Powered by Deep Web Technologies
Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Determining window solar heat gain coefficient  

SciTech Connect (OSTI)

The solar heat gain characteristics of fenestration systems impact daytime building energy performance, occupant comfort and utility load demands. A measure of the fraction of available solar energy entering a building interior per unit window area is defined as the solar heat gain coefficient (SHGC). Together with a window's thermal transmittance (U-value), the SHGC is used to compare fenestration products, and it allows for the calculation of energy rating number and annual energy performance. The need to measure and compared advances in window technology has led to the development of experimental and analytical methods for the determination of SHGC performance. Several test facilities currently or previously capable of performing SHGC measurements exist worldwide. Results experimentally determined using these facilities have provided design data for handbook tables, and have been instrumental in the development and validation of predictive analytical methods and computer simulation tools. However, these facilities have operated without a standard test procedure for SHGC performance. Consequently, recent efforts have been focused on developing consensus test procedures for the evaluation of window energy performance.

Harrison, S.J.; Wonderen, S.J. van (Queen's Univ., Kingston, Ontario (Canada). Solar Calorimetry Lab.)

1994-08-01T23:59:59.000Z

2

Turning low solar heat gain windows into energy savers in winter  

SciTech Connect (OSTI)

The reduction in summer peak cooling loads of buildings with a large ratio of window to floor areas is often achieved by windows with a low solar heat gain coefficient (SHGC). These windows are typically double glazed with the exterior pane tinted or selectively absorbing. Absorbed solar radiation is rejected to the environment. This is undesirable in the cold season. The authors suggest that by turning south-facing windows by 180{degree} for the duration of the cold season, the solar heat gain of these windows can be increased significantly. By means of a computer simulation, they estimate seasonal energy savings for a model room in several climates. The effect of building heat capacity on the savings is also studied. Windows whose positions can be reversed for ease of cleaning are commercially available. This study shows that in a suitable climate the achievable savings easily compensate for the additional effort and possible investment over the lifetime of the window.

Feuermann, D.; Novoplansky, A. [Ben-Gurion Univ. of the Negev, Sede Boker (Israel). Jacob Blaustein Inst. for Desert Research

1996-10-01T23:59:59.000Z

3

Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements  

Science Journals Connector (OSTI)

This paper presents and optimizes the annual heating, cooling and lighting energy consumption associated with applying different types and properties of window systems in a building envelope. Through using building simulation modeling, various window properties such as U-value, solar heat gain coefficient (SHGC), and visible transmittance (Tvis) are evaluated with different window wall ratios (WWRs) and orientations in five typical Asian climates: Manila, Taipei, Shanghai, Seoul and Sapporo. By means of a regression analysis, simple charts for the relationship between window properties and building energy performance are presented as a function of U-value, SHGC, Tvis, WWR, solar aperture, effective aperture, and orientation. As a design guideline in selecting energy saving windows, an optimized window system for each climate is plotted in detailed charts and tables.

J.W. Lee; H.J. Jung; J.Y. Park; J.B. Lee; Y. Yoon

2013-01-01T23:59:59.000Z

4

Measurement of the solar heat gain coefficient and U value of windows with insect screens  

SciTech Connect (OSTI)

Energy ratings are currently being used in a number of countries to assist in the selection of windows and doors based on energy performance. Developed for simple comparison purposes, these rating numbers do not take into account window removable attachments such as insect screens that are, nevertheless, widely used. Research was carried out to assess the effect of insect screens on the heat gains and losses of windows. The work reported in this paper deals with the effect of one screen type on the performance of a base-case, double-glazed window. Using an indoor solar simulator facility, measurements of the window solar heat gain coefficient (SHGC) and U value were made for different screen attachment configurations and climatic conditions. Results with the sample window tested indicate that insect screens placed on the outdoor side can reduce its SHGC by 46% with only a 7% reduction in its U value (0.19 W/m{sup 2}{center_dot}C), and that insect screens placed on the indoor side can reduce its SHGC by 15% while reducing its U value by 14% (0.38 W/m{sup 2}{center_dot}C).

Brunger, A.; Dubrous, F.M.; Harrison, S.

1999-07-01T23:59:59.000Z

5

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

TI Reflective Solar Control Film on Windows Gains AcceptancelReflective Solar Control Film on Windows Gains Acceptance",optical window shutter, the cholesteric liquid crystal film

Viswanathan, R.

2011-01-01T23:59:59.000Z

6

Building Energy Software Tools Directory: Window Heat Gain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Heat Gain Window Heat Gain Window Heat Gain image Calculates the solar heat gain through vertical windows in temperate latitudes. Screen Shots Keywords Solar, window, energy Validation/Testing N/A Expertise Required None. Users Few (new program). Audience Architects, energy analysts. Input Location, window characteristics, ground characteristics. Output Daily/monthly heat gain through window. Computer Platform Web Programming Language JavaScript Strengths Allows default locations/windows/surfaces or custom user data. Incorporates lots of ASHRAE SHGF data that is otherwise burdensome to deal with. Weaknesses Only works for windows facing close to due north, south, east, or west. Doesn't address conductive losses or shading. Contact Company: Sustainable By Design Address: 3631 Bagley Avenue North

7

Determining the Solar Optical Properties of Windows with Shading Devices-  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determining the Solar Optical Properties of Windows with Shading Devices- Determining the Solar Optical Properties of Windows with Shading Devices- New Measurement and Modeling Techniques Speaker(s): Nathan Kotey Date: October 5, 2009 - 12:00pm Location: 90-3122 The global interest to reduce energy use in buildings has focussed new efforts to more aggressively reduce energy used by all major building components, such as window systems. Although good progress has been made in reducing heat loss, the contribution of windows to heat gain, peak cooling loads and cooling energy consumption is increasingly viewed globally as a problem. While glass coatings provide some control, shading devices on windows have the potential to do an even better job to reduce peak cooling load and annual energy consumption because there are more design parameters

8

T-601: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges  

Broader source: Energy.gov (indexed) [DOE]

01: Windows Kernel win32k.sys Lets Local Users Gain Elevated 01: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges T-601: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges April 13, 2011 - 5:12am Addthis PROBLEM: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges PLATFORM: Windows XP Service Pack 3, Windows XP Professional x64 Edition Service Pack 2, Windows Server 2003 Service Pack 2, Windows Server 2003 x64 Edition Service Pack 2, Windows Server 2003 with SP2 for Itanium-based Systems, Windows Vista Service Pack 1 and Windows Vista Service Pack 2, Windows Vista x64 Edition Service Pack 1 and Windows Vista x64 Edition Service Pack 2, Windows Server 2008 for 32-bit Systems and Windows Server 2008 for 32-bit Systems Service Pack 2*, Windows Server 2008 for x64-based Systems

9

T-601: Windows Kernel win32k.sys Lets Local Users Gain Elevated...  

Broader source: Energy.gov (indexed) [DOE]

01: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges T-601: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges April 13, 2011 - 5:12am Addthis...

10

Sensitivity of fenestration solar gain to source spectrum and angle of incidence  

SciTech Connect (OSTI)

The solar heat gain coefficient (SHGC) is the fraction of solar radiant flux incident on a fenestration system entering a building as heat gain. In general it depends on both the angle of incidence and the spectral distribution of the incident solar radiation. In attempts to improve energy performance and user acceptance of high-performance glazing systems, manufacturers are producing glazing systems with increasing spectral selectivity. This poses potential difficulties for calculations of solar heat gain through windows based upon the use of a single solar spectral weighting function. The sensitivity of modern high-performance glazing systems to both the angle of incidence and the shape of the incident solar spectrum is examined using a glazing performance simulation program. It is found that as the spectral selectivity of the glazing system increases, the SHGC can vary as the incident spectral distribution varies. The variations can be as great as 50% when using several different representative direct-beam spectra. These include spectra having low and high air masses and a standard spectrum having an air mass of 1.5. The variations can be even greater if clear blue diffuse skylight is considered. It is recommended that the current broad-band shading coefficient method of calculating solar gain be replaced by one that is spectral based.

McCluney, W.R. [Florida Solar Energy Center, Cocoa, FL (United States)

1996-12-31T23:59:59.000Z

11

Evaluation of solar heat gain coefficient for solar-control glazings and shading devices  

SciTech Connect (OSTI)

The determination of solar heat gain coefficient (SHGC) values for complex fenestration systems is required to evaluate building energy performance, to estimate peak electrical loads, and to ensure occupant comfort. In the past, simplified techniques have been used to calculate the values of SHGC for fenestration systems. As glazing systems that incorporate complex geometries become more common, test methods are required to evaluate these products and to aid in the development of new computational tools. Recently, a unique facility and test method for the experimental determination of SHGC values were developed and demonstrated for simple fenestration systems. The study described in this paper further applies this method to a variety of commercially available glazing and shading systems (e.g., heat-absorbing insulated glazing units (IGUs), reflective film and suspended film IGUs), and shading devices (i.e., slat blinds and shades). Testing was conducted in a solar simulator facility using a specially designed window calorimeter. The results of this study demonstrate the feasibility of the solar simulator-based test method for the evaluation of SHGC values for solar-control glazings and shading devices.

Harrison, S.J. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering; Wonderen, S.J. van [Arvin Industries, Inc., Toronto, Ontario (Canada)

1998-10-01T23:59:59.000Z

12

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Control Window Film Solar Control Window Film Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by applying a film. High-Reflectivity Window Films exit disclaimer International Window Film Association For more information on window film, check the Window Film Information Center exit disclaimer . Solar control window film reduces solar heat gain by reflection and absorption. As they also block solar heat gain in winter months, these films are ideal for cooling-dominated climates. Window films can be tinted

13

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selection Process for Replacement Windows Selection Process for Replacement Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Assess Your Existing Windows Assess whether your windows should be repaired, retrofitted, or replaced. While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Download Window Energy Efficiency Checklist for assistance. Window Replacement

14

Mobile Window Thermal Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

15

Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance  

SciTech Connect (OSTI)

We report on CdS/CdTe photovoltaic devices that contain a thin Ta2O5 film deposited onto the CdS window layer by sputtering. We show that for thicknesses below 5 nm, Ta2O5 films between CdS and CdTe positively affect the solar cell performance, improving JSC, VOC, and the cell power conversion efficiency despite the insulating nature of the interlayer material. Using the Ta2O5 interlayer, a VOC gain of over 100 mV was demonstrated compared to a CdTe/CdS baseline. Application of a 1nm Ta2O5 interlayer enabled the fabrication of CdTe solar cells with extremely thin (less than 30 nm) CdS window layers. The efficiency of these cells exceeded that of a base line cell with 95 nm of CdS.

Lemmon, John P.; Polikarpov, Evgueni; Bennett, Wendy D.; Kovarik, Libor

2012-05-05T23:59:59.000Z

16

Thermal insulation with paper honeycombs with solar gain  

SciTech Connect (OSTI)

In this contribution the authors describe the concept and the model for the heat flux and the effective U-value of paper honeycombs (PHC) used as efficient and cheap transparent insulation material. With this thermal-insulation-material static U-values of U = 0.25 W/(m{sup 2}K) are obtained due to the very low thermal conduction value {lambda} = 0.04 W/(mK), which is comparable to thermal insulators as PU-foam or mineral wool. Contrary to conventional insulation materials PHC also gathers solar radiation due to its geometry, thereby providing heat flux into the interior of the building. Because the angle of incidence of the sun in wintertime is low, the direct solar radiation is absorbed approximately within the outermost 3 centimeters of the PHC. Even at ambient temperatures below 0 C, this region is warmed up to 60 C. By conduction the heat is brought to the brick wall underneath, which acts as reservoir and gets to temperatures between 15 and 30 C. Calculated across the full heating period, it is shown, that effective U values of 0.14 W/(m{sup 2}K) are reached by using PHC, reducing the brick wall U value by a factor of 3/4. Contrary to other transparent thermal insulation systems, e.g. developed by the Fraunhofer Institute for Solar Energy Systems, this system does not overheat during summertime, because the capillary structure is shielding the solar rays. A Windows based program solves the heat conduction equation with finite element methods.

Hingerl, K.; Baumgartner, G.; Aschauer, H.

1996-12-31T23:59:59.000Z

17

Solar heat gain coefficient measurement of semi-transparent photovoltaic modules with indoor calorimetric hot box and solar simulator  

Science Journals Connector (OSTI)

In tropical Singapore, buildings receive a high amount of solar radiation. Windows should therefore consist of solar control glazing with a low solar heat gain coefficient (SHGC) and high visible light transmittance to reduce the energy consumption for air-conditioning and electrical lighting respectively. Due to the rising demand for on-site electricity generation, photovoltaic modules are increasingly used in buildings, initially as roof-top systems, but in recent years there are also semi-transparent photovoltaic (STPV) being integrated into the façade or overhead glazing. However, their SHGC is usually not reported, potentially preventing STPV from widespread adoption. The paper presents measurements and novel presentations of SHGC for selected thin-film STPV glazing. It introduces SERIS’ indoor calorimetric hot box and solar simulator including a documentation of environmental conditions and calibrations. A sensitivity analysis concluded that the SHGC measurement is mainly sensitive to the spectrum of the solar simulator and reflection properties of the absorber plate. A correction factor was introduced and the measured results compare well with simulations. In addition, SHGC values for selected STPV are presented as (a) angular dependent and (b) load dependent. The results show that the SHGC is sensitive to the incident angle of solar radiation. Particularly for incident angles above 45°, which would be typical for facades in the tropics, the SHGC reduces significantly, compared to the default at 0°. The SHGC reduces only marginally when an electrical load is connected. Higher PV efficiencies would result in more energy being converted into electricity and not into re-radiating heat and therefore producing a lower SHGC.

Fangzhi Chen; Stephen K. Wittkopf; Poh Khai Ng; Hui Du

2012-01-01T23:59:59.000Z

18

A Smart Window for Solar Energy Co-utilization  

Science Journals Connector (OSTI)

Aiming at thermal comfort and integrated to the building envelope, a low-emissivity, double-glazed window is presented, with adjustable blinds and spectrally selective heat reflection,...

Horowitz, Flavio; de Azambuja, Giovane; Pereira, Marcelo B

19

Advanced Windows Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

20

Optical Analysis and Thermal Modeling of a Window for a Small Particle Solar Receiver  

Science Journals Connector (OSTI)

Abstract Concentrated solar power (CSP) systems use heliostats to concentrate solar radiation in order to produce high temperature heat, which drives a turbine to generate electricity. A 5 \\{MWth\\} Small Particle Solar Receiver is being developed for power tower CSP plants based on volumetric absorption by a gas-particle suspension by the support from the U.S. Department of Energy under the SunShot Initiative. The radiation enters the pressurized receiver (0.5 MPa) through a curved window, which must sustain the thermal loads from the concentrated solar flux and infrared reradiation from inside the receiver. The thermal load from the solar flux on the window is calculated by using the computer code MIRVAL from Sandia National Laboratory which uses the Monte Carlo Ray Trace (MCRT) method, along with two other codes developed by the authors. Thermal loading was calculated from energy absorbed at various points throughout the window from both the heliostat field and inside the receiver. Transmission and reflective losses were also calculated for different window materials in order to find out how much radiation will enter the receiver or will be lost. The three dimensional temperature distribution of the window is analyzed by an energy balance taking into account spectral volumetric absorption, spectral surface emission, conduction within the window, and convection from both surfaces. A maximum window temperature of 800 °C must be enforced to prevent cracking and/or devitrification due to overheating. Several grades of quartz are considered for this study with detailed spectral calculations. For a chosen material, the window temperature was found to be held under 800 °C. The results showed that most of the heat load on the window comes from the inside of receiver due to spectral variation.

A.M. Mecit; F.J. Miller; A. Whitmore

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

To be submitted to Solar Energy. Daylight performance of a microstructured prismatic window film in deep open  

E-Print Network [OSTI]

To be submitted to Solar Energy. Daylight performance of a microstructured prismatic window film Systems Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory with vertical windows have the potential to offset lighting energy use in deep perimeter zones

22

Balancing comfort: occupants' control of window blinds in private offices  

E-Print Network [OSTI]

and solar heat gain coefficient (SHGC), should be similar (VT = 0.4-0.7; SHGC = 3.4.5 Window blind usage survey AHeat Gain Coefficients (SHGC) of various fenestration system

Inkarojrit, Vorpat

2005-01-01T23:59:59.000Z

23

Coat Color and Solar Heat Gain in Animals Author(s): Glenn E. Walsberg  

E-Print Network [OSTI]

. The intensity of solar radiation reaching the earth's surface varies, but under clear skies often reaches values of about 1000 W/m2 on a plane perpendicular to the solar beam. Roughly one-half of this energy liesCoat Color and Solar Heat Gain in Animals Author(s): Glenn E. Walsberg Source: BioScience, Vol. 33

Cavitt, John F.

24

Spectral effects on the transmittance, solar heat gain, and performance rating of glazing systems  

Science Journals Connector (OSTI)

This study investigates the potential changes in Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT) ratings of vertical or tilted glazing systems that would result from a deliberate change in the reference spectrum used as Spectral Weighting Function (SWF). This SWF is necessary to evaluate broadband-average optical properties from their spectral values, and obtain the desired rating of such bulk properties. The \\{SWFs\\} currently specified by rating institutions in Europe and North America for SHGC and VT are now outdated, and their inadequacies are discussed. Six potential replacements, which have been recently adopted by ASTM are described, including three direct irradiance spectra and three global irradiance spectrum incident on tilted surfaces of various tilts (20°, 37° and 90°). Some of these spectra have been tailored for use in building energy applications, including Building-Integrated Photovoltaics (BIPV). The effect of tilt on the U-factor and hence SHGC of glazing systems used for skylights on roofs is discussed, using a representative dataset of 37 glazing system specimens. The spectral effects on SHGC induced by a change in the current North American SWF are also obtained for this dataset, and show small to moderate deviations from current ratings (?2% to +7% for windows, and ?3% to +11% for skylights). The variations in VT are within ±2% for most glazing systems. To remove the current inconsistency in the \\{SWFs\\} used for SHGC and VT, it is recommended that a single SWF be used for both properties. For improved accuracy and reliance on active standards, it is also recommended that the SWF for SHGC and VT be either one of the two recent ASTM G197-08 global irradiance spectra, depending on application (incidence on a vertical surface for window applications, and incidence on a 20°-tilted surface for skylight applications). No change in colorimetric calculations (based on the D65 illuminant) is recommended, however.

Christian A. Gueymard; William C. duPont

2009-01-01T23:59:59.000Z

25

The Impact of Overhang Design on the Performance of Electrochromic Windows  

E-Print Network [OSTI]

in Fig. 1. TABLE 1 PROPERTIES OF EC WINDOWS U ov. U COG SHGCov SHGC COG Tv ov Tv COG located 3.05 m from the windowEC COG: Center-of-glass; SHGC: Solar heat gain coefficient;

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

26

Geek-Up[11.05.10]: Quark Gluon Plasma, Solar-Power Generating Windows and  

Broader source: Energy.gov (indexed) [DOE]

05.10]: Quark Gluon Plasma, Solar-Power Generating 05.10]: Quark Gluon Plasma, Solar-Power Generating Windows and CCS Field Studies Geek-Up[11.05.10]: Quark Gluon Plasma, Solar-Power Generating Windows and CCS Field Studies November 5, 2010 - 4:08pm Addthis A simulated collision of lead-ions, courtesy the ALICE experiment at CERN A simulated collision of lead-ions, courtesy the ALICE experiment at CERN Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs More than 1,700 scientists, engineers, technicians and students from seven Department of Energy national laboratories, 89 American universities and one supercomputer center celebrated progress this week when the Large Hadron Collider's (LHC) first record-setting run of high-energy proton collisions ended.

27

LBNL Window & Daylighting Software -- RESFEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SYSTEM REQUIREMENTS GET A COPY DOCUMENTATION KNOWLEDGE BASE Overview Today's energy-efficient windows can dramatically lower the heating and cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick the most efficient window for a residence. Product information typically offers window properties: U-factors or R-values, Solar Heat Gain Coefficients or Shading Coefficients, and air leakage rates. However, the relative importance of these properties depends on site- and building-specific conditions. Furthermore, these properties are based on static evaluation conditions that are very different from the real situation a window will be used in.

28

Field Evaluation of Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Windows Evaluation of Windows Last Updated: 10/20/2009 Various tools can be used to evaluate windows in the field. Unless a new window still has the NFRC label attached to it, it is nearly impossible to determine by sight what the thermal and optical performance of a window is. These tools can provide information, such as low-e coating, gap width and gas fill, that can be used to approximate the performance of a window. Solar gain and Low-e detector This device can be used to determine if a low-e coating is present in the window, what type of coating it is, and where it is located. The type of low-e coating will indicate the amount of solar gain that is admitted through the coating. Readings can be "low", "medium" or "high". The device will also indicate on which glass surface the low-e coating is in relation to the position of the device. Limitations: Only works on glass of 1/8" (3 mm) or thinner. Cost: around $350 from EDTM.com

29

Room location (design) in accordance with the sol-air temperature and solar heat gain  

E-Print Network [OSTI]

ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis GARY LYNN PORTER Submitted to the Graduate College of Texas ASM University in parital fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1977 Major Subject: Meteorology ROOM LOCATION (DESIGN) IN ACCORDANCE WITH THE SOL-AIR TEMPERATURE AND SOLAR HEAT GAIN A Thesis by GARY LYNN PORTER Approved as to style and content by: hairman of Committee) (Head of Department) ( (Q...

Porter, Gary Lynn

1977-01-01T23:59:59.000Z

30

Advancement of Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advancement of Electrochromic Windows Advancement of Electrochromic Windows Title Advancement of Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59821 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Date Published 04/2006 Other Numbers CEC-500-2006-052 Keywords commercial buildings, daylight, daylighting controls, Electrochromic windows, energy efficiency, human factors, peak demand, switchable windows, visual comfort Abstract This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it's sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

31

OPTIMUM MORPHOLOGY AND PERFORMANCE GAINS OF ORGANIC SOLAR CELLS Biswajit Ray and Muhammad A. Alam  

E-Print Network [OSTI]

OPTIMUM MORPHOLOGY AND PERFORMANCE GAINS OF ORGANIC SOLAR CELLS Biswajit Ray and Muhammad A. Alam geometry. INTRODUCTION AND BACKGROUND Research in the area of organic photovoltaic (OPV) cell started higher recombination due to increased interfacial area. Thus even though BHJ solar cell has achieved

Alam, Muhammad A.

32

Solar Heat Gain through a Skylight in a Light Well J. H. Klems  

E-Print Network [OSTI]

Solar Heat Gain through a Skylight in a Light Well J. H. Klems Building Technologies Department on a skylight mounted on a light well of significant depth are presented. It is shown that during the day much of the solar energy that strikes the walls of the well does not reach the space below. Instead, this energy

33

Determination of size-specific U-factors and solar heat gain coefficients from rated values at established sizes -- A simplified approach  

SciTech Connect (OSTI)

Organizations such as the National Fenestration Rating Council (NFRC) in the United States and the Canadian Standards Association in Canada have done a vast amount of work to develop standardized procedures for rating the thermal performance of window systems. These procedures provide an excellent means of comparing one window product to another. One limitation to the use of the information produced in these rating procedures is that the data are produced through measurement or simulation for a fixed window size. To use these data in building energy computer simulations, the U-factor and solar heat gain coefficient (SHGC) data need to be available for the actual window sizes used in a building. The window labeling information provided through the window rating procedures in the US and Canada is not enough to calculate size-specific U-factor or SHGC values. Using minimal information that is provided from the rating procedures and making a few simplifying assumptions will allow for /an approximation of the size-specific U-factor and SHGC values. The work presented in this paper outlines a simplified approach to determining size-specific U-factor and SHGC values.

Baker, J.A. [WestLab, Waterloo, Ontario (Canada); Henry, R. [CANMET/Natural Resources, Ottawa, Ontario (Canada)

1997-12-31T23:59:59.000Z

34

Window annual energy rating systems: What they tell us about residential window design and selection  

SciTech Connect (OSTI)

Residential window annual energy rating systems have been developed in Canada and the US. These systems combine window properties of solar heat gain coefficient, U-factor, and air-infiltration into a single number representative of the energy performance for each of the heating season and the cooling season. These systems provide a simple means for designers to select the best energy performing window for low-rise residential buildings over the heating and cooling seasons. The two systems, which rank windows in the same order, give different information on optimum window design and selection than just a simple U-factor comparison. These systems show the importance of a high window SHGC in cold climates and a low SHGC in hot climates. The impact of window air infiltration is surprisingly small relative to the solar heat gain and heat conduction losses.

Carpenter, S.C.; McGowan, A.G.; Miller, S.R. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

35

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: Visible Transmittance (VT) Measuring Performance: Visible Transmittance (VT) How to maximize daylight? Historically, only clear glass was used to maximize the amount of light entering through a window. Especially in cooling-dominated climate, this desirable daylight also came with undesirable solar heat gain. With the advancement of high-performance glazing systems, it is possible for low-E coatings to reject the solar heat gain while allowing the visible light to pass through the glass. The type of low-E coating that is appropriate for your specific house depends on location, orientation, window area, and shading strategies. The visible transmittance (VT) is an optical property that indicates the fraction of visible light transmitted through the window. This is separate from the Solar Heat Gain Coefficient (SHGC), since many modern windows

36

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessing Window Replacement Options Assessing Window Replacement Options What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Performance Standards Energy Rating Programs Building America Program Documents Measure Guideline: Energy-Efficient Window Performance and Selection exit disclaimer Measure Guideline: Wood Window Repair, Rehabilitation, and Replacement exit disclaimer Whether you would like to improve the energy performance of your existing windows or replace them with new energy-efficient windows, several options are available. An energy audit can help you identify good strategies for more efficient windows and a more efficient house. Whichever energy efficiency measures you consider, the federal government as well as state, local, and utility programs may offer financing help or weatherization assistance.

37

Solar heat gain coefficient of complex fenestrations with a venetian blind for differing slat tilt angles  

SciTech Connect (OSTI)

Measured bidirectional transmittances and reflectances of a buff-colored venetian blind together with a layer calculation scheme developed in previous publications are utilized to produce directional-hemispherical properties for the venetian blind layer and solar heat gain coefficients for the blind in combination with clear double glazing. Results are presented for three blind slat tilt angles and for the blind mounted either interior to the double glazing or between the glass panes. Implications of the results for solar heat gain calculations are discussed in the context of sun positions for St. Louis, MO.

Klems, J.H.; Warner, J.L.

1996-08-01T23:59:59.000Z

38

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance Measuring Performance What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation U-factor The rate of heat loss is indicated in terms of the U-factor (U-value) of a window assembly. This section on U-factor describes what a U-factor is and it's importance in the heat loss through a window assembly. U-factor Solar Heat Gain Coefficient (SHGC) The SHGC is the fraction of incident solar radiation admitted through a window, both directly transmitted and absorbed and subsequently released inward. This section on Solar Heat Gain Coefficient describes what a SHGC is and it's importance in the amount of heat gain through a window assembly.

39

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-E Glazing Low-E Glazing Double-Glazed, High-solar-gain Low-E Glass This figure illustrates the characteristics of a typical double-glazed window with a high-solar gain low-E glass with argon gas fill. These windows are designed to reduce heat loss but admit solar gain. High-solar-gain low-E glass products are best suited for buildings located in heating-dominated climates and are the product of choice for passive solar design projects. High-solar-gain low-E glass is often made with pyrolytic low-E coatings, although sputtered high-solar-gain low-E is also available. Double HSG Low-E Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

40

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Triple Low-E Glazing Triple Low-E Glazing Triple-Glazed, High-solar-gain Low-E Glass This figure illustrates the performance of a window with a very low heat loss rate (low U-factor). In this case there are three glazing layers and two low-E coatings, ½" argon gas or ¼" krypton gas fill between glazings, and low-conductance edge spacers. The middle glazing layer can be glass or suspended plastic film. Some windows use four glazing layers (two glass layers and two suspended plastic films). This product is suited for buildings located in very cold climates. Both Low-E coatings in this product have high solar heat and visible light transmittance, which is ideal for passive solar design. The use of three layers, however, results in lower solar heat gain relative to double glazing with high-solar-gain Low-E.

