Powered by Deep Web Technologies
Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NOTES ON NEUTRON DEPTH PROFILING  

E-Print Network [OSTI]

NOTES ON NEUTRON DEPTH PROFILING by J.K. Shultis Department of Mechanical and Nuclear Engineering College of Engineering Kansas State University Manhattan, Kansas 66506 Dec. 2003 #12;Notes on Neutron Depth Profiling J. Kenneth Shultis December 2003 1 Introduction The purpose of neutron depth profiling

Shultis, J. Kenneth

2

Chemical Depth Profiling from Neutron Reflectometry  

SciTech Connect (OSTI)

The material profile of a thin film can be analyzed by placing the film on a substrate and by sending a neutron beam onto it at various angles of incidence. Technically, the scattering length density of the film needs to be determined as a function of depth. A reflectometer is used to measure the amount of reflection (reflectivity) as a function of the angle of incidence. Mathematically, this is equivalent to sending the neutron beam onto the film at every energy but at a fixed angle of incidence. The film profile needs to be recovered from the measured reflectivity data. Unfortunately, the unique recovery is impossible, and many distinct unrelated profiles may correspond to the same reflectivity data. In our DOE/EPSCoR sponsored research, we have developed an analytical method to uniquely recover the profile of a thin film from the measured reflectivity data. We have shown that by taking reflectivity measurements with two different substrates, one can uniquely determine the film profile. Previously, it was known that one could uniquely recover the profile by taking reflectivity measurements with three different substrates, and our findings indicate that the same goal can be accomplished by using fewer measurements. At Mississippi State University we started an informal weekly seminar (called ''the reflectometry meeting'') at to attract various undergraduate and graduate students into the field. There were about 3 undergraduate students, 6 graduate students, and 2 faculty members attending these seminars. The PI has collaborated with Dr. Norm Berk at National Institute of Standards and Technology (NIST) on various aspects of neutron reflectometry, from which various interesting problems of theoretical and practical importance have arisen. One of these problems is closely related to the important mathematical problem known as analytic extrapolation. Under appropriate conditions (known to hold in neutron reflectometry), the reflection data taken in a finite interval of neutron energies uniquely determines the data at all energies. Even though the uniqueness is assured mathematically, there are currently no available methods for analytic extrapolation. Currently, we are working on this problem as it arises in neutron reflectometry and looking for mathematical and numerical methods to extrapolate reflection data to higher and lower neutron energies. A solution to this problem is expected to have a big impact not only in neutron reflectometry, but in many areas of physics and engineering. The PI has collaborated with Prof. Paul Sacks of Iowa State University, Prof. Daniil Sarkissian of Mississippi State University, and Prof. Levon Babadzanjanz of St. Petersburg State University, Russia on mathematical and numerical aspects of neutron reflectometry. These researchers jointly worked with the PI towards the preparation of numerical routines to extract the film profile from the reflection data. We have prepared a Mathematica interface running Fortran 95 algorithms to produce reflection data from a given profile. These Fortran 95 algorithms have been prepared by updating and modifying Prof. Sacks' Fortran 77 routine and by updating Dr. Gian Felcher's (of Argonne National Laboratory) Fortran 77 routine. We are also preparing similar algorithms written in Mathematica so that they can be used without needing Fortran. We are also working towards preparing algorithms in Fortran 95 and in Mathematica to produce the film profile from the given sets of reflectivity data.

Tuncay Aktosun

2006-03-21T23:59:59.000Z

3

Depth profiling ambient noise in the deep ocean  

E-Print Network [OSTI]

al. , 2005). The vertical profile of wind speed over the seavertical directionality…………… Depth-dependence of wind speedVertical noise directional density function versus depth. 93 Measured and acoustically estimated wind speeds.

Barclay, David Readshaw

2011-01-01T23:59:59.000Z

4

Recovery of SIMS depth profiles with account for nonstationary effects  

Science Journals Connector (OSTI)

Abstract In this work we consider a method of accounting for the nonstationary effects in recovery of SIMS depth profiles. The depth resolution function (DRF) is described by Hofmann's nonstationary MRI (mixing-roughness-information depth) model using the depth-dependent parameters. The effects in question include the nonstationary atomic mixing and development of surface roughness. A mathematical description of the nonstationary depth profiling process by the Fredholm integral equation of the first kind is proposed. The inverse problem is solved using an algorithm based on the Tikhonov regularization method. The proposed nonstationary recovery method is tested on both model and real structures. The development of surface roughness in SIMS depth profiling of the real structure was observed. Grazing incidence x-ray reflectometry (XRR) technique was used to verify the results of SIMS profiles restoration for periodic structure containing thin Ge layers in the Si matrix. The advantages of the proposed recovery algorithm to allow for the nonstationary effects are shown.

Pavel Andreevich Yunin; Yurii Nikolaevich Drozdov; Mikhail Nikolaevich Drozdov; Dmitry Vladimirovich Yurasov

2014-01-01T23:59:59.000Z

5

Molecular Depth Profiling of Sucrose Films: A Comparative Study...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cs and O Ions. Abstract: Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling of sucrose thin films were investigated using 10 keV C60+, 20 keV...

6

An Investigation of Hydrogen Depth Profiling Using ToF-SIMS....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of Hydrogen Depth Profiling Using ToF-SIMS. An Investigation of Hydrogen Depth Profiling Using ToF-SIMS. Abstract: Hydrogen depth distributions in silicon, zinc oxide...

7

High-energy x-ray diffractometer for nondestructive strain depth profile measurement  

SciTech Connect (OSTI)

We describe a lab-based high-energy x-ray diffraction system and a new approach to nondestructively measuring strain profiles in polycrystalline samples. This technique utilizes the tungsten K{sub ?1} characteristic radiation from a standard industrial x-ray tube. We introduce a simulation model that is used to determine strain values from data collected with this system. Examples of depth profiling are shown for shot peened aluminum and titanium samples. Profiles to 1 mm depth in aluminum and 300 ?m depth in titanium with a depth resolution of 20 ?m are presented.

Al-Shorman, M. Y. [Department of Physics, Yarmouk University, 21163 Irbid (Jordan)] [Department of Physics, Yarmouk University, 21163 Irbid (Jordan); Jensen, T. C.; Gray, J. N. [Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa 50011 (United States)] [Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa 50011 (United States)

2013-12-15T23:59:59.000Z

8

Measuring depth profiles of residual stress with Raman spectroscopy  

SciTech Connect (OSTI)

Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

1988-12-01T23:59:59.000Z

9

Shear wave seismic velocity profiling and depth to water table earthquake site  

E-Print Network [OSTI]

..................................................................................................... 6 Summary of seismic refraction/reflection methodsShear wave seismic velocity profiling and depth to water table ­ earthquake site response measurements for Valley County, Idaho Lee M. Liberty and Gabriel M. Gribler, Boise State University Center

Barrash, Warren

10

Depth Profile of Uncompensated Spins in an Exchange-Bias System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depth Profile of Uncompensated Depth Profile of Uncompensated Spins in an Exchange-Bias System Depth Profile of Uncompensated Spins in an Exchange-Bias System Print Wednesday, 25 January 2006 00:00 The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent magnetization in an exchange-biased sample. These results provide atomic-level insights into the mechanism of exchange bias, specifically the involvement of mutual interactions between two kinds of uncompensated spins in the antiferromagnet and spins in the ferromagnet.

11

Depth Profile of Uncompensated Spins in an Exchange-Bias System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depth Profile of Uncompensated Spins in an Exchange-Bias System Print Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent magnetization in an exchange-biased sample. These results provide atomic-level insights into the mechanism of exchange bias, specifically the involvement of mutual interactions between two kinds of uncompensated spins in the antiferromagnet and spins in the ferromagnet.

12

Depth Profile of Uncompensated Spins in an Exchange-Bias System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depth Profile of Uncompensated Spins in an Exchange-Bias System Print Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent magnetization in an exchange-biased sample. These results provide atomic-level insights into the mechanism of exchange bias, specifically the involvement of mutual interactions between two kinds of uncompensated spins in the antiferromagnet and spins in the ferromagnet.

13

Reconstruction of original indium distribution in InGaAs quantum wells from experimental SIMS depth profiles  

Science Journals Connector (OSTI)

Abstract Depth profiling analysis of InGaAs/GaAs hetero-structures grown by MBE on GaAs (0 0 1) substrates is reported. A novel two-step procedure for de-convolving experimental SIMS depth distribution is employed and the original In distribution in InGaAs quantum wells (QW) is estimated. The QW thickness calculated from the de-convolved profiles is shown to be in good agreement with the cross-sectional TEM images. The experimental In depth profile is shifted from the original In distribution due to the ion mixing process during depth profiling analysis. It is shown that the de-convolution procedure is suitable for reconstruction of the original QW width and depth by SIMS even for relatively high primary ion energies.

Yu. Kudriavtsev; R. Asomoza; S. Gallardo-Hernandez; M. Ramirez-Lopez; M. Lopez-Lopez; V. Nevedomsky; K. Moiseev

2014-01-01T23:59:59.000Z

14

TOF-SIMS/MALDI-TOF combination for the molecular weight depth profiling of polymeric bilayer  

Science Journals Connector (OSTI)

Abstract A polymeric bilayer composed of two poly(styrene) layers differing by their molecular weights (MW) was elaborated to mimic a MW gradient and analyzed by a combination of TOF-SIMS, MALDI-MS and Nanoscratch (NS). A direct TOF-SIMS profiling conducted using a Cs+ ion beam lead to the detection of fragments from carbonated layers without any data about their MW, making the fine bilayer architecture indistinguishable. Spots of various depths were hence created using the same Cs+ ion bombardment for different sputtering times, and further mass-analyzed by the recently developed Surface-Layer MALDI-MS technique, to evaluate the MW of the very top polymeric layer of each crater. The off-line combination of ion etching and LASER analysis allowed a molecular weight depth profile to be plotted, as a function of the physical depth measured by NS in each crater (instead of the usual sputter time). This original coupling is expected to provide useful molecular and/or molecular weight data about complex organic and/or polymeric multi-layers or gradients.

Thierry Fouquet; Grégory Mertz; Nicolas Desbenoit; Gilles Frache; David Ruch

2014-01-01T23:59:59.000Z

15

Transient Phenomena and Impurity Relocation in SIMS Depth Profiling using Oxygen Bombardment: Pursuing the Physics to Interpret the Data [and Discussion  

Science Journals Connector (OSTI)

...research-article Transient Phenomena and Impurity Relocation in SIMS Depth Profiling using Oxygen Bombardment: Pursuing the Physics...analysis or depth profiling by secondary ion mass spectrometry (SIMS) can only be achieved, for positively charged ions, if the...

1996-01-01T23:59:59.000Z

16

Bi 3 + cluster primary ions in SIMS depth profiling of YBaCuO high-temperature superconductor films  

Science Journals Connector (OSTI)

SIMS depth profiling of YBa2Cu3O7 high-temperature superconductor films was performed using a TOF.SIMS-...2Cu3O7 films based on detection of cluster secondary ions.

M. N. Drozdov; Yu. N. Drozdov…

2010-08-01T23:59:59.000Z

17

Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma  

SciTech Connect (OSTI)

The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

Masashi Shimada; G. Cao; Y. Hatano; T. Oda; Y. Oya; M. Hara; P. Calderoni

2011-05-01T23:59:59.000Z

18

Auger and depth profile analysis of synthetic crystals for dispersion of soft x-rays  

SciTech Connect (OSTI)

Numerous samples have been fabricated and analyzed as part of a program to produce soft x-ray dispersion elements for various laboratory applications. The majority of this work has centered around the carbon/tungsten system, although several other low-Z/high-Z pairs have been investigated. This report describes the development of certain vacuum-deposition techniques for fabricating these dispersion elements, based upon results obtained from x-ray reflectivity measurements and Auger depth-profile analysis. The composition of the films is chiefly alternating layers of tungsten carbide and carbon. Excess carbon is introduced during the deposition of the tungsten to ensure that the carbide layer is fully stoichiometric. Layer thickness ranged from approx. 5 to 30 A for the carbide and from approx. 15 to 80 A for the carbon. The reflectivity measurements were made using Fe and Al K/sub ..cap alpha../ at grazing incidence. The emphasis in these studies is on the application of surface-analysis results in suggesting modifications to the fabrication process and in evaluating the results such modifications have on the layer stoichiometry, continuity, and periodicity of the dispersion elements so produced.

Rachocki, K.D.; Brown, D.R.; Springer, R.W.; Arendt, P.N.

1983-01-01T23:59:59.000Z

19

E-Print Network 3.0 - aes depth profile Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

73, No. 2, 1996, pp. 259--272. Summary: zone parameters Y and S, its depth H cz and the opacity (T ; ae; Y ). The basic assumption here... in mind that for a given sound speed...

20

Depth Profile of Uncompensated Spins in an Exchange-Bias System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent magnetization in an exchange-biased...

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alkyl nitrate (C 1 -C 3 ) depth profiles in the tropical Pacific Ocean  

E-Print Network [OSTI]

concentrations with a [ iPr]/[Et] ratio of 0.1±0.0. Noat all depths with an [iPr]/[Et] ratio of 0.2 ± 0.0. Thiswith ethyl nitrate with an [iPr]/[Et] ratio of 0.2 ± 0.0.

Dahl, E. E; Yvon-Lewis, S. A; Saltzman, E. S

2007-01-01T23:59:59.000Z

22

Magnetometry and transport data complement polarized neutron reflectometry in magnetic depth profiling  

SciTech Connect (OSTI)

Exchange coupled magnetic hard layer/soft layer thin films show a variety of complex magnetization reversal mechanisms depending on the hierarchy of interaction strengths within and between the films. Magnetization reversal can include uniform rotation, soft layer biasing, as well as exchange spring behavior. We investigate the magnetization reversal of a CoPt/Permalloy/Ta/Permalloy heterostructure. Here, Stoner-Wohlfarth-type uniform magnetization rotation of the virtually free Permalloy layer and exchange spring behavior of the strongly pinned Permalloy layer are found in the same sample. We investigate the complex magnetization reversal by polarized neutron reflectometry, magnetometry, and magneto-transport. The synergy of combining these experimental methods together with theoretical modeling is key to obtain the complete quantitative depth resolved information of the magnetization reversal processes for a multilayer of mesoscopic thickness.

Wang Yi; He Xi; Mukherjee, T.; Binek, Ch. [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, Jorgenson Hall, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Fitzsimmons, M. R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sahoo, S. [Seagate Technology, Minneapolis, Minnesota 55435 (United States)

2011-11-15T23:59:59.000Z

23

Structural parameters of star clusters: relations among light, mass and star-count radial profiles and the dependence on photometric depth  

E-Print Network [OSTI]

Structural parameters of model star clusters are measured in radial profiles built from number-density, mass-density and surface-brightness distributions, assuming as well different photometric conditions. Star clusters of different ages, structure and mass functions are modelled by assuming that the radial distribution of stars follows a pre-defined analytical form. Near-infrared surface brightness and mass-density profiles result from mass-luminosity relations taken from a set of isochrones. Core, tidal and half-light, half-mass and half-star count radii, together with the concentration parameter, are measured in the three types of profiles, which are built under different photometric depths. While surface-brightness profiles are almost insensitive to photometric depth, radii measured in number-density and mass-density profiles change significantly with it. Compared to radii derived with deep photometry, shallow profiles result in lower values. This effect increases for younger ages. Radial profiles of clusters with a spatially-uniform mass function produce radii that do not depend on depth. With deep photometry, number-density profiles yield radii systematically larger than those derived from surface-brightness ones. In general, low-noise surface-brightness profiles result in uniform structural parameters that are essentially independent of photometric depth. For less-populous star clusters, those projected against dense fields and/or distant ones, which result in noisy surface-brightness profiles, this work provides a quantitative way to estimate the intrinsic radii by means of number-density profiles built with depth-limited photometry.

Charles Bonatto; Eduardo Bica

2007-11-19T23:59:59.000Z

24

Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: Composition Implications  

E-Print Network [OSTI]

Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a...

,

2014-01-01T23:59:59.000Z

25

Non-standard Fickian self-diffusion of isotopically pure boron observed by neutron reflectometry and depth profiling  

SciTech Connect (OSTI)

Neutron reflectometry (NR) studies of thin films of amorphous {sup 11}B/{sup 10}B on silicon indicate that a non-standard form of Fickian diffusion occurs across the boron interface upon annealing. In order to verify this observation, the samples were examined by neutron depth profiling (NDP). Comparison of the results from models of a step function, standard Fickian diffusion and Fickian diffusion with a fixed composition at the interface were made and compared to the previous NR results. The diffusion constant resulting from the non-standard Fickian model for the NDP data differs slightly from that obtained from the commonly used Fickian diffusion model and is not inconsistent with the NR results. This finding suggests that more information regarding diffusion at interfaces can be gained from these higher resolution neutron scattering techniques.

Baker, S.M.; Wu, K. [Harvey Mudd Coll., Claremont, CA (United States). Dept. of Chemistry; Smith, G.S.; Hubbard, K.M.; Nastasi, M. [Los Alamos National Lab., NM (United States); Downing, R.G.; Lamaze, G.P. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1995-12-31T23:59:59.000Z

26

XPS on corrosion products of ZnCr coated steel: on the reliability of Ar+ ion depth profiling for multi component material analysis  

E-Print Network [OSTI]

X-ray photoelectron spectroscopy combined with Ar+ ion etching is a powerful concept to identify different chemical states of compounds in depth profiles, important for obtaining information underneath surfaces or at layer interfaces. The possibility of occurring sputter damage is known but insufficiently investigated for corrosion products of Zn-based steel coatings like ZnCr. Hence, in this work reference materials are studied according to stability against ion sputtering. Indeed some investigated compounds reveal a very unstable chemical nature. On the basis of these findings the reliability of depth profiles of real samples can be rated to avoid misinterpretations of observed chemical species.

Steinberger, Roland; Arndt, Martin; Stifter, David

2013-01-01T23:59:59.000Z

27

Winter"s End  

E-Print Network [OSTI]

Winter's End by Ellis Ward Cover by Caren Parnes "Winter's End" contains same-sex, adult-oriented material. It will not know ingly be sold to anyone under the age of eighteen. Age Statement Required. Available from: Kathleen Resch PO Box... Winter's End by Ellis Ward Cover by Caren Parnes "Winter's End" contains same-sex, adult-oriented material. It will not know ingly be sold to anyone under the age of eighteen. Age Statement Required. Available from: Kathleen Resch PO Box...

Ward, E.

2013-11-27T23:59:59.000Z

28

The Use of Silicon Structures with Rapid Doping Level Transitions to Explore the Limitations of SIMS Depth Profiling  

Science Journals Connector (OSTI)

Semiconductor devices continue to shrink, with an immediate prospect of spatial dimensions ?1µm laterally and SIMS depth resolution of ?lµm (2...

M. G. Dowsett; D. S. McPhail; R. A. A. Kubiak…

1986-01-01T23:59:59.000Z

29

Vector magnetization depth profile of a Laves-phase exchange-coupled superlattice obtained using a combined approach of micromagnetic simulation and neutron reflectometry  

Science Journals Connector (OSTI)

Owing to the coexistence of ferromagnetic and antiferromagnetic exchange coupling in an exchange-coupled Laves-phase superlattice composed of DyFe2 and YFe2 layers, the field dependence of the magnetization depth profile is complex. Using an approach that combines micromagnetic simulation and analysis of neutron scattering data, we have obtained the depth dependence of magnetization across the DyFe2?YFe2 interfaces. We find that the exchange interaction across the interface is reduced compared to the exchange interaction of the constituent layers, thereby compromising the ability of this system to resist magnetization reversal in large applied fields.

M. R. Fitzsimmons; S. Park; K. Dumesnil; C. Dufour; R. Pynn; J. A. Borchers; J. J. Rhyne; Ph. Mangin

2006-04-13T23:59:59.000Z

30

Vector magnetization depth profile of a Laves-phase exchange-coupled superlattice obtained using a combined approach of micromagnetic simulation and neutron reflectometry  

SciTech Connect (OSTI)

Owing to the coexistence of ferromagnetic and antiferromagnetic exchange coupling in an exchange-coupled Laves-phase superlattice composed of DyFe{sub 2} and YFe{sub 2} layers, the field dependence of the magnetization depth profile is complex. Using an approach that combines micromagnetic simulation and analysis of neutron scattering data, we have obtained the depth dependence of magnetization across the DyFe{sub 2}/YFe{sub 2} interfaces. We find that the exchange interaction across the interface is reduced compared to the exchange interaction of the constituent layers, thereby compromising the ability of this system to resist magnetization reversal in large applied fields.

