioning of the ITER systemin a non-nuclear environment DevelopmentPresented by Y.Shimomura ITER Joint Central Team and Home Teams Oct. 5, 2000 Sorrento, Italy #12 Elevation Layout #12;Phased Operations Hydrogen Phase Confirmation of the machine performance and increase

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon  

Broader source: Energy.gov [DOE]

Team Massachusetts is bringing a unique perspective to the Solar Decathlon this fall. You might say it is a fourth dimension because of the teamís newly constructed 4D Home. But it could also be argued that it is because the Massachusetts College of Art and Design and University of Massachusetts Lowell are collaborating for the teamís first entry into the biannual competition, and theyíre both public institutions.

422

Team B: The trillion dollar experiment  

SciTech Connect (OSTI)

Team B was an experiment in competetive threat assessments approved by the director of the CIA at that time, George Bush. Teams of experts were to make independent assessments of highly classified data used by the intelligence community to assess Soviet strategic forces in the yearly National Intelligence Estimates. In this article, two experts report on how a group of Cold War outside experts were invited to second-guess the policies of the CIA. The question explored here is whether or not these outside experts of the 1970s contributed to the military buildup of the 1980s.

Cahn, A.H.; Prados, J.

1993-04-01T23:59:59.000Z

423

The effects of team diversity on a team process and team performance in the National Hockey League  

E-Print Network [OSTI]

and managers, while also contributing to the theoretical body of literature for sport and diversity research. This research examined National Hockey League teams and players during a three year period (2001-2004). English Canadians made up 42.5% of the players...

Waltemyer, David Scott

2009-05-15T23:59:59.000Z

424

TRU waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the WIPP. Revision 1  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 2 refs., 1 fig.

Not Available

1985-09-01T23:59:59.000Z

425

CHARACTERIZATION THROUGH DATA QUALITY OBJECTIVES AND CERTIFICATION OF REMOTE-HANDLED TRANSURANIC WASTE GENERATOR/STORAGE SITES FOR SHIPMENT TO THE WIPP  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is operating to receive and dispose of contact-handled (CH) transuranic (TRU) waste. The Department of Energy (DOE) Carlsbad Field Office (CBFO) is seeking approval from the Environmental Protection Agency (EPA) and the New Mexico Environment Department (NMED) of the remote-handled (RH) TRU characterization plan to allow disposal of RH TRU waste in the WIPP repository. In addition, the DOE-CBFO has received approval from the Nuclear Regulatory Commission (NRC) to use two shipping casks for transporting RH TRU waste. Each regulatory agency (i.e., EPA, NMED, and NRC) has different requirements that will have to be met through the use of information collected by characterizing the RH TRU waste. Therefore, the DOE-CBFO has developed a proposed characterization program for obtaining the RH TRU waste information necessary to demonstrate that the waste meets the applicable regulatory requirements. This process involved the development of a comprehensive set of Data Quality Objectives (DQOs) comprising the various regulatory requirements. The DOE-CBFO has identified seven DQOs for use in the RH TRU waste characterization program. These DQOs are defense waste determination, TRU waste determination, RH TRU determination, activity determination, RCRA physical and chemical properties, prohibited item determination, and EPA physical and chemical properties. The selection of the DQOs were based on technical, legal and regulatory drivers that assure the health and safety of the workers, the public, to protect the environment, and to comply with the requirements of the regulatory agencies. The DOE-CBFO also has the responsibility for the certification of generator/storage sites to ship RH TRU mixed waste to the WIPP for disposal. Currently, thirteen sites across the DOE complex are generators of RH TRU waste or store the waste at their location for other generators. Generator/storage site certification involves review and approval of site-specific programmatic documents that demonstrate compliance with the WIPP waste characterization and transportation requirements. Additionally, procedures must be developed to implement programmatic requirements and adequacy of those procedures determined. Finally, on-site audits evaluate the technical and administrative implementation and effectiveness of the operating procedures.

