Powered by Deep Web Technologies
Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Unspecified technologies | Open Energy Information  

Open Energy Info (EERE)

Unspecified technologies Unspecified technologies Jump to: navigation, search The following contains the list of 71 Unspecified technologies Incentives. CSV (rows 1 - 71) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - Residential Energy Efficiency Programs (Texas) Utility Rebate Program Texas Construction Installer/Contractor Multi-Family Residential Building Insulation Caulking/Weather-stripping Comprehensive Measures/Whole Building Custom/Others pending approval Duct/Air sealing Unspecified technologies Yes AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) Utility Rebate Program Texas Construction Installer/Contractor Multi-Family Residential Building Insulation Caulking/Weather-stripping Comprehensive Measures/Whole Building

2

Highly Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

3

Available Technologies: Superinsulated Commercial Window ...  

Superinsulated Commercial Window Framing System. IB-3155. APPLICATIONS OF TECHNOLOGY: Window and façade framing systems for non-residential building c ...

4

Windows technology assessment  

SciTech Connect

This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

Baron, J.J.

1995-10-01T23:59:59.000Z

5

Building Technologies Office: High Performance Windows Volume...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Office: High Performance Windows Volume Purchase to someone by E-mail Share Building Technologies Office: High Performance Windows Volume Purchase on Facebook...

6

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

7

Building Technologies Office: Windows, Skylights, and Doors Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows, Skylights, and Windows, Skylights, and Doors Research to someone by E-mail Share Building Technologies Office: Windows, Skylights, and Doors Research on Facebook Tweet about Building Technologies Office: Windows, Skylights, and Doors Research on Twitter Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Google Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Delicious Rank Building Technologies Office: Windows, Skylights, and Doors Research on Digg Find More places to share Building Technologies Office: Windows, Skylights, and Doors Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

8

Good Technology, Inc. FIPS Crypto on Windows Mobile ...  

Science Conference Proceedings (OSTI)

... Good Technology, Inc. FIPS Crypto on Windows Mobile ... 1.1 06 Aug 2005 Richard Levenberg Good Technology Modifications for Windows CE 4.2 ...

2013-04-24T23:59:59.000Z

9

Electrochromic Windows: Advanced Processing Technology  

SciTech Connect

This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

SAGE Electrochromics, Inc

2006-12-13T23:59:59.000Z

10

Building Technologies Office: Energy-Efficient Window Air Conditioner  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Efficient Window Energy-Efficient Window Air Conditioner Ratings Research Project to someone by E-mail Share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Facebook Tweet about Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Twitter Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Google Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Delicious Rank Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Digg Find More places to share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on

11

T-622: Adobe Acrobat and Reader Unspecified Memory Corruption Vulnerability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22: Adobe Acrobat and Reader Unspecified Memory Corruption 22: Adobe Acrobat and Reader Unspecified Memory Corruption Vulnerability T-622: Adobe Acrobat and Reader Unspecified Memory Corruption Vulnerability May 13, 2011 - 3:25am Addthis PROBLEM: Adobe Acrobat and Reader contain a vulnerability that could allow an unauthenticated, remote attacker to execute arbitrary code on the targeted system. PLATFORM: Adobe Reader versions 9.4.1 and prior, versions 8.2.5 and prior, and version 10.0 Acrobat Standard and Professional versions 9.4.1 and prior and version 10.0 Acrobat Standard and Professional versions 8.2.5 and prior Acrobat Professional Extended versions 9.4.1 and prior Acrobat 3D versions 8.2.5 and prior Adobe Flash Player versions 10.2.159.1 and prior for Windows, Macintosh, Linux, and Solaris ABSTRACT: The vulnerability is due to an unspecified error in the affected software

12

T-593: Microsoft Internet Explorer unspecified code execution | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

593: Microsoft Internet Explorer unspecified code execution 593: Microsoft Internet Explorer unspecified code execution T-593: Microsoft Internet Explorer unspecified code execution April 1, 2011 - 6:22am Addthis PROBLEM: Microsoft Internet Explorer could allow a remote attacker to execute arbitrary code on the system. A remote attacker could exploit this vulnerability using unknown attack vectors to execute arbitrary code on the system. PLATFORM: Microsoft Internet Explorer 8 ABSTRACT: Unspecified vulnerability in Microsoft Internet Explorer 8 on Windows 7 allows remote attackers to bypass Protected Mode and create arbitrary files by leveraging access to a Low integrity process. reference LINKS: CVE-2011-1347 Update Date : 2011-03-30 Microsoft >> IE: Vulnerability Statistics IMPACT ASSESSMENT: High Discussion: Microsoft Internet Explorer could allow a remote attacker to execute

13

Vacuum Glazing; A Thermally Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

14

Energy Savings with Smart Window Technology  

• Window / façade manufacturer – Added value / higher margin • Construction company – Smart Window investment balanced by reduced ... Transport Vehicles

15

Building Technologies Office: High Performance Windows Volume Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

16

New and Underutilized Technology: Smart Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Windows Smart Windows New and Underutilized Technology: Smart Windows October 8, 2013 - 2:55pm Addthis The following information outlines key deployment considerations for smart windows within the Federal sector. Benefits Smart windows are made of electrochromic glass, which uses electrical energy to transition between clear and darkened state to control light and heat gain. Darkened glass transmits less light and reduces heat gain, especially in dual-pane windows. Application Smart windows are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to smart window implementation. Ranking Criteria

17

New and Underutilized Technology: Window Films | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Films Window Films New and Underutilized Technology: Window Films October 8, 2013 - 2:50pm Addthis The following information outlines key deployment considerations for window films within the Federal sector. Benefits Window films are a spectrally-selective film used to decrease heat gain through a window. Application Window films are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to window film implementation. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are ranked 0-5 with 0 representing the lowest ranking and 5 representing the highest ranking. The weighted score is ranked 0-100 with 0 representing the

18

V-030: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny 30: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service V-030: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service November 21, 2012 - 3:00am Addthis PROBLEM: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service PLATFORM: ColdFusion 10 Update 1 and above for Windows ABSTRACT: Adobe ColdFusion Denial of Service Vulnerability REFERENCE LINKS: Adobe Vulnerability identifier: APSB12-25 SecurityTracker Alert ID: 1027787 Secunia Advisory SA51335 CVE-2012-5674 IMPACT ASSESSMENT: High DISCUSSION: A vulnerability was reported in Adobe ColdFusion. A remote user can cause denial of service conditions. A remote user can send specially crafted data to cause unspecified denial of service conditions on the target ColdFusion service on Windows Internet

19

Seeing Windows Through : Technologies : From the Lab to the  

NLE Websites -- All DOE Office Websites (Extended Search)

Seeing Windows Through Seeing Windows Through From the Lab to the Marketplace Ten Years Later, Energy Efficient Technologies from Research at the Lawrence Berkeley National Laboratory Berkeley Lab logo (left) with six rows of gray dots transitioning to a line art drawing of a cityscape and residential houses. Seeing Windows Through Energy lost through residential and commercial windows costs U.S. consumers about $40 billion a year. Berkeley Lab pioneered the commercialization of "low-emissivity" windows and labeling systems, which reduce the energy lost through normal, double-glazed windows by 35%. Thanks to Berkeley Lab's close collaboration with window manufacturers, these advanced windows have a greater than 50- percent marketshare and save American consumers billions

20

Available Technologies: Electrochromic Windows with Multiple ...  

Berkeley Lab researchers led by André Anders and Cesar Clavero have improved the properties of electrochromic windows with a novel design — called the switchable ...

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building Technologies Office: Windows, Skylights, and Doors Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows, Skylights, and Doors Research Windows, Skylights, and Doors Research The Emerging Technology team conducts research into technologies related to windows, skylights, and doors. These technologies can decrease energy demands, save money, and improve occupant thermal comfort. By working with industry partners, researchers, and other stakeholders, the U.S. Department of Energy also seeks to improve the availability of these products in the market. Research in windows, skylights, and doors includes: Daylighting and Shading Photo of a wall of windows with shades built over them to block out the noon sun. Daylighting and shading technologies alter the way that natural light affects a building, either by allowing more of it in (to light a room) or by preventing it from coming in. These technologies are important in that they allow building operators and managers to lower a building's lighting energy needs, as well as reducing the energy used in heating, ventilation, and air conditioning (HVAC) systems.

22

High-R window technology development. Phase 2, Final report  

SciTech Connect

Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 ``super`` windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

Arasteh, D.

1991-01-01T23:59:59.000Z

23

Windows Industry Technology Roadmap: Executive Summary  

SciTech Connect

An industry-led initiative to identify key goals and strategies for the windows industry with an emphasis on energy conservation, enhanced quality, fast delivery, and low installed cost.

DOE Office of Building Technology, State and Community Programs

2001-01-08T23:59:59.000Z

24

U-257: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

57: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny 57: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service U-257: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service September 12, 2012 - 6:00am Addthis PROBLEM: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service PLATFORM: ColdFusion 10, 9.0.2, 9.0.1, 9.0, 8.0.1, and 8.0 for Windows, Macintosh and UNIX ABSTRACT: Adobe ColdFusion is prone to a remote denial-of-service vulnerability. reference LINKS: Adobe Security bulletins and advisories Adobe Vulnerability identifier: APSB12-21 SecurityTracker Alert ID: 1027516 Bugtraq ID: 55499 CVE-2012-2048 IMPACT ASSESSMENT: Medium Discussion: Adobe has released a security hotfix for ColdFusion 10 and earlier versions for Windows, Macintosh and UNIX. This update resolves a vulnerability which

25

U-257: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny 7: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service U-257: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service September 12, 2012 - 6:00am Addthis PROBLEM: Adobe ColdFusion Unspecified Bug Lets Remote Users Deny Service PLATFORM: ColdFusion 10, 9.0.2, 9.0.1, 9.0, 8.0.1, and 8.0 for Windows, Macintosh and UNIX ABSTRACT: Adobe ColdFusion is prone to a remote denial-of-service vulnerability. reference LINKS: Adobe Security bulletins and advisories Adobe Vulnerability identifier: APSB12-21 SecurityTracker Alert ID: 1027516 Bugtraq ID: 55499 CVE-2012-2048 IMPACT ASSESSMENT: Medium Discussion: Adobe has released a security hotfix for ColdFusion 10 and earlier versions for Windows, Macintosh and UNIX. This update resolves a vulnerability which

26

Solar Window Technology for BIPV or  

E-Print Network (OSTI)

a high degree of light transmission whilst generating electricity from a reduced area of expensive transmission capability of the panel making them generally unsuitable for use as windows etc. A solution light to an array of PV cells arranged to allow light transmission between each PV cell yet still

Painter, Kevin

27

window  

Science Conference Proceedings (OSTI)

NIST. window. (definition). ... 17 December 2004. (accessed TODAY) Available from: http://www.nist.gov/dads/HTML/window.html. to NIST home page.

2013-05-08T23:59:59.000Z

28

Available Technologies: Universal Electrochromic Smart Window ...  

Renewable Energy; Environmental Technologies. Monitoring and Imaging; ... nanocrystals of either tin-doped indium oxide (ITO) or aluminum-doped zinc oxide ...

29

Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window A window thermal analysis computer program that is the de facto standard used by U.S. manufacturers to characterize product performance. The program has been selected by the...

30

High-R Window Technology Development : Phase II Final Report.  

SciTech Connect

Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 super'' windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

Arasteh, Dariush

1991-01-01T23:59:59.000Z

31

T-643: HP OpenView Storage Data Protector Unspecified Code Execution  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

643: HP OpenView Storage Data Protector Unspecified Code 643: HP OpenView Storage Data Protector Unspecified Code Execution Vulnerability T-643: HP OpenView Storage Data Protector Unspecified Code Execution Vulnerability June 9, 2011 - 3:45pm Addthis PROBLEM: HP OpenView Storage Data Protector Unspecified Code Execution Vulnerability PLATFORM: Versions 6.0, 6.10, and 6.11 running on HP-UX, Solaris, Linux and Windows. ABSTRACT: A vulnerability has been reported in HP OpenView Storage Data Protector, which can be exploited by malicious people to compromise a vulnerable system. reference LINKS: Secunia Advisory SA44884 CVE-2011-1864 SecurityTracker Alert ID: 1025620 HP Document ID: c02712867 IMPACT ASSESSMENT: High Discussion: A vulnerability was reported in HP OpenView Storage Data Protector. A remote user can execute arbitrary code on the target system.

32

U-137: HP Performance Manager Unspecified Bug Lets Remote Users Execute  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: HP Performance Manager Unspecified Bug Lets Remote Users 7: HP Performance Manager Unspecified Bug Lets Remote Users Execute Arbitrary Codes U-137: HP Performance Manager Unspecified Bug Lets Remote Users Execute Arbitrary Codes March 30, 2012 - 9:15am Addthis PROBLEM: HP Performance Manager Unspecified Bug Lets Remote Users Execute Arbitrary Codes PLATFORM: HP-UX B.11.31 HP-UX B.11.23 ABSTRACT: A remote user can execute arbitrary code on the target system. REFERENCE LINKS: HP Support Document ID: c03255321 SecurityTracker Alert ID: 1026869 CVE-2012-0127 IMPACT ASSESSMENT: High Discussion: A potential security vulnerability has been identified with HP Performance Manager running on HP-UX, Linux, Solaris, and Windows. The vulnerability could be exploited remotely to execute arbitrary code and to create a Denial of Service (DoS).

33

U-052: HP Protect Tools Device Access Manager Unspecified Bug Lets Remote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: HP Protect Tools Device Access Manager Unspecified Bug Lets 2: HP Protect Tools Device Access Manager Unspecified Bug Lets Remote Users Deny Service and Execute Arbitrary Code U-052: HP Protect Tools Device Access Manager Unspecified Bug Lets Remote Users Deny Service and Execute Arbitrary Code December 6, 2011 - 7:00am Addthis PROBLEM: HP Protect Tools Device Access Manager Unspecified Bug Lets Remote Users Deny Service and Execute Arbitrary Code. PLATFORM: HP Protect Tools Device Access Manager for Windows earlier than v.6.1.0.1 running on the following HP PCs: HP EliteBook 2560p Notebook PC HP EliteBook 2760p Notebook PC HP EliteBook 8460p Notebook PC HP EliteBook 8460w Mobile Workstation HP EliteBook 8560p Notebook PC HP EliteBook 8560w Mobile Workstation HP EliteBook 8760w Mobile Workstation HP ProBook 4230s Notebook PC

34

U-052: HP Protect Tools Device Access Manager Unspecified Bug Lets Remote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: HP Protect Tools Device Access Manager Unspecified Bug Lets 2: HP Protect Tools Device Access Manager Unspecified Bug Lets Remote Users Deny Service and Execute Arbitrary Code U-052: HP Protect Tools Device Access Manager Unspecified Bug Lets Remote Users Deny Service and Execute Arbitrary Code December 6, 2011 - 7:00am Addthis PROBLEM: HP Protect Tools Device Access Manager Unspecified Bug Lets Remote Users Deny Service and Execute Arbitrary Code. PLATFORM: HP Protect Tools Device Access Manager for Windows earlier than v.6.1.0.1 running on the following HP PCs: HP EliteBook 2560p Notebook PC HP EliteBook 2760p Notebook PC HP EliteBook 8460p Notebook PC HP EliteBook 8460w Mobile Workstation HP EliteBook 8560p Notebook PC HP EliteBook 8560w Mobile Workstation HP EliteBook 8760w Mobile Workstation HP ProBook 4230s Notebook PC

35

New and Underutilized Technology: High R-Value Windows | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High R-Value Windows High R-Value Windows New and Underutilized Technology: High R-Value Windows October 8, 2013 - 2:47pm Addthis The following information outlines key deployment considerations for high R-value windows within the Federal sector. Benefits High R-value windows are highly insulated windows rated at triple pane, R5 or greater (U value 0.22 and lower). Application High R-value windows are appropriate for deployment within most building categories. These windows should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment High R-value windows are available within the Federal sector and should be considered in building design, renovation, or during window replacement projects. The U.S. Department of Energy (DOE) has a volume purchasing program in

36

Technology Advancements to Lower Costs of Electrochromic Window Glazing  

DOE Green Energy (OSTI)

An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated than would be expected, as it has been determined in the past that there are a number of interactions between the new material and the layers beneath, which have an important effect on the behavior of the device. The effects of these interactions needed to be understood in order for this task to be successful. Tasks 4 and 5 were devoted to production of devices using the novel technology developed in the previous tasks. In addition, characterization tests were required to ensure the devices would perform adequately as replacements for the existing technology. Each of these tasks has been achieved successfully. In task 2, a series of potential materials were surveyed, and ranked in order of desirability. Prototype device structures were produced and characterized in order to do this. This satisfied the requirements for Task 2. From the results of this relatively extensive survey, the number of candidate materials was reduced to one or two. Small devices were made in order to test the functionality of such samples, and a series of optimization experiments were carried out with encouraging results. Devices were fabricated, and some room temperature cycling carried out showing that there are no fundamental problems with this technology. This series of achievements satisfied the requirements for Tasks 3 and 4. The results obtained from Task 3 naturally led to scale-up of the process, so a large cathode was obtained and installed in a spare slot in the production coater, and a series of large devices fabricated. In particular, devices with dimensions of 60-inch x 34-inch were produced, using processes which are fully compatible with mass production. Testing followed, satisfying the requirements for Task 5. As can be seen from this discussion, all the requirements of the project have therefore been successfully achieved. The devices produced using the newly developed technology showed excellent optical properties, often exceeding the performance of the existing technology, equivalent durability results, and promise a significantly simplified manufacturing approach, the

Mark Burdis; Neil Sbar

2008-07-13T23:59:59.000Z

37

Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost January 17, 2012 - 4:25pm Addthis The frost patterns on your window might be pretty, but they're not helping you save any energy. Energy efficient windows provide an effective barrier from inclement weather. | Photo courtesy of Callie Reed. The frost patterns on your window might be pretty, but they're not helping you save any energy. Energy efficient windows provide an effective barrier from inclement weather. | Photo courtesy of Callie Reed. Roland Risser Roland Risser Program Director, Building Technologies Office

38

New Window Technology Saves Energy and the View | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Gabrial Boeckman NREL Communications Manager for Buildings & Communities What does this project do? With funding from the Energy Department, the National Renewable Energy Laboratory is working to develop innovative insulating window film

39

New Window Technology Saves Energy and the View | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Gabrial Boeckman NREL Communications Manager for Buildings & Communities What does this project do? With funding from the Energy Department, the National Renewable Energy Laboratory is working to develop innovative insulating window film

40

T-681:IBM Lotus Symphony Multiple Unspecified Vulnerabilities  

Energy.gov (U.S. Department of Energy (DOE))

Multiple unspecified vulnerabilities in IBM Lotus Symphony 3 before FP3 have unknown impact and attack vectors, related to "critical security vulnerability issues."

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U-010:HP Onboard Administrator Unspecified Flaw Lets Remote Users...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manager Unspecified Flaw Lets Remote Users Gain Unauthorized Access V-120: EMC Smarts Network Configuration Manager Java RMI Access Control Flaw Lets Remote Users Gain Full Control...

42

U-161: Citrix Provisioning Services Unspecified Flaw Lets Remote Users  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Citrix Provisioning Services Unspecified Flaw Lets Remote 1: Citrix Provisioning Services Unspecified Flaw Lets Remote Users Execute Arbitrary Code U-161: Citrix Provisioning Services Unspecified Flaw Lets Remote Users Execute Arbitrary Code May 3, 2012 - 7:00am Addthis PROBLEM: Citrix Provisioning Services Unspecified Flaw Lets Remote Users Execute Arbitrary Code PLATFORM: 6.1 and prior ABSTRACT: A vulnerability was reported in Citrix Provisioning Services. A remote user can execute arbitrary code on the target system. reference LINKS: SecurityTracker Alert ID: 1027004 Secunia Advisory SA48971 Citrix advisory IMPACT ASSESSMENT: Medium Discussion: A remote user can send a specially crafted packet to trigger an unspecified flaw and execute arbitrary code on the target system. The code will run with the privileges of the target service.

43

T-566: Citrix Secure Gateway Unspecified Vulnerability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Citrix Secure Gateway Unspecified Vulnerability 6: Citrix Secure Gateway Unspecified Vulnerability T-566: Citrix Secure Gateway Unspecified Vulnerability February 28, 2011 - 11:22pm Addthis PROBLEM: Citrix Secure Gateway Unspecified Vulnerability. PLATFORM: Citrix Secure Gateway version 3.1.4 ABSTRACT: A vulnerability has been reported in Citrix Secure Gateway, which can be exploited by malicious people to compromise a vulnerable system. reference LINKS: Citrix ID:CTX128168 Secunia Advisory SA43497 Citrix Support IMPACT ASSESSMENT: High Discussion: This vulnerability only affects Secure Gateway version 3.1.4. Secure Gateway version 3.2.0 is not affected by this vulnerability, but Citrix recommends that customers currently using this version upgrade their deployments to version 3.2.1 in line with the guidance provided in

44

U-174: Serendipity Unspecified SQL Injection Vulnerability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Serendipity Unspecified SQL Injection Vulnerability 4: Serendipity Unspecified SQL Injection Vulnerability U-174: Serendipity Unspecified SQL Injection Vulnerability May 22, 2012 - 7:00am Addthis PROBLEM: Serendipity Unspecified SQL Injection Vulnerability PLATFORM: 1.6.1 and prior versions ABSTRACT: A vulnerability was reported in Serendipity. A remote user can inject SQL commands. Reference Links: SecurityTracker Alert ID: 1027079 Secunia Advisory SA49234 CVE-2012-2762 IMPACT ASSESSMENT: Medium Discussion: The 'include/functions_trackbacks.inc.php' script does not properly validate user-supplied input. A remote user can supply a specially crafted parameter value to execute SQL commands on the underlying database. Impact: A remote user can execute SQL commands on the underlying database. Solution: The vendor has issued a fix (1.6.2).

45

T-541: Citrix Provisioning Services Unspecified Flaw Let's Remote Users  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Citrix Provisioning Services Unspecified Flaw Let's Remote 41: Citrix Provisioning Services Unspecified Flaw Let's Remote Users Execute Arbitrary Code T-541: Citrix Provisioning Services Unspecified Flaw Let's Remote Users Execute Arbitrary Code January 24, 2011 - 5:34pm Addthis PROBLEM: Citrix Provisioning Services Unspecified Flaw Let's Remote Users Execute Arbitrary Code PLATFORM: * Provisioning Services 5.1 * Provisioning Services 5.6 ABSTRACT: A vulnerability has been identified in Citrix Provisioning Services that could result in arbitrary code execution. This vulnerability can be triggered by an attacker sending a specially crafted packet to the Provisioning Services server. This vulnerability is present in all supported versions of Citrix Provisioning Services up to and including version 5.6. reference LINKS:

46

U-013: HP Data Protector Multiple Unspecified Vulnerabilities | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: HP Data Protector Multiple Unspecified Vulnerabilities 3: HP Data Protector Multiple Unspecified Vulnerabilities U-013: HP Data Protector Multiple Unspecified Vulnerabilities October 18, 2011 - 9:00am Addthis PROBLEM: HP Data Protector Multiple Unspecified Vulnerabilities. PLATFORM: HP Data Protector Notebook Extension 6.20; HP Data Protector for Personal Computers 7.0 ABSTRACT: Multiple vulnerabilities were reported in HP Data Protector. A remote user can execute arbitrary code on the target system. reference LINKS: HP Security Document ID: c03054543 SecurityTracker Alert ID: 1026195 Secunia Advisory: SA46468 CVE-2011-3156 CVE-2011-3157 CVE-2011-3158 CVE-2011-3159 CVE-2011-3160 CVE-2011-3161 CVE-2011-3162 IMPACT ASSESSMENT: High Discussion: Potential security vulnerabilities has been identified with HP Data Protector Notebook Extension. These vulnerabilities could be remotely

47

T-696: RSA Adaptive Authentication Has Unspecified Remote Authenticated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: RSA Adaptive Authentication Has Unspecified Remote 6: RSA Adaptive Authentication Has Unspecified Remote Authenticated Session Re-use Flaw T-696: RSA Adaptive Authentication Has Unspecified Remote Authenticated Session Re-use Flaw August 18, 2011 - 3:09pm Addthis PROBLEM: A vulnerability was reported in RSA Adaptive Authentication. PLATFORM: 6.0.2.1 SP1 Patch 2 and SP1 Patch 3, 6.0.2.1 SP2 and SP2 Patch 1, 6.0.2.1 SP3 ABSTRACT: An issue with Adaptive Authentication (On-Premise) was discovered which in certain circumstances might affect the out-of-the-box available authentication methods. In certain circumstances, when authentication information is compromised, and with the knowledge of additional session information, the authentication information might be reused within an active session. reference LINKS: Security Tracker: 1025956

48

V-106: Citrix Access Gateway Unspecified Security Bypass Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Citrix Access Gateway Unspecified Security Bypass 6: Citrix Access Gateway Unspecified Security Bypass Vulnerability V-106: Citrix Access Gateway Unspecified Security Bypass Vulnerability March 7, 2013 - 6:00am Addthis PROBLEM: A vulnerability has been reported in Citrix Access Gateway PLATFORM: Standard Edition 5.0.x prior to 5.0.4.223524. Versions 4.5.x and 4.6.x are not affected by this vulnerability ABSTRACT: A vulnerability has been reported in Citrix Access Gateway, which can be exploited by malicious people to bypass certain security restrictions. REFERENCE LINKS: Secunia Advisory SA52479 Security Tracker Alert ID 1028255 com/id/1028255 CVE-2013-2263 Citrix Knowledge Center IMPACT ASSESSMENT: High DISCUSSION: The vulnerability could allow an unauthenticated user to gain access to network resources. IMPACT:

49

Window Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Properties: measurements, simulations and ratings Window Properties: measurements, simulations and ratings Determining the thermal and optical performance of window systems is essential to researchers striving to develop improved products and to window manufacturers who need to demonstrate the energy performance of their products to architects, engineers, builders, and the general public. LBNL is involved in basic research in this field, in developing software and test procedures to analyze and quantify window heat transfer and optics, and in developing standards and rating procedures. Infrared Laboratory experiments provide surface temperature maps of window products. A companion Traversing System measures air velocity and air temperatures near the surface of test specimens. The MoWiTT facility provides accurate measurements of the heat flow through complete window systems subjected to real weather conditions. MoWiTT results have been used to validate the performance of emerging technologies and research prototypes as well as to validate thermal performance models.

