Powered by Deep Web Technologies
Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Windy Gap Firming Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure projects Interconnection OASIS OATT Windy Gap Firming Project, Final Environmental Impact Statement, DOEEIS-0370 (cooperating agency) Western's proposed...

2

Windy Gap Firming Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windy Gap Firming Project Windy Gap Firming Project Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Windy Gap Firming Project, Final Environmental Impact Statement, DOE/EIS-0370 (cooperating agency) Western's proposed action is to relocate approximately 3.8 miles of the existing Estes to Lyons 115-kilovolt transmission line, if the Chimney Hollow Reservoir alternative is constructed. The line would be moved outside the area proposed for the reservoir, and Western would ensure the new location would allow the agency to continue to operate and maintain it. Section 2.4.1.4 of the Final Environmental Impact Statement, Volume 1 provides more information on the transmission line relocation proposal. The U.S. Department of the Interior, Bureau of Reclamation is the Lead Agency for the National Environmental Policy Act Review. Cooperating agencies are Western, the U.S. Army Corps of Engineers and Grand County, Colo.

3

EIS-0370: Windy Gap Firming Project, Colorado  

Broader source: Energy.gov [DOE]

This EIS, prepared by the Department of the Interior (Bureau of Reclamation, Great Plains Region), with DOE's Western Area Power Administration as a cooperating agency, evaluates the environmental impacts of a proposal to construct new water storage reservoir capacity southwest of Loveland, Colorado. Western has jurisdiction over the transmission line that would be relocated if the proposed action is implemented and would market additional power that may be generated as a result of the project.

4

Granby Pumping Plant Switchyard - Windy Gap Substation Transmission Line Rebuild, Grand County, Colorado: Final Environmental Impact Statement Appendices  

Broader source: Energy.gov (indexed) [DOE]

PUMPING PLANT SWITCHYARD - WINDY GAP PUMPING PLANT SWITCHYARD - WINDY GAP SUBSTATION TRANSMISSION LINE REBUILD, GRAND COUNTY, COLORADO DOE/EIS-0400 Final Environmental Impact Statement Appendices Grand County, Colorado June 2013 Appendix A EIS Scoping Report GRANBY PUMPING PLANT - WINDY GAP TRANSMISSION LINE REBUILD PROJECT ENVIRONMENTAL IMPACT STATEMENT SCOPING SUMMARY REPORT December 4, 2007

5

EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission  

Broader source: Energy.gov (indexed) [DOE]

EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Summary Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69-kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing

6

EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission  

Broader source: Energy.gov (indexed) [DOE]

00: Granby Pumping Plant Switchyard-Windy Gap Substation 00: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Summary Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69-kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing

7

Granby Pumping Plant Switchyard - Windy Gap Substation Transmission Line Rebuild, Grand County, Colorado: Final Environmental Impact Statement Executive Summary  

Broader source: Energy.gov (indexed) [DOE]

PUMPING PLANT SWITCHYARD - WINDY GAP PUMPING PLANT SWITCHYARD - WINDY GAP SUBSTATION TRANSMISSION LINE REBUILD, GRAND COUNTY, COLORADO DOE/EIS-0400 Final Environmental Impact Statement Executive Summary Grand County, Colorado June 2013 Granby Pumping Plant-Windy Gap Substation Transmission Line Rebuild Project FEIS Executive Summary ES-1 EXECUTIVE SUMMARY Introduction Western Area Power Administration (Western), a power marketing administration within the U.S. Department of Energy (DOE), is proposing to rebuild and upgrade the Granby Pumping Plant Switchyard-Windy Gap Substation transmission line in Grand County, Colorado (Grand County). This Environmental Impact Statement (EIS) analyzes the impacts associated with the proposal to remove approximately 13.6 miles of 69-kilovolt (kV) transmission line, construct approximately

8

Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

United States. Bonneville Power Administration.

2006-11-01T23:59:59.000Z

9

Notice of Intent to Prepare an Environmental Impact Statement for the Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project, Grand County, CO (DOE/EIS-0400)(08/10/07)  

Broader source: Energy.gov (indexed) [DOE]

040 Federal Register 040 Federal Register / Vol. 72, No. 154 / Friday, August 10, 2007 / Notices g. Filed Pursuant to: 18 CFR 4.200. h. Applicant Contact: David Lovely, Hydro Supervisor, Madison Paper Industries, P.O. Box 129, 3 Main Street, Madison, Maine 04950-0129, (207) 696- 1225. i. FERC Contact: Robert Bell, (202) 502-6062. j. Deadline for filing comments, motions to intervene and protest: August 20, 2007. Please include the project number (P- 2365-040) on any comments or motions filed. All documents (original and seven copies) should be filed with: Kimberly D. Bose, Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. Comments, protests, and interventions may be filed electronically via the Internet in lieu of paper, see 18 CFR

10

EIS-0370: Windy Gap Firming Project, Colorado | Department of...  

Broader source: Energy.gov (indexed) [DOE]

of a proposal to construct new water storage reservoir capacity southwest of Loveland, Colorado. Western has jurisdiction over the transmission line that would be relocated if...

11

Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project (DOE/EIS-0183) (11/29/06)  

Broader source: Energy.gov (indexed) [DOE]

Windy Point Wind Energy Project Windy Point Wind Energy Project November 2006 B o n n e v i l l e P o w e r A d m i n i s t r a t i o n 1 INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. 1 The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line.

12

Olene Gap Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Olene Gap Geothermal Project Olene Gap Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Olene Gap Geothermal Project Project Location Information Coordinates 42.1725°, -121.62083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1725,"lon":-121.62083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Windy Flats | Open Energy Information  

Open Energy Info (EERE)

Flats Flats Jump to: navigation, search Name Windy Flats Facility Windy Flats Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cannon Power Group Developer Cannon Power Group Location North shore of Columbia River Coordinates 45.699622°, -120.774622° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.699622,"lon":-120.774622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

Windy Point - Siemens Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Windy Point - Siemens Wind Farm Windy Point - Siemens Wind Farm Jump to: navigation, search Name Windy Point - Siemens Wind Farm Facility Windy Point - Siemens Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cannon/Tuolumne Wind Project Authority Developer Cannon/Tuolumne Wind Project Authority Energy Purchaser Turlock Irrigation District and Walnut Energy Center Authority Location North shore of Columbia River Coordinates 45.699622°, -120.774622° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.699622,"lon":-120.774622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

16

Windy Dog I | Open Energy Information  

Open Energy Info (EERE)

Windy Dog I Windy Dog I Facility Windy Dog I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Windy Dog I LLC Energy Purchaser Xcel Energy Location Lake Benton MN Coordinates 44.285°, -96.4342° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.285,"lon":-96.4342,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Windy Point - REpower (09) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Point - REpower (09) Wind Farm Point - REpower (09) Wind Farm Jump to: navigation, search Name Windy Point - REpower (09) Wind Farm Facility Windy Point - REpower (09) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cannon/Tuolumne Wind Project Authority Developer Cannon/Tuolumne Wind Project Authority Energy Purchaser Turlock Irrigation District and Walnut Energy Center Authority Location North shore of Columbia River Coordinates 45.699622°, -120.774622° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.699622,"lon":-120.774622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

Windy Flats Phase III | Open Energy Information  

Open Energy Info (EERE)

Phase III Phase III Jump to: navigation, search Name Windy Flats Phase III Facility Windy Flats Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner Cannon Power Group Developer Cannon Power Group Location Goldendale WA Coordinates 45.76201437°, -120.5455971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.76201437,"lon":-120.5455971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

Windy Flats IIa extension | Open Energy Information  

Open Energy Info (EERE)

IIa extension IIa extension Jump to: navigation, search Name Windy Flats IIa extension Facility Windy Flats IIa extension Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cannon Power Group Developer Cannon Power Group Location North shore of Columbia River Coordinates 45.699622°, -120.774622° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.699622,"lon":-120.774622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Big Windy (Great Escape Restaurant Turbine) | Open Energy Information  

Open Energy Info (EERE)

Big Windy (Great Escape Restaurant Turbine) Big Windy (Great Escape Restaurant Turbine) Jump to: navigation, search Name Big Windy (Great Escape Restaurant Turbine) Facility Big Windy (Great Escape Restaurant Turbine) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Escape Restaurant Location Schiller Park IL Coordinates 41.95547°, -87.865193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.95547,"lon":-87.865193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Windy Flats(3Q09 portion) | Open Energy Information  

Open Energy Info (EERE)

Windy Flats(3Q09 portion) Windy Flats(3Q09 portion) Jump to: navigation, search Name Windy Flats(3Q09 portion) Facility Windy Flats(3Q09 portion) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cannon Power Group Developer Cannon Power Group Location North shore of Columbia River Coordinates 45.699622°, -120.774622° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.699622,"lon":-120.774622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Windy City Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Windy City Renewable Energy LLC Windy City Renewable Energy LLC Jump to: navigation, search Logo: Windy City Renewable Energy LLC Name Windy City Renewable Energy LLC Place Chicago, Illinois Zip 60606 Sector Solar Product SHW & PV Year founded 2008 Number of employees 1-10 Phone number 312-685-9273 Website http://www.windycityrenewablee Coordinates 41.8817767°, -87.6371461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8817767,"lon":-87.6371461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Windy Point (08) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Point (08) Wind Farm Point (08) Wind Farm Jump to: navigation, search Name Windy Point (08) Wind Farm Facility Windy Point (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cannon Developer Cannon Energy Purchaser Puget Sound Energy Coordinates 45.822958°, -120.819003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.822958,"lon":-120.819003,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Big Windy Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Big Windy Hot Springs Geothermal Area Big Windy Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Big Windy Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2292,"lon":-144.4986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

EIS-0400: EPA Notice of Availability of Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

26

Water development for hydroelectric in southeastern Anatolia project (GAP) in Turkey  

Science Journals Connector (OSTI)

Southeastern Anatolia Project (GAP) region in Turkey is rich in water for irrigation and hydroelectric power. The Euphrates and Tigris rivers represent over 28% of the nations water supply by rivers, and the economically irrigable areas in the region make up 20% of those for the entry country. On the other hand, 85% of the total hydro capacity in operation has been developed by DSI, corresponding to 9931MW (49 hydro plants) and 35,795GWh/year respectively. The largest and most comprehensive regional development project ever implemented by DSI in Turkey is The Southeast Anatolian (GAP) Project, which is located in the region of Southeast Anatolia on the Euprates and Tigris rivers and their tributaries, which originate in Turkey. The energy potential of the Tigris and Euphrates is estimated as 12,000GWh and 35,000GWh, respectively. These two rivers constitute 10% and 30% of the total hydroelectric energy potential. The GAP region will be an important electric power producer with 1000MW installed capacity from the Karakaya dam, 2400MW installed capacity from the Atatrk dam and 1360MW installed capacity from the Keban dam. The GAP region has a 22% share of the countrys total hydroelectric potential, with plans for 22 dams and 19 hydroelectric power plants. Once completed, 27 billionkWh of electricity will be generated annually.

Ibrahim Yuksel

2012-01-01T23:59:59.000Z

27

Lift-and-Project Integrality Gaps for the Traveling Salesperson Problem  

E-Print Network [OSTI]

We study the lift-and-project procedures of Lov{\\'a}sz-Schrijver and Sherali-Adams applied to the standard linear programming relaxation of the traveling salesperson problem with triangle inequality. For the asymmetric TSP tour problem, Charikar, Goemans, and Karloff (FOCS 2004) proved that the integrality gap of the standard relaxation is at least 2. We prove that after one round of the Lov{\\'a}sz-Schrijver or Sherali-Adams procedures, the integrality gap of the asymmetric TSP tour problem is at least 3/2, with a small caveat on which version of the standard relaxation is used. For the symmetric TSP tour problem, the integrality gap of the standard relaxation is known to be at least 4/3, and Cheung (SIOPT 2005) proved that it remains at least 4/3 after $o(n)$ rounds of the Lov{\\'a}sz-Schrijver procedure, where $n$ is the number of nodes. For the symmetric TSP path problem, the integrality gap of the standard relaxation is known to be at least 3/2, and we prove that it remains at least 3/2 after $o(n)$ rounds...

Watson, Thomas

2011-01-01T23:59:59.000Z

28

EIS-0370: EPA Notice of Availability of the Final Environmental...  

Energy Savers [EERE]

Availability of the Final Environmental Impact Statement Windy Gap Firming Project, Colorado EIS-0370-EPANOA-2011.pdf More Documents & Publications EIS-0440: DOE and EPA Notice...

29

EIS-0400: Record of Decision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EIS-0400: Record of Decision Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO Western Area Power Administration...

30

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project  

Broader source: Energy.gov (indexed) [DOE]

53 53 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman August 2013 PNNL- 22653 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman Contributors: SGC Panel Members August 2013 Prepared by: Pacific Northwest National Laboratory and

31

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia River Gorge. Photo: C. Bruce Forster  

E-Print Network [OSTI]

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia and wildlife recovery. At a conceptual level, the Act aimed for a power system that would meet energy demands pressure off Columbia River fish and wildlife. For the power system, moving ahead would require modified

32

Digital Book Showcases Washington Wind Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Digital Book Showcases Washington Wind Project Digital Book Showcases Washington Wind Project Digital Book Showcases Washington Wind Project June 24, 2010 - 12:09pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE In what looks and feels more like an e-book on the iPad than a website, a new digital book by Cannon Power Group, a San Diego-based developer of utility-scale wind, tells the story of the construction of a 400 MW wind farm along a 26-mile stretch in Goldendale, Washington, located on a ridgeline plateau about 125 miles east of Portland, Oregon. "The New American Farm" chronicles the stages of the Windy Flats/Windy Point project in seven interactive chapters: from "Prospecting" (finding the right site) to "Planting" (installing 175, 300-foot turbines) to

33

 

Broader source: Energy.gov (indexed) [DOE]

Statement Statement Executive Summary FES 11-29 Cooperating Agencies: * Grand County * U.S. Department of Energy, Western Area Power Administration DOE/EIS-0370 * U.S. Army Corps of Engineers November 2011 ES-1 EXECUTIVE SUMMARY FINAL ENVIRONMENTAL IMPACT STATEMENT WINDY GAP FIRMING PROJECT INTRODUCTION The Windy Gap Firming Project (WGFP) is a proposed water supply project that would provide more reliable water deliveries to Colorado's Front Range and West Slope communities and industries. The Municipal Subdistrict, Northern Colorado Water Conservancy District (Northern Water) acting by and through the Windy Gap Firming Project Water

34

The Windy Commons?  

Science Journals Connector (OSTI)

Wind power generation is growing rapidly in the United States, doubling nearly every three years since 1998. Yet, wind is an open access resource, and past experiences with open access resources suggest that t...

Daniel T. Kaffine; Christopher M. Worley

2010-10-01T23:59:59.000Z

35

Colorado Gap Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colorado Gap Analysis Colorado Gap Analysis 2 The Building Codes Assistance Project (BCAP) BCAP is a non-profit advocacy organization established in 1994 as a joint initiative of the Alliance to Save Energy, the American Council for an Energy-Efficient Economy, and the Natural Resources Defense Council. BCAP focuses on providing state and local governments in the U.S., as well as stakeholder organizations, with support on code adoption and implementation through direct assistance, research, data analysis, and coordination with other activities and allies. With over sixteen years of experience supporting numerous state energy offices and city building departments, along with tracking code activities across the country, BCAP is well-positioned to assist in local and statewide activity to advance

36

EIS-0370: Final Environmental Impact Statement | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Impact Statement EIS-0370: Final Environmental Impact Statement Windy Gap Firming Project, Colorado EIS-0370-FEIS-Summary-2011.pdf EIS-0370-FEIS-vol1-2011.pdf...

37

Bridging Gaps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bridging Gaps Bridging Gaps Bridging Gaps Analysis to identify issues, best practices, and recommendations Implementation of modernization, infrastructure planning, and sustainability efforts Evaluation of planning practices to develop an adaptable method that considers revitalization and reuse Analysis of issues with transfers at less than fair market value and recommendations for improvement Evaluation of the Ten-Year (25-year) Site Plans for revitalization and strategic planning interests Tools to be incorporated into programmatic business models and processes Best-practices guide for energy projects Guidance and recommendations to improve the 10 CFR 770 process and less-than-fair-market-value transfers Tools/checklist to evaluate assets for reuse as part of planning

38

Emplacement Gantry Gap Analysis Study  

SciTech Connect (OSTI)

To date, the project has established important to safety (ITS) performance requirements for structures, systems, and components (SSCs) based on the identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Bases for License Application'' (NSDB) (BSC 2005 [DIRS 171512], Table A-11). Further, SSCs credited with performing safety functions are classified as ITS. In turn, assurance that these SSCs will perform as required is sought through the use of consensus codes and standards. This gap analysis is based on the design completed for license application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and final selection will not be determined until further design development has occurred. Therefore, for completeness, alternative designs currently under consideration will be discussed throughout this study. This gap analysis will evaluate each code and standard identified within the ''Emplacement Gantry ITS Standards Identification Study'' (BSC 2005 [DIRS 173586]) to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied, a gap is highlighted. This study will identify requirements to supplement or augment the code or standard to meet performance requirements. Further, this gap analysis will identify nonstandard areas of the design that will be subject to a design development plan. Nonstandard components and nonstandard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, assurance that an SSC will perform as required may not be readily sought though the use of consensus standards. This gap analysis is prepared by the Emplacement and Retrieval (E&R) project team and is intended for the sole use of the Engineering department in work regarding the emplacement gantry. Yucca Mountain Project personnel from the E&R project team should be consulted before use of this gap analysis for purposes other than those stated herein or by individuals other than authorized by the Engineering department.

R. Thornley

2005-05-27T23:59:59.000Z

39

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

40

Sensitivity Analysis of the Gap Heat Transfer Model in BISON.  

SciTech Connect (OSTI)

This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fiber optic gap gauge  

SciTech Connect (OSTI)

A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

Wood, Billy E. (Livermore, CA); Groves, Scott E. (Brentwood, CA); Larsen, Greg J. (Brentwood, CA); Sanchez, Roberto J. (Pleasanton, CA)

2006-11-14T23:59:59.000Z

42

Generation gaps in engineering?  

E-Print Network [OSTI]

There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

Kim, David J. (David Jinwoo)

2008-01-01T23:59:59.000Z

43

Granby Pumping Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

44

Uncertainties in Gapped Graphene  

E-Print Network [OSTI]

Motivated by graphene-based quantum computer we examine the time-dependence of the position-momentum and position-velocity uncertainties in the monolayer gapped graphene. The effect of the energy gap to the uncertainties is shown to appear via the Compton-like wavelength $\\lambda_c$. The uncertainties in the graphene are mainly contributed by two phenomena, spreading and zitterbewegung. While the former determines the uncertainties in the long-range of time, the latter gives the highly oscillation to the uncertainties in the short-range of time. The uncertainties in the graphene are compared with the corresponding values for the usual free Hamiltonian $\\hat{H}_{free} = (p_1^2 + p_2^2) / 2 M$. It is shown that the uncertainties can be under control within the quantum mechanical law if one can choose the gap parameter $\\lambda_c$ freely.

Eylee Jung; Kwang S. Kim; DaeKil Park

2011-07-27T23:59:59.000Z

45

Multiple gap photovoltaic device  

DOE Patents [OSTI]

A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

Dalal, Vikram L. (Newark, DE)

1981-01-01T23:59:59.000Z

46

FINAL REPORT ON GDE GAP CELL  

SciTech Connect (OSTI)

A project has been undertaken to develop an electrochemical cell and support equipment for evaluation of a gas diffusion electrode-based, narrow-electrolyte-gap anode for SO{sub 2} oxidation in the hydrogen production cycle of the hybrid sulfur (HyS) process. The project supported the HyS development program at the Savannah River National Lab (SRNL). The benefits of using a gas diffusion electrode in conjunction with the narrow anolyte gap are being determined through electrochemical polarization testing under a variety conditions, and by comparison to results produced by SRNL and others using anode technologies that have no anolyte gap. These test results indicate that the NGA cell has low resistance suitable for use in the HyS electrolyzer, exhibits good efficiency at high current densities compared to the direct feed HyS electrolyzer, and indicates robust performance in extended testing over 65 hours. Seepage episodes were mostly caused by port clogging, which can be mitigated in future designs through minor modifications to the hardware. Significant reductions in sulfur crossover have not yet been demonstrated in the NGA configuration compared to in-house direct feed testing, but corroborative sulfur layer analysis is as yet incomplete. Further testing in a single-pass anolyte configuration is recommended for complete evaluation of steady-state electrochemical efficiency and SO{sub 2} crossover in the narrow gap configuration.

Herman, D.; Summers, W.; Danko, E.

2009-09-28T23:59:59.000Z

47

Energy Gap in Nuclear Matter  

Science Journals Connector (OSTI)

......research-article Articles Energy Gap in Nuclear Matter Takeshi Ishihara a...Research, Kokubunji, Tokyo An energy gap in nuclear matter is studied. The nucleon-nucleon...1966) pp. 1026-1042 Nuclear Force and Energy Gap in Finite Nuclei Hiroharu......