Spangler, L.R.; Most, Wm.A.; Kehrman, R.F.; Gist, C.S.

2003-02-27T23:59:59.000Z

426

Recognizing genes and other components of genomic structure  

SciTech Connect (OSTI)

The Aspen Center for Physics (ACP) sponsored a three-week workshop, with 26 scientists participating, from 28 May to 15 June, 1990. The workshop, entitled Recognizing Genes and Other Components of Genomic Structure, focussed on discussion of current needs and future strategies for developing the ability to identify and predict the presence of complex functional units on sequenced, but otherwise uncharacterized, genomic DNA. We addressed the need for computationally-based, automatic tools for synthesizing available data about individual consensus sequences and local compositional patterns into the composite objects (e.g., genes) that are -- as composite entities -- the true object of interest when scanning DNA sequences. The workshop was structured to promote sustained informal contact and exchange of expertise between molecular biologists, computer scientists, and mathematicians. No participant stayed for less than one week, and most attended for two or three weeks. Computers, software, and databases were available for use as electronic blackboards'' and as the basis for collaborative exploration of ideas being discussed and developed at the workshop. 23 refs., 2 tabs.

Burks, C. (Los Alamos National Lab., NM (USA)); Myers, E. (Arizona Univ., Tucson, AZ (USA). Dept. of Computer Science); Stormo, G.D. (Colorado Univ., Boulder, CO (USA). Dept. of Molecular, Cellular and Developmental Biology)

1991-01-01T23:59:59.000Z

427

Energy Monitoring of Software project-team  

E-Print Network [OSTI]

Energy Monitoring of Software Systems project-team Romain Rouvoy Aurélien Bourdon Adel Noureddine Lionel Seinturier firstname.lastname@inria.fr #12;ICT & Energy 2% of the global energy consumption in 2007 [1] [1] Gartner #12;ICT & Energy [1] 2008 ICT report, Ecology Ministry 13.5% of the electricity

Lefèvre, Laurent

428

NAME/TEAM: ______________________________________ GCMS postlab -1  

E-Print Network [OSTI]

NAME/TEAM: ______________________________________ GCMS postlab - 1 GC/MS of Gasoline Postlab Last (%) (w/w) % Ethanol Benzene ________ Convert your v/v % ethanol in gasoline to units of mass % (w/w %) of oxygen in gasoline. (Density of ethanol = 0.789 g/mL, Density of gasoline = 0.66 g/mL). Use dimensional

Nizkorodov, Sergey

429

Team Kentucky Awards: 2013 INTEL Grand Awards  

E-Print Network [OSTI]

Team Kentucky Awards: 2013 INTEL Grand Awards Second Award of $1,500: Energy and Transportation, Lexington, Kentucky Second Award of $1,500: Environmental Sciences An Inquiry into the Effect High School, Louisville, Kentucky Third Award of $1,000: Engineering: Materials and Bioengineering

Cooper, Robin L.

430

Team Proposes Paradigm Shift in Robotic Space Exploration Team Proposes Paradigm Shift in Robotic Space Exploration  

E-Print Network [OSTI]

Mystery of Gamma-Ray Bursts An international team of astronomers has found good support for the idea that short gamma-ray bursts are caused by violent collisions in star-forming galaxies between a black hole

Arizona, University of

431

Approach to calculating upper bounds on maximum individual doses from the use of contaminated well water following a WIPP repository breach. Report EEG-9  

SciTech Connect (OSTI)