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

List of issues for next dynamic window prototype/longer-term research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

075 075 A First-Generation Prototype Dynamic Residential Window Christian Kohler, Howdy Goudey, and Dariush Arasteh Windows and Daylighting Group Lawrence Berkeley National Laboratory Berkeley CA 94720 October 26, 2004 Abstract We present the concept for a "smart" highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available "off-the-shelf" components. It is a stand-alone, standard-size

42

Calorimetric determination of the solar heat gain coefficient g with steady-state laboratory measurements  

Science Journals Connector (OSTI)

Abstract The paper describes procedures for the direct calorimetric measurement of the solar heat gain coefficient g in detail. g is also called SHGC, solar factor, g-value or total solar energy transmittance TSET. All these terms are used synonymously in this document although there are some differences in the details of the definitions of these properties (e.g. different reference wind conditions or reference solar spectra). The document aims to summarize more than 25 years of experience in g-value testing at Fraunhofer ISE, Freiburg, Germany, which includes many different transparent and translucent building materials ranging from transparent insulation materials to daylighting and solar control systems and active solar energy harvesting facade components like building-integrated PV systems (BIPV) or building-integrated solar thermal collectors (BIST). The document focuses on methods for the calorimetric measurement of g under steady-state laboratory conditions. Transient outdoor measurements are beyond the scope of this paper. It also describes the corresponding error analysis and methods to correct experimentally determined values gexp to reference conditions, if it is not possible to reproduce the reference boundary conditions exactly in the laboratory.

Tilmann E. Kuhn

2014-01-01T23:59:59.000Z

43

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

candidat~ window materials for high-energy lasers( l3), Fordiscussed. high energy state development of materials forpotential window materials for high-energy lasers. It also

Viswanathan, R.

2011-01-01T23:59:59.000Z

44

ZeroEnergyWindow_1031.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Background and Performance Objective Background and Performance Objective Zero Energy Window Prototype HIGH PERFORMANCE WINDOW OF THE FUTURE T of 0.35 - 0.5 BTU/h-ft 2 -F to levels of 0.1 - 0.15 BTU/h-ft 2 -F. At the same time, the strategy for optimal control of solar gain varies with season and climate in the U.S. Rather than argue over a high or low solar heat gain coefficient (SHGC), the year-round, all-climate solution is a variable SHGC that can

45

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selection Process for New Windows Selection Process for New Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Meet the Energy Code and Look for the ENERGY STAR® Windows must meet the locally applicable energy code requirements. Windows that are ENERGY STAR qualified typically meet or exceed energy code requirements. A home's climate and location determine the relative importance of heating and cooling energy use, the applicable building energy code requirements, and the qualification criteria for ENERGY STAR windows. ENERGY STAR

46

NREL: News - NREL Solar Research Gains Two R&D 100 Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bookmark and Share Printable Version Bookmark and Share Printable Version News Release NR-2208 NREL Solar Research Gains Two R&D 100 Awards July 17, 2008 An ultra-light, highly efficient solar cell and use of ink-jet printing to manufacture thin-film photovoltaics-both developed at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory-have been named among this year's most significant innovations by Research & Development (R&D) Magazine. Known as "the Oscars of Invention," the R&D 100 Award showcases the most significant new technologies commercialized worldwide. NREL has won a total of 42 of the awards, which the magazine has been presenting annually since 1969. The new Inverted Metamorphic Multi-Junction solar cell was developed at NREL and is being commercialized by Emcore Corp. of Albuquerque, N.M., in

47

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Energy's Solar Total Energy lity Sandia Laboratories, Albuquerque. New Mexico,Mexico Solar Irrigation Project. REVI a thermal storage subsystem in a solar total energy

Viswanathan, R.

2011-01-01T23:59:59.000Z

48

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

to the solar assisted water-to-water heat pump and using athan the solar assisted water-to-water heat pump, The solar

Viswanathan, R.

2011-01-01T23:59:59.000Z

49

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

associated wi the DOE/New Mexico Solar Irrigation Project.Solar Total Energy lity Sandia Laboratories, Albuquerque. New Mexico,

Viswanathan, R.

2011-01-01T23:59:59.000Z

50

Future Advanced Windows for Zero-Energy Homes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Advanced Windows for Zero-Energy Homes Future Advanced Windows for Zero-Energy Homes Title Future Advanced Windows for Zero-Energy Homes Publication Type Conference Paper LBNL Report Number LBNL-51913 Year of Publication 2002 Authors Apte, Joshua S., Dariush K. Arasteh, and Yu Joe Huang Conference Name ASHRAE Transactions Volume 109, pt 2 Date Published 06/2003 Conference Location Kansas City, MO Call Number LBNL-51913 Abstract Over the past 15 years, low-emissivity and other technological improvements have significantly improved the energy efficiency of windows sold in the United States. However, as interest increases in the concept of zero-energy homes-buildings that do not consume any nonrenewable or net energy from the utility grid-even today's highest-performance window products will not be sufficient. This simulation study compares today's typical residential windows, today's most efficient residential windows, and several options for advanced window technologies, including products with improved fixed or static properties and products with dynamic solar heat gain properties. Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Windows with dynamic solar heat gain properties are found to offer significant potential in reducing energy use and peak demands in northern and central climates, while windows with very low (static) solar heat gain properties offer the most potential in southern climates.

51

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Sharing the Sun, Solar Technology in the Seventies, K, W,Sharing the Sun, Solar Technology in the 70's, Ed. K. W.ll , Sharing the Sun, Solar Technology in the 70's K, W,

Viswanathan, R.

2011-01-01T23:59:59.000Z

52

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Problems in Solar, Nuclear and Storage of Energy", N78-Heat Transfer in Solar Energy Storage", ASME Paper 77-HT·-1976). ':' tion to Solar Heat Storage Systemsl! s N772665 3)

Viswanathan, R.

2011-01-01T23:59:59.000Z

53

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Heat Transfer in Solar Energy Storage", ASME Paper 77-HT·-Liao, "Research on Solar Energy Storage Subsystems UtilizingA. Gauss, Jr. , "Solar Energy Storage", N77 17605 (1,976).

Viswanathan, R.

2011-01-01T23:59:59.000Z

54

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

1\\1, Touchais, "Solar Production of Electrical Energy", AD Boverall production cost of converting solar energy into aproduction processes, REVIEW: This paper describes many different types of collection systems for solar energy

Viswanathan, R.

2011-01-01T23:59:59.000Z

55

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Problems in Solar, Nuclear and Storage of Energy", N78-If the problems are going to exist in solar energy systems,and solar energy is used to thaw out the PCM during the summer, Major problems

Viswanathan, R.

2011-01-01T23:59:59.000Z

56

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

of Thin Film, Solar Thermal Energy Converters", N7728613, PBsts of Collectors of Solar Thermal Energy, A Steel Flat Platcharacteristics a solar thermal energy utili ng water l1ed

Viswanathan, R.

2011-01-01T23:59:59.000Z

57

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Long Life Terrestrial Solar Panel", 7 8N 24649, DOE/ JPLUno, "High Efficiency Solar Panel (HESP)! ', N78 10572, AD AOptically table for Flat Solar Panels", N78 17477 (1977). J.

Viswanathan, R.

2011-01-01T23:59:59.000Z

58

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

source heat pump to the solar assisted water-to-water heathas a higher COP than the solar assisted water-to-water heat

Viswanathan, R.

2011-01-01T23:59:59.000Z

59

Are window energy performance selection requirements in line with product design in heating-dominated climates?  

SciTech Connect (OSTI)

This paper discusses energy efficiency criteria for selecting windows and the limitations imposed by the necessity of a factory rating number as opposed to using specific design criteria for each house window. The Canadian annual energy rating (ER) system for residential windows that was derived for use in a cold climate where passive solar gains are significant is described. Corrections are noted to account for specific house differences and for cooling situations. The conclusion is that a rating system must account accurately for solar gain since passive solar is important in this climate. Adoption of the rating system has led to improvements in window design and fabrication beyond simply incorporating low-e glass and argon in sealed double units. Examples are given to illustrate substantially higher ER numbers obtained through improvements that impact on both overall U-factor and solar heat gain coefficient (SHGC).

Henry, R.; Dubrous, F. [Natural Resources Canada, Ottawa, Ontario (Canada)

1998-12-31T23:59:59.000Z

60

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Systems for Solar Thermionic Converters!! , AD 922869 (Performance of a Thermionic Converter Module Utilizing

Viswanathan, R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Design and prototype of a partial window replacement to improve the energy efficiency of 90-year-old MIT buildings  

E-Print Network [OSTI]

The existing windows of the 90-year-old buildings on the main MIT campus are not energy efficient and compromise comfort levels. The single panes of glass allow too much heat transfer and solar heat gain. In addition, the ...

Chen, YunJa

2007-01-01T23:59:59.000Z

62

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior Shading Exterior Shading Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by various additions to an existing window. Awnings exit disclaimer Blinds exit disclaimer Draperies exit disclaimer Overhangs exit disclaimer Shades exit disclaimer Shutters exit disclaimer Awnings in Residential Buildings Study showing that awnings have advantages that contribute to more sustainable buildings. Download Awnings in Residential Buildings exit disclaimer The most effective way of reducing solar heat gain is to block the sun's

63

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamic Windows Dynamic Windows Technologies, such as electrochromics, are now available for the residential market. The skylight on the left is switched to the "on" position-reducing glare and solar heat gain. The skylight on the right is switched to the "off" position. Photo: Velux-America and SAGE Electrochromics. The emerging concept for the window of the future is more as a multifunctional "appliance-in-the-wall" rather than simply a static piece of coated glass. These systems include switchable windows and shading systems that have variable optical and thermal properties that can be changed in response to climate and occupant preferences. By actively managing lighting and cooling, smart windows could reduce peak electric loads, increase daylighting benefits throughout the United States, improve

64

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower HVAC Costs Lower HVAC Costs HVAC sizing tools Several computation procedures exist for proper sizing of HVAC equipment. The most prominent ones, which are also recommended by the ENERGY STAR Homes program, are ACCA Manual J exit disclaimer and the ASHRAE Handbook of Fundamentals. Factors to be considered: The energy performance of the windows themselves must be considered in load calculations. NFRC-certified window performance values significantly increase the accuracy of these calculations. Window orientation and overhangs must be taken into account. Overhangs are an important factor influencing solar gains through windows. Where internal shades and blinds will be actively used, these should also be accounted for in load calculations. High-performance windows not only provide reduced annual heating and

65

Silver nanowire transparent electrodes for liquid crystal-based smart windows  

E-Print Network [OSTI]

privacy glass or as energy saving windows through the modulation of solar heat gain [1,3,4]. The operating sheet resistance, and low-cost. While the benefits of increased transparency and low-cost are obvious Polymer dispersed liquid crystal Smart window a b s t r a c t A significant manufacturing cost of polymer

Goldthorpe, Irene

66

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Conversion of Solar Energy, THEM Project", Trans. ofOrtega, "Solar Total Energy "I" Test Facility Project Testsolar energy for large scale electrical generational" even for more modest projects

Viswanathan, R.

2011-01-01T23:59:59.000Z

67

For natural ventilation to work, solar gains through the facade needed to be reduced by approximately 80% from  

E-Print Network [OSTI]

For natural ventilation to work, solar gains through the facade needed to be reduced area of the facade by 41%. The team undertook studies of options to reduce glazing area, while%. project overview and sustainability approach The new Molecular Engineering Building is centrally located

Hochberg, Michael

68

A First-Generation Prototype Dynamic Residential Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A First-Generation Prototype Dynamic Residential Window A First-Generation Prototype Dynamic Residential Window Title A First-Generation Prototype Dynamic Residential Window Publication Type Report LBNL Report Number LBNL-56075 Year of Publication 2004 Authors Kohler, Christian, Howdy Goudey, and Dariush K. Arasteh Call Number LBNL-56075 Abstract We present the concept for a smart highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available off-the-shelf components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The units predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

69

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

comparing the air source heat pump to the solar assisted~ indicates that the air source heat pump has a higher COP

Viswanathan, R.

2011-01-01T23:59:59.000Z

70

The harmonization of Canadian and U.S. window programs and standards. Impact on U-factor and SHGC of differences in simulation styles and assumptions  

SciTech Connect (OSTI)

The thermal performance of a window is currently characterized by the window`s thermal transmittance (U-factor) and its solar heat gain coefficient. The National Fenestration Rating Council (NFRC) has established a system for rating the thermal performance of windows. the U-factor is determined through computer simulation and validated with physical tests. The solar heat gain coefficient is determined for homogeneous products through computer simulation. Test methods exist for measuring solar heat gain through more complex products, although there is currently no standard. Under the NFRC`s rating program, a window must be simulated using the Window 4.1 and Frame 3.1 computer programs. There is some debate as to how accurately these computer programs simulate actual windows. This report addresses the differences in simulation styles and assumptions and what impact these differences have on the U-factor and solar heat gain coefficient. Section 2.0 covers center-of-glass modeling, section 3.0 covers spacer modeling, section 4.0 covers frame modeling, and section 5.0 concludes by weight the relative importance of the assumptions discussed. The focus of this research is on U-factor. For a more detailed study of solar heat gain coefficients refer to Wright (1995). This report also addresses the efficacy of various techniques, such as increasing glazing gap width or applying low-emittance coatings to interior glazing surfaces, at reducing total window U-factors.

NONE

1995-05-31T23:59:59.000Z

71

Passive Solar Building Design Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Passive Solar Building Design Basics Passive Solar Building Design Basics Passive Solar Building Design Basics July 30, 2013 - 3:20pm Addthis The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate. Passive solar design-also known as climatic design-involves using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. Learn how passive solar design techniques work. Direct Gain Direct gain is the process by which sunlight directly enters a building through the windows and is absorbed and temporarily stored in massive floors or walls. Indirect Gain Indirect gain is the process by which the sun warms a heat storage

72

Shortwave thermal performance for a glass window with a curved venetian blind  

Science Journals Connector (OSTI)

This paper presents a study of thermal performance for a glass window with a curved venetian blind installed on the indoor side in terms of heat gain in the shortwave part of radiation. The curved venetian blind, whose optical properties are considered nonspecular, is modeled as an effective layer. The mathematical model of the combined glass window and venetian blind is developed by combining the mathematical model of glass window and the mathematical model of a curved venetian blind using the matrix layer calculation method. The experiment is performed in a test room to measure the heat gain due to solar radiation passing through the glass window with a curved venetian blind installed in the shortwave part of radiation. The predicted results from the developed model are compared with the experimental results. The agreement between the predicted results and the experimental results is good. From the study it is found that installing a curved venetian blind to the glass window causes a significant reduction in heat gain compared to the plain glass window. The heat gain through the glass window with blind in the shortwave part of radiation (solar heat gain coefficient in the shortwave part of radiation (ShW SHGC)) is analyzed. It is found that the ShW SHGC is mainly affected by the slat properties, slat angle and solar profile angle. The glass window using blind with a lower value of slat reflectance, will have a smaller value of ShW SHGC. The slat distance also affects the ShW SHGC. The glass window using blind with a lower value of slat distance has a lower value of ShW SHGC. The effect of the slat curvature on the ShW SHGC is small when compared to the effect of other parameters. The effects of the investigated parameters on the ShW SHGC for diffuse radiation are similar to the effects on the ShW SHGC for direct radiation. When installing blind to different kinds of glass window other than clear glass window, it is found that the thermal performance is similar to the case of clear glass window. The magnitude of the ShW SHGC for the glass window with blind is also dependent on the optical properties of the glass window used. The glass window with blind using a lower value of the glass transmittance has a lower value of the ShW SHGC. The absorptance of the glass window has direct effect on the solar heat gain coefficient in the longwave part of radiation (LoW SHGC).

Somsak Chaiyapinunt; Nopparat Khamporn

2013-01-01T23:59:59.000Z

73

A Design Guide for Early-Market Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early-Market Electrochromic Windows Early-Market Electrochromic Windows Title A Design Guide for Early-Market Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59950 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Call Number LBNL-59950 Abstract Switchable variable-tint electrochromic windows preserve the view out while modulating transmitted light, glare, and solar heat gains and can reduce energy use and peak demand. To provide designers objective information on the risks and benefits of this technology, this study offers data from simulations, laboratory tests, and a 2.5-year field test of prototype large-area electrochromic windows evaluated under outdoor sun and sky conditions. The study characterized the prototypes in terms of transmittance range, coloring uniformity, switching speed, and control accuracy. It also integrated the windows with a daylighting control system and then used sensors and algorithms to balance energy efficiency and visual comfort, demonstrating the importance of intelligent design and control strategies to provide the best performance. Compared to an efficient low-e window with the same daylighting control system, the electrochromic window showed annual peak cooling load reductions from control of solar heat gains of 19-26% and lighting energy use savings of 48-67% when controlled for visual comfort. Subjects strongly preferred the electrochromic window over the reference window, with preferences related to perceived reductions in glare, reflections on the computer monitor, and window luminance. The EC windows provide provided the benefit of greater access to view year-round. Though not definitive, findings can be of great value to building professionals.

74

THE QUASI-BIENNIAL PERIODICITY AS A WINDOW ON THE SOLAR MAGNETIC DYNAMO CONFIGURATION  

SciTech Connect (OSTI)

Manifestations of the solar magnetic activity through periodicities of about 11 and 2 years are now clearly seen in all solar activity indices. In this paper, we add information about the mechanism driving the 2-year period by studying the time and latitudinal properties of acoustic modes that are sensitive probes of the subsurface layers. We use almost 17 years of high-quality resolved data provided by the Global Oscillation Network Group to investigate the solar cycle changes in p-mode frequencies for spherical degrees l from 0 to 120 and 1600 {mu}Hz {<=}{nu} {<=} 3500 {mu}Hz. For both periodic components of solar activity, we locate the origin of the frequency shift in the subsurface layers and find evidence that a sudden enhancement in amplitude occurs in just the last few hundred kilometers. We also show that, in both cases, the size of the shift increases toward equatorial latitudes and from minimum to maximum solar activity, but, in agreement with previous findings, the quasi-biennial periodicity (QBP) causes a weaker shift in mode frequencies and a slower enhancement than that caused by the 11-year cycle. We compare our observational findings with the features predicted by different models, that try to explain the origin of this QBP and conclude that the observed properties could result from the beating between a dipole and quadrupole magnetic configuration of the dynamo.

Simoniello, R.; Turck-Chieze, S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, CEA, IRFU, SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Jain, K.; Tripathy, S. C.; Hill, F. [National Solar Observatory, Tucson, AZ 85719 (United States); Baldner, C. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Finsterle, W. [PMOD/WRC Physikalisch-Meteorologisches Observatorium Davos-World Radiation Center, 7260 Davos Dorf (Switzerland); Roth, M., E-mail: rosaria.simoniello@cea.fr [Kiepenheuer Institute for Solar Physics, Freiburg (Germany)

2013-03-10T23:59:59.000Z

75

Application of an internally circulating fluidized bed for windowed solar chemical reactor with direct irradiation of reacting particles - article no. 014504  

SciTech Connect (OSTI)

Solar thermochemical processes require the development of a high-temperature solar reactor operating at 1000-1500{sup o}C, such as solar gasification of coal and the thermal reduction of metal oxides as part of a two-step water splitting cycle. Here, we propose to apply 'an internally circulating fluidized bed' for a windowed solar chemical reactor in which reacting particles are directly illuminated. The prototype reactor was constructed in a laboratory scale and demonstrated on CO{sub 2} gasification of coal coke using solar-simulated, concentrated visible light from a sun simulator as the energy source. About 12% of the maximum chemical storage efficiency was obtained by the solar-simulated gasification of the coke.

Kodama, T.; Enomoto, S.I.; Hatamachi, T.; Gokon, N. [Niigata University, Niigata (Japan). Dept. of Chemistry and Chemical Engineering

2008-02-15T23:59:59.000Z

76

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

8 8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3) Triple-Glazed (2) with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas (3) Note(s): Source(s): The Efficient Windows Collaborative (http://www.efficientwindows.org) 0.14 0.33 0.56 1) Spectrally selective. 2) Includes double glazing with suspended film. 3) Center of glass properties, does not include frame or installation

77

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect (OSTI)

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

78

Integrated window systems: An advanced energy-efficient residential fenestration product  

SciTech Connect (OSTI)

The last several years have produced a wide variety of new window products aimed at reducing the energy impacts associated with residential windows. Improvements have focused on reducing the rate at which heat flows through the total window product by conduction/convection and thermal radiation (quantified by the U-factor) as well as in controlling solar heat gain (measured by the Solar Heat Gain Coefficient (SHGC) or Shading Coefficient (SC)). Significant improvements in window performance have been made with low-E coated glazings, gas fills in multiple pane windows and with changes in spacer and frame materials and designs. These improvements have been changes to existing design concepts. They have pushed the limits of the individual features and revealed weaknesses. The next generation of windows will have to incorporate new materials and ideas, like recessed night insulation, seasonal sun shades and structural window frames, into the design, manufacturing and construction process, to produce an integrated window system that will be an energy and comfort asset.

Arasteh, D.; Griffith, B.; LaBerge, P.

1994-03-01T23:59:59.000Z

79

Window Manufacturer Sees Business Surge As Weatherization Supplier...  

Broader source: Energy.gov (indexed) [DOE]

of the aluminum windows they're replacing - the U-value is the measure of the rate of heat loss or gain through a window. The lower the U-value, the better a window's...

80

Proceedings of the 5th ISES Europe Solar Conf., Freiburg (2004), vol. 2 591 Solar utilisation in low-energy buildings  

E-Print Network [OSTI]

and Solar Energy Walter-Flex-Str. 3, D-57068 Siegen, Germany http://nesa1.uni-siegen.de, e-mail: heidt@physik.uni-siegen.de Abstract For low-energy buildings, passive solar gains can contribute significantly to the heat bal- ance losses, the energy flux through the glazing of windows is denoted as "passive solar gains". In low-energy

Gieseler, Udo D. J.

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advancement of Electrochromic Windows  

E-Print Network [OSTI]

heat gain coefficient (SHGC) range of 0.42–0.09. Findingslow-e windows (Tv=0.42, SHGC=0.22) to serve as a referencewall for glare (Tv =0.05, SHGC=0.09) reduced average daily

2006-01-01T23:59:59.000Z

82

Lunar Science as a Window into the Early Evolution of the Solar System and Conditions on the Early Earth  

E-Print Network [OSTI]

Earth In collaboration with the Geological Society of London, and the UK node of the NASA Lunar Science into the Early Evolution of the Solar System and Conditions on the Early Earth. For the last 4.5 billion years the Earth and Moon have essentially comprised a binary planet system which is unique in the inner Solar

Crawford, Ian

83

Window Properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Properties: measurements, simulations and ratings Window Properties: measurements, simulations and ratings Determining the thermal and optical performance of window systems is essential to researchers striving to develop improved products and to window manufacturers who need to demonstrate the energy performance of their products to architects, engineers, builders, and the general public. LBNL is involved in basic research in this field, in developing software and test procedures to analyze and quantify window heat transfer and optics, and in developing standards and rating procedures. Infrared Laboratory experiments provide surface temperature maps of window products. A companion Traversing System measures air velocity and air temperatures near the surface of test specimens. The MoWiTT facility provides accurate measurements of the heat flow through complete window systems subjected to real weather conditions. MoWiTT results have been used to validate the performance of emerging technologies and research prototypes as well as to validate thermal performance models.

84

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

vacuum technology that is required in crystalline solar cellTechnologies, Inc. “SolarWindow” Quantum Dot Solar Cells

Leow, Shin Woei

2014-01-01T23:59:59.000Z

85

Heat transmission through a glass window with a curved venetian blind installed  

Science Journals Connector (OSTI)

Abstract This article reports a study on the effect of installing a curved venetian blind to a glass window on the solar heat transmission into the space. The mathematical model of the combined glass window and venetian blind is developed. Predicted results from the developed mathematical model are compared with the previous experimental ones to verify their accuracy. The variation of the solar heat gain coefficient (SHGC) with the related blind parameters (optical properties of venetian blind, slat spacing, distance between the blind and glass window, slat angle and solar profile angle) are studied. The variation of the SHGC in the shortwave part (ShW SHGC) and in the longwave part (LoW SHGC) with the related blind parameters are also studied. The understanding of their variation will provide the important information for the study of the thermal comfort for a person who stays near the glass window with blind. The SHGC can be further classified as the SHGC for direct solar radiation (SHGCD) and the SHGC for diffuse solar radiation (SHGCd). From the study it is found that installing a curved venetian blind to the glass window causes a significant reduction in solar heat gain compared to the plain glass window. The SHGCD, ShW SHGCD and LoW SHGCD are all dependent on the slat angle and solar profile angle. The slat reflectance of the venetian blind has direct effect on the ShW SHGCD. The slat absorptance of the venetian blind has direct effect on the LoW SHGCD. The glass window and blind with high slat reflectance gives a lower value of SHGCD compared to the glass window and blind with low slat reflectance. The slat curvature also affects the SHGCD of the fenestration system (glass window with blind installed). The slat with more curvature (lower value of slat radius of curvature) causes more reduction in the value of SHGCD compared to the slat with less curvature. The blind with lower slat spacing yields a lower value of SHGCD compared to the blind with higher slat spacing. The effects of slat emittance and distance between the blind and the glass window on the SHGC D of the fenestration system are only appeared on the LoW SHGCD and such effects are quite small.

Somsak Chaiyapinunt; Nopparat Khamporn

2014-01-01T23:59:59.000Z

86

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: Air Leakage (AL) Measuring Performance: Air Leakage (AL) Is my window leaking air? The Air Leakage (AL) rating pertains to leakage through the window assembly itself. Air infiltration can also occur around the frame of the window due to poor installation or poor maintenance of existing window systems. Make sure windows are properly installed and maintained (caulking and weatherstripping). Cold glass can create uncomfortable drafts as air next to the window is cooled and drops to the floor. This is not a result of air leaking through or around the window assembly but from a convective loop created when next to a window is cooled and drops to the floor. This air movement can be avoided by installing high-performance windows. Heat loss and gain occur by infiltration through cracks in the window

87

Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV  

Science Journals Connector (OSTI)

Abstract Luminescent solar concentrators (LSC) are a promising technology for building integrated photovoltaics (BIPV) given the wide variety of forms and colours that can be realised. Given the flexibility of the technology, the use of ray-trace modelling is indispensable in the design, performance evaluation, and optimisation of LSCs. This work begins by comparing a three dimensional (3D) ray-trace model of an LSC with experimental results. The study includes 70 samples – both square and circular LSCs, containing five different fluorescent organic dyes (BASF Lumogen) each at seven different concentrations. The figure-of-merit used for performance evaluation was the average power density determined at the LSC edge sheet, measured using an optical fibre connected to a spectrometer. The results demonstrate that 3D ray-trace results gives good agreement with the experimental measurements, to within around ±5% within a wide concentration range (optical density=0.05–8) and a maximum difference of ±13%. The wide range of colours achieved is presented in a CIE chart. Overall, the validated experimental results give confidence in the use of modelling for future larger \\{LSCs\\} for BIPV. Therefore, based on these results and the colours achievable, a model of a stained-glass window is constructed and its performance throughout a solar day is simulated.

A. Kerrouche; D.A. Hardy; D. Ross; B.S. Richards

2014-01-01T23:59:59.000Z

88

Windows in the buildings of tomorrow: Energy losers or energy gainers?  

Science Journals Connector (OSTI)

One of the most effective actions for reduction of energy loss through the building envelope is to optimize the thermal performance, area and localization of the transparent components in the façade in order to obtain minimal heat losses and optimal solar gains. When considering the thermal performance of these transparent components, one should consider, not only heat loss (or gains) caused by thermal transmission, but also the beneficial effects of incident solar radiation and hence reduced demand for heating and artificial lighting. This study presents calculations for a range of windows as part of a building where the coupled effects of incident solar radiation and thermal transmission heat losses are accounted for in terms of a net energy balance for the various solutions. Effects of varying thermal transmittance values (U-values) are studied in connection with solar heat gain coefficients. Three different rating methods have been proposed and applied to assess the energy performance of several window configurations. It has been found that various rating methods give different energy saving potentials in terms of absolute figures. Furthermore, it has been found that windows, even with existing technology, might outperform an opaque wall in terms of heating and cooling demands.

Steinar Grynning; Arild Gustavsen; Berit Time; Bjørn Petter Jelle

2013-01-01T23:59:59.000Z

89

Thickness Effect of Al-Doped ZnO Window Layer on Damp Heat Stability of CuInGaSe2 Solar Cells: Preprint  

SciTech Connect (OSTI)

We investigated the damp heat (DH) stability of CuInGaSe2 (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 ?m to a modest 0.50 ?m over an underlying 0.10-?m intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 ?m/3 ?m) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85oC and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

2011-07-01T23:59:59.000Z

90

Thickness Effect of Al-Doped ZnO Window Layer on Damp-Heat Stability of CuInGaSe2 Solar Cells  

SciTech Connect (OSTI)

We investigated the damp heat (DH) stability of CuInGaSe{sub 2} (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 {micro}m to a modest 0.50 {micro}m over an underlying 0.10-{micro}m intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 {micro}m/3 {micro}m) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85 C and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

2011-01-01T23:59:59.000Z

91

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glazing Glazing Double-Glazed, Clear Glass This figure illustrates the performance of a typical double-glazed unit with two lites of clear glass. The inner and outer layers of glass are both clear and separated by an air gap. Double glazing, compared to single glazing, cuts heat loss in half due to the insulating air space between the glass layers. In addition to reducing the heat flow, a double-glazed unit with clear glass will allow the transmission of high visible light and high solar heat gain. Double Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

92

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

93

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Home Maintenance: Windows, Windows, Windows! Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

94

Passive and hybrid solar manufactured housing program, Phase 2. Design of the solarium house prototype direct gain house prototype  

SciTech Connect (OSTI)

The goal of this project is to create widespread production and sales of energy conserving passive solar heated and cooled manufactured homes. All completed buildings will be built in a factory utilizing wood construction and integrating applied and accepted on-site construction techniques. The Usry design team has evaluated many processes of construction and has determined that environmentally controlled manufactured systems are much more cost efficient as well as quality coordinated. Utilizing certain preliminary market assessments in the Richmond metropolitan area, it was determined that a typical home consisting of 1000 to 1600 square feet would be most favorable.