Takeshi Ishihara; Ryozo Tamagaki; Hajime Tanaka; Masaru Yasuno

1963-11-01T23:59:59.000Z

48

GenII Gap Analysis  

Broader source: Energy.gov (indexed) [DOE]

GENII-Gap Analysis GENII-Gap Analysis Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.3: Software Quality Assurance Improvement Plan: GENII Gap Analysis Final Report U.S. Department of Energy Office of Environment, Safety, and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 May 2004 GENII Gap Analysis May 2004 Final Report INTENTIONALLY BLANK ii GENII Gap Analysis May 2004 Final Report FOREWORD This document provides an evaluation of the Software Quality Assurance (SQA) attributes of GENII, a radiological dispersion computer code, relative to established requirements. This evaluation, a "gap analysis", is performed to meet commitment 4.2.1.3 of the Department of

49

MACCS2 Final Gap Analysis  

Broader source: Energy.gov (indexed) [DOE]

MACCS2-Gap Analysis MACCS2-Gap Analysis Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.3: Software Quality Assurance Improvement Plan: MACCS2 Gap Analysis Final Report U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 May 2004 MACCS2 Gap Analysis May 2004 Final Report INTENTIONALLY BLANK ii MACCS2 Gap Analysis May 2004 Final Report FOREWORD This report documents the outcome of an evaluation of the Software Quality Assurance (SQA) attributes of the radiological dispersion computer code, MACCS2, relative to established software requirements. This evaluation, a "gap analysis", is performed to meet commitment 4.2.1.3 of the

50

Gap and stripline combined monitor  

DOE Patents [OSTI]

A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

Yin, Y.

1986-08-19T23:59:59.000Z

51

Vehicle Technologies Office: Fact #414: March 6, 2006 The Petroleum Gap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: March 6, 2006 4: March 6, 2006 The Petroleum Gap to someone by E-mail Share Vehicle Technologies Office: Fact #414: March 6, 2006 The Petroleum Gap on Facebook Tweet about Vehicle Technologies Office: Fact #414: March 6, 2006 The Petroleum Gap on Twitter Bookmark Vehicle Technologies Office: Fact #414: March 6, 2006 The Petroleum Gap on Google Bookmark Vehicle Technologies Office: Fact #414: March 6, 2006 The Petroleum Gap on Delicious Rank Vehicle Technologies Office: Fact #414: March 6, 2006 The Petroleum Gap on Digg Find More places to share Vehicle Technologies Office: Fact #414: March 6, 2006 The Petroleum Gap on AddThis.com... Fact #414: March 6, 2006 The Petroleum Gap Since 1989, the transportation sector alone has used more petroleum than the United States produces. The current projections indicate that by the

52

Multi-gap Resistive Plate Chambers as a Time-of-Flight System for the PHENIX Experiment  

SciTech Connect (OSTI)

In this project a Time-of-Flight detector based on multi-gap resistive plate chambers was built and installed for the PHENIX experiment at RHIC.

Velkovska, Julia [Vanderbilt University] [Vanderbilt University

2013-12-08T23:59:59.000Z

53

Pneumatic gap sensor and method  

DOE Patents [OSTI]

An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

Bagdal, Karl T. (Middletown, OH); King, Edward L. (Trenton, OH); Follstaedt, Donald W. (Middletown, OH)

1992-01-01T23:59:59.000Z

54

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development ProgramsSummary Report  

SciTech Connect (OSTI)

This document is a summarization of the report, Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs, the final report for phase 2 of the SPSP (DOE workforce study) project.

O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; Leo, R.; Perman, K.

2013-07-01T23:59:59.000Z

55

Virtual gap dielectric wall accelerator  

DOE Patents [OSTI]

A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

2013-11-05T23:59:59.000Z

56

Energy Gap in Nuclear Matter  

Science Journals Connector (OSTI)

The magnitude of the energy gap in nuclear matter associated with a highly correlated ground state of of the type believed to be important in the theory of superconductivity has been evaluated theoretically. The integral equation of Cooper, Mills, and Sessler is linearized and transformed into a form suitable for numerical solution. The energy gap, calculated by using an appropriate single-particle potential and the Gammel-Thaler two-body potential, is found to be a very strong function of the density of nuclear matter, and of the effective mass at the Fermi surface. It is concluded that the magnitude of the energy gap for nuclear matter should not be compared directly with experimental values for finite nuclei, although the results suggest that if the theory is extended to apply to finite nuclei it probably would be in agreement with experiment.

V. J. Emery and A. M. Sessler

1960-07-01T23:59:59.000Z

57

Local Energy Gap in Deformed Carbon Nanotubes  

Science Journals Connector (OSTI)

......Local Energy Gap in Deformed Carbon Nanotubes Ken-ichi Sasaki 1 *) Yoshiyuki...gap along the axis of a deformed nanotube. We compare our energy gap results...experimental data on energy gaps in nanotubes and peapods. We also discuss the......

Ken-ichi Sasaki; Yoshiyuki Kawazoe; Riichiro Saito

2005-03-01T23:59:59.000Z

58

Domain Walls in Gapped Graphene  

Science Journals Connector (OSTI)

The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support midgap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the midgap band is partially filled, the domain wall can behave like a one-dimensional metal embedded in a semiconductor and could potentially be used as a single-channel quantum wire.

G. W. Semenoff; V. Semenoff; Fei Zhou

2008-08-21T23:59:59.000Z

59

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

60

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

62

Multiple input electrode gap controller  

DOE Patents [OSTI]

A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

1999-07-27T23:59:59.000Z

63

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

64

Project Year Project Team  

E-Print Network [OSTI]

(Karl) Zhang, Undergraduate Student, Biomedical Engineering, Whiting School of Engineering; Cheryl Kim Audio, Digital Video Project Abstract The goal of this project is to develop online modular units

Gray, Jeffrey J.

65

Line Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Line Projects BPA identifies critical infrastructure and...

66

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

67

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

68

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

69

Calibration curves for some standard Gap Tests  

SciTech Connect (OSTI)

The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

Bowman, A.L.; Sommer, S.C.

1989-01-01T23:59:59.000Z

70

Low band gap polymers Organic Photovoltaics  

E-Print Network [OSTI]

Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

71

Generation Gaps in Engineering? David J. Kim  

E-Print Network [OSTI]

Generation Gaps in Engineering? by David J. Kim B.S., Computer Science and Engineering;3 Generation Gaps in Engineering? by David J. Kim Submitted to the System Design and Management Program on May in Engineering and Management ABSTRACT There is much enthusiastic debate on the topic of generation gaps

Gabrieli, John

72

Projectivities and Projective Embeddings  

Science Journals Connector (OSTI)

In this chapter, we aim to prove some of the main achievements in the theory of generalized polygons. First, we want to show what the little projective group and the groups of projectivities of some Moufang po...

Hendrik van Maldeghem

1998-01-01T23:59:59.000Z

73

Project Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions Keeler-Pennwalt Wood Pole Removal Line Projects Line Rebuild, Relocation and Substation Projects Spacer Damper Replacement Program Wind Projects Project Overview BPA...

74

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

75

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

76

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

77

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve into teams and having each team use a different m-health data collection tool (e.g., cellular phones, smart health patterns. The Tech Fellow, Jacqueline Ferguson, will assist in creating an m-health project

Gray, Jeffrey J.

78

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

79

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

80

Functional Area Qualification Standard Gap Analysis Qualification Cards |  

Broader source: Energy.gov (indexed) [DOE]

Services » Assistance » Federal Technical Capability Program » Services » Assistance » Federal Technical Capability Program » Functional Area Qualification Standard Gap Analysis Qualification Cards Functional Area Qualification Standard Gap Analysis Qualification Cards Note: 1. Save the document from the website onto your PC and close it. 2. Open the document on your PC. Answer "No" to the question regarding whether to open the documents as read only. Chemical Processing Gap Construction Management Gap Criticality Safety Gap Emergency Management Gap Environmental Restoration Gap Facility Representative Gap Fire Protection Engineering Gap General Technical Base Gap Industrial Hygiene Gap Mechanical Systems Gap Nuclear Explosive Safety Study Gap Nuclear Safety Specialist Gap Occupational Safety Gap Quality Assurance Gap

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIS-0400: Draft Environmental Impact Statement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0400: Draft Environmental Impact Statement Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO This EIS evaluates the environmental impacts of a proposal to rebuild and upgrade the Western Area Power Administration's 12-mile Granby Pumping Plant-Windy Gap 69-kV transmission line in Grand County, Colorado. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and decided to prepare an EIS instead of completing the EA. Further information about the project is available on the project website. EIS-0400-DEIS-2012.pdf More Documents & Publications EIS-0400: Final Environmental Impact Statement EIS-0400: Notice of Intent to Prepare an Environmental Impact Statement

82

Developing Secure Power Systems Professional Competence: Alignment and Gaps  

Broader source: Energy.gov (indexed) [DOE]

Developing Secure Power Systems Professional Competence: Alignment Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs - Phase 2 (July/August 2013) Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs - Phase 2 (July/August 2013) DOE has recognized that the electricity industry needs workforce development resources that can aid in the accelerating need for Secure Power Systems Professionals, while at the same time identifying capabilities and competencies to protect and enable the modernized grid currently being built. In the spring of 2011 a project was initiated to identify those capabilities and competencies along with assessing the need and qualifications for a certification program for Secure Power Systems

83

Hotspot Gap Analysis Final 20070323  

Broader source: Energy.gov (indexed) [DOE]

HS-0003 HS-0003 Software Evaluation of Hotspot and DOE Safety Software Toolbox Recommendation U.S. Department of Energy Office of Health, Safety and Security 1000 Independence Avenue, S.W. Washington, DC 20585-2040 March, 2007 ii Foreword This report documents the outcome of an evaluation of the Safety Software Quality Assurance (SSQA) attributes of Hotspot, a health physics application, relative to the safety software requirements identified in DOE O 414.1C, Quality Assurance. This evaluation, a "gap analysis", is performed according to the implementation guide DOE G 414.1-4, and is a requisite for deciding whether Hotspot should be designated as a toolbox code for DOE's safety software Central Registry. Comments regarding this document should be addressed to:

84

FY10 LDRD Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 LDRD Projects 0 LDRD Projects 2010 Projects Page 1 LDRD Proj. No. Project Title P.I. Dept./Bldg. 07-005 Sensitive Searches for CP-Violation in Hadronic Systems Semertzidis, Y. PHYS/510A 08-002 Strongly Correlated Systems: From Graphene to Quark-Gluon Plasma Kharzeev, D. & Tsvelik, A. PHYS/CMP 08-004 Getting to Know Your Constituents: Studies of Partonic Matter at the EIC Vogelsang, W. PHYS/510A 08-005 Development of the Deuteron EDM Proposal Semertzidis, Y. PHYS/510A 08-008 Development of a Small Gap Magnets and Vacuum Chamber for eRHIC Litvinenko, V. C-AD/817 08-022 Novel Methods for Microcrystal Structure Determination at NSLS and NSLS-II Orville, A. M. BIO/463 08-025 Combined PET/MRI Multimodality Imaging Probe Schlyer, D. Med/490 08-028 Genomic DNA Methylation: The Epigenetic Response of Arabidopsis Thaliana Genome

85

Hydrothermal Exploration Data Gap Analysis Update  

Broader source: Energy.gov [DOE]

Hydrothermal Exploration Data Gap Analysis presentation by Kate Young, Dan Getman, and Ariel Esposito at the 2012 Peer Review Meeting on May 10, 2012

86

FAQS Gap Analysis Qualification Card Occupational Safety  

Broader source: Energy.gov [DOE]

Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

87

FAQS Gap Analysis Qualification Card Radiation Protection  

Broader source: Energy.gov [DOE]

Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

88

Gas mixtures for spark gap closing switches  

DOE Patents [OSTI]

Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

1987-02-20T23:59:59.000Z

89

Judith Gap Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Gap Wind Farm Gap Wind Farm Jump to: navigation, search Name Judith Gap Wind Farm Facility Judith Gap Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Northwestern Energy Location South of Judith Gap MT Coordinates 46.6005°, -109.749° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.6005,"lon":-109.749,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Narrow band gap amorphous silicon semiconductors  

DOE Patents [OSTI]

Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

Madan, A.; Mahan, A.H.

1985-01-10T23:59:59.000Z

91

Colorado | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 9, 2012 April 9, 2012 EA-1887: Finding of No Significant Impact Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) April 9, 2012 EA-1887: Supplemental Environmental Assessment Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) March 30, 2012 EIS-0400: EPA Notice of Availability of a Draft Environmental Impact Statement Grandby Pumping Plant Switchyard Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO March 20, 2012 EIS-0400: Draft Environmental Impact Statement Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO February 29, 2012 EA-1884: Draft Environmental Assessment

92

Project Year Project Team  

E-Print Network [OSTI]

; Ian Sims, Student, Electrical and Computer Engineering, Whiting School of Engineering Project Title and Jazz Theory/Keyboard I & II. Technologies Used Digital Audio, Digital Video, Graphic Design, HTML

Gray, Jeffrey J.

93

Microsoft Word - EM_CM_3_Risk_Management_Best Practices and Gaps.doc  

Broader source: Energy.gov (indexed) [DOE]

CONTRACT AND PROJECT MANAGEMENT CONTRACT AND PROJECT MANAGEMENT ROOT CAUSE ANALYSIS CORRECTIVE ACTION PLAN CORRECTIVE MEASURE 3 IDENTIFICATION OF BEST RISK MANAGEMENT PRACTICES AND ANALYSIS OF DOE RISK MANAGEMENT PLANS SUMMARY REPORT JULY 2009 ii iii Contents 1.0 Introduction......................................................................................................................... 1 2.0 Discussion of Approach...................................................................................................... 2 3.0 Summary of Gaps and Planned Next Steps ........................................................................ 7 Attachment 1- List of Risk Management Plans Reviewed ........................................................ 12 Attachment 2-Risk Management Best Practices

94

The 6/94 gap in health impact assessment  

SciTech Connect (OSTI)

Health impact assessment (HIA), a methodology that aims to facilitate the mitigation of negative and enhancement of positive health effects due to projects, programmes and policies, has been developed over the past 20-30 years. There is an underlying assumption that HIA has become a full fledged critical piece of the impact assessment process with a stature equal to both environmental and social impact assessments. This assumption needs to be supported by evidence however. Within the context of projects in developing country settings, HIA is simply a slogan without a clearly articulated and relevant methodology, offered by academia and having little or no salience in the decision-making process regarding impacts. This harsh assertion is supported by posing a simple question: 'Where in the world have HIAs been carried out?' To answer this question, we systematically searched the peer-reviewed literature and online HIA-specific databases. We identified 237 HIA-related publications, but only 6% of these publications had a focus on the developing world. What emerges is, therefore, a huge disparity, which we coin the 6/94 gap in HIA, even worse than the widely known 10/90 gap in health research (10% of health research funding is utilized for diseases causing 90% of the global burden of disease). Implications of this 6/94 gap in HIA are discussed with pointed emphasis on extractive industries (oil/gas and mining) and water resources development. We conclude that there is a pressing need to institutionalize HIA in the developing world, as a consequence of current predictions of major extractive industry and water resources development, with China's investments in these sectors across Africa being particularly salient.

Erlanger, Tobias E. [Department of Public Health and Epidemiology, Swiss Tropical Institute, CH-4002 Basel (Switzerland)], E-mail: tobias.erlanger@unibas.ch; Krieger, Gary R. [NewFields, LLC, Denver, CO 80202 (United States)], E-mail: gkrieger@newfields.com; Singer, Burton H. [Office of Population Research, Princeton University, Princeton, NJ 08544 (United States)], E-mail: singer@princeton.edu; Utzinger, Juerg [Department of Public Health and Epidemiology, Swiss Tropical Institute, CH-4002 Basel (Switzerland)], E-mail: juerg.utzinger@unibas.ch

2008-05-15T23:59:59.000Z

95

Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas  

E-Print Network [OSTI]

Bridging the Gap: Automated Steady Scaffoldings for 3D Printing J�r�mie Dumas Universit� de Figure 1: The upper leg of the Poppy robot (www.poppy-project.org) cannot be 3D printed on low cost FDM usage. Abstract Fused Filament Fabrication (FFF) is the process of 3D printing ob- jects from melted

Lévy, Bruno

96

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: £1.1M Funding Source: Departmental Construction Project Programme: Start on Site: November 2010 End Date : March 2011 Occupation Date: March 2011 For further information contact Project Manager as listed above

97

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5 operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20.imperial.ac.uk/biomedeng Construction Project Team: Project Facts & Figures: Budget: £13,095,963 Funding Source: SRIF II and Capital

98

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: Start

99

Buffalo Gap Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Gap Wind Farm Gap Wind Farm Jump to: navigation, search Name Buffalo Gap Wind Farm Facility Buffalo Gap Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Developer AES Energy Purchaser Direct Energy Location TX Coordinates 32.310556°, -100.149167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.310556,"lon":-100.149167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Gaps in the Heisenberg-Ising model  

Science Journals Connector (OSTI)

We report on the closing of gaps in the ground state of the critical Heisenberg-Ising chain at momentum ?. For half-filling, the gap closes at special values of the anisotropy ?=cos(?/Q), where Q is an integer. We explain this behavior with the help of the Bethe ansatz and show that the gap scales as a power of the system size with a variable exponent depending on ?. We use a finite-size analysis to calculate this exponent in the critical region, supplemented by perturbation theory at ??0. For rational 1/r fillings, the gap is shown to be closed for all values of ? and the corresponding perturbation expansion in ? shows a remarkable cancellation of various diagrams.

Rudolf A. Rmer; Hans-Peter Eckle; Bill Sutherland

1995-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Efficient Band Gap Prediction for Solids  

E-Print Network [OSTI]

An efficient method for the prediction of fundamental band gaps in solids using density functional theory (DFT) is proposed. Generalizing the Delta self-consistent-field (?SCF [delta SCF]) method to infinite solids, the ...

Chan, Maria K.

102

Columbia River Component Data Gap Analysis  

SciTech Connect (OSTI)

This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

L. C. Hulstrom

2007-10-23T23:59:59.000Z

103

Anomalous Doppler effects in phononic band gaps  

Science Journals Connector (OSTI)

Doppler effects in periodic acoustic media were studied theoretically and experimentally. Analytical formulas are derived using the Greens function formalism. We found that a far field observer cannot hear the sound inside a band gap from a stationary source, but a moving source can be heard even if the frequency is inside the gap, and the Doppler shifts can be inverted or anomalously large.

Xinhua Hu; Zhihong Hang; Jensen Li; Jian Zi; C. T. Chan

2006-01-30T23:59:59.000Z

104

Gap between jets at the LHC  

SciTech Connect (OSTI)

We describe a NLL BFKL calculation implemented in the HERWIG MC of the gap between jets cross section, that represent a test of BFKL dynamics. We compare the predictions with recent measurements at the Tevatron and present predictions for the LHC. We also discuss the interesting process of looking for gap between jets in diffractive events when protons are detected in the ATLAS Forward Physics (AFP) detectors.

Royon, Christophe [CEA/IRFU/Service de physique des particules, CEA/Saclay, 91191 Gif-sur-Yvette cedex (France)

2013-04-15T23:59:59.000Z

105

Beam dumping system and abort gap  

E-Print Network [OSTI]

The performance of the beam dumping systems and the abort gap cleaning are reviewed in the context of the general machine protection system. Details of the commissioning experience and setting up, encountered equipment problems, the experience with and status of the eXternal Post Operational Checks (XPOC) and the importance of operational procedures are presented for the beam dumping system. The brief experience with the abort gap cleaning is also presented.

Uythoven, J

2010-01-01T23:59:59.000Z

106

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

107

Project Year Project Team  

E-Print Network [OSTI]

information systems (GIS) tools to design maps that integrate data for visualizing geographic concepts School of Engineering Project Title GIS & Introductory Geography Audience Undergraduate students on how to use the Internet for geographic research, and an interactive introduction to GIS through online

Gray, Jeffrey J.

108

Project Management Project Managment  

E-Print Network [OSTI]

­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

Stephenson, Ben

109

Fact #609: February 8, 2010 The Transportation Petroleum Gap...  

Broader source: Energy.gov (indexed) [DOE]

09: February 8, 2010 The Transportation Petroleum Gap Fact 609: February 8, 2010 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed...

110

Fact #560: March 2, 2009 The Transportation Petroleum Gap | Department...  

Broader source: Energy.gov (indexed) [DOE]

0: March 2, 2009 The Transportation Petroleum Gap Fact 560: March 2, 2009 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed U.S....

111

Fact #687: August 8, 2011 The Transportation Petroleum Gap |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7: August 8, 2011 The Transportation Petroleum Gap Fact 687: August 8, 2011 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed U.S....

112

Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Abstract: Structure and electronic properties of...

113

Technical Standards, MELCOR - Gap Analysis - May 3, 2004 | Department...  

Energy Savers [EERE]

3, 2004 Technical Standards, MELCOR - Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MELCOR Gap Analysis This report documents the outcome of...

114

Bridging the Gap between Fundamental Physics and Chemistry and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for...

115

Project Accounts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

116

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

117

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

118

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

119

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base...

rroames

2010-01-12T23:59:59.000Z

120

Bridging The Gap 2013 | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Mar 05 2013 03-05-2013 12:00 AM - 03-06-2013 05:00 PM Oak Ridge National Laboratory hosted the third annual Bridging the Gap on March 5-6, 2013. This event brought entrepreneurs, scientists, and technology transfer experts together to explore opportunities around the lab's most promising new technologies. Oak Ridge, TN CONTACT : Email: Cassie Lopez Phone:(865) 576-9294 Add to Calendar SHARE Bridging The Gap 2013 March 5-6, 2013 (Oak Ridge, TN) Tennessee A-B-C Conference Rooms (Building 5200) Oak Ridge National Laboratory hosted the third annual Bridging the Gap on March 5-6, 2013. This event brought entrepreneurs, scientists, and technology transfer experts together to explore opportunities around the lab's most promising new technologies. Keynote Address: Innovations at ORNL, Thom Mason

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A University of Alabama Axial-Gap Electric Motor Developmenty  

E-Print Network [OSTI]

CAVT A University of Alabama Axial-Gap Electric Motor Developmenty Research Center OBJECTIVE ­ Develop axial gap permanent-magnet electric Axial motor ­ Develop axial gap permanent-magnet electric motor topologies with high torque and power densities MOTIVATION ­ Axial-gap ("pancake") motors have

Carver, Jeffrey C.