50

Savings from energy efficient windows: Current and future savings from new fenestration technologies in the residential market  

SciTech Connect

Heating and cooling energy lost through windows in the residential sector (estimated at two-thirds of the energy lost through windows in all sectors) currently accounts for 3 percent (or 2.8 quads) of total US energy use, costing over $26 billion annually in energy bills. Installation of energy-efficient windows is acting to reduce the amount of energy lost per unit window area. Installation of more energy efficient windows since 1970 has resulted in an annual savings of approximately 0.6 quads. If all windows utilized existing cost effective energy conserving technologies, then residential window energy losses would amount to less than 0.8 quads, directly saving $18 billion per year in avoided energy costs. The nationwide installation of windows that are now being developed could actually turn this energy loss into a net energy gain. Considering only natural replacement of windows and new construction, appropriate fenestration policies could help realize this potential by reducing annual residential window energy losses to 2.2 quids by the year 2012, despite a growing housing stock.

Frost, K.; Arasteh, D.; Eto, J.

1993-04-01T23:59:59.000Z

51

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

EVALUATION OF WINDOW AND COATING MA TERIALS MEASUREMEN T OFTRANSFER A. SECTION 4. WINDOW ANALYSIS, B,. HEAT PIPES, • C,Water Vapors in 3-121-'m window", AD A025377, N77 13597 (

Viswanathan, R.

2011-01-01T23:59:59.000Z

52

U-120: RSA SecurID Software Token Converter Unspecified Buffer Overflow  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: RSA SecurID Software Token Converter Unspecified Buffer 0: RSA SecurID Software Token Converter Unspecified Buffer Overflow Vulnerability U-120: RSA SecurID Software Token Converter Unspecified Buffer Overflow Vulnerability March 8, 2012 - 7:00am Addthis PROBLEM: RSA SecurID Software Token Converter Unspecified Buffer Overflow Vulnerability PLATFORM: RSA SecurID Software Token Converter 2.x ABSTRACT: Successful exploitation may allow execution of arbitrary code. reference LINKS: Secunia Advisory SA48297 CVE-2012-0397 IMPACT ASSESSMENT: High Discussion: A vulnerability has been reported in RSA SecurID Software Token Converter, which can be exploited by malicious people to compromise a user's system. Impact: An unspecified error can be exploited to cause a buffer overflow. Solution: Update to version 2.6.1. Addthis Related Articles

53

V-148: Novell iPrint Client Unspecified Buffer Overflow Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Novell iPrint Client Unspecified Buffer Overflow 8: Novell iPrint Client Unspecified Buffer Overflow Vulnerability V-148: Novell iPrint Client Unspecified Buffer Overflow Vulnerability May 3, 2013 - 6:00am Addthis PROBLEM: Novell iPrint Client Unspecified Buffer Overflow Vulnerability PLATFORM: Novell iPrint Client 5.x ABSTRACT: A vulnerability has been reported in Novell iPrint Client, which can be exploited by malicious people to compromise a user's system REFERENCE LINKS: Secunia Advisory SA53261 Novell KB 7012344 Novell KB 7008708 CVE-2013-1091 IMPACT ASSESSMENT: High DISCUSSION: The vulnerability is caused due to an unspecified error and can be exploited to cause a stack-based buffer overflow. IMPACT: Successful exploitation may allow execution of arbitrary code SOLUTION: Vendor recommendation is to update to Version 5.90

54

Window Menu  

Science Conference Proceedings (OSTI)

... 2007. Window Menu. The window menu has been updated: Documentation ... the item. Older Documentation for Window Menu.

55

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Computer ram for Design Performance Analysis of Navigationram, see the attached Hughe s pamphle t ( Appendix F), One window arrangement chosen for an analysis

Viswanathan, R.

2011-01-01T23:59:59.000Z

56

High Performance Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Window High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but they have widely unknown

57

Selecting windows for energy efficiency  

SciTech Connect

New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

1997-05-01T23:59:59.000Z

58

T-650: Microsoft Word Unspecified Flaw Lets Remote Users Execute Arbitrary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

650: Microsoft Word Unspecified Flaw Lets Remote Users Execute 650: Microsoft Word Unspecified Flaw Lets Remote Users Execute Arbitrary Code T-650: Microsoft Word Unspecified Flaw Lets Remote Users Execute Arbitrary Code June 20, 2011 - 3:35pm Addthis PROBLEM: A vulnerability was reported in Microsoft Word. A remote user can cause arbitrary code to be executed on the target user's system. PLATFORM: Office XP; possibly other versions ABSTRACT: Microsoft Word Unspecified Flaw Lets Remote Users Execute Arbitrary Code. reference LINKS: Secunia Advisory: SA44923 SecurityTracker Alert ID: 1025675 Bugtraq ID: 48261 TSL ID: TSL20110614-02 PRL: 2011-07 IMPACT ASSESSMENT: High Discussion: A code execution vulnerability has been reported in Microsoft Office Word. The vulnerability is due to memory corruption when parsing a specially crafted Word file.

59

U-048: HP LaserJet Printers Unspecified Flaw Lets Remote Users Update  

NLE Websites -- All DOE Office Websites (Extended Search)

8: HP LaserJet Printers Unspecified Flaw Lets Remote Users 8: HP LaserJet Printers Unspecified Flaw Lets Remote Users Update Firmware with Arbitrary Code U-048: HP LaserJet Printers Unspecified Flaw Lets Remote Users Update Firmware with Arbitrary Code November 30, 2011 - 8:15am Addthis PROBLEM: HP LaserJet Printers Unspecified Flaw Lets Remote Users Update Firmware with Arbitrary Code . PLATFORM: HP LaserJet Printers manufactured prior to 2009 ABSTRACT A remote user can upgrade the printer's firmware with arbitrary code. reference LINKS: SecurityTracker Alert ID:1026357 HP Security for Imaging and Printing HP Clarifies on Printer Security IMPACT ASSESSMENT: Low Discussion: A vulnerability was reported in some HP LaserJet Printers. A remote user can update the firmware with arbitrary code. A remote user can send a specially crafted print job or specially crafted data to the

60

An automata-theoretic approach for model-checking systems with unspecified components  

Science Conference Proceedings (OSTI)

This paper introduces a new approach for the verification of systems with unspecified components. In our approach, some model-checking problems concerning a component-based system are first reduced to the emptiness problem of an oracle finite automaton, ...

Gaoyan Xie; Zhe Dang

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U-010:HP Onboard Administrator Unspecified Flaw Lets Remote Users Gain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0:HP Onboard Administrator Unspecified Flaw Lets Remote Users 0:HP Onboard Administrator Unspecified Flaw Lets Remote Users Gain Access U-010:HP Onboard Administrator Unspecified Flaw Lets Remote Users Gain Access October 13, 2011 - 8:15am Addthis PROBLEM: HP Onboard Administrator Unspecified Flaw Lets Remote Users Gain Access PLATFORM: Onboard Administrator (OA) 3.21 through 3.31 ABSTRACT: A remote user can gain access to the target system reference LINKS: HP Support document ID: c03048779 SecurityTracker Alert ID: 1026158 CVE-2011-3155 IMPACT ASSESSMENT: Medium Discussion: A potential security vulnerability has been identified with HP Onboard Administrator (OA). The vulnerability could be exploited remotely to gain unauthorized access. Impact: A remote user can gain access to the target system. Solution: Onboard Administrator (OA) v3.32 is available.

62

Monitor window  

Science Conference Proceedings (OSTI)

... from the three Info buttons. Text can be typed into the window. The window can be saved to a file (as can all the other text windows). ...

63

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the Efficient Windows Collaborative Welcome to the Efficient Windows Collaborative YOUR GATEWAY TO INFORMATION ON HOW TO CHOOSE ENERGY-EFFICIENT RESIDENTIAL WINDOWS 101 Efficient Windows Collaborative (EWC) members have made a commitment to manufacture and promote energy-efficient windows. This site provides unbiased information on the benefits of energy-efficient windows, descriptions of how they work, and recommendations for their selection and use. Selecting Windows for New Construction Window Selection Tool Selection Process Design Guidance Installation Selecting Replacement Windows Window Selection Tool Assessing Replacement Options Selection Process Design Guidance Installation Understanding Windows Benefits of Energy Efficient Windows Design Considerations How to Measure Performance Window Technologies

64

CANBUS , ++ WINDOWS.  

E-Print Network (OSTI)

; : .., .., .., .., .., .., .., .., .., .., .., .., .., .., ... . . . 630090 , . . CANBUS , ++ WINDOWS. , CANBUS CAMAC intelligent controllers with CANBUS interface and on software written on C++ in WINDOWS media. Solutions Interface), IXXAT Windows. VCI , , CAN-, .. Windows c #12; VCI

Kozak, Victor R.

65

Reflred - Windows  

Science Conference Proceedings (OSTI)

... data. There are a number of different windows in the system. The choose window lets you select directory and dataset. ...

66

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

67

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

68

window.xp  

NLE Websites -- All DOE Office Websites (Extended Search)

New New in Building Energy Efficiency Selecting Windows for Energy Efficiency New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection. S electing the right window for a specific home invariably requires tradeoffs between dif- ferent energy performance features, and with other non-energy issues. An understanding of some basic energy concepts is therefore essential to choosing appropriate windows and skylights. As illustrated on the fol-

69

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

70

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Applications'! , Sharing the Sun, Solar Technology in theAbsorber " , Sharing the Sun, Solar Technology in the 70's,Design ll , Sharing the Sun, Solar Technology in the 70's K,

Viswanathan, R.

2011-01-01T23:59:59.000Z

71

U-188: MySQL User Login Security Bypass and Unspecified Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: MySQL User Login Security Bypass and Unspecified 8: MySQL User Login Security Bypass and Unspecified Vulnerability U-188: MySQL User Login Security Bypass and Unspecified Vulnerability June 12, 2012 - 7:00am Addthis PROBLEM: A security issue and vulnerability have been reported in MySQL PLATFORM: MySQL 5.x ABSTRACT: An error when verifying authentication attempts can be exploited to bypass the authentication mechanism. Reference LINKS: Original Advisory CVE-2012-2122 Secunia Advisory 49409 IMPACT ASSESSMENT: High Discussion: Successful exploitation of this vulnerability requires MySQL to be built on a system with a library that allows "memcmp()" to return a value outside of the -128 through 127 range (e.g. sse-optimized glibc). NOTE: Vendor binaries are reportedly not affected. The security issue is reported in versions prior to 5.1.63 and 5.5.25.

72

U-140: HP-UX Unspecified Flaw in DCE Lets Remote Users Execute Arbitrary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U-140: HP-UX Unspecified Flaw in DCE Lets Remote Users Execute U-140: HP-UX Unspecified Flaw in DCE Lets Remote Users Execute Arbitrary Code U-140: HP-UX Unspecified Flaw in DCE Lets Remote Users Execute Arbitrary Code April 4, 2012 - 7:15am Addthis PROBLEM: A vulnerability was reported in HP-UX PLATFORM: Version(s): 11.11, 11.23; running DCE ABSTRACT: A remote user can execute arbitrary code on the target system. A remote user can send specially crafted data to execute arbitrary code on the target system. The code will run with the privileges of the target service. Reference LINKS: Vendor Advisory Security Tracker ID 1026885 CVE-2012-0131 IMPACT ASSESSMENT: High Discussion: A potential security vulnerability has been identified in HP-UX running DCE. The vulnerability could be exploited remotely to create a Denial of Service (DoS).

73

U-099: MySQL Unspecified Code Execution Vulnerability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

099: MySQL Unspecified Code Execution Vulnerability 099: MySQL Unspecified Code Execution Vulnerability U-099: MySQL Unspecified Code Execution Vulnerability February 9, 2012 - 7:00am Addthis PROBLEM: A vulnerability has been reported in MySQL, which can be exploited by malicious people to compromise a vulnerable system. PLATFORM: MySQL 5.x ABSTRACT: Successful exploitation allows execution of arbitrary code. Reference LINKS: Secunia Advisory SA47894 No CVE references currently available. IMPACT ASSESSMENT: Medium Discussion: The vulnerability is reported in version 5.5.20. Other versions may also be affected. The exploit has been tested with mysql-5.5.20-debian6.0-i686.deb on Debian 6.0. Impact: System access from local network Solution: An effective workaround cannot currently be provided due to limited vulnerability details.

74

V-218: HP Service Manager Unspecified Flaw Lets Remote Users Gain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: HP Service Manager Unspecified Flaw Lets Remote Users Gain 8: HP Service Manager Unspecified Flaw Lets Remote Users Gain Unauthorized Access V-218: HP Service Manager Unspecified Flaw Lets Remote Users Gain Unauthorized Access August 15, 2013 - 1:30am Addthis PROBLEM: A potential security vulnerability has been identified with HP Service Manager. The vulnerability could be exploited to allow remote unauthenticated access and elevation of privilege. PLATFORM: HP Service Manager v9.31, v9.30, v9.21, v7.11, v6.2.8 ABSTRACT: The vulnerabilities are reported in versions 9.31 and prior. REFERENCE LINKS: SecurityTracker Alert ID: 1028912 CVE-2013-4808 IMPACT ASSESSMENT: High DISCUSSION: A vulnerability was reported in HP Service Manager. A remote user can gain unauthorized access on the target system. IMPACT: User access via network

75

V-218: HP Service Manager Unspecified Flaw Lets Remote Users Gain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: HP Service Manager Unspecified Flaw Lets Remote Users Gain 8: HP Service Manager Unspecified Flaw Lets Remote Users Gain Unauthorized Access V-218: HP Service Manager Unspecified Flaw Lets Remote Users Gain Unauthorized Access August 15, 2013 - 1:30am Addthis PROBLEM: A potential security vulnerability has been identified with HP Service Manager. The vulnerability could be exploited to allow remote unauthenticated access and elevation of privilege. PLATFORM: HP Service Manager v9.31, v9.30, v9.21, v7.11, v6.2.8 ABSTRACT: The vulnerabilities are reported in versions 9.31 and prior. REFERENCE LINKS: SecurityTracker Alert ID: 1028912 CVE-2013-4808 IMPACT ASSESSMENT: High DISCUSSION: A vulnerability was reported in HP Service Manager. A remote user can gain unauthorized access on the target system. IMPACT: User access via network

76

Reflred - Windows  

Science Conference Proceedings (OSTI)

... The Tcl console window lets you interact directly with Tcl/Tk. The help window lets you browse the help text. 2002-09-13. Browse Index

77

U-119: Blackberry PlayBook Unspecified WebKit Bug Lets Remote Users Execute  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Blackberry PlayBook Unspecified WebKit Bug Lets Remote Users 9: Blackberry PlayBook Unspecified WebKit Bug Lets Remote Users Execute Arbitrary Code U-119: Blackberry PlayBook Unspecified WebKit Bug Lets Remote Users Execute Arbitrary Code March 7, 2012 - 7:00am Addthis PROBLEM: Blackberry PlayBook Unspecified WebKit Bug Lets Remote Users Execute Arbitrary Code PLATFORM: BlackBerry 6, BlackBerry 7, BlackBerry 7.1, and BlackBerry PlayBook tablet software ABSTRACT: A remote user can create HTML that, when loaded by the target user, will execute arbitrary code on the target user's system. reference LINKS: SecurityTracker Alert ID: 1026769 BlackBerry Security Notice Article ID: KB30152 IMPACT ASSESSMENT: High Discussion: A vulnerability was reported in Blackberry PlayBook. A remote user can cause arbitrary code to be executed on the target user's system. A remote

78

WINDOW 5 Final Pre-Release User's Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

A PC Program WINDOW 6.2 THERM 6.2 Research Version User Manual For Analyzing Window Thermal Performance Windows & Daylighting Group Building Technologies Program Environmental...

79

Windows and Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior Office building exterior Windows and Daylighting Windows research is aimed at improving energy efficiency in buildings and homes across the nation. Research includes: New glazing materials Windows simulation software Advanced high-performance fenestration systems Daylighting technologies Measurement of window properties Windows performance in residential and commercial buildings. Contacts Stephen Selkowitz SESelkowitz@lbl.gov (510) 486-5064 Eleanor Lee ESLee@lbl.gov (510) 486-4997 Charlie Curcija DCCurcija@lbl.gov (510) 495-2602 Links Windows and Daylighting Daylighting the New York Times Headquarters Building Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

80

U-106: Citrix XenServer Multiple Flaws in Web Self Service Have Unspecified  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Citrix XenServer Multiple Flaws in Web Self Service Have 6: Citrix XenServer Multiple Flaws in Web Self Service Have Unspecified Impact U-106: Citrix XenServer Multiple Flaws in Web Self Service Have Unspecified Impact February 17, 2012 - 8:30am Addthis PROBLEM: Multiple vulnerabilities were reported in Citrix XenServer Web Self Service. PLATFORM: Version(s): 5.5, 5.6 SP2, 6.0; Web Self Service prior to 1.1.1 ABSTRACT: A number of security vulnerabilities have been identified in the management web interface of Citrix XenServer Web Self Service. reference LINKS: Citrix Support Center SecurityTracker Alert ID:1026695 IMPACT ASSESSMENT: Medium Discussion: Customers who have installed XenServer but have not additionally downloaded and installed the optional Web Self Service component are not affected by these vulnerabilities. These vulnerabilities affect all currently supported

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Shipment of Small Quantities of Unspecified Radioactive Material in Chalfant Packagings  

SciTech Connect

In the post 6M era, radioactive materials package users are faced with the disciplined operations associated with use of Certified Type B packagings. Many DOE, commercial and academic programs have a requirement to ship and/or store small masses of poorly characterized or unspecified radioactive material. For quantities which are small enough to be fissile exempt and have low radiation levels, the materials could be transported in a package which provides the required containment level. Because their Chalfant type containment vessels meet the highest standard of containment (helium leak-tight), the 9975, 9977, and 9978 are capable of transporting any of these contents. The issues associated with certification of a high-integrity, general purpose package for shipping small quantities of unspecified radioactive material are discussed and certification of the packages for this mission is recommended.

Smith, Allen; Abramczyk, Glenn; Nathan, Steven; Bellamy, Steve

2009-06-12T23:59:59.000Z

82

Window coverings  

SciTech Connect

This brochure discusses the following: how heat loss and gain occurs, moisture problems, conventional coverings seldom save energy, plastic window sheets, insulated window coverings, and what to look for. (MHR)

1981-01-01T23:59:59.000Z

83

Athens-Clarke County - Green Business Revolving Loan Fund (Georgia...  

Open Energy Info (EERE)

Technologies Agricultural Equipment, Doors, Processing and Manufacturing Equipment, Windows, Solar Water Heat, Unspecified technologies Active Incentive Yes Implementing Sector...

84

U-138: Cisco IOS IPSec IKE Unspecified Denial of Service Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Cisco IOS IPSec IKE Unspecified Denial of Service 8: Cisco IOS IPSec IKE Unspecified Denial of Service Vulnerability U-138: Cisco IOS IPSec IKE Unspecified Denial of Service Vulnerability April 2, 2012 - 7:00am Addthis PROBLEM: A vulnerability has been reported in Cisco IOS, which can be exploited by malicious people to cause a DoS (Denial of Service). PLATFORM: Cisco IOS XE 2.1.x Cisco IOS XE 2.2.x Cisco IOS XE 2.3.x Cisco IOS XE 2.4.x Cisco IOS XE 2.5.x Cisco IOS XE 2.6.x Cisco IOS XE 3.1.x Cisco IOS XE 3.3.x ABSTRACT: The IKEv1 feature of Cisco IOS Software contains a vulnerability that could allow an unauthenticated, remote attacker to cause a reload of an affected device. REFERENCE LINKS: Vendor Advisory Secunia Advisory SA48607 CVE-2012-0381 iMPACT ASSESSMENT: High discussion: The March 28, 2012, Cisco IOS Software Security Advisory bundled

85

Window insulator  

SciTech Connect

An insulator for mounting to a window. A pair of plastic layers including a plurality of partitions positioned therebetween form air pockets between the layers. A plurality of suction cups and suction grooves arranged in rows on one outer surface of the sheet removably secure the sheet to a window. The sheet includes a circumferentially extending recessed portion receiving the window frame.

Nesbitt, W. A.

1985-10-01T23:59:59.000Z

86

Windows and daylighting: A brighter outlook  

Science Conference Proceedings (OSTI)

This is an overview of energy efficient window glazing and framing technology. The topics of the report include: windows and energy use, a point of view; a challenging federal opportunity; DOE window research; advanced optical technologies such as spectrally selective glazing, switchable glazing, super windows with low-emissivity coatings and noble gas fills; and performance evaluation and design tools.

Not Available

1994-11-01T23:59:59.000Z

87

A professor's life, simplified Windows  

E-Print Network (OSTI)

A professor's life, simplified Windows® 7 makes a professor's "technology life" easier. Now, using programs quickly. Windows Search finds virtually anything on your PC instantly­ files, photos, documents, even a buried e-mail. 2. Helps you get started faster Windows7 operating system is not tardy. It starts

Bernstein, Phil

88

Tokamak physics experiment: Diagnostic windows study  

SciTech Connect

We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

Merrigan, M.; Wurden, G.A.

1995-11-01T23:59:59.000Z

89

Nanolens Window Coatings for Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

90

Nanolens Window Coatings for Daylighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

91

Zero Energy Windows  

Science Conference Proceedings (OSTI)

Windows in the U.S. consume 30 percent of building heating and cooling energy, representing an annual impact of 4.1 quadrillion BTU (quads) of primary energy. Windows have an even larger impact on peak energy demand and on occupant comfort. An additional 1 quad of lighting energy could be saved if buildings employed effective daylighting strategies. The ENERGY STAR{reg_sign} program has made standard windows significantly more efficient. However, even if all windows in the stock were replaced with today's efficient products, window energy consumption would still be approximately 2 quads. However, windows can be ''net energy gainers'' or ''zero-energy'' products. Highly insulating products in heating applications can admit more useful solar gain than the conductive energy lost through them. Dynamic glazings can modulate solar gains to minimize cooling energy needs and, in commercial buildings, allow daylighting to offset lighting requirements. The needed solutions vary with building type and climate. Developing this next generation of zero-energy windows will provide products for both existing buildings undergoing window replacements and products which are expected to be contributors to zero-energy buildings. This paper defines the requirements for zero-energy windows. The technical potentials in terms of national energy savings and the research and development (R&D) status of the following technologies are presented: (1) Highly insulating systems with U-factors of 0.1 Btu/hr-ft{sup 2}-F; (2) Dynamic windows: glazings that modulate transmittance (i.e., change from clear to tinted and/or reflective) in response to climate conditions; and (3) Integrated facades for commercial buildings to control/ redirect daylight. Market transformation policies to promote these technologies as they emerge into the marketplace are then described.

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-05-17T23:59:59.000Z

92

Reflred - Windows  

Science Conference Proceedings (OSTI)

... reduction. The Tcl console window lets you interact directly with Tcl/Tk. Use it to help configure the application colors, etc. ...

93

Window insulation  

SciTech Connect

Insulating apparatus consisting of a plurality of low thermal conductivity panels slidably carried in a conventional window frame is described. 13 claims.

Saucier, E.

1980-01-01T23:59:59.000Z

94

Window Daylighting Demo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

95

Window Daylighting Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

96

CAVE WINDOW  

DOE Patents (OSTI)

A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

Levenson, M.