Usry, J.D.

1982-11-01T23:59:59.000Z

95

New and Underutilized Technology: Smart Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smart Windows Smart Windows New and Underutilized Technology: Smart Windows October 8, 2013 - 2:55pm Addthis The following information outlines key deployment considerations for smart windows within the Federal sector. Benefits Smart windows are made of electrochromic glass, which uses electrical energy to transition between clear and darkened state to control light and heat gain. Darkened glass transmits less light and reduces heat gain, especially in dual-pane windows. Application Smart windows are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to smart window implementation. Ranking Criteria

96

Effect of window type, size and orientation on the total energy demand for a building in Indian climatic conditions  

Science Journals Connector (OSTI)

Windows in a building allow daylight to enter a building space but simultaneously they also result in heat gains and losses affecting energy balance. This requires an optimisation of window area from the point of view of total energy demand viz., for lighting and cooling/heating. This paper is devoted to this kind of study for Indian climatic conditions, which are characterised by six climatic zones varying from extreme cold to hot, dry and humid conditions. Different types of windows have been considered because the optimised size will also depend on the thermo-optical parameters like heat transfer coefficient (U-value), solar heat gain coefficient (g), visual (?), and total transmittance (T) of the glazing in the window. It is observed that in a non-insulated building, cooling/heating energy demand far exceeds lighting energy demand, making the optimisation of window area a futile exercise from the point of view of total energy demand. Only for buildings with U-value below 0.6 W/m²K can optimisation be achieved. The optimised window area and the corresponding specific energy consumption have been calculated for different climates in India, for different orientations, and for three different advanced window systems.

Inderjeet Singh; N.K. Bansal

2004-01-01T23:59:59.000Z

97

Advancement of Electrochromic Windows  

E-Print Network [OSTI]

Guide for Early-Market Electrochromic Windows. LBNL-59950.Guide for Early-Market Electrochromic Windows Attachment 17:electrochromic prototype windows that were deemed sufficiently mature for market

2006-01-01T23:59:59.000Z

98

Zero Energy Windows  

E-Print Network [OSTI]

Energy Performance of Electrochromic Windows Controlled for2006). Advancement of Electrochromic Windows, CaliforniaSavings Potential of Electrochromic Windows in the U.S.

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

99

Calculating center-glass performance indices of windows  

SciTech Connect (OSTI)

Building envelope performance is strongly influenced by solar gain and heat transfer through windows. The majority of this energy gain or loss passes through the center-glass area of the glazing system. Various methods have been devised to calculate the corresponding center-glass performance indices. Solar heat gain coefficient (SHGC) and U-factor are the quantities most frequently sought. Hand calculations have given way to computer-based techniques. Computer simulation offers the opportunity to employ more detailed models plus the ability to model the large number of glazing systems made possible by design options, such as low-emissivity or solar-control coatings, selective glass tints, substitute fill gases, and glazing layers, that partially transmit longwave radiation. A new, more accurate method is presented in this paper for manipulating spectral optical data while calculating the energy related optical properties of glazing layers and glazing systems. The use of the same technique to track visible and ultraviolet radiation is also demonstrated. In addition, more refined methods are documented for calculating SHGC and U-factor while accounting for the thermal resistance of individual glazings.

Wright, J.L. [Univ. of Waterloo, Ontario (Canada). Dept. of Mechanical Engineering

1998-10-01T23:59:59.000Z

100

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CGDB Import Into WINDOW CGDB Import Into WINDOW Updated: 11/14/12 Detailed Instructions for Importing CGDB data into WINDOW These instructions apply to either WINDOW 6 or 7. WINDOW 6 vs WINDOW 7 Because the database structure of WINDOW 6 is different that WINDOW 7, there are different CGDB files to go with each version of WINDOW. There are also different versions of the XML files for each version, because in WINDOW 7 some problems with the files were fixed. Setup of CGDB The CGDB consists of a WINDOW database of records in the Shading Layer, Shade Material Library, and Glass Library, as well as a set of text files for systems that reference BSDF XML files. Database: The installation will put two databases into the "LBNL Shared" directory: (the location will depend on your operating system):

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy-Efficient Window Treatments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Window Treatments Energy-Efficient Window Treatments Energy-Efficient Window Treatments September 25, 2012 - 9:04am Addthis The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks What does this mean for me? Window treatments can reduce energy use in your home, and are less expensive than purchasing new, energy-efficient windows. In addition to saving energy, window treatments can be aesthetic additions to your home. You can choose window treatments or coverings not only for decoration but also for saving energy. Some carefully selected window treatments can reduce heat loss in the winter and heat gain in the summer. Window

102

Energy-Efficient Window Treatments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Treatments Window Treatments Energy-Efficient Window Treatments September 25, 2012 - 9:04am Addthis The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks What does this mean for me? Window treatments can reduce energy use in your home, and are less expensive than purchasing new, energy-efficient windows. In addition to saving energy, window treatments can be aesthetic additions to your home. You can choose window treatments or coverings not only for decoration but also for saving energy. Some carefully selected window treatments can reduce heat loss in the winter and heat gain in the summer. Window

103

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

BTU/yr) Non. Wind Infilt SHGC Wind. Solar Wind. Cond InfiltU Factor Other Loads SHGC Window Solar Cond Infiltrationof average U-factor and SHGC for current window sales. We

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

104

New and Underutilized Technology: Window Films | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Films Window Films New and Underutilized Technology: Window Films October 8, 2013 - 2:50pm Addthis The following information outlines key deployment considerations for window films within the Federal sector. Benefits Window films are a spectrally-selective film used to decrease heat gain through a window. Application Window films are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to window film implementation. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are ranked 0-5 with 0 representing the lowest ranking and 5 representing the highest ranking. The weighted score is ranked 0-100 with 0 representing the

105

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(6.3.74 -- February 14, 2012) Release Notes Updated: 02/15/13 If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 6.3.74 Program Changes Window LIbrary: Window Types In previous versions of WINDOW 6.3, there were two different Window Type lists, with conflicting ID numbers, which resulted in the possibility of a Window Library made with one set of Window Types would become corrupted (the wrong Window Types assigned) if the database records were imported into a another database with the different Window Type list. To solve this problem, we have added a database "migration" with this version of WINDOW -- when it opens any older database, it will update the Window Types list to have the choices (and IDs) shown below and then it will also update all the Window Library records to map to the new Window Types based on what the records were set to originally.

106

LBNL Windows & Daylighting Software -- WINDOW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW WINDOW NFRC Certification Version Release Version Beta Version WINDOW 6.3 (For NFRC Certification and modeling Complex Glazing Systems) WINDOW 7.1 For modeling vacuum glazing, deflected glass, vertical venetian blinds and perforated screens WINDOW 7.2 For modeling Cellular Shades, in addition to vacuum glazing, deflected glass, vertical venetian blinds and perforated screens Download WINDOW 6.3 (for NFRC Certification and complex glazing systems) Download WINDOW 7.1 Download WINDOW 7.2 Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) New Features

107

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW 6 and THERM 6 Technical Documentation WINDOW 6 and THERM 6 Technical Documentation Algorithm Documentation WINDOW6 and THERM6 implement the ISO 15099 algorithms: bullet ISO 15099 The algorithms in WINDOW6 and THERM6 follow the procedures presented in ISO 15099: "Thermal performance of windows, doors and shading devices - Detailed calculations." See: http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO+15099%3A2003 In addition to implementing ISO 15099 algorithms in WINDOW6 and THERM6, we have added additional capabilities to WINDOW6. The following reports and papers describe these additional capabilities and/or elaborate on ISO15099. bullet Thermal Algorithm Documentation for THERM6: Conrad 5 & Viewer 5 Technical and Programming Documentation June 20, 2006 bullet Thermal Algorithm Documentation for WINDOW6:

108

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Considerations for Window Performance Considerations for Window Performance Advanced window technologies can have a major effect on comfort and on the annual energy performance of a house. However, there is a broader and possibly more significant impact of the recent revolution in window performance. Because the new glazing technologies provide highly effective insulating value and solar protection, there are important implications for how a house is designed. There is a long-established set of window design guidelines and assumptions intended to reduce heating and cooling energy use. These are based, in part, on the historical assumption that windows were the weak link in the building envelope. These assumptions frequently created limitations on design freedom or generated conflicts with other performance requirements,

109

Building Energy Software Tools Directory: Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Window WINDOW screenshot. Calculates thermal performance of fenestration products; heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). Screen Shots Keywords fenestration, thermal performance, solar optical characteristics, windows, glazing Validation/Testing N/A Expertise Required Some knowledge about windows. Users 2000+ in the U.S. and abroad. Audience Manufacturers, engineers, architects, researchers, sales personnel. Input Interactive program: user-provided data files for frames (from the THERM program) and glazing layers (from the Optics program) optional. Output Reports for the total window can be saved to disk or printed; files can be generated to be used as input to the DOE-2 and EnergyPlus programs;

110

Advancement of Electrochromic Windows  

E-Print Network [OSTI]

of a thin-film ceramic electrochromic window: Field studyof a Thin-Film Ceramic Electrochromic Window: Field StudyEC window product characteristics The EC is a thin-film WO3-

2006-01-01T23:59:59.000Z

111

Advancement of Electrochromic Windows  

E-Print Network [OSTI]

Guide for Early-Market Electrochromic Windows. LBNL-59950.Granqvist, C.G. 2000. "Electrochromic Tungsten Oxide Films:the performance of the electrochromic windows. Proceedings

2006-01-01T23:59:59.000Z

112

Solar  

Science Journals Connector (OSTI)

With sharp drop in costs for photovoltaic and solar thermal processes, solar energy has become more attractive alternative ... Almost half the total was earmarked for PV and solar thermal projects. ...

WARD WORTHY

1991-06-17T23:59:59.000Z

113

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Specular Glazing Systems Specular Glazing Systems NFRC THERM 6.3 / WINDOW 6.3 Simulation Manual July 2013: bullet Entire Manual in PDF Format approximate 8 MB Comparison of WINDOW 5 / THERM 5 and WINDOW 6 / THERM 6 Results for Specular Glazing Systems (PDF Format) NFRC WINDOW 6 / THERM 6 Training for Specular Systems (Power Point Presentation, Oct/Nov 2010) Tutorials Complex Glazing Systems bullet WINDOW 6.2 / THERM 6.2 Research Version User Manual (Documents features in WINDOW6 and THERM 6 for modeling complex glazing systems) bullet WINDOW 6.2 / THERM 6.2 Simulation Manual Chapter for Complex Glazing (Draft) This was used for NFRC Simulator training in June 2009, and includes detailed descriptions for modeling venetian blinds between glass and frits. bullet Complex Glazing Summary -- PDF File

114

High Performance Window Attachments  

Broader source: Energy.gov (indexed) [DOE]

High Performance Window High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but they have widely unknown

115

Investigation of CdS Nanowires and Planar Films for Enhanced Performance as Window Layers in CdS-CdTe Solar Cell Devices.  

E-Print Network [OSTI]

??Cadmium sulfide (CdS) and cadmium telluride (CdTe) are two leading semiconductor materials used in the fabrication of thin film solar cells of relatively high power… (more)

Chen, Jianhao

2013-01-01T23:59:59.000Z

116

AppMonitor: A tool for recording user actions in unmodified Windows applications  

Science Journals Connector (OSTI)

This article describes AppMonitor, a Microsoft Windows-based client-side logging tool that records user actions in unmodified Windows applications. AppMonitor allows researchers to gain insights into many face...

Jason Alexander; Andy Cockburn; Richard Lobb

2008-05-01T23:59:59.000Z

117

The Efficient Window Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 The Efficient Window Collaborative http://www.efficientwindows.org Energy-efficient windows make up only about 35% of the U.S. residential window market, even though they are cost-effective in approximately 80% or more of all applications. To ensure that efficient windows reach their optimum potential in homes throughout the U.S., the Department of Energy and key players in the U.S. window industry have formed the Efficient Window Collaborative (EWC). The EWC's goal is doubling the market share of efficient windows by 2005. With 31 charter members from the window and glass industries, the EWC is managed jointly by the Washington, D.C.-based Alliance to Save Energy and the Center for Building Science's Windows and Daylighting Group. The EWC serves as a focal point for voluntary

118

Active load management with advanced window wall systems: Research and industry perspectives  

SciTech Connect (OSTI)

Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

2002-06-01T23:59:59.000Z

119

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(6.3.9) (6.3.9) October 2010 Last Updated: 11/07/2010 Complex Glazing Features for WINDOW6 The Research Version of WINDOW 6 has the following modeling capabilities: Shading Layer Library: A Shading Layer Library has been added to define shading systems, such as venetian blinds and diffusing layers, which can then be added as layers in the Glazing System Library. Shade Material Library: A Shading Material Library has been added to define materials to be used in the Shading Layer Library. Properties defined in this library include shade material reflectance and absorptance (in the solar, visible and IR wavelengths ranges), as well as the conductivity of the material. Glazing System Library In the “Layers” section of the Glazing System definition, it is now possible to specify either a glass layer or a shading layer. The shading system is chosen from the Shading Layer Library.

120

MoWiTT:Mobile Window Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Engineering: See-through solar cells  

Science Journals Connector (OSTI)

... windows of houses and skyscrapers could one day be harvested thanks to the creation of solar ...solarcells ...

2011-05-25T23:59:59.000Z

122

window.xp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New New in Building Energy Efficiency Selecting Windows for Energy Efficiency New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection. S electing the right window for a specific home invariably requires tradeoffs between dif- ferent energy performance features, and with other non-energy issues. An understanding of some basic energy concepts is therefore essential to choosing appropriate windows and skylights. As illustrated on the fol-

123

Purchasing Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and can make even the smallest room seem bright and spacious. Operable windows let fresh air in and stale air out. Windows that are properly selected, well designed and constructed, and properly installed can make a world of difference to a home, helping it to be warm and cozy in the winter, and cool and comfortable in the summer. Yet windows have traditionally been the weak spot in the home's building envelope-that part of the house connected to the outdoors. They can be one of the leading sources of drafts, heat loss (or unwanted heat gain in

124

Purchasing Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and can make even the smallest room seem bright and spacious. Operable windows let fresh air in and stale air out. Windows that are properly selected, well designed and constructed, and properly installed can make a world of difference to a home, helping it to be warm and cozy in the winter, and cool and comfortable in the summer. Yet windows have traditionally been the weak spot in the home's building envelope-that part of the house connected to the outdoors. They can be one of the leading sources of drafts, heat loss (or unwanted heat gain in

125

High Performance Windows Volume Purchase: The Windows Volume Purchase RFP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Windows The Windows Volume Purchase RFP to someone by E-mail Share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Facebook Tweet about High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Twitter Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Google Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Delicious Rank High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Digg Find More places to share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on AddThis.com... Home About FAQs Low-E Storm Windows Request for Proposal Contacts For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers

126

Sugar Land Facility Lighting and Window Tinting Upgrades  

E-Print Network [OSTI]

comparative analysis of tinted windows to those that are not tinted. NEEC evaluated the cost effectiveness of applying an energy control film to existing windows. The energy control film selected for comparison had a Solar Energy Rejection Factor of 77... (Fenestration Analysis by Computer of Thennal Systems) Energy Analysis Program to evaluate the cost effectiveness of applying a energy control film to existing windows. Data inputted into this program was based on the location of the facility, the amount...

Mesenbrink, C.

127

Low Cost Nanostructured Smart Window Coatings | Department of...  

Energy Savers [EERE]

glass unit (IGU) that reduces building energy consumption by dynamically optimizing solar gain without affecting natural light. During this project, Heliotrope will utilize...

128

Energy performance of a dual airflow window under different climates  

Science Journals Connector (OSTI)

Ventilated windows have shown great potential in conserving energy in buildings and provide fresh air to improve indoor air quality. This paper reports our effort to use EnergyPlus to simulate the energy performance of a dual airflow window under different climates. Our investigation first developed a network model to account for the two-dimensional heat transfer in the window system and implemented it in EnergyPlus. The two-dimensional assumption and the modified EnergyPlus program were validated by the measured temperatures of the window and the energy demand of a test cell with the window under actual weather conditions. Then EnergyPlus was applied to analyze energy performance of a small apartment installed with the dual airflow windows in five different climate zones in China. The energy used by the apartment with blinds windows and low-e windows was also calculated for comparison. The dual airflow window can reduce heating energy of the apartment, especially in cold climate. The cooling energy reduction by the window was less important than that by shading solar radiation. The dual airflow window is recommended for colder climate. If improving air quality is a major consideration for a building, the window can be used in any climate.

Jingshu Wei; Jianing Zhao; Qingyan Chen

2010-01-01T23:59:59.000Z

129

Windows and Daylighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office building exterior Office building exterior Windows and Daylighting Windows research is aimed at improving energy efficiency in buildings and homes across the nation. Research includes: New glazing materials Windows simulation software Advanced high-performance fenestration systems Daylighting technologies Measurement of window properties Windows performance in residential and commercial buildings. Contacts Stephen Selkowitz SESelkowitz@lbl.gov (510) 486-5064 Eleanor Lee ESLee@lbl.gov (510) 486-4997 Charlie Curcija DCCurcija@lbl.gov (510) 495-2602 Links Windows and Daylighting Daylighting the New York Times Headquarters Building Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

130

Highly Insulating Windows - Publ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

131

Highly Insulating Window Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

132

Window industry technology roadmap  

SciTech Connect (OSTI)

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

133

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optics 6.0 Optics 6.0 (6.0 -- February 13, 2012) Release Notes Updated: 07/16/12 Program Changes Microsoft Windows 7 / Vista Operating System"Aware" Optics now installs and operates much better under the Microsoft Windows 7 and Vista operating systems. It is no longer necessary to run the "VistaFix" batch file after installing the program. Fixed Bugs If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to OpticsHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. Paths Appear in Tools/Options In the Microsoft Windows 7 / Vista Operating System environments, the program would not display the directory paths in the Tools / Options "File Locations" dialog box. This is now fixed.

134

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cellular / Honeycomb Shades Cellular / Honeycomb Shades Updated 09/30/2013 It is now possible to model cellular / honeycomb shading systems in the Shading System Library and then add them to a glazing system in the Glazing System Library. NOTE: Before attempting to calculate a glazing system with a cellular shade, you must make the following change to the THERM7.ini file, which is located in C:\Users\Public\LBNL\Settings. Close WINDOW7 before making this change. DocPath=C:\Users\Public\LBNL\WINDOW7\debug Shading Layer Library A cellular / honeycomb shade can now be defined in the Shading Layer Library. Defining this type of shading system requires an XML file which contains information about the cell geometry and the material thermal and optical properties. WINDOW can model two different types of cellular shades:

135

Solar Textiles For the Home.  

E-Print Network [OSTI]

??Solar Textiles came out of the idea that everyone has windows in their homes which need to be shaded. The question was simple, why are… (more)

Cosman, Brienne E

2011-01-01T23:59:59.000Z

136

Highly Insulating Windows - Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

137

Plasma window characterization  

SciTech Connect (OSTI)

Parameters of an arc Ar plasma discharge used as a plasma window with a discharge current of {approx}50 A and a voltage of {approx}58 V are presented. It is shown that this arc discharge allows one to decrease the pressure at the low pressure end of the plasma window almost 380 times using relatively low pumping at the low pressure end of the plasma window. Calculations of the plasma parameters and their spatial distribution using a simple wall-stabilized arc model showed a satisfactory agreement with the experimentally obtained data. It is shown that a significant decrease in gas flow through the plasma window occurs due to the increase in plasma viscosity. An improvement of the plasma window ignition and some of its design aspects are described as well.

Krasik, Ya. E.; Gleizer, S.; Gurovich, V.; Kronhaus, I.; Hershcovitch, A.; Nozar, P.; Taliani, C. [Physics Department, Technion, 32000 Haifa (Israel); Brookhaven National Laboratory, New York 11973-5000 (United States); Istituto per lo Studio dei Materiali Nanostrutturati, 40 129 Bologna (Italy)

2007-03-01T23:59:59.000Z

138

Window Types | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

139

Window Types | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

140

Guide to Passive Solar Home Design  

Broader source: Energy.gov (indexed) [DOE]

Elements of Passive Solar Design Elements of Passive Solar Design To design a completely passive solar home, you need to incorporate what are considered the five elements of passive solar design: 1. Aperture (Windows) - Windows should face within 30 degrees of true south, and during winter months they should not be shaded from 9 a.m. to 3 p.m. The windows in living areas should face south, while the windows in bedrooms should face north. In colder climates, reduce the window area

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tips: Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Windows Windows Tips: Windows June 18, 2012 - 9:43am Addthis Tips: Windows Windows can be one of your home's most attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill by letting heat out. During the summer, your air conditioner must work harder to cool hot air from sunny windows. Install ENERGY STAR®-qualified windows and use curtains and shade to give your air conditioner and energy bill a break. If your home has single-pane windows, consider replacing them with double-pane windows with high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select windows with

142

Modeling of capacitance transients of thin-film solar cells: A valuable tool to gain information on perturbing layers or interfaces  

SciTech Connect (OSTI)

Thin-film electronic and photovoltaic devices often comprise, in addition to the anticipated p-n junctions, additional non-ideal ohmic contacts between layers. This may give rise to additional signals in capacitance spectroscopy techniques that are not directly related to defects in the structure. In this paper, we present a fitting algorithm for transient signals arising from such an additional junction. The fitting results are in excellent agreement with the diode characteristics extracted from static measurements on individual components. Finally, the algorithm is applied for determining the barriers associated with anomalous signals reported for selected CuIn{sub 1–x}Ga{sub x}Se{sub 2} and CdTe solar cells.

Lauwaert, Johan, E-mail: Johan.Lauwaert@UGent.be; Van Puyvelde, Lisanne; Vrielinck, Henk [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Lauwaert, Jeroen; Thybaut, Joris W. [Laboratory for Chemical Technology (LCT), Ghent University, Krijgslaan 281-S5, 9000 Gent (Belgium)

2014-02-03T23:59:59.000Z

143

Windows, Doors, & Skylights | Department of Energy  

Energy Savers [EERE]

Logan Architects. Windows affect home aesthetics as well as energy use. Window Types A wood-frame window with insulated window glazing. | Photo courtesy of iStockphoto...

144

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Comfort Improved Comfort Comfort High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. During cold weather, exterior temperatures drive interior glass surface temperatures down below the room air temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior glass surface temperature is 52ËšF or less, it is most likely that there will be discomfort. During warm weather, solar radiation can cause discomfort. Just as people turn up the heat to compensate for cold windows in cold weather, they may use

145

Subject Responses to Electrochromic Windows  

E-Print Network [OSTI]

Visual quality assessment of electrochromic and conventionalissues for large-area electrochromic windows in commercialOffice worker preferences of electrochromic windows: a pilot

Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

2006-01-01T23:59:59.000Z

146

CH7 Windows Introduction  

E-Print Network [OSTI]

4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe Windows NT 4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe

Collette. Sébastien

147

Zero Energy Windows  

E-Print Network [OSTI]

estimates of the U-factor and SHGC for today’s installedtoday's window stock U-factor and SHGC properties used thosepoint. U-factor and SHGC estimates vary by prototypical

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

148

Seeing Windows Through  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Seeing Windows Through A profusion of gases, glazings, and gap sizes are among the factors that confound efforts to measure the energy performance of a window or skylight. The increasing variety of efficiency-enhancing options for windows and their frames poses a formidable challenge to builders, utilities, code officials, and consumers. Fortunately, a new system for accurately rating and labeling these products promises to help demystify them and to foster nationwide improvements in energy efficiency. NFRC is Born Window trade groups have historically organized around specific materials or components (such as glass or frames), and energy has rarely been their focal point. This changed in 1989 with the formation of the National Fenestration Rating Council. One impetus behind the industry's

149

Window Daylighting Demo  

Broader source: Energy.gov (indexed) [DOE]

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

150

Window Daylighting Demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

151

High Performance Window Retrofit  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

Shrestha, Som S [ORNL] [ORNL; Hun, Diana E [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2013-12-01T23:59:59.000Z

152

Storm Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

153

Storm Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

154

Highly Insulating Windows - Fram  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

155

SciTech Connect: Solar Energy Education. Renewable energy activities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of...

156

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacuum Glazing Modeling Vacuum Glazing Modeling It is now possible to model vacuum glazing in WINDOW 7. The first step is to define a new vacuum "gap" in the "Gap Library" (formerly the Gas Library). Then that vacuum gap is used in a glazing system to calculate the thermal characteristics of the glazing system with a vacuum gap. Gap Library The Gas Library has been renamed the Gap Library. To define a vacuum gap, check the "Vacuum" checkbox (this is only available for single gases, not gas mixtures). When this box is checked, new input variables will appear, including the vacuum pressure, the specific heat ratio and molecular weight of the vacuum gas. It is also necessary to define a pillar system for the vacuum gap. Pillar Definition Double click the double arrow to the right of the Pillar Definition pulldown to define a new pillar system. Define the shape and dimensions of the pillar system.

157

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 (7.2.29 -- December 29 2013) Release Notes Updated: 12/29/13 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.29 (December 29, 2013) Program Changes Glazing System Shading System Details For shading system in a Glazing System Library construction, the emittances, conductance and TIR are not displayed, as they are only available after a calculation has been completed. Perforated Screens An input value for "Effective Openness Factor" has been added to the Shading Layer Library for perforated screens. At a future date, we will update the program to calculate this value automatically.

158

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deflection Modeling Deflection Modeling It is now possible to model the effects of glass deflection in WINDOW 7. Glazing System Library The Glazing System Library is where the deflection modeling input values are entered. When the "Model Deflection" box is checked, a Deflection input box appears. When the Glazing System is calculated, two rows of results, one for the undeflected state and one for the deflected state, appear for Center of Glass Results, Temperature Data and Angular data. In addition, a Deflection tab appears, which shows the deflection of each glass layer and the resulting gap width for each gap. Glazing System Deflect Input There are two options for defining the deflection in a glazing system, by choosing from the "Input" pulldown list:

159

A statistical analysis of passive solar superinsulated homes in Minnesota  

SciTech Connect (OSTI)

This study analyzed the space heat performance of 46 passive solar superinsulated homes whose construction was financed by the Minnesota Housing Finance Agency (MHFA). heat gain and loss calculations were used to predict the auxiliary heating energy required by the houses. These calculations were adjusted for actual weather conditions, thermostat settings and other variables during the 1981-1982 heating season. The sample was divided into two sub-samples, one containing houses with ratios of south glass area relative to floor area of 8.5% or larger, and a second with smaller ratios of south glass area to floor area. The results suggest that houses with larger south glass area relative to floor area may not perform as predicted. These houses appeared to have more heat loss than heat gain associated with the south windows. In the houses with less south facing glass, the passive solar components appeared to perform as predicted.

Fugerson, M.; Lancaster, R.

1983-06-01T23:59:59.000Z

160

Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior  

Broader source: Energy.gov [DOE]

Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

nanowire networks as window layers in thin film solar cells.window layer for fully solution-deposited thin filmITO) thin films by silver nanowire composite window layers

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

162

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome to the Efficient Windows Collaborative Welcome to the Efficient Windows Collaborative YOUR GATEWAY TO INFORMATION ON HOW TO CHOOSE ENERGY-EFFICIENT RESIDENTIAL WINDOWS 101 Efficient Windows Collaborative (EWC) members have made a commitment to manufacture and promote energy-efficient windows. This site provides unbiased information on the benefits of energy-efficient windows, descriptions of how they work, and recommendations for their selection and use. Selecting Windows for New Construction Window Selection Tool Selection Process Design Guidance Installation Selecting Replacement Windows Window Selection Tool Assessing Replacement Options Selection Process Design Guidance Installation Understanding Windows Benefits of Energy Efficient Windows Design Considerations How to Measure Performance Window Technologies

163

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Glazing Single Glazing Single-Glazed, Clear Glass This figure illustrates the performance of a typical single-glazed unit with clear glass. Relative to all other glazing options, single-glazed with clear glass allows the highest transfer of energy (i.e. heat loss or heat gain depending on local climate conditions) while permitting the highest daylight transmission. Single Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. Whole Window Properties - Single-Glazed, Clear Glass Metal Frame Non-metal Frame Metal Frame Metal Frame with Thermal Break Non-metal Frame Non-metal Frame, Thermally Improved

164

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies: Glazing Types Window Technologies: Glazing Types Glazing Improvements There are three fundamental approaches to improving the energy performance of glazing products (two or more of these approaches may be combined). The first approach is to alter the glazing material itself by changing its chemical composition or physical characteristics. An example of this is tinted glazing. The second approach is to apply a coating to the glazing material surface. Reflective coatings and films were developed to reduce heat gain and glare, and more recently, low-emittance coatings have been developed to improve both heating and cooling season performance. The third approach is to assemble various layers of glazing and control the properties of the spaces between the layers. These strategies include the use of two or more panes or films,

165

Light shield for solar concentrators  

DOE Patents [OSTI]

A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

Plesniak, Adam P.; Martins, Guy L.