Fitzsimmons, M. R.; Park, S.; Pynn, R.; Rhyne, J. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dumesnil, K. [Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Laboratoire de Physique des Materiaux, Universite H. Poincare Nancy I, Boite Postale 239, 54506 Vandoeuvre les Nancy Cedex (France); Dufour, C. [Laboratoire de Physique des Materiaux, Universite H. Poincare Nancy I, Boite Postale 239, 54506 Vandoeuvre les Nancy Cedex (France); Borchers, J. A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Mangin, Ph. [Laboratoire Leon Brillouin (UMR 12 CNRS/CEA) CEA-Saclay 91191 Gif sur Yvette (France)

2006-04-01T23:59:59.000Z

31

Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boundary-Layer Temperature Profiles by Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation Measurement (ARM) Program's Cloud and Radiation Testbed (CART) facilities. The first was conducted at the North Slope of Alaska (NSA) and Adjacent arctic Ocean (AAO) site near Barrow, Alaska, during March 1999. One goal was to evaluate the ability of an

32

Surface roughening during depth profiling by Secondary Ion Mass Spectrometry (SIMS) in GaAlAs and GaAs  

Science Journals Connector (OSTI)

During bombardment of Ga1?xAlxAs and GaAs with oxygen we found an abrupt transition to higher sputter rates, change of the useful yield and significant increase of surface roughness at a well defined depth, which...

M. Gericke; T. Lill; M. Trapp; C. -E. Richter…

33

2014 NCAI Executive Council Winter Session  

Office of Energy Efficiency and Renewable Energy (EERE)

The Executive Council Winter Session is a working conference where members convene for in-depth conversations about policy, legislation, and the future of Indian Country. 

34

Magnetic depth profile of a modulation doped La{sub 1-x}Ca{sub x}MnO{sub 3} exchange-biased system.  

SciTech Connect (OSTI)

Recent magnetometry measurements in modulation-doped La{sub 1-x}Ca{sub x}MnO{sub 3} suggested that a net magnetization extends from the ferromagnetic layers into the adjacent antiferromagnet layers. Here we test this hypothesis by polarized neutron reflectometry, which allows us to determine the depth resolved magnetization profile. From fits to the reflectivity data we find that the additional magnetization does not occur at the ferromagnetic/antiferromagnetic interfaces, but rather in a thin region of the first antiferromagnetic layer adjacent to the interface with the substrate.

Hoffmann, A.; May, S. J.; teVelthuis, S. G. E.; Park, S.; Fitzsimmons, M. R.; Campillo, G.; Gomez, M. E.; LANL; Pusan National Univ.; Universidad del Valle; Universidad Autonoma de Madrid

2009-01-01T23:59:59.000Z

35

Design, installation and implementation of a Neutron Depth Profiling facility at the Texas A&M Nuclear Science Center  

E-Print Network [OSTI]

to the charge state of the measured particle. The target and detector must be kept under a low vacuum (10 g tozz) for low- energy studies. Higher vacuum pressures (around 10 5 torz) are sufficient for high-energy and medium-energy studies. (Roughly, the low... profile was performed by using a FORTRAN program, called NDP . FOR (see Appendix for source code listing) . This program is currently specialized for the case of Boron-10 alpha particles traversing a silicon matrix. A Nuclear-Data Genie computer system...

Khalil, Nazir Sabbar

2012-06-07T23:59:59.000Z

36

Depth profile of oxide volume fractions of Zircaloy-2 in high-temperature steam: An in-situ synchrotron radiation study  

Science Journals Connector (OSTI)

Abstract To study the steam oxidation behavior of Zircaloy-2, a high-energy synchrotron X-ray diffraction technique was applied to perform an in-situ oxidation measurement. The depth profiles of oxide volume fractions were obtained at both 600 and 800 °C. Multiple layers, including ZrO2 scale, (? + ?) Zr matrix with ZrO2 incursions, and (? + ?) Zr matrix, were mapped according to the volume fraction of each phase. The volume fractions of these phases were observed to change gradually with different distances to the surface, without a sharp edge distinguishing each of the layers. The ZrO2 consisted of tetragonal and monoclinic crystal structures, which were observed to coexist with different ratios of volume fractions in depth. The higher amount of tetragonal ZrO2 observed in the very inner region of the oxidizing Zircaloy sample indicates that the tetragonal crystal structure is the ab initio phase type, in which new oxide molecules form at the metal–oxide interface.

Walid Mohamed; Di Yun; Kun Mo; Michael J. Pellin; Michael C. Billone; Jonathan Almer; Abdellatif M. Yacout

2014-01-01T23:59:59.000Z

37

Depth profiling of oxidized a-C:D Layers on Be -- A comparison of {sup 4}He RBS and {sup 28}Si ERD analysis  

SciTech Connect (OSTI)

In applications dealing with the deposition of amorphous hydrogenated carbon layers or in the determination of the composition of deposited layers on the walls of nuclear fusion plasma experiments, the analysis of mixtures of light elements on heavy substrates is necessary. Depth profiling by means of RBS is often difficult due to the overlap of the backscattering intensities of different constituents from different depths. The erosion and reaction of deposited amorphous deuterated carbon (a-C:D) films with a Be substrate due to annealing in air poses an analytical challenge especially if simultaneously the exchange of hydrogen isotopes should be monitored. The analysis of the different recoiling atoms from collisions with heavy ions in Elastic Recoil Detection (ERD) can provide a tool which resolves all constituents in a single analysis. In the present study the composition of intermixed layers on Be containing H, D, Be, C and O has been analyzed using conventional {sup 4}He RBS at 2.2 MeV together with 2.5 MeV {sup 4}He ERD for hydrogen isotope analysis. At these energies, an overlap of signals from different constituents could be avoided in most cases. As alternative method heavy ion ERD using Si{sup 7+} ions extracted from a 5 MeV Tandem Van de Graff accelerator was investigated. At a scattering angle of 30{degree} Si ions could not be scattered into the detector and a solid state detector without protecting foil could be used. Even in the intermixed layers at terminal energies of 5 MeV the heavy constituents could be separated while signals from recoiling hydrogen and deuterium atoms could be resolved on top of the signal from the Be substrate. For the analysis of the RBS and ERD data the newly developed spectra simulation program SIMNRA has been used which includes a large data bank for scattering and nuclear reaction cross sections. The depth profiles of all constituents extracted from the simulation are compared for both methods.

Roth, J.; Mayer, M. [EURATOM-Association, Garching (Germany). Max-Planck-Inst. fuer Plasmaphysik; Walsh, D.; Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-06-01T23:59:59.000Z

38

Winter Distillate  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Throughout the summer, gasoline prices have drawn most of the public's attention, but EIA has been concerned over winter heating fuels as well. q Distillate inventories are likely to begin the winter heating season at low levels, which increases the chances of price volatility such as that seen last winter. q Natural gas does not look much better. q Winter Distillate http://www.eia.doe.gov/pub/oil_gas/petroleum/presentati...00/winter_distillate_and_natural_gas_outlook/sld001.htm [8/10/2000 4:35:57 PM] Slide 2 of 25 Notes: Residential heating oil prices on the East Coast (PADD 1) were 39 cents per gallon higher this June than last year (120 v 81 cents per gallon). As many of you already know, the increase is due mainly to increased crude oil prices.

39

Martin Winter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Winter Winter Chair for Applied Materials Science for Electrochemical Energy Storage and Conversion (at WWU MĂĽnster) Leader, NRW-Competence Centre 'Battery Technology' Scientific Director of the MEET Battery Research CenterInstitute of Physical Chemistry (IPC) at WWU MĂĽnster martin.winter@uni-muenster.de This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. Prof. Winter's main research interests are in applied electrochemistry, materials electrochemistry and inorganic chemistry and technology. He has been active in the field of batteries and in particular lithium ion

40

Steven Winter Associates (Consortium for Advanced Residential Buildings) |  

Open Energy Info (EERE)

Winter Associates (Consortium for Advanced Residential Buildings) Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name Steven Winter Associates (Consortium for Advanced Residential Buildings) Place Norwalk, CT Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Steven Winter Associates (Consortium for Advanced Residential Buildings) is a company located in Norwalk, CT. References Retrieved from "http://en.openei.org/w/index.php?title=Steven_Winter_Associates_(Consortium_for_Advanced_Residential_Buildings)&oldid=379243" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

winter_97  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diesel" on page 2... Diesel" on page 2... See "News Bytes" on page 12... IN THIS ISSUE Coal-Fueled Diesel ..................... 1 Project News Bytes ..................... 1 Large-Scale CFB ........................ 2 Commercial Report ..................... 3 DOE/Industry Seminars .............. 4 NO x Commercial Successes ........ 5 Solid Fuels/Feedstock Program .. 7 International Initiatives ............... 9 International News Bytes .......... 11 Status Bar Chart ........................ 13 Status of Projects ...................... 14 1998 CCT Conference .............. 16 OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY • DOE/FE-0215P-27 ISSUE NO. 27, WINTER 1997 COAL-FUELED DIESEL DEMONSTRATION GIVEN GO-AHEAD FOR ALASKA In August, U.S. Department of Energy (DOE) gave final approval to Arthur D. Little to complete

42

Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings  

DOE Patents [OSTI]

A technique for determining properties such as Young`s modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined. 11 figs.

Finot, M.; Kesler, O.; Suresh, S.

1998-12-08T23:59:59.000Z

43

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF  

E-Print Network [OSTI]

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF I II ALG in structural engineering should take both; one will count as 4 credits of BSCE elective course work. PH 211-213 are interchangeable with PH 221-223 Math / Science Requirements CALCULUS PHYSICS Engineering / Computer Science

Latiolais, M. Paul

44

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF  

E-Print Network [OSTI]

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF I II ALG 5/1/2013AL Department of Civil and Environmental Engineering Civil Engineering Program pdx.edu/cee Possible 4 Year Course Plan SOPHOMORE INQUIRY Engineering / Computer Science Requirements General Education

Bertini, Robert L.

45

Winter Crude Oil and  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: While the relatively low stock forecast (although not as low as last winter) adds some extra pressure to prices, the price of crude oil could be the major factor affecting heating oil prices this winter. The current EIA forecast shows residential prices averaging $1.29 this winter, assuming no volatility. The average retail price is about 7 cents less than last winter, but last winter included the price spike in November 2000, December 2000, and January 2001. Underlying crude oil prices are currently expected to be at or below those seen last winter. WTI averaged over $30 per barrel last winter, and is currently forecast to average about $27.50 per barrel this winter. As those of you who watch the markets know, there is tremendous uncertainty in the amount of crude oil supply that will be available this winter. Less

46

Winter Course 2015 Perspectives in Community Health  

E-Print Network [OSTI]

to the medical care system, and the role of public health in "health care reform". Mode of grading: LetterWinter Course 2015 Perspectives in Community Health SSPPHH 110011 ­­ 33 UUnniittss,, CCRRNN MMeeddiicciinnee Public Health 101 is an in-depth introductory course for students interested in understanding

Leistikow, Bruce N.

47

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING PUBLIC APP TECH E E  

E-Print Network [OSTI]

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING PUBLIC APP TECH E E I ELECTIVE E - APPROVED MATH ELECTIVE SOPHOMORE INQUIRY LANG AND COMP DESIGN CS UD ELEC Engineering

Bertini, Robert L.

48

Winter and Holiday Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source: American Academy of Orthopedic Surgeons HOME HOME HOME HOME Do not drink and decorate. Inspect, properly set up, and position ladders. Use a step stool instead of furniture. Be mindful of rearranged furniture. Minimize clutter. LUGGAGE LUGGAGE LUGGAGE LUGGAGE Pack light. Use proper lifting techniques. Do not rush when lifting or carrying heavy suitcases or packages. Take care when placing luggage in overhead compartments. WINTER SPORTS WINTER SPORTS WINTER SPORTS WINTER SPORTS Warm up muscles. Wear appropriate protective gear. Know and abide by winter sports rules. Keep equipment in good working condition and use properly. If you or someone else experiences hypothermia, immediately seek shelter and medical attention.

49

CEE Winter Program Meeting  

Broader source: Energy.gov [DOE]

Consortium for Energy Efficiency (CEE) is hosting their Winter Program Meeting, a two-day conference held in Long Beach, California.

50

Winter Fuels Outlook  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

NCAC-USAEE October 24, 2014 | Washington, DC By Adam Sieminski, Administrator U.S. Energy Information Administration NCAC-USAEE Luncheon October 24, 2014 2 Winter Outlook...

51

Winter Weather Outlook  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to predict exactly how these climate factors will affect the nation's winter weather extremes. Forecasters are expecting large temperature and precipitation swings across the...

52

Are Cluster Ion Analysis Beams Good Choices for Hydrogen Depth...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cluster Ion Analysis Beams Good Choices for Hydrogen Depth Profiling Using Time-of-Flight Secondary Ion Mass Spectrometry? Are Cluster Ion Analysis Beams Good Choices for Hydrogen...

53

Wildlife's Winter Diet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wildlife's Winter Diet Wildlife's Winter Diet Nature Bulletin No. 659 December 9, 1961 Forest Preserve District of Cook County George W. Dunne, President Roland F, Eisenbeis, Supt. of Conservation WILDLIFE'S WINTER DIET Anyone who regularly feeds wild birds, and counts up the amount of food that they eat in the course of a winter, often wonders how they could get along without his help. In one day of freezing weather two or three dozen small birds commonly clean up a half pound of food -- suet, sunflower seed, cracked corn or small grain. This does not take into account raids by squirrels and rabbits. Winter in this region is a time of food crisis for all warm-blooded wildlife. Most of our summer song birds, especially the insect eaters, avoid cold by migrating to warm climates until spring. Likewise, most waterfowl and shorebirds go south during the months when our waters are locked in ice.

54

Winter Weather Uncertainty  

Gasoline and Diesel Fuel Update (EIA)

5 of 15 5 of 15 Notes: Heating Degree Days (HDDs): The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season, despite the cold spell in the Northeast spanning January/February. This was particularly true in November 1999, February and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal (less HDDs means warmer temperatures). Normal temperatures this coming winter would be expected to bring about 11% higher heating demand than we saw last year.

55

Winter Fuels Outlook  

Gasoline and Diesel Fuel Update (EIA)

New York Energy Forum October 23, 2014 | New York, NY By Adam Sieminski, Administrator U.S. Energy Information Administration New York Energy Forum October 23, 2014 2 Winter...

56

Trees in the winter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trees in the winter Trees in the winter Name: John H Hersey Age: N/A Location: N/A Country: N/A Date: N/A Question: Why do some trees in the winter lose their leaves and some are able to keep their leaves? Replies: John, You can view the leaves on a tree as its food manufacturing factory. For some trees, especially those which live in areas which become cold in the winter, the 'factories' do their work during the normal growing season and are forced to 'shut-down' over the winter months. There are many evergreens which hold their foliage all year, simply dropping some of them periodically as they age and become less efficient to be replaced by new needles. Larches in the area where I live are conifers which lose their needles, which is quite rare. You can see that foliage on a tree presents a problem: water loss from a tree is greatest in its foliage. A tree has to 'decide' (and this has occurred over millennia by evolution) whether to hold its foliage or shed it. If it decides to hold the foliage, then it must provide a means of insuring conservation of water, especially in the winter months when dry cold winds remove water which is not easily replace due to liquid water in the environment being frozen. Many plant's adaptation has been the production of a waxy cuticle to 'seal-off' the leaf from the environment and reduce water loss. You can understand that in the northern latitude's winters, sunlight duration and intensity drops, and for some plants the best solution has involved shedding the leaves for the winter, and growing a new set of 'factories' in the spring.

57

Winter Bur Clover.  

E-Print Network [OSTI]

TEXAS AGRICULTURAL EXPERIMENT STATION. - BULLETIN NO. 108 AUG., 1908 Winter Bur C BY W. C. WELBORN Vice Director and Agricult~xrist Post Office COLLEGE STATION, BRAZOS COUNTY, TEXAS. -41. 'LO TEXAS AGRICULTURAL EXPERIMENT STATIOF..., Texas. Reports-and bulletins are sent free upon applica t h Pi rector. WINTER BUR CLOVER BY W. C. WELBORN This plant is gradually taking the commons and roadsides at inanv places in Texas, growing on all grades of land from the poor sands...

Welborn, W. C. (Wayne C.)

1908-01-01T23:59:59.000Z

58

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute  

E-Print Network [OSTI]

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute National Research February ­ 1 March, 2014 Petersburg Nuclear Physics Institute (PNPI) conducts the XLVIII Annual Winter Physics · Theoretical Physics School · School on Nuclear Reactor Physics · Accelerator Physics School

Titov, Anatoly

59

Winter Safety Information & Tips  

Broader source: Energy.gov (indexed) [DOE]

7 7 1 WINTER TERMINOLOGY It' s important that you understand winter storm terms so that you can prepare adequately, whether you are walking to the store or driving across the state. * Winter Weather Advisory : Issued when snow, sleet, freezing rain, or combination of precipitation types is expected to cause a significant inconvenience but not serious enough to warrant a warning. * Snow Advisory: - 2-4 inches of snow in a 12 hour period * Freezing Rain Advisory: - Ice accumulations of less than 1/4 inch * Ice Storm Warning: - 1/4 inch or more of ice accumulation January 2007 2 WINTER TERMINOLOGY * Winter Storm Watch: Issued when there is the potential for significant and hazardous winter weather within 48 hours. It does not mean that significant and hazardous winter weather will occur...it only means it is possible. - Significant and hazardous winter weather is defined as: * Over 5

60

WINTER UNIVERSIADE CONFERENCE 2013  

E-Print Network [OSTI]

WINTER UNIVERSIADE CONFERENCE 2013 December 9-10 International Interdisciplinary Conference on) Rovereto (Trento), Italy 1st Announcement www.universiadetrentino.org #12;MAIN CONFERENCE THEME The main goal of the Trentino 2013 Conference is to work on the relationship between sport and innovation

Di Pillo, Gianni

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

James L. Winter- Biography  

Broader source: Energy.gov [DOE]

Jim Winter is the Integrated Safety Management (ISM) Program Lead for the NNSA Office of Environment, Safety and Health (NA-00-10) and has served in various capacities within NNSA and Defense Programs since 1991 regarding nuclear safety and environment, safety and health.

62

WINTER 2014 Sustainability and  

E-Print Network [OSTI]

WINTER 2014 Sustainability and Renewable Energy in Costa Rica January 4 - 14 Dr. James Hoffmann, Program Director Lecturer Sustainability Studies Program E-511 Melville Library Stony Brook, NY 11794 sustainability and renewable energy. Students will spend 11 days in Costa Rica to participate in site visits

Stephens, Graeme L.

63

Caterpillar in Winter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Caterpillar in Winter Caterpillar in Winter Name: Peggy Location: N/A Country: N/A Date: N/A Question: I live in northern New York on the shore of Lake Ontario. The temperature today is 20 degrees. Last night it was 10 below. I found a woolly bear caterpillar walking across the snow. My question is should I leave it there or bring it in for the rest of the winter? How do I take care of it if I bring it in? Why would it come out of hibernation on such a cold day? Thank you. Replies: Why would it be out? Who knows, but it was, and was moving, so I suggest (belatedly of course since this was several days ago) leaving it alone. Small creatures have many remarkable characteristics that allow them to survive, most have been around a lot longer than humans and will probably still be around long after we are gone, and all the help they need from us is to be left alone.

64

Interannual variability of the mixed layer winter convection and spice injection in the Eastern Subtropical North Atlantic  

Science Journals Connector (OSTI)

The Argo data set is used to study the winter upper ocean conditions in the North-Eastern Subtropical (NEA) Atlantic during 2006-2012. During the late winter 2010, the mixed layer depth is abnormally shallow and a negative anomaly of density-...

Nicolas Kolodziejczyk; Gilles Reverdin; Alban Lazar

65

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

66

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

67

winter_peak_2005.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2b . Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, 2005 and Projected 2006 through 2010 (Megawatts and 2005 Base Year)...

68

NCAI Executive Council Winter Session  

Broader source: Energy.gov [DOE]

National Congress of American Indians (NCAI) is hosting the 2015 Executive Council Winter Session in Washington, DC, Feb. 23-25, 2015.

69

A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation  

Science Journals Connector (OSTI)

A new hybrid method for finding the mixed layer depth (MLD) of individual ocean profiles models the general shape of each profile, searches for physical features in the profile, and calculates threshold and gradient MLDs to assemble a suite of ...

James Holte; Lynne Talley

2009-09-01T23:59:59.000Z

70

Variable depth core sampler  

DOE Patents [OSTI]

A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

Bourgeois, Peter M. (Hamburg, NY); Reger, Robert J. (Grand Island, NY)

1996-01-01T23:59:59.000Z

71

Variable depth core sampler  

DOE Patents [OSTI]

A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

Bourgeois, P.M.; Reger, R.J.