As part of the assessment of the potential radiological consequences of the proposed Waste Isolation Pilot Plant (WIPP), this report evaluates the post-closure radiation dose commitments associated with a possible breach event which involves dissolution of the repository by groundwaters and subsequent transport of the nuclear waste through an aquifer to a well assumed to exist at a point 3 miles downstream from the repository. The concentrations of uranium and plutonium isotopes at the well are based on the nuclear waste inventory presently proposed for WIPP and basic assumptions concerning the transport of waste as well as treatment to reduce the salinity of the water. The concentrations of U-233, Pu-239, and Pu-240, all radionuclides originally emplaced as waste in the repository, would exceed current EPA drinking water limits. The concentrations of U-234, U-235, and U-236, all decay products of plutonium isotopes originally emplaced as waste, would be well below current EPA drinking water limits. The 50-year dose commitments from one year of drinking treated water contaminated with U-233 or Pu-239 and Pu-240 were found to be comparable to a one-year dose from natural background. The 50-year dose commitments from one year of drinking milk would be no more than about 1/5 the dose obtained from ingestion of treated water. These doses are considered upper bounds because of several very conservative assumptions which are discussed in the report.

Spiegler, P.

1981-09-01T23:59:59.000Z

432

Laboratory creep and mechanical tests on salt data report (1975-1996): Waste Isolation Pilot Plant (WIPP) thermal/structural interactions program  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), a facility located in a bedded salt formation in Carlsbad, New Mexico, is being used by the U.S. Department of Energy to demonstrate the technology for safe handling and disposal of transuranic wastes produced by defense activities in the United States. In support of that demonstration, mechanical tests on salt were conducted in the laboratory to characterize material behavior at the stresses and temperatures expected for a nuclear waste repository. Many of those laboratory test programs have been carried out in the RE/SPEC Inc. rock mechanics laboratory in Rapid City, South Dakota; the first program being authorized in 1975 followed by additional testing programs that continue to the present. All of the WIPP laboratory data generated on salt at RE/SPEC Inc. over the last 20 years is presented in this data report. A variety of test procedures were used in performance of the work including quasi-static triaxial compression tests, constant stress (creep) tests, damage recovery tests, and multiaxial creep tests. The detailed data is presented in individual plots for each specimen tested. Typically, the controlled test conditions applied to each specimen are presented in a plot followed by additional plots of the measured specimen response. Extensive tables are included to summarize the tests that were performed. Both the tables and the plots contain cross-references to the technical reports where the data were originally reported. Also included are general descriptions of laboratory facilities, equipment, and procedures used to perform the work.

Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

1997-02-01T23:59:59.000Z

433

Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3  

SciTech Connect (OSTI)

The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the reference design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.

Not Available

1993-03-01T23:59:59.000Z

434

file://\\troi2\wwwroot\TeamWorks\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3, 2011 WIPP Quick

435

file://\\troi2\wwwroot\TeamWorks\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3, 2011 WIPP Quick6,

436

file://\\troi2\wwwroot\TeamWorks\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3, 2011 WIPP

437

file://\\troi2\wwwroot\TeamWorks\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3, 2011 WIPP8, 2012

438

file://\\troi2\wwwroot\TeamWorks\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3, 2011 WIPP8, 2012

439

file://\\troi2\wwwroot\TeamWorks\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3, 2011 WIPP8, 20128,

440

file://\\troi2\wwwroot\TeamWorks\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3, 2011 WIPP8,

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Registration Now Open for 2013 Science Bowl Teams | Department...  

Broader source: Energy.gov (indexed) [DOE]

Registration Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:00am Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington -...

442

Registration Now Open for 2013 Science Bowl Teams | Department...  

Broader source: Energy.gov (indexed) [DOE]

Registration Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:36am Addthis The National Science Bowl finals take place...

443

Solar Decathlon Teams Working Around the Clock to Assemble Homes...  

Broader source: Energy.gov (indexed) [DOE]

Teams Working Around the Clock to Assemble Homes For Competition Solar Decathlon Teams Working Around the Clock to Assemble Homes For Competition September 14, 2011 - 12:59pm...

444

Wind Powering America's Wind for Schools Team Honored with Wirth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis This is an...

445

Michigan Wind Maufacturer Teams with College on Training | Department...  

Broader source: Energy.gov (indexed) [DOE]

Michigan Wind Maufacturer Teams with College on Training Michigan Wind Maufacturer Teams with College on Training July 6, 2010 - 11:14am Addthis Tom Bos is one of nine employees...