2014-08-26T23:59:59.000Z

166

Effects of Overhangs on the Performance of Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of Overhangs on the Performance of Electrochromic Windows Effects of Overhangs on the Performance of Electrochromic Windows Title Effects of Overhangs on the Performance of Electrochromic Windows Publication Type Journal Article LBNL Report Number LBNL-61137 Year of Publication 2006 Authors Tavil, Aslihan, and Eleanor S. Lee Journal Architectural Science Review Call Number LBNL-61137 Abstract In this study, various facade designs with overhangs combined with electrochromic (EC) window control strategies were modeled for a typical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) for south-facing private offices were computed and compared to determine which combinations of fa?ade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort.

167

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Release Notes Release Notes Updated: 11/07/11 History of COMFEN 3.1 Releases New Features Glazed Wall Assembly In addition to modeling individual windows, COMFEN now has the capability of modeling "Glazed Wall Assemblies" which allow you to specify the number of horizontal and vertical framing members, as well as their spacing, and the program automatically generates the facade. Click here for more details. Material Library COMFEN now has a Material Library, which can be used in the Wall Construction and Spandrel Libraries. See the User Manual for more details. Wall Library COMFEN now has a Wall Library which can be used to build up layers from the Material Library to define a wall. See the User Manual for more details. Spandrel Library COMFEN now has a Spandrel Library which can be used to build up layers from the Material Library to define a spandrel, including glass and glazing systems as the outer-most layers. See the User Manual for more details.

168

Energy Savings from Window Attachments  

Broader source: Energy.gov [DOE]

This study presents energy-modeling results for a large number of window combinations with window attachments in typical residential buildings and in varied climates throughout the United States.

169

The Window Strategy with Options  

E-Print Network [OSTI]

The window strategy is one of several marketing strategies using futures and options to establish a floor price and allow for upside price potential. It also reduces option premium costs. This publication discusses how the window strategy works...

McCorkle, Dean; Amosson, Stephen H.; Fausett, Marvin

1999-06-23T23:59:59.000Z

170

Nanolens Window Coatings for Daylighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

171

Nanolens Window Coatings for Daylighting  

Broader source: Energy.gov (indexed) [DOE]

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

172

Windows Bitmap .bmp or .dib  

E-Print Network [OSTI]

platforms' GDI subsystem, where the specific format used is the Windows and OS/2 bitmap file format, usually

Gribaudo, Marco

173

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Government, Research, and Educational Organizations Alliance to Save Energy ewc@ase.org www.ase.org exit disclaimer Building Codes Assistance Project (BCAP) www.bcap-energy.org exit disclaimer BCAP's Online Code Environment & Advocacy Network (OCEAN) energycodesocean.org exit disclaimer Center for Sustainable Building Research csbr@umn.edu www.csbr.umn.edu exit disclaimer ENERGY STAR Windows Program www.energystar.gov exit disclaimer Florida Solar Energy Center (FSEC) www.fsec.ucf.edu exit disclaimer Lawrence Berkeley National Laboratory (LBNL) windows.lbl.gov exit disclaimer National Fenestration Rating Council (NFRC) info@nfrc.org www.nfrc.org exit disclaimer National Renewable Energy Laboratory Center for Buildings and Thermal Energy Systems (NREL) www.nrel.gov exit disclaimer

174

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network [OSTI]

these windows incorporating hear mirror films are staticS. , "Thin Film Coatings for Energy Efficient Windows", LBLglazed windows with single and double plastic film inserts

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

175

AN ENERGY EFFICIENT WINDOW SYSTEM FINAL REPORT.  

E-Print Network [OSTI]

for a variety of glass window films and so provides thetesting metallized mylar window films. They involve exposingconsumers to install window film products. The rigid sheet

Authors, Various

2011-01-01T23:59:59.000Z

176

Performance Criteria for Residential Zero Energy Windows  

E-Print Network [OSTI]

neutral energy impact of windows (energy consumption of buildingneutral energy impact of windows (energy consumption of buildingneutral energy impact of windows (energy consumption of building

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

177

A Review of Electrochromic Window Performance Factors  

E-Print Network [OSTI]

ratio of 0.30. The electrochromic windows were controlled toProceedings. A Review of Electrochromic Window Performanceand economic benefits of electrochromic smart windows,"

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

178

Windows, Doors, & Skylights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Windows, Doors, & Skylights Windows, Doors, & Skylights Windows, Doors, & Skylights Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Energy-efficient windows, doors, and skylights-also known as fenestration-can help lower a home's heating, cooling, and lighting costs. Learn about the energy performance ratings to consider when selecting windows, doors, and skylights, and how to maximize their energy efficiency in your home. Featured Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto

179

Effects of Overhangs on the Performance of Electrochromic Windows  

E-Print Network [OSTI]

Outer layer Inner layer Clear Clear U U SHGC (W/m2K COGoverall overall SHGC COG Tv overall Tv COG CRI Spac ers Alumelectrochromic glazing; SHGC: solar heat gain coefficient;

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

180

21 - Life cycle assessment (LCA) of windows and window materials  

Science Journals Connector (OSTI)

Abstract: Windows are a significant component in sustainable buildings in both the impacts caused by their material life cycles and by their influence on the performance of a building over its service life. Life cycle assessment (LCA) studies have compared the impacts of different framing materials with mixed results. LCA has also been used to estimate the environmental payback of higher manufacturing impacts from producing better performing windows. Future sustainable window selection should make use of standardized LCA data for windows and utilize advanced technologies to optimize window performance.

J. Salazar

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Windows Forensic Analysis DVD Toolkit  

Science Journals Connector (OSTI)

The only book available on the market that addresses and discusses in-depth forensic analysis of Windows systems. Windows Forensic Analysis DVD Toolkit takes the reader to a whole new, undiscovered level of forensic analysis for Windows systems, providing ... Keywords: Computer Science, Security

Harlan Carvey

2007-04-01T23:59:59.000Z

182

Market Transformation Efforts for Residential Energy Efficient Windows: An  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Transformation Efforts for Residential Energy Efficient Windows: An Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Title Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Publication Type Report LBNL Report Number LBNL-46620 Year of Publication 2000 Authors Ward, Alecia, Margaret Suozzo, and Joseph H. Eto Date Published 01/2000 Publisher LBNL Abstract With the burst of recent initiatives to accelerate adoption of energy-efficient fenestration technologies in the marketplace, an update on window market transformation efforts is needed. Because of the impact of glazing on total home energy performance, the residential window market has received increasing attention over the past two years. National programs such as the ENERGY STAR Windows program, the Efficient Windows Collaborative, and regional initiatives such as the California Windows Initiative and the Northwest Collaborative have begun to move markets toward higher-efficiency windows. The results have included increasing sales of efficient products, stocking of more efficient/ENERGY STAR qualifying products, and price reductions of high-efficiency product, all of which secure dramatic energy savings at a national level. This paper takes stock of publicly supported national and regional transformation efforts for residential windows underway in the U.S. In particular, it documents ways in which National Fenestration Rating Council certification, Efficient Windows Collaborative education, and ENERGY STAR marketing, are working together to change window markets across the United States. Although it is too early to quantify the national-level impacts changes of these efforts, the authors offer a preliminary qualitative evaluation of efficient window promotion efforts to gain insight into the broader impacts that these and other future activities will achieve. Finally, the paper summarizes how other federally-funded building industry initiatives that emphasize "whole house" performance can complement these window technology-specific and component-specific initiatives. Demonstration houses from the Building America, ENERGY STAR Homes, and PATH projects all contribute to the success of windows-specific initiatives.

183

Atmospheric Pressure Deposition for Electrochromic Windows |...  

Broader source: Energy.gov (indexed) [DOE]

Atmospheric Pressure Deposition for Electrochromic Windows Atmospheric Pressure Deposition for Electrochromic Windows Emerging Technologies Project for the 2013 Building...

184

Passive solar design handbook  

SciTech Connect (OSTI)

The Passive Solar Design Handbook, Volume Three updates Volume Two by presenting extensive new data on the optimum mix of conservation and solar direct gain, sunspaces, thermal storage walls, and solar radiation. The direct gain, thermal storage wall, and solar radiation data are greatly expanded relative to the Volume 2 coverage. The needed flexibility to analyze a variety of system designs is accommodated by the large number of reference designs to be encompassed - 94 in contrast to 6 in Volume two - and the large amount of sensitivity data for direct gain and sunspace systems - approximately 1100 separate curves.

Jones, R.W.

1981-01-01T23:59:59.000Z

185

Copper Doped GaAs Infrared Filter for the 8-13 m Atmospheric Window  

E-Print Network [OSTI]

regions of interest, such as atmospheric transmission windows. Filters exclude solar or thermal photonsCdTe is typically melt grown in a high temperature furnace. All three elements in this alloy are toxic. Stability

Peale, Robert E.

186

Energy performance of a dual airflow window under different climates Jingshu Wei1  

E-Print Network [OSTI]

great po tential in conserving energy in buildings and provide fresh air to improve indoor air qua lity that by shading solar radiation. The dual airflow window is recomm ended for colder climate. If improving air airflow window; Energy demand; Indoor air quality; Different climates 1. Introduction Energy dem

Chen, Qingyan "Yan"

187

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools Tools Looking for windows for a new home? Use the Window Selection Tool to compare annual energy performance for windows in new construction. Window Selection Tool Looking for replacement windows? Use the Window Selection Tool to compare annual energy performance for replacement windows. Window Selection Tool Window Selection Tool Use the Window Selection Tool for new or replacement windows to compare the annual energy performance of different window types and design conditions for a typical house. Find manufacturers who offer windows and skylights within the generic results shown. Learn more about manufacturers' specific product options. Use the Window Selection Tool to: Compare how various window or skylight types affect estimated energy cost for a typical house in your location.

188

WINDOW 5 Glass Library Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW 6 or 7 Glass Library Update WINDOW 6 or 7 Glass Library Update Last update:12/09/13 07:26 PM Automatic IGDB Update Feature in WINDOW 6 and 7 The latest versions of WINDOW 6 and 7 have an automatic IGDB database update function in the Glass Library. When you first open the program, it checks to see if there is an IGDB version later than what you already have installed, and will notify you if there is an update. Then you can download and install the IGDB database, and click on the Update IGDB button in the Glass Library in order to start the automatic update. For older versions of WINDOW 6 and 7 without the automatic IGDB update function bullet How to Check the Current WINDOW5 IGDB Version bullet Updating the Glass Library bullet Problem Updating the Glass Library bullet Discontinued Records or Reused NFRC IDs

189

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

through Solar, Geothermal, Electric, and Storage Systems (with either direct solar gain or mass storage wall elements.Economical energy storage is essential if solar power plants

authors, Various

2011-01-01T23:59:59.000Z

190

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Replacement Windows for Existing Homes Homes Replacement Windows for Existing Homes Homes Window Selection Tool Use the Window Selection Tool for existing homes (replacement windows) to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Assessing Options This section provides guidance the options available to improve the performance of your existing windows or to replace them. You can assess whether to repair, retrofit or replace your existing windows. Window Selection Process This section provides step-by-step guidance on the window selection process for replacement windows including issues of code, energy, durability, and installation.

191

Gaining a World View  

E-Print Network [OSTI]

tx H 2 O | pg. 26 --------------------------------------------- ???????????????????????? W hen Brandon Hartley traveled to Belgium last summer, he gained a first-hand appreciation for international soil and water issues. Hartley, a Texas A...

Wythe, Kathy

2007-01-01T23:59:59.000Z

192

Solar Rights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State Louisiana Program Type Solar/Wind Access Policy In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors are generally defined to include photovoltaics (PV), solar water heating, and any other system or device that uses sunlight as an energy source. While this law generally guarantees a property owner's right to install solar collectors, there are

193

Solar Rights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Rights Solar Rights Solar Rights < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State Arizona Program Type Solar/Wind Access Policy Arizona law protects individual homeowners' private property rights to solar access by dissolving any local covenant, restriction or condition attached to a property deed that restricts the use of solar energy. This law sustained a legal challenge in 2000. A Maricopa County Superior Court judge ruled in favor of homeowners in a lawsuit filed by their homeowners association seeking to force the homeowners to remove roof-top

194

A window on urban sustainability  

SciTech Connect (OSTI)

Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

Stigt, Rien van, E-mail: rien.vanstigt@hu.nl [Research Center for Technology and Innovation, Utrecht University of Applied Sciences, P.O. Box 182, 3500 AD Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands); Spit, Tejo J.M., E-mail: T.J.M.Spit@uu.nl [Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands)

2013-09-15T23:59:59.000Z

195

Solar Blind System- Solar Energy Utilization and Climate Mitigation in Glassed Buildings  

Science Journals Connector (OSTI)

Abstract In the past few decades, energy scientists have focused on “renewable energy”, and solar energy in particular. Several technologies are commercialized for utilizing solar energy in the buildings by absorbing solar radiation and converting it to heat and electricity. These technologies can be categorized into the passive and active systems. A special case is a commercial greenhouse, which can be considered a passive solar building. A greenhouse is a structure which is covered by a transparent device such as glass in order to use solar energy while controlling the temperature, humidity and other parameters according to the requirements for cultivation and protection of the particular plants. The cooling demand in the commercial greenhouses is commonly supplied by e.g. ventilation and thermal screen. In the ventilation method a portion of the absorbed solar energy will be lost through ventilation windows and by applying the solar shielding, solar radiation will be blocked. In this study, by considering the solar blind concept as an active system, PVT panels are integrated to absorb the surplus solar heat (instead of blocking) which is then stored in a thermal energy storage for supplying a portion of the greenhouse heating demand at a later time. The overall objective of this study is to assess the potential of cutting external energy demand as well as maximizing solar energy utilization in a commercial greenhouse for Northern climate condition. Thus, a feasibility assessment has been carried out, examining various system configurations with the TRNSYS tool. The results show that the heating demand for a commercial closed greenhouse with solar blind is reduced by 80%, down to 62 kwh/m2 as compared to a conventional configuration. Also the annual total useful heat gain and electricity generation by solar blind in this concept is around 20 kwh/m2 and 80kwh/m2, respectively. The generated electricity can be used for supplying the greenhouse power demand for e.g. artificial lighting and other devices. Moreover, the cooling demand in a closed greenhouse is reduced by 60% by considering the solar blind system.

Amir Vadiee; Viktoria Martin

2014-01-01T23:59:59.000Z

196

Invisible Solar Energy Collection | OpenEI Community  

Open Energy Info (EERE)

26 September, 2014 - 13:26 Michigan State University has developed a cell with light harvesting transparent solar concentrators that could be used on windows and...

197

End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application  

E-Print Network [OSTI]

solar heat gain coefficient, SHGC = 0.36, U-factor = 5.33 W/sets a maximum assembly SHGC and U-value of 0.40 and 2.27 W/solar heat gain coefficient (SHGC) = 0.39 or 0.08, and U-

Lee, Eleanor S.

2014-01-01T23:59:59.000Z

198

Gain Sharing.PDF  

Broader source: Energy.gov (indexed) [DOE]

SE SE DOE/IG-480 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS INSPECTION OF GAIN SHARING OPPORTUNITIES FOR THE DEPARTMENT OF ENERGY SEPTEMBER 2000 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 September 1, 2000 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ for Herbert Richardson Inspector General SUBJECT: INFORMATION: Report on "Inspection of Gain Sharing Opportunities for the Department of Energy" BACKGROUND In 1995, the General Services Administration provided guidance on a program known as "GAIN SHARING" where agencies could give cash awards to employees who participate in programs to save travel dollars. This guidance discussed the authority to offer cash awards to employees for obtaining a free coach class ticket with Frequent Flyer benefits earned on official travel and for

199

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Last Updated: 12/29/2013 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2 (7.2.29) (12/29/2013) Release Notes -- Please read these before running this version ! This version contains these new modeling features Honeycomb shades Dynamic Glazing (Thermochromic and Electrochromic) This version is compatible with THERM 7.1 Please send us emails as you find issues in the program -- that is the only way that we can make it more robust. We hope to iterate versions fairly quickly in the next month or so to get the bugs ironed out. Radiance for WINDOW 7 Get a copy of Radiance for WINDOW 7.2 Must be used with WINDOW 7.0.59 or later

200

LBNL Windows & Daylighting Software -- WINDOW5: Knowledge Base  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6.3 Knowledge Base 6.3 Knowledge Base Tip - use the Find function in your browser to search this page Last update:11/04/13 01:16 PM Download WINDOW 6.3 Send feedback via email to WindowHelp@lbl.gov. Also as bugs and comments are submitted by testers, the will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN BUGS ** Operating Systems -- Microsoft Windows 7 and Vista ** Environmental Conditions -- Kimura convection model not working Locked Files with Install/De-install Environmental Conditions -- Fixed Combined Coefficient Bug Installation Problems Error Message during Calc due to decimal point of "," Minimum computer requirements Importing THERM file into WINDOW generates "Unnamed file has a bad format" error message

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.0 7.0 Last Updated: 05/20/2013 EN 673 / ISO 10077 Using WINDOW 7 and THERM 7 for EN 673 / ISO 10077 Calculations If you are interested in using WINDOW and THERM for EN 673 / ISO 10077 calculations, we have added that option to WINDOW 7. The calculation is not fully automated in the program yet, so there are many steps and a spreadsheet for the final calculation. We are interested in feedback (email WINDOWHelp@lbl.gov) about the process and the results from anyone who tests this feature. CAUTION: Do not model shading systems with the EN 673 thermal model. The program will produce results but they will most likely not be correct. Download this zip file (EN673.zip) which contains the following: Description of how to use WINDOW 6 and THERM 6 for the EN 673 / ISO 10077 calculations (PDF file)

202

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storm Windows Storm Windows Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by adding interior or exterior storm panels. Storm Window Panels exit disclaimer Storm windows can reduce the air leakage and improve the insulating value of existing windows. They can be installed on the interior or exterior side of windows, and can be mounted permanently or for seasonal use. Interior storm windows can be more easily installed and removed for ventilation or cleaning. Storm windows can reduce air leakage. However, it is important that humid

203

Electron gun with cylindrical window  

SciTech Connect (OSTI)

This paper describes a three-electrode electron gun with a foil window in the form of a cylinder 300 mm in diameter and 200 mm high. With an accelerating voltage of 140 kV in the pulse mode (10 usec at 2 Hz) with grid modulation, the current extracted from the foil is 5.5 A. The ratio of the window area to the mass of the gun (23.7 cm/sup 2//kg) is greater by a factor of 3-5 than that of similar guns with flat windows.

Grigorev, Y.V.; Stepanov, A.V.

1986-01-01T23:59:59.000Z

204

Gaining creative control over semiconductor nanowires  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaining creative control over semiconductor nanowires Gaining creative control over semiconductor nanowires Gaining creative control over semiconductor nanowires Using a microfluidic reactor, Los Alamos researchers transformed the SLS process into a flow-based technique. September 26, 2013 Growth of nanowire precursors in a flowing carrier solvent Growth of nanowire precursors in a flowing carrier solvent The new "flow" solution-liquid-solid method allows scientists to slow down growth and thereby capture mechanistic details as the nanowires grow in solution. A Los Alamos research team has transformed the synthesis process of semiconductor nanowires for use in solar cells, batteries, electronics, sensors and photonics using a solution-liquid-solid (SLS) batch approach to achieve unprecedented control over growth rates, nanowire size and internal

205

High-Efficiency Window Air Conditioners - Building America Top...  

Broader source: Energy.gov (indexed) [DOE]

Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive,...

206

Windows and Building Envelope | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and market challenges in the windows and building envelope sector. Image: National Renewable Energy Laboratory Read more Insulation and Window Projects Named as Top Energy...

207

Solar project description for Gill Harrop, Builders, single-family detached residence, Big Flats, New York  

SciTech Connect (OSTI)

The Gill Harrop Builders Site is a house with approximately 1360 square feet of conditioned space heated by a direct gain system with manually operated insulated curtains. Solar heating is augmented by electric resistance heating, and a wood burning stove may be installed. Sunlight is admitted through both south facing windows and through clerestory collector panels and is absorbed and stored as heat in a concrete floor and wall. Heat is then distributed by natural convection and radiation. Temperature regulation is assisted by earth berms. Three modes of operation are described: collector-to-storage, storage-to-space heating, and passive space cooling, which is accomplished by shading, movable insulation, and ventilation. The instrumentation for the National Solar Data Network is described. The solar energy portion of the construction costs is estimated to be $7000. (LEW)

none,

1982-04-23T23:59:59.000Z

208

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operator Types-Skylights Operator Types-Skylights Choosing Skylights for Your Home Check the pitch roof and determine what skylight product would work best (deck-mounted, curb-mounted, pan-flashed). Determine what type of skylight operation is wanted (electric venting, manual venting, fixed). Identify the ceiling and roof style for optimal size and configuration of the skylight shaft (flat ceiling, cathedral ceiling, sloped wall, flat or sloped roof) Select the glazing type (high-performance, tempered, laminated, impact, snow load). Select screen accessories if wanted (solar blinds, blackout blinds, Venetian blinds, roller shades). Select manual or electric controls to operate operable skylights and accessories. Roof windows have become increasingly popular as homeowners and designers

209

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies: Operator Types Window Technologies: Operator Types Window Sash Operation When you select a window, there are numerous operating types to consider. Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. In addition, the window market includes fixed windows, storm windows, sliding and swinging patio doors, skylights and roof windows, and window systems that can be added to a house to create bay or bow windows, miniature greenhouses, or full sun rooms. Looking for information on skylights? More information on skylights, light tubes, and their installation can be found here. Casement Casement windows are hinged at the sides. Hinged windows such as casements generally have lower air leakage rates than sliding windows from the same manufacturer because the sash closes by pressing against the frame. Casement windows project outward, providing significantly better ventilation than sliders of equal size. Because the sash protrudes from the plane of the wall, it can be controlled to catch passing breezes, but screens must be placed on the interior side. Virtually the entire casement window area can be opened, while sliders are limited to less than half of the window area. Casement

210

Linda L. Gaines resume  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. Gaines L. Gaines Systems Analyst Center for Transportation Research Energy Systems Division Argonne National Laboratory 9700 South Cass Avenue, Bldg. 362 Argonne, IL 60439 phone: 630/252-4919 e-mail: lgaines@anl.gov Professional Experience * Lead analyst for U.S. Department of Energy's heavy vehicle idling studies. * Study costs and impacts on energy use and environment of production and recycling of advanced- design automobiles, trucks, trains, and batteries. * Primary interest is problem solving, which has been applied to efficient use of resources. * Since joining Argonne in 1976, have written handbooks of energy and material flows in petroleum refining, organic chemicals, and copper industries that provided background for reports and papers on technical and institutional issues involved in recycling discarded tires, packaging,

211

Monitored Energy Performance of Electrochromic Windows Controlled for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitored Energy Performance of Electrochromic Windows Controlled for Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort Title Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort Publication Type Conference Paper LBNL Report Number LBNL-58912 Year of Publication 2005 Authors Lee, Eleanor S., Dennis L. DiBartolomeo, Joseph H. Klems, Mehry Yazdanian, and Stephen E. Selkowitz Conference Name 2006 ASHRAE Annual Meeting Date Published 06/2006 Conference Location Quebec City, Canada Call Number LBNL-58912 Abstract A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirements are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10-15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0-3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44-11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.

212

Integrated cost-estimation methodology to support high-performance building design  

Science Journals Connector (OSTI)

Glazing U-factor, glazing solar heat gain coefficient (SHGC), glazing visible transmittance (vt), window...

Prasad Vaidya; Lara Greden; David Eijadi; Tom McDougall; Ray Cole

2009-02-01T23:59:59.000Z

213

CMU-ITC-86-045 , Windowing  

E-Print Network [OSTI]

on window-manager style graphics systems using the Tek termi- nals, inspired by some film Alan Kay showedCMU-ITC-86-045 , Windowing Systems , Implementations #12;#12;Window System Implementations Denver ABSTRACT Notes for a course given at the 1986 Winter Usenix meeting in Denver, CO. It covers window systems

214

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Repair Existing Windows Repair Existing Windows Lead Paint and Window Replacement: Challenges and Opportunities In older homes, windows are a likely source of lead contamination in homes. Dust from lead paint can create serious health problems, especially in young children. While window replacement can increase lead dust during renovation, it can also permanently eliminate lead hazards by removing lead-painted windows. Download fact sheet» A variety of options exist for improving the energy-efficiency of your existing windows. Before investing in these options, check your windows for potential issues that may call for replacement instead: Moisture and mold between window frame and wall: If water and water vapors are allowed to penetrate around the window frame, the moisture can

215

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Windows Understanding Windows Benefits of Energy Efficient Windows The purpose for windows is to provide natural light, natural ventilation, and views to the outside. The benefits of high performance windows allows for Energy & Cost Savings, Improved Comfort, Less Condensation, Increased Light & View, Reduced Fading, and Lower HVAC Costs. Benefits of Energy Efficient Windows Design Considerations Windows are a complex and interesting element in residential design. New window products and technologies have changed the performance of windows in a radical way. Issues such as climate, orientation, shading, and window area all effect the energy performance, but human factor issues such as access to fresh air, daylight, and natural views impact the comfort of a home.

216

WINDOW 6.2/THERM 6.2 Research Version User Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW 6.2/THERM 6.2 Research Version User Manual WINDOW 6.2/THERM 6.2 Research Version User Manual Title WINDOW 6.2/THERM 6.2 Research Version User Manual Publication Type Report LBNL Report Number LBNL-813E Year of Publication 2008 Authors Mitchell, Robin, Christian Kohler, Joseph H. Klems, Michael D. Rubin, Dariush K. Arasteh, Charlie Huizenga, Tiefeng Yu, and Dragan C. Curcija Call Number LBNL-813E Abstract WINDOW 6 and THERM 6 Research Versions are software programs developed at Lawrence Berkeley National Laboratory (LBNL) for use by manufacturers, engineers, educators, students, architects, and others to determine the thermal and solar optical properties of glazing and window systems. WINDOW 6 and THERM 6 are significant updates to LBNL's WINDOW 5 and THERM 5 computer program because of the added capability to model complex glazing systems, such as windows with shading systems, in particular venetian blinds. Besides a specific model for venetian blinds and diffusing layers, WINDOW 6 also includes the generic ability to model any complex layer if the Transmittance and Reflectance are known as a function of incoming and outgoing angles.

217

Energy Savings from Window Attachments  

Broader source: Energy.gov (indexed) [DOE]

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

218

Energy Savings from Window Attachments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

219

Solar collector  

DOE Patents [OSTI]

The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1982-01-01T23:59:59.000Z

220

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network [OSTI]

solar heat gain coefficient (SHGC) range of EC coatings varythese types of buildings, the SHGC range should be as low asas follows: Tv=0.60-0.05 SHGC=0.48-0.09 U-factor=1.59-1.87

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Appraisal of thermal performance of a glazed office with a solar control coating: Cases in Mexico and Canada  

Science Journals Connector (OSTI)

The use of solar passive strategies such as new solar control coatings on windows for buildings with large glazed areas, have recently become important and helpful tools, mainly because these developments help to reduce heat gains and/or losses through transparent materials, diminishing energy loads, and improving the environment inside buildings. This paper shows an assessment of the thermal performance for an office on top of a building with four different configurations of window glass, and their influence on the indoor conditions. The window glass configurations are: clear glass, glass-film (SnS–CuxS solar control coating), double-glass-film, and double clear glass. The simulations were carried out using weather data from Mexico City and Ottawa, which are a good representation of two extreme weather conditions, in order to assess the thermal behaviour inside offices, such as energy loads, costs for air conditioning, and the influence of interior heat transfer coefficient correlations. The results indicate that the glass-film proves to be the less appropriate configuration due to the high temperatures reached on the film surface, which has an impact on the air temperatures inside the office and contributes to increase the energy consumption. In general, the double glass-film configuration results to be adequate for both climates, nevertheless it shows a better performance for Ottawa than Mexico City, where a simple double clear glass would work the same way.