122

Oscillation of Fourier Integrals with a spectral gap  

E-Print Network [OSTI]

May 30, 2003 ... In engineering literature, functions with a spectral gap are called high- .... High-

1910-30-71T23:59:59.000Z

123

Project Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

1997-03-28T23:59:59.000Z

124

Manufacturing Fuel Cell Manhattan Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

125

Natural Gas Engine Development Gaps (Presentation)  

SciTech Connect (OSTI)

A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

Zigler, B.T.

2014-03-01T23:59:59.000Z

126

Closing Gaps in Modeling Multifamily Retrofits  

Broader source: Energy.gov (indexed) [DOE]

Building America Technical Update Meeting Denver, Colorado April 30, 2013 Jordan Dentz, The Levy Partnership., Inc. Closing Gaps in Modeling Multifamily Retrofits Advanced Residential Integrated Energy Solutions Overview * Multifamily modeling inputs (BA House Simulation Protocols) * Important multifamily measures * Other MF gaps Vital to meet 50% goals and therefore important to include in Building America's multifamily modeling capabilities Model Inputs * Heating set point * Cooling set point * Behavior assumptions 3 Heating Set Point - Central Systems * House simulation protocol assumes 71°F * Overheating is common * Approach: adjust modeled heating set point - how much? * Average heating season indoor temperature was 76°F in a sample of 18 buildings (ARIES 2013a)

127

Improved gap size estimation for scaffolding algorithms  

Science Journals Connector (OSTI)

......and 950 bp. The contigs were set to a fixed size of 3000 bp...three read libraries and four sets of contigs). The results of...parts of the distribution fail to cover the gap and only the longest...we simulated four different sets of contigs from the genome with......

Kristoffer Sahlin; Nathaniel Street; Joakim Lundeberg; Lars Arvestad

2012-09-01T23:59:59.000Z

128

Energy Gaps in a Spacetime Crystal  

E-Print Network [OSTI]

This paper presents an analysis of the band structure of a spacetime potential lattice created by a standing electromagnetic wave. We show that there are energy band gaps. We estimate the effect, and propose a measurement that could confirm the existence of such phenomena.

L. P. Horwitz; E. Z. Engelberg

2009-11-08T23:59:59.000Z

129

Spark gap device for precise switching  

DOE Patents [OSTI]

A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

Boettcher, Gordon E. (Albuquerque, NM)

1984-01-01T23:59:59.000Z

130

Spark gap device for precise switching  

DOE Patents [OSTI]

A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

Boettcher, G.E.

1984-10-02T23:59:59.000Z

131

Science Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

132

Projection Systems  

Science Journals Connector (OSTI)

As a general rule, broad-band sources which employ projection optics are the most difficult to evaluate. In addition to the problems encountered in evaluating exposed lamps, one must characterize the projected...

David Sliney; Myron Wolbarsht

1980-01-01T23:59:59.000Z

133

Circle Project  

E-Print Network [OSTI]

This project asks students to decide if a collection of points in space do or do not lie on a ... The project is accessible to linear algebra students who have studied...

134

Hydropower Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

135

The Windy Prize-Collecting Rural Postman Problem:  

E-Print Network [OSTI]

Note that each edge in the graph gives rise to two arcs, for both of which the traversal-benefit is .... the current level of pheromone for arc (v, w), ?vw. We compute.

2014-04-14T23:59:59.000Z

136

Bridging the Gap 2011 | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Apr 05 2011 04-05-2011 08:00 AM - 04-06-2011 05:00 PM Oak Ridge National Laboratory's Partnerships Directorate will host Bridging the Gap, a unique technology commercialization event, April 5-6 at Oak Ridge National Laboratory. Oak Ridge, TN Oak Ridge National Laboratory CONTACT : Email: Cassie Lopez Phone:(865) 576-9294 Add to Calendar SHARE Oak Ridge National Laboratory's Partnerships Directorate will host Bridging the Gap, a unique technology commercialization event, April 5-6 at Oak Ridge National Laboratory. The event will provide investors and entrepreneurs opportunities to learn about promising ORNL technologies available for license and to hear from ORNL licensees seeking growth capital. There will also be opportunities to tour ORNL's world-class research facilities and network with some of the

137

Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

138

Bridging the Gap: Linking Simulation and Testing  

SciTech Connect (OSTI)

The Materials Genome Initiative (MGI) which is a key enabler for the Advanced Manufacturing Partnership, announced in 2011 by U.S. President Barack Obama, was established to accelerate the development and deployment of advanced materials. The MGI is driven by the need to "bridge the gap" between (I) experimental results and computational analysis to enable the rapid development and validation of new mateirals, and (II) the processes required to convert these materials into useable goods.

Krajewski, Paul E.; Carsley, John; Stoudt, Mark R.; Hovanski, Yuri

2012-09-01T23:59:59.000Z

139

Entanglement Sudden Death in Band Gaps  

E-Print Network [OSTI]

Using the pseudomode method, we evaluate exactly time-dependent entanglement for two independent qubits, each coupled to a non-Markovian structured environment. Our results suggest a possible way to control entanglement sudden death by modifying the qubit-pseudomode detuning and the spectrum of the reservoirs. Particularly, in environments structured by a model of a density-of-states gap which has two poles, entanglement trapping and prevention of entanglement sudden death occur in the weak-coupling regime.

Ying-Jie Zhang

2009-11-10T23:59:59.000Z

140

Fabrication of photonic band gap materials  

DOE Patents [OSTI]

A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

Constant, Kristen (Ames, IA); Subramania, Ganapathi S. (Ames, IA); Biswas, Rana (Ames, IA); Ho, Kai-Ming (Ames, IA)

2002-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NSLS prototype small-gap undulator (PSGU)  

SciTech Connect (OSTI)

The NSLS Prototype Small-Gap Undulator (PSGU) will serve as a tool to study lifetime degradation and the onset of beam instabilities as the beam duct aperture is decreased. The device will consist of variable-gap vacuum vessel had a permanent magnet undulator, with independent magnet-gap control. The vacuum vessel design attempts to minimize both residual gas pressures and beam impedances. The undulator will be 320 mm long and utilizes a pure-permanent-magnet structure with 6 blocks per 16 mm period. For a nominal operating aperture of 4 mm, PSGU will produce a peak brightness in the fundamental and third harmonic of 7 {times} 10{sup 16} and 1 {times} 10{sup 16} photons{sm bullet}sec{sup {minus}1}{sm bullet}mrad{sup {minus}2}mm{sup {minus}2}{sm bullet}(0.1% BW){sup {minus}1} at photon energies of 2.5 keV and 7.5 keV, respectively. 5 refs., 3 figs., 2 tabs.

Stefan, P.M.; Solomon, L.; Krinsky, S. (Brookhaven National Lab., Upton, NY (United States)); Rakowsky, G. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.)

1991-01-01T23:59:59.000Z

142

Methodology for Defining Gap Areas between Course-over-ground Locations  

SciTech Connect (OSTI)

Finding all areas that lie outside some distance d from a polyline is a problem with many potential applications. This application of the Visual Sample Plan (VSP) software required finding all areas that were more than distance d from a set of existing paths (roads and trails) represented by polylines. An outer container polygon (known in VSP as a sample area) defines the extents of the area of interest. The term gap area was adopted for this project, but another useful term might be negative coverage area. The project required a polygon solution rather than a raster solution. The search for a general solution provided no results, so this methodology was developed

Wilson, John E.

2013-09-30T23:59:59.000Z

143

Bridging the Gap: a Symbiotic Approach.  

E-Print Network [OSTI]

??Some architectural themes to be explored in this project have to deal with sustainability, passive environment systems, the play between new and old, and public (more)

Czarniecki, Nicholas

2009-01-01T23:59:59.000Z

144

Technical Standards, GENII- Gap Analsis - May 3, 2004 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Technical Standards, GENII- Gap Analsis - May 3, 2004 Technical Standards, GENII- Gap Analsis - May 3, 2004 Technical Standards, GENII- Gap Analsis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: GENII Gap Analysis The GENII software, for radiological dispersion and consequence analysis, is one of the codes designated for the toolbox. To determine the actions needed to bring the GENII code into compliance with the SQA qualification criteria, and develop an estimate of the resources required to perform the upgrade, the Implementation Plan has committed to sponsoring a code-specific gap analysis document. Technical Standards, GENII- Gap Analsis More Documents & Publications Guidance on GENII computer code - July 6, 2004 Technical Standards, ALOHA-Gap Analysis - May 3, 2004 Technical Standards, MELCOR - Gap Analysis - May 3

145

Fact #610: February 15, 2010 All Sectors' Petroleum Gap | Department...  

Energy Savers [EERE]

10: February 15, 2010 All Sectors' Petroleum Gap Fact 610: February 15, 2010 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the...

146

Fact #688: August 15, 2011 All Sectors' Petroleum Gap | Department...  

Energy Savers [EERE]

8: August 15, 2011 All Sectors' Petroleum Gap Fact 688: August 15, 2011 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the...

147

Substrate-Induced Band-Gap Opening in Epitaxial Graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to...

148

Planar graphene-narrow-gap semiconductor-graphene heterostructure  

Science Journals Connector (OSTI)

A planar heterostructure composed of two graphene films between which a narrow-gap semiconductor ... paradox is absent when conical points of the graphene Brillouin zone are in the band gap...

P. V. Ratnikov; A. P. Silin

2008-11-01T23:59:59.000Z

149

To Bridge LEDs' Green Gap, Scientists Think Small  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

To Bridge LEDs' Green Gap, Scientists Think Small To Bridge LEDs' Green Gap, Scientists Think Small Nanostructures Half a DNA Strand-Wide Show Promise for Efficient LEDs April 4,...

150

Substrate-induced band gap opening in epitaxial graphene  

E-Print Network [OSTI]

H.A. Electronic states of graphene nanoribbons studied withS.G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev.band-gap engineering of graphene nanoribbons. Phys. Rev.

2008-01-01T23:59:59.000Z

151

Technical Standards, MACCS2, Gap Analysis - May 3, 2004 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3, 2004 Technical Standards, MACCS2, Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MACCS2 Gap Analysis The MACCS2 software, for radiological...

152

Functional Area Qualification Standard Gap Analysis Qualification Cards  

Broader source: Energy.gov [DOE]

FAQS Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

153

Intelligent Assistants for Filling Critical Gaps in GIS  

E-Print Network [OSTI]

Intelligent Assistants for Filling Critical Gaps in GIS A Research Program April 1992 David Lanter, Intelligent Assistants for Filling Critical Gaps In GIS, was sponsored by Southern California Edison Company: · An analysis of critical gaps in current geographic information systems (GIS) that impede their use for spatial

California at Santa Barbara, University of

154

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

155

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

156

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

157

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

158

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

159

Discontinued Projects  

Broader source: Energy.gov [DOE]

This page lists projects that received a loan or a loan guarantee from DOE, but that are considered discontinued by LPO for one of several reasons.

160

project management  

National Nuclear Security Administration (NNSA)

the Baseline Change Proposal process. Two 400,000-gallon fire protection water supply tanks and associated pumping facilities were added. Later in the project, an additional...

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Custom Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Incentive Payment - The ESIP works with utility, industry, and BPA to complete the measurement and verification, reporting and development of a custom project completion...

162

Magneto-transport properties of gapped graphene  

Science Journals Connector (OSTI)

Based on the Kubo formula, we have studied the electron transport properties of a gapped graphene in the presence of a strong magnetic field. By solving the Dirac equation, we find that the Landau level spectra in two valleys differ from each other in that the n = 0 level in the K valley is located at top of the valence band, whereas it is at the bottom of the conduction band in the K' valley. Thus, in an individual valley, the symmetry between conduction and valence bands is broken by the presence of a magnetic field. By using the self-consistent Born approximation to treat the long range potential scattering, we formulate the diagonal and the Hall conductivities in terms of the Green function. To perform the numerical calculation, we find that a large bandgap can suppress the quantum Hall effect, owing to the enhancement of the bandgap squeezing the spacing between the low-lying Landau levels. On the other hand, if the bandgap is not very large, the odd integer quantum Hall effect experimentally, observed in the gapless graphene, remains in the gapped one. However, such a result does not indicate the half integer quantum Hall effect in an individual valley of the gapped graphene. This is because the heights of the Hall plateaux in either valley can be continuously tuned by the variation of the bandgap. More interestingly, we find that the height of the diagonal conductivity peak corresponding to the n = 0 Landau level is independent of the bandgap if the scattering is not very strong. In the weak scattering limit, we demonstrate analytically that such a peak takes a universal value e2/(h?), regardless of the bandgap.

Liwei Jiang; Yisong Zheng; Haidong Li; Honghai Shen

2010-01-01T23:59:59.000Z

163

Whistling Ridge Energy Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Whistling Ridge Energy Project Bonneville Power...

164

Note On The Maximal Primes Gaps  

E-Print Network [OSTI]

This note presents a result on the maximal prime gap of the form p_(n+1) - p_n 0 is a constant, for any arbitrarily small real number e > 0, and all sufficiently large integer n > n_0. Equivalently, the result shows that any short interval [x, x + y], y => C(log x)^(1+e), contains prime numbers for all sufficiently large real numbers x => x_0 unconditionally. An application demonstrates that a prime p => x > 2 can be determined in deterministic polynomial time O(log(x)^8).

N. A. Carella

2015-02-05T23:59:59.000Z

165

Turbine blade tip gap reduction system  

SciTech Connect (OSTI)

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

166

Complexified cones. Spectral gaps and variational principles  

E-Print Network [OSTI]

We consider contractions of complexified real cones, as recently introduced by Rugh in [Rugh10]. Dubois [Dub09] gave optimal conditions to determine if a matrix contracts a canonical complex cone. First we generalize his results to the case of complex operators on a Banach space and give precise conditions for the contraction and an improved estimate of the size of the associated spectral gap. We then prove a variational formula for the leading eigenvalue similar to the Collatz-Wielandt formula for a real cone contraction. Morally, both cases boil down to the study of suitable collections of 2 by 2 matrices and their contraction properties on the Riemann sphere.

Dubois, Loc

2010-01-01T23:59:59.000Z

167

Ideal Soliton Environment Using Parametric Band Gaps  

Science Journals Connector (OSTI)

Simultaneous solitary wave solutions for laser propagation in nonlinear parametric media with up to ( 3+1) dimensions are proved to exist. The combination of the large dispersion of a Bragg grating and the strong nonlinearity of ?(2) optical material results in stable behavior with short interaction distances and low power requirements. The solutions are obtained by using the effective mass approximation to reduce the coupled propagation equations to those describing a dispersive parametric nonlinear waveguide, and are verified by solving the complete set of coupled band-gap equations numerically.

H. He and P. D. Drummond

1997-06-09T23:59:59.000Z

168

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

169

Project title:  

Broader source: Energy.gov (indexed) [DOE]

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

170

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

171

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

172

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

173

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

174

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

175

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

176

Extended Supersymmetry in Gapped and Superconducting Graphene  

E-Print Network [OSTI]

In view of the many quantum field theoretical descriptions of graphene in $2+1$ dimensions, we present another field theoretical feature of graphene, in the presence of defects. Particularly, we shall be interested in gapped graphene in the presence of a domain wall and also for superconducting graphene in the presence of a vortex. As we explicitly demonstrate, the gapped graphene electrons that are localized on the domain wall are associated with four $N=2$ one dimensional supersymmetries, with each pair combining to form an extended $N=4$ supersymmetry with non-trivial topological charges. The case of superconducting graphene is more involved, with the electrons localized on the vortex being associated with $n$ one dimensional supersymmetries, which in turn combine to form an $N=2n$ extended supersymmetry with no-trivial topological charges. As we shall prove, all supersymmetries are unbroken, a feature closely related to the number of the localized fermions and also to the exact form of the associated oper...

Oikonomou, V K

2014-01-01T23:59:59.000Z

177

Extended Supersymmetry in Gapped and Superconducting Graphene  

E-Print Network [OSTI]

In view of the many quantum field theoretical descriptions of graphene in $2+1$ dimensions, we present another field theoretical feature of graphene, in the presence of defects. Particularly, we shall be interested in gapped graphene in the presence of a domain wall and also for superconducting graphene in the presence of a vortex. As we explicitly demonstrate, the gapped graphene electrons that are localized on the domain wall are associated with four $N=2$ one dimensional supersymmetries, with each pair combining to form an extended $N=4$ supersymmetry with non-trivial topological charges. The case of superconducting graphene is more involved, with the electrons localized on the vortex being associated with $n$ one dimensional supersymmetries, which in turn combine to form an $N=2n$ extended supersymmetry with no-trivial topological charges. As we shall prove, all supersymmetries are unbroken, a feature closely related to the number of the localized fermions and also to the exact form of the associated operators. In addition, the corresponding Witten index is invariant under compact and odd perturbations.

V. K. Oikonomou

2014-11-30T23:59:59.000Z

178

UCPath Project Status Report Report Date May 25, 2012 Project Director  

E-Print Network [OSTI]

finalized and will be posted next week. Functional SMEs are focused on analysis of functional gaps. The UCPath Center project team is rapidly ramping up while also making progress in the technology identified at each location to provide local leadership and coordination. In addition, the Shared Technology

Russell, Lynn

179

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

180

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

182

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

183

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

184

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

185

Pseudogap and Superconducting Gap in High-Temperature Superconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pseudogap and Superconducting Gap in Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting gap, appears at the superconducting transition temperature Tc where the resistance also vanishes. For high temperature superconductors, the story is more complicated. Over a wide region of compositions and temperatures, there exists an energy gap well above Tc. This energy gap is called pseudogap [1], because there is no direct correlation to the superconducting transition. The origin of this pseudogap and its relation to the superconducting gap are believed to hold the key for understanding the mechanism of high-Tc superconductivity - one of the outstanding problems in condensed matter physics. In this regard, researchers Kiyohisa Tanaka and Wei-Sheng Lee, along with their co-workers in Prof. Zhi-Xun Shen's group at Stanford University, have recently made an important discovery about the coexistence of two distinct energy gaps that have opposite doping dependence. Their observation not only provides a natural explanation for the contradictory results about the superconducting gap deduced from different experimental techniques, but also has profound implications on the mechanism of high-Tc superconductivity.

186

Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting  

DOE Patents [OSTI]

The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap. 4 figs.

Williamson, R.L.; Zanner, F.J.; Grose, S.M.

1998-01-13T23:59:59.000Z

187

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

Not Available

1992-07-01T23:59:59.000Z

188

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

189

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

190

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

191

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

192

LUCF Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

193

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

194

Project Title:  

Broader source: Energy.gov (indexed) [DOE]

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

195

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

196

Project X  

E-Print Network [OSTI]

provided by Project X would be a cost- effective approach toin Section I and for the cost estimate necessary as part ofby DOE order 413.3b. The cost range required for CD-0 will

Holmes, Steve

2014-01-01T23:59:59.000Z

197

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

198

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

199

NETL: News Release - Data Acquisition Processor Fills Gap for Extreme  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, 2010 9, 2010 Data Acquisition Processor Fills Gap for Extreme Down-hole Conditions Honeywell Develops Unique Reprogrammable High Temperature Device Morgantown, WV - Honeywell International, Inc. has developed a Reconfigurable Processor for Data Acquisition (RPDA) - a reprogrammable, multi-functional device that can operate at temperatures up to 250oC (482oF). The system is housed in a rugged package suitable for deep down-hole oil and natural gas logging and measurement-while-drilling (MWD) operations, and permanent wellbore installation applications. The project was funded through a cooperative agreement with the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy's Oil and Natural Gas Program. Deep wells are generally defined as having a true vertical depth (TVD) greater than 15,000 feet, while ultra-deep wells are deeper than 25,000 feet TVD. Potential recoverable natural gas and oil resources from deep formations are significant, and deep wells tend to produce at much higher daily rates than conventional shallower wells.

200

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report  

Broader source: Energy.gov (indexed) [DOE]

41 41 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman July 2013 PNNL- 22641 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman Contributors: SGC Panel Members July, 2013 Prepared by: Pacific Northwest National Laboratory and NBISE Secure Power Systems Professional Project Team This document is a summarization of the report, Developing Secure Power Systems

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Structural organization of gap junction channels  

Science Journals Connector (OSTI)

Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.

Gina E. Sosinsky; Bruce J. Nicholson

2005-01-01T23:59:59.000Z

202

Software Quality Assurance Improvment Plan: CFAST Gap Analysis, Final Report  

Broader source: Energy.gov (indexed) [DOE]

EH-4.2.1.3-CFAST-Gap Analysis EH-4.2.1.3-CFAST-Gap Analysis Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.3: Software Quality Assurance Improvement Plan: CFAST Gap Analysis Final Report U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 May 2004 CFAST Gap Analysis May 2004 Final Report ii INTENTIONALLY BLANK CFAST Gap Analysis May 2004 Final Report iii FOREWORD This report documents the outcome of an evaluation of the Software Quality Assurance (SQA) attributes of the CFAST computer code for accident analysis applications, relative to established requirements. This evaluation, a "gap analysis," is performed to meet commitment 4.2.1.3 of the Department of Energy's

203

Technical Standards, MELCOR - Gap Analysis - May 3, 2004 | Department of  

Broader source: Energy.gov (indexed) [DOE]

MELCOR - Gap Analysis - May 3, 2004 MELCOR - Gap Analysis - May 3, 2004 Technical Standards, MELCOR - Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MELCOR Gap Analysis This report documents the outcome of an evaluation of the Software Quality Assurance (SQA) attributes of the MELCOR computer code for leak path factor applications, relative to established software requirements. This evaluation, a "gap analysis," is performed to meet Commitment 4.2.1.3 of the Department of Energy's Implementation Plan to resolve SQA issues identified in the Defense Nuclear Facilities Safety Board Recommendation 2002-1. Technical Standards, MELCOR - Gap Analysis More Documents & Publications Technical Standards, Guidance on MELCOR computer code - May 3, 2004

204

Two-gap elliptic solutions of the Boussinesq equation  

SciTech Connect (OSTI)

Two-gap solutions of the Boussinesq equation are considered. It is shown that for almost every Riemann surface {gamma} of genus g=2 covering the elliptic surface it is possible to construct an elliptic (in x) two-gap solution of the Boussinesq equation. The existence of third- and fourth-order differential operators with elliptic 'two-gap' potentials having an arbitrary number of poles is also established. An example is given.