1960-10-25T23:59:59.000Z

97

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

Not Available

2013-06-01T23:59:59.000Z

98

Arranging PPP Windows  

Science Conference Proceedings (OSTI)

03/15/2005. Arranging PPP Windows. Suggestions for arranging the two PPP windows: Use Attach / adjust windows.

99

LBNL Windows & Daylighting Software -- WINDOW: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Vista, Microsoft Windows 7, Microsoft Windows XP, Windows 2000TM.. It has been reported by users that the...

100

windows Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPUTY GROUP LEADER Charlie Curcija 495-2602 90-3111 dccurcija@lbl.gov WINDOWS AND DAYLIGHTING STAFF Andre Anders 486-6745 53-004 aanders@lbl.gov Dennis...

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Operator Types Window Technologies: Operator Types Window Sash Operation When you select a window, there are numerous operating types to consider. Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. In addition, the window market includes fixed windows, storm windows, sliding and swinging patio doors, skylights and roof windows, and window systems that can be added to a house to create bay or bow windows, miniature greenhouses, or full sun rooms. Looking for information on skylights? More information on skylights, light tubes, and their installation can be found here. Casement Casement windows are hinged at the sides. Hinged windows such as casements generally have lower air leakage rates than sliding windows from the same manufacturer because the sash closes by pressing against the frame. Casement windows project outward, providing significantly better ventilation than sliders of equal size. Because the sash protrudes from the plane of the wall, it can be controlled to catch passing breezes, but screens must be placed on the interior side. Virtually the entire casement window area can be opened, while sliders are limited to less than half of the window area. Casement

102

LBNL Windows & Daylighting Software -- WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

downloading and installing Optics 6, as it has a few bug fixes and works with Windows 7 and 8. NFRC (National Fenestration Rating Council) will "sunset" use of Optics 5.1...

103

BSP 930 WINDOWS HANDBOOK  

Science Conference Proceedings (OSTI)

... click Default Computer. When the Default Computer Properties window appears, select Windows NT System, then Logon. ...

104

Window shopping  

SciTech Connect

The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

Best, D.

1990-03-01T23:59:59.000Z

105

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Maintenance: Windows, Windows, Windows! Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

106

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

107

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Windows Understanding Windows Benefits of Energy Efficient Windows The purpose for windows is to provide natural light, natural ventilation, and views to the outside. The benefits of high performance windows allows for Energy & Cost Savings, Improved Comfort, Less Condensation, Increased Light & View, Reduced Fading, and Lower HVAC Costs. Benefits of Energy Efficient Windows Design Considerations Windows are a complex and interesting element in residential design. New window products and technologies have changed the performance of windows in a radical way. Issues such as climate, orientation, shading, and window area all effect the energy performance, but human factor issues such as access to fresh air, daylight, and natural views impact the comfort of a home.

108

Windows and lighting program  

SciTech Connect

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

1990-06-01T23:59:59.000Z

109

Highly Insulating Windows - Fram  

NLE Websites -- All DOE Office Websites (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

110

Window Energy Efficiency Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Energy Efficiency Checklist While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Here is a...

111

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

to Electrochromic Windows Attachment 12: Analysis of VisualMarket Electrochromic Windows Attachment 17: Summary ofof the Electrochromic Windows Attachment 4: An Assessment of

2006-01-01T23:59:59.000Z

112

Zero Energy Windows  

E-Print Network (OSTI)

of Electrochromic Windows Controlled for Daylight and Visualof Electrochromic Windows, California Energy Commission /Potential of Electrochromic Windows in the U.S. Commercial

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

113

Tutorial Design Windows - CECM  

E-Print Network (OSTI)

Tutorial Design Windows: Activity 2: Activity 2 Design Window Return to tutorial. Exercise 1: Exercise 1 Design Window Return to exercises. Exercise 2: Exercise  ...

114

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Early-Market Electrochromic Windows. LBNL-59950. 17. Summaryof Daylight through Windows. http://www.lrc.rpi.edu/Occupants’ Control of Window Blinds in Private Offices.

2006-01-01T23:59:59.000Z

115

Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

made standard windows significantly more efficient. However, even if all windows in the stock were replaced with todays efficient products, window energy consumption would still be...

116

LBNL Windows & Daylighting Software -- WINDOW tutorials  

NLE Websites -- All DOE Office Websites (Extended Search)

Movie) bullet Creating a Window with a Generic Frame in WINDOW 6 or 7 (QuickTime Movie) Advanced Tutorials: bullet Database structure for Shading Systems in WINDOW7 (QuickTime)...

117

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation (all versions) WINDOW 5.0 : bullet WINDOW 5.0 User Manual (3 MB, Adobe PDF format) bullet NFRC THERM 5.2 WINDOW 5.2 Simulation Manual (July 2006) (13 MB, Adobe PDF...

118

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

directories. Gas Library Import Fixed a display problem that would occur when importing a Gas Library record from another WINDOW 7 database. Window Library Export Fixed problem...

119

Microsoft Windows Server 2008 Administrator Series  

E-Print Network (OSTI)

Microsoft Windows Server 2008 Administrator Series Led by: Dianne Burke, MCSE and UM Faculty Member emergency such as a medical emergency to drop out of either one of Windows Server 2008 class before on Microsoft Windows Server 2008. The series prepares IT Professionals for the Microsoft Certified Technology

Crone, Elizabeth

120

Adaptive Liquid Crystal Windows  

SciTech Connect

Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.

Taheri, Bahman; Bodnar, Volodymyr

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

CGDB Import Into WINDOW CGDB Import Into WINDOW Updated: 11/14/12 Detailed Instructions for Importing CGDB data into WINDOW These instructions apply to either WINDOW 6 or 7. WINDOW 6 vs WINDOW 7 Because the database structure of WINDOW 6 is different that WINDOW 7, there are different CGDB files to go with each version of WINDOW. There are also different versions of the XML files for each version, because in WINDOW 7 some problems with the files were fixed. Setup of CGDB The CGDB consists of a WINDOW database of records in the Shading Layer, Shade Material Library, and Glass Library, as well as a set of text files for systems that reference BSDF XML files. Database: The installation will put two databases into the "LBNL Shared" directory: (the location will depend on your operating system):

122

70-620 MCTS: Windows Vista Configuration MicrosoftMicrosoft Certified Technology Specialist Exam 70-620 Set  

Science Conference Proceedings (OSTI)

This Microsoft Official Academic Course prepares the student for the new Microsoft Certified Technology Specialist examination, 70-620. It is a complete program of textbook, lab manual and software, and provides the beginning information and hands-on ...

Microsoft Official Academic Course

2010-03-01T23:59:59.000Z

123

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

(6.3.74 -- February 14, 2012) Release Notes Updated: 02/15/13 If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 6.3.74 Program Changes Window LIbrary: Window Types In previous versions of WINDOW 6.3, there were two different Window Type lists, with conflicting ID numbers, which resulted in the possibility of a Window Library made with one set of Window Types would become corrupted (the wrong Window Types assigned) if the database records were imported into a another database with the different Window Type list. To solve this problem, we have added a database "migration" with this version of WINDOW -- when it opens any older database, it will update the Window Types list to have the choices (and IDs) shown below and then it will also update all the Window Library records to map to the new Window Types based on what the records were set to originally.

124

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 and THERM 6 Technical Documentation WINDOW 6 and THERM 6 Technical Documentation Algorithm Documentation WINDOW6 and THERM6 implement the ISO 15099 algorithms: bullet ISO 15099 The algorithms in WINDOW6 and THERM6 follow the procedures presented in ISO 15099: "Thermal performance of windows, doors and shading devices - Detailed calculations." See: http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO+15099%3A2003 In addition to implementing ISO 15099 algorithms in WINDOW6 and THERM6, we have added additional capabilities to WINDOW6. The following reports and papers describe these additional capabilities and/or elaborate on ISO15099. bullet Thermal Algorithm Documentation for THERM6: Conrad 5 & Viewer 5 Technical and Programming Documentation June 20, 2006 bullet Thermal Algorithm Documentation for WINDOW6:

125

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

all the Window Records in a database opened in this new version. Click here for a zip file (called W6mdb.zip) that contains a W6.mdb file for WINDOW 6.3.74 that has the...

126

LBNL Windows & Daylighting Software -- WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW WINDOW NFRC Certification Version Release Version Beta Version WINDOW 6.3 (For NFRC Certification and modeling Complex Glazing Systems) WINDOW 7.1 For modeling vacuum glazing, deflected glass, vertical venetian blinds and perforated screens WINDOW 7.2 For modeling Cellular Shades, in addition to vacuum glazing, deflected glass, vertical venetian blinds and perforated screens Download WINDOW 6.3 (for NFRC Certification and complex glazing systems) Download WINDOW 7.1 Download WINDOW 7.2 Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) New Features

127

Residents and windows. 1. Shielding of windows  

SciTech Connect

In order to assess the influence of the shielding of windows performed by occupants in residential buildings on the heat balance of the building, the shielding of 40,000 windows was determined by observation during two heating seasons. It is shown that the demand for privacy has a large effect on the degree of window-shielding. There are also indications that many occupants trying to save energy use window-shielding as one of their means to achieve this.

Lyrberg, M.D.

1983-06-01T23:59:59.000Z

128

Troubleshooting Microsoft Windows XP  

Science Conference Proceedings (OSTI)

From the Publisher:Troubleshooting Microsoft Windows XP provides fast answers to problems that can arise when using the Windows XP Home or Windows XP Professional operating system. The book addresses common issues with the new user interface, the taskbar ...

Stephen W. Sagman

2001-12-01T23:59:59.000Z

129

Introduction Windows and Precomputation  

E-Print Network (OSTI)

Introduction Windows and Precomputation Linear Combinations and Joint Expansions Endomorphisms;Introduction Windows and Precomputation Linear Combinations and Joint Expansions Endomorphisms and Complex Bases Outline 1 Introduction 2 Windows and Precomputation 3 Linear Combinations and Joint Expansions 4

130

Using X Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

option 3 or 510-486-8611 Home For Users Network Connections Using X Windows Using X Windows Introduction X-Windows allows you to display remote applications on...

131

Chapter 5. Auxiliary Windows  

Science Conference Proceedings (OSTI)

... simultaneously. New ones are created by the New command in the Messages submenu in any OOF2 window's OOF.Windows menu. ...

2013-08-23T23:59:59.000Z

132

Choosing a Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Residential Window LBNLs Windows and Daylighting Group provides technical support to government and industry efforts to help consumers and builders choose...

133

Windows 8-Windows Phone applikationsutveckling; Windows 8/Windows Phone application development.  

E-Print Network (OSTI)

?? Den här rapporten beskriver utvecklingen av en applikation för Windows 8 och Windows Phone 8 där fokus ligger på multiplattformsutveckling. Applikationen använder sig av… (more)

Johansson, Henrik

2013-01-01T23:59:59.000Z

134

Windows | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Windows Jump to: navigation, search TODO: Add description List of Windows Incentives...

135

thumbnails for windows  

Science Conference Proceedings (OSTI)

... 4) Cut and paste the above text window into some text editor, and save into the ... Then, in Windows, open the write folder and use 'View / thumbnails'.

136

Energy Savings from Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

137

Energy Savings from Window Attachments  

NLE Websites -- All DOE Office Websites (Extended Search)

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

138

Making Smart Windows Smarter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Windows Smarter Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Program Director, Building Technologies Office What does this project do? Pleotint, LLC has developed a specialized glass film that uses the energy generated by the sun to limit excess heat and light from coming into homes and buildings. When you look out the window, you might notice whether the sun is shining, a nice view of the outdoors or an interesting cloud passing by. What most people probably don't notice is that traditional windows waste about 30

139

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies Window Technologies Operator Types Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. This section on Operator Types describes how these typical windows work. Operator Types Glazing Types Traditionally, windows have been made from clear glass, but advanced technologies have significantly improved the thermal performance of glass. This section on Glazing Types describes some of these technologies. Glazing Types Gas Fills Gas fills improve the thermal performance of insulating glazing units by reducing the conductance of the air space between the layers. This section on Gas Fills describes the thermal performance benefits of adding gas to an IGU.

140

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Specular Glazing Systems Specular Glazing Systems NFRC THERM 6.3 / WINDOW 6.3 Simulation Manual July 2013: bullet Entire Manual in PDF Format approximate 8 MB Comparison of WINDOW 5 / THERM 5 and WINDOW 6 / THERM 6 Results for Specular Glazing Systems (PDF Format) NFRC WINDOW 6 / THERM 6 Training for Specular Systems (Power Point Presentation, Oct/Nov 2010) Tutorials Complex Glazing Systems bullet WINDOW 6.2 / THERM 6.2 Research Version User Manual (Documents features in WINDOW6 and THERM 6 for modeling complex glazing systems) bullet WINDOW 6.2 / THERM 6.2 Simulation Manual Chapter for Complex Glazing (Draft) This was used for NFRC Simulator training in June 2009, and includes detailed descriptions for modeling venetian blinds between glass and frits. bullet Complex Glazing Summary -- PDF File

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Considerations for Window Performance Considerations for Window Performance Advanced window technologies can have a major effect on comfort and on the annual energy performance of a house. However, there is a broader and possibly more significant impact of the recent revolution in window performance. Because the new glazing technologies provide highly effective insulating value and solar protection, there are important implications for how a house is designed. There is a long-established set of window design guidelines and assumptions intended to reduce heating and cooling energy use. These are based, in part, on the historical assumption that windows were the weak link in the building envelope. These assumptions frequently created limitations on design freedom or generated conflicts with other performance requirements,

142

South Central Arkansas Electric Cooperative - Energy Resource...  

Open Energy Info (EERE)

Sector Commercial, Residential Eligible Technologies Heat pumps, DuctAir sealing, Windows, Doors, Unspecified technologies Active Incentive No Implementing Sector Utility...

143

Windows activation Sergei Striganov  

E-Print Network (OSTI)

Windows activation Sergei Striganov Fermilab July 25, 2007 #12;Beam windows residual activity of irradiated object should be much larger than -ray interaction length (3.7 cm in windows). In such model activation is proportional to star density. For beam size much smaller windows transverse dimension

McDonald, Kirk

144

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

NLE Websites -- All DOE Office Websites (Extended Search)

bullet Window Library: RESFEN5 has a Window Library that allows data for specific windows to be imported from the WINDOW5 program. A default set of WINDOW5 data is installed...

145

SYSTEM ADMINISTRATOR: WINDOWS SERVER 2003  

E-Print Network (OSTI)

SYSTEM ADMINISTRATOR: WINDOWS SERVER 2003 MCSA © 2011 Microsoft Corporation. All rights reserved MCPDMCPD WINDOWS DEVELOPERWEB DEVELOPER Job Role/Achievement Certification Recommended Coursework Student TECHNICIAN: WINDOWS 7 MCITPMCITP SUPPORT TECHNICIAN: WINDOWS VISTA SERVER ADMINISTRATOR: WINDOWS SERVER 2003

Atkinson, Katie

146

The Efficient Window Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 The Efficient Window Collaborative http://www.efficientwindows.org Energy-efficient windows make up only about 35% of the U.S. residential window market, even though they are cost-effective in approximately 80% or more of all applications. To ensure that efficient windows reach their optimum potential in homes throughout the U.S., the Department of Energy and key players in the U.S. window industry have formed the Efficient Window Collaborative (EWC). The EWC's goal is doubling the market share of efficient windows by 2005. With 31 charter members from the window and glass industries, the EWC is managed jointly by the Washington, D.C.-based Alliance to Save Energy and the Center for Building Science's Windows and Daylighting Group. The EWC serves as a focal point for voluntary

147

List of Windows Incentives | Open Energy Information  

Open Energy Info (EERE)

Windows Incentives Windows Incentives Jump to: navigation, search The following contains the list of 604 Windows Incentives. CSV (rows 1-500) CSV (rows 501-604) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

148

02preview.windows.compreview.windows.com Release Preview  

E-Print Network (OSTI)

02preview.windows.compreview.windows.com Windows 8 Release Preview Product guidepreview.windows.com #12;03 01preview.windows.compreview.windows.com © 2012 Microsoft Corporation. All rights reserved. #12;Contents Windows 7, only better 06 The new Start screen 06 Touch, keyboard, and mouse: seamless integration

Fähndrich, Manuel A.

149

LBNL Windows & Daylighting Software -- WINDOW: NFRC info  

NLE Websites -- All DOE Office Websites (Extended Search)

5.2 (5.2.17): July 2003 Download WINDOW 5.2.17 (Glass Library has IGDB version 14.0) Download THERM 5.2.14 This version of WINDOW 5.2 is approved by NFRC for use with the new NFRC...

150

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

The High Performance Windows Volume Purchase (WVP) Program The High Performance Windows Volume Purchase (WVP) Program The U.S. Department of Energy's Building Technologies Program (BTP) is coordinating a volume purchase program intended to overcome cost and awareness barriers to the wider adoption of highly-insulating windows and low-E storm windows. These products include windows meeting a number of specifications including a U-factor of 0.22 or less as well as storm windows with low-emissivity glass. Buyer groups with a potential interest in purchasing these products in volume will learn about their availability and cost through the program's product listings. Over 50 manufacturers proposed products for the first round of these listings, for which submittals were due by February 19, 2010. DOE does not purchase any products through this project, nor does DOE

151

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsoft Vista and Windows 7 Operating System Issues Last update:071612 12:38 PM The LBNL Windows & Daylighting suite of software programs (WINDOW, THERM, Optics) are installed...

152

Insider Power Techniques for Microsoft Windows XP  

Science Conference Proceedings (OSTI)

Tweak Windows® XP for ultimate performance with the undocumented secrets and hidden gems of the experts who work with the technology every day. Use their best techniques, practices, hacks, tricks, and workarounds to put all of your PC's muscle to ...

Paul Mcfedries; Austin Wilson; Geoff Winslow

2003-02-01T23:59:59.000Z

153

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Publications: Books Fact Sheets & Publications: Books Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Residential Windows: A Guide to New Technology and Energy Performance, 3rd Edition John Carmody, Stephen Selkowitz, Dariush Arasteh and Lisa Heschong Residential Windows The Department of Energy's Windows and Glazing Research Program supported the development of this book. Support was provided

154

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduced Condensation Reduced Condensation Condensation High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. High-performance windows create warmer interior glass surfaces, reducing frost and condensation. High-performance windows with warm edge technology and insulating frames have such a warm interior surface that condensation on any interior surfaces is significantly reduced under all conditions. Condensation occurs when the interior surface temperature of the glass drops below either the dewpoint or frost point. A window's frame and/or glazing system can contribute to the possibility of condensation if they are poor performers for a specific climate. High-performance windows create warmer interior glass surfaces, reducing condensation and frost.

155

Zero Energy Windows  

E-Print Network (OSTI)

solar gains with highly insulating windows, which leads to windows with positive heating energy flows offsetting buildingheating energy needs, reject solar gain to reduce cooling loads, significantly mitigate a building’

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

156

Safety Share - Window Blinds  

NLE Websites -- All DOE Office Websites (Extended Search)

- Window Blinds On November 17, 2010, an HSS employee was adjusting the window blinds in his office. One might expect this low hazard, routine operation to require little or no...

157

Whole Window Performance Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria This graph shows the relationship between whole window U-factor and center of glass U-factor (U-cog) for two window types for two generic frames from the...

158

Building Energy Software Tools Directory : Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Back to Tool Screenshot of WINDOW definition. Screenshot of WINDOW glass library. Screenshot of WINDOW assembly definition...

159

New Window of Opportunity:  

Science Conference Proceedings (OSTI)

Page 1. New Window of Opportunity: Certificate Transparency - A Certification Authority's Perspective Ben Wilson, SVP DigiCert ...

2013-04-10T23:59:59.000Z

160

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

advanced spectrally selective low-e double-pane windows and the same type of daylighting control system

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Subject Responses to Electrochromic Windows  

E-Print Network (OSTI)

large-area electrochromic windows in commercial buildings”,of electrochromic windows: a pilot study”, Building andceramic electrochromic window: field study results”, Energy

Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

2006-01-01T23:59:59.000Z

162

FLUDViz: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... Tk for communication between the OpenGL graphics window and the Tcl/Tk control window. ... invokes OpenGL and WGL (Windows GL extensions). ...

163

Chapter 4. The Graphics Window  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Chapter 4. The Graphics Window. ... Chapter 4. The Graphics Window. ... Figure 4.1 shows the structure of the Graphics Window. ...

2013-07-05T23:59:59.000Z

164

A versatile procedure for calculating heat transfer through windows  

SciTech Connect

Advances in window technologies and the desire to standardize the reporting of standard window heat transfer indices have necessitated the development of a comprehensive analytical procedure for calculating heat transfer through windows. This paper shows how complete window heat transfer can be considered as the area-weighted sum of the three window component areas: the center-of-glass area, the edge-of-glass area, and the frame area. Algorithms for calculating heat transfer through each of these areas and for combining these to calculate total window indices are presented. 36 refs., 5 figs., 6 tabs.

Arasteh, D.K.; Reilly, M.S.; Rubin, M.D.

1989-05-01T23:59:59.000Z

165

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.8 (September 30, 2013) Program Changes TARCOG DLL Changes The TARCOG.DLL file,...

166

Metallic Mesh Filter Used for Electromagnetic Shielding of Infrared Window  

Science Conference Proceedings (OSTI)

In order to meet anti-electromagnetism interference performance requirements of infrared window, a metallic mesh coating must be used on the infrared window. From the diffraction theory of grating and the equivalent circuit method, simplified expressions ... Keywords: stealth technology, electro-optical countermeasure, transparent conductive coating, metallic mesh filter, infrared window

Jia-Li Song, Xiao-Guo Feng

2012-07-01T23:59:59.000Z

167

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

2013-06-01T23:59:59.000Z

168

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

169

Technology and architecture : informing investment decisions for the future of human space exploration  

E-Print Network (OSTI)

NASA's detailed programmatic goals, system architectures, and mission designs for future human spaceflight beyond Earth orbit remain unspecified. Given this uncertainty, it is not clear exactly which technologies are ...

Battat, Jonathan Alexander

2012-01-01T23:59:59.000Z

170

Residential Solar and Efficiency Tax Credit - Personal (Massachusetts...  

Open Energy Info (EERE)

Programmable Thermostats, DuctAir sealing, Building Insulation, Windows, Solar Water Heat, Other Unspecified Technologies Active Incentive No Implementing Sector State...

171

Residential Solar and Efficiency Tax Credit - Corporate (Massachusetts...  

Open Energy Info (EERE)

Programmable Thermostats, DuctAir sealing, Building Insulation, Windows, Solar Water Heat, Other Unspecified Technologies Active Incentive No Implementing Sector State...

172

City of Aspen - Energy Assessment Rebate Program (Colorado) ...  

Open Energy Info (EERE)

Weather-stripping, Doors, DuctAir sealing, Lighting, Programmable Thermostats, Windows, Unspecified technologies Active Incentive Yes Implementing Sector Utility Energy...

173

Microsoft PowerPoint - WINDOW6-ComplexGlazingTypeSummary-ForPresentation.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Christian Kohler, Mike Rubin, Jacob Jonsson Christian Kohler, Mike Rubin, Jacob Jonsson Dariush Arasteh, Robin Mitchell Windows & Daylighting Research Group March 2008 Complex Glazing Summary Complex Glazing Summary Environmental Energy Technologies Division Software Tools Overview Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing Data Base) calculation calculation calculation WINDOW (Whole Window) Environmental Energy Technologies Division WINDOW6 Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing

174

High Performance Windows Volume Purchase: The Windows Volume Purchase RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

The Windows The Windows Volume Purchase RFP to someone by E-mail Share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Facebook Tweet about High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Twitter Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Google Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Delicious Rank High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Digg Find More places to share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on AddThis.com... Home About FAQs Low-E Storm Windows Request for Proposal Contacts For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers

175

Microsoft Windows Embedded Compact Cryptographic ...  

Science Conference Proceedings (OSTI)

Page 1. Microsoft Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document ... Microsoft Windows Embedded Compact ...

2013-08-07T23:59:59.000Z

176

Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancement of Electrochromic Windows Advancement of Electrochromic Windows Title Advancement of Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59821 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Date Published 04/2006 Other Numbers CEC-500-2006-052 Keywords commercial buildings, daylight, daylighting controls, Electrochromic windows, energy efficiency, human factors, peak demand, switchable windows, visual comfort Abstract This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it's sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

177

Transforming the market for residential windows: design considerations for DOE's Efficient Window Collaborative  

SciTech Connect

Market adoption of recent, commercially available technological advances that improve the energy performance of windows will lead to immediate economic and energy savings benefits to the nation. This paper is a scoping study intended to inform the design of a major DOE initiative to accelerate market adoption of these windows in the residential sector. We describe the structure of the US residential window market and the interests of the various market players. We then briefly review five recent market transformation initiatives. Finally, we summarize our findings in a list of considerations we believe will be important for the DOE's initiative to transform the US residential window market.

Eto, J.; Arasteh, D.; Selkowitz, S.