1996-02-20T23:59:59.000Z

72

Winter Fuels Market Assessment 2000  

Gasoline and Diesel Fuel Update (EIA)

September 13, 2000 September 13, 2000 Winter Fuels Market Assessment 2000 09/14/2000 Click here to start Table of Contents Winter Fuels Market Assessment 2000 West Texas Intermediate Crude Oil Prices Perspective on Real Monthly World Oil Prices, 1976 - 2000 U.S. Crude Oil Stocks Total OECD Oil Stocks Distillate and Spot Crude Oil Prices Distillate Stocks Expected to Remain Low Distillate Stocks Are Important Part of East Coast Winter Supply Consumer Winter Heating Oil Costs Natural Gas Prices: Well Above Recent Averages Annual Real Natural Gas Prices by Sector End-of-Month Working Gas in .Underground Storage Residential Prices Do Not Reflect the Volatility Seen in Wellhead Prices Consumer Natural Gas Heating Costs Winter Weather Uncertainty Author: John Cook Email: jcook@eia.doe.gov

73

ARM - Field Campaign - Arctic Winter Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsArctic Winter Water Vapor IOP govCampaignsArctic Winter Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Winter Water Vapor IOP 2004.03.09 - 2004.04.09 Lead Scientist : Ed Westwater Data Availability http://www.etl.noaa.gov/programs/2004/wviop/data will contain quicklooks of all of the data. For data sets, see below. Summary During the IOP, the Ground-based Scanning Radiometer of NOAA/ETL, and the ARM MicroWave Radiometer and Microwave Profiler, yielded excellent data over a range of conditions. In all, angular-scanned and calibrated radiometric data from 22.345 to 380 GHz were taken. The Precipitable Water Vapor varied about an order of magnitude from 1 to 10 mm, and surface temperatures varied from about -10 to -40 deg. Celcius. Vaisala RS90

74

Winter_letter.qxp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

O O F F I C E O F F O S S I L E N E R G Y T N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I C A E 2009 WINTER NEWS ORMAT UPDATE GEOTHERMAL ELECTRICAL GENERATION HOLDS PROMISE FOR OLDER OIL FIELDS Ormat's Organic Rankine Cycle generator has been running at full capacity since early September at NPR-3. I n October, Rocky Mountain Oilfield TestingCenter (RMOTC) and Ormat Inc. of Reno, Nevada, announced the first successful generation of electricity using geothermal hot water from a producing oil well. This project is unique in its production of on-site renewable power and has the potential to increase the productivity and longevity of existing U.S. oil fields. Harnessing hot water produced during oil production to power the oil field could lead to more economical access to reserves, espe- cially in older, depleted fields.

75

Winter fuels report  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

Not Available

1990-10-04T23:59:59.000Z

76

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

77

winter_peak_2003.xls  

Gasoline and Diesel Fuel Update (EIA)

and 2003 Base Year) Winter Noncoincident Peak Load Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN...

78

winter_peak_2004.xls  

U.S. Energy Information Administration (EIA) Indexed Site

and 2004 Base Year) Winter Noncoincident Peak Load Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN...

79

PHYSICS 122 LABORATORY (Winter, 2015)  

E-Print Network [OSTI]

lab book): 1. Philip R. Bevington and D. Keith Robinson, Data Reduction and Error Analysis For the Physical Sciences, 3rd edition, McGraw-Hill, 2003. [HIGHLY RECOMMENDED- 1 - PHYSICS 122 LABORATORY (Winter, 2015) COURSE GOALS 1. Learn how

Yoo, S. J. Ben

80

PHYSICS 122 LABORATORY (Winter, 2014)  

E-Print Network [OSTI]

Robinson, Data Reduction and Error Analysis For the Physical Sciences, 3rd edition, Mc Introduction. Lecture on Data, Random Errors and Analysis. Intr- 1 - PHYSICS 122 LABORATORY (Winter, 2014) COURSE GOALS 1. Learn how

Yoo, S. J. Ben

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Office of Indian Energy Newsletter: Winter 2012  

Broader source: Energy.gov [DOE]

Indian Energy Beat News on Actions to Accelerate Energy Development in Indian Country Winter 2012 Issue

82

Maine Geological Survey Borehole Temperature Profiles  

SciTech Connect (OSTI)

This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

Marvinney, Robert

2013-11-06T23:59:59.000Z

83

Northern Fur Seals (Callorhinus ursinus) of the Commander Islands: Summer Feeding Trips, Winter Migrations and Interactions with Killer Whales (Orcinus orca)  

E-Print Network [OSTI]

direction, dive depth) of animals from two nearby rookeries on Bering Island, 2) winter migration from Medny and Bering Islands relative to patterns of ocean productivity, and 3) the potential impact of killer whale predation on population dynamics. Data...

Belonovich, Olga Andreevna

2011-10-21T23:59:59.000Z

84

The Effect of Growth Regulators on the Winter Survival of Winter Wheat  

Science Journals Connector (OSTI)

Insufficient winter hardiness is the main factor limiting the expansion of winter wheat on the northern great plains. The winter wheat cultivars grown today are of similar cold hardiness as the Crimean cultiva...

L. V. Gusta; B. J. O’Connor; M. J. T. Reaney

1990-01-01T23:59:59.000Z

85

Depth profiling ambient noise in the deep ocean  

E-Print Network [OSTI]

yaw of the platform itself. All the data recorded by the systemyaw of the platform. These data are useful in the diagnosis and correction of undesirable system

Barclay, David Readshaw

2011-01-01T23:59:59.000Z

86

Depth profile of uncompensated spins in an exchange bias system  

E-Print Network [OSTI]

i.e. , polarized neutron reflectometry, only the projectionfrom specular neutron reflectometry is the projection of theundertook a polarized neutron reflectometry 28,29 study of

2005-01-01T23:59:59.000Z

87

SIMS depth profiling of deuterium labeled polymers in polymer multilayers  

E-Print Network [OSTI]

. Existing experimental techniques such as forward recoil spectrometry (FRES) and neutron reflectometry (NR such as neutron reflectome- try (NR), forward recoil spectrometry (FRES), and secondary ion mass spectrometry) has a much higher scattering length density for coherent scattering of neutrons than protium (H

88

Nuclear Winter: Scientists in the Political Arena  

Science Journals Connector (OSTI)

The nuclear winter phenomenon is used to illustrate the ... the Reagan administration was hostile to the strategic policy that the scientific discovery seemed to demand, the leading proponent of nuclear winter, ...

Lawrence Badash

2001-03-01T23:59:59.000Z

89

Winter Study Rebate Form 2012 Date______________________________ ID #________________________________  

E-Print Network [OSTI]

Winter Study Rebate Form 2012 Date______________________________ ID to receive your rebate? Credit term account______ EPH Dollars_______ WINTER STUDY REBATES ARE GIVEN 10 consecutive calendar days are entitled to a rebate Rebates will be calculated on a per day basis

Aalberts, Daniel P.

90

Winter Study Rebate Form 2013 Date______________________________ ID #________________________________  

E-Print Network [OSTI]

Winter Study Rebate Form 2013 Date______________________________ ID to receive your rebate? Credit term account______ EPH Dollars_______ WINTER STUDY REBATES ARE GIVEN 10 consecutive calendar days are entitled to a rebate Rebates will be calculated on a per day basis

Aalberts, Daniel P.

91

ANS 2006 WINTER MEETING & Nuclear Technology Expo  

E-Print Network [OSTI]

ANS 2006 WINTER MEETING & Nuclear Technology Expo "Ensuringthe (TOFE) 5th International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human Machine for their support of the 2006 ANS Winter Meeting & Nuclear Technology Expo; Embedded Topical Meeting: TOFE 2006

Krings, Axel W.

92

ASHRAE 2015 Winter Conference | Department of Energy  

Office of Environmental Management (EM)

ASHRAE 2015 Winter Conference ASHRAE 2015 Winter Conference January 24, 2015 9:00AM EST to January 28, 2015 5:00PM EST Chicago, Illinois Learn more....

93

Tree leaves in the winter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tree leaves in the winter Tree leaves in the winter Name: ethel Location: N/A Country: N/A Date: N/A Question: Why do leaves fall off of some trees in the winter? Replies: An interesting question, Ethel. Biologists generally try to explain behavior in terms of a response or adaptation to an environmental challenge. The challenge in this example is thought to be snowfall. The idea is that a massive accumulation of snow in a large tree canopy would lead to mechanical damage or breakage of tree limbs or the trunk. Most deciduous trees (those that lose leaves in fall) have broad flat leaves that catch snow quite well. The advantage of this type of leaf is that they also catch the sunlight well in the summer growing season, allowing efficient photosynthesis to support rapid summer growth. The leaves are not needed in the winter because cold temperatures inhibit the enzymes of photosynthesis and prevent significant growth. Another interesting question is how evergreen trees have adapted to similar environmental challenges using a different strategy. Ask me a about it if you are interested.

94

Winter 2010 EVENTS FOCUS: RUSSIA  

E-Print Network [OSTI]

Winter 2010 EVENTS FOCUS: RUSSIA Tue, Jan 12, 4-5:30 pm WCED/CREES/Ford School Lecture. "U.S.-Russia Relations: Status of the `Reset'." John Beyrle, U.S. Ambassador to Russia. Co-sponsors: International Policy and literature, Oberlin College. Wed, Feb 3, 12-1:30 pm CREES Brown Bag. "Nostalgia in Post-Socialist Russia

Eustice, Ryan

95

ADVANCED DECISION ANALYSIS Winter 2011  

E-Print Network [OSTI]

ADVANCED DECISION ANALYSIS PH 444 Winter 2011 Course Instructor: Gordon Hazen, Ph.D. Professor a factored cost-effectiveness model · Construct a stochastic tree transition diagram for a medical treatment problem. · Convert a stochastic tree diagram to a discrete-time Markov chain transition diagram

Chisholm, Rex L.

96

Winter Energy Savings from Lower Thermostat Settings  

Reports and Publications (EIA)

This discussion provides details on the effect of lowering thermostat settings during the winter heating months of 1997.

2000-01-01T23:59:59.000Z

97

Mapping Indigenous Depth of Place  

E-Print Network [OSTI]

AMERICAN INDIAN CULTURE AND RESEARCH JOURNAL 32:3 (2008) 107–126 107 Mapping Indigenous Depth of Place MARGARET WICKENS PEARCE AND RENEE PUALANI LOUIS INTRODUCTION Indigenous communities have successfully used Western geospatial technolo- gies (GT... of geog- raphy at Ohio University in Athens, Ohio. Renee Pualani Louis is Hawaiian and recently completed her doctorate in geography at the University of Hawai‘i at MaŻnoa, Honolulu, Hawai‘i. Published as M. Pearce and R. Louis. Mapping Indigenous depth...

Pearce, Margaret Wickens; Louis, Renee Pualani

2008-11-01T23:59:59.000Z

98

Uncertainty in Contaminant Concentration Fields Resulting from Atmospheric Boundary Layer Depth Uncertainty  

Science Journals Connector (OSTI)

The relationship between atmospheric boundary layer (ABL) depth uncertainty and uncertainty in atmospheric transport and dispersion (ATD) simulations is investigated by examining profiles of predicted concentrations of a contaminant. Because ...

Brian P. Reen; Kerrie J. Schmehl; George S. Young; Jared A. Lee; Sue Ellen Haupt; David R. Stauffer

2014-11-01T23:59:59.000Z

99

ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsMicroPulse LIDAR Cloud Optical Depth ProductsMicroPulse LIDAR Cloud Optical Depth (MPLCOD) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MicroPulse LIDAR Cloud Optical Depth (MPLCOD) 1999.05.01 - 2004.05.14 Site(s) SGP General Description The MPLCOD VAP retrieves the column cloud visible optical depth using LIDAR derived backscatter from the MPLNOR (Micro Pulse Lidar Normalized Backscatter) and radiosonde thermodynamic profiles. The optical depth retrieval is derived following Comstock et al. (2001), which retrieves visible optical depth and layer average backscatter-to-extinction ratio (k) at the lidar wavelength for each backscatter profile. Data Information Data Directory Contacts Principal Investigator Jennifer Comstock (509) 372-424

100

ARM - Measurement - Aerosol optical depth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ARM - Measurement - Cloud optical depth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

optical depth optical depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud optical depth Amount of light cloud droplets or ice particles prevent from passing through a column of atmosphere. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments GOES : Geostationary Operational Environmental Satellites Field Campaign Instruments EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters GOES : Geostationary Operational Environmental Satellites

102

PPMCSA Presentation on Winter Distillate Outlook  

Gasoline and Diesel Fuel Update (EIA)

PPMCSA Presentation on Winter Distillate Outlook PPMCSA Presentation on Winter Distillate Outlook 09/15/2000 Click here to start Table of Contents Winter Distillate Outlook Distillate Prices Increasing With Crude Oil Factors Driving Prices & Forecast First Factor Impacting Distillate Prices: Crude Oil Prices High Crude Prices Go With Low Inventories Second Price Component: Spread Impacted by Distillate Supply/Demand Balance Distillate Stocks are Low – Especially on the East Coast Distillate Stocks Are Important Part of East Coast Winter Supply Winter Demand Impacted by Weather Warm Winters Held Heating Oil Demand Down While Diesel Grew Distillate Demand Strong in December 1999 Dec 1999 & Jan 2000 Production Fell, But Rebounded with Price Higher Yields Can Be Achieved Unusual Net Imports May Only Be Available at a High Price

103

WINTER  

Gasoline and Diesel Fuel Update (EIA)

51,703 42,716 43,197 43,801 44,457 45,174 45,882 46,596 47,385 48,233 49,082 4a Demand Response used for Reserves - Spinning 0 0 0 0 0 0 0 0 0 0 0 4b Demand Response used for...

104

WINTER  

Gasoline and Diesel Fuel Update (EIA)

2-2a-2b-2c-2d 45042 40846 41411 42367 43080 43813 44928 45872 46837 47874 48984 4a Demand Response used for Reserves - Spinning 0 0 0 0 0 0 0 0 0 0 0 4b Demand Response used for...

105

WINTER  

Gasoline and Diesel Fuel Update (EIA)

- - - - 3 Net Internal Demand 2-2a-2b-2c-2d 41,489 46,093 46,901 47,963 4 Demand Response Used for Ancillary Services (Data entered in line 4 and lines 4a through 4d will...

106

FUPWG Winter 2014 Agenda and Presentations  

Office of Energy Efficiency and Renewable Energy (EERE)

Agenda and presentations from the Federal Utility Partnership Working Group's Winter 2014 meeting held January 14-15, 2014 in Golden, Colorado.

107

A framework for nonparametric profile monitoring  

Science Journals Connector (OSTI)

Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework ... Keywords: B-spline, Block bootstrap, Confidence band, Curve depth, Nonparametric profile monitoring

Shih-Chung Chuang; Ying-Chao Hung; Wen-Chi Tsai; Su-Fen Yang

2013-01-01T23:59:59.000Z

108

Alan Roback Policy Implications of Nuclear Winter  

E-Print Network [OSTI]

Alan Roback Policy Implications of Nuclear Winter and Ideas for Solutions The 5 May 1988 United of war or policy. Even a "first strike" or a "limited nuclear war" would be likely to result in nuclear Nations report clearly states that the nuclear winter theory is supported by current scientific evidence

Robock, Alan

109

Winter Term University of Oldenburg (Core Provider)  

E-Print Network [OSTI]

Evaluation Modul Winter Term Titel Wind Energy Wind Energy I Wind Tutorial Wind Energy Systems Wind Energy Conversion (Lab) Excursion/Wind/DEWI Modul Winter Term Titel Solar Energy PV Systems I Solar Thermal I Solar Tutorial PV Cell Characteristics (Lab) Solar

Habel, Annegret

110

MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES Submitted by  

E-Print Network [OSTI]

THESIS MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES Submitted by Jared Tucker Heath 2011 All Rights Reserved #12;ii ABSTRACT MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES Winter recreation, consisting of snowshoeing, skiing, snowboarding, and snowmobiling, has been increasing

MacDonald, Lee

111

Ultrasonic material hardness depth measurement  

DOE Patents [OSTI]

The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

Good, Morris S. (Richland, WA); Schuster, George J. (Kennewick, WA); Skorpik, James R. (Kennewick, WA)

1997-01-01T23:59:59.000Z

112

Winter Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Residential heating oil prices reflect a similar pattern to that shown in spot prices. However, like other retail petroleum prices, they tend to lag changes in wholesale prices in both directions, with the result that they don't rise as rapidly or as much, but they take longer to recede. This chart shows the residential heating oil prices collected under the State Heating Oil and Propane Program (SHOPP), which only runs during the heating season, from October through March. The spike in New York Harbor spot prices last winter carried through to residential prices throughout New England and the Central Atlantic states. Though the spike actually lasted only a few weeks, residential prices ended the heating season well above where they had started.

113

Anisotropic poststack depth migration, eastern Venezuela  

SciTech Connect (OSTI)

It is known that in areas with significant shale content, the isotropic assumption in depth migration is not correct, and this can lead to incorrect depth positioning if not properly accounted for. In this paper, we performed isotropic and anisotropic poststack depth migrations on a dataset from Eastern Venezuela to study the influence of anisotropy over the depth migration process. When interval velocities derived from surface seismic are compared with those velocities from check shots, significant differences are observed specially for depths associated with a thick sequence of shales identified in the area. These differences in interval velocities are used to obtain estimations of the anisotropic constants used in the anisotropic depth migration process. The anisotropic depth-migrated section allows to position correctly in depth known geological markers identified in well logs, while the results in the isotropic depth-migration show some mismatch with the depths obtained from well-log information.

Uzcategui, O.J.; Mujica, D.L.

1995-12-31T23:59:59.000Z

114

People Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

115

Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow  

E-Print Network [OSTI]

by insulating vegetation from winter wind and temperature extremes, modifying winter soil temperatures

Ickert-Bond, Steffi

116

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect (OSTI)

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

117

ARM - Field Campaign - Winter SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Send Campaign : Winter SCM IOP 1998.01.19 - 1998.02.08 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from...

118

Energetics of Winter Troughs Entering South America  

Science Journals Connector (OSTI)

The energetics and behavior of midtropospheric troughs over the Southern Hemisphere and their relationship with South America surface cyclogenesis were studied during the winters of 1999–2003. All surface cyclogenesis situations over Uruguay and ...

Everson Dal Piva; Manoel A. Gan; V. Brahmananda Rao

2010-04-01T23:59:59.000Z

119

NARUC Winter Committee Meetings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 18, 2015 3:00PM EST Washington, D.C. The National Association of Regulatory Utilities Commissioners (NARUC) Winter Committee Meetings offers its members and attendees the...

120

Winter 2002 1 The GroupLens Research Project  

E-Print Network [OSTI]

complex than keywords or topics: quality and taste Small Community: Manual Tapestry ­ database of content, information filtering Increasing commercial application available commercial tools Winter 2002 16 Amazon.com Winter 2002 17 Wine.com Seeking Winter 2002 18 Cdnow album advisor #12;Winter 2002 19 CDNow Album advisor

Minnesota, University of

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Scattering length density profile of Ni film under controlled corrosion: A study in neutron reflectometry  

Science Journals Connector (OSTI)

We report the density depth profile of an as-deposited Ni film and density profile for the same film after controlled electrochemical corrosion by chloride ions, measured by unpolarized neutron reflectometry. The...

Surendra Singh; A. K. Poswal; S. K. Ghosh; Saibal Basu

2008-11-01T23:59:59.000Z

122

New depths with mobile rig  

SciTech Connect (OSTI)

Magee-Poole Drilling Company, a drilling contractor operating out of the south Texas drilling center of Alice, claims it operates the largest mobile drilling rig in the world. That is, it's the only wheel mounted portable rig that drills to 16,000 feet with 4 1/2-inch drill pipe - at least 3000 feet deeper than the previous mobile drilling rig ratings. The unit is designated the Ingersoll-Rand 1500 Series. What's more significant, according to co-owner Don Magee, is that the rig's portability gets the rotary table turning to the right sooner; it drills more footage per year. It rigs up in 1 1/2 days versus 3 to 4 days for a conventional skid type rig normally used at these depths. The unit's compact arrangement, with more components combined into single loads, makes possible its higher mobility. A conventional skid rig might require 25 to 30 truckloads to move the rig components, mud system, fuel and water tank, houses for utilities, storage and crew change, generators, and drill pipe. The new rig moves in anywhere from four to nine loads less. Further, the rig components weigh less without sacrificing durability.