M. Gijón-Rivera; G. Álvarez; I. Beausoleil-Morrison; J. Xamán

2011-01-01T23:59:59.000Z

222

Solar Policy Environment: New Orleans  

Broader source: Energy.gov [DOE]

To use unprecedented rebuilding of the city of New Orleans is an opportunity for the Office of Recovery Management and its partners to encourage solar in New Orleans’ energy marketplace. While all Solar Cities grantees are undertaking market transformation activities that will both remove barriers to the adoption of solar technologies and reduce the cost of solar technologies, the reconstruction process affords New Orleans a window of opportunity to structurally alter the ways in which solar technologies are regulated, incentivized, produced, and consumed in the Greater New Orleans area.

223

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benefits of Efficient Windows Benefits of Efficient Windows Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation Energy & Cost Savings Energy efficient windows can substantially reduce the costs associated with heating and cooling. This section on Energy & Cost Savings illustrates these savings in both heating and cooling climates. Energy Savings Lower HVAC Costs High-performance windows not only provide reduced annual heating and cooling bills, they also reduce the peak heating and cooling loads. This section on Lower HVAC Cost illustrates how the use of high performance windows can help in reducing HVAC equipment sizing.

224

3.4 Timeline Zoomable Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.1 Zoomable and Scrollable Up: 3. Graphical User Interface .1 Zoomable and Scrollable Up: 3. Graphical User Interface Previous: 3.3 Legend Window Contents 3.4 Timeline Zoomable Window Figure 3.10: Initial display of the Timeline window of a 514 MB 16-process slog2 file with default preview resolution. Image timeline_popup Most of the advanced features in the SLOG-2 viewer are provided through a zoomable window. Jumpshot-4 has two zoomable windows: Timeline and Histogram. Figure 3.10 is the initial display of the Timeline window of a half-gigabyte 16-timeline slog2 file. The zoomable window consists of several concealable and removable components. In the center of the window is the zoomable and scrollable canvas. For the Timeline window, the center canvas is called the timeline canvas. Directly on top of the zoomable

225

Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

226

Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

227

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windows for New Construction Windows for New Construction Window Selection Tool Use the Window Selection Tool for new construction to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Window Selection Process This section provides step-by-step guidance on the window selection process for new construction windows including issues of code, energy, durability, and installation. Design Guidance This section provides Design Guides that examine the energy use impacts of new windows for homes in hot, mixed and cold climates. They show the the impact of orientation, window area, and shading. The energy use has been calculated for various window design variations including 5 orientations (equal, north, east, south, and west), 3 glazing areas, 20 glazing types, and 5 shading conditions.

228

Solar energy conversion apparatus  

SciTech Connect (OSTI)

Apparatus is disclosed for converting solar energy to more useful forms, I.E., thermal and electrical energy. Such apparatus includes a photoelectric transducer (E.G., an array of photovoltaic cells), means for concentrating solar energy on the transducer, and means for circulating a liquid between the transducer and the solar energy concentrator. The spectral properties of the liquid are such that the liquid functions as a bandpass filter, transmitting solar energy to which the transducer is responsive and absorbing solar energy to which the transducer is non-responsive. The transmitted solar energy is converted to electrical energy by the transducer, and the absorbed solar energy is converted to heat by the liquid. Preferably, the liquid is circulated through a container which, in the vicinity of the transducer, is constructed so as to provide optical gain to the system and to integrate incident solar energy for the purpose of eliminating ''hot spots'' which could overheat, and thereby damage, the transducer.

Powell, R.A.

1981-07-14T23:59:59.000Z

229

Learning Windows Ibraheem A. Alhashim  

E-Print Network [OSTI]

. They suggest using a trainable classifier to learn a distance function that improves their fitting procedure. However, they do not implement such classifier and relay on a heuristic derived from their experimentation to ground truth of 744 windows from 40 test images. We will use a subset of the database they used for our

Zhang, Richard "Hao"

230

High Performance Windows Volume Purchase: Information Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources to someone by E-mail Share High Performance Windows Volume Purchase: Information Resources on Facebook Tweet about High Performance Windows Volume Purchase: Information Resources on Twitter Bookmark High Performance Windows Volume Purchase: Information Resources on Google Bookmark High Performance Windows Volume Purchase: Information Resources on Delicious Rank High Performance Windows Volume Purchase: Information Resources on Digg Find More places to share High Performance Windows Volume Purchase: Information Resources on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Information Resources Numerous publications will be available to help educate buyers, product

231

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sash Replacement Sash Replacement DIY Network: How to Install a Window Sash Replacement Kit The DIY Network experts show you how to remove the window sash from an old double-hung window and install a new energy-saving sash replacement kit: How to Install a Window Sash Replacement Kit exit disclaimer . Sash replacement may be an alternative to a full window replacement or an insert window into an existing frame. The physical condition of the existing window must be good-there should be no moisture or air leakage. An energy auditor or replacement contractor may help you determine if a sash replacement is a viable option based on your homes window and wall conditions. Many manufacturers offer replacement sash kits, which include jamb liners to ensure good operability and fit. This option allows for relatively easy

232

IT Administrator's Guide to Using Windows Vista  

E-Print Network [OSTI]

IT Administrator's Guide to Using Windows Vista® for Sustainable IT Success Published: February Administrator's Guide to Using Windows Vista for Sustainable IT Success Contents Executive Summary ................................................................................................ 3 Sustainable IT Goals

Narasayya, Vivek

233

Simulating Complex Window Systems using BSDF Data  

E-Print Network [OSTI]

Daylighting, Design tools and methods INTRODUCTION Simulations enable designers and engineers to evaluate and select the best available window solutions

Konstantoglou, Maria

2011-01-01T23:59:59.000Z

234

Technical evaluation of a solar heating system having conventional hydronic solar collectors and a radiant panel slab. Final report  

SciTech Connect (OSTI)

A simple innovative solar heating design (Solar Option One) using conventional hydronic solar collectors and a radiant panel slab was constructed. An objective of hybrid solar design is to combine the relative advantages of active and passive design approaches while minimizing their respective disadvantages. A test house using the Solar Option One heating system was experimentally monitored to determine its energy based performance during the 1982-83 heating season. The test residence is located in Lyndonville, Vermont, an area which has a characteristically cold and cloudy climate. The two story residence has a floor area of about 1400 square feet and is constructed on a 720 square foot 5.5 inch thick floor slab. A 24 inch packed gravel bed is located beneath the slab and the slab-gravel bed is insulated by two inches of polystyrene insulation. The test building is of frame construction and uses insulation levels which have become commonplace throughout the country. The structure would not fall into the superinsulated category but was tightly constructed so as to have a low infiltration level. The building is sun-tempered in that windows were concentrated somewhat on the South side and all but avoided on the North. A solar greenhouse on the South side of the building was closed off from the structure permanently throughout the testing so as to better observe the solar heating invention without confounding variables. The monitoring equipment generated an internal gain of about 17,000 BTUs per day, roughly the equivalent of occupancy by two persons. A full description of the experimental testing program is given. System efficiency and performance are reported.

Starr, R.J.

1984-04-01T23:59:59.000Z

235

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network [OSTI]

Guide for Early-Market Electrochromic Windows. CaliforniaGuide for Early-Market Electrochromic Windows. CaliforniaGUIDE FOR EARLY-MARKET ELECTROCHROMIC WINDOWS Prepared For:

2006-01-01T23:59:59.000Z

236

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network [OSTI]

Office worker preferences of electrochromic windows: a pilotDetails for an Electrochromic Window Wall Attached arethe performance of the electrochromic windows. Proceedings

2006-01-01T23:59:59.000Z

237

Tips: Passive Solar Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

238

Tips: Passive Solar Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Passive Solar Heating and Cooling Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

239

Stanek Windows | Open Energy Information  

Open Energy Info (EERE)

Stanek Windows Stanek Windows Jump to: navigation, search Name Stanek Windows Address 4565 Willow Parkway Place Cuyahoga Heights, Ohio Zip 44125 Sector Buildings, Efficiency Product Consulting; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution;Trainining and education Phone number 216-341-7700 Website http://www.stanekwindows.com Coordinates 41.435755°, -81.650183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.435755,"lon":-81.650183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

V-093: Symantec PGP Desktop Buffer Overflows Let Local Users Gain Elevated  

Broader source: Energy.gov (indexed) [DOE]

3: Symantec PGP Desktop Buffer Overflows Let Local Users Gain 3: Symantec PGP Desktop Buffer Overflows Let Local Users Gain Elevated Privileges V-093: Symantec PGP Desktop Buffer Overflows Let Local Users Gain Elevated Privileges February 18, 2013 - 12:53am Addthis PROBLEM: Symantec PGP Desktop Buffer Overflows Let Local Users Gain Elevated Privileges PLATFORM: Symantec PGP Desktop 10.2.x,10.1.x,10.0.x Symantec Encryption Desktop 10.3.0 ABSTRACT: Two vulnerabilities were reported in Symantec PGP Desktop. REFERENCE LINKS: Symantec Security Advisory SYM13-001 Bugtraq ID: 57170 SecurityTracker Alert ID: 1028145 CVE-2012-4351 CVE-2012-4352 IMPACT ASSESSMENT: Medium DISCUSSION: A local user can trigger an integer overflow in 'pgpwded.sys' to execute arbitrary code on the target system [CVE-2012-4351]. On Windows XP and Windows Sever 2003, a local user can trigger a buffer

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

V-063: Adobe ColdFusion Bugs Let Remote Users Gain Access and Obtain  

Broader source: Energy.gov (indexed) [DOE]

3: Adobe ColdFusion Bugs Let Remote Users Gain Access and 3: Adobe ColdFusion Bugs Let Remote Users Gain Access and Obtain Information V-063: Adobe ColdFusion Bugs Let Remote Users Gain Access and Obtain Information January 7, 2013 - 1:00am Addthis PROBLEM: Adobe ColdFusion Bugs Let Remote Users Gain Access and Obtain Information PLATFORM: ColdFusion 10, 9.0.2, 9.0.1 and 9.0 for Windows, Macintosh and UNIX ABSTRACT: Adobe has identified three vulnerabilities affecting ColdFusion for Windows, Macintosh and UNIX REFERENCE LINKS: Adobe Security Bulletin APSA13-01 SecurityTracker Alert ID: 1027938 CVE-2013-0625 CVE-2013-0629 CVE-2013-0631 IMPACT ASSESSMENT: High DISCUSSION: A remote user can bypass authentication and take control of the target system [CVE-2013-0625]. Systems with password protection disabled or with no password set are affected.

242

Solar-heated rotary kiln  

DOE Patents [OSTI]

A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate is disclosed. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

Shell, P.K.

1982-04-14T23:59:59.000Z

243

Rigid thin windows for vacuum applications  

DOE Patents [OSTI]

A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

Meyer, Glenn Allyn (Danville, CA); Ciarlo, Dino R. (Livermore, CA); Myers, Booth Richard (Livermore, CA); Chen, Hao-Lin (Lafayette, CA); Wakalopulos, George (Pacific Palisades, CA)

1999-01-01T23:59:59.000Z

244

High Performance Windows Volume Purchase: Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts to Contacts to someone by E-mail Share High Performance Windows Volume Purchase: Contacts on Facebook Tweet about High Performance Windows Volume Purchase: Contacts on Twitter Bookmark High Performance Windows Volume Purchase: Contacts on Google Bookmark High Performance Windows Volume Purchase: Contacts on Delicious Rank High Performance Windows Volume Purchase: Contacts on Digg Find More places to share High Performance Windows Volume Purchase: Contacts on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Contacts Web site and High Performance Windows Volume Purchase Program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about

245

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ensure Proper Installation of New Windows Ensure Proper Installation of New Windows Information Regarding Lead-based Hazards Comprehensive information about lead paint exit disclaimer by U.S. EPA Literature ASTM E 2112, "Standard Practice for Installation of Exterior Windows, Doors and Skylights." www.astm.org exit disclaimer Water Management Guide, Joseph W. Lstiburek, Energy & Environmental Building Association. www.eeba.org exit disclaimer Proper installation is necessary for optimal window performance, to ensure an airtight fit and avoid water leakage. Always follow manufacturers installation guidelines and use trained professionals for window installation. The Importance of Quality Window Installation Quite simply, windows are only as good as their installation. Proper installation will:

246

Making Smart Windows Smarter | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smart Windows Smarter Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Program Director, Building Technologies Office What does this project do? Pleotint, LLC has developed a specialized glass film that uses the energy generated by the sun to limit excess heat and light from coming into homes and buildings. When you look out the window, you might notice whether the sun is shining, a nice view of the outdoors or an interesting cloud passing by. What most people probably don't notice is that traditional windows waste about 30

247

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Standards Performance Standards Even the expert eye cannot easily tell an efficient window from a conventional window. That is why energy ratings, endorsement programs and consumer incentives play an important role in creating awareness for window energy efficiency among consumers, builders, architects and performance standard programs. Learn about NFRC certification and labeling Learn about ENERGY STAR® for windows, doors and skylights High Performance Windows and Low-E Storm Windows Volume Purchase Program Utility and State Incentives for energy efficiency improvements Building Codes Most locations have building energy codes that mandate minimum performance levels for windows, doors, and skylights. The builder, contractor or homeowner must adhere to the code requirements, which typically cover

248

The Impact of Overhang Designs on the Performance of Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Impact of Overhang Designs on the Performance of Electrochromic Windows The Impact of Overhang Designs on the Performance of Electrochromic Windows Title The Impact of Overhang Designs on the Performance of Electrochromic Windows Publication Type Conference Paper LBNL Report Number LBNL-57020 Year of Publication 2005 Authors Tavil, Aslihan, and Eleanor S. Lee Conference Name ISES 2005 Solar World Congress Date Published 08/2005 Conference Location Orlando, FL Call Number LBNL-57020 Abstract In this study, various facade designs with overhangs combined with electrochromic window control strategies were modeled with a prototypical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) were computed and compared to determine which combinations of fa?ade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort.

249

Detailed thermal performance data on conventional and highly insulating window systems  

SciTech Connect (OSTI)

Data on window heat-transfer properties (U-value and shading coefficient (SC)) are usually presented only for a few window designs at specific environmental conditions. With the introduction of many new window glazing configurations (using low-emissivity coatings and gas fills) and the interest in their annual energy performance, it is important to understand the effects of window design parameters and environmental conditions on U and SC. This paper discusses the effects of outdoor temperature, wind speed, insolation, surface emittance, and gap width on the thermal performance of both conventional and highly insulating windows. Some of these data have been incorporated into the fenestration chapter of the ''ASHRAE Handbook - 1985 Fundamentals.'' The heat-transfer properties of multiglazed insulating window designs are also presented. These window systems include those having (1) one or more low-emittance coatings; (2) low-conductivity gas-fill or evacuated cavities; (3) a layer of transparent silica aerogel, a highly insulating microporous material; or (4) combinations of the above. Using the detailed building energy analysis program, DOE 2.1B, we show that these systems, which all maintain high solar transmittance, can add more useful thermal energy to a space than they lose, even in a northern climate. Thus, in terms of seasonal energy flows, these fenestration systems out-perform insulated walls or roofs.

Arasteh, D.; Selkowitz, S.; Hartmann, J.

1986-01-01T23:59:59.000Z

250

Solar Circuitry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (lightelectromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic...

251

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Guidance for Replacement Windows Design Guidance for Replacement Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

252

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The High Performance Windows Volume Purchase (WVP) Program The High Performance Windows Volume Purchase (WVP) Program The U.S. Department of Energy's Building Technologies Program (BTP) is coordinating a volume purchase program intended to overcome cost and awareness barriers to the wider adoption of highly-insulating windows and low-E storm windows. These products include windows meeting a number of specifications including a U-factor of 0.22 or less as well as storm windows with low-emissivity glass. Buyer groups with a potential interest in purchasing these products in volume will learn about their availability and cost through the program's product listings. Over 50 manufacturers proposed products for the first round of these listings, for which submittals were due by February 19, 2010. DOE does not purchase any products through this project, nor does DOE

253

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidance on Window Durability Guidance on Window Durability There is no simple rating or absolute guarantee of the durability of a window. You may want to study the design and workmanship of the window and rely on recommendations from others who have used similar products. The advice of experienced architects and builders can be helpful. As with other products, warranties can be an indicator of the reliability of the window and its manufacturer. Durability may vary with location; for example, some materials are degraded by salt near the ocean. These aspects of window durability deserve special attention: frame and sashes; insulating glass seals; weatherstripping; and local requirements for structural integrity. Frame and Sashes Although design and workmanship may be the most important factors

254

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financing & Incentives Financing & Incentives Financing or incentive programs may be available to you if: You intend to replace old windows with high-performance, energy efficient windows. You plan to build a new home with windows that keep energy costs low and provide for a comfortable interior. If you are looking for utility programs within your state that can help you finance such an investment in efficient windows, download an overview of utility and state programs. Incentives and Rebates for Energy-Efficient Windows Offered through Utility and State Programs Utility and State Incentives We have provided an overview of utility and state programs that can help you as a resident, building owner, or builder to finance improvements in window energy efficiency. Download an overview of utility and state

255

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: ENERGY STAR® Windows Measuring Performance: ENERGY STAR® Windows Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. View the criteria for windows for the ENERGY STAR Most Efficient Program. Energy Star Most Efficient Program The Department of Energy (DOE) and the Environmental Protection Agency (EPA) have developed an ENERGY STAR exit disclaimer designation for products meeting certain energy performance criteria. Windows that have the ENERGY STAR designation will be labeled showing the zones in which it is qualified. Since energy efficient performance of windows, doors, and skylights varies by climate, product recommendations are given for four U.S. climate zones. For making comparisons among ENERGY STAR products, use the NFRC label or

256

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fresh Air Fresh Air Windows provide the primary means to control air flow in most homes. People open windows to provide fresh air, ventilate odors and smoke, dissipate heat and moisture, and create air movement on hot days. While exhaust fans and central air systems can mechanically ventilate a room, opening a room to the outdoors is perceived as more direct and natural. Guidelines for Providing Fresh Air Place operable windows in all rooms to give occupants opportunity for fresh air. Provide cross-ventilation by placing window openings on opposite walls in line with the prevailing winds. Use casement windows to direct and control ventilation. Use operable skylights or roof windows to enhance ventilation. Use landscape elements to direct breezes. In order to ensure that all residences have access to the healthful aspects

257

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Guidance for New Windows Design Guidance for New Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

258

Heterojunction solar cell with passivated emitter surface  

DOE Patents [OSTI]

A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

Olson, J.M.; Kurtz, S.R.

1994-05-31T23:59:59.000Z

259

Solar skylight  

DOE Patents [OSTI]

A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

Adamson, James C. (Osprey La., Rumson, NJ 07760)

1984-01-01T23:59:59.000Z

260

List of Windows Incentives | Open Energy Information  

Open Energy Info (EERE)

Windows Incentives Windows Incentives Jump to: navigation, search The following contains the list of 604 Windows Incentives. CSV (rows 1-500) CSV (rows 501-604) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network [OSTI]

Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

262

A Review of Electrochromic Window Performance Factors  

E-Print Network [OSTI]

influence the market acceptance of electrochromic windowsfor the eventual market success of electrochromic windows inearly niche market might consist of adding an electrochromic

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

263

Performance tests of large thin vacuum windows  

SciTech Connect (OSTI)

Tests of thin composition vacuum windows of the type used for the Tagger in Hall B at the Thomas Jefferson National Accelerator Facility are described. Three different tests have been performed. These include: (1) measurement of the deformation and durability of a window under long term (>8 years) almost continuous vacuum load, (2) measurement of the deformation as a function of flexing of the window as it is cycled between vacuum and atmosphere, and (3) measurement of the relative diffusion rate of gas through a variety of thin window membranes.

Hall Crannell

2011-02-01T23:59:59.000Z

264

HIGH-PERFORMANCE SOLAR-CONTROL WINDOWS FINAL REPORT  

E-Print Network [OSTI]

expanded to include five :metal-dielectric combinations (see Section 2) and two plastic substrates (polyester

King, W.J.

2014-01-01T23:59:59.000Z

265

High Performance Windows Volume Purchase: About the High Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program to someone by E-mail Share High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Facebook Tweet about High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Twitter Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Google Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Delicious Rank High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Digg Find More places to share High Performance Windows Volume Purchase:

266

BT::Electrochromic Windows Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spacer spacer spacer spacer Resources spacer Industry Contacts | CA Utility Contacts | R&D Organizations | Technical Reports | References | Acknowledgements | Project Team spacer Industry Contacts As of 2006, SAGE Electrochromics, Inc. is the only manufacturer in the U.S. selling electrochromic-coated glass units for building applications: Lou Podbelski SAGE Electrochromics, Inc. One Sage Way Faribault, MN 55021 (507) 331-4935 http://www.sage-ec.com/ SAGE's first market entry was to provide electrochromic coated glass to Velux for their switchable electrochromic skylight product line: electric venting skylights, fixed skylights, and fixed curb-mounted skylights in various rectangular sizes. They now market to a variety of window and curtain wall suppliers; contact SAGE for current supplier information.

267

Laser sealed vacuum insulating window  

DOE Patents [OSTI]

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, D.K.; Tracy, C.E.

1985-08-19T23:59:59.000Z

268

Laser sealed vacuum insulation window  

DOE Patents [OSTI]

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1987-01-01T23:59:59.000Z

269

Windows Registry Forensics: Advanced Digital Forensic Analysis of the Windows Registry  

Science Journals Connector (OSTI)

Harlan Carvey brings readers an advanced book on Windows Registry. The first book of its kind EVER -- Windows Registry Forensics provides the background of the Registry to help develop an understanding of the binary structure of Registry hive files. ...

Harlan Carvey

2011-02-01T23:59:59.000Z

270

Windows Mobile LiveSD Forensics  

Science Journals Connector (OSTI)

More and more often, smartphones are relevant targets of civil and criminal investigations. Currently, there are several tools available to acquire forensic evidence from smartphones. Unfortunately, most of these tools require to connect the smartphone ... Keywords: Data acquisition, Mobile device forensics, PocketPC forensics, Window CE forensics, Windows Mobile Forensics

EyüP S. Canlar; Mauro Conti; Bruno Crispo; Roberto Di Pietro

2013-03-01T23:59:59.000Z

271

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies Window Technologies Operator Types Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. This section on Operator Types describes how these typical windows work. Operator Types Glazing Types Traditionally, windows have been made from clear glass, but advanced technologies have significantly improved the thermal performance of glass. This section on Glazing Types describes some of these technologies. Glazing Types Gas Fills Gas fills improve the thermal performance of insulating glazing units by reducing the conductance of the air space between the layers. This section on Gas Fills describes the thermal performance benefits of adding gas to an IGU.

272

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheets & Publications: Books Fact Sheets & Publications: Books Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Residential Windows: A Guide to New Technology and Energy Performance, 3rd Edition John Carmody, Stephen Selkowitz, Dariush Arasteh and Lisa Heschong Residential Windows The Department of Energy's Windows and Glazing Research Program supported the development of this book. Support was provided

273

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduced Condensation Reduced Condensation Condensation High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. High-performance windows create warmer interior glass surfaces, reducing frost and condensation. High-performance windows with warm edge technology and insulating frames have such a warm interior surface that condensation on any interior surfaces is significantly reduced under all conditions. Condensation occurs when the interior surface temperature of the glass drops below either the dewpoint or frost point. A window's frame and/or glazing system can contribute to the possibility of condensation if they are poor performers for a specific climate. High-performance windows create warmer interior glass surfaces, reducing condensation and frost.

274

LBNL Window & Daylighting Software -- COMFEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Beta 5 Beta (5.0.05 -- January 1, 2013) Last Updated: 01/01/2013 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

275

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benefits: Energy & Cost Savings Benefits: Energy & Cost Savings The following information is an example of energy and cost savings for Boston and Phoenix. See the sidebar to the right for information on energy use for generic window products in your city or region. Heating Season Savings U-Factor In climates with a significant heating season, non-energy efficient windows can represent a major source of unwanted heat loss, discomfort, and condensation problems. In recent decades, windows have undergone a technological revolution. It is now possible to have lower heat loss, less air leakage, and warmer window surfaces that improve comfort and minimize condensation. The graphs below illustrate the simulated savings in heating season costs associated with energy efficient windows for a typical

276

X-Windows Acceleration via NX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Windows Acceleration via NX X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly improve the speed of X-Windows applications running at NERSC. See Using NX. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 August 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011 January 2011 September 2010 Last edited: 2013-04-02 15:13:27

277

LBNL Window & Daylighting Software -- COMFEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Last Updated: 10/04/2012 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

278

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

279

Building Technologies Office: Windows, Skylights, and Doors Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windows, Skylights, and Windows, Skylights, and Doors Research to someone by E-mail Share Building Technologies Office: Windows, Skylights, and Doors Research on Facebook Tweet about Building Technologies Office: Windows, Skylights, and Doors Research on Twitter Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Google Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Delicious Rank Building Technologies Office: Windows, Skylights, and Doors Research on Digg Find More places to share Building Technologies Office: Windows, Skylights, and Doors Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

280

Using Passive Solar Design to Save Money and Energy | Department...  

Office of Environmental Management (EM)

a typical home Let's Get Down to the Basics A passive solar home collects heat as the sun shines through south-facing windows and retains it in materials that store heat, known...

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assembly and characterization of quantum-dot solar cells.  

E-Print Network [OSTI]

??Environmentally clean renewable energy resources such as solar energy have gained significant attention due to a continual increase in worldwide energy demand. A variety of… (more)

Leschkies, Kurtis Siegfried

2009-01-01T23:59:59.000Z

282

Solar project description for Arno Kahn/Builders and Laborers Commonwealth single family residence Duluth, Minnesota  

SciTech Connect (OSTI)

The Arno Kahn/Builders and Laborers Commonwealth Site is a house in a Minnesota suburb. It combines a modified direct-gain sun space system with a thermal envelope. The living space is separated from the sun space by a three-story mass wall. Sunlight enters the three-story solarium and heats the mass wall which in turn heats the air. The warm air is then distributed through the thermal envelope. Manually operated shades provide night insulation for the south-facing windows, and roof overhangs and a turbine vent in the solarium roof prevent overheating. Domestic hot water is preheated in four tanks located behind the window of the basement sunroom. The concrete floor in the basement provides part of the heat storage. Wood burning stoves and electric baseboard heaters provide auxiliary heating. Five modes of operation are described: collector-to-storage, collector-to-space heating, storage-to-space heating, solarium cooling and domestic hot water preheating. The instrumentation for the National Solar Data Network is described. The solar energy portion of the construction costs is estimated to be $7000. (LEW)

Moore, D

1982-04-30T23:59:59.000Z

283

Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed  

E-Print Network [OSTI]

lifetime prediction of electrochromic windows for buildingsenergy performance of electrochromic windows. ” Proceedingsin the Proceedings. Electrochromic Windows for Commercial

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

2000-01-01T23:59:59.000Z

284

Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort  

E-Print Network [OSTI]

Energy Performance of Electrochromic Windows Controlled forenergy performance of electrochromic windows. Proceedingssignal for daylight (electrochromic window, no overhang).

Fernandes, Luis

2014-01-01T23:59:59.000Z

285

Solar project description for living systems single family residence, Davis, California  

SciTech Connect (OSTI)

Two independent systems are described - a direct gain passive solar space heating system and an active domestic hot water preheating system. Large south-facing windows and a clerestory skylight permit direct winter sun to enter the house. Solar energy thermal storage is provided by both water filled tubes and the concrete slab floor. Movable shutters and insulating curtains provide capability to reduce night heat losses. Summer overheat protection is provided by roof overhangs and by natural ventilation. A natural gas furnace and wood stove provide auxiliary space heat. The domestic hot water system has an array of liquid flat plate collector with a gross area of 53 square feet. Freeze protection is by drain-down. An 82-gallon solar preheat tank supplies water to a conventional 20-gallon domestic hot water tank. The collector, storage, heating load, and auxiliary loads subsystems and modes of operation are described for both systems. The house is instrumented for thermal performance evaluation. Original cost estimates for provisioning and installation of the solar system are given. (LEW)

Not Available

1981-08-31T23:59:59.000Z

286

Solar ventilation and tempering  

Science Journals Connector (OSTI)

The paper presents basic information about solar panels designed realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window facade chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring autumn) prolongs the period without classical heating of the room or building in winter the classical heating is supported. In the summer period the system furnished with chimney can exhaust inner warm air together with necessary cooling of the system by gravity circulation only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

2014-01-01T23:59:59.000Z

287

ESMN / EUROPEAN SOLAR PHYSICS RESEARCH AREA Robert J. Rutten  

E-Print Network [OSTI]

transnational but overall solar physics needs more European cohesion to gain most from EC policy trends towardsESMN / EUROPEAN SOLAR PHYSICS RESEARCH AREA Robert J. Rutten Sterrekundig Instituut Utrecht Postbus://www.astro.uu.nl/rutten ABSTRACT I briefly present the European Solar Magnetometry Network as a contemporary example of solar

Rutten, Rob

288

DOE Solar Decathlon: Team Canada: Advancing Solar Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northern Lights on the Concordia University campus. Enlarge image Northern Lights on the Concordia University campus. Enlarge image Team Canada's house features solar panels used as a roofing material and triple-glazed, south-facing windows to take advantage of the winter sun that shines on Concordia University's campus. (Courtesy of Concordia University) Who: Team Canada What: Northern Lights Where: Concordia University Loyola Campus 7141 Sherbrooke St. West Montréal, Quebec, Canada H4B 1R6 Map This House Public tours: Not available Solar Decathlon 2005 Team Canada: Advancing Solar Technologies The lone Canadian entry in the U.S. Department of Energy Solar Decathlon 2005 returned to the Loyola campus of Concordia University in Montreal, Quebec, following the competition. The solar-powered house, called Northern Lights, remains in good working order. It is used primarily for research.