Smirnov, A O [Saint-Petersburg State University of Aerospace Instrumentation, Saint-Petersburg (Russian Federation)

1999-06-30T23:59:59.000Z

205

Project Fact Sheet Project Update  

E-Print Network [OSTI]

medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

206

Preparing for Project Implementation Financing Project Implementation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Project Implementation Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference...

207

Combined Heat and Power: Connecting the Gap between Markets and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I) Susanne Brooks, Brent Elswick, and R. Neal Elliott March 2006...

208

To Bridge LEDs' Green Gap, Scientists Think Small  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

emitting diodes (LEDs), especially in the "green gap," a portion of the spectrum where LED efficiency plunges, simulations at the U.S. Department of Energy's National Energy...

209

FAQS Gap Analysis Qualification Card Civil Structural Engineering  

Broader source: Energy.gov [DOE]

Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

210

Substrate-Induced Band-Gap Opening in Epitaxial Graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

211

FAQS Gap Analysis Qualification Card - Technical Training | Department...  

Broader source: Energy.gov (indexed) [DOE]

Description Technical Training Gap Analysis Qualification Card More Documents & Publications DOE-STD-1179-2004 DOE-HDBK-1078-94 FAQS Reference Guide - Technical Training...

212

Catalysis by Design: Bridging the Gap between Theory and Experiments...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research...

213

FAQS Gap Analysis Qualification Card Nuclear Safety Specialist  

Broader source: Energy.gov [DOE]

Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

214

Information Gap Decision Theory based OPF with HVDC Connected ...  

E-Print Network [OSTI]

curve as well as the uncertainties of wind power generation. Information gap .... its own advantages and disadvantages, which are summarized as follows.

2014-12-01T23:59:59.000Z

215

Method for Creating Photonic Band Gap Materials - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a photonic band gap. These microstructures have the potential to change the way optoelectronic devices, such as photodiodes, LEDs, and integrated optical circuit elements, are...

216

Minding the Gap Makes for More Efficient Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties of these materials go through a dramatic change that makes them ideal for solar energy applications. These materials can go from indirect band gap semiconductors to...

217

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

218

Project Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

219

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

220

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

222

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

223

Research projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

224

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

225

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

226

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

227

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

228

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

229

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

230

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

231

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

232

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

233

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

234

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

235

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

236

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

237

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

238

Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2  

E-Print Network [OSTI]

Project Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2 EXECUTIVE SUMMARY The purpose of the UBC Project Services web-based project management portal project on campus within Project Services, and with the rest of the UBC community. We began this project by defining

239

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

240

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hallmark Project  

Broader source: Energy.gov (indexed) [DOE]

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

242

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

243

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

244

Cloudnet Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

Hogan, Robin

245

PROJECT REQUEST FORM PROJECT HOLDER INFORMATION  

E-Print Network [OSTI]

PROJECT REQUEST FORM Last Name: Email: PROJECT HOLDER INFORMATION UCID:Last Name: Email: Institute if different than Project Holder) First Name: Project Short Name: (50 characters max) (for eFIN view only) Project Title: PROJECT INFORMATION Start Date (MM/DD/YYYY): End Date (MM/DD/YYYY): For Questions or HELP

de Leon, Alex R.

246

Airline Pilot Demand Projections What this is-  

E-Print Network [OSTI]

sources of fleet projections Utilized Boeing Fleet assumptions to try and fill in Gaps (1.4% annual fleet growth) Aircraft Orders 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Boeing 737 Max 8/9 0 0 0 0 1 7 7 7 7 7 Boeing 737 700 0 0 0 0 0 0 0 0 0 0 Boeing 737 800 0 0 0 0 0 0 0 0 0 0 Boeing 737 900 9 6 6 6

Bustamante, Fabián E.

247

Electronic materials with a wide band gap: recent developments  

Science Journals Connector (OSTI)

Usually, semiconductors with a band gap Eg 3 eV or larger are called wide band gap materials. Their optical emission can span the whole of the visible spectrum, enabling the development of devices for solid-state lighting. In addition, a large Eg results in a high electrical breakthrough field, which is interesting for high-power electronics.

Klimm, D.

2014-08-29T23:59:59.000Z

248

Rural Microfinance Service Delivery: Gaps, Inefficiencies and Emerging Solutions  

E-Print Network [OSTI]

Rural Microfinance Service Delivery: Gaps, Inefficiencies and Emerging Solutions Tapan S. Parikh emerged as one of the most promising avenues for stimulating rural economic devel- opment through local enterprise. In this paper we will discuss some of the major technology gaps faced by rural microfinance

Parikh, Tapan S.

249

ERDC/CERLTR-05-38 Determining Research Gaps  

E-Print Network [OSTI]

ERDC/CERLTR-05-38 Determining Research Gaps in Disturbance Data for Fort Bliss and a Conceptual-38 November 2005 Determining Research Gaps in Disturbance Data for Fort Bliss and a Conceptual Model Tamara Bliss #12;ABSTRACT Numerous research and outside monitoring efforts have been completed for Fort Bliss

Fehmi, Jeffrey S.

250

Substrate-Induced Band-Gap Opening in Epitaxial Graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key characteristic of all semiconductors, an energy gap (band gap) in its electronic band structure. A multi-institutional collaboration under the leadership of researchers with Berkeley Lab and the University of California, Berkeley, have now demonstrated that growing an epitaxial film of graphene on a silicon carbide substrate results in a significant band gap, 0.26 electron volts (eV), an important step toward making graphene useful as a semiconductor.

251

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Broader source: Energy.gov (indexed) [DOE]

Analysis Analysis Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis While both wet and dry storage have been shown to be safe options for storing used nuclear fuel (UNF), the focus of the program is on dry storage of commercial UNF at reactor or centralized locations. This report focuses on the knowledge gaps concerning extended storage identified in numerous domestic and international investigations and provides the Used Fuel Disposition Campaign"s (UFDC) gap description, any alternate gap descriptions, the rankings by the various organizations, evaluation of the priority assignment, and UFDC-recommended action based on the comparison. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis More Documents & Publications

252

Spectral gap and logarithmic Sobolev constant for continuous spin systems  

E-Print Network [OSTI]

The aim of this paper is to study the spectral gap and the logarithmic Sobolev constant for continuous spin systems. A simple but general result for estimating the spectral gap of finite dimensional systems is given by Theorem 1.1, in terms of the spectral gap for one-dimensional marginals. The study of the topic provides us a chance, and it is indeed another aim of the paper, to justify the power of the results obtained previously. The exact order in dimension one (Proposition 1.4), and then the precise leading order and the explicit positive regions of the spectral gap and the logarithmic Sobolev constant for two typical infinite-dimensional models are presented (Theorems 6.2 and 6.3). Since we are interested in explicit estimates, the computations become quite involved. A long section (Section 4) is devoted to the study of the spectral gap in dimension one.

Mu-Fa Chen

2010-04-26T23:59:59.000Z

253

Substrate-Induced Band-Gap Opening in Epitaxial Graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key characteristic of all semiconductors, an energy gap (band gap) in its electronic band structure. A multi-institutional collaboration under the leadership of researchers with Berkeley Lab and the University of California, Berkeley, have now demonstrated that growing an epitaxial film of graphene on a silicon carbide substrate results in a significant band gap, 0.26 electron volts (eV), an important step toward making graphene useful as a semiconductor.

254

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

RCS1 Sub-station HV Installation completed in April 2011 In defects until April 2012 For more Project Manager: Rob Pask Phase 2a RCS1 Sub-station enclosing works completed in December 2010 Phase 2b when completed will provide a new 11,000 volt electrical substation, switching gear and associated

255

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

256

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

257

Project 307  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

258

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline * Benefit to the program * Project overview: Why 14 C for MVA? * Technical status: Cartridges, injections, lasers * Summary * Organizational chart * Collaborators 3 Benefit to the Program * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Permanent storage of CO 2 can be demonstrated by adding carbon-14 ( 14 C) prior to injection. This research project aims to demonstrate this by tagging fossil CO 2 with 14 C at a field site. When completed, this system will show that 14 C can be a safe and effective tracer for sequestered CO 2 . A laser-based 14 C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent

259

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Pathways and Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO 2 Project DE-FC26-0xNT4 FE0001786 James P. Evans Utah State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Goals and Objectives * Relationship to overall program goals * Overview of seal bypass * Technical status; bypass systems - Field based studies - Technological advances * Accomplishments and Summary * Appendices 3 Benefit to the Program * Program goals addressed * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

260

Project 301  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael G. Waddell Earth Sciences and Resources Institute University of South Carolina U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 2 Presentation Outline * Project goals and benefits * Overview of the geology of the South Georgia Rift basin in SC * Results of petrographic and core analysis from the Rizer #1 * Future investigations in the SGR * Summary 3 Benefit to the Program Program Goals: * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected

262

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

263

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mart Oostrom Mart Oostrom Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by a memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly reducing the environmental emissions and improving the efficiency of

264

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Evaluation of Geophysical Methods for Monitoring and Tracking CO 2 Migration in the Subsurface PI: Jeffrey Daniels Co-PI: Robert Burns & Franklin Schwartz Students: Michael Murphy & Kyle Shalek The Ohio State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 3 Benefit to the Program * Program Goal: Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones

265

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

266

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

267

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

268

Irene Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

269

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

270

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

271

Project Description  

Broader source: Energy.gov (indexed) [DOE]

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

272

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

273

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

274

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

275

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

276

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

277

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO 2 sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions * A simulator that can fully model these processes does not currently exist * Simulator will contribute to our ability to predict CO 2 storage capacity in geologic formations, to within ±30 percent 4 Project Overview: Goals and Objectives Comprehensive reservoir simulator for investigation of CO 2 non-isothermal, multiphase flow and long-term storage in

278

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas J. Wolery Thomas J. Wolery Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 LLNL-PRES-574632 2 Team Members * Roger Aines * Bill Bourcier * Tom Wolery * Tom Buscheck * Tom Wolfe (consultant) * Mike DiFilippo (consultant) * Larry Lien (Membrane Development Specialists) 3 Presentation Outline * Overview of Active CO 2 Reservoir Management (ACRM) * Subsurface Reservoir Management: Made Possible by Brine Production, Yielding Many Benefits * Brine Disposal Options - What brines are out there? - What are the treatment options? 4 Benefit to the Program * This project is identifying and evaluating

279

Accelerating projects  

SciTech Connect (OSTI)

This chapter describes work at ORNL in the period around 1950, when the laboratory was evolving from its original mission of research aimed at producing the atomic bomb, to a new mission, which in many ways was unclear. The research division from Y-12 merged with the laboratory, which gave an increased work force, access to a wide array of equipment, and the opportunity to work on a number of projects related to nuclear propulsion. The first major project was for a nuclear aircraft. From work on this program, a good share of the laboratories work in peaceful application of nuclear energy would spring. A major concern was the development of light weight shielding to protect the crew and materials in such a plane. To do such shielding work, the laboratory employed existing, and new reactors. The original plans called for the transfer of reactor work to Argonne, but because of their own research load, and the needs of the lab, new reactor projects were started at the lab. They included the Low Intensity Test Reactor, the Swimming Pool Reactor, the Bulk Shielding Reactor, the Tower Shielding Facility, and others. The laboratory was able to extend early work on calutrons to accelerator development, pursuing both electrostatic accelerators and cyclotrons. The aircraft project also drove the need for immense quantities of scientific data, with rapid analysis, which resulted the development of divisions aimed at information support and calculational support. The laboratory also expanded its work in the effects of radiation and cells and biological systems, as well as in health physics.

Not Available

1992-01-01T23:59:59.000Z

280

Bridging the Gaps of High-Tc Superconductor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bridging the Gaps of High-Tc Bridging the Gaps of High-Tc Superconductor Since the discovery of high-temperature superconductor by Bednorz and Müller in 1986, this field has become one of the most important research topics in solid state physics. In the past 20 years many unconventional properties have been discovered in this new class of materials. These have challenged our conventional wisdom and driven the development of many novel theories. Among these discoveries, the most mysterious is probably the pseudogap phenomena: it has been observed that there is an energy gap above the superconducting transition temperature (TC) that persists over a wide range of temperatures and chemical compositions [1]. This peculiar behavior appears to be very different from a conventional superconductor. Here the electrons form so-called "Cooper pairs", which manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting gap, appears only below TC where the electrical resistance also vanishes (hence the name 'superconductor'). This important difference has stimulated lots of debate in the search of understanding high-TC superconductivity on questions such as: "What is the pseudogap?" and "What is its relation to superconducting gap and superconductivity at high temperature?"

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Research Projects | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Projects Basic Energy Science Projects AA (Fossil Energy) Projects EERE-VT Projects EERE-ED Projects ARPA-E Projects...

282

Software Quality Assurance Improvment Plan: ALOHA Gap Analysis, Final Report  

Broader source: Energy.gov (indexed) [DOE]

Final-ALOHA Final-ALOHA Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.3: Software Quality Assurance Improvement Plan: ALOHA Gap Analysis Final Report U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 May 2004 ALOHA Gap Analysis May 2004 Final Report INTENTIONALLY BLANK ii ALOHA Gap Analysis May 2004 Final Report FOREWORD This report documents the outcome of an evaluation of the Software Quality Assurance (SQA) attributes of the chemical source term and atmospheric dispersion computer code, ALOHA 5.2.3, relative to established

283

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

William Bourcier William Bourcier Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Saline Aquifer Brine Production Well Brine Injection Well Chiller Pretreatment Desalination Brine Permeate To power plant or other use Storage pump CO 2 injection Concept is to extract and desalinate aquifer brines to create fresh water and space for CO 2 storage cap-rock 3 Presentation Outline * Overview, Purpose, Goals and Benefits * Technical status - Brine treatment and disposition - Reservoir management * Accomplishments * Summary and Planned work Goals and Objectives Technical Goals Potential advantages of brine

284

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metrics for Screening CO Metrics for Screening CO 2 Utilization Processes Peter Kabatek Energy Sector Planning and Analysis (ESPA) Services / WorleyParsons U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * NETL's Carbon Storage Program * Introduction of the metrics * Review of the case study technology * Application of metrics to the case study technology * Discussion of metrics interpretation and grouping 3 NETL Carbon Storage Program * The Carbon Storage Program contains three key elements: - Infrastructure - Global Collaborations - Core Research and Development: * Monitoring, Verification and Accounting (MVA) * Geologic Storage

285

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Reservoir Simulation Model * Intelligent Leakage Detection System (ILDS) * Accomplishments * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. CO2 Leakage(X,Y,Q) Artificial Intelligence & Data Mining Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 : * Conference call * Site selection criteria - November 17 th 2009: * A meeting during the Regional Carbon Sequestration Partnership Meeting in Pittsburgh

286

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Factors Influencing Factors Influencing CO 2 Storage Capacity and Injectivity in Eastern Gas Shales Contract No. DE-FE0004633 Michael Godec, Vice President Advanced Resources International mgodec@adv-res.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Benefits * Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefits to the Program * Program Goals Addressed - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

287

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training and Research Peter M. Walsh University of Alabama at Birmingham U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh, Pennsylvania August 21-23, 2012 DE-FE0002224 * Evaluation of the sealing capacity of caprocks serving as barriers to upward migration of CO 2 sequestered in geologic formations. * Education and training of undergraduate and graduate students, through independent research on geologic sequestration. * Education, through an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. * Simulation of CO 2 migration and trapping in storage

288

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction - Objective - Industrial Review Committee - Background * Steps Involved - Geological and Reservoir Simulation Modeling - Leakage Modeling & Real-Time Data Processing - Pattern Recognition & Intelligent Leakage Detection System (ILDS) * Accomplishments to Date * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 :

289

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies assume a discrete reservoir/caprock interface with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 4 Reservoir Caprock Reservoir Introduction The nature of reservoir/caprock interfaces 4 Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person (Cooperating Scientist) NMT Modeling Stefan Raduha NMT Sedimentology

290

 

Broader source: Energy.gov (indexed) [DOE]

Statement Statement Volume 1 FES 11-29 Cooperating Agencies: * Grand County * U.S. Department of Energy, Western Area Power Administration DOE/EIS-0370 * U.S. Army Corps of Engineers November 2011 Windy Gap Firming Project Final Environmental Impact Statement Eastern Area Office Loveland, Colorado Filing Number: FES 11-29 November 2011 U.S. Department of the Interior Bureau of Reclamation Great Plains Region Mission Statements The mission of the Department of the Interior is to protect and provide access to our Nation's natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities.

291

UPS Ontario- Las Vegas LNG Corridor Extension Project: Bridging the Gap  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

292

Bridging the Gap between Network and Project Selection Levels in Pavement Management  

E-Print Network [OSTI]

Pavement management is one of the primary responsibilities for departments of transportation and other municipalities across the country. Efficient and proper use of taxpayer dollars to preserve and improve the existing transportation system has...

Gurganus, Charles Felder

2011-08-08T23:59:59.000Z

293

BaaS Project: Covering the Building Design and Operational-Phase Interoperability Gap  

E-Print Network [OSTI]

Actuator IfcDistributionFlowElement IfcDistributionControlElementIfcRelFlowControlElement HVAC?Domain Automation Domain BIM?Server ? The?whole?Building?Information?into?the?BIM?Server. 30 ? In?the?Design...?phase?is?needed?to?include?the?whole?building?information? involve?in?the?building?and?? ? their?relationships?!! ? and?their?properties?(including?controller?s?parameters) Architectural Domain HVAC?Domain Automation Domain RelationShips + Properties Set + Other Domains BIM? Server Data...

Valmaseda, C.; Garcia, M.; Hernandez, J.; Martin, S.

2012-01-01T23:59:59.000Z

294

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12 generally cannot be achieved for reasonable computational cost. Applications that require modeling, and in nondestructive testing. The objective of this project is to advance the state of the art in electromagnetic

Perkins, Richard A.

295

Project Rulison  

Office of Legacy Management (LM)

Rulison Rulison 1970 Environmerstal Surveillance Summary Report J - - Colorado Department of Health DIVISION OF OCCUPATIONAL AND RADIOLOGICAL HEALTH DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. STATE OF COLORADO P R O J E C T R U L I S O N Environments 1 S u r v e i l l a n c e Summary R e p o r t C o l o r a d o D e p a r t m e n t o f H e a l t h D i v i s i o n o f O c c u p a t i o n a l and R a d i o l o g i c a l 3 e a l t h This page intentionally left blank FOREWORD Project Rulison is an experimental Plowshare project undertaken cooperatively by the Atomic Energy Commission (AEC) and the Department of Interior for the government, and Austral Oil Company and CER Geo- nuclear Corporation for private industry. As required by law, the AEC

296

Buffalo Gap II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Gap II Wind Farm Gap II Wind Farm Jump to: navigation, search Name Buffalo Gap II Wind Farm Facility Buffalo Gap II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer AES Corp. Energy Purchaser Direct Energy Location Taylor County TX Coordinates 32.310556°, -100.149167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.310556,"lon":-100.149167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Olene Gap Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Olene Gap Space Heating Low Temperature Geothermal Facility Olene Gap Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal energy Type Space Heating Location Klamath County, Oregon Coordinates 42.6952767°, -121.6142133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

298

Closing the Gender Gap in Energy Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Gender Gap in Energy Policy the Gender Gap in Energy Policy Closing the Gender Gap in Energy Policy April 7, 2011 - 3:07pm Addthis Melanie A. Kenderdine Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis What are the key facts? There's not just a shortage of women in technical energy-related fields, there's also a shortage of women in energy policy. Women hold only 27 percent of the science and engineering jobs in the United States. Editor's Note: Join the conversation surrounding this year's Clean Energy Ministerial on Twitter via #CEM2. There's a well-documented gender gap for women in science and engineering, or women in the "STEM" fields of science, technology, engineering and math. The numbers are stark: According to the National Science Foundation, women hold only 27 percent of the science and

299

Suicide mortality gap between Francophones and Anglophones of Quebec, Canada  

Science Journals Connector (OSTI)

Few studies evaluate language-group differences in suicide mortality. This study assessed the suicide mortality gap between Francophones and Anglophones of Quebec, Canada according to age, sex, method...

Stephanie Burrows; Nathalie Auger

2013-07-01T23:59:59.000Z

300

Governing the gap: Forging safe science through relational regulation  

E-Print Network [OSTI]

Designed to close the ubiquitous gap between law on the books and law in action, management systems locate the standard setting and implementation of regulation within the regulated organization itself. Despite efforts to ...

Huising, Ruthanne

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Air-gap sacrificial materials by initiated chemical vapor deposition  

E-Print Network [OSTI]

P(neopentyl methacrylate-co-ethylene glycol dimethacrylate) copolymer, abbreviated as P(npMAco-EGDA), was selected as the potential air-gap sacrificial material among possible combination of twenty monomers and four ...

Lee, Long Hua

2007-01-01T23:59:59.000Z

302

Synthesis of electromagnetic modes in photonic band gap fibers  

E-Print Network [OSTI]

In this paper, we report on the successful synthesis of three individual modes, HE11, TEo0, and TE02 for transmission in photonic band gap fibers at near infrared wavelengths. We measure the propagation losses of the HE11 ...