Not Available

1982-03-01T23:59:59.000Z

123

Mentee Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

124

Mentor Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

125

Annual Cycle and Depth Penetration of Wind-Generated Near-Inertial Internal Waves at Ocean Station Papa in the Northeast Pacific  

E-Print Network [OSTI]

and Ferrari 2004) and comparable to conversion of energy from the barotropic tide to internal tides (Egbert energy (KEin) dominates the record. At all measured depths, energy in downgoing motions exceeds that of upward-propagating motions by factors of 3­7, whereas KEin is elevated by a factor of 3­5 in winter

126

Bradbury Science Museum announces winter opening hours  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bradbury Science Museum winter hours Bradbury Science Museum winter hours Bradbury Science Museum announces winter opening hours Museum will be closed on Christmas Day (December 25) and New Year's Day (January 1, 2011). December 21, 2010 Bradbury Science Museum Bradbury Science Museum Contact Communications Office (505) 667-7000 Often called "a window to the Laboratory," the museum annually attracts thousands of visitors from all over the world. LOS ALAMOS, New Mexico, December 21, 2010-Los Alamos National Laboratory's Bradbury Science Museum will be closed on Christmas Day (December 25) and New Year's Day (January 1, 2011). On all other days, the museum will observe regular opening hours: from 10 a.m. to 5 p.m. Tuesdays to Saturdays, and from 1 to 5 p.m. Sundays and Mondays. Often called "a window to the Laboratory," the museum annually attracts

127

Propane Assessment for Winter 1995 - 1996  

Gasoline and Diesel Fuel Update (EIA)

Winter Fuels Report Winter Fuels Report Unless otherwise referenced, data in this article are taken from the following: Petroleum Supply Monthly, July 1995, DOE/EIA-0109 (95/09); Petroleum Supply Annual 1994, DOE/EIA-0340, Volumes 1 and 2 and predecessor reports; Petroleum Marketing Annual, July 1994, DOE/EIA-0487 (94); Winter Fuels Report, Week Ending October 6, 1995, DOE/EIA-0538 (95/96-1), and predecessor reports; and Short-Term Energy Outlook, DOE/EIA-0202 (95/3Q) and predecessor reports. All data through 1994 are considered final and are not subject to further revision. *Michael Burdette, an industry analyst on contract to the Energy Information Administration's Office of Oil and Gas, also contributed to this article. 1 Average level and width of average range based on 3 years of monthly data, January 1992 through December 1994. The significance of the

128

Identification of Solid-Stem Winter Wheat Lines with Enhanced Winter Hardiness Phil Bruckner, Winter Wheat Breeder  

E-Print Network [OSTI]

, then yield potential. Winter survival is evaluated at Williston in replicated single rows at the preliminary stem selections at Williston, ND followed by preliminary testing at Sidney, North Havre, and Bozeman-stem selections) and Preliminary Sawfly yield trial entries in single rows at Williston, ND to identify those

Maxwell, Bruce D.

129

Daily snow depth measurements from 195 stations in the United States  

SciTech Connect (OSTI)

This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

1997-02-01T23:59:59.000Z

130

Short-Term Energy and Winter Fuels Outlook October 2013  

Gasoline and Diesel Fuel Update (EIA)

and Winter Fuels Outlook October 2013 1 and Winter Fuels Outlook October 2013 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights ď‚· EIA projects average U.S. household expenditures for natural gas and propane will increase by 13% and 9%, respectively, this winter heating season (October 1 through March 31) compared with last winter. Projected U.S. household expenditures are 2% higher for electricity and 2% lower for heating oil this winter. Although EIA expects average expenditures for households that heat with natural gas will be significantly higher than last winter, spending for gas heat will still be lower than the previous 5-year average (see EIA Short-Term Energy and Winter Fuels Outlook slideshow). ď‚· Brent crude oil spot prices fell from a recent peak of $117 per barrel in early September to

131

Further Tests of Vegetable Varieties for the Winter Garden Region.  

E-Print Network [OSTI]

Watermelon 3 8 Summary of Promising Varieties 42 AcknowIedgments Literature Cited BULLETIN NO. 546 JULY , 1937 FURTHER TESTS OF VEGETABLE VARIETIES FOR THE WINTER GARDEN REGION By Leslie R. Hawthorn, Horticulturist, Substation No. 19, Winter Haven...

Hawthorn, L. R. (Leslie Rushton)

1937-01-01T23:59:59.000Z

132

Microsoft PowerPoint - 2012WinterFuels.pptx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

October 2012 Forecast fuel prices are close to last winter's averages 35% % change in fuel price 20% 25% 30% compared with last winter compared with 5-year average 5% 10% 15% %...

133

Fall/Winter CONCERNED ABOUT COLON CANCER?  

E-Print Network [OSTI]

TRADITIONS Fall/Winter 2005 #12;CONCERNED ABOUT COLON CANCER? PREVENTION IS POSSIBLE. Introducing the Colon C ancer Prevention Program at UConn Health C enter IT'S TRUE: C OLON CANCER MAY BE PREVENTED colon cancer prevention pl an sta rts w ith a phone call to the new Colon C an cer Prevention P r ogr am

Holsinger, Kent

134

PSY 607 Winter 2014 Grant Writing Seminar  

E-Print Network [OSTI]

1 PSY 607 Winter 2014 Grant Writing Seminar Syllabus and Assignments Instructor: Philip Fisher to bring a laptop computer, with internet access, to each class meeting. Contacting and Appointments individual appointments through e-mail. Textbook: "The Grant Application Writer's Workbook" (GAWW

Lockery, Shawn

135

12 Winter 2012 ShiningaLight  

E-Print Network [OSTI]

12 Winter 2012 ShiningaLight Food Poisoning on I N D E P T H Food-borne illnesses affect more than 12 million Canadians each year. Always unpleasant, sometimes fatal, bad food takes a huge toll in the Department of Food Science and Agricultural Chemistry have been exploring the molecular underpinnings of what

Barthelat, Francois

136

Gordon Research Conferences: Winter Program, 1968  

Science Journals Connector (OSTI)

...a single room and for rooms occupied more than the...submitted. The charge for room and meals for a guest...winter annual mtg., and Energy Conversion Exposition...adver-tising to: SCIENCE Room 1740 11 West 42 St...mathematical models, computer applica-tions, endocrinology...

W. George Parks

1967-11-24T23:59:59.000Z

137

Forest Lifeautumn | winter 2004 the forest!  

E-Print Network [OSTI]

Aberdeen Leeds Norwich Cardiff Southampton NEW FOREST POSTERN HILL FOREST OF DEAN THORPE WOODLANDForest Lifeautumn | winter 2004 F R E E Get fit in the forest! www.forestry.gov.uk #12;Inverness Birmingham Newcastle Glasgow Edinburgh Dundee Manchester Forest Life 2 From the tranquil setting of your own

138

CSI3131 Operating Systems Winter 2011  

E-Print Network [OSTI]

CSI3131 ­ Operating Systems Winter 2011 Tutorial 1 - Solution 1. What are three main purposes of an operating system? Hardware abstraction: To provide an environment for a computer user to execute programs of the operation and control of I/O devices. 2. Consider the various definitions of operating systems. Consider

Stojmenovic, Ivan

139

Office of Indian Energy Newsletter: Fall/Winter 2014  

Broader source: Energy.gov [DOE]

Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Fall/Winter 2014 Issue

140

Recommended Practice: Defense-in-Depth  

Broader source: Energy.gov (indexed) [DOE]

Report # INL/EXT-06-11478 Report # INL/EXT-06-11478 Control Systems Cyber Security: Defense in Depth Strategies May 2006 Prepared by Idaho National Laboratory Recommended Best Practice: Defense in Depth 2 Table of Contents Keywords............................................................................................................................. 3 Introduction......................................................................................................................... 3 Background ......................................................................................................................... 3 Overview of Contemporary Control System Architectures................................................. 4 Security Challenges in Control Systems .............................................................................

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Synchronized B and 13 C Diamond Delta Structures for an Ultimate In-Depth Chemical Characterization  

E-Print Network [OSTI]

of secondary ion mass spectrometry (SIMS) profiles in diamond was achieved by the determination of the depth resolution function (DRF). The measurement of this DRF was performed thanks to isotopic-enriched diamond. Applied to boron delta-doped diamond structures, this analysis has resolved edge widths close to 0.3 nm

Paris-Sud XI, Université de

142

London penetration depth and coherence length of SU(3) vacuum flux tubes  

E-Print Network [OSTI]

The transverse profile of the chromoelectric field generated by a quark-antiquark pair in the SU(3) vacuum is analysed within the dual superconductor scenario, then the London penetration depth and coherence length are extracted. The color field is determined on the lattice through a connected correlator of two Polyakov loops measured on smeared configurations.

Paolo Cea; Leonardo Cosmai; Francesca Cuteri; Alessandro Papa

2014-10-16T23:59:59.000Z

143

Continuous Seismic Reflexion Profiles in the Red Sea  

Science Journals Connector (OSTI)

...October 1970 research-article Continuous Seismic Reflexion Profiles in the Red Sea J. D. Phillips D. A. Ross Twenty continuous seismic reflexion profiles have been made across...in the deeper axial trough. A strong seismic reflector is observed at depths up to...

1970-01-01T23:59:59.000Z

144

Winter Precipitation Microphysics Characterized by Polarimetric Radar and Video Disdrometer  

E-Print Network [OSTI]

are dependent on the type of precipitation that reaches the surface. Winter storms such as freezing rain precipitation not having the mixed phase. There are also some studies that focus on various winter precipitation types. Trapp et al (2001) used a polarimetric radar to observe a winter storm event with snow and mixed-phase

Droegemeier, Kelvin K.

145

Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves  

SciTech Connect (OSTI)

We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

IceCube Collaboration; Klein, Spencer

2009-06-04T23:59:59.000Z

146

City of Winter Park Energy Conservation Rebate Program (Florida) |  

Broader source: Energy.gov (indexed) [DOE]

City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Solar Water Heating Program Info State Florida Program Type Local Rebate Program Rebate Amount Varies based upon technology and eligible sector The City of Winter Park is now offering rebates to Winter Park electric residential and commercial customers for implementing energy conservation measures. Residential customers can qualify for rebates on duct repair, attic

147

Fall and Winter Energy-Saving Tips | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fall and Winter Energy-Saving Tips Fall and Winter Energy-Saving Tips Fall and Winter Energy-Saving Tips October 21, 2013 - 8:44am Addthis Simple and inexpensive actions can help you save energy and money during the cool fall and winter months. | Photo courtesy of ©iStockphoto.com. Simple and inexpensive actions can help you save energy and money during the cool fall and winter months. | Photo courtesy of ©iStockphoto.com. This article will help you find strategies to help you save energy during the cool fall and cold winter months. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the winter. If you haven't already, conduct an energy assessment to find out where you

148

Fall and Winter Energy-Saving Tips | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fall and Winter Energy-Saving Tips Fall and Winter Energy-Saving Tips Fall and Winter Energy-Saving Tips October 21, 2013 - 8:44am Addthis Simple and inexpensive actions can help you save energy and money during the cool fall and winter months. | Photo courtesy of ©iStockphoto.com. Simple and inexpensive actions can help you save energy and money during the cool fall and winter months. | Photo courtesy of ©iStockphoto.com. This article will help you find strategies to help you save energy during the cool fall and cold winter months. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the winter. If you haven't already, conduct an energy assessment to find out where you

149

Cathode depth sensing in CZT detectors  

E-Print Network [OSTI]

Measuring the depth of interaction in thick Cadmium-Zinc-Telluride (CZT) detectors allows improved imaging and spectroscopy for hard X-ray imaging above 100 keV. The Energetic X-ray Imaging Survey Telescope (EXIST) will employ relatively thick (5 - 10 mm) CZT detectors, which are required to perform the broad energy-band sky survey. Interaction depth information is needed to correct events to the detector "focal plane" for correct imaging and can be used to improve the energy resolution of the detector at high energies by allowing event-based corrections for incomplete charge collection. Background rejection is also improved by allowing low energy events from the rear and sides of the detector to be rejected. We present experimental results of interaction depth sensing in a 5 mm thick pixellated Au-contact IMARAD CZT detector. The depth sensing was done by making simultaneous measurements of cathode and anode signals, where the interaction depth at a given energy is proportional to the ratio of cathode/anode signals. We demonstrate how a simple empirical formula describing the event distributions in the cathode/anode signal space can dramatically improve the energy resolution. We also estimate the energy and depth resolution of the detector as a function of the energy and the interaction depth. We also show a depth-sensing prototype system currently under development for EXIST in which cathode signals from 8, 16 or 32 crystals can be read-out by a small multi-channel ASIC board that is vertically edge-mounted on the cathode electrode along every second CZT crystal boundary. This allows CZT crystals to be tiled contiguously with minimum impact on throughput of incoming photons. The robust packaging is crucial in EXIST, which will employ very large area imaging CZT detector arrays.

J. Hong; E. C. Bellm; J. E. Grindlay; T. Narita

2003-10-16T23:59:59.000Z

150

Measuring Transpiration to Regulate Winter Irrigation Rates  

SciTech Connect (OSTI)

Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

Samuelson, Lisa [Auburn University] [Auburn University

2006-11-08T23:59:59.000Z

151

Dec. 13-Jan. 3 Winter Break  

E-Print Network [OSTI]

Dec. 13-Jan. 3 Winter Break Students must be out of residence halls by 10 a.m. on Dec. 13. Students may return to residence halls after 1 p.m. on Jan. 3. Jan. 8 Last day to drop a course without a fee Dance Company Grupo de Rua 8 p.m., Campbell Hall Arts & Lectures tickets may be purchased by calling

California at Santa Barbara, University of

152

Absolute Approximation of Tukey Depth: Theory and Experiments  

E-Print Network [OSTI]

Absolute Approximation of Tukey Depth: Theory and Experiments Dan Chen School of Computer Science¨ur Theoretische Informatik Abstract A Monte Carlo approximation algorithm for the Tukey depth problem in high. Keywords: Tukey depth, computational geometry 1. Introduction Tukey depth is also known as location depth

Morin, Pat

153

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

154

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

155

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

156

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

157

Both Distillate Supply and Demand Reached Extraordinary Levels This Winter  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: This chart shows some critical differences in distillate supply and demand during this winter heating season, in comparison to the past two winters. Typically, distillate demand peaks during the winter months, but "new supply" (refinery production and net imports) cannot increase as much, so the remaining supply needed is drawn from inventories. This pattern is evident in each of the past two winter heating seasons. This winter, however, the pattern was very different, for several reasons: With inventories entering the season at extremely low levels, a "typical" winter stockdraw would have been nearly impossible, particularly in the Northeast, the region most dependent on heating oil. Demand reached near-record levels in December, as colder-than-normal

158

Winter Infiltration Results from the FRTF Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Florida Florida Winter Infiltration Results from the FRTF Laboratory Building America Stakeholders Meeting Austin, TX March 1-2, 2012 Philip Fairey FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Project Objectives Under side-by-side, in situ controlled conditions: * Measure effectiveness of various energy retrofit improvements * Produce high-quality empirical data set useful for home energy simulation verification. FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida * Two identical side-by-side 1536 ft 2 , concrete block, slab-on-grade residences * Single pane fenestration, evenly distributed * No concrete block wall insulation

159

Some factors affecting the winter range of Jasper National Park.  

E-Print Network [OSTI]

??Recent studies by Dr. I. McT. Cowan in Jasper National Park have revealed that many of the winter game ranges of the Park are heavily… (more)

Pfeiffer, Egbert Wheeler

2012-01-01T23:59:59.000Z

160

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2003 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power Grid","Western Power Grid" ,"Projected Year...

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2004 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power Grid","Western Power Grid" ,"Projected Year...

162

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

January 23, 2008" ,"Next Update: October 2007" ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005...

163

FUPWG Winter 2014 Meeting Agenda, Report, and Presentations  

Office of Energy Efficiency and Renewable Energy (EERE)

Agenda and presentations from the Federal Utility Partnership Working Group's Winter 2014 meeting held January 14-15, 2014 in Golden, Colorado.

164

Quality Assurance Exchange Winter 2010 Volume 6 Issue 1  

Broader source: Energy.gov [DOE]

Quality Assurance Exchange Winter 2010 Volume 6 Issue 1 U.S. Department of Energy Office of Quality Assurance Policy and Assistance

165

Determining Nighttime Atmospheric Optical Depth Using Mars Exploration Rover Images  

E-Print Network [OSTI]

was compared to the expected flux to give nighttime optical depth values. The observed nighttime optical depth was consistently similar to the daytime optical depth values on both an individual image and sol-averaged basis. Recommendations are made going...

Bean, Keri Marie

2013-07-22T23:59:59.000Z

166

In-depth analysis of CIGS film for solar cells, structural and optical characterization  

E-Print Network [OSTI]

Space-resolved X-ray diffraction measurements performed on gradient-etched CuIn$_{1-x}$Ga$_x$Se$_2$ (CIGS) solar cells provide information about stress and texture depth profiles in the absorber layer. An important parameter for CIGS layer growth dynamics, the absorber thickness-dependent stress in the molybdenum back contact is analyzed. Texturing of grains and quality of the polycrystalline absorber layer are correlated with the intentional composition gradients (band gap grading). Band gap gradient is determined by space-resolved photoluminescence measurements and correlated with composition and strain profiles.

Slobodskyy, A; ~Ulyanenkova, T; ~Doyle, S; Powalla, M; ~Baumbach, T; ~Lemmer, U

2010-01-01T23:59:59.000Z

167

PublicationsmailagreementNo.40014024 maximum depth  

E-Print Network [OSTI]

and a video camera to complete installation of the world's first regional cabled ocean observatory. NEPTUNE- tion systems that--using power and the internet--provide continuous, long-term monitoring of oceanPublicationsmailagreementNo.40014024 THE 2.7km maximum depth beneath the ocean surface of neptune

Pedersen, Tom

168

Aspen Winter Conferences on High Energy  

SciTech Connect (OSTI)

The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, ?New Data From the Energy Frontier.? There were 54 formal talks, and a considerable number of informal discussions held during the week. The week?s events included a public lecture (?The Hunt for the Elusive Higgs Boson? given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics caf? geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was ?Indirect and Direct Detection of Dark Matter.? It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled ?What Makes Up Dark Matter.? There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics caf? to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

multiple speakers, presenters listed on link below

2011-02-12T23:59:59.000Z

169

User_TalentProfile  

Broader source: Energy.gov (indexed) [DOE]

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

170

Winter Is Coming. Get Busy Saving Energy! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Winter Is Coming. Get Busy Saving Energy! Winter Is Coming. Get Busy Saving Energy! Winter Is Coming. Get Busy Saving Energy! October 18, 2010 - 7:30am Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy It's been a long, hot summer in Washington, D.C., but we're finally starting to slide into autumn and cooler weather. You might have noticed that we've already changed our seasonal tips page over to "Stay Warm, Save Money," so now is a good time to look at your house and car and think about winter. For instance, in summertime, you want to reduce or eliminate the heat that comes from sunlight; in winter, you want to maximize that heat. Solar heat gain can reduce the amount of heat your furnace has to produce; open the curtains during the day and you can save yourself some bucks.

171

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

172

ARM - Field Campaign - Winter Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsWinter Single Column Model IOP govCampaignsWinter Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Winter Single Column Model IOP 1999.01.19 - 1999.02.08 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from the ARM Archive under IOPs/UAV. Cloud and Radiation Products Derived from Satellite Data Colorado State's Single Column Modeling Home Page For data sets, see below. Description A second winter SCM IOP was conducted (1/19 - 2/8/99) to provide additional sampling of winter weather conditions. This was the first SCM IOP where AERIs and ceilometers were installed at the boundary facilities to give retrievals of temperature and moisture to supplement the sounding data. A

173

Winter Fuels Outlook Conference Rescheduled for November 1 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Winter Fuels Outlook Conference Rescheduled for November 1 Winter Fuels Outlook Conference Rescheduled for November 1 Winter Fuels Outlook Conference Rescheduled for November 1 October 7, 2013 - 9:50am Addthis DOE's Office of Electricity Delivery and Energy Reliability, Energy Information Administration, and the National Association of State Energy Officials will host the 2013 - 2014 Winter Fuels Outlook Conference on November 1 at the National Press Club in Washington, DC. Originally scheduled for October 8, the conference has been rescheduled due to the shutdown of the Federal government. This supply and demand forecast event will address the effects of projected weather and market factors that may affect the supply, distribution and prices of petroleum, natural gas and electricity this winter. For more information and to register for the

174

Volume Scattering?Strength Profiles in the Northeast Pacific Ocean  

Science Journals Connector (OSTI)

A technique is described that permits the determination of the acoustic scattering strength of the ocean volume in terms of depth frequency and time. A pod of charges is lowered together with a hydrophone to various depths in the ocean and by observing the amount of scattered energy produced by detonating units of the explosive charge pod a profile of good resolution of the scattering strength versus depths obtained. The broad?band acoustic characteristics of the charges permit the spectral characteristics of the scattered returns to be determined. Observations made over an extended time period yield the time dependence of scattering. Measurements made in the northeast Pacific Ocean are given.