289

Low-Cost Solutions for Dynamic Window Material | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Solutions for Dynamic Window Material Low-Cost Solutions for Dynamic Window Material Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer...

290

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

Hong, Tianzhen

2014-01-01T23:59:59.000Z

291

13-Energy Efficiency Ratio Window Air Conditioner | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT...

292

Effects of Overhangs on the Performance of Electrochromic Windows  

E-Print Network [OSTI]

issues for large-area electrochromic windows in commercialenergy performance of electrochromic windows controlled forwindows.lbl.gov/comm_perf/Electrochromic/ Winkelmann, F.C. ,

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

293

Windows and Building Envelope Facilities | Department of Energy  

Office of Environmental Management (EM)

Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to...

294

Highly Insulating Residential Windows Using Smart Automated Shading...  

Office of Environmental Management (EM)

Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window...

295

Building Technologies Office: Energy-Efficient Window Air Conditioner  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy-Efficient Window Energy-Efficient Window Air Conditioner Ratings Research Project to someone by E-mail Share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Facebook Tweet about Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Twitter Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Google Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Delicious Rank Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Digg Find More places to share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on

296

What is the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is the Efficient Windows Collaborative? What is the Efficient Windows Collaborative? The EWC is a coalition of window, door, skylight, and component manufacturers, research organizations, federal, state and local government agencies, and others interested in expanding the market for high-efficiency fenestration products. Its goals are to double the current market penetration of efficient window technologies, and to make NFRC labeling a near-universal practice in U.S. markets. The Alliance to Save Energy has the lead coordination and management role. Using its active involvement with the energy efficiency industry and its experience in promoting energy efficient products, the Alliance is committed to working with the fenestration industry to make the Collaborative an effective force in the marketplace.

297

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheets & Publications Fact Sheets & Publications Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer State Fact Sheets for New and Existing Construction The EWC State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state.

298

Introduction to Windows Phone Application Development  

Science Journals Connector (OSTI)

This chapter introduces Windows Phone, including its device hardware characteristics and software development tools. After this introduction, you will learn how to create simple applications and how to deploy ...

Fabio Claudio Ferracchiati; Emanuele Garofalo

2011-01-01T23:59:59.000Z

299

NREL Electrochromic Window Research Wins Award  

ScienceCinema (OSTI)

Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

None

2013-05-29T23:59:59.000Z

300

Occupant Response to Window Control Signaling Systems  

E-Print Network [OSTI]

my window it will waste energy.  Even so I open the windowthe windown wouldn’t waste energy. ” MS Thesis, Dept. ofthe potential for energy waste and balancing issues.  

Ackerly, Katherine

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Windows Public Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Windows Public Tools Windows Public Tools Windows Public Tools Windows TOOL DESCRIPTION KarlBridge The KarlBridge package by Doug Karl. A program that runs on a PC with two Ethernet boards, turning the PC into a sophisticated, high-level, packet-filtering bridge. It can filter packets based on any specified protocol, including IP, XNS, DECNET, LAT, IPX, AppleTalk, etc. FakeDOS FakeDoS is a PC password system that, when executed from the AUTOEXEC.BAT file, will present the user with an apparently normal DOS prompt on bootup. However, the system is actually waiting for the correct password to be typed in. LOCK'M-UP The LogTime program logs the current time into a file, maintaining the last 170 entries stored. This can be useful when placed in AUTOEXEC.BAT as a method of tracking the use of a computer.

302

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. The U.S. EPA will add qualifying models to the ENERGY STAR Most Efficient 2013 product list for windows from January 1, 2013 through December 31, 2013. The following products are not eligible for Most Efficient recognition in 2013: Windows for commercial buildings Doors Skylights Tubular Daylighting Devices Energy Star Most Efficient Program Energy Star Zones The ENERGY STAR Most Efficient designation recognizes the most efficient products among those that qualify for the ENERGY STAR. These exceptional products represent the leading edge in energy efficient products for a given year. Criteria Windows must be ENERGY STAR qualified consistent with applicable ENERGY

303

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network [OSTI]

across vertical fluid layers, Journal of Heat Transfer.fluid dynamics and conduction simulations of heat transferheat transfer through such window frames, we need, ideally, to simulate fluid

Gustavsen, Arild

2009-01-01T23:59:59.000Z

304

Transforming the market for residential windows: design considerations for DOE's Efficient Window Collaborative  

SciTech Connect (OSTI)

Market adoption of recent, commercially available technological advances that improve the energy performance of windows will lead to immediate economic and energy savings benefits to the nation. This paper is a scoping study intended to inform the design of a major DOE initiative to accelerate market adoption of these windows in the residential sector. We describe the structure of the US residential window market and the interests of the various market players. We then briefly review five recent market transformation initiatives. Finally, we summarize our findings in a list of considerations we believe will be important for the DOE's initiative to transform the US residential window market.

Eto, J.; Arasteh, D.; Selkowitz, S.

1998-08-01T23:59:59.000Z

305

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

306

Solar and Wind Equipment Certification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Equipment Certification Solar and Wind Equipment Certification Solar and Wind Equipment Certification < Back Eligibility Commercial Construction Industrial Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Equipment Certification Provider Arizona Solar Energy Industries Association Collectors, heat exchangers and storage units of solar energy systems -- and the installation of these systems -- sold or installed in Arizona must have a warranty of at least two years. The remaining components of the system and their installation must have a warranty of at least one year.

307

Solar Design Standards for State Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Design Standards for State Buildings Solar Design Standards for State Buildings Solar Design Standards for State Buildings < Back Eligibility Construction Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Program Info State Arizona Program Type Energy Standards for Public Buildings Provider Arizona Department of Commerce Arizona law requires that new state building projects over six thousand square feet follow prescribed solar design standards. Solar improvements should be evaluated on the basis of life cycle costs. Affected buildings include buildings designed and constructed by the department of

308

Highly Insulating Residential Windows Using Smart Automated Shading  

Broader source: Energy.gov [DOE]

Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

309

Time-slide window join over data streams  

Science Journals Connector (OSTI)

The join is an important operator in processing data streams. To produce outputs continuously over unbounded data streams, sliding windows are generally used to limit the scope of the join at a certain time. In the existing join algorithms, only a simple ... Keywords: Data streams, symmetric hash join, time-slide windows, window join, windowing structure

Hyeon Gyu Kim, Yoo Hyun Park, Yang Hyun Cho, Myoung Ho Kim

2014-10-01T23:59:59.000Z

310

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

electrochromic windows were technically successful, but it will take a number of years for significant market

Hong, Tianzhen

2014-01-01T23:59:59.000Z

311

A scalable and tiling multi-monitor aware window manager  

Science Journals Connector (OSTI)

The design of a prototypical scalable and tiling multi-monitor aware window manager is described that may overcome some of the layout management problems encountered with tiling window managers. The system also features a novel approach to monitor configuration ... Keywords: distal access, monitor configuration, multiple monitors, window management, window manager

Joona Antero Laukkanen

2011-05-01T23:59:59.000Z

312

Solar - Made to order ... | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dash of a common solvent, researchers realized an efficiency gain of about 36 percent for organic solar cells. A team led by Oak Ridge National Laboratory's Kai Xiao added...

313

Definition: Passive solar heating | Open Energy Information  

Open Energy Info (EERE)

solar heating solar heating Jump to: navigation, search Dictionary.png Passive solar heating Using the sun's energy to heat a building; the windows, walls, and floors can be designed to collect, store, and distribute solar energy in the form of heat in the winter (and also to reject solar heat in the summer).[1] View on Wikipedia Wikipedia Definition Related Terms Daylighting, Passive Solar, heat, energy References ↑ http://www.energysavers.gov/your_home/designing_remodeling/index.cfm/mytopic=10250 Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Passive_solar_heating&oldid=480581" Category: Definitions What links here Related changes Special pages Printable version Permanent link

314

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

315

3.5 Histogram Zoomable Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5.1 Summary States Up: 3. Graphical User Interface Previous: 3.4.4 5.1 Summary States Up: 3. Graphical User Interface Previous: 3.4.4 Row Adjustment Panel Contents 3.5 Histogram Zoomable Window Figure 3.23: Histogram window of the whole duration shown in Figure 3.10. Image histogram_state_all_cumu_excl The Histogram window is created by clicking the statistics button located in the middle of Duration Info Box, shown in Figure 3.19. In Figure 3.23, the Histogram window is created for the whole duration of the timeline canvas in Figure 3.10, that is, the same duration as the complete slog2 file. In general, the total duration of the histogram canvas is the same as the duration marked by the Duration Info Box, so that the Histogram window functions like a graphical display of statistical summary of the duration of interest. For instance, it is obvious from Figure 3.23 that the yellow

316

Solar probe technology challenges  

Science Journals Connector (OSTI)

A mission close to the sun is only possible if new spacecraft technologies can be developed and incorporated into a state?of?the?art spacecraft concept. The perihelion goal of 4 solar radii requires a shielded spacecraft that can tolerate the almost 3000 suns solar flux while maintaining the electronics components at room temperature. In addition the shield surface should sublimate at a rate of less than 3mg/s at perihelion. Many shield configuration designs have been studied and the most promising is a parabolic shape that functions as both a shield and a large high gain antenna. The shield material chosen for this design is a carbon?carbon material with highly emissive surface properties. A mission requirement for a high telecommunications power stems from the expected interference when attempting to transmit data through the solar corona. It is expected that the large carbon?carbon shield/antenna will have a high power gain even at high temperatures and will return adequate telemetry at the X?band radio frequency chosen for the Solar Probe mission. Other key technology needs include a non?nuclear power subsystem that can function in the extreme environments of the mission from Earth to Jupiter and onward to a 4 solar radii perihelion.

James E. Randolph; Robert N. Miyake; Bill J. Nesmith; Ray B. Dirling Jr.; Richard J. Howard

1996-01-01T23:59:59.000Z

317

Solar Decathlon 2013  

SciTech Connect (OSTI)

The Solar Decathlon is a perfect example of how the Energy Department is training and inspiring the next generation of architects, engineers and entrepreneurs. The two-year competition challenges collegiate teams to build energy-efficient, solar-powered houses. Over the course of the competition, students gain hands-on experience in everything from fundraising and marketing to design and construction. Showcasing their houses to the general public allows students to get feedback on their designs and how they work in the real world -- something that many of them would never get in the classroom.

Lewis, Chandra; Ouyang, Derek; Brown, Victoria; Ainsworth, Claire; Lee, Daniel; King, Richard; ,

2013-10-22T23:59:59.000Z

318

DOE Solar Decathlon: California Polytechnic State University: Benchmarking  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cal Poly solar-powered house on the National Mall for Solar Decathlon 2005. Cal Poly solar-powered house on the National Mall for Solar Decathlon 2005. Enlarge image The exterior of Cal Poly's house features a large deck and overhang that shades the south-facing windows and doors. (Credit: Chris Gunn/U.S. Department of Energy Solar Decathlon) Who: California Polytechnic State University What: Solar Cal Poly Where: California Polytechnic State University 1 Grand Ave. San Luis Obispo, CA 93407 Map This House Public tours: Contact the Cal Poly Renewable Energy Club at 224-805-7999 for tour information. Solar Decathlon 2005 California Polytechnic State University: Benchmarking Solar Performance The solar-powered house designed by California Polytechnic State University returned to San Luis Obispo after placing third overall in the U.S. Department of Energy Solar Decathlon 2005. It was reconstructed on campus

319

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membership List Membership List Manufacturers | Suppliers | Affiliates Manufacturers Accent Accent Windows exit disclaimer 14175 East 2nd Avenue Denver, CO 80239 AccurateDorwin Accurate Dorwin exit disclaimer 1535 Seel Avenue Winnipeg, Manitoba Canada, R3T 1C6 1-888-982-4640 Alpine Alpine Windows exit disclaimer 3773 State Road Cuyahoga Falls, OH 44223 Alside ALSIDE, Inc. exit disclaimer 3773 State Road Cuyahoga Falls, OH 44223 American Exteriors American Exteriors, LLC exit disclaimer 1169 W. Littleton Blvd. Littleton, CO 80120 Amerimax Amerimax Windows & Doors exit disclaimer 3950 Medford Drive Loveland, CO 80538 Andersen Andersen Corporation exit disclaimer 100 N. 4th Avenue Bayport, MN 55003 Charter Member Associated Materials Associated Materials, Inc. exit disclaimer 3773 State Road

320

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-E Coatings Low-E Coatings Low-E Center-of-glass values of double pane units with and without low-E coatings. When heat or light energy is absorbed by glass, it is either convected away by moving air or reradiated by the glass surface. The ability of a material to radiate energy is called its emissivity. All materials, including windows, emit (or radiate) heat in the form of long-wave, far-infrared energy depending on their temperature. This emission of radiant heat is one of the important components of heat transfer for a window. Thus reducing the window's emittance can greatly improve its insulating properties. Standard clear glass has an emittance of 0.84 over the long-wave portion of the spectrum, meaning that it emits 84% of the energy possible for an object at its temperature. It also means that 84% of the long-wave

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LBNL Windows & Daylighting Software -- THERM Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THERM Tutorials THERM Tutorials bullet Creating THERM Sample File (Flash Video) (A 17 minute video which will open in your browser) specification document to accompany the Tutorial (PDF file) bullet Creating a Steel Stud Wall in THERM (Flash Video) Windows Media Player: WMV QuickTime: MOV bullet U-factor tags explanation (Flash Video) Windows Media Player WMV QuickTime: MOV bullet DXF Underlay - False Die Mold Method (Flash Video) Windows Media Player WMV QuickTime: MOV bullet The Calc Manager in THERM has been made into a multi-threaded process which allows it to take advantage of multi-core processors. See this video for more information about this enhancement. QuickTime:MOV bullet Displaying Surface Condensation Potential in THERM 7 QuickTime:MOV bullet Viewing R-values instead of U-factors in THERM 7

322

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the EWC About the EWC Who are the EWC members? The EWC is made up of manufacturers, suppliers, and affiliates to the window industry Manufacturers: producers of whole fenestration products such as windows, doors and skylights. Suppliers: producers and suppliers of components such as glazing, lineals, spacers, and other components of the fenestration product. Affiliates: non-manufacturing interested parties such as trade associations, utilities, consultants, and government agencies. View the entire EWC membership list» For more information about EWC membership contact: Jacob Johnston (ewc@ase.org) Alliance to Save Energy 1850 M Street, NW, Suite 600 Washington, DC 20036 phone: 202-530-4343 fax: 202-331-9588 www.ase.org exit disclaimer The EWC is a coalition of window, door, skylight, and component

323

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glass Glass Vacuum-insulated Glass Vacuum-insulated glazing units are made up of 2 panes of glass with a very small air space. The air space contains spacers which help maintain the separation between the panes. Most of the emerging glass technologies are available or nearly on the market. These include insulation-filled and evacuated glazings to improve heat transfer by lowering U-factors. Evacuated Windows The most thermally efficient gas fill would be no gas at all-a vacuum. The window industry is pursuing the development of vacuum-insulated glass (VIG) for use in window units in which the space between the panes is evacuated. If the vacuum pressure is low enough, there would be no conductive or convective heat exchange between the panes of glass, thus lowering the U-factor. A vacuum glazing must have a good low-E coating to

324

Apparatus for insulating windows and the like  

DOE Patents [OSTI]

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

Mitchell, R.A.

1984-06-19T23:59:59.000Z

325

Apparatus for insulating windows and the like  

DOE Patents [OSTI]

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

1984-01-01T23:59:59.000Z

326

Field Evaluation of Low-E Storm Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Evaluation of Low-E Storm Windows Field Evaluation of Low-E Storm Windows Title Field Evaluation of Low-E Storm Windows Publication Type Conference Paper LBNL Report Number LBNL-1940E Year of Publication 2007 Authors S. Craig Drumheller, Christian Kohler, and Stefanie Minen Conference Name Thermal Performance of the Exterior Envelopes of Whole Buildings X International Conference Volume 277 Date Published 12/2007 Conference Location Clearwater Beach, FL Abstract A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homes had traditional clear glass. Overall heating load reduction due to the storm windows was 13% with the clear glass and 21% with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years for the low-e storm windows.

327

A Review of Electrochromic Window Performance Factors  

E-Print Network [OSTI]

heat gain coefficient (SHGC). Even if a practical devicenot have a significantly lower SHGC. On the other hand, forneeded to determine the SHGC, but usually reflectance does

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

328

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

329

Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort  

E-Print Network [OSTI]

solar heat gain coefficient (SHGC)=0.42-0.09). Fifteen ECproperties were Tv=0.60-0.05, SHGC=0.42-0.09, and U-Value=glass properties were Tv=0.42, SHGC=0.219, U-Value=1.408 W/m

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

2005-01-01T23:59:59.000Z

330

Insight Gained from Simplified Dynamic Analysis  

Broader source: Energy.gov [DOE]

Insight Gained from Simplified Dynamic Analysis ... or Everything Old is New Again October 21, 2014 Greg Mertz Consultant

331

Rolling, Rolling, Rolling: Roller Window Shades | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rolling, Rolling, Rolling: Roller Window Shades Rolling, Rolling, Rolling: Roller Window Shades Rolling, Rolling, Rolling: Roller Window Shades March 15, 2010 - 11:42am Addthis John Lippert There's a lot of talk these days about installing new energy-efficient windows. Thanks to a Federal tax credit of up to $1,500, window advertisements, both print and radio and TV broadcasting, are aplenty. I don't want to knock energy-efficient windows. There are some great window products available. Some even rival the overall performance of walls, that is, if you account for the heat energy that enters the home via sunshine, depending on the climate and orientation. What I would like to talk about here are window shades. My wife and I bought our house 19 years ago. We are only the 2nd owners. The house has double-pane wooden windows made by a major well-known manufacturer. No

332

Building Technologies Office: High Performance Windows Volume Purchase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

333

Rolling, Rolling, Rolling: Roller Window Shades | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rolling, Rolling, Rolling: Roller Window Shades Rolling, Rolling, Rolling: Roller Window Shades Rolling, Rolling, Rolling: Roller Window Shades March 15, 2010 - 11:42am Addthis John Lippert There's a lot of talk these days about installing new energy-efficient windows. Thanks to a Federal tax credit of up to $1,500, window advertisements, both print and radio and TV broadcasting, are aplenty. I don't want to knock energy-efficient windows. There are some great window products available. Some even rival the overall performance of walls, that is, if you account for the heat energy that enters the home via sunshine, depending on the climate and orientation. What I would like to talk about here are window shades. My wife and I bought our house 19 years ago. We are only the 2nd owners. The house has double-pane wooden windows made by a major well-known manufacturer. No

334

Integrated solar heating unit  

SciTech Connect (OSTI)

This patent describes an integral solar heating unit with an integral solar collector and hot water storage system, the unit comprising: (a) a housing; (b) a flat plate solar collector panel mounted in the housing and having a generally horizontal upper edge and an uninsulated, open back surface; (c) a cylindrical hot water tank operatively connected to the solar collector panel and mounted in the housing generally parallel to and adjacent to the upper edge; (d) the housing comprising a hood around the tank a pair of side skirts extending down at the sides of the panel. The hood and side skirts terminate at lower edges which together substantially define a plane such that upon placing the heating unit on a generally planar surface, the housing substantially encapsulates the collector panel and hot water tank in a substantially enclosed air space; (e) the collector including longitudinally extended U-shaped collector tubes and a glazed window to pass radiation through to the collector tubes, and a first cold water manifold connected to the tubes for delivering fresh water thereto and a second hot water manifold connected to the tubes to remove heated water therefrom. The manifolds are adjacent and at least somewhat above and in direct thermal contact with the tank; and, (f) the skirts and hood lapping around the collector panel, exposing only the glazed window, such that everything else in the heating unit is enclosed by the housing such that heat emanating from the uninsulated, open back face of the collector and tank is captured and retained by the housing to warm the manifolds.

Larkin, W.J.

1987-01-20T23:59:59.000Z

335

Simulating Complex Window Systems using BSDF Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complex Window Systems using BSDF Data Complex Window Systems using BSDF Data Title Simulating Complex Window Systems using BSDF Data Publication Type Conference Paper LBNL Report Number LBNL-4416E Year of Publication 2009 Authors Lee, Eleanor S., Jacob C. Jonsson, and Maria Konstantoglou Call Number LBNL-4416E Abstract Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

336

The Current T2K Beam Window  

E-Print Network [OSTI]

Downstream Helium velocity 5 m/s Heat transfer coefficient 150 W/m2K #12;Helium flow grooves He in He out at KEK (via Oak Ridge via PSI). #12;Assembled Window #12;Remote Handling #12;Remote handling Monitor Chamber (Canada) Target Station (Japan) #12;Remote installation #12;Stress analysis and upgrade potential

McDonald, Kirk

337

Performance Criteria for Residential Zero Energy Windows  

E-Print Network [OSTI]

e window energy rovide o ws p wind SHGC U=0.84 Btu/(hr-ft^2-F) [4.77 W/(m^2-K)], SHGC=0.64 - 124.3 MBtu [131.2 GJ] -hr-ft^2-F) [2.78 W/(m^2-K)], SHGC=0.56 - 106.2 MBtu [ 112.0

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

338

Window performance for human thermal comfort  

E-Print Network [OSTI]

with Tsol and SHGC indirect ..of solar transmittance and SHGC 64 Figure 44: Directsolar transmittance and SHGC.64 TABLE OF TABLES Table

Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

2006-01-01T23:59:59.000Z

339

Solar Easements  

Broader source: Energy.gov [DOE]

New Jersey law provides for the creation of solar easements to ensure that proper sunlight is available to those who operate solar-energy systems. The term "solar energy device" is not defined by...

340

Solar Easements  

Broader source: Energy.gov [DOE]

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Illinois Company Implementing Solar Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Illinois Company Implementing Solar Energy Illinois Company Implementing Solar Energy Illinois Company Implementing Solar Energy March 23, 2010 - 2:00pm Addthis J.F. Electric will soon install its own solar rooftop solar panels, saving money and gaining a potential sales tool. | Photo Courtesy of J.F. Electric | J.F. Electric will soon install its own solar rooftop solar panels, saving money and gaining a potential sales tool. | Photo Courtesy of J.F. Electric | Joshua DeLung J.F. Family Limited Partnership has been awarded $191,000 through the Recovery Act toward the use of solar energy at its Lakefront Parkway property in Edwardsville, Ill., which is the company headquarters for J.F. Electric Inc. The funding will be used to install a 75-kW solar photovoltaic system on the building's roof, creating electricity on-site

342

Illinois Company Implementing Solar Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Company Implementing Solar Energy Company Implementing Solar Energy Illinois Company Implementing Solar Energy March 23, 2010 - 2:00pm Addthis J.F. Electric will soon install its own solar rooftop solar panels, saving money and gaining a potential sales tool. | Photo Courtesy of J.F. Electric | J.F. Electric will soon install its own solar rooftop solar panels, saving money and gaining a potential sales tool. | Photo Courtesy of J.F. Electric | Joshua DeLung J.F. Family Limited Partnership has been awarded $191,000 through the Recovery Act toward the use of solar energy at its Lakefront Parkway property in Edwardsville, Ill., which is the company headquarters for J.F. Electric Inc. The funding will be used to install a 75-kW solar photovoltaic system on the building's roof, creating electricity on-site

343

Design implications and potentials of passive solar heating in higher density communities: the Lykovrissi Solar Village  

SciTech Connect (OSTI)

Carefully analyzed building density, massing, and orientation become critical if solar access to the building is to be maintained. Even more carefully thought out building organization and room planning is critical if solar access to the apartment is to be maintained. Finally, careful material and component selection and placement, as well as window control system design is critical if solar access (heating) for the individual is to be maintained. The prerequisite guidelines necessary to ensure this completed solar access were established for the design of the Lykovrissi Solar Village now under construction near Athens. Fulfilling a cooperative agreement of 1978 between Germany and Greece, a community of rowhouses and three-to-six story multi-family units have been designed to provide energy efficient and solar assisted housing for 431 low income families, with a clear perspective on comparing solar systems for future subsidized housing.

Loftness, V. (INTERATOM, Bergisch Gladbach, Germany); Boese, F.K.; Tombazis, A.; Mouzakis, J.

1981-01-01T23:59:59.000Z

344

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System Non-Convergence System Non-Convergence Last update:05/19/08 05:03 PM There are some circumstances where WINDOW 5 will give the following error message: This error can occur either in the Window or Glazing System calculation, but it is actually an error that occurs when the program tries to calculate the glazing system thermal properties -- it occurs in the Window Library because the program recalculates the center-of-glass U-value based on the window height. It will happen in rare circumstances because of a problem with the discontinuity in correlations that calculate convective heat transfer in glazing cavities. The solution is to change either the glazing system height or width. In general, the most practical solution is to change the glazing system height rather than the width..

345

Community Shared Solar with Solarize  

Broader source: Energy.gov [DOE]

An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

346

Energy Performance Ratings for Windows, Doors, and Skylights | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights June 18, 2012 - 9:35am Addthis Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. What does this mean for me? Energy performance ratings make it easier for you to purchase the window most appropriate for your home's climate and orientation. Using energy performance ratings, you can fine-tune window placement in your home. You can use the energy performance ratings of windows, doors, and skylights

347

Seeing Windows Through : Technologies : From the Lab to the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seeing Windows Through Seeing Windows Through From the Lab to the Marketplace Ten Years Later, Energy Efficient Technologies from Research at the Lawrence Berkeley National Laboratory Berkeley Lab logo (left) with six rows of gray dots transitioning to a line art drawing of a cityscape and residential houses. Seeing Windows Through Energy lost through residential and commercial windows costs U.S. consumers about $40 billion a year. Berkeley Lab pioneered the commercialization of "low-emissivity" windows and labeling systems, which reduce the energy lost through normal, double-glazed windows by 35%. Thanks to Berkeley Lab's close collaboration with window manufacturers, these advanced windows have a greater than 50- percent marketshare and save American consumers billions

348

Updating the Doors and Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Updating the Doors and Windows Updating the Doors and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace my windows like Andrea did recently (I've got a lot more of them for one thing), the next best thing is to be sure the existing ones-- which are double-paned, so that's a help-are well sealed. One of my energy audit recommendations was to caulk the window frames inside and out. My handyman friend Rob and his brother got the outside of the windows caulked (hmm, I have to ask him about the basement windows -- it's kind of tucked away under the entry deck over the dog door.) He said that it looked like some of the edges (the tops of the second floor windows especially) hadn't ever been done and the ones that had, had highly

349

Improving the Energy Efficiency of Existing Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? There are several solutions to energy inefficient windows whether you're starting from scratch or simply making upgrades. But, soft! What light through yonder window breaks? It is the east, and Juliet is the sun. - William Shakespeare, Romeo and Juliet No one would dispute the undeniable beauty of soft, dappled light shining through a window in the early morning. Unless, of course, you happen to be one of the many Americans whose windows are letting in more than just light. Poorly fitted or sealed windows can be a major frustration during the winter months, letting in cold drafts that blur the lines between

350

A Tale of Three Windows: Part 1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Tale of Three Windows: Part 1 A Tale of Three Windows: Part 1 A Tale of Three Windows: Part 1 August 1, 2012 - 12:37pm Addthis The original windows in Andrea's home. | Photo courtesy of Andrea Spikes. The original windows in Andrea's home. | Photo courtesy of Andrea Spikes. Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I will admit right up front that, despite the fact that our aluminum windows are more than 20 years old, and are obviously inefficient, we never bothered to replace them simply because we didn't want to shell out the bucks. We've lived with these windows (two standard windows plus a patio door) for nearly ten years, and have simply used insulating blinds and curtains, plus the old standby heat-shrink plastic, to keep the winter cold and summer heat at bay. Those methods are certainly budget-friendly,

351

Modeling Windows in Energy Plus with Simple Performance Indices  

E-Print Network [OSTI]

that window U-factors include the interior and exterior filmwindows however, Steps 1 and 5 which use interior filmthese film coefficients to a resistance for the solid window

Arasteh, Dariush

2010-01-01T23:59:59.000Z

352

Pennsylvania: Window Technology First of Its Kind for Commercial Buildings  

Broader source: Energy.gov [DOE]

The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

353

Atmospheric Condensation Potential of Windows in Hot, Humid Climates  

E-Print Network [OSTI]

frequent atmospheric condensation on external surfaces of windows when their surface temperature drops below the dew point temperature of the hot humid air. To date, external surface condensation on windows has been given relatively much less importance...