446

Student Semi-Finalist Teams Selected to Help Advance Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Student Semi-Finalist Teams Selected to Help Advance Geothermal Energy Student Semi-Finalist Teams Selected to Help Advance Geothermal Energy May 1, 2013 - 1:40pm Addthis The U.S....

447

Geographic dispersion in teams : its history, experience, measurement, and change  

E-Print Network [OSTI]

This thesis begins with the simple argument that geographic dispersion has gone surprisingly unexamined despite its role as the domain-defining construct for geographically dispersed teams (a.k.a. "virtual teams"). The ...

O'Leary, Michael Boyer, 1969-

2002-01-01T23:59:59.000Z

448

Coordinated Searching and Target Identification Using Teams of Autonomous Agents  

E-Print Network [OSTI]

Coordinated Searching and Target Identification Using Teams of Autonomous Agents Christopher Lum;#12;University of Washington Abstract Coordinated Searching and Target Identification Using Teams of Autonomous & Astronautics Many modern autonomous systems actually require significant human involvement. Often, the amount

Washington at Seattle, University of

449

Energy Department Opens Competition to Select Student Teams for...  

Office of Environmental Management (EM)

Opens Competition to Select Student Teams for Solar Decathlon 2015 Energy Department Opens Competition to Select Student Teams for Solar Decathlon 2015 November 1, 2013 - 3:17pm...

450

An Expectation States Approach to Examining Medical Team Information Exchange  

E-Print Network [OSTI]

medical team research has reached a point where the linkages between information exchange, hierarchy, and team performance need to be clearly established. Several individual experiments demonstrate interesting findings, but the effects they display... 2010). Beyond that, teams are embedded in an ?encompassing organizational system, with boundaries and linkages to the broader system context and task environment? (Kozlowski and Ilgen 2006:79). That is, in the current research, teams are generally...

Manago, Bianca

2013-07-30T23:59:59.000Z

451

NCMS PWB Surface Finishes Team project summary  

SciTech Connect (OSTI)

The NCMS PWB Surface Finishes Consortium is just about at the end of the five year program. Dozens of projects related to surface finishes and PWB solder-ability were performed by the team throughout the program, and many of them are listed in this paper. They are listed with a cross reference to where and when a technical paper was presented describing the results of the research. However, due to time and space constraints, this paper can summarize the details of only three of the major research projects accomplished by the team. The first project described is an ``Evaluation of PWB Surface Finishes.`` It describes the solderability, reliability, and wire bondability of numerous surface finishes. The second project outlined is an ``Evaluation of PWB Solderability Test Methods.`` The third project outlined is the ``Development and Evaluation of Organic Solderability Preservatives.``

Kokas, J.; DeSantis, C. [United Technologies Corp., Farmington, CT (United States). Hamilton Standard Div.; Wenger, G. [AT and T, New York, NY (United States)] [and others

1996-04-01T23:59:59.000Z

452

Mobile Robotic Teams Applied to Precision Agriculture  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) and Utah State University?s Center for Self-Organizing and Intelligent Systems (CSOIS) have developed a team of autonomous robotic vehicles applicable to precision agriculture. A unique technique has been developed to plan, coordinate, and optimize missions in large structured environments for these autonomous vehicles in real-time. Two generic tasks are supported: 1) Driving to a precise location, and 2) Sweeping an area while activating on-board equipment. Sensor data and task achievement data is shared among the vehicles enabling them to cooperatively adapt to changing environmental, vehicle, and task conditions. This paper discusses the development of the autonomous robotic team, details of the mission-planning algorithm, and successful field demonstrations at the INEEL.