J. A. Scrimger; R. G. Turner

1969-01-01T23:59:59.000Z

175

Fast neutron background measurements at shallow depths  

SciTech Connect (OSTI)

We report on measurements of the neutron backgrounds for neutrino experiments at shallow depth (such as the proposed San Onofre neutrino oscillation experiment). A detector capable of pulse-shape discrimination measured the flux of fast neutrons at 20 mwe depth in the Stanford Underground Facility to be (1.07 {+-} 0.30) X 10{sup -6} cm{sup -2} s{sup -1}. An experiment, situated in the Tendon Gallery of the San Onofre Unit 2 reactor. studied spallation neutrons from muons traversing Pb and Cu. An underground experiment in the SUF, employing a detector filled with Gd-loaded liquid scintillator, is measuring the neutron production rate and multiplicity for muon spallation in low-A material (hydrocarbon-based liquid scintillator).

Chen, M.; Hertenberger, R.; Novikov, V. [Inst. of Nuclear Research, Moscow (Russian Federation); Dougherty, B.

1993-10-01T23:59:59.000Z

176

Property:Depth(m) | Open Energy Information  

Open Energy Info (EERE)

Depth(m) Depth(m) Jump to: navigation, search This is a property of type String. Pages using the property "Depth(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 0.9 + 10-ft Wave Flume Facility + 1.5 + 11-ft Wave Flume Facility + 1.8 + 2 2-ft Flume Facility + 1.8 + 3 3-ft Wave Flume Facility + 0.9 + 5 5-ft Wave Flume Facility + 1.5 + 6 6-ft Wave Flume Facility + 1.8 + A Alden Large Flume + 3.0 + Alden Small Flume + 1.8 + Alden Tow Tank + 1.2 + Alden Wave Basin + 1.2 + B Breakwater Research Facility + 0.8 + Bucknell Hydraulic Flume + 0.6 + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + 0.6 + Carderock 3-ft Variable Pressure Cavitation Water Tunnel + 0.7 + Carderock Circulating Water Channel + 2.7 +

177

Steven Winters Associates Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Steven Winters Associates Inc Address 307 7th Avenue Place New York, New York Zip 10001 Sector Buildings Product Research, design and consulting for high performance buildings Website http://www.swinter.com/ Coordinates 40.746817°, -73.993158° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.746817,"lon":-73.993158,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Last Winter's Price Spike Limited to Northeast  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: This chart shows the day-to-day volatility in spot crude and heating oil prices, and clearly shows the regional nature of the price spike that occurred last winter. Due to a combination of extreme cold weather, low inventories, and refinery and transportation problems, New York Harbor spot prices shot up as high as $1.77 per gallon in a brief period in late January and early February. In June of this year, distillate spreads had dropped to 2.5 cents per gallon as a result of crude oil prices increasing faster than product prices. But by August spreads had strengthened to about 15 cents, and were as high as 21 cents on average in November 2000, which is almost 15 cents above average -- reflecting continued low stocks and the lack of even a normal summer/autumn build in inventories.

179

Nuclear winter from gulf war discounted  

SciTech Connect (OSTI)

Would a major conflagration in Kuwait's oil fields trigger a climate catastrophe akin to the 'nuclear winter' that got so much attention in the 1980s This question prompted a variety of opinions. The British Meteorological Office and researchers at Lawrence Livermore National Laboratory concluded that the effect of smoke from major oil fires in Kuwait on global temperatures is likely to be small; however, the obscuration of sunlight might significantly reduce surface temperatures locally. Michael MacCracken, leader of the researchers at Livermore, predicts that the worst plausible oil fires in the Gulf would produce a cloud of pollution about as severe as that found on a bad day at the Los Angeles airport. The results of some mathematical modeling by the Livermore research group are reported.

Marshall, E.

1991-01-01T23:59:59.000Z

180

Motor gasolines, winter 1981-1982  

SciTech Connect (OSTI)

Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

Shelton, E M

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Motor gasolines, winter 1982-83  

SciTech Connect (OSTI)

Analytical data for 1330 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 28 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.5 for unleaded 90.0 and above, and 89.1 for leaded below 93.0, and no data was reported in this report for leaded gasolines with an antiknock index (R + M)/2 93.0 and above. 21 figures, 5 tables.

Shelton, E.M.

1983-07-01T23:59:59.000Z

182

Depth-Profiling and Diffusion Measurements in Ice Films Using Infrared Laser Resonant Desorption  

Science Journals Connector (OSTI)

The diffusion of several acids in ice including HCl,15-18 HNO3,16,18-20 and HF21,22 has also been studied using various techniques. ... The incident laser energy per volume required to convert H2O ice at 100 K to H2O vapor at 500 K can be calculated from the enthalpy of fusion (?Hfus) for H2O at 273 K, the enthalpy of vaporization (?Hvap) for H2O at 373 K, and the appropriate H2O heat capacities (Cp). ... The similarity between the results using the Er:YAG and Er:YSGG lasers in the Q-switched mode suggest that either laser can be used with equal effectiveness for corneal trephination. ...

Frank E. Livingston; Jamison A. Smith; Steven M. George

2000-10-10T23:59:59.000Z

183

Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers  

E-Print Network [OSTI]

Functional organic thin films often demand precise control over the nanometer-level structure. Interlayer diffusion of materials may destroy this precise structure; therefore, a better understanding of when interlayer ...

Rubner, Michael F.

184

Depth profiling studies of multilayer films with a C60 A.G. Sostarecza,*  

E-Print Network [OSTI]

0) at a C60 Ăľ beam energy of 20 keV. The neutral atom yield was monitored via laser postionization Materials Research Institute Building, University Park, PA 16802, USA b Physics Department, University

Wucher, Andreas

185

Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers  

Science Journals Connector (OSTI)

...andbMaterials Science and Engineering, Massachusetts Institute of Technology, Cambridge...light-emitting diode devices (14), solar cells (15), and on-demand...higher-efficiency dye-sensitized solar cells (15) or ordering of the internal...low-temperature dye-sensitized solar cells . J Mater Chem 22 ( 22...

Jonathan B. Gilbert; Michael F. Rubner; Robert E. Cohen

2013-01-01T23:59:59.000Z

186

Alkyl nitrate (C 1 -C 3 ) depth profiles in the tropical Pacific Ocean  

E-Print Network [OSTI]

Experiment (WOCE), vol. 2, Pacific Ocean DRAFT, edited by M.over the equatorial Pacific Ocean during SAGA 3, J. Geophys.the troposphere over the Pacific Ocean during PEM- Tropics A

Dahl, E. E; Yvon-Lewis, S. A; Saltzman, E. S

2007-01-01T23:59:59.000Z

187

Magnetic depth profiling of Fe/Au multilayer using neutron reflectometry  

Science Journals Connector (OSTI)

We present unpolarized and polarized neutron reflectometry data on Fe/Au multilayer sample for ... substrate by RF magnetron sputtering technique. Unpolarized neutron reflectivity measurement yields nuclear scatt...

Surendra Singh; Saibal Basu; M. Gupta

2008-11-01T23:59:59.000Z

188

Carbon-13 Labeled Polymers: An Alternative Tracer for Depth Profiling of Polymer Films and  

E-Print Network [OSTI]

and multilayers,1 including neutron (NR), X-ray, or resonant X-ray reflectometry,4,5 Rutherford backscattering,6

189

Secondary ion mass spectrometry depth profiling of amorphous polymer multilayers using O2  

E-Print Network [OSTI]

experimental techniques such as neutron or x-ray scattering reflectometry NR or XR ,9 scanning probe microscopy. In neutron scattering

190

Random Profiles of Laser Marks S. Saloomeh Shariati1  

E-Print Network [OSTI]

of the random profile of laser marks that are engraved on the surface or in the bulk of physical objects. Given is Radio Frequency Identification (RFID) Tag that contains digital identifier used to authenticate a credit card and serves as an identification tag. For a more in-depth view of PUF and its use

Nesterov, Yurii

191

Energy-Efficient Cooking for Winter | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cooking for Winter Cooking for Winter Energy-Efficient Cooking for Winter September 30, 2008 - 4:06pm Addthis Jen Carter What does this mean for me? Use your kitchen more efficiently when the seasons turn cold to help save energy and money at home. When I was growing up, the most poignant harbinger of winter wasn't the smell of fallen leaves or the slowly shortening days; it was the first time I came home from school to find a pot of my mother's homemade chicken soup simmering gently on the stove. That pot would be the first of many. As long as the thermometer outside the kitchen window hovered around freezing, my mother's weekly pot of soup remained a household staple. I've noticed much the same seasonal shift in my own kitchen. When summer's heat starts to make cooking oppressive, I turn off the oven and embrace the

192

EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho |  

Broader source: Energy.gov (indexed) [DOE]

EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho EA-1894: Albeni Falls Flexible Winter Lake Operations, Bonner, Idaho Summary DOE's Bonneville Power Administration and the U.S. Army Corps of Engineers, as co-lead Federal agencies, prepared this EA to evaluate the potential environmental impacts of a proposal to operate Albeni Falls dam during the winter months (approximately December 15th to March 31st) and determine whether the existing Columbia River System Operation Review EIS (DOE/EIS-0170) is adequate or a supplemental or new EIS is required. For more information about this project, see: http://efw.bpa.gov/environmental_services/Document_Library/AFD-FWPO/ http://efw.bpa.gov/environmental_services/Document_Library/System_Operation/ (Link

193

Solar and Daytime Infrared Irradiance during Winter Chinooks  

Science Journals Connector (OSTI)

Chinook winds bring unseasonably warm temperatures to southern Alberta in the winter. They also melt the snow and evaporate, the surface and near surface soil water. Hitherto, the warmth of the wind had almost exclusively been linked to the ...

Lawrence C. Nkemdirim

1990-03-01T23:59:59.000Z

194

Colorado Climate Winter 1999/2000 Vol. 1, No. 1  

E-Print Network [OSTI]

Colorado Climate Winter 1999/2000 Vol. 1, No. 1 Inside: What Is Climate? 1999 Water Year Review Climate on the Web Drought in Colorado #12;Colorado Climate Center Atmospheric Science Department Colorado ................................................................................................................................... 12 Drought in Colorado

195

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2009 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC",...

196

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2007 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC",...

197

Physics 112 Thermodynamics and Statistical Physics Winter 2000 COURSE OUTLINE  

E-Print Network [OSTI]

Physics 112 Thermodynamics and Statistical Physics Winter 2000 COURSE OUTLINE TOPIC READINGS 1 and probability theory can be found in Chapter 16 of Mathematical Methods in the Physical Sciences, by Mary L

California at Santa Cruz, University of

198

Life & Letters Volume 5, Issue 1 Winter 2006 SUICIDE TERRORISM  

E-Print Network [OSTI]

Life & Letters Volume 5, Issue 1 · Winter 2006 · SUICIDE TERRORISM · THE COST OF EMOTIONAL CONTROL Liberal Arts Career Services office, Dr. Ami Pedahzur's work on suicide terrorism, Dr. Joe Potter's work

Pillow, Jonathan

199

Investigation and Analysis of Winter Classroom Thermal Environment in Chongqing  

E-Print Network [OSTI]

the thermal sense value of the occupants, the winter classroom thermal environment was evaluated. Measures for improving the classroom indoor thermal environmental quality were also given. The lower limit air temperature of the non-air conditioned classrooms...

Liu, J.; Li, B.; Yao, R.

2006-01-01T23:59:59.000Z

200

Intro to Differential Equations MATH 2070 (Winter 2012)  

E-Print Network [OSTI]

Intro to Differential Equations MATH 2070 (Winter 2012) Solving Linear Systems -- Complex to . 3. Write Yc (t) = et Vc = e(+i)t Vc = et (cos (t) + i sin (t)) (Vre + iVim) where both Vre and Vim

Hagler, Jim

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lower oil prices also cutting winter heating oil and propane...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in...

202

Vegetable Varieties for the Winter Garden Region of Texas.  

E-Print Network [OSTI]

in successive plantings. While all of these plantings might not be successful commercially, because of the various market conditions, they would under normal weather conditions be successful in the home garden. Beets grown in the sandy soils of the Winter...

Hawthorn, L. R. (Leslie Rushton)

1935-01-01T23:59:59.000Z

203

Winter Break 2011 (January) Knowledge is Power Program  

E-Print Network [OSTI]

(Wellington, Colorado) Winter Break 2009 (January) ďż˝ La Union del Pueblo Entero (San Juan, TX) (10 participants) ďż˝ Community Collaborations, Flood Relief (Atlanta, GA) (10 participants) Weekend Breaks Fall 2009

204

Landscape Architecture Construction Winter, 2013 MWF 9-11:40  

E-Print Network [OSTI]

Landscape Architecture Construction Winter, 2013 NRE 688 MWF 9-11:40 3556 Dana Hall Site Planning. Timesaver Standards for Landscape Architects Hopper. Landscape Architectural Graphic Standards Landphair & Klatt. Landscape Architecture Construction. Thallon. Graphic Guide to Wood Frame Construction. Thallon

Awtar, Shorya

205

Winter feeding of channel catfish fingerlings in Texas  

E-Print Network [OSTI]

WINTER FEEDING OF CHANNEL CATFISH FINGERLINGS IN TEXAS A Thesis by SCOTT ARMSTRONG DAVIS Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degre'e of MASTER OF SCIENCE May 1983... Major Subject; Wildlife and Fisheries Sciences WINTER FEEDING OF CHANNEL CATFISH FINGERLINGS IN TEXAS A Thesis SCOTT ARMSTRONG DAVIS Approved as to style and content by: Robert Stickney (Chairman of Committee) Edwin Robinson (Member) 'allace...

Davis, Scott Armstrong

1983-01-01T23:59:59.000Z

206

Texas Crop Profile: Watermelon  

E-Print Network [OSTI]

but are generally not considered to be conditions worth treating in South Texas and the Winter Garden. Cultural Practices Varieties: Hybrids - Royal Jubilee, Royal Sweet, Prince Charles, Summer Flavor 500, Sangria, Royal Sweet, Big Stripe, Fiesta. Open pollinated... for aphid development. Scouting is an effective management tool; five aphids per leaf signals a damaging population. Beneficial insects such as lady beetles and lacewings can reduce aphid numbers and limit the number of required insecticide applications...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

207

Output-Sensitive Algorithms for Tukey Depth and Related Problems  

E-Print Network [OSTI]

Output-Sensitive Algorithms for Tukey Depth and Related Problems David Bremner University of New de Bruxelles Pat Morin Carleton University Abstract The Tukey depth (Tukey 1975) of a point p halfspace that contains p. Algorithms for computing the Tukey depth of a point in various dimensions

Morin, Pat

208

LANSCE | News & Media | Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Profiles Shea Mosby: Lighting the way for nuclear science discoveries By Diana Del Mauro ADEPS Communications Photos by Richard Robinson, IRM-CAS Shea Mosby Cradling a heavy...

209

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

210

Management's Discussion & Analysis Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7-26-2013. Management's Discussion & Analysis Profile The Bonneville Power Administration is a federal agency under the Department of Energy. BPA markets wholesale electrical power...

211

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

212

Depth dependence of ambient noise in the northeastern Pacific Ocean  

Science Journals Connector (OSTI)

Omnidirectional ambient noise levels were measured at two deep?water locations in the northeastern Pacific Ocean.Hydrophones were positioned throughout the water column at depths ranging from about 200 m below the surface to about 150 m above the sea bottom. Analyses of the data over the frequencies from 15 to 800 Hz show that at low frequencies the noise levels decrease with increasing depth. The decrease with depth is greater below the critical depth than it is in the sound channel. These low?frequency noise levels and their depth dependence are independent of the wind speed. At higher frequencies the noise levels and the depth dependence are controlled by the wind?generated noise. At low wind speeds there is a decrease in levels below the critical depth but above this depth both increases and decreases in levels with depth were noted. At these high frequencies during high wind speeds the noise levels not only rise but also fill the water column to the extent that there is little decrease in level with increasing depth even for the region below the critical depth.

Gerald B. Morris

1978-01-01T23:59:59.000Z

213

Implications of the UHECRs penetration depth measurements  

E-Print Network [OSTI]

The simple interpretation of PAO's UHECRs' penetration depth measurements suggests a transition at the energy range $1.1 - 35 \\cdot 10^{18} $ eV from protons to heavier nuclei. A detailed comparison of this data with air shower simulations reveals strong restrictions on the amount of light nuclei (protons and He) in the observed flux. We find a robust upper bound on the observed proton fraction of the UHECRs flux and we rule out a composition dominated by protons and He. Acceleration and propagation effects lead to an observed composition that is different from the one at the source. Using a simple toy model that take into account these effects, we show that the observations requires an extreme metallicity at the sources with metals to protons mass ratio of 1:1, a ratio that is larger by a factor of a hundred than the solar abundance. This composition imposes an almost impossible constraint on all current astrophysical models for UHECRs accelerators. This may provide a first hint towards new physics that emerges at $\\sim 100$ TeV and leads to a larger proton cross section at these energies.

Nimrod Shaham; Tsvi Piran

2012-04-06T23:59:59.000Z

214

Texas Crop Profile: Spinach  

E-Print Network [OSTI]

C H E-20 3-00 Prepared by Rodney L. Holloway, Kent D. Hall and Dudley T. Smith 1 In collaboration with Mark Black, Noel Troxclair, Frank Dainello and Allen Mize 2 1 Extension Specialist, Extension Associate and Experiment Station Associate Professor... no alternative controls for winter annual broadleaf weeds. Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843-2488 979-845-3849 rholloway@tamu.edu Kent D. Hall Extension Associate 2488 TAMU College Station, Texas 77843-2488 979...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

215

Are You Keeping Warm This Winter? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

216

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

Stocks are normally an important part of East Coast winter Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 thousand barrels per day in January and 280 in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak

217

Are You Keeping Warm This Winter? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving money. Last week, I turned on the weather forecast to find that the entire central United States was hovering somewhere between 5 and 20 degrees. Talk about frigid! I've lived all over the country, and I know how incredibly miserable it is to do anything when the high barely ekes above 0 degrees

218

ARM - Field Campaign - Winter 1994 Single Column Model IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsWinter 1994 Single Column Model IOP govCampaignsWinter 1994 Single Column Model IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Winter 1994 Single Column Model IOP 1994.01.01 - 1994.01.31 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Description These seasonal SCM IOPs are conducted at the Southern Great Plains to enhance the frequency of observations for SCM uses, particularly vertical soundings of temperature, water vapor, and winds. The SCM IOPs are conducted for a period of 21 days. During that time, radiosondes are launched at the Central Facility and the four boundary facilities eight

219

Walkin' in a Winter Wonderland | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Walkin' in a Winter Wonderland Walkin' in a Winter Wonderland Walkin' in a Winter Wonderland December 6, 2011 - 4:24pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy It's that time again. It's "X shopping days until Christmas," you're maybe a touch stressed from trying to get a lot of work done despite holiday parties and shopping trips, and, to top it off, it's cold out. If you're reading this, you're probably familiar with our Stay Warm Save Money seasonal campaign. We've been sending out energy saving tips for the changing season for years now; we hope you've been able (and willing) to take advantage of that information. If you have, that's great! If you haven't, well, when you take that shopping trip, it might be time to look for a few stocking stuffers:

220

Microsoft Word - DSQ Winter 2010_15mar10.doc  

National Nuclear Security Administration (NNSA)

Winter 2010 Winter 2010 Comments Questions or comments regarding the Defense Science Quarterly should be directed to Terri Batuyong, NA-121.1 (Terri.Batuyong@nnsa.doe.gov). Technical Editor: Christina Coulter Defense Science Quarterly Inside This Issue 1 Message from the Director 2 Recent Stockpile Stewardship Relevant Experiments on the National Ignition Facility 3 High-Resolution UV Holography Lens for Particle Size Distribution Measurements 4 2009 Dawson Award of Excellence 4 NSTec Livermore Operations Energy Milestone 5 H3837: DARHT's First Dual-Axis Shot 5 NLUF Experiment Published in Astrophysical Journal 6 Publication Highlights 7 2010 Stockpile Stewardship Academic Alliance Symposium 8 Stewardship Science Graduate Fellowship Program

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake  

Science Journals Connector (OSTI)

...profiles of temperature vs. depth at Camp Century, Greenland, coincide to better...radian and 5.5–10 m/yr for Camp Century (7) and ?0.004 radian and 12.8...depth in the bottom part of the Camp Century and Byrd Station glaciers allows...