1998-08-01T23:59:59.000Z

178

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits: Energy & Cost Savings Benefits: Energy & Cost Savings The following information is an example of energy and cost savings for Boston and Phoenix. See the sidebar to the right for information on energy use for generic window products in your city or region. Heating Season Savings U-Factor In climates with a significant heating season, non-energy efficient windows can represent a major source of unwanted heat loss, discomfort, and condensation problems. In recent decades, windows have undergone a technological revolution. It is now possible to have lower heat loss, less air leakage, and warmer window surfaces that improve comfort and minimize condensation. The graphs below illustrate the simulated savings in heating season costs associated with energy efficient windows for a typical

179

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Windows Dynamic Windows Technologies, such as electrochromics, are now available for the residential market. The skylight on the left is switched to the "on" position-reducing glare and solar heat gain. The skylight on the right is switched to the "off" position. Photo: Velux-America and SAGE Electrochromics. The emerging concept for the window of the future is more as a multifunctional "appliance-in-the-wall" rather than simply a static piece of coated glass. These systems include switchable windows and shading systems that have variable optical and thermal properties that can be changed in response to climate and occupant preferences. By actively managing lighting and cooling, smart windows could reduce peak electric loads, increase daylighting benefits throughout the United States, improve

180

The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and Benchmark Exercises  

E-Print Network (OSTI)

The heat-balance integral method of Goodman has been thoroughly analyzed in the case of a parabolic profile with unspecified exponent depending on the boundary condition imposed. That the classical Good man's boundary conditions defining the time-dependent coefficients of the prescribed temperature profile do not work efficiently at the front of the thermal layers if the specific parabolic profile at issue is employed. Additional constraints based on physical assumption enhance the heat-balance integral method and form a robust algorithm defining the parabola exponent . The method has been compared by results provided by the Veinik's method that is by far different from the Good man's idea but also assume forma tion of thermal layer penetrating the heat body. The method has been demonstrated through detailed solutions of 4 1-D heat-conduction problems in Cartesian co-ordinates including a spherical problem (through change of vari ables) and over-specified boundary condition at the face of the thermal layer.

Jordan Hristov

2010-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Highly Insulating Windows - Publ  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

182

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics 6.0 Optics 6.0 (6.0 -- February 13, 2012) Release Notes Updated: 07/16/12 Program Changes Microsoft Windows 7 / Vista Operating System"Aware" Optics now installs and operates much better under the Microsoft Windows 7 and Vista operating systems. It is no longer necessary to run the "VistaFix" batch file after installing the program. Fixed Bugs If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to OpticsHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. Paths Appear in Tools/Options In the Microsoft Windows 7 / Vista Operating System environments, the program would not display the directory paths in the Tools / Options "File Locations" dialog box. This is now fixed.

183

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellular / Honeycomb Shades Cellular / Honeycomb Shades Updated 09/30/2013 It is now possible to model cellular / honeycomb shading systems in the Shading System Library and then add them to a glazing system in the Glazing System Library. NOTE: Before attempting to calculate a glazing system with a cellular shade, you must make the following change to the THERM7.ini file, which is located in C:\Users\Public\LBNL\Settings. Close WINDOW7 before making this change. DocPath=C:\Users\Public\LBNL\WINDOW7\debug Shading Layer Library A cellular / honeycomb shade can now be defined in the Shading Layer Library. Defining this type of shading system requires an XML file which contains information about the cell geometry and the material thermal and optical properties. WINDOW can model two different types of cellular shades:

184

Dynamic Windows.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

including products with improved fixed or static properties and products with dynamic solar heat gain proper- ties. Nine representative window products are examined in eight...

185

Zero Energy Windows  

E-Print Network (OSTI)

systems, such as space conditioning and lighting. Windows2. Table 1: Annual Space-Conditioning Energy Consumption ofquads Table 2: Annual Space-Conditioning Energy Consumption

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

186

Windows Vistan käyttöönotto organisaatioympäristössä.  

E-Print Network (OSTI)

??Työn tavoitteena oli kehittää menetelmä, jolla Windows Vista- käyttöjärjestelmä voidaan asentaa usealle tietokoneelle samanaikaisesti mahdollisimman tehokkaasti. Lisäksi käyttöönotto täytyi tapahtua automaattisesti, jotta se ei vie… (more)

Kamula, Erkki

2009-01-01T23:59:59.000Z

187

Windows Server 2008 -infrastruktuuri.  

E-Print Network (OSTI)

??Tämä työ käsittelee Windows 2008 -verkkoinfrastrukstuuri-kurssin materiaalin suunnittelua ja testausta. Työ toteutettiin Metropolia Ammattikorkeakoululle keväällä 2010. Työn alussa esitellään työssä käytetty virtuaalisointiohjelmisto ja toiminta, sekä… (more)

Sundgren, Patrik

2011-01-01T23:59:59.000Z

188

ADVANCEMENT OF ELECTROCHROMIC WINDOWS  

NLE Websites -- All DOE Office Websites (Extended Search)

Eleanor Lee, Co-Principal Investigator Steve Marsh, Curtainwall Engineering, Sensors and Instrumentation Robin Mitchell, Window Modeling Thomas Richardson, Ph.D., Material...

189

Efficient Windows Collaborative  

SciTech Connect

The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

Nils Petermann

2010-02-28T23:59:59.000Z

190

BRAZING THIN BERYLLIUM WINDOWS  

SciTech Connect

Thin, high-vacuum Be windows were vacuum brazed to Cu supports for electronic devices, using small frames of 630-705 deg C In--Cu--Ag brazing alloy. The edges of the Be windows were coated with Cu before brazing. The brazing procedure is described. (D.L.C.)

Papacosta, J.P.; Murdock, D.M.; Crews, R.W.

1962-11-01T23:59:59.000Z

191

Window inference in isabelle  

E-Print Network (OSTI)

Window inference is a transformational style of reasoning that provides an intuitive framework for managing context during the transformation of subterms under transitive relations. This report describes the design for a prototype window inference tool in Isabelle, and discusses possible directions for the final tool. 1

Mark Staples

1995-01-01T23:59:59.000Z

192

Efficient Windows Collaborative  

SciTech Connect

The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

Nils Petermann

2010-02-28T23:59:59.000Z

193

WINDOW 4.0: Documentation of calculation procedures  

Science Conference Proceedings (OSTI)

WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Building Technologies Group at the Lawrence Berkeley Laboratory for calculating the thermal and optical properties necessary for heat transfer analyses of fenestration products. This report explains the calculation methods used in WINDOW 4.0 and is meant as a tool for those interested in understanding the procedures contained in WINDOW 4.0. All the calculations are discussed in the International System of units (SI). WINDOW 4.0 is the latest in a series of programs released by the Lawrence Berkeley Laboratory. The WINDOW program has its roots in a paper detailing a method for calculating heat transfer through windows [Rubin, 1982]. WINDOW 4.0 replaces the widely used 3.1 version. Although WINDOW 4.0 is a major revision, many of the algorithms used in WINDOW 4.0 build upon those previously documented [Arasteh, 1989b], [Furler, 1991]. This report documents the calculations that are unchanged from WINDOW 3.1, as well as those calculations that are new to WINDOW 4.0. This report uses the organization of the WINDOW 4.0 program. Results displayed on a WINDOW 4.0 screen are discussed in a section describing that screen. In the conclusion the aspects of the calculation method currently slated for revision are discussed. A glossary of variables used throughout the report is found in Section 11.

Finlayson, E.U.; Arasteh, D.K.; Huizenga, C.; Rubin, M.D. [Lawrence Berkeley Lab., CA (United States); Reilly, M.S. [Enermodal Engineering, Inc., Denver, CO (United States)

1993-07-01T23:59:59.000Z

194

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

195

TRNSYS for windows packages  

SciTech Connect

TRNSYS 14.1 was released in 1994. This package represents a significant step forward in usability due to several graphical utility programs for DOS. These programs include TRNSHELL, which encapsulates TRNSYS functions, PRESIM, which allows the graphical creation of a simulation system, and TRNSED, which allows the easy sharing of simulations. The increase in usability leads to a decrease in the time necessary to prepare the simulation. Most TRNSYS users operate on PC computers with the Windows operating system. Therefore, the next logical step in increased usability was to port the current TRNSYS package to the Windows operating system. Several organizations worked on this conversion that has resulted in two distinct Windows packages. One package closely resembles the DOS version and includes TRNSHELL for Windows and PRESIM for Windows. The other package incorporates a general front-end, called IISIBat, that is a general simulation tool front-end. 8 figs.

Blair, N.J.; Beckman, W.A.; Klein, S.A.; Mitchell, J.W.

1996-09-01T23:59:59.000Z

196

Insulating window system  

SciTech Connect

An insulating window system is described for use with existing structural windows which consists of: a window track, the track secured to and outlining the structural windows and includes a jaw means, the jaw means includes a pair of spaced jaws, the jaws extending outward from the track and being concaved towards each other forming a semi-oval channel; a glazing frame means having a base member and a pane holder, the base member having two outwardly extending spaced arms, the arms being concaved towards each other forming a semi-oval channel and engaging the jaws when passed there against, for locking the window track and glazing frame means together; the pane holder extending from the glazing frame means and includes an end section and a face section, the face section overlaying the base member with the end section extending therebetween, all forming a glazing channel for securing a glazing pane.

Miller, W.

1986-04-15T23:59:59.000Z

197

A true virtual window  

E-Print Network (OSTI)

Previous research from environmental psychology shows that human well-being suffers in windowless environments in many ways and a window view of nature is psychologically and physiologically beneficial to humans. Current window substitutes, still images and video, lack three dimensional properties necessary for a realistic viewing experience ? primarily motion parallax. We present a new system using a head-coupled display and image-based rendering to simulate a photorealistic artificial window view of nature with motion parallax. Evaluation data obtained from human subjects suggest that the system prototype is a better window substitute than a static image and has significantly more positive effects on observers? moods. The test subjects judged the system prototype as a good simulation of, and acceptable replacement for, a real window, and accorded it much higher ratings for realism and preference than a static image.

Radikovic, Adrijan Silvester

2004-12-01T23:59:59.000Z

198

Window Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

199

Window Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

200

Secure Windows Dr. Bernd Borchert  

E-Print Network (OSTI)

Secure Windows Dr. Bernd Borchert WSI für Informatik Univ. Tübingen #12;Problem: Trojans Server Windows" Server (encoding) Internet #12;Server (encoding) Internet Solution: ,,Secure Windows" #12;Server (encoding) Internet Solution: ,,Secure Windows" #12;Server (encoding) Internet Solution: ,,Secure Windows

Borchert, Bernd

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High Performance Windows Volume Purchase: Subscribe to Windows...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Windows Volume Purchase Event News and Updates to someone by E-mail Share High Performance Windows Volume Purchase: Subscribe to Windows Volume Purchase Event News and...

202

Field Evaluation of Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Windows Evaluation of Windows Last Updated: 10/20/2009 Various tools can be used to evaluate windows in the field. Unless a new window still has the NFRC label attached to it, it is nearly impossible to determine by sight what the thermal and optical performance of a window is. These tools can provide information, such as low-e coating, gap width and gas fill, that can be used to approximate the performance of a window. Solar gain and Low-e detector This device can be used to determine if a low-e coating is present in the window, what type of coating it is, and where it is located. The type of low-e coating will indicate the amount of solar gain that is admitted through the coating. Readings can be "low", "medium" or "high". The device will also indicate on which glass surface the low-e coating is in relation to the position of the device. Limitations: Only works on glass of 1/8" (3 mm) or thinner. Cost: around $350 from EDTM.com

203

Collaborative Sharing of Windows between MacOS X, the X Window System and Windows  

E-Print Network (OSTI)

Collaborative Sharing of Windows between MacOS X, the X Window System and Windows Daniel Stødle This paper investigates how one best can share windows between many different computers in a collaborative application. We present an architecture of a system allowing windows on MacOS X to be shared with computers

Bjørndalen, John Markus

204

Left-over Windows Cause Window Clutter... But What Causes Left-over Windows?  

E-Print Network (OSTI)

Left-over Windows Cause Window Clutter... But What Causes Left-over Windows? Julie Wagner1 that they can return to later. However, users also struggle with window clutter, facing an increasing number of `left-over windows' that get in the way. Our goal is to understand how users create and cope with left

205

The Efficient Windows Collaborative  

SciTech Connect

The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

Petermann, Nils

2006-03-31T23:59:59.000Z

206

Tips: Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Windows Tips: Windows June 18, 2012 - 9:43am Addthis Tips: Windows Windows can be one of your home's most attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill by letting heat out. During the summer, your air conditioner must work harder to cool hot air from sunny windows. Install ENERGY STAR®-qualified windows and use curtains and shade to give your air conditioner and energy bill a break. If your home has single-pane windows, consider replacing them with double-pane windows with high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select windows with

207

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

windows, and are available in a range of materials. If you have old windows in your home, replacing them with new, energy-efficient windows will most likely return your...

208

AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS  

E-Print Network (OSTI)

Through Sash/Frame Cracks . Window Operation Types . . . . .Window Operation Types . . . . .Air Leakage of Installed Windows Scattergram of Field

Weidt, John

2013-01-01T23:59:59.000Z

209

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Publications Fact Sheets & Publications Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer State Fact Sheets for New and Existing Construction The EWC State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state.

210

What is the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

What is the Efficient Windows Collaborative? What is the Efficient Windows Collaborative? The EWC is a coalition of window, door, skylight, and component manufacturers, research organizations, federal, state and local government agencies, and others interested in expanding the market for high-efficiency fenestration products. Its goals are to double the current market penetration of efficient window technologies, and to make NFRC labeling a near-universal practice in U.S. markets. The Alliance to Save Energy has the lead coordination and management role. Using its active involvement with the energy efficiency industry and its experience in promoting energy efficient products, the Alliance is committed to working with the fenestration industry to make the Collaborative an effective force in the marketplace.

211

LBNL Window & Daylighting Software -- RESFEN: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Windows 7, Windows XP, Windows 2000TM.. Older version of Microsoft Windows might work, but are not...

212

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Replacement Compare Annual Energy Costs for Replacement Windows in a Typical House Use the Window Selection Tool to compare the annual energy performance of different window...

213

6.2.285. OOF.Windows  

Science Conference Proceedings (OSTI)

... Open or raise the Layer Editor window. OOF.Windows.Messages; OOF.Windows.OOF2 -- Raise the main OOF2 window. ...

2013-07-05T23:59:59.000Z

214

LBNL Window & Daylighting Software -- RESFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick...

215

Windows Installation Notes for EXPGUI  

Science Conference Proceedings (OSTI)

... a DOS window to run gsaskit.exe and an unzip program (for example Winzip) to unpack Tcl/Tk and EXPGUI. For newer versions of Windows, the ...

216

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Research Energy Systems Integration Advancement ofintegration issues related to using EC windows within a whole building energy efficient systemenergy- savings benefit with EC-daylighting-HVAC integration (assuming a conventional VAV system

2006-01-01T23:59:59.000Z

217

Windows with complex shading  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal properties MoWiTT measured system SHGC to check method The transmission of solar energy through a complicated system such as a window with a venetian blind andor...

218

Windows as Luminaires  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows with low-e coatings have already captured a 35% market share in the U.S, with sales of 25 million square meters (270 million square feet) per year. Fig. 1 is based on a...

219

Laser having improved windows  

SciTech Connect

A discharge tube for a gaseous laser is terminated with windows made of crystalline quartz which do not fluoresce in the presence of high energy, visible and ultraviolet light radiation.

Alves, R.W.; Costich, V.R.

1976-11-23T23:59:59.000Z

220

Walls and Windows  

SciTech Connect

Energy travels in and out of a building through the walls and windows by means of conduction, convection, and radiation. The walls and windows, complex systems in themselves, are part of the overall building system. A wall system is composed of multiple layers that work in concert to provide shelter from the exterior weather. Wall systems vary in the degree to which they provide thermal resistance, moisture resistance, durability, and thermal storage. High tech windows are now available that can resist radiation heat transfer while still providing light and visibility. The combination of walls and windows within the building system can be adapted to meet a wide range of environmental conditions, recognizing that the best building envelope system for one climate may not be the first choice for another location.

Stovall, Therese K [ORNL

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Superconductive radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

Phillips, H.L.; Elliott, T.S.

1998-05-19T23:59:59.000Z

222

Superconducting radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

Phillips, H.L.; Elliott, T.S.

1997-03-11T23:59:59.000Z

223

Seeing Windows Through  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Seeing Windows Through A profusion of gases, glazings, and gap sizes are among the factors that confound efforts to measure the energy performance of a window or skylight. The increasing variety of efficiency-enhancing options for windows and their frames poses a formidable challenge to builders, utilities, code officials, and consumers. Fortunately, a new system for accurately rating and labeling these products promises to help demystify them and to foster nationwide improvements in energy efficiency. NFRC is Born Window trade groups have historically organized around specific materials or components (such as glass or frames), and energy has rarely been their focal point. This changed in 1989 with the formation of the National Fenestration Rating Council. One impetus behind the industry's

224

A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeowners in the United States spend Homeowners in the United States spend one out of every eight dollars of utility costs on cooling their living space. Window air conditioners (A/Cs) are an inexpensive alternative to central systems, and are sold in greater numbers each year than all other residential cooling systems. They are purchased to cool a specific room and are easy for anyone to install. In contrast to these benefits, window A/Cs come at a cost-they operate less efficiently (using more energy to do the same cooling) than most other residential A/C systems. Researchers at the National Renewable Energy Laboratory (NREL) studied window A/Cs on behalf of the U.S.

225

Energy-efficient windows  

SciTech Connect

This fact sheet describes energy efficient windows for the reduction of home heating and cooling energy consumption. It discusses controlling air leaks by caulking and weatherstripping and by replacing window frames. Reducing heat loss and condensation is discussed by describing the types of glazing materials, the number of glass and air spaces, frame and spacer materials, and the use of movable insulation (shutters, drapes, etc.). A resource list is provided for further information.

1994-10-01T23:59:59.000Z

226

Delineating the conformal window  

E-Print Network (OSTI)

We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings.

Mads T. Frandsen; Thomas Pickup; Michael Teper

2010-07-09T23:59:59.000Z

227

High Performance Windows Volume Purchase: For Light Commercial Buyers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Light For Light Commercial Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Light Commercial Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Light Commercial Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Google Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Delicious Rank High Performance Windows Volume Purchase: For Light Commercial Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Light Commercial Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Light Commercial Buyers Significant energy savings from low-E window technology are possible in the

228

Windows: Technical paper with comments  

SciTech Connect

Functional requirements of windows are examined including window location; hardware design, operation, and placement; energy conservation needs; and egress requirements. Basic window styles and design characteristics are described. Problems confronting persons with disabilities are identified and recommendations are made on the development of minimum functional and safety specifications for windows.

Woods, W.

1984-09-01T23:59:59.000Z

229

Why packages? The Windows tools  

E-Print Network (OSTI)

Why packages? The Windows tools A sample package Going further Package Development in Windows from August 13, 2008; updated November 23, 2012 1 of 45 #12;Why packages? The Windows tools A sample of packages 2 The Windows tools The main tools Missing pieces Installing the tools 3 A sample package Getting

Murdoch, Duncan

230

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Increasing the Power Modulation Window of Aluminium Smelter Pots with Shell Heat Exchanger Technology · Initiatives To Reduction Of Aluminum Potline ...

231

5 Steps to Making Your Windows More Energy Efficient | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps to Making Your Windows More Energy Efficient Steps to Making Your Windows More Energy Efficient 5 Steps to Making Your Windows More Energy Efficient December 13, 2013 - 4:06pm Addthis Keep your hard-earned dollars from flying out the window by following the latest guidelines for window repair, rehabilitation and replacement. | Photo courtesy of the Weatherization Assistance Program Technical Assistance Center. Keep your hard-earned dollars from flying out the window by following the latest guidelines for window repair, rehabilitation and replacement. | Photo courtesy of the Weatherization Assistance Program Technical Assistance Center. Eric Werling Building America Program Coordinator, Building Technologies Office

232

Starburst99 for Windows  

E-Print Network (OSTI)

We describe a Windows compatible version of the evolutionary synthesis code Starburst99. Starburst99 for Windows was developed from the public UNIX based version at STScI. We converted the original Fortran77 source code into a version for a Win32 environment with an Absoft Fortran Pro x86 compiler. Extensive testing showed no significant numerical differences in comparison with the previous UNIX version. The software application consists of the source code, executable, and a number of auxiliary files. The package installs on any PC running Windows 2000, XP, or Vista and can be obtained as freeware at http://www.stsci.edu/science/starburst/PCStarburst99.html. We give an overview of the different running modes and provide instructions for getting started with the initial set-up.

Claus Leitherer; Julia Chen

2008-11-14T23:59:59.000Z

233

LBNL Window & Daylighting Software -- RESFEN: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Windows 95, Windows 98, Windows 2000, Windows XP, or Windows NT CPU TYPE Pentium (a 133 MHz pentium will take about 40 seconds to perform a...

234

DOE-2 Input File From WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

a DOE2 input file from WINDOW 5 Last update: 02012008 01:19 PM Creating a DOE-2 Input File for One Window In the WINDOW Window Library, which defines a complete window including...

235

Future Advanced Windows for Zero-Energy Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Advanced Windows for Zero-Energy Homes Future Advanced Windows for Zero-Energy Homes Title Future Advanced Windows for Zero-Energy Homes Publication Type Conference Paper LBNL Report Number LBNL-51913 Year of Publication 2002 Authors Apte, Joshua S., Dariush K. Arasteh, and Yu Joe Huang Conference Name ASHRAE Transactions Volume 109, pt 2 Date Published 06/2003 Conference Location Kansas City, MO Call Number LBNL-51913 Abstract Over the past 15 years, low-emissivity and other technological improvements have significantly improved the energy efficiency of windows sold in the United States. However, as interest increases in the concept of zero-energy homes-buildings that do not consume any nonrenewable or net energy from the utility grid-even today's highest-performance window products will not be sufficient. This simulation study compares today's typical residential windows, today's most efficient residential windows, and several options for advanced window technologies, including products with improved fixed or static properties and products with dynamic solar heat gain properties. Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Windows with dynamic solar heat gain properties are found to offer significant potential in reducing energy use and peak demands in northern and central climates, while windows with very low (static) solar heat gain properties offer the most potential in southern climates.

236

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing Modeling Vacuum Glazing Modeling It is now possible to model vacuum glazing in WINDOW 7. The first step is to define a new vacuum "gap" in the "Gap Library" (formerly the Gas Library). Then that vacuum gap is used in a glazing system to calculate the thermal characteristics of the glazing system with a vacuum gap. Gap Library The Gas Library has been renamed the Gap Library. To define a vacuum gap, check the "Vacuum" checkbox (this is only available for single gases, not gas mixtures). When this box is checked, new input variables will appear, including the vacuum pressure, the specific heat ratio and molecular weight of the vacuum gas. It is also necessary to define a pillar system for the vacuum gap. Pillar Definition Double click the double arrow to the right of the Pillar Definition pulldown to define a new pillar system. Define the shape and dimensions of the pillar system.

237

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 (7.2.29 -- December 29 2013) Release Notes Updated: 12/29/13 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.29 (December 29, 2013) Program Changes Glazing System Shading System Details For shading system in a Glazing System Library construction, the emittances, conductance and TIR are not displayed, as they are only available after a calculation has been completed. Perforated Screens An input value for "Effective Openness Factor" has been added to the Shading Layer Library for perforated screens. At a future date, we will update the program to calculate this value automatically.

238

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Deflection Modeling Deflection Modeling It is now possible to model the effects of glass deflection in WINDOW 7. Glazing System Library The Glazing System Library is where the deflection modeling input values are entered. When the "Model Deflection" box is checked, a Deflection input box appears. When the Glazing System is calculated, two rows of results, one for the undeflected state and one for the deflected state, appear for Center of Glass Results, Temperature Data and Angular data. In addition, a Deflection tab appears, which shows the deflection of each glass layer and the resulting gap width for each gap. Glazing System Deflect Input There are two options for defining the deflection in a glazing system, by choosing from the "Input" pulldown list:

239

Calcium fluoride window mounting  

SciTech Connect

A technique has been developed for joining a large calcium fluoride crystal to a stainless-steel flange by means of a silver transition ring. The process involves both vacuum brazing using a copper-silver alloy and air brazing using silver chloride. This paper describes the procedure used in fabricating a high-vacuum leak-tight calcium fluoride window assembly.

Berger, D.D.

1982-10-01T23:59:59.000Z

240

Window To The Stars  

E-Print Network (OSTI)

We present Window To The Stars, a graphical user interface to the popular TWIN single/binary stellar evolution code, for novices, students and professional astrophysicists. It removes the drudgery associated with the traditional approach to running the code, while maintaining the power, output quality and flexibility a modern stellar evolutionist requires. It is currently being used for cutting edge research and interactive teaching.