Hu, Qichao

2007-01-01T23:59:59.000Z

303

SciTech Connect: Enhanced Superconducting Gaps in Trilayer High...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Superconducting Gaps in Trilayer High-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Citation Details In-Document Search Title: Enhanced...

304

Columbia Gorge Gap Winds: Their Climatological Influence and Synoptic Evolution  

Science Journals Connector (OSTI)

This paper quantifies the impact of the Columbia Gorge on the weather and climate within and downstream of this mesoscale gap and examines the influence of synoptic-scale flow on gorge weather. Easterly winds occur more frequently and are ...

Justin Sharp; Clifford F. Mass

2004-12-01T23:59:59.000Z

305

References on Spectral Gaps, May 2006, Palo Alto, CA  

E-Print Network [OSTI]

gaps for Schdinger operators with symmetric single well potentials and related ... [21] S. G. Bobkov, Isoperimetric and Analytic Inequalities for Log-Concave. Probability .... Mathematical Physics (Birmingham, Alabama, 1986), Lect. Notes in

2006-05-19T23:59:59.000Z

306

Permanent-magnet-less machine having an enclosed air gap  

DOE Patents [OSTI]

A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

Hsu, John S. (Oak Ridge, TN)

2012-02-07T23:59:59.000Z

307

Proper Sustainability: GAP Grant Proposal Work Plan Strategy Webinar  

Office of Energy Efficiency and Renewable Energy (EERE)

In this webinar I will discuss the new GAP grant requirements for tribal environmental programs and strategies for crafting a work plan that focuses on capacity building activities. My goal is to...

308

Beneath the surface: The decline in gender injury gap  

Science Journals Connector (OSTI)

Abstract Gender differences in the labor market are typically measured by the wage gap. In this paper, we investigate how extending the analysis to an additional job amenity, namely workplace safety, may shed new light on the evolution of gender differences. Our results show that focusing on one unique measure of the gender gap may provide a biased view of the actual progress of women in the labor market. In our data, a significant reduction in the wage gap has been accompanied by a relative increase in injury risk for some groups of workers, e.g. low-skilled female workers. The decreased gender wage gap for these workers does not necessarily imply an overall improvement in their labor market outcomes.

Tiziano Razzolini; Roberto Leombruni; Giovanni Mastrobuoni; Mario Pagliero

2014-01-01T23:59:59.000Z

309

Closing gaps in the human genome using sequencing by synthesis  

E-Print Network [OSTI]

The most recent release of the finished human genome contains 260 euchromatic gaps (excluding chromosome Y). Recent work has helped explain a large number of these unresolved regions as 'structural' in nature. Another class ...

Arachchi, Harindra M.

310

Microfabrication Project Proposal Form Principle Investigator: (Person responsible for project)  

E-Print Network [OSTI]

Microfabrication Project Proposal Form Principle Investigator: (Person responsible for project: ___________________________________ Department: _____________________ _________________ __ Phone Number: _________________________ Project Information: Project Title: ________________________________________________________________ Funding Agency

311

PROCEDURES FOR ARC PROJECTS  

E-Print Network [OSTI]

PROCEDURES FOR ARC PROJECTS Revised - May 2013 Agricultural Research Center Washington State University #12;Table of Contents THE PROJECT SYSTEM, AN INTRODUCTION................................................................................. 5 DEVELOPING AN ARC PROJECT

Collins, Gary S.

312

Hydrogeologic Model for the Gable Gap Area, Hanford Site  

SciTech Connect (OSTI)

Gable Gap is a structural and topographic depression between Gable Mountain and Gable Butte within the central Hanford Site. It has a long and complex geologic history, which includes tectonic uplift synchronous with erosional downcutting associated with the ancestral Columbia River during both Ringold and Cold Creek periods, and by the later Ice Age (mostly glacial Lake Missoula) floods. The gap was subsequently buried and partially backfilled by mostly coarse-grained, Ice Age flood deposits (Hanford formation). Erosional remnants of both the Ringold Formation and Cold Creek unit locally underlie the high-energy flood deposits. A large window exists in the gap where confined basalt aquifers are in contact with the unconfined suprabasalt aquifer. Several paleochannels, of both Hanford and Ringold Formation age, were eroded into the basalt bedrock across Gable Gap. Groundwater from the Central Plateau presently moves through Gable Gap via one or more of these shallow paleochannels. As groundwater levels continue to decline in the region, groundwater flow may eventually be cut off through Gable Gap.

Bjornstad, Bruce N.; Thorne, Paul D.; Williams, Bruce A.; Last, George V.; Thomas, Gregory S.; Thompson, Michael D.; Ludwig, Jami L.; Lanigan, David C.

2010-09-30T23:59:59.000Z

313

Project 371  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brent Marquis Brent Marquis Project Manager Sensor Research and Development 17 Godfrey Dr. Orono, ME. 04473 207-866-0100 ext. 241 SEMI-CONDUCTOR METAL OXIDE TECHNOLOGY FOR IN SITU DETECTION OF COAL-FIRED COMBUSTION GASES Description Sensor Research and Development Corporation is developing a robust prototype sensor system for in situ, real-time detection, identification, and measurement of coal-fired combustion gases. The sensor system is comprised of several unique semi-conducting metal oxide (SMO) sensor arrays in tandem with novel gas prefiltration techniques. The sensor array will be able to selectively detect and measure nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The SMO sensor array is the heart of the combustion gas analyzer being developed

314

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ketzin Collaboration Ketzin Collaboration ESD-09-056 Barry Freifeld Earth Sciences Division Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and objectives * Success Criteria * Technical Status * Latest developments in Integrated Monitoring * Summary and Lessons Learned 3 Image from: www.co2ketzin.de 4 Benefit to the Program * Program goal being addressed: - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * The Ketzin collaboration leverages information gained through the mid-scale geological sequestration experiment in Ketzin, Germany.

315

Project 298  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reaction Engineering Reaction Engineering International Salt Lake City, UT www.reaction-eng.com CONTACTS Bruce W. Lani Project Manager National Energy Technology Laboratory 412-386-5819 bruce.lani@netl.doe.gov Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 412-386-6134 thomas.feeley@netl.doe.gov Michael Bockelie Reaction Engineering International 801-364-69255 bockelie@reaction-eng.com WEBSITE http://www.netl.doe.gov NO X CONTROL OPTIONS AND INTEGRATION FOR U.S. COAL FIRED BOILERS (RICH REAGENT INJECTION) Background Enacted regulations pertaining to the NO X SIP Call and potential future regulations in proposed legislation such as the President's Clear Skies Act or EPA's Clean Air Interstate Rule require power producers to seek the most cost effective methods to achieve compliance. In order to address present and

316

Project 398  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Michael Swanson Principal Investigator University of North Dakota Energy and Environmental Research Center 15 North 23rd Street P.O. Box 9018 Grand Forks, ND 58202 701-777-5239 mswanson@eerc.und.nodak.edu ADVANCED HIGH TEMPERATURE, HIGH-PRESSURE TRANSPORT REACTOR Description Today, coal supplies over 55 percent of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being

317

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jennifer A. Kozak, Jennifer A. Kozak, 1,2 Dr. Fritz Simeon, 2 Prof. T. Alan Hatton,* ,2 and Prof. Timothy F. Jamison* ,1 1 Department of Chemistry and 2 Department of Chemical Engineering Massachusetts Institute of Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation, Goals, Objectives * Background * Cyclic Carbonate Synthesis via Catalytic Coupling of CO 2 and Epoxides * New Catalysts and Reaction Scope * Mechanism - A New Paradigm for Activating Epoxides * Conclusions 3 Benefit to the Program * Identify the Program goals being addressed. - Develop technologies to demonstrate that 99 percent

318

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14 C Isotopic Analyzer DEFE 0001116 Bruno D.V. Marino PhD CEO, Founder Planetary Emissions Management, Inc. 485 Massachusetts Ave. Cambridge, MA 02139 bruno.marino@pem-carbon.com www.pem-carbon.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Benefits of a 14 CO 2 Field Analyzer to DOE MVA Program Goals Program Goals: 99% Containment Identify/Quantify CCS Credits Direct Tracking Verification Tight/Leaky Account for Natural Baseline MVA Atmosphere MVA Groundwater Ecosystem Health, Community Safety

319

Project 339  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Jenny Tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 jenny.tennant@netl.doe.gov Dr. Tomasz Wiltowski Southern Illinios University Dept. of Mechanical Engineering & Energy Processes Carbondale, IL 62901-4709 618-536-5521 tomek@siu.edu QUALIFICATIONS OF CANDLE FILTERS FOR COMBINED CYCLE COMBUSTION APPLICATIONS Background In order to make oxygen-fired combined cycle combustion feasible, it is necessary to have a reliable high temperature particulate cleanup system. It is well established

320

Project 350  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrates Gas Hydrates CONTACTS Ray Boswell Acting Technology Manager Gas Technology Management Division 304-285-4541 ray.boswell@netl.doe.gov James Ammer Director Gas Technology Management Division 304-285-4383 james.ammer@netl.doe.gov Kelly Rose Project Manager Gas Technology Management Division 304-285-4157 kelly.rose@netl.doe.gov Joseph Wilder Research Group Leader Simulation, Analysis and Computational Science Division 304-285-0989 joseph.wilder@netl.doe.gov NETL - DIRECTING THE DEVELOPMENT OF WORLD-CLASS GAS HYDRATE RESERVOIR SIMULATORS Development of reliable simulators that accurately predict the behavior methane hydrates in nature is a critical component of NETL's program to appraise the gas supply potential of hydrates. NETL is leading the development of a suite of modeling tools that are providing

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies involve a caprock/reservoir interface, and assume a discrete contact with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 Introduction The nature of reservoir/caprock interfaces 4 Triassic-Jurassic Strata, San Rafael Swell, UT Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person

322

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verification and Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14 C Isotopic Analyzer CCS Public Outreach: Pathway to Tradable CCS Securities DEFE 0001116 Bruno D.V. Marino PhD CEO, Founder Planetary Emissions Management, Inc. One Broadway, 14 th Floor Cambridge, MA 02142 bruno.marino@pem-carbon.com www.pem-carbon.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 All RIGHTS RESERVED © Benefits: Public Outreach CCS-MVA LINKED TRADABLE SECURITY Increase Public Confidence in CCS Increase Public involvement in CCS "Leakage Rate" Product Distinct from GHG "Credits"

323

PROJECT TITLE:  

Broader source: Energy.gov (indexed) [DOE]

Richmond Richmond PROJECT TITLE: EECBG - Solar Compactors and Recycling Units Page 1 of2 STATE: VA Funding Opportunity Announcement Number DE-FOA-0000013 Procurement Instrument Number DE-EE0000878 NEPA Control Number cm Number GFO-0000878-003 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

324

Project 370  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

crshadd@sandia.gov crshadd@sandia.gov O 2 /CO 2 RECYCLE COAL COMBUSTION TO MINIMIZE POLLUTANTS Description O 2 /CO 2 recycle coal combustion is a promising, retrofittable technique for electric power production, while producing a nearly pure stream of CO 2 for subsequent use or sequestration. Most pollutant emissions, including NO x , are lower in this process, compared to conventional pulverized coal combustion. However, laboratory and pilot-scale tests to date have shown a wide variation in the fractional reduction of NO x when adopting this technology, suggesting that further improvements in NO x reduction are possible, given a better understanding of the dominant routes of NO x production and destruction in these systems. Goals The goal of this project is to determine the relative influence of three different

325

Project 346  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sara Pletcher Sara Pletcher Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-385-4236 sara.pletcher@netl.doe.gov Gary M. Blythe URS Corporation PO Box 201088 Austin, TX 78720 512-419-5321 gary_blythe@urscorp.com BENCH SCALE KINETICS OF MERCURY REACTIONS IN FGD LIQUORS Background When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury cannot. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have

326

Project 261  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOVEL CORROSION SENSOR FOR ADVANCED NOVEL CORROSION SENSOR FOR ADVANCED FOSSIL ENERGY POWER SYSTEMS Description The overall objective of this proposed project is to develop a new technology for on-line corrosion monitoring based on an innovative concept. The specific objectives and corresponding tasks are (1) develop the sensor and electronic measurement system; (2) evaluate and improve the system in a laboratory muffle furnace; and (3) evaluate and improve the system through tests conducted in a pilot-scale coal combustor (~1 MW). Fireside corrosion refers to the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and is a serious concern for current and future energy plants due to the introduction of technologies targeting emissions

327

Project 278  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Karen Cohen Karen Cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Ken Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org Sequestration SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB) Background The U.S. Department of Energy has selected the seven partnerships of state agencies, universities, and private companies that will form the core of a nationwide network that will help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. All together, the partnerships include more than 240 organizations, spanning 40 states, three Indian nations, and

328

FLUXNET Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation > FLUXNET Validation > FLUXNET The FLUXNET Project Overview [FLUXNET Logo] FLUXNET is a global network of micrometeorological tower sites that use eddy covariance methods to measure the exchanges of carbon dioxide, water vapor, and energy between terrestrial ecosystems and the atmosphere. More that 500 tower sites from about 30 regional networks across five continents are currently operating on a long-term basis. The overarching goal of FLUXNET is to provide information for validating remote sensing products for net primary productivity (npp), evaporation, and energy absorption. FLUXNET provides information to FLUXNET investigators and to the public. The primary functions of FLUXNET are: To provide information about tower location, site characteristics, data availability, and where to obtain the data

329

Project 296  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McDermott Technology McDermott Technology Alliance, OH www.mcdermott.com CONTACTS Bruce W. Lani Project Manager National Energy Technology Laboratory 412-386-5819 bruce.lani@netl.doe.gov Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 412-386-6134 thomas.feeley@netl.doe.gov Hamid Farzan Babcock & Wilcox Company 330-860-6628 HFarzan@babcock.com WEBSITE http://www.netl.doe.gov NO X CONTROL FOR UTILITY BOILER OTR COMPLIANCE Background Enacted regulations pertaining to the NO X SIP Call and potential future regulations in proposed legislation such as the President's Clear Skies Act or EPA's Clean Air Interstate Rule require power producers to seek the most cost effective methods to achieve compliance. In order to address present and anticipated NO X emissions control legislation targeting the current fleet of U.S. coal-fired boilers, the Department

330

Project 253  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anna Lee Tonkovich Anna Lee Tonkovich Technical Contact Velocys, Inc. 7950 Corporate Blvd. Plain City, OH 43064 614-733-3330 tonkovich@velocys.com Sequestration UPGRADING METHANE STREAMS WITH ULTRA-FAST TSA Background Most natural gas streams are contaminated with other materials, such as hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), and nitrogen. Effective processes for removal of H 2 S and CO 2 exist, but because of its relative inertness, nitrogen removal is more difficult and expensive. This project will focus on the separation of nitrogen from methane, which is one of the most significant challenges in recovering low-purity methane streams. The approach is based on applying Velocys' modular microchannel process technology (MPT) to achieve ultra-fast thermal swing adsorption (TSA). MPT

331

Project 397  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov John Stipanovich Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6027 john.stipanovich@netl.doe.gov Derek Aldred Principal Investigator Stamet, Inc. 8210 Lankershim Blvd. #9 North Hollywood, CA 91605 818-768-1025 dlaldred@stametinc.com CONTINUOUS PRESSURE INJECTION OF SOLID FUELS INTO ADVANCED COMBUSTION SYSTEM PRESSURES Description Operators and designers of high-pressure combustion systems universally agree that one of the major problems inhibiting the success of this technology relates to solid

332

Project 303  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONCEPTUAL DESIGN OF OXYGEN-BASED CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER Background Because of growing concern that a link exists between global climatic change and emission of greenhouse gases, such as CO 2 , it is prudent to develop new coal combustion technologies to meet future emissions standards, should it become necessary to limit CO 2 emissions to the atmosphere. New technology is needed to ensure that the U.S. can continue to generate power from its abundant domestic coal resources. This project will design an optimized combustion furnace to produce a low-cost, high-efficiency power plant that supports the U.S. Department of Energy's (DOE) goal of developing advanced combustion systems that have the potential to control CO 2 through an integrated power system that produces a concentrated

333

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Geologic Characterization of the Triassic Newark Basin of Southeastern New York and Northern New Jersey (DE-FE0002352) Daniel J. Collins, PG, RG Sandia Technologies, LLC U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 * Acknowledgment: This material is based upon work supported by the Department of Energy [National Energy Technology Laboratory] under Award Number DE- FE0002352, Contract No. 18131 from the New York State Energy Research & Development Authority [NYSERDA], and "In Kind" Cost Share from Schlumberger Carbon Services, Weatherford Laboratories, National Oilwell Varco, New York State Museum, and Rutgers University.

334

Project 143  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

George Rizeq George Rizeq Principal Investigator GE Global Research 18A Mason Irvine, CA 92618 949-330-8973 rizeq@research.ge.com FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF HYDROGEN AND SEQUESTRATION-READY CARBON DIOXIDE Description Projections of increased demands for energy worldwide, coupled with increasing environmental concerns have given rise to the need for new and innovative technologies for coal-based energy plants. Incremental improvements in existing plants will likely fall short of meeting future capacity and environmental needs economically. Thus, the implementation of new technologies at large scale is vital. In order to prepare for this inevitable paradigm shift, it is necessary to have viable alternatives that have been proven both theoretically and experimentally

335

Project 270  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SILICON CARBIDE MICRO-DEVICES FOR SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS Description Reducing pollution and improving energy efficiency require sensitive, rugged sensors that can quantitatively detect gases that are produced in advanced combustion systems. Most materials cannot withstand the high temperature, chemically reactive environments encountered in power plants. This project is focused on developing solid state sensors based on the wide bandgap semiconductor silicon carbide (SiC), which can tolerate high temperatures and pressures as well as corrosive gases. Drawing upon the tools of semiconductor physics, surface science and chemistry, at the level of individual atoms and molecules, an understanding of the underlying physical mechanisms leading to

336

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

1 1 July 2011 Doc. No. S07978 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: April 1-June 30, 2011 This report summarizes project status and activities implemented April through June 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

337

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

FFA Quarterly Report: April 1-June 30, 2009 FFA Quarterly Report: April 1-June 30, 2009 July 2009 Doc. No. S05572 Page 1 Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: April 1-June 30, 2009 This report summarizes project status and activities implemented April through June 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection data, quarterly site inspection reports, site meteorological data, and a performance summary for the ex situ groundwater treatment system. 1.0 MMTS Activities/Status 1.1 Disposal Cell and Pond 4 * Monthly and quarterly inspections of the repository identified livestock damage to a

338

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

31, 2011 31, 2011 April 2011 Doc. No. S07666 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January 1-March 31, 2011 This report summarizes project status and activities implemented January through March 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

339

Project 320  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Philip Goldberg Philip Goldberg Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5806 philip.goldberg@netl.doe.gov Marek Wojtowicz Advanced Fuel Research, Inc. 87 Church Street East Hartford, CT 06108 860-528-9806 marek@AFRinc.com Sequestration CARBON DIOXIDE RECOVERY FROM COMBUSTION FLUE GAS USING CARBON- SUPPORTED AMINE SORBENTS Background In Phase I, Advanced Fuel Research, Inc. will initiate development of a novel sorbent for the removal of carbon dioxide from combustion/incineration flue gas. The sorbent, based on amines supported on low-cost activated carbon, will be produced from scrap tires. Liquid-based amine systems are limited to relatively low concentrations to avoid corrosion. Corrosion should not be a

340

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RISK ASSESSMENT AND MONITORING OF RISK ASSESSMENT AND MONITORING OF STORED CO 2 IN ORGANIC ROCKS UNDER NON- EQUILIBRIUM CONDITIONS DOE (NETL) Award Number: DE-FE0002423 Investigator: Vivak (Vik) Malhotra DOE supported undergraduate student participants: Jacob Huffstutler, Ryan Belscamper, Stephen Hofer, Kyle Flannery,, Bradley Wilson, Jamie Pfister, Jeffrey Pieper, Joshua T. Thompson, Collier Scalzitti-Sanders, and Shaun Wolfe Southern Illinois University-Carbondale Carbondale, Illinois 62901-4401 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Carbon Storage Program * Program goals being addressed: - To attempt to answer whether CO

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project Status  

Broader source: Energy.gov (indexed) [DOE]

Hybrid Generation Simulator Hybrid Generation Simulator HybSim© 1.0 DAVID TRUJILLO SANDIA NATIONAL LABORATORY Presented by Joshua Bartlett - University of Michigan Introduction * HybSim© 1.0 copyrighted 2006 * First license to University of Michigan Introduction HybSim© Model What - "Hybrid Simulator"; Tool designed to evaluate the economic and environmental benefits of adding renewable energy to the fossil fuel generation mix in remote and difficult-accessible locations. Why - Benefits of energy storage, decision analysis, risk analysis, load growth issues, load management, economic analysis, planning (what-ifs) Who - Availability to coops, field techs, project managers, administrative personnel Where - Remote villages, military installations, remote industrial systems; any climate

342

PROJECT TITLE:  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Baltimore PROJECT TITLE: EECBG - GHG Scrubbing System Page 1 of2 STATE: MD Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-EE0000738 GFO-0000738-002 0 Based all my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: All Technical advice and planning assistance to international, national, state, and local organizations. 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

343

Project 328  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Jenny Tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 Jenny.Tennant@netl.doe.gov Gasification Technologies Conceptual drawing of Rocketdyne's gasification system ADVANCED GASIFICATION SYSTEMS DEVELOPMENT Description Rocketdyne will apply rocket engine technology to gasifier design, allowing for a paradigm shift in gasifier function, resulting in significant improvements in capital and maintenance costs. Its new gasifier will be an oxygen-blown, dry-feed, plug-flow entrained reactor able to achieve carbon conversions of nearly 100 percent by rapidly heating low coal particles

344

Project 199  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heino Beckert Heino Beckert Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4132 heino.beckert@netl.doe.gov Ramin Yazdani Senior Civil Engineer Yolo County Planning and Public Works Department 292 West Beamer Street Woodland, CA 95695 530-666-8848 ryazdani@yolocounty.org Sequestration Yolo County Landfill Methane Production Compared to Other Landfills FULL-SCALE BIOREACTOR LANDFILL Background Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for the disposal of about 217 million tons of waste annually (U.S. EPA, 1997). The annual production of municipal waste in the United States has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and

345

Project 258  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MONITORING POWER PLANT EFFICIENCY USING MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON Objective The objective of this project is to explore the use of the microwave-excited photoacoustic (MEPA) effect for quantitative analysis of unburned carbon in fly ash, an extremely important parameter to the electric utility industry. Specific objectives include: * Determine factors that influence accuracy and precision of the MEPA effect; * Evaluate the microwave spectra of fly ash and other divided solids of importance to the power industry; and * Determine the feasibility of an on-line carbon-in-ash monitor based on the MEPA effect. Benefits High carbon levels in coal ash indicate poor combustion efficiency, resulting in additional fuel requirements and higher emissions of pollutants, such as acid-rain

346

Project311  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lang Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov John Bowser Principal Investigator Compact Membrane Systems, Inc. 325 Water Street Wilmington, DE 19804 302-999-7996 john.bowser@compactmembrane.com Sequestration CARBON DIOXIDE CAPTURE FROM LARGE POINT SOURCES Background Capture of carbon dioxide at the source of its emission has been a major focus in greenhouse gas emission control. Current technologies used for capturing CO 2 suffer from inefficient mass transfer and economics. In Phase I, Compact Membrane Systems, Inc. will fabricate and test a membrane-based absorption system for the removal of carbon dioxide from a simulated power-plant flue gas. The stability of the membrane system under various operating conditions

347

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

09 09 January 2010 Doc. No. S06172 Page 1 1.3 Peripheral Properties (Private and City-Owned) * No land use or supplemental standards compliance issues were observed or reported by LTSM on-site staff. Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: October 1-December 31, 2009 This report summarizes project status and activities implemented October through December 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection data, quarterly site inspection reports, site meteorological data, and a performance summary for the ex situ groundwater treatment system.