P. Buford Price; Oleg V. Nagornov; Ryan Bay; Dmitry Chirkin; Yudong He; Predrag Miocinovic; Austin Richards; Kurt Woschnagg; Bruce Koci; Victor Zagorodnov

2002-01-01T23:59:59.000Z

222

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

223

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

224

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

225

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

226

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

227

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

228

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

229

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

230

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

231

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

232

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

233

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

234

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

235

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

236

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

237

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

238

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

239

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

240

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

242

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

243

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

244

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

245

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

246

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

247

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

248

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

249

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

250

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

251

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

252

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

253

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

254

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

255

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

256

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

257

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

258

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

259

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

260

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

262

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

263

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

264

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

265

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

266

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

267

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

268

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

269

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

270

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

271

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

272

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

273

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

274

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

275

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

276

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

277

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

278

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

279

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

280

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

282

profiles | OpenEI  

Open Energy Info (EERE)

profiles profiles Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

283

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

284

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

285

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

286

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

287

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

288

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

289

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

290

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

291

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

292

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

293

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

294

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

295

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

296

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

297

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,837 14...

298

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,587...

299

Profiling for Performance  

Science Journals Connector (OSTI)

Performance and profiling are critical words in our everyday conversations in the office where I work, in our engagements with clients, and in our teaching. Both words apply equally well to all aspec...

Ron Crisco

2011-01-01T23:59:59.000Z

300

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

302

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

303

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

304

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

305

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

306

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

307

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

308

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

309

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

310

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

311

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

312

Defense-in-Depth, How Department of Energy Implements Radiation...  

Office of Environmental Management (EM)

is implemented using a defense-in-depth approach taking into account the combination of natural and engineered barriers, performance objectives, long-term risk assessments,...

313

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation Meeting vss031rask2012o.pdf More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Advanced Technology Vehicle Lab...

314

Control Systems Cyber Security: Defense in Depth Strategies ...  

Broader source: Energy.gov (indexed) [DOE]

that use control system networks while maintaining a multi-tier information architecture. Control Systems Cyber Security: Defense in Depth Strategies More Documents &...

315

BOUDREAU, BERNARD P. Mean mixed depth of sediments: The ...  

Science Journals Connector (OSTI)

bioturbation. Bioturbation is the mixing of surficial sediments as a re- sult of the activity .... that the mixed depth is limited by the increasing energy costs of deeper

2000-10-17T23:59:59.000Z

316

Foraging ecology of wintering wading birds along the Gulf of Mexico coast  

E-Print Network [OSTI]

I studied flock composition, distribution and foraging ecology of wintering wading birds along the Gulf of Mexico coast. I focused on geographic variability in wintering wading bird assemblages, the processes that structured these assemblages...

Sherry, Dawn Ann

2007-04-25T23:59:59.000Z

317

Modulation of Dynamic Heating in the Winter Extratropics Associated with the Cross-Equatorial Hadley Circulation  

Science Journals Connector (OSTI)

The hypothesis that the cross-equatorial Hadley circulation can modulate the poleward heat transport in the winter extratropics is investigated using the Goddard Earth Observing System (GEOS-1) GCM for 10 northern winter initial conditions. Three-...

Arthur Y. Hou; Andrea Molod

1995-08-01T23:59:59.000Z

318

Regime-Dependent Nonstationary Relationship between the East Asian Winter Monsoon and North Pacific Oscillation  

Science Journals Connector (OSTI)

The East Asian winter monsoon (EAWM) and the North Pacific Oscillation (NPO) constitute two outstanding surface atmospheric circulation patterns affecting the winter sea surface temperature (SST) variability in the western North Pacific. The ...

Gyundo Pak; Young-Hyang Park; Frederic Vivier; Young-Oh Kwon; Kyung-Il Chang

2014-11-01T23:59:59.000Z

319

Echo Meadows Project Winter Artificial Recharge.  

SciTech Connect (OSTI)

This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further found that this water can be timed to return to the river during the desired time of the year (summer to early fall). This is because the river stage, which remains relatively high until this time, drops during the irrigation season-thereby releasing the stored groundwater and increasing river flows. A significant side benefit is that these enhanced groundwater return flows will be clean and cold, particularly as compared to the Umatilla River. We also believe that this same type of application of water could be done and the resulting stream flows could be realized in other watersheds throughout the Pacific Northwest. This means that it is critical to compare the results from this baseline report to the full implementation of the project in the next phase. As previously stated, this report only discusses the results of data gathered during the baseline phase of this project. We have attempted to make the data that has been gathered accessible with the enclosed databases and spreadsheets. We provide computer links in this report to the databases so that interested parties can fully evaluate the data that has been gathered. However, we cannot emphasize too strongly that the real value of this project is to implement the phases to come, compare the results of these future phases to this baseline and develop the science and strategies to successfully implement this concept to other rivers in the Pacific Northwest. The results from our verified and calibrated groundwater model matches the observed groundwater data and trends collected during the baseline phase. The modeling results indicate that the return flows may increase to their historic values with the addition of 1 acre-ft/acre of recharge water to the groundwater system (about 9,600 acre-feet total). What this means is that through continued recharge project, you can double to quadruple the annual baseflow of the Umatilla River during the low summer and fall flow periods as compared to the present base-flow. The cool and high quality recharge water is a significant beneficial impact to the river system.

Ziari, Fred

2002-12-19T23:59:59.000Z

320

29 National Statistics Population Trends 106 Winter 2001  

E-Print Network [OSTI]

provided by the Office for National Statistics on migra- tion of the employed by citizenship.They indicate29 National Statistics Population Trends 106 Winter 2001 International migration to and from the United Kingdom since 1975, with a particular focus on those in employment,and drew on many sources

Jones, Peter JS

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Physics 116A Winter 2011 The Alternating Series Test  

E-Print Network [OSTI]

Physics 116A Winter 2011 The Alternating Series Test An alternating series is defined to be a series of the form: S = n=0 (-1)n an , (1) where all the an > 0. The alternating series test is a set and/or property 2 do not hold, then the alternating series test is inconclusive. Note that property 1

California at Santa Cruz, University of

322

Physics 116A Winter 2011 The Alternating Series Test  

E-Print Network [OSTI]

Physics 116A Winter 2011 The Alternating Series Test An alternating series is defined to be a series of the form: S = # # n=0 (-1) n a n , (1) where all the a n > 0. The alternating series test but property 1 and/or property 2 do not hold, then the alternating series test is inconclusive. Note

California at Santa Cruz, University of

323

Fall and Winter Health Problems in Cow-Calf Herds  

E-Print Network [OSTI]

nutrition, sudden feeding changes and poor sanitation. Below are descriptions of common health problems in cow- calf herds during fall and winter, the causes of those problems and preventive measures. Acorn poisoning The howling winds of cold fronts... environmental sanitation. Nasty ground in haying and loafi ng area can lead to soil-borne diseases in cattle. ...

Faries Jr., Floron C.

2005-09-09T23:59:59.000Z

324

BAT RESEARCH NEWS Volume 37: Number 4 Winter 1996  

E-Print Network [OSTI]

, BAT RESEARCH NEWS Volume 37: Number 4 Winter 1996 Bat Collisions with Wind Turbines colliding with a lighthouse at LODg POlDL. OnWlo. Bat collisions with wind turbines used to produce e \\IIRA IS a 25·megawau faciluy and conSISts cf 73 KVS-33 wind turbines thaI were grouped InlO 10 Stnngs

325

Ecology of Wintering Black-capped Vireos in Mexico  

E-Print Network [OSTI]

. Winter habitat use by black-capped vireos was best predicted by increasing values of slope and foliage cover, and by decreasing values of canopy cover and tree diameter. Vireo use plots characterized as thorn forest had greater foliage density, greater...

Powell, Robert Andrew

2013-11-06T23:59:59.000Z

326

Physics 5B General Information Winter 2009 Instructor: Howard Haber  

E-Print Network [OSTI]

Physics 5B General Information Winter 2009 Instructor: Howard Haber O#ce: ISB, Room 326 Phone:30--8:00 pm Auditya Sharma Physics 5J Honors Section in ISB, Room 231: Thursdays 2:00--3:45 pm David Smith#n@ucsc.edu) at times to be announced in class and on the course website. REQUIRED TEXTBOOK: Physics for Scientists

California at Santa Cruz, University of

327

Physics 5B General Information Winter 2009 Instructor: Howard Haber  

E-Print Network [OSTI]

Physics 5B General Information Winter 2009 Instructor: Howard Haber Office: ISB, Room 326 Phone:30­8:00 pm Auditya Sharma Physics 5J Honors Section in ISB, Room 231: Thursdays 2:00­3:45 pm David Smith@ucsc.edu) at times to be announced in class and on the course website. REQUIRED TEXTBOOK: Physics for Scientists

California at Santa Cruz, University of

328

Memorial University of Newfoundland Physics 2820 Matlab Basics Winter 2005  

E-Print Network [OSTI]

1 Memorial University of Newfoundland Physics 2820 Matlab Basics Winter 2005 The analysis requires a mix of graphics and analysis, we have chosen Matlab a software package that is available different books and monographs. Readers already familiar with Matlab will be able to skim, or skip

deYoung, Brad

329

1714(1) Winter 2006 Yellowstone Science NY ECOSYSTEM  

E-Print Network [OSTI]

;Yellowstone Science 14(1) · Winter 200618 photosynthetic members supplying energy to others. However, while in any of these ecosystems. One of the most important of these exchanged materials is energy. When we walk around the GYE, the energy source for the richness of life we can see is appar- ent

330

Winter Car Kit Suggested items to keep in your car  

E-Print Network [OSTI]

/ pocket knife Necessary medications Several blankets Sleeping bags Extra newspapers for insulation Plastic challenges for even the most diligent of drivers. Snow and ice make driving more difficult and sometimes even are the biggest hazard of winter driving- caused by ice, slushy snow or rain. Roads are especially slick following

Myers, Lawrence C.

331

Winter Mortality in the Green Anole, Anolis carolinensis (Lacertilia: Polychridae)  

E-Print Network [OSTI]

green anoles (Anolis car- olinensis) within a Carolina bay located on International Paper Timber CompanyWinter Mortality in the Green Anole, Anolis carolinensis (Lacertilia: Polychridae) Jane K. Distler orcutti) in rock crevices in California. Green anoles (Anolis carolinensis) have been reported to seek

Dorcas, Michael E.

332

GAS EXPLORATION Winter 2006 GasTIPS 5  

E-Print Network [OSTI]

GAS EXPLORATION Winter 2006 · GasTIPS 5 T he prediction of reservoir parameters such as gas or oil, but is particularly challenging in the case of gas exploration. Current seismic imaging technol- ogy cannot accurately discriminate between economic and non-eco- nomic concentrations of gas. This is primarily because

Rubin, Yoram

333

CSI3131 Operating Systems Tutorial 1 Winter 2011  

E-Print Network [OSTI]

CSI3131 ­ Operating Systems Tutorial 1 ­ Winter 2011 1. What are three main purposes of an operating system? 2. Consider the various definitions of operating systems. Consider whether the operating activities of an operating system in regard to process management? 8. What are three major activities

Stojmenovic, Ivan

334

IMPROVED BOUSSINESQ-TYPE EQUATIONS FOR HIGHLY-VARIABLE DEPTH  

E-Print Network [OSTI]

IMPROVED BOUSSINESQ-TYPE EQUATIONS FOR HIGHLY-VARIABLE DEPTH JUAN CARLOS MU~NOZ GRAJALES AND ANDR´E NACHBIN Abstract. Intermediate depth, Boussinesq-type modeling is used to generalize previously known are extended from the analysis of KdV-type models to include the improved Boussinesq systems in contrast

Nachbin, André

335

Depth, and Motion inVision CMSC 436/636  

E-Print Network [OSTI]

, perceived depth related #12;Head Motion Parallax Bruce and Green 90, p. 231. Kinetic Depth Effect Bruce displacement) #12;Structure from Motion Bruce and Green 90, pg. 328. #12;Image Segmentation Discontinuities Representation techniques parameters #12;Experimental Findings Control necessary for development Held

Rheingans, Penny

336

Project of Aerosol Optical Depth Change in South America  

E-Print Network [OSTI]

AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Paraguay Uruguay #12;Statistics of Aerosol M ean D ec 01 to 06 Mean Month AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela

Frank, Thomas D.

337

SEU sensitive depth in a submicron SRAM technology  

SciTech Connect (OSTI)

This work determines experimentally and by simulation the SEU sensitive depth in a 0.6 {micro}m SRAM technology. A good correlation is obtained between the two studies in the case of heavy ions deposing energy close to the critical energy. Other simulation results complete the first investigation by studying the minimum sensitive depth for ions deposing higher energies (at greater LET).

Detcheverry, C.; Bruguier, G.; Palau, J.M.; Gasiot, J. [Univ. Montpellier II (France)] [Univ. Montpellier II (France); Ecoffet, R. [CNES, Toulouse (France)] [CNES, Toulouse (France); Duzellier, S. [DERTS, Toulouse (France)] [DERTS, Toulouse (France); Barak, J.; Lifshitz, Y. [Soreq NRC, Yahvne (Israel)] [Soreq NRC, Yahvne (Israel)

1998-06-01T23:59:59.000Z

338

On depth and deep points: a calculus Ivan Mizera  

E-Print Network [OSTI]

of Tukey's median) plays a fundamental role similar to that of linear functions in the mathematical (1929) and Chamberlin (1933). For multivariate location, the proposal of Tukey (1975) was developed halfspace or Tukey's depth; for other brands of depth in multivariate location see Liu, Parelius and Singh

Mizera, Ivan

339

Modeling boron profiles in silicon after pulsed excimer laser annealing  

SciTech Connect (OSTI)

In this work, we investigated four possible mechanisms which were candidates to explain the shape of boron profiles after ion implantation and melting excimer laser annealing in silicon. A laser with a wavelength of 308 nm and a pulse duration of {approx}180 ns was used. To simulate this process, an existing model for the temperature and phase evolution was complemented with equations for the migration of dopants. Outdiffusion, thermodiffusion, segregation, and adsorption were investigated as possible mechanisms. As a result, we found that outdiffusion and segregation can be excluded as major mechanisms. Thermodiffusion as well as adsorption could both reproduce the build-up at low melt depths, but only adsorption the one at deeper melt depths. In both cases, ion beam mixing during SIMS measurement had to be taken into account to reproduce the measured profiles.

Hackenberg, M.; Huet, K.; Negru, R.; Venturini, J.; Fisicaro, G.; La Magna, A.; Pichler, P. [Fraunhofer Institute for Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany); Excico, 13-21 Quai des Gresillons, 92230 Gennevilliers (France); CNR IMM, Z.I VIII Strada 5, 95121 Catania (Italy); Fraunhofer Institute for Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany) and Chair of Electron Devices, University of Erlangen-Nuernberg, Cauerstrasse 6, 91058 Erlangen (Germany)

2012-11-06T23:59:59.000Z

340

Can a Convective Cloud Feedback Help to Eliminate Winter Sea Ice at High CO2 Concentrations?  

E-Print Network [OSTI]

have remote effects on global climate as well. Accurate forecasting of winter sea ice has significantCan a Convective Cloud Feedback Help to Eliminate Winter Sea Ice at High CO2 Concentrations? DORIAN) ABSTRACT Winter sea ice dramatically cools the Arctic climate during the coldest months of the year and may

Tziperman, Eli

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation  

E-Print Network [OSTI]

associated with winter storm precipitation type, accumulation, and timing is a major forecasting, safetyA Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation ELIZABETH J The purpose of this study is to demonstrate the use of polarimetric observations in a radar-based winter

Collett Jr., Jeffrey L.

342

Winter Precipitation Microphysics Characterized by Polarimetric Radar and Video Disdrometer Observations in Central Oklahoma  

E-Print Network [OSTI]

the microphysics of winter storms with different types of precipitation. In general, warm rain events are studied. (2007) used polarimetric radar observations for winter precipitation not having the mixed phaseWinter Precipitation Microphysics Characterized by Polarimetric Radar and Video Disdrometer

Xue, Ming

343

A dual-polarization radar hydrometeor classification algorithm for winter precipitation1 Elizabeth J. Thompson*1  

E-Print Network [OSTI]

uncertainty associated with winter storm precipitation type, accumulation and36 timing is a paramount1 A dual-polarization radar hydrometeor classification algorithm for winter precipitation1 2 winter hydrometeor types (except sleet and freezing rain) based solely on polarimetric data, with29

Rutledge, Steven

344

Organic Chemistry 51B -Winter 2013 Organic Chemistry Peer Tutoring Program Chemistry 51B Reactions List  

E-Print Network [OSTI]

Organic Chemistry 51B - Winter 2013 Organic Chemistry Peer Tutoring Program Chemistry 51B Reactions(s). Chapter 7: Nucleophilic Substitution + + NaOH CH3O- #12;Organic Chemistry 51B - Winter 2013 Organic Chemistry Peer Tutoring Program Chapter 8: Elimination Reactions #12;Organic Chemistry 51B - Winter 2013

Rose, Michael R.

345

Floodwater Chemistry in the Yolo Bypass during Winter and Spring 1998  

E-Print Network [OSTI]

Floodwater Chemistry in the Yolo Bypass during Winter and Spring 1998 Open-File Report 2007­1025 U.S. Department of the Interior U.S. Geological Survey #12;Floodwater Chemistry in the Yolo Bypass during Winter-USGS Suggested citation: Schemel, L.E., Cox, M.H., 2007, Floodwater Chemistry in the Yolo Bypass during Winter

346

Standard 4-Year Course Plan for Computer Science & Engineering under Core 2009 Fall Winter Spring  

E-Print Network [OSTI]

Standard 4-Year Course Plan for Computer Science & Engineering under Core 2009 Fall Winter Spring Engineering Elective Computer Engineering Elective Computer Engineering Elective Fall Winter Spring University Programming COEN 12 ­ Data Structures Freshman ENGR 1 ­ Introduction to Engineering (1 unit) Fall Winter

Holliday, JoAnne

347

Changes in winter precipitation extremes for the western United States under a warmer climate as simulated  

E-Print Network [OSTI]

Changes in winter precipitation extremes for the western United States under a warmer climate find a consistent and statistically significant increase in the intensity of future extreme winter consistently show an increase in the intensity of extreme winter precipitation with the multi-model mean

Castro, Christopher L.

348

Property:AvgReservoirDepth | Open Energy Information  

Open Energy Info (EERE)

AvgReservoirDepth AvgReservoirDepth Jump to: navigation, search Property Name AvgReservoirDepth Property Type Quantity Description Average depth to reservoir Use this type to express a quantity of length. The default unit is the meter (m). Acceptable units (and their conversions) are: Meters - 1 m, meter, meters Meter, Meters, METER, METERS Kilometers - 0.001 km, kilometer, kilometers, Kilometer, Kilometers, KILOMETERS, KILOMETERS Miles - 0.000621371 mi, mile, miles, Mile, Miles, MILE, MILES Feet - 3.28084 ft, foot, feet, Foot, Feet, FOOT, FEET Yards - 1.09361 yd, yard, yards, Yard, Yards, YARD, YARDS Pages using the property "AvgReservoirDepth" Showing 24 pages using this property. A Amedee Geothermal Area + 213 m0.213 km 0.132 mi 698.819 ft 232.939 yd + B Beowawe Hot Springs Geothermal Area + 850 m0.85 km

349

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

Performance Profiles of Major Energy Producers 2009 Performance Profiles of Major Energy Producers 2009 vii Major Findings This edition of Performance Profiles reviews financial and operating data for the calendar year 2009 and discusses important trends and emerging issues relevant to U.S. energy company operations. Major U.S.-based oil and natural gas producers and petroleum refiners submit the data in this report annually on Form EIA-28, the Financial Reporting System (FRS). FRS companies' net income declined to the lowest level since 2002.  Net income fell 66 percent (in constant 2009 dollars) to $30 billion in 2009 from $88 billion in 2008. Substantial reductions in oil and natural gas prices in 2009 slowed revenue growth. FRS companies cut operating costs but by less than the decline in revenue, resulting in a 69-percent drop in operating income.

350

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State Nuclear Profiles 2010 State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | State Nuclear Profiles 2010 i Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

351

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

352

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

353

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

354

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

355

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

356

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

357

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

358

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

359

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

360

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

362

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

363

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

364

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

365

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

366

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

367

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

368

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

369

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

370

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

371

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

372

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

373

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

374

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

375

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

376

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

377

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

378

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

379

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

380

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

382

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

383

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

384

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

385

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

386

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

387

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

388

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

389

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

390

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

391

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

392

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

393

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 MB/D in January and 280 MB/D in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak months,

394

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 thousand barrels per day in January and 280 in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak

395

Blue Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

Creek Winter Range: Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment I F 8 - Spokane Tribe of Indians Bonneville POWER ADMINISTRATION B r n u r r o N aF THIS D O C ~ I H ~ E E 1% utifi_;'iUzi: w DOVEA-0939 November1 994 Bureay of Indian Affairs DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

396

Distillate Stocks Are Important Part of Northeast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

1 of 15 1 of 15 Notes: Why do stocks matter in the Northeast? Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 5 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666 MB/D of stocks, covering almost 36% of demand for that month. PADD 1 refineries meet about 25% of demand during January and February, and other PADDs -- mostly PADD 3 -- supply 45-50% of the regionÂ’s needs. Imports generally supply about as much as stocks during the peak months, with most of the product coming from Canada, the Virgin Islands and Venezuela. Percentages do not tell the whole story. Stocks supply close to 300

397

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Stocks are important in the Northeast because they are the nearest source of supply when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Stocks are normally an important part of East Coast winter distillate supply. Over the last 10 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666,000 barrels per day of stocks, covering almost 36% of demand for that month. On average, stocks supply the East Coast with about 260,000 barrels per day on average in January and 280,000 barrels per day in February. Those supplies represent draws of about 8 million barrels in one month.