El Diasty, R.; Budaiwi, I.

354

Window, Door, and Skylight Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services June 18, 2012 - 8:33am Addthis Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR® Information on ENERGY STAR performance ratings for windows, doors, and skylights. Product Ratings National Fenestration Rating Council Find energy performance ratings and manufacturers of windows, doors, and skylights. Residential Windows, Doors, and Skylights

355

Energy Performance Ratings for Windows, Doors, and Skylights | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights June 18, 2012 - 9:35am Addthis Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. What does this mean for me? Energy performance ratings make it easier for you to purchase the window most appropriate for your home's climate and orientation. Using energy performance ratings, you can fine-tune window placement in your home. You can use the energy performance ratings of windows, doors, and skylights

356

Improving the Energy Efficiency of Existing Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? There are several solutions to energy inefficient windows whether you're starting from scratch or simply making upgrades. But, soft! What light through yonder window breaks? It is the east, and Juliet is the sun. - William Shakespeare, Romeo and Juliet No one would dispute the undeniable beauty of soft, dappled light shining through a window in the early morning. Unless, of course, you happen to be one of the many Americans whose windows are letting in more than just light. Poorly fitted or sealed windows can be a major frustration during the winter months, letting in cold drafts that blur the lines between

357

Initial Study of Solar Control Film in a Hotel Guest Room in Winter  

E-Print Network [OSTI]

studies about energy performance and its related financial savings and environmental improvement brought by those facilities, such as heat pumps, solar-control film on the window, sensor and dimmer for lighting control, etc. Nevertheless, there is a lack...

Chan, W. C.; Chen, Y.; Mak, B.; Li, D.; Huang, Y.; Xie, H.; Hou, G.

2006-01-01T23:59:59.000Z

358

Thermally induced wave-front distortions in laser windows  

SciTech Connect (OSTI)

A simple analytical expression is given for wave-front distortions and birefringence due to heating in laser windows. (AIP)

Greninger, C.E.

1986-08-01T23:59:59.000Z

359

Window and Envelope Technologies Overview - 2014 BTO Peer Review...  

Energy Savers [EERE]

Research and Development Roadmap: Windows and Building Envelope Research & Development Roadmap: Emerging Water Heating Technologies Research & Development Roadmap: Emerging HVAC...

360

The Impact of Overhang Design on the Performance of Electrochromic Windows  

E-Print Network [OSTI]

Issues for Large-area Electrochromic Windows in CommercialAnalysis of Prototype Electrochromic Windows”, ASHRAEon the Performance of Electrochromic Windows Asilhan Tavil

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The energy-savings potential of electrochromic windows in the US commercial buildings sector  

E-Print Network [OSTI]

Alone Photovoltaic-Powered Electrochromic Smart Window.Subject responses to electrochromic windows. To be publishedAnalysis of Prototype Electrochromic Windows, ASHRAE

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-01-01T23:59:59.000Z

362

End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application  

E-Print Network [OSTI]

2006. Advancement of electrochromic windows: Final report.User Impacts of Automated Electrochromic Windows in a Pilotenergy performance of electrochromic windows controlled for

Lee, Eleanor S.

2014-01-01T23:59:59.000Z

363

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheets & Publications: State Fact Sheets Fact Sheets & Publications: State Fact Sheets The EWC >State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state. State New Construction Existing Construction (replacement) Alaska Anchorage, Fairbanks Alaska.pdf Alaska.pdf Alabama Birmingham, Mobile Alabama.pdf Alabama.pdf Arkansas Little Rock Arkansas.pdf Arkansas.pdf Arizona Phoenix, Flagstaff, Tucson Arizona.pdf Arizona.pdf California Arcata, Bakersfield, Daggett, Fresno, Los Angeles Red Bluff, Sacramento, San Diego, San Francisco California.pdf California.pdf

364

Vacuum Glazing; A Thermally Insulating Window Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

365

LBNL Windows & Daylighting Software -- THERM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THERM 5.2 (older version) THERM 5.2 (older version) Download New Features Knowledge Base (Check here first if you are experiencing a problem with the software) Documentation Two-Dimensional Building Heat-Transfer Modeling THERM is a state-of-the-art, Microsoft Windows™-based computer program developed at Lawrence Berkeley National Laboratory (LBNL) for use by building component manufacturers, engineers, educators, students, architects, and others interested in heat transfer. Using THERM, you can model two-dimensional heat-transfer effects in building components such as windows, walls, foundations, roofs, and doors; appliances; and other products where thermal bridges are of concern. THERM's heat-transfer analysis allows you to evaluate a product’s energy efficiency and local temperature patterns, which may relate directly to problems with

366

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Caulking and Weatherstripping Caulking and Weatherstripping DOE's Energy Savers Air sealing is one of the most significant energy efficiency improvements you can make to your home. Air sealing will not just reduce energy costs; it will also improve your home's comfort and durability. Caulking exit disclaimer Weatherstripping exit disclaimer Financing & Incentives DOE Weatherization Assistance Program exit disclaimer Find Federal Tax Credits for Energy Efficiency exit disclaimer Air leakage can occur around the window frame and through the cracks within the window assembly, particularly along operable sashes. Caulking and weatherstripping can reduce air leakage through these pathways. According to the U.S. Department of Energy exit disclaimer , the costs of properly applied caulking and weather stripping can usually be recovered in energy

367

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies: Low Conductance Spacers Window Technologies: Low Conductance Spacers Spacers The lites of glass in an insulating unit must be held apart at the appropriate distance by spacers. In addition to keeping the glass lites separated, the spacer system must serve a number of functions: accommodate stress induced by thermal expansion and pressure differences; provide a moisture barrier that prevents passage of water or water vapor that would fog the unit; provide a gas-tight seal that prevents the loss of any special low-conductance gas in the air space; create an insulating barrier that reduces the formation of interior condensation at the edge. Spacers The standard solution for insulating glass units (IGUs) is the use of metal spacers and sealants. These spacers, typically aluminum, also

368

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary Glossary A B C D E F G H I J K L M N O P R S T U V W A AAMA. American Architectural Manufacturers Association. A national trade association that establishes voluntary standards for the window, door, storefront, curtain wall, and skylight industries. Absorptance. The ratio of radiant energy absorbed to total incident radiant energy in a glazing system. Acrylic. A thermoplastic with good weather resistance, shatter resistance, and optical clarity, used for glazing. Aerogel. A microporous, transparent silicate foam used as a glazing cavity fill material, offering possible U-values below 0.10 BTU/(h-sq ft-°F) or 0.56 W/(sq m-°C). Air infiltration. The amount of air leaking in and out of a building through cracks in walls, windows and doors.

369

Power Line Calculator for Windows[trademark  

SciTech Connect (OSTI)

The Power Line Calculator (PLC) for Windows [trademark], version 1.0, is a program that describes the electrical characteristics of a transmission or distribution system given user-defined input. This input may consist of a combination of operating currents and phases, symmetric components, power factor, and real or reactive power. The program also allows the user to designate whether currents are present on the system neutral or in the ground. The PLC assumes that any value entered by the user remains fixed (e.g., phase current, power factor), and for underdetermined systems, basic default assumptions are incorporated: the power factor is held at or near 1.0, the net phase current is kept at or near zero, and the phase conductor currents are kept balanced. The program operates through a graphical user interface provided by Microsoft[reg sign] Windows [trademark] (version 3.1 or higher required), and the output is available in both tabular and graphic formats.

Silva, J.M. (Enertech Consultants, Campbell, CA (United States))

1992-12-01T23:59:59.000Z

370

Optimal Control Strategy of Solar Heating Systems Using a Long Term Heat Storage  

Science Journals Connector (OSTI)

...the estimation of the energy gain expected from optimizing the control of a given gas/solar heating system using a long term heat storage in the ground.

M. Boucher; M. Pottier; Y. Lenoir; R. Lidin…

1984-01-01T23:59:59.000Z

371

The Photovoltaic Market Facing the Challenge of Organic Solar Cells: Economic and Technical Perspectives  

Science Journals Connector (OSTI)

Solar cells are gaining more interest in recent ... solution to improve energy production whilst reducing its environmental impact. The majority of the market is still dominated by first generation solar cells ma...

Paolo Chiappafreddo; Alessio Gagliardi

2010-06-01T23:59:59.000Z

372

Aneka Cloud Application Platform and Its Integration with Windows Azure  

E-Print Network [OSTI]

into hybrid Clouds, but also to redesign the existing IT infrastructure in order to optimize the usage such as Amazon EC2, Windows Azure and GoGrid. In this chapter, we will present Aneka platform and its integration with one of the public Cloud infrastructures, Windows Azure, which enables the usage of Windows Azure

Melbourne, University of

373

End User Impacts of Automated Electrochromic Windows in a Pilot  

E-Print Network [OSTI]

LBNL-6027E End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application E Electrochromic Windows in a Pilot Retrofit Application Eleanor S. Lee1 Abstract , Erin S. Claybaugh Building Independence Avenue, S.W., Washington, DC 20585 USA Automated electrochromic (EC) windows, advanced thermally

374

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

(Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Boston Massachusetts: Solar in Action (Brochure), Solar America Cities, Energy Efficiency &...

375

Solar Keymark Testing of Solar Thermal Products  

Science Journals Connector (OSTI)

The Solar Keymark is the official CEN certification scheme for thermal solar collectors and factory made thermal solar systems. The Solar Keymark requires that the products fulfil the...

Harald Drück; Stephan Fischer…

2009-01-01T23:59:59.000Z

376

TWOZONE USERS MANUAL. 2d ed  

E-Print Network [OSTI]

The heat sources are the furnace, solar heat gain (throughfurnace load (BTUH) to windows, walls, roof, floor and infiltration. Hours and amount of useful solar

Gadgil, A.J.

2008-01-01T23:59:59.000Z

377

TWOZONE USERS MANUAL  

E-Print Network [OSTI]

The heat sources are the furnace, solar heat gain (throughfurnace load (BTUH) to windows, walls, roof, floor and infiltration. Hours and amount of useful solar

Gadgil, Ashok J.

2010-01-01T23:59:59.000Z

378

TWOZONE USERS MANUAL  

E-Print Network [OSTI]

The heat sources are the furnace, solar heat gain (throughfurnace load (BTUH) to windows, walls, roof, floor and infiltration. Hours and amount of useful solar

Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

379

Developing Low-Conductance Window Frames: Capabilities and Limitations of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Limitations of Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Title Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Publication Type Journal Article LBNL Report Number LBNL-1022E Year of Publication 2008 Authors Gustavsen, Arlid, Dariush K. Arasteh, Bjørn Petter Jelle, Dragan C. Curcija, and Christian Kohler Journal Journal of Building Physics Volume 32 Pagination 131-153 Call Number LBNL-1022E Abstract While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames.

380

High Performance Windows Volume Purchase: For Light Commercial Buyers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Light For Light Commercial Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Light Commercial Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Light Commercial Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Google Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Delicious Rank High Performance Windows Volume Purchase: For Light Commercial Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Light Commercial Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Light Commercial Buyers Significant energy savings from low-E window technology are possible in the

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

T-596: 0-Day Windows Network Interception Configuration Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

6: 0-Day Windows Network Interception Configuration 6: 0-Day Windows Network Interception Configuration Vulnerability T-596: 0-Day Windows Network Interception Configuration Vulnerability April 6, 2011 - 5:48am Addthis PROBLEM: 0-Day exploit of IPv4 and IPv6 mechanics and how it applies to Microsoft Windows Operating systems. PLATFORM: Microsoft Operating Systems (OS) Windows Vista, Windows 7, and Windows 2008 Server ABSTRACT: The links below describe a parasitic IPv6 layered over a native IPv4 network. This attack can be used to stage potential man-in-the-middle (MITM) attacks on IPv4 traffic. Please see the "Other Links" section below, as it provides an external URL reference. reference LINKS: InfoSec Institute - SLAAC Attack Cisco Threat Comparison and Best-Practice White Paper IMPACT ASSESSMENT: High

382

Do You Have Windows That Need Replacing? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Do You Have Windows That Need Replacing? Do You Have Windows That Need Replacing? Do You Have Windows That Need Replacing? August 3, 2012 - 2:11pm Addthis This week, Andrea shared the first part of her two-part story about how she replaced her more than 20-year-old windows with new, energy-efficient ones. Replacing old windows can be a great way to reduce the amount of warm and cool air (depending on the season) is leaking right out of your home. This week, we're wondering: Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows? You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles

383

My Energy Audit, Part 2: Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

My Energy Audit, Part 2: Windows My Energy Audit, Part 2: Windows My Energy Audit, Part 2: Windows July 9, 2012 - 1:48pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Last time I wrote about the heating portion of my energy audit -- now for some other items that were checked. The auditor checked some of the windows, which are double-paned, and showed me cracks between the window frame and the house that should be caulked. She recommended caulking both the inside and outside. That's easy enough for me to do -- at least the inside -- so I got some clear caulking and some gadgets to ensure a smooth finish from the home improvement store (I LOVE gadgets). I'm planning to start with the downstairs windows to perfect my technique, and at one window a week, hopefully I'll be finished

384

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System Debugging Information System Debugging Information Last update:08/07/03 12:07 PM To help us determine the problem you are having running or installing our software, please supply us with the information below: Program version (go to the Help menu, About choice) or name of installation file (such as WINDOW5Setup.exe with file date and size) Operating System (ie, MS Windows XP, 2000, 98, etc) DLL Info (see below) System Info (see below) To determine what DLLs are installed on a computer, do the following: Download the program called Dependency Walker, which is a free download from: http://www.dependencywalker.com/ What you download (select the first option, which is for Windows 2000, XP, etc) will be a zip file. Unzip the contents of that file into a new directory (called whatever you want, such as DependencyWalker).

385

T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption  

Broader source: Energy.gov (indexed) [DOE]

7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users 7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions September 27, 2011 - 8:00am Addthis PROBLEM: Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Windows Server 2003 with SP2 for Itanium-based Systems Windows Vista Service Pack 2 Windows Vista x64 Edition Service Pack 2 Windows Server 2008 for 32-bit Systems Service Pack 2 Windows Server 2008 for x64-based Systems Service Pack 2 Windows Server 2008 for Itanium-based Systems Service Pack 2 Windows 7 for 32-bit Systems and Windows 7 for 32-bit Systems Service Pack

386

T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption  

Broader source: Energy.gov (indexed) [DOE]

7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users 7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions September 27, 2011 - 8:00am Addthis PROBLEM: Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Windows Server 2003 with SP2 for Itanium-based Systems Windows Vista Service Pack 2 Windows Vista x64 Edition Service Pack 2 Windows Server 2008 for 32-bit Systems Service Pack 2 Windows Server 2008 for x64-based Systems Service Pack 2 Windows Server 2008 for Itanium-based Systems Service Pack 2 Windows 7 for 32-bit Systems and Windows 7 for 32-bit Systems Service Pack

387

U-032: Microsoft Security Bulletin Windows TCP/IP MS11-083 - Critical |  

Broader source: Energy.gov (indexed) [DOE]

32: Microsoft Security Bulletin Windows TCP/IP MS11-083 - 32: Microsoft Security Bulletin Windows TCP/IP MS11-083 - Critical U-032: Microsoft Security Bulletin Windows TCP/IP MS11-083 - Critical November 9, 2011 - 1:00pm Addthis PROBLEM: Microsoft Security Bulletin Windows TCP/IP MS11-083 - Critical. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Active Directory Windows Server 2003 with SP2 for Itanium-based Systems Windows Vista Service Pack 2 Windows Vista x64 Edition Service Pack 2 Windows Server 2008 for 32-bit Systems Service Pack 2 Windows Server 2008 for x64-based Systems Service Pack 2 Windows 7 for 32-bit Systems Windows 7 for 32-bit Systems Service Pack 1 Windows 7 for x64-based Systems

388

North American trade alliance gains support  

Science Journals Connector (OSTI)

North American trade alliance gains support ... A broad trade alliance among the U.S., Canada, and Mexico isn't likely yet, but pacts for specific industrial sectors may be possible; one candidate for agreement is petrochemicals and the effects would be profound ... The idea, now gaining wide and influential support, is the formation of some sort of North American trade alliance. ...

EARL V. ANDERSON

1980-07-14T23:59:59.000Z

389

Solar Panels Â… A Life Story  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PLAN PLAN Solar Panels: A Life Story Grade Level: 7-9 Subjects: Science & Economics Length: 3-4 Class Periods Solar Panels - A Life Story INTRODUCTION As solar power gains popularity, solar panels are quickly becoming a part of everyday life. However, the public knows surprisingly little about these energy sources. Where do solar panels come from? How do they work? How much do they really cost? This lesson plan will guide students toward answers by exploring the many factors that influence how solar panels are manufactured. LESSON OVERVIEW Grade Level & Subject: 7 - 9, Science and Economics Length: 3 - 4 class periods Objectives: After completing this lesson, students will be able to: ï‚· Identify the raw materials that comprise a solar (photovoltaic, or PV) panel, where

390

Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort  

E-Print Network [OSTI]

absorptive electrochromic (EC) windows tested were market-electrochromic windows that were deemed sufficiently mature for market

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

2005-01-01T23:59:59.000Z

391

Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort  

E-Print Network [OSTI]

Subject responses to electrochromic windows. Submitted toin a full-scale electrochromic window testbed. Technicaloptimization of electrochromic operations for occupant

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

2005-01-01T23:59:59.000Z

392

Atmospheric Pressure Deposition for Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

393

Atmospheric Pressure Deposition for Electrochromic Windows  

Broader source: Energy.gov (indexed) [DOE]

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

394

Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source  

SciTech Connect (OSTI)

An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

McClintock, David A [ORNL] [ORNL; Janney, Jim G [ORNL] [ORNL; Parish, Chad M [ORNL] [ORNL

2014-01-01T23:59:59.000Z

395

Solar Energy  

Science Journals Connector (OSTI)

There are major advantages to using solar energy for a variety of energy needs including electrical generation and space heating. The availability of solar radiation is extremely high in some localities of the...

Charles E. Brown Ph.D.

2002-01-01T23:59:59.000Z

396

Solar Easements  

Broader source: Energy.gov [DOE]

Idaho’s solar easement provisions allow for the access rights to sunlight for a solar energy device. The easement is transferred with the property title. Only a few Idaho communities have passed...

397

Solar Easements  

Broader source: Energy.gov [DOE]

Alaska's solar easement provisions are similar to those in many other states. They do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar...

398

Solar Easements  

Broader source: Energy.gov [DOE]

Rhode Island allows property owners to establish solar easements in the same manner and with the same effect as a conveyance of an interest in real property. Solar easements must be created in...

399

Solar Easements  

Broader source: Energy.gov [DOE]

Ohio's solar-easement provisions are similar to those in effect in other states. Ohio law allows property owners to create binding solar easements for the purpose of protecting and maintaining...

400

Solar Easements  

Broader source: Energy.gov [DOE]

In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems. Accordingly, under Georgia's...

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar energy  

Science Journals Connector (OSTI)

... good book and certainly can be recommended as an introductory text for a course on solar ...solarenergy ...

D.O. Hall

1980-02-28T23:59:59.000Z

402

U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

28: Microsoft Windows win32k.sys TrueType Font Parsing 28: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability November 7, 2011 - 8:15am Addthis PROBLEM: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability. PLATFORM: Microsoft Windows 7 Microsoft Windows Server 2003 Datacenter Edition Microsoft Windows Server 2003 Enterprise Edition Microsoft Windows Server 2003 Standard Edition Microsoft Windows Server 2003 Web Edition Microsoft Windows Server 2008 Microsoft Windows Storage Server 2003 Microsoft Windows Vista Microsoft Windows XP Home Edition Microsoft Windows XP Professional ABSTRACT: A vulnerability has been reported in Microsoft Windows, which can be exploited by malicious people to compromise a user's system. reference LINKS:

403

Windows Retrofit Description and Photos Appendix E -Windows Retrofit Description and Photos  

E-Print Network [OSTI]

and roller to provide a water-tight seal to the drainage plane, as depicted in Figure E.3. #12;E.2 Figure E.2 was used to seal window in place. Reinstalled strip on inside and outside. Figure E.4. Peel-and-Stick Membrane Applied with Heat Gun, Roller, and Caulker at Seams for Air-Tight Installation Figure E.5

404

Passive Solar Design for the Home: Energy Efficiency and Renewable Energy Clearinghouse (EREC) Brochure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

home's windows, walls, and floors home's windows, walls, and floors can be designed to collect, store, and dis- tribute solar energy in the form of heat in the winter and reject solar heat in the sum- mer. This is called passive solar design or climatic design because, unlike active solar heating systems, it doesn't involve the use of mechanical and electrical devices, such as pumps, fans or electrical controls to move the solar heat. To understand how passive solar design works, you first need to understand how heat moves. Heat-Movement Physics As a fundamental law, heat moves from warmer materials to cooler ones until there is no longer a temperature difference between the two. A passive solar building makes use of this law through three heat- movement mechanisms-conduction, con- vection, and radiation-to distribute heat

405

Experimental Determination of the Gain Distribution of an Avalanche Photodiode at Low Gains  

E-Print Network [OSTI]

A measurement system for determining the gain distributions of avalanche photodiodes (APDs) in a low gain range is presented. The system is based on an ultralow-noise charge--sensitive amplifier and detects the output carriers from an APD. The noise of the charge--sensitive amplifier is as low as 4.2 electrons at a sampling rate of 200 Hz. The gain distribution of a commercial Si APD with low average gains are presented, demonstrating the McIntyre theory in the low gain range.

Kenji Tsujino; Makoto Akiba; Masahide Sasaki

2008-12-04T23:59:59.000Z

406

Passive solar construction handbook  

SciTech Connect (OSTI)

Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

Levy, E.; Evans, D.; Gardstein, C.

1981-08-01T23:59:59.000Z

407

Fighting with South-Facing Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fighting with South-Facing Windows Fighting with South-Facing Windows Fighting with South-Facing Windows June 13, 2011 - 3:20pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, back when it was cold out (and, this being Colorado, that was last month), my south-facing windows were awesome. They let in tons of light and kept the entire place snug and warm. I barely even needed to break out the blankets! But Colorado's weather likes to mess with you, so it recently decided that it was done with the 50s and jumped right into the 90s. And those lovely south-facing windows that kept my house so warm in the winter are still keeping my house warm. Unsurprisingly, I appreciated this somewhat less. So when I checked out the Energy Savers Tips page for Windows I was not

408

High Performance Windows Volume Purchase: For Residential Buyers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buyers to someone by E-mail Residential Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Residential Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Residential Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Google Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Delicious Rank High Performance Windows Volume Purchase: For Residential Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Residential Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Residential Buyers Both home owners and buyers can take advantage of the energy savings from

409

High Performance Windows Volume Purchase: Presentations for Past Events and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations for Past Events and Webinars to someone by E-mail Share High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Facebook Tweet about High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Twitter Bookmark High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Google Bookmark High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Delicious Rank High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Digg Find More places to share High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers

410

Measure Guideline: Energy-Efficient Window Performance and Selection  

SciTech Connect (OSTI)

This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

Carmody, J.; Haglund, K.

2012-11-01T23:59:59.000Z

411

Students gain work experience at WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Students Gain Work Experience at WIPP Students Gain Work Experience at WIPP CARLSBAD, N.M., January 10, 2000 -- Students from two Eddy County high schools are gaining valuable experience by spending time with employees of the Westinghouse Waste Isolation Division and Day & Zimmermann, LLC at the Waste Isolation Pilot Plant (WIPP). Six students from Carlsbad High School and four students from Loving High School are participating in the 1999-2000 WIPP Shadow Program. A "shadow" is a student who teams up with an employee to gain hands-on experience in the workplace. This activity helps the students identify career options and develop confidence. Each student spends three days during the school year with a volunteer mentor at the work location. "This program offers our employees the opportunity to share their knowledge and

412

Simulating Complex Window Systems using BSDF Data  

E-Print Network [OSTI]

Energy Architecture Quebec City, Canada June 22­24, 2009, and to be published in the Proceedings #12 of California. #12;PLEA2009 - 26th Conference on Passive and Low Energy Architecture, Quebec City, Canada, 22 a new capability that enables designers to more accurately model the solar-optical performance

413

Stand-alone photovoltaic (PV) powered electrochromic window  

DOE Patents [OSTI]

A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

Benson, David K. (Golden, CO); Crandall, Richard S. (Boulder, CO); Deb, Satyendra K. (Boulder, CO); Stone, Jack L. (Lakewood, CO)

1995-01-01T23:59:59.000Z

414

Stand-alone photovoltaic (PV) powered electrochromic window  

DOE Patents [OSTI]

A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

1995-01-24T23:59:59.000Z

415

Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

416

T-608: HP Virtual Server Environment Lets Remote Authenticated Users Gain  

Broader source: Energy.gov (indexed) [DOE]

8: HP Virtual Server Environment Lets Remote Authenticated 8: HP Virtual Server Environment Lets Remote Authenticated Users Gain Elevated Privileges T-608: HP Virtual Server Environment Lets Remote Authenticated Users Gain Elevated Privileges April 22, 2011 - 7:47am Addthis PROBLEM: A vulnerability was reported in HP Virtual Server Environment. A remote authenticated user can obtain elevated privileges on the target system. PLATFORM: HP Virtual Server Environment prior to v6.3 ABSTRACT: A potential security vulnerability has been identified in HP Virtual Server Environment for Windows. The vulnerability could be exploited remotely to elevate privileges. reference LINKS: HP Document ID: c02749050 SecurityTracker Alert ID: 1025429 CVE-2011-1724 HP Insight Software media set 6.3 HP Technical Knowledge Base Discussion: System management and security procedures must be reviewed frequently to

417

Impacts of Operating Hardware on Window Thermal Performance  

E-Print Network [OSTI]

and Renewable Energy, Office of Building Technology,Building Technologies Program of the U.S. Department ofproject ”Improved Window Technologies for Energy Efficient

Hart, Robert

2014-01-01T23:59:59.000Z

418

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network [OSTI]

of a thin-film ceramic electrochromic window: Field studywindows in a bleached state (left) or colored state (right). Electrochromic coatings (EC) are switchable thin-film

2006-01-01T23:59:59.000Z

419

Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation  

Broader source: Energy.gov [DOE]

Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

420

Highly Insulating Windows Volume Purchase Program Final Report  

SciTech Connect (OSTI)

This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Windows and Building Envelope Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of building energy performance and human factors (comfort, indoor environmental quality (IEQ), occupant satisfaction and acceptance of technologies) for emerging window...

422

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weatherization Assistance Weatherization Assistance The Weatherization Assistance Program (WAP) offers assistance to eligible families suffering from high energy bills due to drafty windows, uninsulated and leaky attics or other inefficiencies. Although WAP is a federal government program, the eligibility criteria differ by state and the weatherization services themselves are performed by local agencies. Who is eligible? Eligibility for weatherization services depends on income. If you receive Supplemental Security Income or Aid to Families with Dependent Children, you are automatically eligible. In other cases, states give preference to: People over 60 years of age Families with one or more members with a disability Families with children (in most states). For more information on eligibility, check out the Weatherization

423

LBNL Windows & Daylighting Software -- THERM Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Components Components THERM has three basic components: Graphic User Interface: a graphic user interface that allows you to draw a cross section of the product or component for which you are performing thermal calculations. Heat Transfer Analysis: a heat-transfer analysis component that includes: an automatic mesh generator to create the elements for the finite-element analysis, a finite-element solver, an optional error estimator and adaptive mesh generator, and an optional view-factor radiation model. Results: a results displayer. Graphic User Interface THERM has standard graphic capabilities associated with the Microsoft Windows™ operating system. For example, THERM allows you to use: Both mouse and cursor operations; Standard editing features, such as Cut, Copy, Paste, Select All, and Delete;

424

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For more information about the National Green Building Standard, see For more information about the National Green Building Standard, see information from the NAHB Research Center www.nahbrc.com exit disclaimer . The National Green Building Standard Certification exit disclaimer provides third-party proof for product performance claims. The Green Scoring Tool exit disclaimer allows the scoring of a project to the Standard and includes support materials such as how to verify, intent, how to implement, resources, and green approved products. National Green Building Standard(tm) The National Green Building Standard provides recognition for sustainable and energy-saving building practices, including the use of energy-efficient windows, in all types of residential construction. This standard has been developed for by a consensus committee assembled by the National

425

Managing coherence via put/get windows  

DOE Patents [OSTI]

A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Hoenicke, Dirk (Ossining, NY); Ohmacht, Martin (Yorktown Heights, NY)

2012-02-21T23:59:59.000Z

426

Managing coherence via put/get windows  

DOE Patents [OSTI]

A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Hoenicke, Dirk (Ossining, NY); Ohmacht, Martin (Yorktown Heights, NY)

2011-01-11T23:59:59.000Z

427

Abengoa Solar, Inc. (Mojave Solar) | Department of Energy  

Energy Savers [EERE]

Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Location: San Bernardino County, CA Eligibility: 1705 Snapshot In September 2011,...