M.D. McKay; M.O. Anderson; N.S. Flann (Utah State University); R.A. Kinoshita; R.W. Gunderson; W.D. Willis (INEEL)

1999-04-01T23:59:59.000Z

453

Mobile Robotic Teams Applied to Precision Agriculture  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) and Utah State Universityís Center for Self-Organizing and Intelligent Systems (CSOIS) have developed a team of autonomous robotic vehicles applicable to precision agriculture. A unique technique has been developed to plan, coordinate, and optimize missions in large structured environments for these autonomous vehicles in realtime. Two generic tasks are supported: 1) Driving to a precise location, and 2) Sweeping an area while activating on-board equipment. Sensor data and task achievement data is shared among the vehicles enabling them to cooperatively adapt to changing environmental, vehicle, and task conditions. This paper discusses the development of the autonomous robotic team, details of the mission-planning algorithm, and successful field demonstrations at the INEEL.

Anderson, Matthew Oley; Kinoshita, Robert Arthur; Mckay, Mark D; Willis, Walter David; Gunderson, R.W.; Flann, N.S.

1999-04-01T23:59:59.000Z

454

Driving Energy Performance with Energy Management Teams  

E-Print Network [OSTI]

Driving Energy Performance with Energy Management Teams Meredith Younghein ENERGY STAR Industrial Communications Mgr. U.S. Environmental Protection Agency Washington, DC ABSTRACT Companies today face an uncertain energy future. Businesses... face escalating energy prices which can erode profits. Concerns over supply reliability, and possible regulation of carbon emissions create risk. For many industries in the U.S., energy costs are equal to the cost of raw materials or even employee...

Younghein, M.; Tunnessen, W.

2006-01-01T23:59:59.000Z

455

2003 SITE ENVIRONMENTAL REPORT x 2003 Site Environmental Report Team  

E-Print Network [OSTI]

2003 SITE ENVIRONMENTAL REPORT x 2003 Site Environmental Report Team The SER Team realizes. The Environmental and Waste Management Services Division Field SamplingTeam (photo, center right) (From left to right) Robert Metz, Carlee Ogeka, Richard Lagattolla, and Lawrence Lettieri The Environmental

Homes, Christopher C.

456

PI & Project Team Step-By-Step Procedure  

E-Print Network [OSTI]

Proposal Management PI & Project Team Cancel PAF Step-By-Step Procedure Last updated: 4/1/2013 1;Proposal Management PI & Project Team Cancel PAF Step-By-Step Procedure Last updated: 10/01/09 2 of 2 http of 2 http://eresearch.umich.edu Project Team Cancel PAF A PAF can be cancelled during the following

Shyy, Wei

457

Baldrige Enterprise: Updates on Taskforce Teams September/October 2013  

E-Print Network [OSTI]

with the "nonChoir." Integrated Examiner Training Team (Team Leader: Sandra Byrne; Goal: Design a training members used survey findings to custom design and deliver a fourhour workshop. Kellie Glenn and Brian applicants, regardless of where they are located #12;2 Team has identified core principles to guide

458

WRIGHT, MELANIE CLAY. The Effects of Automation on Team Performance and Team Coordination. (Under the direction of David B. Kaber).  

E-Print Network [OSTI]

ABSTRACT WRIGHT, MELANIE CLAY. The Effects of Automation on Team Performance and Team Coordination of automation in a number of work domains, including team environments. However, assessment of the effects of automation on teamwork has been primarily limited to the aviation domain (comparing early conventional

Kaber, David B.

459

Texas Stream Team: Ambassadors for Texas water quality  

E-Print Network [OSTI]

tx H2O | pg. 23 Story by Kathy Wythe Ambassadors for Texas water Roger Miranda of Texas Commission on Environmental Quality volunteers as a certified trainer for Texas Stream Team. Photo by Robert Sams, Texas Stream Team Texas stream... team continued tx H2O | pg. 24 An African proverb says it takes a village to raise a child. However, the Texas Stream Team would say it takes a group of citizens to monitor Texas waters. The Texas Stream Team, formerly Texas Watch, is based...