398

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Why do stocks matter in the Northeast? They are the nearest source of supply when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 10 years, they provided about 15% of supply during the peak winter months of January and February. One of the biggest stock draws we have seen was in January 1994, when a prolonged severe cold spell required 666 MB/D of stocks, covering almost 36% of demand for that month. Stocks supply the East Coast with about 260 MB/D on average in January and 280 MB/D in February. Those supplies represent draws of about 8 million barrels in one month. PADD 1 refineries meet about 25% of demand during January and

399

Distillate Stocks Are Important Part of Northeast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

The weather alone was not enough to cause the price spike. The low The weather alone was not enough to cause the price spike. The low stocks left the area vulnerable to sudden changes in the market, such as the weather change. Why do stocks matter in the Northeast? Stocks are normally an important part of PADD 1 winter distillate supply. Over the last 5 years, PADD 1 stocks provided about 15% of supply during the peak winter months of January and February. They are the closest source of supply to the consumer. PADD 1 depends on about 60% of its supply from distant sources such as the Gulf Coast or imports, which can take several weeks to travel to the Northeast. Even product from East Coast refineries, if capacity is available, may take a week before it is produced and delivered to the regions needing new supply. Thus, stocks must be able

400

Sting jets in intense winter North-Atlantic windstorms  

Science Journals Connector (OSTI)

Extratropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact due to the strong surface winds and associated storm surges in coastal areas. Here we show that sting jets are a common feature of windstorms; up to a third of the 100 most intense North-Atlantic winter windstorms over the last two decades satisfy conditions for sting jets. The sting jet is a mesoscale descending airstream that can cause strong near-surface winds in the dry slot of the cyclone, a region not usually associated with strong winds. Despite their localized transient nature, these sting jets can cause significant damage, a prominent example being the storm that devastated southeast England on 16 October 1987. We present the first regional climatology of windstorms with sting jets. Previously analysed sting-jet cases appear to have been exceptional in their track over northwest Europe rather than in their strength.

Oscar Martínez-Alvarado; Suzanne L Gray; Jennifer L Catto; Peter A Clark

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An analysis of US propane markets, winter 1996-1997  

SciTech Connect (OSTI)

In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

NONE

1997-06-01T23:59:59.000Z

402

Distillate Stocks Are Important Part of East Coast Winter Supply  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Stocks are normally an important part of East Coast winter distillate supply, since they are the nearest source when anything unexpected occurs, and they supply a significant portion of demand during the peak heating season. Over the last 10 years, stocks have provided about 15% of supply during the peak winter months of January and February. On average, stocks supply the East Coast with about 260 thousand barrels per day in January and 280 in February. Those supplies represent draws of about 8 million barrels in one month. In addition, East Coast refineries meet about 25% of demand during January and February, and other regions -- mostly the Gulf Coast -- supply 40-50% of the region's needs. Imports generally supply about as much as stocks during the peak

403

Understanding Fault Characteristics And Sediment Depth For Geothermal  

Open Energy Info (EERE)

Understanding Fault Characteristics And Sediment Depth For Geothermal Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Southern Walker Lake Basin, situated in the Walker Lake structural domain, consists of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada showed elevated temperatures. Two recent drill holes reaching downhole depths of more than 4000 ft give some insight to the geologic picture, but more information

404

Extended depth secondary recovery: more coal for the 80's  

SciTech Connect (OSTI)

There are a variety of surface mining techniques presently in use which are physically or economically unable to recover all of the coal available. A new technique known as extended depth secondary recovery is presently available in the form of the Thin Seam Miner, which is able to recover 80-85% of this otherwise lost coal, to depths of 220 feet. Extended depth secondary recovery began with the auger, which has enjoyed moderate success, despite major drawbacks. Punch mining, longwall and shortwall technologies and the push-button miner all attempted to economically remine areas, with very little success. The Thin Seam Miner, on the other hand, not only recovers 80-85% of the coal in place to depths of 220 feet, but is environmentally sound, economically feasible, safe, and adapted to mine under all the seam conditions and grades of coal found in Appalachia.

Shearer, L.K.

1982-12-01T23:59:59.000Z

405

Method and apparatus to measure the depth of skin burns  

DOE Patents [OSTI]

A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

406

Understanding Fault Characteristics And Sediment Depth For Geothermal...  

Open Energy Info (EERE)

Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to...

407

Depth-resolved cathodoluminescence spectroscopy of silicon supersaturated with sulfur  

E-Print Network [OSTI]

We investigate the luminescence of Si supersaturated with S (Si:S) using depth-resolved cathodoluminescence spectroscopy and secondary ion mass spectroscopy as the S concentration is varied over 2 orders of magnitude ...

Fabbri, Filippo

408

Next Generation Nuclear Plant Defense-in-Depth Approach  

SciTech Connect (OSTI)

The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

Edward G. Wallace; Karl N. Fleming; Edward M. Burns

2009-12-01T23:59:59.000Z

409

Property:FirstWellDepth | Open Energy Information  

Open Energy Info (EERE)

FirstWellDepth FirstWellDepth Jump to: navigation, search Property Name FirstWellDepth Property Type Quantity Use this type to express a quantity of length. The default unit is the meter (m). Acceptable units (and their conversions) are: Meters - 1 m, meter, meters Meter, Meters, METER, METERS Kilometers - 0.001 km, kilometer, kilometers, Kilometer, Kilometers, KILOMETERS, KILOMETERS Miles - 0.000621371 mi, mile, miles, Mile, Miles, MILE, MILES Feet - 3.28084 ft, foot, feet, Foot, Feet, FOOT, FEET Yards - 1.09361 yd, yard, yards, Yard, Yards, YARD, YARDS Pages using the property "FirstWellDepth" Showing 5 pages using this property. B Blue Mountain Geothermal Area + 672 m0.672 km 0.418 mi 2,204.724 ft 734.906 yd + K Kilauea East Rift Geothermal Area + 1,968 m1.968 km

410

Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

United States. Bonneville Power Administration.

1995-01-01T23:59:59.000Z

411

Managing Winter Annual Grasses in South & Southwest Texas  

E-Print Network [OSTI]

+ Late spring 1 Poor Poor Good Poor Fair Winter hardiness Poor Fair Good Excellent Good Disease tolerance Poor Fair Excellent Good Fair Grazing quality Excellent Excellent Excellent Excellent Excellent Hay quality Good Good Excellent Good Good Planting... are available for purchase and are suitable for southwest Texas. Al- though many ryegrass cultivars perform similarly, gulf ryegrass is best adapted to wet, humid condi- tions. TAM 90 (developed by Texas A&M Univer- sity), is more disease tolerant in humid...

Stichler, Charles; Livingston, Stephen

1999-01-19T23:59:59.000Z

412

Prediction of sinkage depth of footings on soft marine sediments  

E-Print Network [OSTI]

instability on the side walls of the cavity. Footing size and sinkage depth of prototype footings are expected to have a significant effect on side- wall instability. (6) Tests in a geotechnical centrifuge are recommended as one means of studying gravity... instability on the side walls of the cavity. Footing size and sinkage depth of prototype footings are expected to have a significant effect on side- wall instability. (6) Tests in a geotechnical centrifuge are recommended as one means of studying gravity...

Yen, Shihchieh

2012-06-07T23:59:59.000Z

413

Case depth verification of hardened samples with Barkhausen noise sweeps  

SciTech Connect (OSTI)

An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

Santa-aho, Suvi; Vippola, Minnamari; Lepistö, Toivo [Tampere University of Technology, Department of Materials Science, P.O. Box 589, 33101 Tampere (Finland); Hakanen, Merja [Stresstech Oy, Tikkutehtaantie 1, 40800 Vaajakoski (Finland); Sorsa, Aki; Leiviskä, Kauko [University of Oulu, Control Engineering Laboratory, P.O. Box 4300, FIN-90014 University of Oulu (Finland)

2014-02-18T23:59:59.000Z

414

Be a Safe and Efficient Winter Driver | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Be a Safe and Efficient Winter Driver Be a Safe and Efficient Winter Driver Be a Safe and Efficient Winter Driver January 13, 2009 - 8:29am Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy As I write this post, the Midwest and northern states are in the grip of a deep freeze. Temperatures are extremely low, and when wind chill is added in, it's barely possible to set foot outside. But if you are like me, you still need to get to work. For most of the country, that means driving-at least a little, if not an hour-plus commute each way. So why not make your vehicle efficient? We've been advising you on ways to make the home more energy smart, so let's talk about your car for a moment. One of the best ways to be energy smart with your car is also one of the wisest: drive sensibly. Aggressive driving wastes gas. Jackrabbit starts,

415

Be a Safe and Efficient Winter Driver | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Be a Safe and Efficient Winter Driver Be a Safe and Efficient Winter Driver Be a Safe and Efficient Winter Driver January 13, 2009 - 8:29am Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy As I write this post, the Midwest and northern states are in the grip of a deep freeze. Temperatures are extremely low, and when wind chill is added in, it's barely possible to set foot outside. But if you are like me, you still need to get to work. For most of the country, that means driving-at least a little, if not an hour-plus commute each way. So why not make your vehicle efficient? We've been advising you on ways to make the home more energy smart, so let's talk about your car for a moment. One of the best ways to be energy smart with your car is also one of the wisest: drive sensibly. Aggressive driving wastes gas. Jackrabbit starts,

416

Be a Safe and Efficient Winter Driver | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Be a Safe and Efficient Winter Driver Be a Safe and Efficient Winter Driver Be a Safe and Efficient Winter Driver January 13, 2009 - 8:29am Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy As I write this post, the Midwest and northern states are in the grip of a deep freeze. Temperatures are extremely low, and when wind chill is added in, it's barely possible to set foot outside. But if you are like me, you still need to get to work. For most of the country, that means driving-at least a little, if not an hour-plus commute each way. So why not make your vehicle efficient? We've been advising you on ways to make the home more energy smart, so let's talk about your car for a moment. One of the best ways to be energy smart with your car is also one of the wisest: drive sensibly. Aggressive driving wastes gas. Jackrabbit starts,

417

Dose profiles through the dermis for on and off-skin hot particle exposures  

E-Print Network [OSTI]

reports measurements of depth-dose profiles for on- and off-skin hot particle exposures using radiochromic dye film. Dose profiles from both a "Co hot particle, and activated depleted uranium oxide microspheres were measured with the film. Exposures.... The thickness of the hot particle was approximately 250 ym. The other type of hot particle used in this project was fabricated at the Nuclear Science Center INSC) at Texas AIIrM University. For these sources, depleted uranium oxide microspheres were activated...

Shaw, Kimberly Rochelle

2012-06-07T23:59:59.000Z

418

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

419

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

06) 06) Distribution Category UC-950 Performance Profiles of Major Energy Producers 2006 December 2007 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Performance Profiles of Major Energy Producers 2006 is prepared by the Energy Information Administration, Office of Energy Markets and End Use, Energy Markets and Contingency Information Division, Financial

420

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemical profiles of switchgrass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

422

Temperature profile detector  

DOE Patents [OSTI]

Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

Tokarz, R.D.

1983-10-11T23:59:59.000Z

423

Profile of George M. Church  

Science Journals Connector (OSTI)

...US Department of Energy in the winter of 1984...estimate mutation rates in populations exposed...production of alternative fuel. In October 2011...water into renewable fuel. “Both companies...New Mexico, and Florida. Alkanes, unlike...diesel for cars, jet fuel, etcetera...

Prashant Nair

2012-01-01T23:59:59.000Z

424

Cone Depth and the Center Vertex Theorem Gary L. Miller Todd Phillips Don Sheehy  

E-Print Network [OSTI]

Abstract We generalize the Tukey depth to use cones instead of halfspaces. We prove a generalization of the most enduring definitions of data depth is the Tukey depth, also known as the half-space depth. The Tukey depth of a point p relative to a point set S is defined as the minimum number of points on one

Miller, Gary L.

425

Stay Warm and Save Money This Winter with Tips from the Energy Department |  

Broader source: Energy.gov (indexed) [DOE]

Stay Warm and Save Money This Winter with Tips from the Energy Stay Warm and Save Money This Winter with Tips from the Energy Department Stay Warm and Save Money This Winter with Tips from the Energy Department December 19, 2011 - 1:24pm Addthis Department of Energy headquarters during the winter months. | DOE file photo. Department of Energy headquarters during the winter months. | DOE file photo. What does this mean for me? Help your family save money by saving energy with these tips this winter. Click "start now" on Benefits.gov to find out if you're eligible for government assistance, including energy-related costs. Editor's note: This article was originally posted on Benefits.gov. As the days get shorter and temperatures get cooler, those energy bills seem to just keep going up. The average American spends around $2,000 per household on energy costs

426

DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013  

Broader source: Energy.gov (indexed) [DOE]

DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013 DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013 September 26, 2013 - 11:12am Addthis DOE's Office of Electricity Delivery and Energy Reliability, Energy Information Administration, and the National Association of State Energy Officials will host the 2013 - 2014 Winter Fuels Outlook Conference on October 8 at the National Press Club in Washington, DC. This supply and demand forecast event will address the effects of projected weather and market factors that may affect the supply, distribution and prices of petroleum, natural gas and electricity this winter. For more information and to register for the event, visit the 2013 Winter Fuels Outlook Conference website.

427

Registration Open for Winter Fuels Outlook Conference on October 12, 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Registration Open for Winter Fuels Outlook Conference on October Registration Open for Winter Fuels Outlook Conference on October 12, 2011 Registration Open for Winter Fuels Outlook Conference on October 12, 2011 September 19, 2011 - 4:55pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, U.S. Energy Information Administration (EIA), and the National Association of State Energy Officials invite you to participate in the 2011 - 2012 Winter Fuels Outlook Conference. This important supply and demand forecast event will be held on Wednesday, October 12, 2011, from 7:30 a.m. - 3:30 p.m. at The Newseum, 555 Pennsylvania Avenue, N.W., Washington, DC 20001. Event Information Winter Fuels Conference Site Preliminary Agenda Online Registration Addthis Related Articles Registration Open for Winter Fuels Outlook Conference on October 10, 2012

428

Stay Warm and Save Money This Winter with Tips from the Energy Department |  

Broader source: Energy.gov (indexed) [DOE]

Stay Warm and Save Money This Winter with Tips from the Energy Stay Warm and Save Money This Winter with Tips from the Energy Department Stay Warm and Save Money This Winter with Tips from the Energy Department December 19, 2011 - 1:24pm Addthis Department of Energy headquarters during the winter months. | DOE file photo. Department of Energy headquarters during the winter months. | DOE file photo. What does this mean for me? Help your family save money by saving energy with these tips this winter. Click "start now" on Benefits.gov to find out if you're eligible for government assistance, including energy-related costs. Editor's note: This article was originally posted on Benefits.gov. As the days get shorter and temperatures get cooler, those energy bills seem to just keep going up. The average American spends around $2,000 per household on energy costs

429

Project Cost Profile Spreadsheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template (Combined...

430

Using tube rhizotrons to measure variation in depth penetration rate among modern North-European winter wheat (Triticum aestivum L.) cultivars  

Science Journals Connector (OSTI)

Deeper plant root systems are desired for improved water and nitrogen uptake in leaching environments. However, phenotyping for deep roots requires methods that enable plants to develop deep roots under realistic...

N. K. Ytting; S. B. Andersen; K. Thorup-Kristensen

2014-09-01T23:59:59.000Z

431

Texas Crop Profile: Potatoes  

E-Print Network [OSTI]

175 pounds of nitrogen, 80 pounds of phosphorus, and 80 pounds of potassium. Potassium is generally not needed in the High Plains, although many growers apply it. Texas Crop Profile P O T A T O E S E-19 3-00 Prepared by Kent D. Hall, Rodney L. Holloway..., following drag-off or after potato plants have fully emerged. Controls weeds by disrupting growth process during germination. Does not control established weeds. State Contacts Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

432

ARM - Evaluation Product - Aerosol Optical Depths from SASHE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsAerosol Optical Depths from SASHE ProductsAerosol Optical Depths from SASHE Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Aerosol Optical Depths from SASHE Site(s) PVC SGP General Description The Shortwave Array Spectroradiometer Hemispheric (SASHE) is a ground-based instrument that measures both direct and diffuse shortwave irradiance. In this regard, the instrument is similar to the multifilter rotating shadowband radiometer (MFRSR)-an instrument that has been in the ARM Facility stable for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the SASHE provides hyperspectral measurements from about 350 nm to 1700 nm at a wavelength resolution from 1 to several nanometers, while the MFRSR only

433

Gulf of Mexico Proved Reserves By Water Depth, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves from the GOM Fed have gradually diminished, both volumetrically and as a percentage of overall U.S. proved reserves. The latter is especially true in recent years as onshore additions (particularly those associated with shale gas activity) have increased considerably. Proved oil reserves from

434

Heat Flow At Standard Depth | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat Flow At Standard Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow At Standard Depth Details Activities (2) Areas (1) Regions (0) Abstract: Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which

435

Penetration depth scaling for impact into wet granular packings  

E-Print Network [OSTI]

We present experimental measurements of penetration depths for the impact of spheres into wetted granular media. We observe that the penetration depth in the liquid saturated case scales with projectile density, size, and drop height in a fashion consistent with the scaling observed in the dry case, but that penetration depths into saturated packings tend to be smaller. This result suggests that, for the range of impact energies observed, the stopping force is set by static contact forces between grains within the bed, and that the presence of liquid serves, primarily, to enhance these contact forces. The enhancement to the stopping force has a complicated dependence on liquid fraction, accompanied by a change in the drop-height dependence, that must be the consequence of accompanying changes in the conformation of the liquid phase in the interstices.

Theodore A. Brzinski III; Jorin Schug; Kelly Mao; Douglas J. Durian

2015-01-25T23:59:59.000Z

436

Temperature profile for glacial ice at the South Pole: Implications for life nearby subglacial lake  

E-Print Network [OSTI]

Temperature profile for glacial ice at the South Pole: Implications for life nearby subglacial lake deep of South of #9°C, which is 7°C below pressure­induced melting temperature freshwater produce contamination Lake Vostok. semiempirical expression strain vs. stress, estimate shear depth show Ice

Woschnagg, Kurt

437

Galactic cosmic-ray-produced thermoluminescence profiles in meteorites, lunar samples and a terrestrial analog  

Science Journals Connector (OSTI)

The long-term radiation shielding properties of common extraterrestrial materials are poorly known, although these materials are the most likely structural elements on airless worlds such as the Moon. We report on radiation dose profiles in meteorites and lunar soil cores using specific minerals as naturally-occuring “dosimeters”. We find that radiation profiles are fairly flat in typical meteoroid bodies (< 85 cm radius) and drop by only about 40% through about 2.5 m of lunar soil. These profiles are produced by primary galactic cosmic rays and the secondary proton cascade but with a significant contribution by secondary neutrons at depths of about 2 m (300 g/cm2).

Paul H. Benoit; Yongheng Chen

1996-01-01T23:59:59.000Z

438

The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2004 North Slope of Alaska 2004 North Slope of Alaska Arctic Winter Radiometric Experiment E. R. Westwater, M. A. Klein, and V. Leuski Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado A. J. Gasiewski, T. Uttal, and D. A. Hazen National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. Cimini Remote Sensing Division, CETEMPS Universita' dell'Aquila L'Aquila, Italy V. Mattioli Dipartimento di Ingegneria Elettronica e dell'Informazione Perugia, Italy B. L. Weber and S. Dowlatshahi Science Technology Corporation Boulder, Colorado J. A. Shaw Department of Electrical and Computer Engineering

439

Texas Rice, Volume IV, Number 9, Winter Issue  

E-Print Network [OSTI]

Texas A&M University System Agricultural Research and Extension Center Beaumont, Texas Winter 2004 Volume IV Number 9 Texas Rice Web Management Tool To Help Monitor Grain Storage continued on page 6 Grain Moth http...://beaumont.tamu.edu/RiceSSWeb From planting, through matu- ration and harvest, farmers must keep a continuous watch to make sure their crop is protected. Yet, getting the crop out of the field and into storage bins doesn’t mean the grain is safe from damage. The big- gest threats...