348

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Rock Interactions Water-Rock Interactions and the Integrity of Hydrodynamic Seals FWP FE-10-001 Bill Carey Los Alamos National Laboratory Los Alamos, NM U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program Goal: Ensure retention of 99% of injected CO 2 * Focus: Wellbore integrity * Approach: Use field, experimental and computational methods - Determine long-term compatibility of wellbore materials with CO 2 - Determine leakage mechanisms - Predict well performance * Benefit: The research will provide a basis for evaluating the long-term performance of wells, guide remediation

349

Project 333  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

José D. Figueroa José D. Figueroa Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov C. Jeffrey Brinker Sandia Fellow, Sandia National Laboratories Professor of Chemical & Nuclear Engineering The University of New Mexico Advanced Materials Laboratory 1001 University Blvd. SE, Suite 100 Albuquerque, NM 87106 505-272-7627 cjbrink@sandia.gov Sequestration NOVEL DUAL FUNCTIONAL MEMBRANE FOR CONTROLLING CARBON DIOXIDE EMISSIONS FROM FOSSIL FUELED POWER PLANTS Background There is growing concern among climate scientists that the buildup of greenhouse gases (GHG), particularly carbon dioxide, in the atmosphere is affecting the global climate in ways that could have serious consequences. One approach to reducing GHG emissions

350

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© 2012 Paulsson, Inc. (PI) Development of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration DE-FE0004522 Björn N.P. Paulsson Paulsson, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 ® © 2012 Paulsson, Inc. (PI) © 2012 Paulsson, Inc. (PI) * Goals: Design, build, and test a high performance borehole seismic receiver system to allow cost effective geologic Carbon Capture and Storage (CCS) * Objectives: A: Develop technology to allow deployment of a 1,000 level drill pipe deployed 3C Fiber Optic Geophone (FOG) receiver array for deep

351

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy and Geochemistry Space Geodesy and Geochemistry Applied to Monitoring and Verification of Carbon Capture and Storage Award # DE-FE0002184 Peter Swart University of Miami Tim Dixon University of South Florida U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * What is the Award For? * What Research Work is being Supported? * Geochemical Research What is the Award For? * Provides Support for the Training of Two Graduate Students - Student 1: Involved in analysis of SAR images - Student 2: Involved in modeling of sub-surface geochemistry and application of models for policy decisions

352

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fluid-driven fracture fluid-driven fracture DE-FE0002020 Joseph F. Labuz Civil Engineering University of Minnesota U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits statement * Goal, objectives * Technical status: fracture code, experimental results (poro, AE) * Accomplishments * Summary 0 50 100 150 200 250 300 350 0.00 0.05 0.10 0.15 0.20 Lateral displacement [mm] Load [kN] 0 300 600 900 1200 1500 AE events inelastic deformation peak 3 Benefit to the Program * Goal: develop technologies to predict CO2 storage capacity in geologic formations. * Benefits statement: develop 3D boundary element code & experimental techniques

353

CX-011618: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Kremmling-Windy Gap 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

354

Investigating the book-tax income gap : factors which affect the gap and details regarding its most significant component  

E-Print Network [OSTI]

(cont.) In total, my thesis suggests that recent changes in the book-tax income gap may be exogenous and transitory, due to changes to the calculation of book income, general business conditions or other factors which ...

Seidman, Jeri

2008-01-01T23:59:59.000Z

355

Project Management Lessons Learned  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

2008-08-05T23:59:59.000Z

356

Western Interconnection Synchrophasor Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a type of...

357

Project Title Project Sponsor (funding agency)  

E-Print Network [OSTI]

and procedures applicable to the above project; and we confirm that the PI is eligible to apply in accordance Project Title Project Sponsor (funding agency) Declaration of Principal Investigator (PI) I certify that: I agree that my participation in the project must be in accordance with all

Saskatchewan, University of

358

Livingston Solar Canopy Project The Project  

E-Print Network [OSTI]

Livingston Solar Canopy Project The Project: This project entails the installation of more than 40,000 high efficiency solar panels on canopy structures over two major surface parking areas. In conjunction with the existing 1.4 megawatt solar energy facility on this campus, this project will generate

Delgado, Mauricio

359

Chopwell Wood Health Project  

E-Print Network [OSTI]

Chopwell Wood Health Project An innovative project of school visits and General Practitioner. The project took place at Chopwell Wood a 360 hectare mixed woodland managed by the Forestry Commission to carry on being involved in the project. Next stage of the project Although the project leader has now

360

Sustainability Project Fund Application Form Requirements Project Title  

E-Print Network [OSTI]

Sustainability Project Fund Application Form Requirements Project Title: Budget Requested: Applicant/Project Leader: Faculty/Department: Email: Daytime Phone: Project Team: (Please include. Project Overview Project summary: · Provide a brief background, describing the project, objectives

Volesky, Bohumil

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gap formation and stability in non-isothermal protoplanetary discs  

E-Print Network [OSTI]

Several observations of transition discs show lopsided dust-distributions. A potential explanation is the formation of a large-scale vortex acting as a dust-trap at the edge of a gap opened by a giant planet. Numerical models of gap-edge vortices have thus far employed locally isothermal discs, but the theory of this vortex-forming or `Rossby wave' instability was originally developed for adiabatic discs. We generalise the study of planetary gap stability to non-isothermal discs using customised numerical simulations of disc-planet systems where the planet opens an unstable gap. We include in the energy equation a simple cooling function with cooling timescale $t_c=\\beta\\Omega_k^{-1}$, where $\\Omega_k$ is the Keplerian frequency, and examine the effect of $\\beta$ on the stability of gap edges and vortex lifetimes. We find increasing $\\beta$ lowers the growth rate of non-axisymmetric perturbations, and the dominant azimuthal wavenumber $m$ decreases. We find a quasi-steady state consisting of one large-scale, ...

Les, Robert

2015-01-01T23:59:59.000Z

362

PROJECT MANAGEMENT PLANS Project Management Plans  

Broader source: Energy.gov (indexed) [DOE]

MANAGEMENT PLANS MANAGEMENT PLANS Project Management Plans  Overview  Project Management Plan Suggested Outline Subjects  Crosswalk between the Suggested PMP Outline Subjects and a Listing of Project Planning Elements  Elements of Deactivation Project Planning  Examples From Project Management Plans Overview The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. Section 4.2 of DOE Guide 430.1-3, DEACTIVATION IMPLEMENTATION GUIDE discusses the content and purpose of deactivation project management plans. It is presented as a suggested outline followed by other potential subjects. For the convenience of readers, that information is repeated below.

363

Buffalo Gap 3 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Buffalo Gap 3 Wind Farm Buffalo Gap 3 Wind Farm Facility Buffalo Gap 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Wind Generation Developer AES Wind Generation Energy Purchaser Direct Energy Location TX Coordinates 32.310556°, -100.149167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.310556,"lon":-100.149167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Lower bounds to the spectral gap of Davies generators  

SciTech Connect (OSTI)

We construct lower bounds to the spectral gap of a family of Lindblad generators known as Davies maps. These maps describe the thermalization of quantum systems weakly coupled to a heat bath. The steady state of these systems is given by the Gibbs distribution with respect to the system Hamiltonian. The bounds can be evaluated explicitly, when the eigenbasis and the spectrum of the Hamiltonian is known. A crucial assumption is that the spectrum of the Hamiltonian is non-degenerate. Furthermore, we provide a counterexample to the conjecture, that the convergence rate is always determined by the gap of the associated Pauli master equation. We conclude that the full dynamics of the Lindblad generator has to be considered. Finally, we present several physical example systems for which the bound to the spectral gap is evaluated.

Temme, Kristan [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2013-12-15T23:59:59.000Z

365

Vortex and gap generation in gauge models of graphene  

E-Print Network [OSTI]

Effective quantum field theoretical continuum models for graphene are investigated. The models include a complex scalar field and a vector gauge field. Different gauge theories are considered and their gap patterns for the scalar, vector, and fermion excitations are investigated. Different gauge groups lead to different relations between the gaps, which can be used to experimentally distinguish the gauge theories. In this class of models the fermionic gap is a dynamic quantity. The finite-energy vortex solutions of the gauge models have the flux of the "magnetic field" quantized, making the Bohm-Aharonov effect active even when external electromagnetic fields are absent. The flux comes proportional to the scalar field angular momentum quantum number. The zero modes of the Dirac equation show that the gauge models considered here are compatible with fractionalization.

O. Oliveira; C. E. Cordeiro; A. Delfino; W. de Paula; T. Frederico

2010-12-21T23:59:59.000Z

366

Origin of the charge gap in LaMnPO  

Science Journals Connector (OSTI)

We present high temperature inelastic neutron scattering and magnetic susceptibility measurements of the antiferromagnetic insulator LaMnPO that are consistent with the presence of two-dimensional magnetic correlations up to a temperature Tmax?700K?TN=375 K, the Nel temperature. Optical transmission measurements show the T=300 K direct charge gap ?=1 eV has decreased only marginally by 500 K and suggest it decreases by only 10% at Tmax. Density functional theory and dynamical mean-field theory calculations reproduce a direct charge gap in paramagnetic LaMnPO only when a strong Hund's coupling JH=0.9 eV is included, as well as on-site Hubbard U=8 eV. Our results show that LaMnPO is a Mott-Hund's insulator, in which the charge gap is rather insensitive to antiferromagnetic exchange coupling.

D. E. McNally; J. W. Simonson; K. W. Post; Z. P. Yin; M. Pezzoli; G. J. Smith; V. Leyva; C. Marques; L. DeBeer-Schmitt; A. I. Kolesnikov; Y. Zhao; J. W. Lynn; D. N. Basov; G. Kotliar; M. C. Aronson

2014-11-18T23:59:59.000Z

367

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials  

Broader source: Energy.gov [DOE]

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

368

Quantifying yield gaps in wheat production in Russia  

Science Journals Connector (OSTI)

Crop yields must increase substantially to meet the increasing demands for agricultural products. Crop yield increases are particularly important for Russia because low crop yields prevail across Russia's widespread and fertile land resources. However, reliable data are lacking regarding the spatial distribution of potential yields in Russia, which can be used to determine yield gaps. We used a crop growth model to determine the yield potentials and yield gaps of winter and spring wheat at the provincial level across European Russia. We modeled the annual yield potentials from 1995 to 2006 with optimal nitrogen supplies for both rainfed and irrigated conditions. Overall, the results suggest yield gaps of 1.512.10 t ha?1, or 4452% of the yield potential under rainfed conditions. Under irrigated conditions, yield gaps of 3.143.30 t ha?1, or 6263% of the yield potential, were observed. However, recurring droughts cause large fluctuations in yield potentials under rainfed conditions, even when the nitrogen supply is optimal, particularly in the highly fertile black soil areas of southern European Russia. The highest yield gaps (up to 4 t ha?1) under irrigated conditions were detected in the steppe areas in southeastern European Russia along the border of Kazakhstan. Improving the nutrient and water supply and using crop breeds that are adapted to the frequent drought conditions are important for reducing yield gaps in European Russia. Our regional assessment helps inform policy and agricultural investors and prioritize research that aims to increase crop production in this important region for global agricultural markets.

Florian Schierhorn; Monireh Faramarzi; Alexander V Prishchepov; Friedrich J Koch; Daniel Mller

2014-01-01T23:59:59.000Z

369

Sub-10-nanometre metallic gaps for use in molecular electronics  

E-Print Network [OSTI]

gaps as small as sub-10 nm. Image from (8). Gaps can also be created by trapping gold nanoparticles between large-separation electrodes using an AC field, and then breaking the bridge by applying a large DC 5 1.2 Review of Related Work voltage (16... .3 Simmons Tunnelling Model grown QDs because their local environment is more stable. This susceptibility to electric fields will be apparent in our measurements, as discussed in 7.6. No matter the nature of the excitation, QDs may emit photons when...

Curtis, Kellye Suzanne

2012-07-03T23:59:59.000Z

370

The role of the energy gap in protein folding dynamics  

E-Print Network [OSTI]

The dynamics of folding of proteins is studied by means of a phenomenological master equation. The energy distribution is taken as a truncated exponential for the misfolded states plus a native state sitting below the continuum. The influence of the gap on the folding dynamics is studied, for various models of the transition probabilities between the different states of the protein. We show that for certain models, the relaxation to the native state is accelerated by increasing the gap, whereas for others it is slowed down .

Estelle Pitard; Henri Orland

1998-11-17T23:59:59.000Z

371

An investigation on reliable passivation of GaP  

E-Print Network [OSTI]

reports the results of a study of sputtered Silicon Nitride 3N4) and Anodic Oxide as passivating techniques for Gallium Phosphide. Anodic Oxide was grown on GaP by anodizing the semiconductor in 30% hydrogen peroxide. The resulting oxide had an index... reports the results of a study of sputtered Silicon Nitride 3N4) and Anodic Oxide as passivating techniques for Gallium Phosphide. Anodic Oxide was grown on GaP by anodizing the semiconductor in 30% hydrogen peroxide. The resulting oxide had an index...

Greaves King, Carlos A.

2012-06-07T23:59:59.000Z

372

Project Sponsor Professor Peter  

E-Print Network [OSTI]

Project Sponsor Professor Peter McGearoge Project Director Nicki Matthew Audit / Quality Mazars Architect IT ServicesProcess Owners Build Team Lead Nicki Matthew Project Manager ­ Unit4 Joe Cairney Student Lifecycle Project Board InfrastructureDBA's TBC TBC TBC Process 1 Process 2 Project Sponsor ­ Unit

Levi, Ran

373

Project Structure Elke Karrenberg  

E-Print Network [OSTI]

Project Structure Elke Karrenberg Project Manager, Head of Personnel Development Phone +49 6131 39-20634 Dr. Jana Leipold Project Staff, Personnel Development Consultant Phone +49 6131 39-25433 Antje Swietlik Project Staff Phone +49 6131 39-20140 Project Office JGU Leadership Forum Universitatis 3, Room 00

Kaus, Boris

374

PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples  

Broader source: Energy.gov (indexed) [DOE]

Organization Examples Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four project organizations and their associated summary responsibilities are described in the following paragraphs. 4.1.1 U.S. Department of Energy, Headquarters (HQ) The DOE-HQ Office of Nuclear Material and Facility Stabilization (EM-60) is primarily responsible for policy and budget decisions

375

START-GAP3/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology  

SciTech Connect (OSTI)

In the human genome there are three genes encoding RhoGAPs that contain the START (steroidogenic acute regulatory protein (StAR)-related lipid transfer)-domain. START-GAP3/DLC3 is a tumor suppressor gene similar to two other human START-GAPs known as DLC1 or DLC2. Although expression of START-GAP3/DLC3 inhibits the proliferation of cancer cells, its molecular function is not well understood. In this study we carried out biochemical characterization of START-GAP3/DLC3, and explored the effects of its expression on cell morphology and intracellular localization. We found that START-GAP3/DLC3 serves as a stimulator of PLC{delta}1 and as a GAP for both RhoA and Cdc42 in vitro. Moreover, we found that the GAP activity is responsible for morphological changes. The intracellular localization of endogenous START-GAP3/DLC3 was explored by immunocytochemistry and was revealed in focal adhesions. These results indicate that START-GAP3/DLC3 has characteristics similar to other START-GAPs and the START-GAP family seems to share common characteristics.

Kawai, Katsuhisa; Kiyota, Minoru; Seike, Junichi; Deki, Yuko [Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 678-1297 (Japan); Yagisawa, Hitoshi [Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 678-1297 (Japan)], E-mail: yagisawa@sci.u-hyogo.ac.jp

2007-12-28T23:59:59.000Z

376

CS348 Project 1 Oracle Project  

E-Print Network [OSTI]

CS348 Project 1 Oracle Project Due Date: 2/12/2009 You are going to use Oracle to design a simple; if nothing else, mark each query with its number. Turnin You may turn in the project for grading using the procedure described below. Run the following shell command (see 'man turnin' for details): turnin -c cs348

Elmagarmid, Ahmed K.

377

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12;22 Math & Computational Sciences Division generally cannot be achieved for reasonable computational cost. Applications that require modeling of this project is to advance the state of the art in electromagnetic computations by eliminating three existing

Perkins, Richard A.

378

Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners Title Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners Publication Type Conference Proceedings Year of Publication 2000 Authors Shugars, John, Philip Coleman, Christopher T. Payne, and Laura Van Wie McGrory Conference Name Proceedings from the 2000 ACEEE Summer Study on Energy Efficiency in Buildings Volume 10 Pagination 217-226 Date Published 01/2000 Abstract The energy efficiency ofmany products has increased markedly over the past decade. A conspicuous exception to this trend is commercialpackaged rooftop air conditioners, which have experiencedlittle to no efficiency improvement since 1992 when the Energy Policy Act of 1992 imposed federal minimum standards. Packaged rooftop units have been estimated to use on the order of76 billion kWh annually in the US, at a cost ofroughly $5.6 billion. Sales of these units are growing, and the majority of units sold have energy efficiency ratios (EERs) at orjust above the current national minimum efficiency standards. In this paper we document the static efficiencies ofcommercialpackaged air conditioners, explore the reasons behindthis efficiency gap, and assess opportunities for overcoming the barriers to efficiency improvements in these products.

379

BRIDGING THE GAP BETWEEN BUILDING SCIENCE AND DESIGN STUDIOS  

E-Print Network [OSTI]

in the building industry and, to be effective, they need to be integrated into architectural design from, there is a lack of courses that allow for integrated building design through consideration of multiple performanceBRIDGING THE GAP BETWEEN BUILDING SCIENCE AND DESIGN STUDIOS KONSTANTINOS PAPAMICHAEL AND VINEETA

380

RIFLE GAP RESERVOIR FISHERY INVESTIGATION Photo: Willow Hibbs  

E-Print Network [OSTI]

in western Colorado, hosts a popular recreational fishery. Historically, stocked rainbow and brown trout have Department of Fish, Wildlife and Conservation Biology, Colorado State University Tel: 970-491-5002 email, Wildlife and Conservation Biology, Colorado State University March 2009 #12;Rifle Gap Reservoir Fishery

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Topology of Local Health Officials' Advice Networks: Mind the Gaps  

E-Print Network [OSTI]

, evidence-based programs, and service delivery, and health care reform are innovations Author AffiliationsTopology of Local Health Officials' Advice Networks: Mind the Gaps Jacqueline Merrill, RN, MPH: To determine how a health officials' advice network might contribute to a high-performing public health systems

Sadeh, Norman M.

382

Abstract Local Reasoning for Concurrent Libraries: Mind the Gap  

E-Print Network [OSTI]

considerable work on combining lo- cal reasoning with abstraction. There are two main approaches. One approach, truly abstract reasoning of a tree module (such as DOM) works with predicates based on connecting treeMFPS 2014 Abstract Local Reasoning for Concurrent Libraries: Mind the Gap Philippa Gardner, Azalea

Gardner, Philippa

383

Project 1640 Palomar Procedures  

E-Print Network [OSTI]

Project 1640 Palomar Procedures Version 0.1 7/7/08 2:11:08 PM #12;2 Project 1640 Design and Operations Table of Contents Project 1640..................................................................................................................... 1 Palomar Procedures

384

Projects | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects All 1703 1705 ATVM Current Portfolio 32.4 B in Loans 55 K Jobs Current Portfolio Loans 32.4 B Jobs 55,000 Loan Program Office Projects 1703 1705 ATVM...

385

Getting projects in gear  

Science Journals Connector (OSTI)

......week for most projects - to review progress against the plan. Use a standard agenda. Document and agree...achievements. Ensure that review and quality assurance processes...of the high level project plan. Make sure that the project......