Robert G. Izzard; Evert Glebbeek

2006-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Superconducting radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

Phillips, Harry L. (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

1997-01-01T23:59:59.000Z

242

Superconductive radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

Phillips, Harry Lawrence (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

1998-01-01T23:59:59.000Z

243

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

a copy of THERM 7 Beta Knowledge Base Release Notes Forum Documentation Get a copy of WINDOW 7.1 to accompany THERM 7 Beta -- NOTE: WINDOW 7.2 is not compatible with THERM 7.1....

244

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

a copy of THERM 7 Beta Knowledge Base Release Notes Forum Documentation Get a copy of WINDOW 7.1 to accompany THERM 7 Beta -- NOTE: WINDOW 7.0 is not compatible with THERM 7.1....

245

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Radiance in WINDOW 7 beta August 3rd, 2012 Last Updated: 08032012 This package will add the capability to generate basic Radiance images from within WINDOW. You need to...

246

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass Glass Vacuum-insulated Glass Vacuum-insulated glazing units are made up of 2 panes of glass with a very small air space. The air space contains spacers which help maintain the separation between the panes. Most of the emerging glass technologies are available or nearly on the market. These include insulation-filled and evacuated glazings to improve heat transfer by lowering U-factors. Evacuated Windows The most thermally efficient gas fill would be no gas at all-a vacuum. The window industry is pursuing the development of vacuum-insulated glass (VIG) for use in window units in which the space between the panes is evacuated. If the vacuum pressure is low enough, there would be no conductive or convective heat exchange between the panes of glass, thus lowering the U-factor. A vacuum glazing must have a good low-E coating to

247

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Comfort Improved Comfort Comfort High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. During cold weather, exterior temperatures drive interior glass surface temperatures down below the room air temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior glass surface temperature is 52˚F or less, it is most likely that there will be discomfort. During warm weather, solar radiation can cause discomfort. Just as people turn up the heat to compensate for cold windows in cold weather, they may use

248

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Notes Release Notes Updated: 11/07/11 History of COMFEN 3.1 Releases New Features Glazed Wall Assembly In addition to modeling individual windows, COMFEN now has the capability of modeling "Glazed Wall Assemblies" which allow you to specify the number of horizontal and vertical framing members, as well as their spacing, and the program automatically generates the facade. Click here for more details. Material Library COMFEN now has a Material Library, which can be used in the Wall Construction and Spandrel Libraries. See the User Manual for more details. Wall Library COMFEN now has a Wall Library which can be used to build up layers from the Material Library to define a wall. See the User Manual for more details. Spandrel Library COMFEN now has a Spandrel Library which can be used to build up layers from the Material Library to define a spandrel, including glass and glazing systems as the outer-most layers. See the User Manual for more details.

249

Windows Installation Information for EXPGUI  

Science Conference Proceedings (OSTI)

... in liveplot for example) can take 3-5 times longer in Windows than in ... display a plot, I get no plot (and possibly the DOS window disappears without ...

250

AttrActive Windows: Dynamic Windows for Digital Bulletin Boards  

E-Print Network (OSTI)

In this paper we describe AttrActive Windows, a novel interface for presenting live, interactive, multimedia content on a network of public, digital, bulletin boards. Implementing a paper flyer metaphor, AttrActive Windows are paper-like in appearance and are attached to a virtual corkboard by virtual pushpins. Windows can therefore appear in different orientations, creating an attractive, informal look. Attractive Windows can also have autonomous behaviors that are consistent with the corkboard metaphor, like fluttering in the wind. We describe the AttrActive Windows prototype, and offer the results of an initial evaluative user study.

Laurent Denoue; Les Nelson; Elizabeth Churchill

2003-01-01T23:59:59.000Z

251

Windows, Doors, & Skylights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows, Doors, & Skylights Windows, Doors, & Skylights Windows, Doors, & Skylights Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Energy-efficient windows, doors, and skylights-also known as fenestration-can help lower a home's heating, cooling, and lighting costs. Learn about the energy performance ratings to consider when selecting windows, doors, and skylights, and how to maximize their energy efficiency in your home. Featured Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto

252

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Connect to LinkedIn Visit us on Facebook Visit us on Twitter Send Email Efficient Windows Collaborative New Construction Windows Window Selection Tool Selection Process Design...

253

Simulating Complex Window Systems using BSDF Data  

E-Print Network (OSTI)

Simulating Complex Window Systems using BSDF Data MariaJune 2009 Simulating Complex Window Systems using BSDF Datathe performance of conventional window systems. Complex

Konstantoglou, Maria

2011-01-01T23:59:59.000Z

254

Window performance for human thermal comfort  

E-Print Network (OSTI)

of Heat Transfer through Windows”. ASHRAE Transactions 93,Performance of Vinyl-framed Windows”. Proc. 5 th Conf. Onet al. 2003b, "Operable Windows, Personal Control & Occupant

Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

2006-01-01T23:59:59.000Z

255

Operable windows, personal control and occupant comfort.  

E-Print Network (OSTI)

ASHRAE’s permission. Operable Windows, Personal Control, andcontrol of operable windows in naturally-ventilated officeences on the operation of windows in a naturally venti-

Brager, Gail; Paliaga, Gwelen; de Dear, Richard

2004-01-01T23:59:59.000Z

256

Performance Criteria for Residential Zero Energy Windows  

E-Print Network (OSTI)

LaFrance. 2006. “Zero Energy Windows. ” Proceedings of the2003. “Future Advanced Windows for Zero-Energy Homes. ”and cooling energy use of windows in residential buildings—

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

257

LBNL Windows & Daylighting Software -- THERM: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Windows XP, Windows 2000TM.. Older version of Microsoft Windows might work, but are not supported. (The...

258

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Selection Tool: Existing Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a...

259

BT::Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagram showing a zoned window wall Diagram showing a zoned window wall Electrochromic windows in a bleached state (left) or colored state (right). This website provides...

260

Integrated self-cleaning window assembly for optical transmission in combustion environments  

DOE Patents (OSTI)

An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.

Kass, Michael D [Oak Ridge, TN

2007-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

WindowsMillenniumEdition (Me) Windows98/98SecondEdition(SE)  

E-Print Network (OSTI)

WindowsMillenniumEdition (Me) Windows98/98SecondEdition(SE) Windows2000Professional WindowsXPHomeEdition WindowsXPProfessional Installation Guide Installing Nikon View 4 and Supporting Software Windows software (such as Cumulus) Mac OS Nikon D1 Nikon D1X Nikon D1H Windows Millennium Edition (Me) Windows 98

Kleinfeld, David

262

Sunlight Responsive Thermochromic Window System  

SciTech Connect

Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

Millett, F,A; Byker,H, J

2006-10-27T23:59:59.000Z

263

A Design Guide for Early-Market Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Early-Market Electrochromic Windows Early-Market Electrochromic Windows Title A Design Guide for Early-Market Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59950 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Call Number LBNL-59950 Abstract Switchable variable-tint electrochromic windows preserve the view out while modulating transmitted light, glare, and solar heat gains and can reduce energy use and peak demand. To provide designers objective information on the risks and benefits of this technology, this study offers data from simulations, laboratory tests, and a 2.5-year field test of prototype large-area electrochromic windows evaluated under outdoor sun and sky conditions. The study characterized the prototypes in terms of transmittance range, coloring uniformity, switching speed, and control accuracy. It also integrated the windows with a daylighting control system and then used sensors and algorithms to balance energy efficiency and visual comfort, demonstrating the importance of intelligent design and control strategies to provide the best performance. Compared to an efficient low-e window with the same daylighting control system, the electrochromic window showed annual peak cooling load reductions from control of solar heat gains of 19-26% and lighting energy use savings of 48-67% when controlled for visual comfort. Subjects strongly preferred the electrochromic window over the reference window, with preferences related to perceived reductions in glare, reflections on the computer monitor, and window luminance. The EC windows provide provided the benefit of greater access to view year-round. Though not definitive, findings can be of great value to building professionals.

264

Window Interfaces: A Taxonomy of Window Manager User Interfaces  

E-Print Network (OSTI)

This article presents a taxonomy for the user-visible parts of window managers. It is interesting that there are actually very few significant differences, and the differences can be classified in a taxonomy with fairly limited branching. This taxonomy should be useful in evaluating the similarities and differences of various window managers, and it will also serve as a guide for the issues that need to be addressed by designers of future window manager user interfaces. The advantages and disadvantages of the various options are also presented. Since many modern window managers allow the user interface to be customized to a large degree, it is important to study the choices available. A window manager is a software package that helps the user monitor and control different contexts by separating them physically onto different parts of one or more display screens. At its simplest, a window manager provides many separate terminals on the same screen, each with its own connection to a time-sharing computer. At its most advanced, a window manager supports many different activities, each of which uses many windows, and each window, in turn, can contain many different kinds of information including text, graphics, and even video. Window managers are sometimes implemented as part of a computer’s operating system and sometimes as a server that can be used if desired. They September 1988 0272-1;1618810900-0065s0100 198R ltEE 65

Brad A. Myers

1988-01-01T23:59:59.000Z

265

DOE-2 Input File From WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

an EnergyPlus input file from WINDOW 5 Last update: 12232008 01:54 PM Creating an EnergyPlus Input File for One Window In the WINDOW Window Library, which defines a complete...

266

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Glazing Types Window Technologies: Glazing Types Glazing Improvements There are three fundamental approaches to improving the energy performance of glazing products (two or more of these approaches may be combined). The first approach is to alter the glazing material itself by changing its chemical composition or physical characteristics. An example of this is tinted glazing. The second approach is to apply a coating to the glazing material surface. Reflective coatings and films were developed to reduce heat gain and glare, and more recently, low-emittance coatings have been developed to improve both heating and cooling season performance. The third approach is to assemble various layers of glazing and control the properties of the spaces between the layers. These strategies include the use of two or more panes or films,

267

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Low Conductance Spacers Window Technologies: Low Conductance Spacers Spacers The lites of glass in an insulating unit must be held apart at the appropriate distance by spacers. In addition to keeping the glass lites separated, the spacer system must serve a number of functions: accommodate stress induced by thermal expansion and pressure differences; provide a moisture barrier that prevents passage of water or water vapor that would fog the unit; provide a gas-tight seal that prevents the loss of any special low-conductance gas in the air space; create an insulating barrier that reduces the formation of interior condensation at the edge. Spacers The standard solution for insulating glass units (IGUs) is the use of metal spacers and sealants. These spacers, typically aluminum, also

268

BSP 930 WINDOWS NT SECURITY CHECKLIST  

Science Conference Proceedings (OSTI)

MICROSOFT WINDOWS NT 3.51/4.0 SECURITY CHECKLIST. Domain Name_____. ... 3.0, WINDOWS NT ACCOUNT POLICIES, ...

269

Image Windows - description of data types  

Science Conference Proceedings (OSTI)

... image, or RGB color image. cstack Stack of color (RGB) images. FRED (text) window; Dialog; (various) graphics windows.

270

Market Transformation Efforts for Residential Energy Efficient Windows: An  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Efforts for Residential Energy Efficient Windows: An Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Title Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Publication Type Report LBNL Report Number LBNL-46620 Year of Publication 2000 Authors Ward, Alecia, Margaret Suozzo, and Joseph H. Eto Date Published 01/2000 Publisher LBNL Abstract With the burst of recent initiatives to accelerate adoption of energy-efficient fenestration technologies in the marketplace, an update on window market transformation efforts is needed. Because of the impact of glazing on total home energy performance, the residential window market has received increasing attention over the past two years. National programs such as the ENERGY STAR Windows program, the Efficient Windows Collaborative, and regional initiatives such as the California Windows Initiative and the Northwest Collaborative have begun to move markets toward higher-efficiency windows. The results have included increasing sales of efficient products, stocking of more efficient/ENERGY STAR qualifying products, and price reductions of high-efficiency product, all of which secure dramatic energy savings at a national level. This paper takes stock of publicly supported national and regional transformation efforts for residential windows underway in the U.S. In particular, it documents ways in which National Fenestration Rating Council certification, Efficient Windows Collaborative education, and ENERGY STAR marketing, are working together to change window markets across the United States. Although it is too early to quantify the national-level impacts changes of these efforts, the authors offer a preliminary qualitative evaluation of efficient window promotion efforts to gain insight into the broader impacts that these and other future activities will achieve. Finally, the paper summarizes how other federally-funded building industry initiatives that emphasize "whole house" performance can complement these window technology-specific and component-specific initiatives. Demonstration houses from the Building America, ENERGY STAR Homes, and PATH projects all contribute to the success of windows-specific initiatives.

271

Low-Cost Solutions for Dynamic Window Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

272

Low-Cost Solutions for Dynamic Window Material  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

273

Windows 7 -käyttöjärjestelmän ominaisuudet, käyttö ja Windows XP -vertailu.  

E-Print Network (OSTI)

??Tämän opinnäytetyön tutkimuskohteena oli Windows 7 -käyttöjärjestelmä. Sen ominaisuuksia ja käyttöä arvioitiin käyttäjän näkökulmasta. Lisäksi selvitettiin mm. asennusvaihtoehtoja, käyttöjärjestelmän versioiden eroja ja toimintoihin sekä so-velluksiin… (more)

Nevala, Jukka

2010-01-01T23:59:59.000Z

274

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools Tools Looking for windows for a new home? Use the Window Selection Tool to compare annual energy performance for windows in new construction. Window Selection Tool Looking for replacement windows? Use the Window Selection Tool to compare annual energy performance for replacement windows. Window Selection Tool Window Selection Tool Use the Window Selection Tool for new or replacement windows to compare the annual energy performance of different window types and design conditions for a typical house. Find manufacturers who offer windows and skylights within the generic results shown. Learn more about manufacturers' specific product options. Use the Window Selection Tool to: Compare how various window or skylight types affect estimated energy cost for a typical house in your location.

275

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

276

Beam line windows at LAMPF  

Science Conference Proceedings (OSTI)

The A-6 main beam-line window at LAMPF separates the vacuum of the main beam line from the isotope production station, proton irradiation ports, and the beam stop, which operate in air. This window must withstand the design beam current of 1 mA at 800 MeV for periods of at least 3000 hours without failure. The window is water cooled and must be strong enough to withstand the 2.1 MPa (300 psig) cooling water pressure, as well as beam-induced thermal stresses. Two designs have been used to meet these goals, a stepped-plate window and a hemispherical window, both made from a precipitation-hardened nickel base alloy, Alloy 718. Calculations of the temperatures and stresses in each of these windows are presented.

Brown, R.D.; Grisham, D.L.; Lambert, J.E.

1985-01-01T23:59:59.000Z

277

WINDOW 5 Glass Library Update  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 or 7 Glass Library Update WINDOW 6 or 7 Glass Library Update Last update:12/09/13 07:26 PM Automatic IGDB Update Feature in WINDOW 6 and 7 The latest versions of WINDOW 6 and 7 have an automatic IGDB database update function in the Glass Library. When you first open the program, it checks to see if there is an IGDB version later than what you already have installed, and will notify you if there is an update. Then you can download and install the IGDB database, and click on the Update IGDB button in the Glass Library in order to start the automatic update. For older versions of WINDOW 6 and 7 without the automatic IGDB update function bullet How to Check the Current WINDOW5 IGDB Version bullet Updating the Glass Library bullet Problem Updating the Glass Library bullet Discontinued Records or Reused NFRC IDs

278

Windows for energy efficient buildings  

SciTech Connect

Information is compiled and reviewed on energy efficient windows. The status, support organization, and descriptions of some research, development, demonstration, and applications program of energy efficient windows are presented. Information about contract opportunities and recently awarded contracts is included. New products, materials, components, patents, and legislation are summarized. Information on industry organizations, literature, publications, and reports is included. A matrix of numerical performance data of window thermal barriers is presented. (MCW)

1980-01-01T23:59:59.000Z

279

Window treatments for cold climates  

SciTech Connect

Design considerations for various types of energy conserving window treatments to avoid condensation related maintenance problems are discussed. The window heat losses, dew point temperatures and allowable relative humidities at which condensation may occur on interior glass surfaces at an interior temperature of 65 DEGF (degrees Fahrenheit) and exterior temperatures from -50 to 30 DEGF were calculated by computer. Vapor pressures were also computed to show the importance of vapor (air) tight weather stripping and coverings for window treatments.

Carlson, A.R.

1983-06-01T23:59:59.000Z

280

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Selection Process for Replacement Windows Selection Process for Replacement Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Assess Your Existing Windows Assess whether your windows should be repaired, retrofitted, or replaced. While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Download Window Energy Efficiency Checklist for assistance. Window Replacement

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A First-Generation Prototype Dynamic Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

A First-Generation Prototype Dynamic Residential Window A First-Generation Prototype Dynamic Residential Window Title A First-Generation Prototype Dynamic Residential Window Publication Type Report LBNL Report Number LBNL-56075 Year of Publication 2004 Authors Kohler, Christian, Howdy Goudey, and Dariush K. Arasteh Call Number LBNL-56075 Abstract We present the concept for a smart highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available off-the-shelf components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The units predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

282

High Performance Window Attachments  

NLE Websites -- All DOE Office Websites (Extended Search)

dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make...

283

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Replacement Windows for Existing Homes Homes Replacement Windows for Existing Homes Homes Window Selection Tool Use the Window Selection Tool for existing homes (replacement windows) to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Assessing Options This section provides guidance the options available to improve the performance of your existing windows or to replace them. You can assess whether to repair, retrofit or replace your existing windows. Window Selection Process This section provides step-by-step guidance on the window selection process for replacement windows including issues of code, energy, durability, and installation.

284

Photo of the Week: The First Energy-Efficient Dual-Paned Windows |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The First Energy-Efficient Dual-Paned Windows The First Energy-Efficient Dual-Paned Windows Photo of the Week: The First Energy-Efficient Dual-Paned Windows December 5, 2013 - 12:53pm Addthis Researchers at Berkeley Lab helped develop the first energy-efficient dual-paned windows, now used in buildings and homes worldwide for billions of dollars in energy savings. Current windows research in the Environmental Energy Technologies Division at Berkeley Lab is aimed at developing new glazing materials, windows simulation software and other advanced high-performance window systems. The building shown here, located at Berkeley Lab, is a windows testing facility. | Photo courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory. Researchers at Berkeley Lab helped develop the first energy-efficient

285

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

and spacer effects on window U- value. ASHRAE Transactions,Enermodal. (2001). Modelling Windows, Glass Doors and OtherA. (2001). Heat transfer in window frames with internal

Gustavsen, Arild

2009-01-01T23:59:59.000Z

286

Ring Ring Oy -yrityksen Windows XP -käyttöjärjestelmästä siirtyminen Windows 7 -käyttöjärjestelmään ja ylläpidon näkökulma.  

E-Print Network (OSTI)

??Opinnäytetyön aiheena oli selvittää millä tapaa Windows XP -käyttöjärjestelmä eroaa Windows 7 -käyttöjärjestelmästä ylläpidon näkökulmasta. Selvitys pohjautuu toimeksiantajan toiveeseen saada lisää tietoa Windows 7 -käyttöjärjestelmän… (more)

Ritala, Ilkka

2011-01-01T23:59:59.000Z

287

Thermally insulated windows and doors  

SciTech Connect

Complete thermal insulation of metal rails and stiles in vertically or horizontally sliding or rolling windows or doors is provided by including in the frame thereof centered rigid plastic shapes which extend between panels of the windows or doors. All rails and stiles of each panel are thereby exposed only to either interior or exterior ambient temperatures.

Schmidt, D.F.

1979-05-01T23:59:59.000Z

288

The Window Strategy with Options  

E-Print Network (OSTI)

The window strategy is one of several marketing strategies using futures and options to establish a floor price and allow for upside price potential. It also reduces option premium costs. This publication discusses how the window strategy works and when to use it.

McCorkle, Dean; Amosson, Stephen H.; Fausett, Marvin

1999-06-23T23:59:59.000Z

289

Window Functions for CMB Experiments  

E-Print Network (OSTI)

We discuss the applicability and derivation of window functions for cosmic microwave background experiments on large and intermediate angular scales. These window functions describe the response of the experiment to power in a particular mode of the fluctuation spectrum. We give general formulae, illustrated with specific examples, for the most common observing strategies.

Martin White; Mark Srednicki

1994-02-15T23:59:59.000Z

290

Advances in glazing materials for windows  

SciTech Connect

No one type of glazing is suitable for every application. Many materials are available that serve different purposes. Moreover, consumers may discover that they need two types of glazing for a home because of the directions that the windows face and the local climate. To make wise purchases, consumers should first examine their heating and cooling needs and prioritize desired features such as daylighting, solar heating, shading, ventilation, and aesthetic value. Research and development into types of glazing have created a new generation of materials that offer improved window efficiency and performance for consumers. While this new generation of glazing materials quickly gains acceptance in the marketplace, the research and development of even more efficient technology continues.

1994-11-01T23:59:59.000Z

291

Window solar heating unit  

SciTech Connect

The unit may be mounted either in a window or between the studs of a building that is to be supplied with solar heat. The bottom of the unit extends farther from the building than the top and is wider than the top of the unit such that the transparent side away from the building has an arcuate form and is gradually flared outwardly in a downward direction to increase the exposure to the sun during the day. A plurality of absorptive tubes within the unit are slanted from the upper portion of the unit downwardly and outwardly to the front arcuate portion of the bottom. Openings between the unit and the building are provided for air flow, and a thermostatically controlled fan is mounted in one of the openings. A baffle is mounted between the absorptive tubes and the mounting side of the solar heating unit, and the surfaces of the baffle and the absorptive tubes are painted a dull black for absorbing heat transmitted from the sun through the transparent, slanting side.

Davis, E.J.

1978-09-12T23:59:59.000Z

292

Windows Vista Step by Step Deluxe Edition  

Science Conference Proceedings (OSTI)

The smart way to learn Windows Vista one step at a time! Updated with expanded coverage, this deluxe edition covers all of the latest Windows Vista features. You ll discover the smartest ways to stay organized with Windows Mail, Windows Contact, Windows ...

Joyce Cox; Joan Preppernau

2008-02-01T23:59:59.000Z

293

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Last Updated: 12/29/2013 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2 (7.2.29) (12/29/2013) Release Notes -- Please read these before running this version ! This version contains these new modeling features Honeycomb shades Dynamic Glazing (Thermochromic and Electrochromic) This version is compatible with THERM 7.1 Please send us emails as you find issues in the program -- that is the only way that we can make it more robust. We hope to iterate versions fairly quickly in the next month or so to get the bugs ironed out. Radiance for WINDOW 7 Get a copy of Radiance for WINDOW 7.2 Must be used with WINDOW 7.0.59 or later

294

LBNL Windows & Daylighting Software -- WINDOW5: Knowledge Base  

NLE Websites -- All DOE Office Websites (Extended Search)

6.3 Knowledge Base 6.3 Knowledge Base Tip - use the Find function in your browser to search this page Last update:11/04/13 01:16 PM Download WINDOW 6.3 Send feedback via email to WindowHelp@lbl.gov. Also as bugs and comments are submitted by testers, the will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN BUGS ** Operating Systems -- Microsoft Windows 7 and Vista ** Environmental Conditions -- Kimura convection model not working Locked Files with Install/De-install Environmental Conditions -- Fixed Combined Coefficient Bug Installation Problems Error Message during Calc due to decimal point of "," Minimum computer requirements Importing THERM file into WINDOW generates "Unnamed file has a bad format" error message

295

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

7.0 7.0 Last Updated: 05/20/2013 EN 673 / ISO 10077 Using WINDOW 7 and THERM 7 for EN 673 / ISO 10077 Calculations If you are interested in using WINDOW and THERM for EN 673 / ISO 10077 calculations, we have added that option to WINDOW 7. The calculation is not fully automated in the program yet, so there are many steps and a spreadsheet for the final calculation. We are interested in feedback (email WINDOWHelp@lbl.gov) about the process and the results from anyone who tests this feature. CAUTION: Do not model shading systems with the EN 673 thermal model. The program will produce results but they will most likely not be correct. Download this zip file (EN673.zip) which contains the following: Description of how to use WINDOW 6 and THERM 6 for the EN 673 / ISO 10077 calculations (PDF file)

296

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

Last Updated: 06262013 Complex Glazing System Modeling WINDOW 6.3 can be used to model complex glazing systems, in particular venetian blinds and roller shades (although not for...

297

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.1 (7.1.73) (8302013) Release Notes -- Please read these before running this...

298

LBNL Windows & Daylighting Software -- WINDOW5.02: Version Fixes  

NLE Websites -- All DOE Office Websites (Extended Search)

opening an optics db as a W5 db 748 energy plus reports working properly for windows with 2 glazing systems 742 eliminated a memory leak related to Therm temperature...