Wythe, Kathy

2010-01-01T23:59:59.000Z

460

E-Print Network 3.0 - agglutinin recognizes glycoside Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

prediction might be that the HA strains that recognize the agglutinin bettter... the alfalfa agglutinin have different phage sensitivities and (ii) most of the strains that...

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Is Everyone Created Equal? A Social Network Perspective on Personality in Teams  

E-Print Network [OSTI]

One important research topic in team research concerns how team composition (i.e., the configuration of team member attributes such as personality factors) affects team effectiveness. To date, researchers have almost exclusively focused on the role...

Li, Ning

2012-10-19T23:59:59.000Z

462

Codes and Standards Technical Team Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes and Standards Technical Team Roadmap June 2013

463

Proposal Team: D.N. Basov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for Plutonium CleanupProposalTeam: D.N. Basov 1 ,

464

DOE Grid Tech Team | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select aCapture2 DOEDepartmentTeam

465

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication and Evaluation of AcceleratedThe0 Science Team Meeting 2000

466

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication and Evaluation of AcceleratedThe0 Science Team Meeting 20001

467

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication and Evaluation of AcceleratedThe0 Science Team Meeting

468

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication and Evaluation of AcceleratedThe0 Science Team MeetingNSDL

469

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication and Evaluation of AcceleratedThe0 Science Team

470

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication and Evaluation of AcceleratedThe0 Science TeamSizes, Fractional

471

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication and Evaluation of AcceleratedThe0 Science TeamSizes,

472

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication and Evaluation of AcceleratedThe0 Science TeamSizes,Inferring

473

Technical Assessment Team Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage ¬Ľof Energy StrainClientDesign &Report Technical Assessment Team Report

474

emergency management team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration goSecuritycdns || Nationaldnn |3team | National

475

One Team ¬Ö A Historical Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 1000 acres ofOne ControllingTeam - A

476

ARM - 1998 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under Maintenance8 ARM Science Team

477

ARM - 1999 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under Maintenance8 ARM Science Team9

478

ARM - 2000 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under Maintenance8 ARM Science Team90

479

ARM - 2001 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under Maintenance8 ARM Science Team901

480

ARM - 2006 Science Team Meeting Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under Maintenance8Meeting6Science Team

Note: This page contains sample records for the topic "wipp teams recognized" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ARM - 2007 Science Team Meeting Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under7 Performance MetricsScience Team

482

Team Cumberland Meetings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at YoungSuspect|THEof EnergyTeam Cumberland ¬Ľ

483

Standard Contracts Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable EnergySouthwest4, 2010The Standard Contracts Team has

484

Security Commodity Team | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights Nuclear PhysicsDoDepartment ofSecretsCommodity Team |

485

Team UT-Battelle | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-InactiveLaboratoryTeam UT-Battelle:

486

Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Revision 1.0  

SciTech Connect (OSTI)

The US Department of Energy is currently constructing the Waste Isolation Pilot near Carlsbad, New Mexico. The full-scale pilot plant will demonstrate the feasibility of the safe disposal of defense-related nuclear waste in a bedded salt formation at a depth of 2160 feet below the surface. WIPP will provide for the permanent storage of 25,000 cu ft of remote-handled (RH) transuranic waste and 6,000,000 cu ft of contact-handled (CH) transuranic waste. This paper covers the major mechanical/structural design considerations for the waste hoist and its hoist tower structure. The design of the hoist system and safety features incorporates state-of-the-art technology developed in the hoist and mining industry to ensure safe operation for transporting nuclear waste underground. Also included are design specifications for VOC-10 monitoring system.

Not Available

1991-12-31T23:59:59.000Z

487

TRU waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the WIPP. Revision 1  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, newly generated, contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated, however, interim storage sites may have additional requirements consistent with these requirements. All applicable DOE orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 2 refs., 1 fig.