John Lawlor

2001-11-01T23:59:59.000Z

386

project.m  

E-Print Network [OSTI]

function project(u,w) %last updated 5/9/94 %PROJECT Projecting vector U onto vector W orthogonally. Vectors % U and W can be either a pair of 2D or 3D...

387

Project Selection - Record Keeping  

E-Print Network [OSTI]

4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

388

Improving Project Management  

Broader source: Energy.gov [DOE]

On December 19, 2014, the Energy Department released its "Improving Project Management" report, a roadmap to transformation in funding, culture, project ownership, independent oversight and front-end planning from experienced project management leaders.

389

Contract/Project Management  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

65% 100% Five projects >100M achieved CD-2 in FY10. PDRI represents Project Definition Index Rating. 5. TRA Use: By end of FY11, 80% of projects >750M will implement TRA no...

390

Project Finance and Investments  

Broader source: Energy.gov [DOE]

Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

391

RM Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

include the Fryingpan-Arkansas Project and the Pick-Sloan Missouri Basin Program--Western Division. The projects' marketing and rate-setting functions were integrated in...

392

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

393

Contract/Project Management  

Energy Savers [EERE]

1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

394

Sandia National Laboratories: Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The projects below are a few of the projects that IMS is supporting. Advanced Hypersonic Weapon (AHW) The Advanced Hypersonic Weapon (AHW) Program is a technology...

395

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 274...

396

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 259...

397

Project Risk Management:.  

E-Print Network [OSTI]

?? The recent increase in international projects has resulted in higher risk along with difficulties in control and coordination. Effective project management can therefore be (more)

Koelmeyer, Chris

2013-01-01T23:59:59.000Z

398

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

3 First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2013 Target FY 2013 Final FY...

399

Falls Creek Hydroelectric Project  

SciTech Connect (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

400

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: Fact #516: April 28, 2008 The Petroleum Gap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: April 28, 6: April 28, 2008 The Petroleum Gap to someone by E-mail Share Vehicle Technologies Office: Fact #516: April 28, 2008 The Petroleum Gap on Facebook Tweet about Vehicle Technologies Office: Fact #516: April 28, 2008 The Petroleum Gap on Twitter Bookmark Vehicle Technologies Office: Fact #516: April 28, 2008 The Petroleum Gap on Google Bookmark Vehicle Technologies Office: Fact #516: April 28, 2008 The Petroleum Gap on Delicious Rank Vehicle Technologies Office: Fact #516: April 28, 2008 The Petroleum Gap on Digg Find More places to share Vehicle Technologies Office: Fact #516: April 28, 2008 The Petroleum Gap on AddThis.com... Fact #516: April 28, 2008 The Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met

402

Statement of Project Objectives  

Broader source: Energy.gov [DOE]

Statement of Project Objectives, from the Tool Kit Framework: Small Town University Energy Program (STEP).

403

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

404

Ultracomputer Research Project  

SciTech Connect (OSTI)

This document presents significant accomplishments made on the Ultracomputer Research Project during CY92.

Gottlieb, A.

1992-10-01T23:59:59.000Z

405

Fairbanks Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

406

Project #31: Connecticut River  

Science Journals Connector (OSTI)

GEOMORPHIC SETTING: At the project location, the Connecticut River has an annual average discharge of...

Wendi Goldsmith; Donald Gray; John McCullah

2014-01-01T23:59:59.000Z

407

Desert Peak EGS Project  

Broader source: Energy.gov [DOE]

Desert Peak EGS Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

408

Geysers Project Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Geysers Project Geothermal Project Project Location Information Coordinates 38.790555555556°, -122.75583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.790555555556,"lon":-122.75583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

EIS-0183: Record of Decision | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electrical Interconnection of the Windy Point Wind Energy Project Electrical Interconnection of the Windy Point Wind Energy Project The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS.1 The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. DOE/EIS-0183, Bonneville Power Administration, Record of Decision for the

410

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

2 2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - Two projects completed in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively.

411

Microsoft Word - IMBA Gap Analysis Final 20060831.doc  

Broader source: Energy.gov (indexed) [DOE]

DOE/EH-0711 DOE/EH-0711 Gap Analysis for IMBA and DOE Safety Software Central Registry Recommendation Final U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Avenue, S.W. Washington, D.C. 20585-2040 August 2006 DOE/EH-0711 i INTENTIONALLY BLANK DOE/EH-0711 ii FOREWORD This report documents the outcome of an evaluation of the safety software quality assurance attributes of the Integrated Modules for Bioassay Analysis (IMBA) Expert (tm) USDOE-Edition and Professional Plus computer products relative to the safety software requirements identified in DOE O 414.1C, Quality Assurance. This evaluation, a gap analysis, is performed according to DOE G 414.1-4 and is a requisite

412

Pleasant Gap, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gap, Pennsylvania: Energy Resources Gap, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8681177°, -77.7466665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8681177,"lon":-77.7466665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries  

SciTech Connect (OSTI)

Structure and electronic properties of carbon nanotubes (CNTs) with grain boundaries (GBs) are investigated using density-functional calculations, where the GBs parallel and perpendicular to the tube axis are considered. Simulation results show that the GBs have a great effect on the electronic properties of the CNTs. For the GBs along the tube axis, the CNTs are narrow or zero band gap (<0.16 eV) materials, independent of the misorientation angle and diameter. For the GBs perpendicular to the tube axis, localized electronic states appear within the GBs regions, leading to a larger band gap of up to 0.6 eV. It is convenient to transport and localize the electrons and holes by engineering the GBs. These findings are of great significance for developing carbon-based nanomaterials and electronic devices.

Wang, Zhiguo; Zhou, Yungang; Zhang, Yanwen; Gao, Fei

2012-01-26T23:59:59.000Z

414

Damping of lower hybrid waves in large spectral gap configurations  

SciTech Connect (OSTI)

Extensive experimental data support reliable power deposition and current drive by lower-hybrid (LH) waves in conditions where a large spectral gap exists between the nominal parallel index of refraction prescribed by the antenna characteristics and phasing, and that required for significant Landau damping to take place. We argue that only a significant modification of the initial spectrum at the plasma edge could explain experimental observations. Based on this assumption, a new prescription for reliable simulations of LH current drive using ray-tracing and Fokker-Planck modelling is proposed. A remarkable agreement between experimental observations in the Tore Supra tokamak and simulations is obtained for relevant parametric scans, including electron density and LH waveguide phasing. In an effort to investigate the possible role of fluctuations, it is shown that the spectral gap can be bridged dynamically in the presence of a fluctuating LH spectrum.

Decker, J.; Peysson, Y.; Artaud, J.-F.; Nilsson, E.; Ekedahl, A.; Goniche, M.; Hillairet, J.; Mazon, D. [CEA, IRFM, F-13108 Saint Paul lez Durance (France)

2014-02-12T23:59:59.000Z

415

Valley pair qubits in double quantum dots of gapped graphene  

E-Print Network [OSTI]

The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).

G. Y. Wu; N. -Y. Lue; L. Chang

2011-07-03T23:59:59.000Z

416

The information gap in corporate annual reports: evidence from Egypt  

Science Journals Connector (OSTI)

This study explores whether an information gap exists for six types of corporate disclosure in Egypt, where International Accounting Standards (IAS) apply but penalties for non-compliance are limited. It also investigates whether low compliance with mandatory disclosure can be explained by low levels of demand for this type of information among local financial analysts. The results identify a significant gap between actual disclosure practices of companies for various types of disclosure and market perceptions of this practice. Our findings also suggest that low compliance with disclosure requirements in Egypt is not driven by low levels of demand from local financial analysts, because these items of information are perceived as useful for investment decision making.

Omaima A.G. Hassan; Gianluigi Giorgioni; Peter Romilly; David M. Power

2012-01-01T23:59:59.000Z

417

Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries  

SciTech Connect (OSTI)

Structure and electronic properties of carbon nanotubes (CNTs) with grain boundaries (GBs) are investigated using density-functional calculations, where the GBs parallel and perpendicular to the tube axis are considered. Simulation results show that the GBs have a great effect on the electronic properties of the CNTs. For the GBs along the tube axis, the CNTs are narrow or zero band gap (<0.16 eV) materials, independent of the misoritentaion angle and diameter. For the GBs perpendicular to the tube axis, localized electronic states appear within the GBs regions, leading to a larger band gap of up to 0.6 eV. It is convenient to transport and localize the electrons and holes by engineering the GBs. These findings are of great significance for developing carbon-based nanomaterials and electronic devices.

Wang, Zhiguo [Department of Applied Physics, University of Electronic Science and Technology of China; Zhou, Yungang [Department of Applied Physics, University of Electronic Science and Technology of China; Zhang, Yanwen [ORNL; Gao, Fei [ORNL

2011-01-01T23:59:59.000Z

418

Spark gap switch system with condensable dielectric gas  

DOE Patents [OSTI]

A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

Thayer, III, William J. (Kent, WA)

1991-01-01T23:59:59.000Z

419

Technical Standards, CFAST-Gap Analysis - May 3, 2004 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Gap Analysis - May 3, 2004 Gap Analysis - May 3, 2004 Technical Standards, CFAST-Gap Analysis - May 3, 2004 May 3, 2004 DOE-EH-4.2.1.3-CFAST-Gap Analysis, Software Quality Assurance Improvement Plan: CFAST Gap Analysis This report documents the outcome of an evaluation of the Software Quality Assurance (SQA) attributes of the CFAST computer code for accident analysis applications, relative to established requirements. This evaluation, a "gap analysis," is performed to meet commitment 4.2.1.3 of the Department of Energy's Implementation Plan to resolve SQA issues identified in the Defense Nuclear Facilities Safety Board Recommendation 2002-1. Technical Standards, CFAST-Gap Analysis More Documents & Publications Technical Standards, CFAST-Code Guidance - July 23, 2004 Technical Standards, MELCOR - Gap Analysis - May 3, 2004

420

Fact #837: September 8, Gap between Net Imports and Total Imports...  

Broader source: Energy.gov (indexed) [DOE]

7: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Fact 837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net...

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nanoscale gap filling for phase change material by pulsed deposition and inductively coupled plasma etching  

Science Journals Connector (OSTI)

The gap filling of phase change material has become a critical module in the fabrication process of phase change random access memory (PCRAM) as the ... . We achieved void free gap filling of phase change material

W. C. Ren; B. Liu; Z. T. Song; X. Z. Jing; B. C. Zhang; Y. H. Xiang

2013-09-01T23:59:59.000Z

422

Engineered nanomaterials: knowledge gaps in fate, exposure, toxicity, and future directions  

Science Journals Connector (OSTI)

The aim of this study is to identify current knowledge gaps in fate, exposure, and toxicity of engineered nanomaterials (ENMs), highlight research gaps, and suggest future research directions. Humans and other living organisms are exposed to ENMs during ...

Arun Kumar, Prashant Kumar, Ananthitha Anandan, Teresa F. Fernandes, Godwin A. Ayoko, George Biskos

2014-01-01T23:59:59.000Z

423

Variation of treefall gap characteristics in an East Texas bottomland hardwood forest: effects of microtopography  

E-Print Network [OSTI]

Treefall gaps, formed as a result of small-scale disturbances, allow seedling recruitment and growth in late-successional forests. Many factors contribute to gap regime heterogeneity within and among forest stands, including wind and fire patterns...

Almquist, Benjamin Eric

1998-01-01T23:59:59.000Z

424

Of horseshoes and heliotropes: Dynamics of dust in the Encke Gap M.M. Hedman a,  

E-Print Network [OSTI]

Of horseshoes and heliotropes: Dynamics of dust in the Encke Gap M.M. Hedman a, , J.A. Burns a located within the Cassini Division's Laplace Gap demonstrates ``heliotropic'' behavior: its geometric

Hamilton, Douglas P.

425

Controlling electrode gap during vacuum arc remelting at low melting current  

DOE Patents [OSTI]

An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

Williamson, R.L.; Zanner, F.J.; Grose, S.M.

1997-04-15T23:59:59.000Z

426

Optical absorption and band gap reduction in (Fe1-xCrx)2O3 solid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical absorption and band gap reduction in (Fe1-xCrx)2O3 solid solutions: A first-principles study. Optical absorption and band gap reduction in (Fe1-xCrx)2O3 solid solutions: A...

427

Vehicle Technologies Office: Fact #465: April 16, 2007 The Petroleum Gap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: April 16, 5: April 16, 2007 The Petroleum Gap to someone by E-mail Share Vehicle Technologies Office: Fact #465: April 16, 2007 The Petroleum Gap on Facebook Tweet about Vehicle Technologies Office: Fact #465: April 16, 2007 The Petroleum Gap on Twitter Bookmark Vehicle Technologies Office: Fact #465: April 16, 2007 The Petroleum Gap on Google Bookmark Vehicle Technologies Office: Fact #465: April 16, 2007 The Petroleum Gap on Delicious Rank Vehicle Technologies Office: Fact #465: April 16, 2007 The Petroleum Gap on Digg Find More places to share Vehicle Technologies Office: Fact #465: April 16, 2007 The Petroleum Gap on AddThis.com... Fact #465: April 16, 2007 The Petroleum Gap (Revised April 18, 2007) Since 1989, the transportation sector alone has used more petroleum than

428

Summer Projects 2013 Major Capital Projects  

E-Print Network [OSTI]

FANNIN AND MAIN · NEW CONTINENTAL CROSSWALK STRIPING · NEW STREET TREES, PEDESTRIAN LIGHTS and Installation #12;Summer Projects City of Houston Projects #12;Main Street Intersections #12;Main Street AND FURNISHINGS · REDUCE CLUTTER AT CORNERS, RELOCATE UTILITIES WHEN POSSIBLE #12;Main Street Intersections #12

Alvarez, Pedro J.

429

Project Description: page 1 Project Description  

E-Print Network [OSTI]

Project Description: page 1 Project Description I. Introduction: Josephson junction networks Over the past 25 years, superconducting Josephson junctions have gradually become one of the major topics standards. Our research uses Josephson junctions as model systems for problems in nonlinear and neural

Segall, Ken

430

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Third Quarter Third Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 71% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

431

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

1 1 st Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - No 1 st Qtr FY09 completions. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively. 85% Line Item

432

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

4 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 73% This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A This metric has been overcome by events. Beginning in FY10, EM projects are to be measured against metric #1 above. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12,

433

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

3 3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 72% This is a 3-year rolling average (FY07 to FY09). No 3 rd qtr FY09 completions. 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively. 85% Line Item

434

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

8 4 8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2008 Target FY 2008 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 75% 76% This is a 3-year rolling average Data includes FY06 to FY08. (37/48) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively.

435

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

1 1 st Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target 1st Qtr FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 73% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

436

Wide-gap a-Si:H fabricated by controlling voids  

SciTech Connect (OSTI)

High quality wide gap hydrogenated amorphous silicon has been prepared using the chemical annealing technique. It was possible to prepare materials with band gaps ranging 1.8 to 2.1 eV by varying the preparation parameters. Low defect densities less than (3--8) {times} 10{sup 15} cm{sup {minus}3} could be maintained over the entire band gap range. Improved stability for light soaking was also observed in the wide gap materials.

Yoshino, K.; Futako, W.; Wasai, Y.; Shimizu, I. [Tokyo Inst. of Tech., Yokohama (Japan). Graduate School

1996-12-31T23:59:59.000Z

437

Electric strength of the accelerating gap of a plasma electron source at rough vacuum  

Science Journals Connector (OSTI)

Conditions for the electric breakdown of the accelerating gap of a plasma electron source are determined. It is shown that,...

V. A. Burdovitsin; M. N. Kuzemchenko; E. M. Oks

2002-07-01T23:59:59.000Z

438

Project Project Funding Operational & Maintenance Costs Univ. Project Title GSF Brief Description of Project Location Amount Source  

E-Print Network [OSTI]

Project Project Funding Operational & Maintenance Costs Univ. Project Title GSF Brief Description of Project Location Amount Source UF Minor Projects for UF 50,000 Minor projects for facilities located and education. Typical projects consist of Gainesville/ Typical projects other funding greenhouses, general

Slatton, Clint

439

PROJECT MANGEMENT PLAN EXAMPLES Project Execution Example  

Broader source: Energy.gov (indexed) [DOE]

Project Execution Example Project Execution Example Example 73 6.3 Project Approach The overall schedule strategy for the PFP project includes ongoing minimum safe activities, combined with stabilization of materials followed by materials disposition, and subsequent transition of the PFP complex to a decommissioned state. The PFP material stabilization baseline was developed using a functionally-based work WBS. The WBS defines all activities required to take each material stream from their current location/conditions through stabilization (as required), and disposition the stabilized material as solid waste for shipment to WIPP or as product material for shipment to SRS. Initially, workshops were held with subject matter experts, project managers, schedulers, and support personnel (experts in the

440

FCT Technology Validation: Integrated Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Projects to Integrated Projects to someone by E-mail Share FCT Technology Validation: Integrated Projects on Facebook Tweet about FCT Technology Validation: Integrated Projects on Twitter Bookmark FCT Technology Validation: Integrated Projects on Google Bookmark FCT Technology Validation: Integrated Projects on Delicious Rank FCT Technology Validation: Integrated Projects on Digg Find More places to share FCT Technology Validation: Integrated Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects Integrated Projects DOE Projects Non-DOE Projects Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Manufacturing Codes & Standards Education Systems Analysis Contacts Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

OIKOS 101: 499504, 2003 Do seedlings in gaps interact? A field test of assumptions in ESS  

E-Print Network [OSTI]

OIKOS 101: 499­504, 2003 Do seedlings in gaps interact? A field test of assumptions in ESS seed seedlings in gaps interact? A field test of assumptions in ESS seed size models. ­ Oikos 101: 499­504. ESS for the occupancy of `safe sites' or vegetation gaps. If mortality rates are high and/or frequency-independent, ESS

Silvertown, Jonathan

442

The Quasi-Distributed Gap Technique for Planar Inductors-Design Guidelines  

E-Print Network [OSTI]

The Quasi-Distributed Gap Technique for Planar Inductors-Design Guidelines Jiankun Hu C. R The Quasi-Distributed Gap Technique for Planar Inductors: Design Guidelines Jiankun Hu Charles R. Sullivan of low-permeability magnetic material to form a uniformly distributed gap can facilitate the design

443

Penetration of plasma into the wafer-focus ring gap in capacitively coupled plasmas  

E-Print Network [OSTI]

Penetration of plasma into the wafer-focus ring gap in capacitively coupled plasmas Natalia Y of capacitively coupled plasma reactors with a wafer-focus ring gap. The penetration of plasma generated species i.e., ions and radicals into the wafer-focus ring gap is discussed. We found that the penetration of plasma

Kushner, Mark

444

THE DEVILS STAIRCASE DIMENSIONS AND MEASURE-THEORETICAL ENTROPY OF MAPS WITH HORIZONTAL GAP  

E-Print Network [OSTI]

Abstract. This work elucidates the measure-theoretical entropy and dimensions of a unimodal map with a horizontal gap. The measure-theoretical entropy and dimensions of the Ft (which is defined later)are shown to form a devils staircase structure with respect to the gap size t. Pesins formula for gap maps is also considered. 1.

Jung-chao Ban; Song-sun Lin

445

PROJECT MANGEMENT PLAN EXAMPLES  

Broader source: Energy.gov (indexed) [DOE]

Baselines - Baselines - Performance Baseline Examples Example 34 6.0 PROJECT BASELINE This section presents a summary of the PFP Stabilization and Deactivation Project baseline, which was prepared by an inter- contractor team to support an accelerated planning case for the project. The project schedules and associated cost profiles presented in this section are compared to the currently approved project baseline, as contained in the Facility Stabilization Project Fiscal Year 1999 Multi-Year Work Plan (MYWP) for WBS 1.4 (FDH 1998). These cost and schedule details will provide the basis for a baseline change request that will be processed to revise the MYWP, consistent with the accelerated project plan presented below. 6.1 Project Baseline Overview This section of the IPMP presents the PFP baseline cost and schedule summary. The currently approved PFP Stabilization and

446

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Second Quarter Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

447

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

First Quarter First Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 79% Line Item 71% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

448

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Third Quarter Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

449

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Fourth Quarter Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual FY 2011 Pre- & Post-CAP Actual Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 77% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

450

Rank Project Name Directorate,  

E-Print Network [OSTI]

Rank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1 NATIONAL LABORATORY FY02 Funded Pollution Prevention Projects 0.4 Years (~5 months) #12;

451

The 4-H Project  

E-Print Network [OSTI]

As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

452

Information Technology Project Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

2012-12-03T23:59:59.000Z

453

Information Technology Project Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1, dated 1-16-2013, cancels DOE O 415.1.

2012-12-03T23:59:59.000Z

454

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Fourth Quarter Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 69% Line Item 67% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

455

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:  

Open Energy Info (EERE)

Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Focus Area: Clean Fossil Energy Topics: System & Application Design Website: www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=277910&_user=10&_ Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-co2-capture-project-ph Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This paper describes results of Phase 2 of the Storage Program of the

456

Page 1 of 26 INDEPENDENT PROJECT  

E-Print Network [OSTI]

Page 1 of 26 INDEPENDENT PROJECT EVALUATION PROJECT NAME: HIVE PROOF-OF- CONCEPT PROJECT PROJECT ............................................................................................................................................3 The Project..............................................................................................................................................3 Project Objectives and Achievements

Evans, Paul

457

Research Project Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Project Description No job description found Current Research Opportunities Viral Hepatitis Prevention Fellowship Climate Change Communication Internship Applied Molecular...

458

WIPP Projects Interative Map  

Broader source: Energy.gov [DOE]

View WIPP Projects in a larger map. To report corrections, please emailWeatherizationInnovation@ee.doe.gov.