299

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Storm Windows Storm Windows Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by adding interior or exterior storm panels. Storm Window Panels exit disclaimer Storm windows can reduce the air leakage and improve the insulating value of existing windows. They can be installed on the interior or exterior side of windows, and can be mounted permanently or for seasonal use. Interior storm windows can be more easily installed and removed for ventilation or cleaning. Storm windows can reduce air leakage. However, it is important that humid

300

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Control Window Film Solar Control Window Film Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by applying a film. High-Reflectivity Window Films exit disclaimer International Window Film Association For more information on window film, check the Window Film Information Center exit disclaimer . Solar control window film reduces solar heat gain by reflection and absorption. As they also block solar heat gain in winter months, these films are ideal for cooling-dominated climates. Window films can be tinted

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

High Performance Windows Volume Purchase: For Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and mixed climates, R-5 windows on average reduce window heat loss by 40% and overall space conditioning costs by 10% relative to common ENERGY STAR windows. Promotion of high...

302

A Review of Electrochromic Window Performance Factors  

E-Print Network (OSTI)

0.30. The electrochromic windows were controlled to maintainSelkowitz, Solar Energy Mater. 22 (1991) 1. 2. Windows andDaylighting Group, “Window 3.1, A PC Program for Analyzing

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

303

THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE OF MANAGED WINDOW SYSTEMS S. E. Selkowitz and V.York, N.Y. , (1971). Windows for Energy Efficient Buildings,thermal performance of a window system are its overall heat

Selkowitz, S. E.

2011-01-01T23:59:59.000Z

304

Occupant Response to Window Control Signaling Systems  

E-Print Network (OSTI)

A.  (2002).  Operable windows and  HVAC systems.  HPAC Simulation of the effects of window opening and heating Dear, R.  (2004).  Operable Windows, Personal Control and 

Ackerly, Katherine

2012-01-01T23:59:59.000Z

305

AN ENERGY EFFICIENT WINDOW SYSTEM FINAL REPORT.  

E-Print Network (OSTI)

A. . .installed I. Prime windows -Residential -Mobile homesStorm wi ndows - 9.4 window area (in William M. Bethkeestimates ass consumption and window units. Table 9 B. Non-

Authors, Various

2011-01-01T23:59:59.000Z

306

Window Signaling Systems: Control Strategies & Occupant Behavior  

E-Print Network (OSTI)

and L.M Parkins. 1984. “Window-Opening Behavior in OfficeOccupant Response to Window Control Signaling Systems," CBEDaly, A. 2002. “Operable windows and HVAC systems. ” HPAC

Ackerly, Katie; Brager, Gail

2012-01-01T23:59:59.000Z

307

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE VALUES FOR SEVERAL WINDOW DESIGNS XBL 796-10098IN MINNEAPOLIS AS A FUNCTION OF WINDOW AREA AND GLAZING/Thermal Performance of Insulating Window Systems Stephen E.

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

308

Performance Criteria for Residential Zero Energy Windows  

E-Print Network (OSTI)

building with no windows) Figure 3 – Washington DC: Lines ofbuilding with no windows) Figure 8 – Washington DC: Lines ofdynamic window. U-factor [W/(m^2-K)] Washington DC -

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

309

High Performance Solar Control Office Windows  

E-Print Network (OSTI)

Solar Control Office Windows William King December 1977 C'eSOLAR CONTROL OFFICE WINDOWS Wm. J. King KINETIC COATINGS,R. Berman. Consultation on window characteristics and aid in

King, William J.

2011-01-01T23:59:59.000Z

310

A Design Guide for Early-Market Electrochromic Windows  

SciTech Connect

Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

2006-05-01T23:59:59.000Z

311

Window Use in Mixed-Mode Buildings: A Literature Review  

E-Print Network (OSTI)

exhaust! functions! of! windows! Automated'operable'window'to! view8 level! windows. ! Multiwindow''Single'zone'air'conditioning' Window! or! wall! AC! units,!

Ackerly, Katie; Baker, Lindsay; Brager, Gail

2011-01-01T23:59:59.000Z

312

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

for your climate; additionally, the Window Selection Tool compares average simulated energy costs for your location based on various window types. The SHGC is the fraction of...

313

Windows 8 : Uudet ominaisuudet ja muutokset.  

E-Print Network (OSTI)

??Tämä opinnäytetyö esittelee Microsoft Windows 8 -käyttöjärjestelmän uusia ominaisuuksia ja parannuksia Microsoftin edellisiin käyttöjärjestelmiin. Opinnäytetyön tavoitteena on hahmottaa Windows 8 -käyttöjärjestelmän näkyvimpiä udistuksia ja sitä,… (more)

Ylioja, Ilkka-Aleksi

2013-01-01T23:59:59.000Z

314

Brand Font Installation Guide Windows XP  

E-Print Network (OSTI)

Brand Font Installation Guide Windows XP Before starting ­ make sure to the specific font folder ­ when Windows detects installable font files, they will show

Stuart, Steven J.

315

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Frame Types - Metal Frames Metal Frames Aluminum Aluminum window frames are light, strong, durable, and easily extruded into the complex shapes required for window parts. Aluminum...

316

TMS PostScript Instruction: Microsoft Windows  

Science Conference Proceedings (OSTI)

Please note that these instructions were built using Microsoft Windows 2000 ... This guide is designed to help authors using the Windows operating system to ...

317

High Performance Windows Volume Purchase: For Builders  

NLE Websites -- All DOE Office Websites (Extended Search)

For Builders to someone by E-mail Share High Performance Windows Volume Purchase: For Builders on Facebook Tweet about High Performance Windows Volume Purchase: For Builders on...

318

High Performance Windows Volume Purchase: For Manufacturers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Manufacturers to someone by E-mail Share High Performance Windows Volume Purchase: For Manufacturers on Facebook Tweet about High Performance Windows Volume Purchase: For...

319

High Performance Windows Volume Purchase: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events to someone by E-mail Share High Performance Windows Volume Purchase: Events on Facebook Tweet about High Performance Windows Volume Purchase: Events on Twitter Bookmark High...

320

VisVIP: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... The Windows version of VisVIP comes with three sets of sample data, which ... sites using the "Load Site" button at the bottom of the control window. ...

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High Performance Windows Volume Purchase: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by E-mail Share High Performance Windows Volume Purchase: News on Facebook Tweet about High Performance Windows Volume Purchase: News on Twitter Bookmark High...

322

Performance Criteria for Residential Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria for Residential Zero Energy Windows Title Performance Criteria for Residential Zero Energy Windows Publication Type Conference Paper LBNL Report Number...

323

Tips: Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select...

324

Window Programming in DFKI Oz  

E-Print Network (OSTI)

This paper describes how to do window programming in DFKI Oz. The DFKI Oz window interface is based on the Tk toolkit which in turn is based on the script language Tcl. It provides a high level abstraction of Tk widgets allowing for objectoriented and concurrent window programming. A generic translation scheme from Oz values to Tcl/Tk commands provides for minimality and flexibility on the Oz side. The Tcl/Tk interface is implemented in Oz using the open programming facilities and is an example of how to connect an external and sequential agent to Oz. Contents 1 Introduction 1 2 Crash Course to Window Programming 3 2.1 Widget creation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Widget hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Tickles and Tcl/Tk commands : : : : : : : : : : : : : : : : : : : : : 5 2.4 Geometry management : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2.5 Invoking widget commands : : : : : : : : : : : : ...

Michael Mehl

1995-01-01T23:59:59.000Z

325

Thermal insulation of window glass  

SciTech Connect

The thermal insulation of window glass can be increased by a factor of two using spray-on semiconductive SnO/sub 2/: Sb or IN/sub 2/O/sub 3/: Sn coatings. (auth)

Sievers, A.J.

1973-11-01T23:59:59.000Z

326

LBNL Windows & Daylighting Software -- THERM  

NLE Websites -- All DOE Office Websites (Extended Search)

a problem with the software) Documentation Future Work Tutorials Two-Dimensional Building Heat-Transfer Modeling THERM is a state-of-the-art, Microsoft Windows-based computer...

327

----Google File System Windows IT  

E-Print Network (OSTI)

Essential ---- Google File System web Windows IT Google IT Google Google File System Google File System Datebase Google Google " " Goolge Goolge Google Google Goolge Google ()(,) Google ...... Google IT Google Google Google Google Google "Google " Google 10

328

Building Mathematics via Theorem Windows  

E-Print Network (OSTI)

Quantum mechanical model with singularities triplets is condisered. How life functions via mechanism which is built from what we call theorem windows we are trying to imagine and to model. Key words: singularities, quantum mechanics, life, reference system of life

Dainis Zeps

2009-01-01T23:59:59.000Z

329

Window-closing safety system  

DOE Patents (OSTI)

A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

McEwan, T.E.

1997-08-26T23:59:59.000Z

330

Window-closing safety system  

DOE Patents (OSTI)

A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

McEwan, Thomas E. (Livermore, CA)

1997-01-01T23:59:59.000Z

331

Atmospheric Pressure Deposition for Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

332

Atmospheric Pressure Deposition for Electrochromic Windows  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

333

Closing the light gluino window  

E-Print Network (OSTI)

The running of the strong coupling constant, $R_{e^+e^-},R_Z$ and $R_\\tau$ is studied on the three-loop level. Based on experimental data of $R_{e^+e^-},R_Z$ and $R_\\tau$ and the LEP multijet analysis, the light gluino scenario is excluded to 99.97% CL (window I) and 99.89% CL (window III).

Ferenc Csikor; Zoltan Fodor

1997-12-04T23:59:59.000Z

334

Market Transformation Efforts for Residential Energy-Efficient Windows: An Update of National Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformation Efforts for Residential Energy Efficient Windows: Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Alecia Ward, Alliance to Save Energy Margaret Suozzo, American Council for an Energy Efficient Economy Joseph Eto, Lawrence Berkeley National Laboratory ABSTRACT With the burst of recent initiatives to accelerate adoption of energy-efficient fenestration technologies in the marketplace, an update on window market transformation efforts is needed. Because of the impact of glazing on total home energy performance, the residential window market has received increasing attention over the past two years. National programs such as the ENERGY STAR Windows program, the Efficient Windows Collaborative, and regional initiatives such as the California Windows Initiative and the

335

Energy Efficient Electrochromic Windows Incorporating Ionic Liquids  

SciTech Connect

One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

2008-11-30T23:59:59.000Z

336

Importance-driven compositing window management  

E-Print Network (OSTI)

In this paper we present importance-driven compositing window management, which considers windows not only as basic rectangular shapes but also integrates the importance of the windows ’ content using a bottom-up visual attention model. Based on this information, importance-driven compositing optimizes the spatial window layout for maximum visibility and interactivity of occluded content in combination with see-through windows. We employ this technique for emerging window manager functions to minimize information overlap caused by popping up windows or floating toolbars and to improve the access to occluded window content. An initial user study indicates that our technique provides a more effective and satisfactory access to occluded information than the well-adopted Alt+Tab window switching technique and see-through windows without optimized spatial layout. Author Keywords compositing window management, visual saliency, space

Manuela Waldner; Markus Steinberger; Raphael Grasset; Dieter Schmalstieg

2011-01-01T23:59:59.000Z

337

Windows Enterprise Design Master Directory Sources  

E-Print Network (OSTI)

Windows Enterprise Design Master Directory Sources September 29, 2003 Active Directory information for Windows users contains several pieces of information to identify the person associated with a Windows in Windows Active Directory. It is important the information correctly reflects your current name

Simpkins, William W.

338

UConnect Wireless Connection Windows 7 Configuration  

E-Print Network (OSTI)

UConnect Wireless Connection Windows 7 Configuration page 1 revised February, 2012 Configuring a UConnect Wireless Connection on Windows 7 1. Open the Network and Sharing Center a. Click the Windows icon screen, select Network and Sharing Center. #12;UConnect Wireless Connection Windows 7 Configuration page

Provancher, William

339

User Experience Design Guidelines for Windows Phone  

E-Print Network (OSTI)

User Experience Design Guidelines for Windows Phone The UI Design and Interaction Guide for Windows superseded by the User Experience Design Guidelines for Windows Phone on MSDN ® . There are six parts to the new guidelines: 1. The Windows Phone Platform: Takes a brief look at the types of applications

Narasayya, Vivek

340

Windows Server AppFabric provides  

E-Print Network (OSTI)

Windows Server AppFabric provides benefits in three key areas: Faster Web Apps Windows Server App that works with current ASP.Net applications. Simplified Composite Apps Windows Server AppFabric simplifies (benefits often associated with the cloud) with the help of Windows Server AppFabric. These, and countless

Narasayya, Vivek

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Repair Existing Windows Repair Existing Windows Lead Paint and Window Replacement: Challenges and Opportunities In older homes, windows are a likely source of lead contamination in homes. Dust from lead paint can create serious health problems, especially in young children. While window replacement can increase lead dust during renovation, it can also permanently eliminate lead hazards by removing lead-painted windows. Download fact sheet» A variety of options exist for improving the energy-efficiency of your existing windows. Before investing in these options, check your windows for potential issues that may call for replacement instead: Moisture and mold between window frame and wall: If water and water vapors are allowed to penetrate around the window frame, the moisture can

342

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: Air Leakage (AL) Measuring Performance: Air Leakage (AL) Is my window leaking air? The Air Leakage (AL) rating pertains to leakage through the window assembly itself. Air infiltration can also occur around the frame of the window due to poor installation or poor maintenance of existing window systems. Make sure windows are properly installed and maintained (caulking and weatherstripping). Cold glass can create uncomfortable drafts as air next to the window is cooled and drops to the floor. This is not a result of air leaking through or around the window assembly but from a convective loop created when next to a window is cooled and drops to the floor. This air movement can be avoided by installing high-performance windows. Heat loss and gain occur by infiltration through cracks in the window

343

Building Technologies Office: Emerging Technologies Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

344

3.4 Timeline Zoomable Window  

NLE Websites -- All DOE Office Websites (Extended Search)

.1 Zoomable and Scrollable Up: 3. Graphical User Interface .1 Zoomable and Scrollable Up: 3. Graphical User Interface Previous: 3.3 Legend Window Contents 3.4 Timeline Zoomable Window Figure 3.10: Initial display of the Timeline window of a 514 MB 16-process slog2 file with default preview resolution. Image timeline_popup Most of the advanced features in the SLOG-2 viewer are provided through a zoomable window. Jumpshot-4 has two zoomable windows: Timeline and Histogram. Figure 3.10 is the initial display of the Timeline window of a half-gigabyte 16-timeline slog2 file. The zoomable window consists of several concealable and removable components. In the center of the window is the zoomable and scrollable canvas. For the Timeline window, the center canvas is called the timeline canvas. Directly on top of the zoomable

345

Energy-Efficient Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

346

Energy-Efficient Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

347

Windowed versus windowless solar energy cavity receivers  

DOE Green Energy (OSTI)

A model for a windowed, high-temperature cavity receiver of the heated-air type is developed and used to evaluate the greenhouse effect as a method for obtaining high receiver operating efficiencies. The effects on receiver efficiency of varying the window cutoff wavelength, the amount of absorption in the window pass-band, the cavity operating temperature, and the number of windows are determined. Single windowed cavities are found to offer theoretical efficiencies comparable to windowless ones, while multiple windowed units are found to suffer from low operating efficiencies due to losses resulting from reflections at each window/air interface. A ''first order'' examination is made of the feasibility of air cooling the window to assure its survival. This appears possible if a proper combination of cooling technique and window material characteristics is selected.

Jarvinen, P. O.

1976-09-01T23:59:59.000Z

348

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits of Efficient Windows Benefits of Efficient Windows Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation Energy & Cost Savings Energy efficient windows can substantially reduce the costs associated with heating and cooling. This section on Energy & Cost Savings illustrates these savings in both heating and cooling climates. Energy Savings Lower HVAC Costs High-performance windows not only provide reduced annual heating and cooling bills, they also reduce the peak heating and cooling loads. This section on Lower HVAC Cost illustrates how the use of high performance windows can help in reducing HVAC equipment sizing.

349

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Window Replacement Options Assessing Window Replacement Options What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Performance Standards Energy Rating Programs Building America Program Documents Measure Guideline: Energy-Efficient Window Performance and Selection exit disclaimer Measure Guideline: Wood Window Repair, Rehabilitation, and Replacement exit disclaimer Whether you would like to improve the energy performance of your existing windows or replace them with new energy-efficient windows, several options are available. An energy audit can help you identify good strategies for more efficient windows and a more efficient house. Whichever energy efficiency measures you consider, the federal government as well as state, local, and utility programs may offer financing help or weatherization assistance.

350

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows for New Construction Windows for New Construction Window Selection Tool Use the Window Selection Tool for new construction to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Window Selection Process This section provides step-by-step guidance on the window selection process for new construction windows including issues of code, energy, durability, and installation. Design Guidance This section provides Design Guides that examine the energy use impacts of new windows for homes in hot, mixed and cold climates. They show the the impact of orientation, window area, and shading. The energy use has been calculated for various window design variations including 5 orientations (equal, north, east, south, and west), 3 glazing areas, 20 glazing types, and 5 shading conditions.

351

Paradox 7 for Windows 95  

Science Conference Proceedings (OSTI)

From the Publisher:Appropriate for either self-paced or group learning, this book provides an excellent way to learn Paradox 7.0 in a short period of time. The text/template package covers the most commonly used features of Paradox 7 for Windows 95.

Betsy Newberry

1997-05-01T23:59:59.000Z

352

Translucent patches—dissolving windows  

Science Conference Proceedings (OSTI)

This paper presents motivation, design, and algorithms for using and implementing translucent, non-rectangular patches as a substitute for rectangular opaque windows. The underlying metaphor is closer to a mix between the architects yellow paper and ... Keywords: interaction techniques, interface metaphors, irregular shapes, pen based interfaces, translucency

Axel Kramer

1994-11-01T23:59:59.000Z

353

High Performance Windows Volume Purchase: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources to someone by E-mail Share High Performance Windows Volume Purchase: Information Resources on Facebook Tweet about High Performance Windows Volume Purchase: Information Resources on Twitter Bookmark High Performance Windows Volume Purchase: Information Resources on Google Bookmark High Performance Windows Volume Purchase: Information Resources on Delicious Rank High Performance Windows Volume Purchase: Information Resources on Digg Find More places to share High Performance Windows Volume Purchase: Information Resources on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Information Resources Numerous publications will be available to help educate buyers, product

354

Measured winter performance of storm windows  

SciTech Connect

Direct comparison measurements were made between various prime/storm window combinations and a well-weatherstripped, single-hung replacement window with a low-E selective glazing. Measurements were made using an accurate outdoor calorimetric facility with the windows facing north. The doublehung prime window was made intentionally leaky. Nevertheless, heat flows due to air infiltration were found to be small, and performance of the prime/storm combinations was approximately what would be expected from calculations that neglect air infiltration. Prime/low-E storm window combinations performed very similarly to the replacement window. Interestingly, solar heat gain was not negligible, even in north-facing orientation.

Klems, Joseph H.

2002-08-23T23:59:59.000Z

355

LBNL Window & Daylighting Software -- RESFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS GET A COPY DOCUMENTATION KNOWLEDGE BASE Overview Today's energy-efficient windows can dramatically lower the heating and cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick the most efficient window for a residence. Product information typically offers window properties: U-factors or R-values, Solar Heat Gain Coefficients or Shading Coefficients, and air leakage rates. However, the relative importance of these properties depends on site- and building-specific conditions. Furthermore, these properties are based on static evaluation conditions that are very different from the real situation a window will be used in.

356

Window-Related Energy Consumption in the US Residential andCommercial Building Stock  

SciTech Connect

We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

Apte, Joshua; Arasteh, Dariush

2006-06-16T23:59:59.000Z

357

On diamond windows for high power synchrotron x-ray beams  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

Khounsary, A.M.; Kuzay, T.M.

1991-12-31T23:59:59.000Z

358

On diamond windows for high power synchrotron x-ray beams  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

Khounsary, A.M.; Kuzay, T.M.

1991-01-01T23:59:59.000Z

359

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

(6.3.9) (6.3.9) October 2010 Last Updated: 11/07/2010 Complex Glazing Features for WINDOW6 The Research Version of WINDOW 6 has the following modeling capabilities: Shading Layer Library: A Shading Layer Library has been added to define shading systems, such as venetian blinds and diffusing layers, which can then be added as layers in the Glazing System Library. Shade Material Library: A Shading Material Library has been added to define materials to be used in the Shading Layer Library. Properties defined in this library include shade material reflectance and absorptance (in the solar, visible and IR wavelengths ranges), as well as the conductivity of the material. Glazing System Library In the “Layers” section of the Glazing System definition, it is now possible to specify either a glass layer or a shading layer. The shading system is chosen from the Shading Layer Library.

360

The national energy requirements of residential windows in the U.S.: Today and tomorrow  

SciTech Connect

This paper describes an end-use analysis of the national energy requirements of US residential window technologies. The authors estimate that the current US stock of 19 billion square feet of residential windows is responsible for 1.7 quadrillion BTUs (or quads) per year of energy use--1.3 quads of heating and 0.4 quads of cooling energy--which represents about 2% of total US energy consumption. They show that national energy use due to windows could be reduced by 25% by the year 2010 through accelerated adoption of currently available, advanced window technologies such as low-e and solar control low-e coatings, vinyl and wood frames, and superwindows. The authors evaluate the economics of the technologies regionally, considering both climatic and energy price variations, and find that the technologies would be cost effective for most consumers.

Frost, K.; Eto, J.; Arasteh, D.; Yazdanian, M.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Question of the Week: What Have You Done to Improve Your Windows...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and get energy-saving tips with online tools | File photo Homeowners using smart technology to save energy, money This Month on Energy Savers: July 2011 Do You Have Windows...

362

A first-generation prototype dynamic residential window  

SciTech Connect

We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

2004-10-26T23:59:59.000Z

363

Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed  

SciTech Connect

Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to transform windows and skylights from an energy liability to an energy source for the nation's building stock. Monitored results from a full-scale demonstration of large-area electrochromic windows are given. The test consisted of two side-by-side, 3.7x4.6-m, office-like rooms. In each room, five 62x173-cm lower electrochromic windows and five 62x43-cm upper electrochromic windows formed a large window wall. The window-to-exterior-wall ratio (WWR) was 0.40. The southeast-facing electrochromic windows had an overall visible transmittance (Tv) range of Tv=0.11-0.38 and were integrated with a dimmable electric lighting system to provide constant work plane illuminance and to control direct sun. Daily lighting use from the automated electrochromic window system decreased by 6 to 24% compared to energy use with static, low-transmission (Tv =0.11), unshaded windows in overcast to cle ar sky winter conditions in Oakland, California. Daily lighting energy use increased as much as 13% compared to lighting energy use with static windows that had Tv=0.38. Even when lighting energy savings were not obtainable, the visual environment produced by the electrochromic windows, indicated by well-controlled window and room luminance levels, was significantly improved for computer-type tasks throughout the day compared to the visual environment with unshaded 38%-glazing. Cooling loads were not measured, but previous building energy simulations indicate that additional savings could be achieved. To ensure visual and thermal comfort, electrochromics require occasional use of interior or exterior shading systems when direct sun is present. Other recommendations to improve electrochromic materials and controls are noted along with some architectural constraints.

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

2000-04-01T23:59:59.000Z

364

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

365

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

366

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

367

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

368

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

369

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Sash Replacement Sash Replacement DIY Network: How to Install a Window Sash Replacement Kit The DIY Network experts show you how to remove the window sash from an old double-hung window and install a new energy-saving sash replacement kit: How to Install a Window Sash Replacement Kit exit disclaimer . Sash replacement may be an alternative to a full window replacement or an insert window into an existing frame. The physical condition of the existing window must be good-there should be no moisture or air leakage. An energy auditor or replacement contractor may help you determine if a sash replacement is a viable option based on your homes window and wall conditions. Many manufacturers offer replacement sash kits, which include jamb liners to ensure good operability and fit. This option allows for relatively easy

370

Measured winter performance of storm windows  

E-Print Network (OSTI)

or Prime/Storm Replacement Window Thermal Watts Solar WattsFactor and Solar Heat Gain Coefficient Prime or Prime/Stormdesigned interior storm window. ) Solar Heat Gain One does

Klems, Joseph H.

2002-01-01T23:59:59.000Z

371

RUGGED CERAMIC WINDOW FOR RF APPLICATIONS  

Science Conference Proceedings (OSTI)

High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

MIKE NEUBAUER

2012-11-01T23:59:59.000Z

372

An analysis of residential window waterproofing systems  

E-Print Network (OSTI)

The prevalence of vinyl nail-on windows in the North American new home construction market has prompted ASTM International to write ASTM E2112-01 "Standard Practice for Installation of Exterior Windows, Doors and Skylights". ...

Parsons, Austin, 1959-

2004-01-01T23:59:59.000Z

373

Linux-käyttäjä Windows-aktiivihakemistossa.  

E-Print Network (OSTI)

??Tämän työn tarkoituksena oli tutkia ja toteuttaa Linux-käyttöjärjestelmästä kirjautumista Windows-aktiivihakemistoon. Tämä saavutettiin luomalla aktiivihakemiston toimialueeseen käyttäjä, jonka oli tarkoitus pystyä kirjautumaan sekä Windows- että Linux-käyttöjärjestelmistä… (more)

Metsäjoki, Kari

2008-01-01T23:59:59.000Z

374

Windows Phone abonento steb?jimo sistema.  