Not Available

1985-09-01T23:59:59.000Z

488

Air intake shaft performance tests (Shaft 5): In situ data report (May 1988--July 1995). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program  

SciTech Connect (OSTI)

Data are presented from the Air Intake Shaft Test, an in situ test fielded at the Waste Isolation Pilot Plant (WIPP). The construction of this shaft, well after the initial three access shafts, presented an unusual opportunity to obtain valuable detailed data on the mechanical response of a shaft for application to seal design. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1987; gage data in this report cover the period from May 1988 through July 1995, with the bulk of the data obtained after obtaining access in November, 1989 and from the heavily instrumented period after remote gage installation between May, 1990, and October, 1991.

Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.; Hoag, D.L.; Ball, J.R. [RE/SPEC Inc., Albuquerque, NM (United States); Baird, G.T.; Jones, R.L. [Tech Reps, Inc., Albuquerque, NM (United States)

1995-07-01T23:59:59.000Z

489

Potential microbial impact on transuranic wastes under conditions expected in the Waste Isolation Pilot Plant (WIPP). Annual report, October 1, 1978-September 30, 1979  

SciTech Connect (OSTI)

Previous results were confirmed showing elevated frequencies of radiation-resistant bacteria in microorganisms isolated from shallow transuranic (TRU) burial soil that exhibits nanocurie levels of beta and gamma radioactivity. Research to determine whether plutonium could be methylated by the microbially produced methyl donor, methylcobalamine, was terminated when literature and consulting radiochemists confirmed that other alkylated transuranic elements are extremely short-lived in the presence of oxygen. Emphasis was placed on investigation of the dissolution of plutonium dioxide by complex formation between plutonium and a polyhydroxamate chelate similar to that produced by microorganisms. New chromatographic and spectrophotometric evidence supports previous results showing enhanced dissolution of alpha radioactivity when /sup 239/Pu dioxide was mixed with the chelate Desferol. Microbial degradation studies of citrate, ethylenediamine tetraacetate (EDTA), and nitrilo triacetate (NTA) chelates of europium are in progress. Current results are summarized. All of the chelates were found to degrade. The average half-life for citrate, NTA, and EDTA was 3.2, 8.0, and 28 years, respectively. Microbial CO/sub 2/ generation is also in progress in 72 tests on several waste matrices under potential WIPP isolation conditions. The mean rate of gas generation was 5.97 ..mu..g CO/sub 2//g waste/day. Increasing temperature increased rates of microbial gas generation across treatments of brine, varying water content, nutrient additions, and anaerobic conditions. No microbial growth was detected in experiments to enumerate and identify the microorganisms in rocksalt cores from the proposed WIPP site. This report contains the year's research results and recommendations derived for the design of safe storage of TRU wastes under geologic repository conditions.

Barnhart, B.J.; Campbell, E.W.; Martinez, E.; Caldwell, D.E.; Hallett, R.

1980-07-01T23:59:59.000Z

490

AE Work Team Short Roster Strategic Purchasing-Office Supplies v 1.1 2012-01-06 dgk Project Member Team Role UW-Madison Role  

E-Print Network [OSTI]

AE Work Team Short Roster Strategic Purchasing- Office Supplies v 1.1 2012-01-06 dgk Project Member II Work Team Roster: Strategic Purchasing - Office Supplies #12; Team Role UW-Madison Role Tammy Starr Team Leader Office of Human Resources (OHR) Mike Marean Team

Sheridan, Jennifer

491

COMMODITIES USED BY WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma PhysicsCOMMODITIES USED BY

492

WIPP - Related FOIA Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory in Golden,WIMapPilot Projectin

493

WIPP Hosts Stakeholder Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApproved Modifications Class15,

494

WIPP News Releases - 2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE Awards4 News

495

WIPP Nitrate Updates 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE Awards4

496

WIPP Nitrate Updates 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE Awards45

497

WIPP Nuclear Facilities Transparency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE

498

wipp _vents.png  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963 Radiometer Calibrations0 1 Winter

499

WIPP Recovery Effort  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storageMarch| Departmentof Energyreceived

500

Science@WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System OutagesNews PressThemes ¬ĽPacifichemJLab At