459

GHPsRUS Project  

SciTech Connect (OSTI)

The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

Battocletti, Liz

2013-07-09T23:59:59.000Z

460

Gasification Systems Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 Gasification Systems Project Portfolio News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International...

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Rapidity gap signals in Higgs-boson production at the SSC  

Science Journals Connector (OSTI)

We examine the structure of the underlying event in neutral Higgs-boson production at the Superconducting Super Collider (SSC). Gaps, regions of rapidity containing no soft particle production, can provide a clean signature for W boson fusion to the heavy Higgs boson. We first examine the physical basis of gap production and estimate the survival probability of gaps in the minijet model. Then, using pythia, and herwig, we compare gap events to W pair production from top quark decay and qq fusion. We find that, if experimental problems can be overcome, gaps should provide a small, but clean, signal for heavy Higgs-boson production at the SSC.

R. S. Fletcher and T. Stelzer

1993-12-01T23:59:59.000Z

462

Kansas Advanced Semiconductor Project  

SciTech Connect (OSTI)

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

463

Fundamental Aeronautics Hypersonics Project  

E-Print Network [OSTI]

Fundamental Aeronautics Hypersonics Project Reference Document Principal Investigator: James and detailed content of a comprehensive Fundamental Aeronautics Hypersonics research project. It contains) Hypersonic Project is based on the fact that all access to earth or planetary orbit, and all entry into earth

464

Project Website Information Architecture  

E-Print Network [OSTI]

Project Website Information Architecture Overview Purpose: To describe up front what your initiative/project does. This section does not need to literally be called "Overview;" you can come up with anther suitable title that is more specific to your project. Examples of what to include: Information

465

Project Scheduling (3) Corequisite  

E-Print Network [OSTI]

) CMGT 111 Construction Materials & Methods Lab (1) CMGT 460 Project Cost Controls (3) FA SP CMGT 320 FASYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro) CMGT 475 Construction Project Management (3) MATH 108 College Algebra (4) Construction Elective

Barrash, Warren

466

Project Scheduling (3) Corequisite  

E-Print Network [OSTI]

460 Project Cost Controls (3) FA SP FA CE 210/211 Surveying & Lab (3) CMGT 410 Concrete FormworkSYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro Construction Project Management (3) MATH 108 College Algebra (4) MGMT 301 Leadership Skills (3) ENGL 101

Barrash, Warren

467

New Project Opportunities  

E-Print Network [OSTI]

/year. Most projects will be sponsored by between four and ten companies. The cost of participation may changeNew Project Opportunities PIMS: Porphyry Indicator Minerals The characteristics and relative, the next phase of this project has started and MDRU are looking for industry partners. Exploring Lithocaps

Michelson, David G.

468

Lattice Boltzmann model for photonic band gap materials  

Science Journals Connector (OSTI)

An efficient technique for computing photonic band structure and defect modes is proposed based on the lattice Boltzmann model. Physically, it is a scheme based on the kinetics of the virtual microscopic process, rather than a solution of the macroscopic Maxwell equations. The method has significant advantages of being naturally suited for massively parallel machine, as well as speed and convenience, providing another methodology for photonic band gap materials and, also, for general electromagnetic scattering problems in open region when incorporated with the perfectly matched layer technique.

Zhifang Lin; Haiping Fang; Jianjun Xu; Jian Zi; Xiangdong Zhang

2003-02-07T23:59:59.000Z

469

Gap-dependent transitions of atmospheric microplasma in open air  

SciTech Connect (OSTI)

We report on the gap dependence of the planar atmospheric microplasma in air. We investigate the transitions of the dielectric barrier discharge in open air, including the random walk filaments (plasma columns), localized filaments, stochastic filaments, and diffuse discharge. A star-shaped filamentary discharge pattern is observed after the formation of the localized filaments. The liquid drops found on the dielectric surface further become a confining pattern for star-shaped discharge. We also demonstrate the applications of the insulating pattern for the use of the plasma display in open air by the handwritten characters with UV adhesive.

Chu, Hong-Yu; Huang, Bo-Shiun [Department of Physics, National Chung Cheng University, ChiaYi 62102, Taiwan (China)

2011-04-15T23:59:59.000Z

470

Random-Gap Model for Graphene and Graphene Bilayers  

Science Journals Connector (OSTI)

The effect of a randomly fluctuating gap, created by a random staggered potential, is studied in a monolayer and a bilayer of graphene. The density of states, the one-particle scattering rate, and the transport properties (diffusion coefficient and conductivity) are calculated at the neutrality point. All of these quantities vanish at a critical value of the average staggered potential, signaling a continuous transition to an insulating behavior. Transport quantities are directly linked to the one-particle scattering rate. Although the behavior is qualitatively the same in mono- and bilayers, the effect of disorder is much stronger in the latter.

K. Ziegler

2009-03-24T23:59:59.000Z

471

Direct control of air gap flux in permanent magnet machines  

DOE Patents [OSTI]

A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

Hsu, John S. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

472

Origin of the optical gap in half-doped manganites  

Science Journals Connector (OSTI)

We have analyzed the coexisting charge and orbital ordering in half-doped manganites using a model which includes Coulomb and Jahn-Teller orbital polarization interactions. Most surprisingly, the gap in the optical conductivity is reduced by both on-site and intersite Coulomb interactions, but increases and explains the experimental results when the Jahn-Teller terms with orbital polarization are considered. The origin of this behavior is explained within a molecular model which arises in the limit of extreme topological frustration, when single electrons are confined to molecular units consisting of three orbitals.

Mario Cuoco; Canio Noce; Andrzej M. Ole?

2002-09-25T23:59:59.000Z

473

Fermi velocity renormalization and dynamical gap generation in graphene  

E-Print Network [OSTI]

We study the renormalization of the Fermi velocity by the long-range Coulomb interactions between the charge carriers in the Dirac-cone approximation for the effective low-energy description of the electronic excitations in graphene at half filling. Solving the coupled system of Dyson-Schwinger equations for the dressing functions in the corresponding fermion propagator with various approximations for the particle-hole polarization we observe that Fermi velocity renormalization effects generally lead to a considerable increase of the critical coupling for dynamical gap generation and charge-density wave formation at the semimetal-insulator transition.

C. Popovici; C. S. Fischer; L. von Smekal

2015-01-12T23:59:59.000Z

474

Low-pressure spark gap triggered by an ion diode  

DOE Patents [OSTI]

Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

Prono, D.S.

1982-08-31T23:59:59.000Z

475

Nonlinear Photon-Assisted Tunneling Transport in Optical Gap Antennas  

Science Journals Connector (OSTI)

(16, 17) For instance, incoming photons can exchange energy with tunneling charges modifying thus the conductance of the barrier(18, 19) and strong-field effects were recently reported. ... (32) The height ? of the potential barriers can be directly deduced from these two minima. ... Two lock-in amplifiers referenced at Fmod and 2Fmod output a signal proportional to the differential conductance I? = Vac(?Ib/?Vb) of the gap antenna and signal proportional to the nonlinearity of the conductance I? = 1/4Vac2(?2Ib/?Vb2), respectively. ...

Arnaud Stolz; Johann Berthelot; Marie-Maxime Mennemanteuil; Grard Colas des Francs; Laurent Markey; Vincent Meunier; Alexandre Bouhelier

2014-04-03T23:59:59.000Z

476

NEPA COMPLIANCE SURVEY Project Information Project Title:  

Broader source: Energy.gov (indexed) [DOE]

New power Line for new generator at ten sleep New power Line for new generator at ten sleep Dat e: 12114/10 DOE Code: Contractor Code: Project Lead: Mike Preston Project Overview 1. Brief project description (include Extend 3 phase power line from (existing) pole 99 to the Ten Sleep location for a new generator. The anything that could impact the transformer bank at the WDF will be dismantled, the line extended overhead, across 5 new power poles, to environment) the Ten Sleep Battery and the bank will be reassembled there. The new guy anchor at pole 99 will be located outside Palustrine wetlands. The line will be 34.5/19.920 KV, approximately 1,200 feet in length. 2. Legal location Ground disturbance will be minimal and have very little potential to affect the environment. 3. Duration of the project

477

FY09 WDI PROJECT FUNDING CUNY Unit Project Name  

E-Print Network [OSTI]

FY09 WDI PROJECT FUNDING CUNY Unit Project Name International Trade Operation & Procedures Program Simulation Lab College Initiative Bridge Program Workshop Project for Direct Care Workers Green Initiatives

Rosen, Jay

478

Technical Standards, MACCS2, Gap Analysis - May 3, 2004 | Department of  

Broader source: Energy.gov (indexed) [DOE]

MACCS2, Gap Analysis - May 3, 2004 MACCS2, Gap Analysis - May 3, 2004 Technical Standards, MACCS2, Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MACCS2 Gap Analysis The MACCS2 software, for radiological dispersion and consequence analysis, is one of the codes designated for the toolbox. To determine the actions needed to bring the MACCS2 code into compliance with the SQA qualification criteria, and develop an estimate of the resources required to perform the upgrade, the Implementation Plan has committed to sponsoring a code-specific gap analysis document. Technical Standards, MACCS2, Gap Analysis More Documents & Publications Technical Standards, Guidance on MACCS2 Computer Code - June 30, 2004 Technical Standards, MELCOR - Gap Analysis - May 3, 2004

479

NEPA COMPLIANCE SURVEY Project Information Project Title:  

Broader source: Energy.gov (indexed) [DOE]

Dig d~ch from 24-51-5TX-1 0 to 24-AX-10 and reinstall electrical wire Dig d~ch from 24-51-5TX-1 0 to 24-AX-10 and reinstall electrical wire Date: 12120/2010 DOE Coda: Contractor Coda: Project Lead: Marcus Bruckner Project Overview 1 Dig ditch from 24-51-8TX-1 0 to 24-AX-10 and remove and replace electrical wire {N 2.7o') 1. Brief project desalptlon Pnclude anything that oould impact the 2. 24-51-5TX-10 and 24-AX-10 (SW r.tN 10TOWNSHIP 38 NORTH RANGE 78WEST) environment] 2. Leg allocation 3. 1 day 3. Duration of the project 4. Major equipment to be used 4. Backhoe The table below is to be completed by the Project Leed and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and contact the Technical Assurance Department.

480

MASTER OF SCIENCE Enterprise Project  

E-Print Network [OSTI]

MASTER OF SCIENCE Enterprise Project Management PROJECT YOUR FUTURE #12;Stevens Project Management Legacy Master of Science in Enterprise Project Management At Stevens, we understand the value of project in project management, Stevens was the third university worldwide to receive global project management

Yang, Eui-Hyeok

Note: This page contains sample records for the topic "windy gap project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Bridge the Gap 2014 --Guidance for Participants Requiring Level Access This level-access route is meant to accommodate Bridge the Gap participants using  

E-Print Network [OSTI]

or there is an alternative route in to the College theough the Golden Gate. There will be a steward on hand to assist. 12Bridge the Gap 2014 -- Guidance for Participants Requiring Level Access This level-access route is meant to accommodate Bridge the Gap participants using wheelchairs, mobility scooters and pushchairs

Travis, Adrian

482

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

First Quarter First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 84% Construction 83% Cleanup 85% 77% Pre-CAP 86% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 1st Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 94% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

483

Project Name/Description  

Broader source: Energy.gov (indexed) [DOE]

RCA CM-3 Risk Management RCA CM-3 Risk Management Projects/Programs - RMPs, Tools, and SMEs Project Name/Description (see note below) DOE Program DOE RMP Contractor RMP Combined RMP Tools Database/Risk Analysis SMEs Federal/M&O/Consultant Integrated Biorefinery Research Facility Project EE X Research Support Facility Project EE X National Synchrotron Light Source II Project SC X 12 GeV Upgrade Project (TJL) SC X Physical Sciences Facility Project (PNNL) SC X P6, Pertmaster, Excel Mike Shay, Jason Gatelum ITER SC X (internation al pgm) P6, Pertmaster, Risk Checklist, Risk Assessor Handbook John Tapia, Colin Williams, Allen Bishop SING & SING II (SNS, OR) SC X Excel, Analytic Hierarchy, P6 Barbara Thibadeau Modernization of Lab Fac. (ORNL)

484

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Second Quarter Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 88% Construction 87% Cleanup 89% 77% Pre-CAP 92% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 2nd Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 96% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

485

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Fourth Quarter Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 86% Construction 87% Cleanup 84% 77% Pre-CAP 89% Post-CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 4th Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 100% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

486

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Third Quarter Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 87% Construction 87% Cleanup 87% 77% Pre-CAP 90% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 3rd Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 98% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

487

RENOTER Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RENOTER Project RENOTER Project Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE...

488

BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)  

E-Print Network [OSTI]

BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

489

RM Environmental Review (NEPA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Review-NEPA Environmental Review-NEPA Categorical exclusions are posted here to promote transparency and openness. Some actions may have environmental impacts that require an environmental assessment and a detailed analysis to determine the extent and severity of the impacts. For actions that have significant impacts or consequences to the environment or human health, RM prepares environmental impact statements. Environmental Impact Statements-EIS Estes-Flatiron Transmission Line Rebuild Project Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Hermosa West Wind Energy Project Maintenance and Vegetation Management along Existing Western TransmissionLine Rights of Way on National Forest System Lands in Colorado, Utah, Nebraska Platte River Cooperative Agreement PEIS, NE, CO and WY, DOE/EIS-0295 (Cooperating Agency)

490

Latest Documents and Notices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 16, 2013 October 16, 2013 EA-1971: FERC Notice of Intent to Prepare an Environmental Assessment Golden Pass LNG Export and Pipeline Project, Texas and Louisiana October 10, 2013 EA-1812: Final Supplement Analysis Haxtun Wind Energy Project, Logan and Phillips Counties, CO October 4, 2013 EIS-0423-S1: EPA Notice of Availability of Final Supplemental Environmental Impact Statement Long-Term Management and Storage of Elemental Mercury October 1, 2013 EIS-0400: Record of Decision Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO September 27, 2013 EIS-0442: EPA Notice of Availability of Draft Environmental Impact Statement Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service

491

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

81 - 7990 of 8,172 results. 81 - 7990 of 8,172 results. Download Details of the FY 2013 Congressional Budget Request for OE The President's FY 2013 budget request for the Department of Energy: http://energy.gov/oe/downloads/details-fy-2013-congressional-budget-request-oe Download EIS-0289: Draft Environmental Impact Statement JEA Circulating Fluidized Bed Combustor Project http://energy.gov/nepa/downloads/eis-0289-draft-environmental-impact-statement Download EIS-0400: Draft Environmental Impact Statement Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO http://energy.gov/nepa/downloads/eis-0400-draft-environmental-impact-statement Download EA-1855: Draft Environmental Assessment Creston Bell Transmission Line Rebuild Project, Spokane and Lincoln

492

Project Surveillance and Maintenance Plan. [UMTRA Project  

SciTech Connect (OSTI)

The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the (guidance) to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs.

Not Available

1985-09-01T23:59:59.000Z

493

Method of Controlling Corona Effects and Breakdown Voltage of Small Air Gaps Stressed by Impulse Voltages  

E-Print Network [OSTI]

This paper investigates the influence of a resistor on the dielectric behavior of an air gap. The resistor is connected in series with the air gap and the latter is stressed by impulse voltage. Air gap arrangements of different geometry with either the rod or the plate grounded are stressed with impulse voltages of both positive and negative polarity. The resistor is connected in series with the air gap in the return circuit connecting the gap with the impulse generator. The method followed involves the investigation of the graphs of the charging time concerning the air gaps capacitances, in connection to the value of the resistor, the geometry of the gap, the effect of grounding and the polarity effect. It is determined that the charging time of the air gap increases, as the value of the resistor increases. It is also determined that the peak voltage value of the fully charged air gap decreases as the value of the resistor increases. The results of the mathematical and simulation analysis are compared with the results of the oscillograms taken from experimental work. In addition and consequently to the above results it is concluded from the experimental work that the in series connection of the resistor in the circuit has significant influence on corona pulses (partial discharges) occurring in the gap and on the breakdown voltage of the gap. A new method of controlling the corona effects and consequently the breakdown voltage of small air gaps stressed by impulse voltage of short duration in connection to the ground effect and the polarity effect has arisen. Furthermore through mathematical analysis of the charging graphs obtained from simulation and experimental oscillograms there was a calculation of the values of the capacitance of the air gaps in relation to their geometry and the results were compared to the values calculated with mathematical analysis.

Athanasios Maglaras; Trifon Kousiouris; Frangiskos Topalis; Dimitrios Katsaros; Leandros A. Maglaras; Konstantina Giannakopoulou

2014-10-15T23:59:59.000Z

494

Results of two LANL [beta]=0.175, 350-MHZ, 2-GAP spoke cavities  

SciTech Connect (OSTI)

Two {beta} = 0.175, 350 MHz, 2-gap superconducting (SC) spoke cavities were fabricated in industry under the Advanced Accelerator Applications (AAA) project for the transmutation of nuclear waste. These cavities are promising candidates for the accelerating structures between a RFQ and the elliptical SC cavities for proton and heavy ion linacs. Since their delivery in July 2002, they have been tested in terms of mechanical properties, low-temperature performance, i.e., Qo-Eaccc urves at 4 K and 2 K, surface resistance dependence on temperature and for multipacting (MP). The two cavities achieved accelerating fields of 13.5 MV/m and 13.0 MV/m as compared to the required field of 7.5 MV/m with enough margin for the quality factor. These cavities seem to need more time to condition away MP than elliptical cavities, but MP does not occur once the cavity is conditioned and kept at 4 K. The length of the 103 mm-diameter nominal coupler port was found to be too short for the penetrating field.

Tajima, T. (Tsuyoshi); Edwards, R. L. (Randall L.); Gentzlinger, R.C. (Robert C.); Krawczyk, F. L. (Frank L.); Ledford, J. E. (John E.); Liu, Jianfei; Montoya, D. I. (Debbie I.); Roybal, R. J. (Raymond J.(Ray); Schrage, D. L. (Dale L.); Shapiro, A. H. (Alan H.); Barni, D.; Bosotti, A.; Pagani, C. D.

2003-01-01T23:59:59.000Z

495

River Protection Project (RPP) Project Management Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

SEEMAN, S.E.

2000-04-01T23:59:59.000Z

496

PROJECT PLANNING TEMPLATE  

Broader source: Energy.gov (indexed) [DOE]

Plan i Issue Date: 4/24/2009 Plan i Issue Date: 4/24/2009 U.S. Department of Energy Office of Engineering and Construction Management Project Plan for the Project Assessment and Reporting System (PARS II) Version 2.0a (Public) April 20, 2009 Submitted by: Energy Enterprises Solutions 20440 Century Blvd. Suite 150 Germantown, MD 20874 Phone 301-916-0050 Fax 301-916-0066 www.eesllc.net PARS II Project Plan ii Issue Date: 4/24/2009 Title Page Document Name: Project Plan for the Project Assessment and Reporting System (PARS II), V2.0a Publication Date: April 24, 2009 Contract Number: DE-AT01-06IM00102 Project Number: 1ME07, CLIN 2 Prepared by: Judith Bernsen, PMC, LLC Kai Mong, Energy Enterprise Solutions, LLC

497

Manhattan Project: Library  

Office of Scientific and Technical Information (OSTI)

LIBRARY LIBRARY Resources A number of government publications relating to the Manhattan Project are available either as web pages or as .pdf documents. Cover of the Manhattan Project publication Department of Energy Publications Fehner and Gosling, Origins of the Nevada Test Site Fehner and Gosling, Battlefield of the Cold War: The Nevada Test Site Gosling, Manhattan Project, 1999 Gosling, Manhattan Project, 2010 Harnessed Atom United States Nuclear Tests, 1945-1992 Wahlen, History of 100-B Area Los Alamos National Laboratory Publications Bainbridge, Trinity Fakley, "The British Mission" Hawkins, MDH: Project Y, Vol. 1 Los Alamos: Beginning of an Era, 1943-1945 Malik, Yields of Hiroshima and Nagasaki "Oppenheimer Years" Serber, Los Alamos Primer Truslow, MDH: Project Y, Vol. 2

498

DSW Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates DSW Power Projects Boulder Canyon: Straddling the Colorado River near the Arizona-Nevada border, Hoover Dam in Boulder Canyon creates Lake Mead. River waters turning turbines at Hoover Powerplant produce about 2,074 MW--enough electricity for nearly 8 million people. Western markets this power to public utilities in Arizona, California and Nevada over 53.30 circuit-miles of transmission line. Central Arizona: Authorized in 1968, the Central Arizona Project in Arizona and western New Mexico was built to improve water resources in the Colorado River Basin. Segments of the authorization allowed for Federal participation in the Navajo Generating Station. The Federal share of the powerplant's combined capacity is 547 MW.

499

Project Execution Plan RM  

Broader source: Energy.gov (indexed) [DOE]

Project Execution Plan (PEP) Review Module Project Execution Plan (PEP) Review Module March 2010 CD-0 O 0 OFFICE OF P C CD-1 F ENVIRO Standard R Project E Rev Critical Decis CD-2 M ONMENTAL Review Plan Execution view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) n Plan e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

500

FIFE Project Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Follow-On Follow-On The First ISLSCP Field Experiment (FIFE) Follow-On Project FIFE Follow-On Overview [FIFE Logo] The FIFE Follow-On project was a large-scale climatology project conducted on the Konza Prairie in Kansas from 1990 through 1993. It includes additional analysis of the data collected in the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) from 1987 through 1989, as well as additional field measurements. The over-arching goal of the FIFE Follow-On project was to develop a physically based approach for using satellite remote-sensing systems. More specifically the project focused on: understanding the biophysical processes controlling the fluxes of exchanges of radiation, moisture, and carbon dioxide between the land