E-Print Network (OSTI)

??Magistro darbe nagrin?jamos šiuolaikin?s „Microsoft“ kompanijos sukurtos technologijos: operacin?s sistemos, skirtos mobiliems ?renginiams – „Windows Phone 7“ ir „Windows Mobile 6“, program? k?rimas, remiantis „Silverlight“… (more)

Krav?enko,; Andrej

2011-01-01T23:59:59.000Z

375

GPS Meteorology: Sliding-Window Analysis  

Science Conference Proceedings (OSTI)

The sliding-window technique uses a moving time window to select GPS data for processing. This makes it possible to routinely incorporate the most recently collected data and generate estimates for atmospheric delay or precipitable water in (near)...

James Foster; Michael Bevis; Steven Businger

2005-06-01T23:59:59.000Z

376

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylight and view are two of the fundamental attributes of a window. Unfortunately, windows can also be the source of significant solar heat gain during times when it is...

377

INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS  

SciTech Connect

The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

Michael Arney, Ph.D.

2002-12-31T23:59:59.000Z

378

Experimental observation of a complex periodic window  

E-Print Network (OSTI)

The existence of a special periodic window in the two-dimensional parameter space of an experimental Chua's circuit is reported. One of the main reasons that makes such a window special is that the observation of one implies that other similar periodic windows must exist for other parameter values. However, such a window has never been experimentally observed, since its size in parameter space decreases exponentially with the period of the periodic attractor. This property imposes clear limitations for its experimental detection.

D. M. Maranhão; M. S. Baptista; J. C. Sartorelli; I. L. Caldas

2007-12-22T23:59:59.000Z

379

WebCAT: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... WebCAT. Note: Windows ME does not ship with a webserver; Apache can be installed. Download and Install, Download ...

380

Neutrinos: Windows to New Physics  

E-Print Network (OSTI)

After briefly reviewing how the symmetries of the Standard Model (SM) are affected by neutrino masses and mixings, I discuss how these parameters may arise from GUTs and how patterns in the neutrino sector may reflect some underlying family symmetry. Leptogenesis provides a nice example of how different physical phenomena may be connected to the same neutrino window of physics beyond the SM. I end with some comments on the LSND signal and briefly discuss the idea that neutrinos have environment dependent masses.

R. D. Peccei

2006-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stanek Windows | Open Energy Information  

Open Energy Info (EERE)

Stanek Windows Stanek Windows Jump to: navigation, search Name Stanek Windows Address 4565 Willow Parkway Place Cuyahoga Heights, Ohio Zip 44125 Sector Buildings, Efficiency Product Consulting; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution;Trainining and education Phone number 216-341-7700 Website http://www.stanekwindows.com Coordinates 41.435755°, -81.650183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.435755,"lon":-81.650183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Window selection: problems and promise of glass  

SciTech Connect

In the past few years, technical innovations in glass and window design have made windows more energy efficient, reducing energy costs and increasing the comfort levels in buildings. These innovations make it possible for occupants to enjoy the benefits of real windows while enabling owners and managers to lower overall operating costs. 1 figure, 1 table.

1986-04-01T23:59:59.000Z

383

700 MHz window R & D at LBNL  

E-Print Network (OSTI)

foil ($1036.5/150", 3 windows) 1. Measure ceramic and keeperCBP tech note 230 700 MHz Window R&D at LBNL R. Rimmer, G.001-99 2A "700 MHz RF Window" from LANL. The Conceptual

Rimmer, R.A.; Koehler, G.; Saleh, T.; Weidenbach, R.

2000-01-01T23:59:59.000Z

384

Manahmen fr MS Windows Betriebssysteme Gerd Hofmann  

E-Print Network (OSTI)

Ma�nahmen für MS Windows Betriebssysteme Gerd Hofmann IT-Sicherheitsforum - Betriebssystemsicherheit 24. Juni 2004 #12;24.06.04 gerd.hofmann@rrze.uni-erlangen.de 2Windows Sicherheit Vorstellung Gerd-85-28920 RRZE: Raum RZ 2.013 #12;24.06.04 gerd.hofmann@rrze.uni-erlangen.de 3Windows Sicherheit Inhaltsliste

Fiebig, Peter

385

Dell recommends Windows 7. Colorado State University  

E-Print Network (OSTI)

Dell recommends Windows® 7. Print Page Colorado State University E-quote Number: 1005723185631 E Dell Latitude E6520 - Fully Customizable Qty 1 Latitude E6520, Genuine Windows® 7 Professional Latitude E6520 Latitude E6520 Operating Systems Genuine Windows® 7 Professional, No Media, 64- bit, English

386

Focus Windows: A Tool for Automated Provers ?  

E-Print Network (OSTI)

Focus Windows: A Tool for Automated Provers ? Florina Piroi Research Institute For Symbolic or understand the validity of a particular step. Focus windows were #12;rst introduced as a technique for proof the implementation and the use of the focus windows technique in the frame of the Theorema system [3]. One

387

Computing & Communications WIRELESS SETUP FOR WINDOWS 7  

E-Print Network (OSTI)

Computing & Communications WIRELESS SETUP FOR WINDOWS 7 For assistance during the configuration access to the WLAN and have laptops and desktops which use the Windows 7 operating system. It is provided. Requirements: A laptop with Windows 7 operating system with latest service pack and patches applied. A wireless

Warkentin, Ian G.

388

Windows Server 2008 R2 Licensing Guide  

E-Print Network (OSTI)

Windows Server 2008 R2 Licensing Guide m Your Comprehensive Resource for Licensing and Pricing #12;2 Table of Contents Summary 3 Table of Windows Server 2008 R2 Core Product Offerings 3 License Terms ­ Windows Server 2008 R2 Product Line Updates 4 Edition Comparison by Server Role 5 New and Updated Features

Narasayya, Vivek

389

A Host Intrusion Prevention System for Windows Operating Systems  

Science Conference Proceedings (OSTI)

this technique to Windows OS, also because Windows kernel structures ... vention System (HIPS) for Windows OS that immediately detects security rules.

390

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

This attachment, “Advancement of Electrochromic Windows:attachments to the “Advancement of Electrochromic Windows:attachment to the final report for the Advancement of Electrochromic Windows

2006-01-01T23:59:59.000Z

391

BREWSTER WINDOW AND WINDOWLESS RESONANT SPECTROPHONES FOR INTRACAVITY OPERATION  

E-Print Network (OSTI)

to 6 KHz measured with windows attached. Variation of thethe spectrophone is operated with windows. Table IV. Factorsto Applied Physics BREWSTER WINDOW AND WINDOWLESS RESONANT

Gerlach, Robert

2012-01-01T23:59:59.000Z

392

Evolution of the Thrombolytic Treatment Window for Acute Ischemic Stroke  

E-Print Network (OSTI)

is the ultimate goal, regardless of an expanded time window.the Thrombolytic Treatment Window for Acute Ischemic Strokefor treatment in this time window. Expanding the time for

Stemer, Andrew; Lyden, Patrick

2010-01-01T23:59:59.000Z

393

A first-generation prototype dynamic residential window  

E-Print Network (OSTI)

Prototype Dynamic Residential Window Christian Kohler, HowdyGoudey, and Dariush Arasteh Windows and Daylighting Grouphighly efficient dynamic window that maximizes solar heat

Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

2004-01-01T23:59:59.000Z

394

Window signalling systems: control strategies and occupant behaviour  

E-Print Network (OSTI)

Occupant response to window control signaling systems (CBEDaly, A. (2002). Operable windows and HVAC systems. HPACK. (2008). The use of windows as controls for indoor

Ackerly, Katie; Brager, Gail

2013-01-01T23:59:59.000Z

395

THE MOBILE WINDOW THERMAL TEST FACILITY (MoWiTT)  

E-Print Network (OSTI)

December 3-5, 1979 THE MOBILE WINDOW THERMAL TEST FACILITY (Orlando, Florida. The Mobile Window Thermal Test Facility (Press, 197 . THE NOBILE WINDOW THERMAL TEST FACILITY (

Klems, J. H.

2011-01-01T23:59:59.000Z

396

Microsoft Windows Server 2003 security enhancements and new features .  

E-Print Network (OSTI)

??The purpose of this thesis is to discuss the new features and enhancements of Windows Server 2003. Windows NT and Windows 2000 were known to… (more)

Montehermoso, Ronald Centeno.

2004-01-01T23:59:59.000Z

397

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

T. Wilmert. 2004. Window Systems for High Performanceof electrochromic windows: a pilot study”, Building andfor an Electrochromic Window Wall Attached are curtainwall

2006-01-01T23:59:59.000Z

398

Modeling Windows in Energy Plus with Simple Performance Indices  

E-Print Network (OSTI)

Modeling Windows in Energy Plus with Simple Performanceof California. Modeling Windows in Energy Plus with SimpleE+), cannot use standard window performance indices (U,

Arasteh, Dariush

2010-01-01T23:59:59.000Z

399

EMasticWindows: improvedSpatial Layoutand Rapid MuRipmeWindow Operations  

E-Print Network (OSTI)

Symposium of the Washington, DC Chapter of the ACM, (1991), pp. t21-131. 16. Malone, T. W., How do peopleEMasticWindows: improvedSpatial Layoutand Rapid MuRipmeWindow Operations Eser Kandogan Department)405-2680 ben@cs.umd.edu ABSTRACT Most windowing systems follow the independent overlap- ping windows approach

Shneiderman, Ben

400

Environmental WindowsEnvironmental Windows Real Problems and PotentialReal Problems and Potential  

E-Print Network (OSTI)

Environmental WindowsEnvironmental Windows Real Problems and PotentialReal Problems and Potential Window - a period during which dredging may occur Seasonal Restriction - a period during which dredging and effective management guidelines such as dredging windows..." #12;Schubel et al. 1979. A conceptual framework

US Army Corps of Engineers

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Purged window apparatus utilizing heated purge gas  

DOE Patents (OSTI)

A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

Ballard, Evan O. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

402

Rigid thin windows for vacuum applications  

DOE Patents (OSTI)

A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

Meyer, Glenn Allyn (Danville, CA); Ciarlo, Dino R. (Livermore, CA); Myers, Booth Richard (Livermore, CA); Chen, Hao-Lin (Lafayette, CA); Wakalopulos, George (Pacific Palisades, CA)

1999-01-01T23:59:59.000Z

403

Window-Related Energy Consumption in the US Residential and Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Window-Related Energy Consumption in the US Residential and Commercial Window-Related Energy Consumption in the US Residential and Commercial Building Stock Title Window-Related Energy Consumption in the US Residential and Commercial Building Stock Publication Type Report LBNL Report Number LBNL-60146 Year of Publication 2006 Authors Apte, Joshua S., and Dariush K. Arasteh Call Number LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

404

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

405

High Performance Windows Volume Purchase: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to Contacts to someone by E-mail Share High Performance Windows Volume Purchase: Contacts on Facebook Tweet about High Performance Windows Volume Purchase: Contacts on Twitter Bookmark High Performance Windows Volume Purchase: Contacts on Google Bookmark High Performance Windows Volume Purchase: Contacts on Delicious Rank High Performance Windows Volume Purchase: Contacts on Digg Find More places to share High Performance Windows Volume Purchase: Contacts on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Contacts Web site and High Performance Windows Volume Purchase Program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about

406

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Selection Process for New Windows Selection Process for New Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Meet the Energy Code and Look for the ENERGY STAR® Windows must meet the locally applicable energy code requirements. Windows that are ENERGY STAR qualified typically meet or exceed energy code requirements. A home's climate and location determine the relative importance of heating and cooling energy use, the applicable building energy code requirements, and the qualification criteria for ENERGY STAR windows. ENERGY STAR

407

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Standards Performance Standards Even the expert eye cannot easily tell an efficient window from a conventional window. That is why energy ratings, endorsement programs and consumer incentives play an important role in creating awareness for window energy efficiency among consumers, builders, architects and performance standard programs. Learn about NFRC certification and labeling Learn about ENERGY STAR® for windows, doors and skylights High Performance Windows and Low-E Storm Windows Volume Purchase Program Utility and State Incentives for energy efficiency improvements Building Codes Most locations have building energy codes that mandate minimum performance levels for windows, doors, and skylights. The builder, contractor or homeowner must adhere to the code requirements, which typically cover

408

Stereo matching via selective multiple windows  

E-Print Network (OSTI)

Window-based correlation algorithms are widely used for stereo matching due to their computational efficiency as compared to global algorithms. In this paper, a multiple window correlation algorithm for stereo matching is presented which addresses the problems associated with a fixed window size. The developed algorithm differs from the previous multiple window algorithms by introducing a reliability test to select the most reliable window among multiple windows of increasing sizes. This ensures that at least one window is large enough to cover a region of adequate intensity variations while at the same time small enough to cover a constant depth region. A recursive computation procedure is also used to allow a computationally efficient implementation of the algorithm. The outcome obtained from a standard set of images with known disparity maps shows that the generated disparity maps are more accurate as compared to two popular stereo matching local algorithms.

Satyajit Anil Adhyapak; Nasser Kehtarnavaz; Mihai Nadin

2007-01-01T23:59:59.000Z

409

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Ensure Proper Installation of New Windows Ensure Proper Installation of New Windows Information Regarding Lead-based Hazards Comprehensive information about lead paint exit disclaimer by U.S. EPA Literature ASTM E 2112, "Standard Practice for Installation of Exterior Windows, Doors and Skylights." www.astm.org exit disclaimer Water Management Guide, Joseph W. Lstiburek, Energy & Environmental Building Association. www.eeba.org exit disclaimer Proper installation is necessary for optimal window performance, to ensure an airtight fit and avoid water leakage. Always follow manufacturers installation guidelines and use trained professionals for window installation. The Importance of Quality Window Installation Quite simply, windows are only as good as their installation. Proper installation will:

410

Field Evaluation of Low-E Storm Windows  

E-Print Network (OSTI)

EVALUATION OF LOW-E STORM WINDOWS By S. Craig Drumheller-performance of low emittance (low-e) storm windows with bothstandard clear storm windows and no storm windows was

Drumheller, S. Craig

2009-01-01T23:59:59.000Z

411

Hunting for the Conformal Window  

E-Print Network (OSTI)

Undeniably, the imminent activity of LHC and the quest for the nature of physics beyond the standard model have raised renewed interest in the conformal and quasi-conformal behaviour of gauge field theories with matter content. Theoretically driven questions seem to now acquire a strong experimental appeal and might guide us towards a more realistic string theory to field theory connection, originally inspired by the AdS/CFT conjecture. In this brief report, we discuss the state of the art of our search for the conformal window in the SU(3) colour-gauge theory with fermions in the fundamental representation.

A. Deuzeman; M. P. Lombardo; E. Pallante

2008-10-17T23:59:59.000Z

412

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...

413

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

414

Laser sealed evacuated window glazings  

SciTech Connect

The design and fabrication of a highly insulating, evacuated window glazing have been investigated. A thermal network model has been used to parametrically predict the thermal performance of such a window. Achievable design, options are predicted to provide a glazing with a thermal conductance less than 0.6 W/m/sup 2/K (R > 10/sup 0/F ft/sup 2/ h/Btu) which is compact, lightweight, and durable. A CO/sub 2/ laser has been used to produce a continuous, leak tight, welded glass perimeter seal around 25 x 25 cm/sup 2/ test specimens. Various diameters of regularly spaced spherical support spacers were incorporated in the specimens as well as an integral SnO/sub 2/:F transparent, low emissivity coating for suppression of radiative heat transfer. Laser sealing rates of .06 cm/s were achieved at a 580/sup 0/C glass working temperature with 400 W of continuous wave (CW) laser power.

Benson, D.K.; Tracy, C.E.; Jorgensen, G.J.

1984-10-01T23:59:59.000Z

415

Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond`s performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows.

Khounsary, A.M. [Argonne National Lab., IL (United States); Phillips, W. [Crystallume, Menlo Park, CA (United States)

1992-12-01T23:59:59.000Z

416

Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows.

Khounsary, A.M. (Argonne National Lab., IL (United States)); Phillips, W. (Crystallume, Menlo Park, CA (United States))

1992-01-01T23:59:59.000Z

417

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

418

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Guidance for Replacement Windows Design Guidance for Replacement Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

419

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance on Window Durability Guidance on Window Durability There is no simple rating or absolute guarantee of the durability of a window. You may want to study the design and workmanship of the window and rely on recommendations from others who have used similar products. The advice of experienced architects and builders can be helpful. As with other products, warranties can be an indicator of the reliability of the window and its manufacturer. Durability may vary with location; for example, some materials are degraded by salt near the ocean. These aspects of window durability deserve special attention: frame and sashes; insulating glass seals; weatherstripping; and local requirements for structural integrity. Frame and Sashes Although design and workmanship may be the most important factors

420

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing & Incentives Financing & Incentives Financing or incentive programs may be available to you if: You intend to replace old windows with high-performance, energy efficient windows. You plan to build a new home with windows that keep energy costs low and provide for a comfortable interior. If you are looking for utility programs within your state that can help you finance such an investment in efficient windows, download an overview of utility and state programs. Incentives and Rebates for Energy-Efficient Windows Offered through Utility and State Programs Utility and State Incentives We have provided an overview of utility and state programs that can help you as a resident, building owner, or builder to finance improvements in window energy efficiency. Download an overview of utility and state

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: ENERGY STAR® Windows Measuring Performance: ENERGY STAR® Windows Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. View the criteria for windows for the ENERGY STAR Most Efficient Program. Energy Star Most Efficient Program The Department of Energy (DOE) and the Environmental Protection Agency (EPA) have developed an ENERGY STAR exit disclaimer designation for products meeting certain energy performance criteria. Windows that have the ENERGY STAR designation will be labeled showing the zones in which it is qualified. Since energy efficient performance of windows, doors, and skylights varies by climate, product recommendations are given for four U.S. climate zones. For making comparisons among ENERGY STAR products, use the NFRC label or

422

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fresh Air Fresh Air Windows provide the primary means to control air flow in most homes. People open windows to provide fresh air, ventilate odors and smoke, dissipate heat and moisture, and create air movement on hot days. While exhaust fans and central air systems can mechanically ventilate a room, opening a room to the outdoors is perceived as more direct and natural. Guidelines for Providing Fresh Air Place operable windows in all rooms to give occupants opportunity for fresh air. Provide cross-ventilation by placing window openings on opposite walls in line with the prevailing winds. Use casement windows to direct and control ventilation. Use operable skylights or roof windows to enhance ventilation. Use landscape elements to direct breezes. In order to ensure that all residences have access to the healthful aspects

423

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Guidance for New Windows Design Guidance for New Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

424

Building Energy Software Tools Directory: Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Window WINDOW screenshot. Calculates thermal performance of fenestration products; heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). Screen Shots Keywords fenestration, thermal performance, solar optical characteristics, windows, glazing Validation/Testing N/A Expertise Required Some knowledge about windows. Users 2000+ in the U.S. and abroad. Audience Manufacturers, engineers, architects, researchers, sales personnel. Input Interactive program: user-provided data files for frames (from the THERM program) and glazing layers (from the Optics program) optional. Output Reports for the total window can be saved to disk or printed; files can be generated to be used as input to the DOE-2 and EnergyPlus programs;

425

Hybrid window layer for photovoltaic cells  

DOE Patents (OSTI)

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Syvania, OH)

2010-02-23T23:59:59.000Z

426

Hybrid window layer for photovoltaic cells  

DOE Patents (OSTI)

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Sylvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

2011-02-01T23:59:59.000Z

427

Modeling window optics for building energy analysis  

SciTech Connect

This report discusses modeling the optics of windows for the purposes of simulating building energy requirements or daylighting availability. The theory for calculating the optical performance of conventional windows is reviewed. The simplifications that might commonly be made in creating computational models are analyzed. Some of the possibilities for more complex windows are analyzed, and the type of model and data that would be necessary to simulate such windows in a building energy analysis program are determined. It is shown that the optical performance of different window types can be simulated with models which require varying amounts of memory or computing time. It is recommended that a building energy analysis program have all models available and use the most efficient for any given window.

Walton, G.N.

1986-07-01T23:59:59.000Z

428

Hybrid window layer for photovoltaic cells  

SciTech Connect

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Syvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

2011-10-04T23:59:59.000Z

429

Analysis of surface contaminants on beryllium windows  

SciTech Connect

It is known that various crystalline and liquid compounds form on the downstream surfaces of beryllium windows exposed to air. It is also known that the integrity of such windows may be compromised resulting in leaks through the window. The purpose of this report is to document the occurrences described as they pertain to the NSLS and to analyze, where possible, the various substances formed.

Gmur, N.F.

1986-12-01T23:59:59.000Z

430

Window Design and Enhancement using Chebyshev.  

E-Print Network (OSTI)

??This paper presents a new and versatile framework to window design based on a semi-infinite linear programming approach by using the Dual Nestled Complex Approximation… (more)

Tran, To; Dahl, Mattias; Claesson, Ingvar

2004-01-01T23:59:59.000Z

431

The Key to Unlocking the Secret Window.  

E-Print Network (OSTI)

??David Koepp's Secret Window was released by Columbia Pictures in 2004. The film's score was written by Philip Glass and Geoff Zanelli. This thesis analyzes… (more)

McConnell, Sarah E.

2010-01-01T23:59:59.000Z

432

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

created by the window, door, and skylight industry. It is composed of manufacturers, suppliers, code officials, researchers, and government agencies. The NFRC has developed a...

433

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Membership Who are the EWC members? The EWC is made up of manufacturers, suppliers, and affiliates to the window industry Manufacturers: producers of whole fenestration products...

434

Window performance for human thermal comfort  

E-Print Network (OSTI)

Transfer through Windows”. ASHRAE Transactions 93, 1425 -1431. 3. ASHRAE Handbook – Fundamentals, 1997.ASHRAE Inc. 4. ASHRAE Standard 55-2004, Thermal

Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

2006-01-01T23:59:59.000Z

435

A New Kind of “Power Window”  

Science Conference Proceedings (OSTI)

Nov 5, 2010 ... The material could be used to develop transparent solar panels or even windows that absorb solar energy to generate electricity.

436

Contoured insulation window for evacuated solar collector  

SciTech Connect

An insulating contoured window is provided for use with an enclosed chamber such as an evacuated flat plate solar heat collector with the contoured solar window being of minimum thickness and supported solely about its peripheral edge portions. The window is contoured in both its longitudinal and transverse directions, such that in its longitudinal direction the window is composed of a plurality of sinusoidal corrugations whereas in its transverse direction the peaks of such corrugations are contoured in the form of paraboloids so that the structure may withstand the forces generated thereon by the atmosphere.

Coppola, F. T.; Lentz, W. P.; Vandewoestine, R. V.

1980-02-05T23:59:59.000Z

437

Wide Electrochemical Window Solvents - Energy Innovation Portal  

Biomass and Biofuels; ... This solvent has such a wide electrochemical window and such powerful solvating properties that it is an excellent target solvent ...

438

Manufacturing of diamond windows for synchrotron radiation  

Science Conference Proceedings (OSTI)

A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.

Schildkamp, W.; Nikitina, L. [Synchrotron ALBA, CELLS, Carretera BP 1413, km 3.3, 08290 Cerdanyola del Valles (Spain)

2012-09-15T23:59:59.000Z

439

Performance tests of large thin vacuum windows  

Science Conference Proceedings (OSTI)

Tests of thin composition vacuum windows of the type used for the Tagger in Hall B at the Thomas Jefferson National Accelerator Facility are described. Three different tests have been performed. These include: (1) measurement of the deformation and durability of a window under long term (>8 years) almost continuous vacuum load, (2) measurement of the deformation as a function of flexing of the window as it is cycled between vacuum and atmosphere, and (3) measurement of the relative diffusion rate of gas through a variety of thin window membranes.

Hall Crannell

2011-02-01T23:59:59.000Z

440

Windows Phone 7:n ja Androidin kommunikointi.  

E-Print Network (OSTI)

??Opinnäytetyössä tutkittiin älypuhelimien kommunikointia ja datan siirtoa. Älypuhelimet siirtävät tietoa palvelimen kautta toisille älypuhelimille, tämä mahdollistaa keskitetyn ja hallittavan tiedonsiirron. Opinnäytetyössä tutkittiin Windows Phone 7-… (more)

Vuolle, Jani

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High order Parzen windows and randomized sampling.  

E-Print Network (OSTI)

???In the thesis, high order Parzen windows are studied for understanding some algorithms in learning theory and randomized sampling in multivariate approximation. Our ideas are… (more)

Zhou, Xiangjun (???)

2009-01-01T23:59:59.000Z

442

Digital Windows: cause + effect between reality + virtuality.  