2004-01-01T23:59:59.000Z

440

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

442

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas profile Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

443

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

444

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

445

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee profile Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

446

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

447

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

448

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

449

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

450

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

451

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

452

Sustainability E-Newsletter Fall/Winter 2013-2014 Like "Office of  

E-Print Network [OSTI]

Sustainability E-Newsletter Fall/Winter 2013-2014 Like "Office of Environmental Policy" on FacebookDay..........................................................................................2 Campus Sustainability Day our Sustainability Coordinators......................................................6 Campus

Alpay, S. Pamir

453

E-Print Network 3.0 - aspen winter conference Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Tuning and Little Hierarchy Problems In the NMSSM NMSSM LHC and Tevatron Phenomenology Aspen Winter Conference... : Gauge coupling unification works very ... Source:...

454

Approximate Stokes Drift Profiles in Deep Water  

Science Journals Connector (OSTI)

A deep-water approximation of the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, namely, the ...

Řyvind Breivik; Peter A. E. M. Janssen; Jean-Raymond Bidlot

2014-09-01T23:59:59.000Z

455

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_001b.htm06/07/2004 13:02:41 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_001d.htm06/07/2004 13:02:52 #12;5 Year

456

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_0029.htm06/07/2004 13:01:23 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_002d.htm06/07/2004 13:01:34 #12;5 Year

457

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0067.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_006b.htm06/07/2004 13:04:46 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

458

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0079.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_007b.htm06/07/2004 13:05:59 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

459

Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles  

DOE Patents [OSTI]

A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

2005-12-26T23:59:59.000Z

460

W:\Wpgraphs\CCT\CCToday Newsletter\04_winter\to printer\04_winter_CCToday_12-16-04.pmd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSLF Meets in Australia CSLF Meets in Australia .............. 1 News Bytes .................................. 1 Japan's C3 Coal Initiative .............. 3 Upcoming Events ......................... 3 Mercury Measuring Techniques ... 4 Transport Reactor at PSDF ............ 5 Australia's Coal Program ............... 8 Thermoelectric Freshwater Needs .. 9 Oxygen-Based Combustion ......... 10 International Initiatives ............... 12 Status Report .............................. 14 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOE/FE-0480* ISSUE NO. 60, WINTER 2004 See "News Bytes" on page 11... See "CSLF" on page 2... In October 2004, the U.S. Depart- ment of Energy announced a second round of project selections under

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Does footprint depth correlate with foot motion and pressure?  

Science Journals Connector (OSTI)

...correlations found across the foot by Hatala et al. [11], D'Aout...and in the heel and mid-foot, when depth was compared with...difference in the predictive power of peak pressure and the PT...applied by the trackmaker's foot during print formation is the...

2013-01-01T23:59:59.000Z

462

Continuous Snow Depth, Intensive Site 1, Barrow, Alaska  

SciTech Connect (OSTI)

Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

2014-11-06T23:59:59.000Z

463

Steady periodic waves bifurcating for fixed-depth rotational flows  

E-Print Network [OSTI]

-current interactions [29, 37] or flows generated by wind-shear [30] (see [6] for a comprehensive discussion than the mass-flux. It is important to note that fixing the mass-flux p0 does not fix the depth d

464

Human Activities Recognition with RGB-Depth Camera using HMM  

E-Print Network [OSTI]

. In this paper, we propose a method to detect fall using a system made up of RGB-Depth cameras. The major benefit. An evaluation has been conducted within a real smart environment with 26 subjects which were performing any]), Gaussian Mixture Model [6], least median of squares [1], occupancy grid [5]. Then the second stage

Paris-Sud XI, Université de

465

Parameterised structured light imaging for depth edge detection  

E-Print Network [OSTI]

, [amin, amax], from the projector/camera', `width of horizontal stripes, w', and `minimum detectable depth difference, rmin'. As can be seen in Fig. 1a, amax and rmin are given as the input parameters of [amin, amax] are guaranteed to be detected. However, awkwardly enough, amin is found at a later step

California at Santa Barbara, University of

466

WaveCurrent Interactions in Finite Depth JEROME A. SMITH  

E-Print Network [OSTI]

Wave­Current Interactions in Finite Depth JEROME A. SMITH Scripps Institution of Oceanography, La (Longuet-Higgins 1969; Hasselmann 1971; Garrett and Smith 1976; and many others). In particular, Hassel) changes in wave momentum that absorb some of the radiation stress gradients. Garrett and Smith (1976

Smith, Jerome A.

467

Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”  

SciTech Connect (OSTI)

In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2014-02-16T23:59:59.000Z

468

Wave-current interaction in water of finite depth  

E-Print Network [OSTI]

In this thesis, the nonlinear interaction of waves and current in water of finite depth is studied. Wind is not included. In the first part, a 2D theory for the wave effect on a turbulent current over rough or smooth bottom ...

Huang, Zhenhua, 1967-

2004-01-01T23:59:59.000Z

469

Continuous Snow Depth, Intensive Site 1, Barrow, Alaska  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

470

Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.  

SciTech Connect (OSTI)

Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

1994-11-01T23:59:59.000Z

471

Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution Hydrology and Earth System Sciences, 5(4), 629644 (2001) EGS  

E-Print Network [OSTI]

. The fitness of a certain root profile was defined as the amount of water uptake over a simulation period simulated with these models is sensitive to rooting depth changes (Kleidon and Heimann, 2000). DespiteTowards understanding tree root profiles: simulating hydrologically optimal strategies for root

Boyer, Edmond

472

Alkyl nitrate (C1-C3) depth profiles in the tropical Pacific Ocean E. E. Dahl,1,2  

E-Print Network [OSTI]

and distribution of tropo- spheric ozone. Atmospheric alkyl nitrates are normally associated with polluted air free radical processes initiated by radioactive decay or cosmic rays, enzymatically mediated reactions expedition in the equatorial Pacific, an equatorial maximum in atmospheric ethyl and isopropyl nitrate

Saltzman, Eric

473

Lead Like an Entrepreneur by Neal Thornberry Featuring in-depth profiles and success stories from some of today's  

E-Print Network [OSTI]

will help put your business on a direct path of growth, re- newed energy, and spectacular success. Green to implement green business practices and gain competitive advantage. Business Skills and Learning Business Practices For Dummies by Lisa Swallow If you want to take advantage of profit

Vasilyev, Oleg V.

474

Combining singular value decomposition and a non-negative constraint in a hybrid method for photothermal depth profiling  

E-Print Network [OSTI]

, the best reconstruction results are of comparable quality to those of the conjugate gradient method is a noncontact technique that utilizes an infrared detector to measure the time dependent temperature increase in the vasculature of port wine stain PWS birthmarks.3,4 Determination of the spatial temperature distribution from

Choi, Bernard

475

Scholarship Search Profile Personal Information  

E-Print Network [OSTI]

Scholarship Search Profile Personal Information Name: ____________________________________ Address) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Work Experience: List most recent job first Employer/Company Name _______________________________________________________________ Reference: Name and telephone _____________________________________________ Employer/Company Name

Mather, Patrick T.

476

Evaluate Greenhouse Gas Emissions Profile  

Broader source: Energy.gov [DOE]

Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement.

477

/sup 10/Be profiles in lunar surface rock 68815  

SciTech Connect (OSTI)

Cosmic ray produced /sup 10/Be (t/sub 1/2/ = 1.6 x 10/sup 6/ years) activities have been measured in fourteen carefully ground samples of lunar surface rock 68815. The /sup 10/Be profiles from 0 to 4 mm are nearly flat for all three surface angles measured and show a very slight increase with depth from the surface to a depth of 1.5 cm. These depth profiles are in contrast to the SCR (solar cosmic ray) produced /sup 26/Al and /sup 53/Mn profiles measured from these same samples. There is no sign of SCR produced /sup 10/Be in this rock. The discrepancy between the data and the Reedy-Arnold theoretical calculation (about 2 dpm /sup 10/Be/kg at the surface) can be explained in two ways: (1) the low energy proton induced cross sections for /sup 10/Be production from oxygen are really lower than those used in the calculations or, (2) compared to the reported fits for /sup 26/Al and /sup 53/Mn, the solar proton spectral shape is actually softer (exponential rigidity parameter Ro less than 100 MV), the omnidirectional flux above 10 MeV is higher (more than 70 protons/cm/sup 2/ s), and the erosion rate is higher (greater than 1.3 mm/My). /sup 10/Be, as a high energy product, is a very useful nuclide for helping to obtain the SCR spectral shape in the past. 23 refs., 3 figs., 1 tab.

Nishiizumi, K.; Imamura, M.; Kohl, C.P.; Nagai, H.; Kobayashi, K.; Yoshida, K.; Yamashita, H.; Reedy, R.C.; Honda, M.; Arnold, J.R.

1987-01-01T23:59:59.000Z

478

Top 10 Tips to Save Energy and Money in the Winter | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Tips to Save Energy and Money in the Winter Top 10 Tips to Save Energy and Money in the Winter Top 10 Tips to Save Energy and Money in the Winter December 10, 2012 - 12:43pm Q&A What are some other ways that you save energy and money in the winter? Tell Us Addthis Using a programmable thermostat is one way to save energy in your home this winter. | Photo courtesy of iStockphoto.com/BanksPhotos. Using a programmable thermostat is one way to save energy in your home this winter. | Photo courtesy of iStockphoto.com/BanksPhotos. John Chu John Chu Communications Specialist with the Office of Energy Efficiency and Renewable Energy What does this mean for me? There are plenty of ways to save energy and money this winter. Winter. For many of us, the season means holiday shopping, hot chocolate, and time spent with friends and family. For those of us who love saving

479

BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND COUNTY, COLORADO  

E-Print Network [OSTI]

BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND COUNTY, COLORADO Colorado Natural Heritage Program College of Natural Resources, 8002 Campus Delivery Colorado State University Fort Collins, Colorado 80523-8002 #12;BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND

480

Asymmetry of winter European surface air temperature extremes and the North Atlantic Oscillation  

Science Journals Connector (OSTI)

Inter-annual variations of winter warm and cold extremes in Europe are investigated. It is found that the variations are closely connected to the phase of the North Atlantic oscillation (NAO). The leading EOF of the winter cold (warm) surface air ...

Yina Diao; Shang-Ping Xie; Dehai Luo

Note: This page contains sample records for the topic "winter depth profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

2013 Winter Pell Grant Application Priority Deadline: November 16th, 2012  

E-Print Network [OSTI]

2013 Winter Pell Grant Application Priority Deadline: November 16th, 2012 STUDENT INFORMATION to be considered for the Pell Grant for the winter 2013 semester must complete this form. Please review requested documents to our office. Additional Pell Grant Requirements: · You must be eligible for the Pell

Maryland, Baltimore County, University of

482

Design approaches in technology enhanced learning Yishay Mor and Niall Winters  

E-Print Network [OSTI]

Design approaches in technology enhanced learning Yishay Mor and Niall Winters London Knowledge Lab, Institute of Education, University of London {y.mor, n.winters}@ioe.ac.uk Abstract Design is a critical learning (TEL), the design process requires input from many diverse areas of expertise. As such, anyone

Paris-Sud XI, Université de

483

Mastering science of the slide crucial to success of every winter Olympian  

E-Print Network [OSTI]

Mastering science of the slide crucial to success of every winter Olympian By IVAN SEMENIUK Think about it: Every sport at the Winter Olympics relies on some kind of manmade object sliding over, every competition in Sochi will come down to some kind of manmade object sliding over ice or snow

Machel, Hans

484

Intensely white bark on a dull winter's day AndreaKiewitt  

E-Print Network [OSTI]

- Intensely white bark on a dull winter's day ©AndreaKiewitt No. 45 January 2009 Eco birch (Betula utilis var. jacquemontii). On the grey winter day, its intensely white bark stood out revealing the strikingly white inner layers. The bark is strewn with creamy grey lenticels in the shape

485

NOTES AND CORRESPONDENCE Changes of the Boreal Winter Hadley Circulation in the NCEPNCAR and ECMWF  

E-Print Network [OSTI]

NOTES AND CORRESPONDENCE Changes of the Boreal Winter Hadley Circulation in the NCEP­NCAR and ECMWF show a strengthening of the atmospheric Hadley circulation in boreal winter over the last 50 years on the difference of these trends in the two reanalyses. It is shown that trends in the Hadley circulation

Zhang, Minghua

486

Lunar and solar FTIR nitric acid measurements at Eureka in winter  

E-Print Network [OSTI]

Lunar and solar FTIR nitric acid measurements at Eureka in winter 2001/2002: comparisons acid measurements at Eureka obtained in winter 2001­2002 using solar and lunar Fourier transform Eureka (80.1°N, 86.4°W), Canada, have been made during polar night using lunar spectra recorded

Wirosoetisno, Djoko

487

Quality Assurance Exchange Winter 2010 Volume 6 Issue 1 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Winter 2010 Volume 6 Issue 1 Winter 2010 Volume 6 Issue 1 Quality Assurance Exchange Winter 2010 Volume 6 Issue 1 Quality Assurance Exchange Winter 2010 Volume 6 Issue 1 U.S. Department of Energy Office of Quality Assurance Policy and Assistance A new decade is upon us and the Office of Quality Assurance Policy and Assistance (HS-23) is looking forward to accomplishing activities planned for FY 2010. For instance, the results of the 2009 Survey of Quality Assurance (QA) Implementation are in and the analysis of the data has begun. Information from the Survey responses will be used to help and improve QA program implementation and performance. Feedback from the Survey responses will be used to improve the questions for the next Survey, which is to be issued in 2011. Quality Assurance Exchange Winter 2010 Volume 6 Issue 1

488

Secretary Chu to Address the Winter Meeting of the U.S. Conference of  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu to Address the Winter Meeting of the U.S. Conference Secretary Chu to Address the Winter Meeting of the U.S. Conference of Mayors Secretary Chu to Address the Winter Meeting of the U.S. Conference of Mayors January 19, 2011 - 12:00am Addthis WASHINGTON, D.C. - US Energy Secretary Steven Chu will address the 79th winter meeting of the U.S. Conference of Mayors. Secretary Chu will attend the Energy Standing Committee session of the conference where he will discuss the importance of clean energy to our economic competitiveness. WHAT: Energy Secretary Steven Chu to attend US Conference of Mayors Winter Meeting WHEN: Wednesday, January 19, 2010 4:30 PM EDT WHERE: Capital Hilton 1001 16th St. NW Washington, DC Media contact(s): (202) 586-4940 Addthis Related Articles Secretary Chu to Attend Event in Colorado on the Need to Compete Globally

489

What Are Your Favorite Winter Energy Savings Tips? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Are Your Favorite Winter Energy Savings Tips? Are Your Favorite Winter Energy Savings Tips? What Are Your Favorite Winter Energy Savings Tips? January 27, 2012 - 10:06am Addthis This week, Amanda highlighted the Energy Savers seasonal website as a great place to get tips to save money and energy in any season. We want to know which winter energy savings tips you've tried. Have you covered your drafty windows, added weatherstripping to your doors, or opened your south-facing window curtains during the day? How well have these tips worked for you? We want you to share your own favorite tips and tricks with us. What have you done to save energy and money in your home this winter? Tell us! E-mail your responses to the Energy Saver team at http://en.wikipedia.org/wiki/Regression_analysis. Addthis Related Articles

490

Microsoft PowerPoint - 2011WinterFuels_finalv3.pptx [Read-Only]  

Gasoline and Diesel Fuel Update (EIA)

Sh Sh t T d Wi t F l O tl k EIA Short-Term and Winter Fuels Outlook f for Winter Fuels Outlook Conference National Association of State Energy Officials (NASEO) O b 12 2011 | h C October 12, 2011 | Washington, DC by www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Howard Gruenspecht, Acting Administrator Overview * EIA expects higher average fuel bills this winter heating season for heating oil, propane, and natural gas, but little change in electricity bills. y * Higher fuel prices are the main driver - 10% higher heating oil prices (than last winter) g g p ( ) - 7% higher propane prices - 4% higher residential natural gas prices - 1% higher electricity prices * Projected average expenditures for heating oil users are at their highest level ever. 2 Howard Gruenspecht, Winter Fuels Outlook

491

High gain photoconductive semiconductor switch having tailored doping profile zones  

DOE Patents [OSTI]

A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

Baca, Albert G. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Mar, Alan (Albuquerque, NM); Zutavern, Fred J (Albuquerque, NM); Hjalmarson, Harold P. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); O'Malley, Martin W. (Edgewood, NM); Helgeson, Wesley D. (Albuquerque, NM); Denison, Gary J. (Sandia Park, NM); Brown, Darwin J. (Albuquerque, NM); Sullivan, Charles T. (Albuquerque, NM); Hou, Hong Q. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

492

Assessing the Radiative Impact of Clouds of Low Optical Depth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Radiative Impact of Clouds of the Radiative Impact of Clouds of Low Optical Depth W. O'Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California C. Gautier Department of Geography and Institute for Computational Earth System Science University of California Santa Barbara, California Introduction Analysis from the International Satellite Cloud Climatology Project (ISCCP) reveals that the global mean cloud optical depth is surprisingly low (i.e., Ď„ = 3.8). While this value is probably dominated by extensive fields of cirrus, the average for liquid water clouds is also likely smaller than expected. It is in this regime (Ď„ <10) where remote measurements of cloud optical thickness or liquid water path (LWP)

493

Eight-year Climatology of Dust Optical Depth on Mars  

E-Print Network [OSTI]

We have produced a multiannual climatology of airborne dust from Martian year 24 to 31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the Martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced, but possibly incomplete, spatio-temporal grid, using an iterative procedure weighted in space, time, and retrieval uncertainty. In order to evaluate strengths and weaknesses of the resulting gridded maps, we validat...

Montabone, L; Millour, E; Wilson, R J; Lewis, S R; Cantor, B A; Kass, D; Kleinboehl, A; Lemmon, M; Smith, M D; Wolff, M J

2014-01-01T23:59:59.000Z

494

Drilling/producing depths; Two records and a revision  

SciTech Connect (OSTI)

This paper reports that record depths for natural gas or oil well drilling or producing continue to be rare occurrences, although one or two still come in each year. Records fell in Texas Railroad Commission (RRC) District 9 and in the California area of the Minerals Management Service (MMS) Pacific Outer Continental Shelf (OCS) in 1990. Deep drilling and production has traditionally been defined as well depths greater than 15,000 ft. Smith Tool reported that 9.4% of all active rotary rigs were dedicated to targets below 15,000 ft at the beginning of 1991. Deep rigs had dropped to 8.1% by year-end 1991, but remained above the 1989 and 1990 levels of 8.4 and 7.6%, respectively. In 1988 about 11% of active rigs were drilling deep at any given time.

Not Available

1992-02-01T23:59:59.000Z

495

Steven Winters Associates Inc (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Connecticut) Connecticut) Jump to: navigation, search Name Steven Winters Associates Inc Address 50 Washington Street Place Norwalk, Connecticut Zip 06854 Sector Buildings Product Research, design and consulting for high performance buildings Website http://www.swinter.com/ Coordinates 41.100098°, -73.420395° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.100098,"lon":-73.420395,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

Steven Winters Associates Inc (Massachusetts) | Open Energy Information  

Open Energy Info (EERE)

Massachusetts) Massachusetts) Jump to: navigation, search Name Steven Winters Associates Inc Address 28 Walnut Street Place Maynard, Massachusetts Zip 01754 Sector Buildings Product Research, design and consulting for high performance buildings Website http://www.swinter.com/ Coordinates 42.430044°, -71.451486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.430044,"lon":-71.451486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Winter fuels report, week ending November 30, 1990. [Contains Glossary  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cites; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 27 figs., 12 tabs.

Not Available

1990-12-06T23:59:59.000Z

498

Joint Depth Estimation and Camera Shake Removal from Single Blurry Image Ming-Hsuan Yang1  

E-Print Network [OSTI]

. While depth information is critical in blur removal, the blur im- age provides an additional cueJoint Depth Estimation and Camera Shake Removal from Single Blurry Image Zhe Hu1 Li Xu2 Ming contain depth information which can be exploited. We propose to jointly estimate scene depth and remove

Yang, Ming-Hsuan

499

An Optimal Randomized Algorithm for Maximum Tukey Depth Timothy M. Chan  

E-Print Network [OSTI]

An Optimal Randomized Algorithm for Maximum Tukey Depth Timothy M. Chan Abstract We present the first optimal algorithm to compute the maximum Tukey depth (also known as location or halfspace depth , the Tukey depth of a point q IRd is defined as: min{|P | : over all halfspaces containing q}. We

Chan, Timothy M.

500

Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks  

SciTech Connect (OSTI)

The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

Robert J. Goldston

2009-08-20T23:59:59.000Z