E-Print Network (OSTI)

??Digital Windows allow real people in the real world to interact with virtual objects in a virtual world through a direct relationship between real-space and… (more)

Sumsion, F

2007-01-01T23:59:59.000Z

443

3.2 Logfile Convertor Window  

NLE Websites -- All DOE Office Websites (Extended Search)

SLOG-2 file and close the window Since the Logfile Convertor launches a separate Java process to do the logfile conversion, it requires certain parameters to launch the...

444

WebCAT: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... Requirements, WebCAT can be installed on Windows systems running IIS, PWS, or Apache web servers and on Unix systems running Apache. ...

445

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Voluntary Test Method for Thermal Transmittance and Condensation Resistance of Windows, Doors and Glazed Wall Sections gives a dimensionless rating titled, Condensation...

446

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance Measuring Performance What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation U-factor The rate of heat loss is indicated in terms of the U-factor (U-value) of a window assembly. This section on U-factor describes what a U-factor is and it's importance in the heat loss through a window assembly. U-factor Solar Heat Gain Coefficient (SHGC) The SHGC is the fraction of incident solar radiation admitted through a window, both directly transmitted and absorbed and subsequently released inward. This section on Solar Heat Gain Coefficient describes what a SHGC is and it's importance in the amount of heat gain through a window assembly.

447

BT::Electrochromic Windows Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

spacer spacer spacer spacer Resources spacer Industry Contacts | CA Utility Contacts | R&D Organizations | Technical Reports | References | Acknowledgements | Project Team spacer Industry Contacts As of 2006, SAGE Electrochromics, Inc. is the only manufacturer in the U.S. selling electrochromic-coated glass units for building applications: Lou Podbelski SAGE Electrochromics, Inc. One Sage Way Faribault, MN 55021 (507) 331-4935 http://www.sage-ec.com/ SAGE's first market entry was to provide electrochromic coated glass to Velux for their switchable electrochromic skylight product line: electric venting skylights, fixed skylights, and fixed curb-mounted skylights in various rectangular sizes. They now market to a variety of window and curtain wall suppliers; contact SAGE for current supplier information.

448

Applicability of Solar Airflow Windows  

E-Print Network (OSTI)

Accurate prediction of the performance of Solar Air Windows (SAWs) operating in various climates under real conditions has not been investigated. This paper reports the results of numerical simulations of SAWs carried out using ANSYS-CFX considering real boundary conditions. In order to determine the feasibility of SAWs, their performance has been examined in two similar office buildings located at two different climates. Each building has 30% of its south facing wall covered with SAWs in the spandrel areas. The results of the numerical simulations of the SAW operating in supply mode in January indicated that that for an office building located in Ottawa, Canada, 6% of its ventilation load and 12% of its heating load could be supplied by SAWs during a sunny day. Operating in exhaust mode in June, SAWs could be used to provide about 14% of the ventilation load of the office building located in Dubai, UAE.

Hamed, M. S.; Friedrich, K.; Razaqpur, G.; Foo, S.

2010-01-01T23:59:59.000Z

449

Laser sealed vacuum insulating window  

DOE Patents (OSTI)

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, D.K.; Tracy, C.E.

1985-08-19T23:59:59.000Z

450

Laser sealed vacuum insulation window  

SciTech Connect

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1987-01-01T23:59:59.000Z

451

High Performance Windows Volume Purchase: About the High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program to someone by E-mail Share High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Facebook Tweet about High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Twitter Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Google Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Delicious Rank High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Digg Find More places to share High Performance Windows Volume Purchase:

452

Emerging Technologies Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Activities Emerging Technologies Activities Emerging Technologies Activities The Emerging Technologies team focuses on the development and testing of next-generation technologies that can increase the energy efficiency of existing technologies and help support the goal of reducing energy consumption by at least 50%. By partnering with industry, researchers, and other stakeholders, the Department of Energy (DOE) acts as a catalyst in driving research in energy efficient technologies, including: Refrigerators, washers, dryers, and other appliances Parts of the building envelope, including insulation, roofing and attics, foundations, and walls Window, skylight, and door technologies, such as highly-insulating windows, glazings and films, window frames, and daylighting and shading

453

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

454

Measure Guideline: Window Repair, Rehabilitation, and Replacement  

SciTech Connect

This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

Baker, P.

2012-12-01T23:59:59.000Z

455

Information acquisition in minimal window search  

Science Conference Proceedings (OSTI)

The alpha-beta tree search algorithm can be improved through the use of minimal windows. Branches are searched with a minimal window [a,a+l] with the expectancy that this will show the sub-tree to be inferior. If not, then that sub-tree must be re-searched. ...

Alexander Reinefeld; Jonathan Schaeffer; T. A. Marsland

1985-08-01T23:59:59.000Z

456

Prospects for highly insulating window systems  

SciTech Connect

Windows and other fenestration systems are often considered the weakest links in energy-efficient residences. This opinion is reinforced by building standards, audit guidelines, and standard window performance evaluation techniques geared toward sizing building HVAC equipment. In this paper we show that it should be possible to design highly insulating windows (U < 0.12 Btu/hr-ft/sup 2/-F) with high solar transmittances (SC > 0.6). If we then view annual window performance from the basic perspective of control of energy flows, we conclude that it should thus be possible to develop a new generation of ''super window'' that will outperform the best insulated wall or roof for any orientation even in a northern climate. We review several technical approaches that suggest how such a window system might be designed and built. These include multiglazed windows having one or more low-emittance coatings and gas-filled or evacuated cavities. Another approach uses a layer of transparent silica aerogel, a microporus material having a conductivity in air of about R7 per inch. We conclude by presenting data on annual energy performance in a cold climate for a range of ''super windows''. 8 refs., 6 figs.

Arasteh, D.; Selkowitz, S.

1985-04-01T23:59:59.000Z

457

Dell recommends Windows 8. Redefine mobility.  

E-Print Network (OSTI)

Dell recommends Windows 8. Redefine mobility. Rethink tablets. The new XPSTM 10 tablet. Designed" Full HD touchscreen optimized for Windows 8. Dell.com Price: $1,499 $ 99999 ·3rd Gen Intel® CoreTM i7

Suzuki, Masatsugu

458

Dell recommends Windows Dell InspironTM  

E-Print Network (OSTI)

Dell recommends Windows® 7. Dell InspironTM 14R Member Price: $ 69999 · 2nd Gen Intel® CoreTM i5-2450M Processor · Genuine Windows® 7 Home Premium · 6GB Memory*; 500GB* Hard Drive Buy a Dell

Suzuki, Masatsugu

459

Dynamics of window glass fracture in explosions  

SciTech Connect

An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

Beauchamp, E.K.; Matalucci, R.V.

1998-05-01T23:59:59.000Z

460

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior Shading Exterior Shading Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by various additions to an existing window. Awnings exit disclaimer Blinds exit disclaimer Draperies exit disclaimer Overhangs exit disclaimer Shades exit disclaimer Shutters exit disclaimer Awnings in Residential Buildings Study showing that awnings have advantages that contribute to more sustainable buildings. Download Awnings in Residential Buildings exit disclaimer The most effective way of reducing solar heat gain is to block the sun's

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

LBNL Window & Daylighting Software -- COMFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Beta 5 Beta (5.0.05 -- January 1, 2013) Last Updated: 01/01/2013 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

462

X-Windows Acceleration via NX  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Windows Acceleration via NX X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly improve the speed of X-Windows applications running at NERSC. See Using NX. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 August 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011 January 2011 September 2010 Last edited: 2013-04-02 15:13:27

463

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Lower HVAC Costs Lower HVAC Costs HVAC sizing tools Several computation procedures exist for proper sizing of HVAC equipment. The most prominent ones, which are also recommended by the ENERGY STAR Homes program, are ACCA Manual J exit disclaimer and the ASHRAE Handbook of Fundamentals. Factors to be considered: The energy performance of the windows themselves must be considered in load calculations. NFRC-certified window performance values significantly increase the accuracy of these calculations. Window orientation and overhangs must be taken into account. Overhangs are an important factor influencing solar gains through windows. Where internal shades and blinds will be actively used, these should also be accounted for in load calculations. High-performance windows not only provide reduced annual heating and

464

LBNL Window & Daylighting Software -- COMFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Last Updated: 10/04/2012 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

465

Saving energy with storm windows and doors  

SciTech Connect

The objective of conserving heating and cooling fuels with properly designed and installed doors and windows will not succeed until the window and door energy problems are specifically identified and specific solutions are understood. Almost three times as much heat is lost directly through the glass as from the edges of the frame. One square foot of single glazing loses as much heat as 10 ft/sup 2/ of solid wall. Almost 70 percent of the heating load and 46 percent of the cooling load are related to windows and doors. Homeowners are urged to caulk and weatherstrip; keep windows and doors in good repair; and install windows and doors with insulating glass. (MCW)

Gorell, F.

1976-03-01T23:59:59.000Z

466

THERM 5 / WINDOW 5 NFRC simulation manual  

SciTech Connect

This document, the ''THERM 5/WINDOW 5 NFRC Simulation Manual', discusses how to use the THERM and WINDOW programs to model products for NFRC certified simulations and assumes that the user is already familiar with those programs. In order to learn how to use these programs, it is necessary to become familiar with the material in both the ''THERM User's Manual'' and the ''WINDOW User's Manual''. In general, this manual references the User's Manuals rather than repeating the information. If there is a conflict between either of the User Manual and this ''THERM 5/''WINDOW 5 NFRC Simulation Manual'', the ''THERM 5/WINDOW 5 NFRC Simulation Manual'' takes precedence. In addition, if this manual is in conflict with any NFRC standards, the standards take precedence. For example, if samples in this manual do not follow the current taping and testing NFRC standards, the standards not the samples in this manual, take precedence.

Mitchell, Robin; Kohler, Christian; Arasteh, Dariush; Carmody, John; Huizenga, Charlie; Curcija, Dragan

2003-06-01T23:59:59.000Z

467

Design goals and challenges for a photovoltaic-powered electrochromic window covering  

DOE Green Energy (OSTI)

An estimated 1.0%-1.5% of the total cooling energy need in U.S. buildings, and 10%-30% of the peak electric utility power demand, is caused by unwanted solar heat-gain through windows. A large fraction of the approximately two billion square meters of building windows in the United States could benefit from the use of some solar gain control strategy. If a cost-effective, retrofit, electrochromic (EC) window covering were available, this energy savings potential could be realized in a relatively short time. A {open_quotes}glue on{close_quotes}, retrofit EC window treatment, similar to conventional static solar-gain control .films, could accelerate the application of this new technology in buildings. However, the costs of electrical wiring for each retrofitted window could dominate the economics of the retrofit decision and slow market acceptance of EC-windows. By incorporating a photovoltaic (PV) power source into the EC window retrofit, this wiring cost could be reduced or eliminated, and the installation of the EC window treatment could be greatly simplified. In this paper, we suggest the use of an integrated, photovoltaic-powered electrochromic (PV-EC) window treatment that can be applied to an existing window in much the same way that conventional, static, solar-gain control films are now applied. This concept is the subject of a new three-year research and development (R&D) project at our laboratory. We present our design concepts and rationale and identify some of the technical challenges involved.

Benson, D.K.; Branz, H.M.

1994-12-01T23:59:59.000Z

468

Holography of the Conformal Window  

E-Print Network (OSTI)

Inspired by the model of Jarvinen and Kiritsis, we present a simple holographic model for the on set of chiral symmetry breaking at the edge of the conformal window in QCD in the Veneziano limit. Our most naive model enforces the QCD two loop running coupling on a D3/D7 holographic brane system. The mass of the holographic field, describing the chiral condensate in the model, is driven below the BF bound when the running is sufficiently strong, triggering chiral symmetry breaking for N_f/N_c<2.9. This model though contains too great a remnant of supersymmetry and does not correctly encode the perturbative anomalous dimensions of QCD. In a second model we impose the QCD anomalous dimension result and find chiral symmetry breaking sets in for N_f/N_c=4 at a BKT-type phase transition. In this case the transition is triggered when the anomalous dimension of the mass operator \\gamma_m=1.

Raul Alvares; Nick Evans; Keun-Young Kim

2012-04-11T23:59:59.000Z

469

Building Technologies Program - 1995 Annual Report  

E-Print Network (OSTI)

l i g h t i n g / daylighting systems to minimize coolingwith the lighting/ daylighting systems to minimize coolingWindows & Daylighting Innovative Technology and Systems

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

470

WINDOW 3. 1: A PC program for analyzing window thermal performance: Program description and tutorial  

SciTech Connect

WINDOW 3.1 is a public-domain computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for analyzing heat transfer through window systems. The program uses an iterative technique to calculate the one-dimensional temperature profile across a user-defined window system. From this data, window system performance indices, e.g., U-value and shading coefficients, are calculated. WINDOW 2.0, incorporates several technical additions and many new user-friendly features, while continuing to provide a consistent and versatile heat transfer analysis method. The user can vary environmental conditions, window tilt, number of glazing layers, layer properties (thermal infrared, solar and visible optical properties, and thermal conductance), gap widths, composition of gap gas or gas mixture fill, and spacer and frame materials. 7 refs., 3 figs.

1988-10-01T23:59:59.000Z

471

AN ASSESSMENT OF MCNP WEIGHT WINDOWS  

SciTech Connect

The weight window variance reduction method in the general-purpose Monte Carlo N-Particle radiation transport code MCNPTM has recently been rewritten. In particular, it is now possible to generate weight window importance functions on a superimposed mesh, eliminating the need to subdivide geometries for variance reduction purposes. Our assessment addresses the following questions: (1) Does the new MCNP4C treatment utilize weight windows as well as the former MCNP4B treatment? (2) Does the new MCNP4C weight window generator generate importance functions as well as MCNP4B? (3) How do superimposed mesh weight windows compare to cell-based weight windows? (4) What are the shortcomings of the new MCNP4C weight window generator? Our assessment was carried out with five neutron and photon shielding problems chosen for their demanding variance reduction requirements. The problems were an oil well logging problem, the Oak Ridge fusion shielding benchmark problem, a photon skyshine problem, an air-over-ground problem, and a sample problem for variance reduction.

J. S. HENDRICKS; C. N. CULBERTSON

2000-01-01T23:59:59.000Z

472

The Conformal Window from the Worldline Formalism  

E-Print Network (OSTI)

We use the worldline formalism to derive a universal relation for the lower boundary of the conformal window in non-supersymmetric QCD-like theories. The derivation relies on the convergence of the expansion of the fermionic determinant in terms of Wilson loops. The expansion shares a similarity with the lattice strong coupling expansion and the genus expansion in string theory. Our result relates the lower boundary of the conformal window in theories with different representations and different gauge groups. Finally, we use SQCD to estimate the boundary of the conformal window in QCD-like theories and compare it with other approaches.

Adi Armoni

2009-07-23T23:59:59.000Z

473

Observational Window Functions in Planet Transit Searches  

E-Print Network (OSTI)

Window functions describe, as a function of orbital period, the probability that an existing planetary transit is detectable in one's data for a given observing strategy. We show the dependence of this probability upon several strategy and astrophysical parameters, such as length of observing run, observing cadence, length of night, and transit duration. The ability to detect a transit is directly related to the intrinsic noise of the observations. In our simulations of the window function, we explicitly address non-correlated (gaussian or white) noise and correlated (red) noise and discuss how these two different noise components affect window functions in different manners.

Kaspar von Braun; David R. Ciardi

2007-11-27T23:59:59.000Z

474

Field Evaluation of Low-E Storm Windows  

SciTech Connect

A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single-pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homeshad traditional clear glass. Overall heating load reduction due to the storm windows was 13percent with the clear glass and 21percent with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years forthe low-e storm windows.

Drumheller, S. Craig; Kohler, Christian; Minen, Stefanie

2007-07-11T23:59:59.000Z

475

Progress in short period multilayer coatings for water window applications  

E-Print Network (OSTI)

mirrors for the water window,” Optics Letters, Volume 28,K alpha Line in the Water Window Region,” Applied Optics,coatings for water window applications E.M. Gullikson, F.

Gullikson, E.M.; Salmassi, F.; Aquila, A.L.; Dollar, F.

2008-01-01T23:59:59.000Z

476

Window signalling systems: control strategies and occupant behaviour  

E-Print Network (OSTI)

Parkins, L. M. (1984). Window-opening behav- ior in officeDaly, A. (2002). Operable windows and HVAC systems. HPACK. (2008). The use of windows as controls for indoor

Ackerly, Katie; Brager, Gail

2013-01-01T23:59:59.000Z

477

Ventanas : windows to new cultures in Spanish Class  

E-Print Network (OSTI)

SAN DIEGO Ventanas: Windows to New Cultures in Spanish Class23 Chapter V. Ventanas: Windows to New Cultures in SpanishOF THE THESIS Ventanas: Windows to New Cultures in Spanish

Collins, Karina

2009-01-01T23:59:59.000Z

478

Effects of Overhangs on the Performance of Electrochromic Windows  

E-Print Network (OSTI)

for a view 1.5 m from the window looking at the side wall.potential for switchable windows. In Proceedings of thelarge-area electrochromic windows in commercial buildings.

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

479

Separation of High Order Harmonics with Fluoride Windows  

E-Print Network (OSTI)

Harmonics with Fluoride Windows T. K. Allison, 1,2? J. vanpropagation in a ?uoride window while still preserving theirfor MgF 2 , CaF 2 , and LiF windows for the third, ?fth, and

Allison, Tom

2010-01-01T23:59:59.000Z

480

Window Manufacturer Sees Business Surge As Weatherization Supplier...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Manufacturer Sees Business Surge As Weatherization Supplier Window Manufacturer Sees Business Surge As Weatherization Supplier July 29, 2010 - 4:33pm Addthis Joshua DeLung...

Note: This page contains sample records for the topic "windows unspecified technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Daylighting Window Film Shows Potential to Significantly Reduce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylighting Window Film Shows Potential to Significantly Reduce Lighting Energy Use in Buildings Outdoor view of the windows testbed facility. Indoor view showing how sunlight is...

482

Review - The Code of the City: Window on a Labyrinth  

E-Print Network (OSTI)

The Code of the City: Window on a Labyrinth Douglas C. Allenable service, opening a window on a serious and demanding

Allen, Douglas C

2007-01-01T23:59:59.000Z

483

Validation of the Window Model of the Modelica Buildings Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of the Window Model of the Modelica Buildings Library Title Validation of the Window Model of the Modelica Buildings Library Publication Type Report LBNL Report Number...

484

Lagrangean Duality Applied on Vehicle Routing with Time Windows  

E-Print Network (OSTI)

Nov 6, 2001 ... Lagrangean Duality Applied on Vehicle Routing with Time Windows ... with the Vehicle Routing Problem with Time Windows (VRPTW).

485

A Time Bucket Formulation for the TSP with Time Windows  

E-Print Network (OSTI)

Nov 10, 2009 ... The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding a ... To obtain a good partition of the time windows, we.

486

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

Electrochromic Windows. California Energy Commission, PIER.Electrochromic Windows. California Energy Commission, PIER.managed by the California Energy Commission (Commission),

2006-01-01T23:59:59.000Z

487

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: Visible Transmittance (VT) Measuring Performance: Visible Transmittance (VT) How to maximize daylight? Historically, only clear glass was used to maximize the amount of light entering through a window. Especially in cooling-dominated climate, this desirable daylight also came with undesirable solar heat gain. With the advancement of high-performance glazing systems, it is possible for low-E coatings to reject the solar heat gain while allowing the visible light to pass through the glass. The type of low-E coating that is appropriate for your specific house depends on location, orientation, window area, and shading strategies. The visible transmittance (VT) is an optical property that indicates the fraction of visible light transmitted through the window. This is separate from the Solar Heat Gain Coefficient (SHGC), since many modern windows

488

Windows Public Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Public Tools Windows Public Tools Windows Public Tools Windows TOOL DESCRIPTION KarlBridge The KarlBridge package by Doug Karl. A program that runs on a PC with two Ethernet boards, turning the PC into a sophisticated, high-level, packet-filtering bridge. It can filter packets based on any specified protocol, including IP, XNS, DECNET, LAT, IPX, AppleTalk, etc. FakeDOS FakeDoS is a PC password system that, when executed from the AUTOEXEC.BAT file, will present the user with an apparently normal DOS prompt on bootup. However, the system is actually waiting for the correct password to be typed in. LOCK'M-UP The LogTime program logs the current time into a file, maintaining the last 170 entries stored. This can be useful when placed in AUTOEXEC.BAT as a method of tracking the use of a computer.

489

An analysis of residential window waterproofing systems.  

E-Print Network (OSTI)

??The prevalence of vinyl nail-on windows in the North American new home construction market has prompted ASTM International to write ASTM E2112-01 "Standard Practice for… (more)

Parsons, Austin, 1959-

2004-01-01T23:59:59.000Z

490

Increasing TCP’s initial window  

E-Print Network (OSTI)

The initial window MAY be two packets (instead of the current initial window of one packet). For packets of at most 1460 bytes, the initial window MAY be three packets. For packets of at most 1095 bytes, the initial window MAY be four packets. 2 The Burstiness of Current TCP in Slow-Start: cwnd = 1 packet:) send one data packet ( receive one ACK increase cwnd to 2 packets:) send two back-to-back packets ( receive one ACK (a delayed ACK) increase cwnd to 3 packets:) send three back-to-back packets 3 The Burstiness of Current TCP with a Dropped Ack: cwnd = N packets, N packets are in pipe: ( receive one ACK, acking two packets) send two back-to-back packets ( receive one ACK, acking two packets) send two back-to-back packets ONE ACK IS DROPPED IN THE NETWORK

Sally Floyd

1998-01-01T23:59:59.000Z

491

AEDG Implementation Recommendations: Daylighting Window Design...  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Design The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on...

492

Occupant Response to Window Control Signaling Systems  

E-Print Network (OSTI)

my window it will waste energy.  Even so I open the windowthe windown wouldn’t waste energy. ” MS Thesis, Dept. ofthe potential for energy waste and balancing issues.  

Ackerly, Katherine

2012-01-01T23:59:59.000Z

493

Windows 98 Registry Little Black Book  

Science Conference Proceedings (OSTI)

From the Publisher:Describes and demonstrates Windows 98 Registry functions and tools for customizing and optimizing personal computer systems through system properties, Device Manager, and various profiles. Translates the specialized language of the ...

Greg Holden

1998-06-01T23:59:59.000Z

494

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

U-factor and R-value? While the U-factor is used to express the insulation value of windows, R-value is used for insulation in most other parts of the building envelope (walls,...

495

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Break Metal Non-metal Frames There is a variety of non-metal framing materials for windows including, wood, wood with metalvinyl cladding, vinyl, hybrid, and composites. This...

496

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Views Windows provide a connection with the natural environment and a relief from typical interior spaces. An enormous amount of information can be gathered by a simple glance out...

497

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylight Letting light into a house is an important function of windows. Even though people have become more reliant on electric light in their houses, good home design can provide...

498

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

by up to 75%. UV absorbers can be incorporated into thin plastic films in multilayer windows or as an interlayer in laminated glass. In both cases, the UV transmission can be...

499

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. The U.S. EPA will add qualifying models to the ENERGY STAR Most Efficient 2013 product list for windows from January 1, 2013 through December 31, 2013. The following products are not eligible for Most Efficient recognition in 2013: Windows for commercial buildings Doors Skylights Tubular Daylighting Devices Energy Star Most Efficient Program Energy Star Zones The ENERGY STAR Most Efficient designation recognizes the most efficient products among those that qualify for the ENERGY STAR. These exceptional products represent the leading edge in energy efficient products for a given year. Criteria Windows must be ENERGY STAR qualified consistent with applicable ENERGY

500

High performance solar control office windows  

SciTech Connect

Investigations conducted over a 9 month period on the use of ion beam sputtering methods for the fabrication of solar control windows for energy conservation are described. Principal emphasis was placed on colored, reflecting, heat rejecting, office building windows for reducing air conditioning loads and to aid in the design of energy conserving buildings. The coating techniques were developed primarily for use with conventional absorbing plate glass such as PPG solarbronze, but were also demonstrated on plastic substrates for retrofit applications. Extensive material investigations were conducted to determine the optimum obtainable characteristics, with associated weathering studies as appropriate aimed at achieving a 20 year minimum life. Conservative estimates indicate that successful commercialization of the windows developed under this program would result in energy savings of 16,000,000 barrels of oil/year by 1990 if installation were only 10 percent of new commercial building stock. These estimates are relative to existing design for energy conserving windows. Installation in a greater percentage of new stock and for retrofit applications could lead to proportionately greater energy savings. All such installations are projected as cost effective as well as energy effective. A secondary program was carried out to modify the techniques to yield thermal control windows for residential applications. These windows were designed to provide a high heat retention capability without seriously affecting their transmission of incident solar radiation, thereby enhancing the greenhouse effect. This part of the program was successful in producing a window form which could be interchanged for standard residential window material in a cost and energy effective manner. The only variation from standard stock in appearance is a very light rose or neutral gray coloring.

King, W.J.

1977-12-01T23:59:59.000Z