428

An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives  

E-Print Network [OSTI]

Tgl (°C) Reference Tsol Tvis SHGC U-value (W/m -K) TC2 TC3at normal incidence; SHGC: solar heat gain coefficient. (TglDescription Tgl (°C) Tvis SHGC U-value (W/m -K) A ASHRAE

Lee, Eleanor S.

2014-01-01T23:59:59.000Z

429

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

430

Toward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage: Theoretical evaluation  

E-Print Network [OSTI]

solar cells are gaining a growing market share in the photovoltaic field. CIGS thin film solar cells. In this paper, the behavior of microscale thin film solar cells under concen- tration will be studied. We focusToward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage

Boyer, Edmond

431

Building Energy Software Tools Directory: Solar Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Tool Solar Tool Solar Tool logo. Makes the process of accurately sizing and positioning overhangs, shading devices and louvers easy. This software is a must for architects, planners and building services engineers, anyone who needs to quickly determine the extent of solar penetration into buildings, overshadowing or the most appropriate means of shading a window. The program uses a flexible, parametric model on which can be placed any number of horizontal, vertical and detached shades. You can select any date, time or location, seeing immediately the resulting shadows whilst interactively manipulating the geometry to show immediately the effects. You can also choose to automatically optimise the size and shape of any shading device over any range of dates and times you require. Screen Shots

432

Sandia National Laboratories: Solar Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Thermal Test Facility * NSTTF * Renewable Energy * SAND2012-8086W * solar * Solar Energy * solar power * Solar Research * Solar Tower Comments are closed. Renewable...

433

DOE Solar Decathlon: 2007 Technical Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This photo offers a birds-eye view of a two-part house. On the roof of the house's rectangular core shimmers a pool of water. To the right of the pool slants a row of windows over the house's open living space. The rooftop pond reflects light back into the open space. Visitors to the Solar Decathlon can be seen entering the house and in the background. This photo offers a birds-eye view of a two-part house. On the roof of the house's rectangular core shimmers a pool of water. To the right of the pool slants a row of windows over the house's open living space. The rooftop pond reflects light back into the open space. Visitors to the Solar Decathlon can be seen entering the house and in the background. The 2007 Solar Decathlon New York Institute of Technology house features a rooftop pond for the house's geothermal heat pump, rather than a traditional underground source, which can't be used on the National Mall. Solar Decathlon 2007 Technical Resources From journal entries, final scores, and a summary of media hits, to technology innovations and house drawings, the 2007 Solar Decathlon technical resources posted on this page provide insight and guidance to the

434

International comparison of passive solar simulation codes  

SciTech Connect (OSTI)

Two software-software comparisons of passive solar simulation codes have been conducted by the Passive Solar Applications Group of the Committee on the Challenges to Modern Society. These exercises have involved the simulation of hypothetical Trombe wall and direct gain buildings located in Madison, Wisconsin. The countries that have participated in the exercise include Canada, Denmark, France, and the United States. All results available at the time of writing are discussed in this report.

Wray, W.O.

1980-01-01T23:59:59.000Z

435

Method and system for edge cladding of laser gain media  

DOE Patents [OSTI]

A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.

Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene

2014-03-25T23:59:59.000Z

436

Avalanches through windows: Multiscale visualization in magnetic thin films  

E-Print Network [OSTI]

Avalanches through windows: Multiscale visualization in magnetic thin films Alessandro Magni, Cornell University, Ithaca, NY 14853-2501 Abstract--The dynamics of domain walls motion in thin films dynamics, but are strongly dependent on the size of the windows chosen. Here we investigate how to properly

Sethna, James P.

437

SUITABILITY OF MAGNESIUM OXIDE AS A VISAR WINDOW  

SciTech Connect (OSTI)

Impedance matching of a velocity interferometer for any reflector (VISAR) window to a material under study helps simplify a shock experiment by effectively allowing one to measure an in situ particle velocity. The shock impedance of magnesium oxide (MgO) falls roughly midway between those of sapphire and LiF, two of the most frequently used VISAR window materials. A series of symmetric impact experiments was performed to characterize the suitability of single crystal, (100) oriented magnesium oxide as a VISAR window material. These experiments yielded good results and show the viability of MgO as a VISAR window up to 23 GPa. Results were used to determine window correction factors and, subsequently, to estimate the pressure induced change in index of refraction. In many of the shots in this work we exceeded the Hugoniot elastic limit (HEL) of MgO, and both elastic and plastic waves are evident in the velocity profiles. The presence of both waves within the VISAR window complicates the typical VISAR window correction analysis. Preliminary analysis of the elastic and plastic contributions to the window correction is presented.

G. D. Stevens; L. R. Veeser; P. A. Rigg; R. S. Hixson

2005-01-01T23:59:59.000Z

438

Research and Development Roadmap: Windows and Building Envelope  

Broader source: Energy.gov [DOE]

Windows and building envelope research and development is a high priority for the Building Technologies Office. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

439

Violating privacy through walls by passive monitoring of radio windows  

Science Journals Connector (OSTI)

We investigate the ability of an attacker to passively use an otherwise secure wireless network to detect moving people through walls. We call this attack on privacy of people a "monitoring radio windows" (MRW) attack. We design and implement the MRW ... Keywords: line crossing, radio window, signal strength, wifi

Arijit Banerjee; Dustin Maas; Maurizio Bocca; Neal Patwari; Sneha Kasera

2014-07-01T23:59:59.000Z

440

Solar Physics A Journal for Solar and Solar-  

E-Print Network [OSTI]

. With society's increased dependence on space-based technology, much of which is at risk due to solar activity1 23 Solar Physics A Journal for Solar and Solar- Stellar Research and the Study of Solar-010-9653- x Solar Polar Fields During Cycles 21??? 23: Correlation with Meridional Flows #12;1 23 Your article

Padmanabhan, Janardhan

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar Decathlon  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar Decathlon 2011 Solar Decathlon 2013 & XPO Washington, D.C. Washington, D.C. Irvine, California 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: How to provide workforce training, improve building science instruction, foster innovation in whole-building design, and

442

Solar Energy.  

E-Print Network [OSTI]

??This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to… (more)

Bafana, Ramzi

2014-01-01T23:59:59.000Z

443

Solar Mapper  

Broader source: Energy.gov [DOE]

Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

444

Solar News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency http://energy.gov/eere/articles/energy-department-announces-19-million-drive-down-solar-soft-costs-increase-hardware solar-soft-costs-increase-hardware" class="title-link">Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency

445

GainSpan Corporation | Open Energy Information  

Open Energy Info (EERE)

GainSpan Corporation GainSpan Corporation Jump to: navigation, search Name GainSpan Corporation Address 121 Albright Way Place Los Gatos, California Zip 95032 Sector Efficiency Product Designs wireless sensor networks for a variety of applications including smart grid Website http://www.gainspan.com/ Coordinates 37.256998°, -121.964456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.256998,"lon":-121.964456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Gaines Cavern Wind Project | Open Energy Information  

Open Energy Info (EERE)

Cavern Wind Project Cavern Wind Project Jump to: navigation, search Name Gaines Cavern Wind Project Facility Gaines Cavern Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner General Compression Developer Texas Dispatchable Wind 1 LLC Location Gaines County TX Coordinates 32.688556°, -103.062464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.688556,"lon":-103.062464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

T-547: Microsoft Windows Human Interface Device (HID) Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

547: Microsoft Windows Human Interface Device (HID) Vulnerability 547: Microsoft Windows Human Interface Device (HID) Vulnerability T-547: Microsoft Windows Human Interface Device (HID) Vulnerability February 1, 2011 - 3:20am Addthis PROBLEM Microsoft Windows Human Interface Device (HID) Vulnerability. PLATFORM: Microsoft 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer. reference LINKS: Security Lab: Reference CVE-2011-0638 CVE Details: Reference CVE-2011-0638 Mitre Reference: CVE-2011-0638

448

Building Technologies Office: Windows, Skylights, and Doors Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windows, Skylights, and Doors Research Windows, Skylights, and Doors Research The Emerging Technology team conducts research into technologies related to windows, skylights, and doors. These technologies can decrease energy demands, save money, and improve occupant thermal comfort. By working with industry partners, researchers, and other stakeholders, the U.S. Department of Energy also seeks to improve the availability of these products in the market. Research in windows, skylights, and doors includes: Daylighting and Shading Photo of a wall of windows with shades built over them to block out the noon sun. Daylighting and shading technologies alter the way that natural light affects a building, either by allowing more of it in (to light a room) or by preventing it from coming in. These technologies are important in that they allow building operators and managers to lower a building's lighting energy needs, as well as reducing the energy used in heating, ventilation, and air conditioning (HVAC) systems.

449

Window Company Booming from Retrofits | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Company Booming from Retrofits Window Company Booming from Retrofits Window Company Booming from Retrofits October 30, 2009 - 12:09pm Addthis Joshua DeLung Don't try telling John Haddon's family that Friday the 13th is unlucky. They have more reason to believe in divine intervention than luck. After buying Accu-Weld Feb. 13, 2009 - a windows and doors company that laid off 70 employees in 2008 - the business is doing great, thanks to the family's commitment to energy efficiency and the Recovery Act, signed into law just four days later. John didn't know much about the Recovery Act then, but now he's convinced the stimulus has dramatically improved profits. "The Recovery Act coming on board shortly after we purchased the company has been a boost to our business and window makers in general," John says

450

Low-Cost Solutions for Dynamic Window Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

451

Window Company Booming from Retrofits | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Company Booming from Retrofits Window Company Booming from Retrofits Window Company Booming from Retrofits October 30, 2009 - 12:09pm Addthis Joshua DeLung Don't try telling John Haddon's family that Friday the 13th is unlucky. They have more reason to believe in divine intervention than luck. After buying Accu-Weld Feb. 13, 2009 - a windows and doors company that laid off 70 employees in 2008 - the business is doing great, thanks to the family's commitment to energy efficiency and the Recovery Act, signed into law just four days later. John didn't know much about the Recovery Act then, but now he's convinced the stimulus has dramatically improved profits. "The Recovery Act coming on board shortly after we purchased the company has been a boost to our business and window makers in general," John says

452

Low-Cost Solutions for Dynamic Window Material  

Broader source: Energy.gov (indexed) [DOE]

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

453

Graphene as Gain Medium for Broadband Lasers  

E-Print Network [OSTI]

In contrast to conventional structures, efficient non-radiative carrier recombination counteracts the appearance of optical gain in graphene. Based on a microscopic and fully quantum-mechanical study of the coupled carrier, phonon, and photon dynamics in graphene, we present a strategy to obtain a long-lived gain: Integrating graphene into a photonic crystal nanocavity and applying a high-dielectric substrate gives rise to pronounced coherent light emission suggesting the design of graphene-based laser devices covering a broad spectral range.

Jago, Roland; Knorr, Andreas; Malic, Ermin

2014-01-01T23:59:59.000Z

454

Superradiance and collective gain in multimode optomechanics  

E-Print Network [OSTI]

We present a description of a strongly driven multimode optomechanical system that shows the emergence of cooperative effects usually known from systems of atom-light interaction. Our calculations show that under application of a coherent pump field the system's response can be switched from a superradiant regime to a collective gain regime by varying the frequency detuning of the pump. In the superradiant regime, enhanced optical cooling of a single vibrational mode is possible, whereas the collective gain regime would potentially enable one to achieve almost thresholdless phonon laser action. The threshold pumping power scales as 1/N.

T. Kipf; G. S. Agarwal

2014-09-25T23:59:59.000Z

455

Create Shortcut for Java Applications on Windows You can create an icon on Windows Desktop, so that the end-  

E-Print Network [OSTI]

Create Shortcut for Java Applications on Windows You can create an icon on Windows Desktop, soMortgage on the desktop to run the ComputeMortgage application. 6. (Optional) You can set a custom icon for the application by clicking the Change Icon button in the ComputeMortgage Properties dialog box shown in Figure 4

Liang, Y. Daniel

456

Win32API InterceptorWin32API Interceptor Monitoring Windows API callsMonitoring Windows API calls  

E-Print Network [OSTI]

Win32API InterceptorWin32API Interceptor Monitoring Windows API callsMonitoring Windows API calls using the Detours technology, that was developed by Microsoft researchers. #12;Win32API InterceptorWin32API Interceptor ­­ ArchitectureArchitecture Win32API Interceptor (MS Access Data Base) Dll

Segall, Adrian

457

DOE Solar Decathlon: Solar Decathlon Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consumer Workshops Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Videos For video of the U.S. Department of Energy Solar Decathlon 2011, see the collections listed below or visit the U.S. Department of Energy Solar Decathlon YouTube Channel. General Solar Decathlon Videos Watch these videos to learn about the Solar Decathlon competition and event. Solar Decathlon House Video Tours Learn about each of the U.S. Department of Energy Solar Decathlon teams and their houses in these video tours. Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the Solar Decathlon

458

LBNL Window & Daylighting Software -- CGDB  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The LBNL WINDOW and THERM simulation programs (versions 6 and higher) have the capability to model "complex glazing systems" which include woven shades, venetian blinds, fritted glass, and other systems that can be characterized by BSDF (Bi-Directional Scattering Distribution Function) files. To support the modeling of these complex systems, it is necessary to characterize the optical and thermal properties of the materials and the systems being modeled. The Complex Glazing Database (CGDB) contains the data needed to model various manufacturers' systems. LBNL is still developing the measuring and submittal procedures so that manufacturers can submit measured data for review and inclusion in future CGDB releases. When these procedures are complete, it is hoped that manufacturers will measure and submit data for their products to LBNL for inclusion in the CGDB. In a similar process to the IGDB (International Glazing Database) it is envisioned that the CGDB will be released multiple times per year as new materials and systems are measured and added to the database.

459

Dynamics of window glass fracture in explosions  

SciTech Connect (OSTI)

An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

Beauchamp, E.K.; Matalucci, R.V.

1998-05-01T23:59:59.000Z

460

Solar Power  

Science Journals Connector (OSTI)

...of desert solar energy farm with 30 percent conversion...85 percent of the solar farm energy now reflected back...Washington, D.C. 20550. Wind Power Martin Wolf (19...counting the cost of the offshore platforms, would thus...15 billion. If these wind generators were placed...

Paul E. Damon

1974-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar and Wind Equipment Sales Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Equipment Sales Tax Exemption Solar and Wind Equipment Sales Tax Exemption Solar and Wind Equipment Sales Tax Exemption < Back Eligibility Commercial General Public/Consumer Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Maximum Rebate No maximum Program Info Start Date 1/1/1997 Expiration Date 12/31/2016 State Arizona Program Type Sales Tax Incentive Rebate Amount 100% of sales tax on eligible equipment Provider Arizona Department of Revenue Arizona provides a sales tax exemption* for the retail sale of solar energy devices and for the installation of solar energy devices by contractors.

462

Gain International Work Experience in China  

E-Print Network [OSTI]

Gain International Work Experience in China www.StudyCLI.org "The CLI internship gave me a huge boost both personally and professionally. At 21 years old, I've lived in China and can speak basic city of Guilin, China. CLIinternsengageinadynamicrangeofprojects: Y Establishnewrelationshipswith

Virginia Tech

463

Energy: efficiency gains alone won't  

E-Print Network [OSTI]

). DonaldE.HirschPOBox196,West BoothbayHarbor,Maine04575,USA e-mail:dehirsch1924@yahoo.com Big data: open complicated. Handling and analysing big data sets is becoming more and more challenging. WikiEnergy: efficiency gains alone won't reduce emissions SIR -- Your News Feature `Electricity without

Cai, Long

464

Measuring solar reflectance-Part I: Defining a metric that accurately  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solar reflectance-Part I: Defining a metric that accurately solar reflectance-Part I: Defining a metric that accurately predicts solar heat gain Title Measuring solar reflectance-Part I: Defining a metric that accurately predicts solar heat gain Publication Type Journal Article Year of Publication 2010 Authors Levinson, Ronnen M., Hashem Akbari, and Paul Berdahl Journal Solar Energy Volume 84 Pagination 1717-1744 Keywords Heat Island, Methods & Protocols Abstract Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective "cool colored" surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope 5:12 [23°]) by as much as 89 W m-2, and underestimate its peak surface temperature by up to 5 K. Using RE891BN to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%.

465

Several studies have shown that the availability of solar power plants often is  

E-Print Network [OSTI]

the utility, solar and research industries. Effective Capacity Metrics Simple metrics can be estimatedSeveral studies have shown that the availability of solar power plants often is high during times conditioning. These peaks are intensi- fied during heat waves, which are fueled by solar gain. Thus

Perez, Richard R.

466

Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD  

E-Print Network [OSTI]

1 Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF PECVD Romain temperatures. Keywords : Low temperature, epitaxy, PECVD, Si thin film, Solar cell hal-00749873,version1-25Nov shortage until 2010. Research on epitaxial growth for thin film crystalline silicon solar cells has gained

467

U-030: Apache Tomcat Lets Untrusted Web Applications Gain Elevated...  

Broader source: Energy.gov (indexed) [DOE]

0: Apache Tomcat Lets Untrusted Web Applications Gain Elevated Privileges U-030: Apache Tomcat Lets Untrusted Web Applications Gain Elevated Privileges November 9, 2011 - 8:30am...

468

A Tale of Three Windows: Part 2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 October 17, 2012 - 12:37pm Addthis Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can’t be opened too far. | Photo courtesy of Andrea Spikes. Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can't be opened too far. | Photo courtesy of Andrea Spikes. Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory What does this mean for me? Energy-efficient windows can help reduce glare and heat from the sun during warm weather and condensation and cool air during cold weather. In August, I told you about the saga of our aging windows and how we finally decided to replace them all. Working with a local contractor whom a

469

A Tale of Three Windows: Part 2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 October 17, 2012 - 12:37pm Addthis Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can’t be opened too far. | Photo courtesy of Andrea Spikes. Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can't be opened too far. | Photo courtesy of Andrea Spikes. Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory What does this mean for me? Energy-efficient windows can help reduce glare and heat from the sun during warm weather and condensation and cool air during cold weather. In August, I told you about the saga of our aging windows and how we finally decided to replace them all. Working with a local contractor whom a

470

Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed  

E-Print Network [OSTI]

of a microstructured prismatic window film in deep open plandaylight- redirecting window film in a full-scale officedaylight- redirecting window film in a full-scale office

Thanachareonkit, Anothai

2014-01-01T23:59:59.000Z

471

National Solar Radiation Data Base | OpenEI  

Open Energy Info (EERE)

Solar Radiation Data Base Solar Radiation Data Base Dataset Summary Description The National Solar Radiation Data Base (NSRDB) is the most comprehensive collection of solar data freely available. The 1991 - 2005 NSRDB contains hourly solar radiation (including global, direct, and diffuse) and meteorological data for 1,454 stations. NCDC's Integrated Surface Data (ISD) were the key data source for this effort, with much of the solar data modeled/estimated based on the surface observations. This dataset builds on the 1961-1990 NSRDB, which contains data for 239 stations. These data are extremely useful in estimating solar energy potential across the U.S., and in estimating heating/cooling requirements for buildings based on heat-gain from solar radiation. More information available at http://www.ncdc.noaa.gov/oa/reds/

472

Banking on Solar: Debt Finance in Today's Distributed Market (Poster)  

SciTech Connect (OSTI)

Over the last two years, several entities - from banks to credit unions to solar finance companies -have rolled out distributed solar-specific loan programs in the United States. These solar-specific loans are a distinct loan in that the underwriting, loan terms, lender security interest, and other programmatic aspects are designed exclusively for the financing of solar installations. Until recently, loan financing for distributed solar installations was largely through home equity loans, commercial loans, and other standardized loan products available to homeowners and businesses for general expenditures. However, as the U.S. solar market matures, so too are its financing options, and solar-specific loans stand to gain market share. This poster was presented at the Solar Power International conference in Las Vegas, NV in October 2014.

Louder, T.

2014-10-01T23:59:59.000Z

473

Solar Concentrators  

Science Journals Connector (OSTI)

The ability to provide near-firm power through the use of thermal energy storage is gaining prominence. This characteristic differentiates CSP from PV technology, as the utilities can tailor the use of CSP electr...

Dr. Anjaneyulu Krothapalli; Dr. Brenton Greska

2012-01-01T23:59:59.000Z

474

Experimental evaluation of the in-plane seismic behavior of store-front window systems  

E-Print Network [OSTI]

was conducted. The window film (WF) series included 5’x5’damage states. When the window film is attached using theThe safety aspects of window film were very evident during

Eva, Charles Almond

2009-01-01T23:59:59.000Z

475

ENERGY EFFICIENT WINDOWS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Replacing window glass with a thin plastic film coated to beof windows can be improved with the use of thin-film coat-windows, the coating can be deposited directly on glass or on plastic films

Berman, S.

2013-01-01T23:59:59.000Z

476

Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames  

E-Print Network [OSTI]

windows are often called passive -house wind ows, as windowse window frames, like passive-house windows. In this p aperare supposed to satisfy the Passive house requirements of

Gustavsen Ph.D., Arild

2010-01-01T23:59:59.000Z

477

Microsoft Word - CX-TroutdaleWindowReplacement_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Eric Weekley Project Manager - NWM-4 Proposed Action: Replace existing steel windows at the Troutdale Substation control house PP&A Project No.: PP&A-1699 Budget Information: Work Order No. 242796 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities and custodial services for buildings, structures, ... Location: Bonneville Power Administration's (BPA) Troutdale Substation located in Troutdale, Oregon Proposed by: BPA Description of the Proposed Action: BPA proposes to replace the deteriorating existing steel windows at the Troutdale Substation control house with new, in-kind steel windows.

478

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

479

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

480

Effect of window reflections on photonic Doppler velocimetry measurements  

SciTech Connect (OSTI)

Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

Ao, T.; Dolan, D. H. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2011-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "windows solar gain" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Radcalc for Windows validation and benchmark study  

SciTech Connect (OSTI)

Radcalc for Windows, version 2.01 (Radcalc), is a software program developed by Waste Management Federal Services, Inc., Northwest Operations for the US Department of Energy. It is used to generate selected transportation and packaging data necessary for the shipment of radioactive waste materials. Among its applications are the classification of waste per US Department of Transportation regulations, the calculation of heat and daughter products generated as a result of radioactive decay, and the calculation of the radiolytic production of hydrogen gas. The Radcalc program has been extensively tested and validated by comparison of each Radcalc algorithm to hand calculations. An opportunity to benchmark Radcalc hydrogen gas generation calculations to experimental data arose when the Rocky Flats Environmental Technology Site (REFETS) residue stabilization program collected hydrogen gas generation data to determine compliance with requirements for shipment of waste in the TRUPACT-II. Previously, Radcalc had been benchmarked to residue/waste drums tested at RFETS containing contaminated solid inorganic materials in plastic bags. In this paper Radcalc is compared with data collected for contaminated solid organic waste. The contamination is predominantly due to plutonium and americium isotopes. The information provided by RFETS includes decay heat, hydrogen gas generation rates, calculated hydrogen G{sub eff} values (molecules of hydrogen formed per 100-eV decay heat energy released), and waste material. Radcalc cases are run using RFETS G{sub eff} values, TRUPACT-II G values, and dose-dependent G values. Work on calculating the radiolytic production of hydrogen gas and related increase in package pressure has also been performed at the Savannah River Site (SRS) in support of efforts to ship nuclear materials in the 9975 package. The calculations made at SRS are contained in an Excel spreadsheet. The SRS model has been compared with experimental data collected at SRS and at Los Alamos National Laboratory.

McFadden, J.G.; Knepp, J.R.

1999-07-01T23:59:59.000Z

482

PV ENERGY ROI Tracks Efficiency Gains  

E-Print Network [OSTI]

EPBT corre- sponds to a high energy return on energy invest- ment- tricity, but energy is needed for generating their materials, cells, modules and systems. As in all types. The production of all these materials requires large amounts of energy, as does the manufac- ture of the solar

483

Cost Effectiveness for Solar Control Film for Residential Applications  

E-Print Network [OSTI]

and first week of October. Data for 16th September, without the solar control film and for 1st October, with solar control film are analyzed. Incidental and transmitted global solar radiations on the east and west windows for these two days are shown... for 16th Sep/ Ii for 1st Oct)* It for 1st Oct (2) The hourly average values of the incident radiation, the transmitted radiation without the film and the transmitted readjusted radiation for the east and the west glazing are shown in Figs 3 and 4...

Al-Taqi, H. H.; Maheshwari, G. P.; Alasseri, R.

2010-01-01T23:59:59.000Z

484

Technical assessment of community solar future scenarios  

SciTech Connect (OSTI)

The Kent Solar Project goal is to develop energy future scenarios for the community based upon the input of a cross-section of the population. It has been primarily a non-technical development in an attempt to gain community commitment. Social/political/economic issues have been identified as the key obstacles in fulfilling the future scenarios. To communicate the feasibility of solar energy in Kent, Ohio an analysis of the economic potential for solar energy was developed. The Solar Project calls for 25 per cent reduction of present fossil fuel quantities in 1990, achievable by conservation measures, and a 50 per cent reduction in 2000, which necessitates solar technology implementation. The technical analysis is demonstrating the future scenarios to be both feasible and economically wise. The technical assessment requires an in-depth data base of existing comsumption which is not easily identifiable.

Kremers, J.A.

1980-01-01T23:59:59.000Z

485

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect (OSTI)

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

486

2009 Rate Design Window Dynamic Pricing  

Broader source: Energy.gov (indexed) [DOE]

Compressed Air Energy Compressed Air Energy Storage (CAES) Hal LaFlash Director Emerging Clean Technologies Pacific Gas and Electric Company November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 1 Project Need * California regulations will require that utilities procure 33% of their energy from eligible renewables * Scenario projections show that nearly 70% of the renewable energy (23% of total energy) is likely to be provided by variable solar and wind resources. * The CA ISO expects it will need high amounts of flexible resources, especially energy storage, to integrate renewable energy into the grid. * Compressed Air Energy Storage has a long history of being one of the most economic forms of energy storage.

487

Microsoft PowerPoint - WINDOW6-ComplexGlazingTypeSummary-ForPresentation.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Christian Kohler, Mike Rubin, Jacob Jonsson Christian Kohler, Mike Rubin, Jacob Jonsson Dariush Arasteh, Robin Mitchell Windows & Daylighting Research Group March 2008 Complex Glazing Summary Complex Glazing Summary Environmental Energy Technologies Division Software Tools Overview Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing Data Base) calculation calculation calculation WINDOW (Whole Window) Environmental Energy Technologies Division WINDOW6 Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing

488

T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users...  

Office of Environmental Management (EM)

727:Microsoft Windows SSLTLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSLTLS Protocol Flaw Lets Remote Users Decryption Sessions September 27,...

489

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

E-Print Network [OSTI]

through vacuum and electrochromic vacuum glazed windows,technologies, such as an electrochromic vacuum glazedof rebate depth on an electrochromic vacuum glazed window.

Gustavsen, Arild

2008-01-01T23:59:59.000Z

490

Gaines, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gaines, Michigan: Energy Resources Gaines, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8725303°, -83.9141254° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8725303,"lon":-83.9141254,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Information Gains from Cosmic Microwave Background Experiments  

E-Print Network [OSTI]

To shed light on the fundamental problems posed by Dark Energy and Dark Matter, a large number of experiments have been performed and combined to constrain cosmological models. We propose a novel way of quantifying the information gained by updates on the parameter constraints from a series of experiments which can either complement earlier measurements or replace them. For this purpose, we use the Kullback-Leibler divergence or relative entropy from information theory to measure differences in the posterior distributions in model parameter space from a pair of experiments. We apply this formalism to a historical series of Cosmic Microwave Background experiments ranging from Boomerang to WMAP, SPT, and Planck. Considering different combinations of these experiments, we thus estimate the information gain in units of bits and distinguish contributions from the reduction of statistical errors and the `surprise' corresponding to a significant shift of the parameters' central values. For this experiment series, we...

Seehars, Sebastian; Refregier, Alexandre; Paranjape, Aseem; Akeret, Joël

2014-01-01T23:59:59.000Z

492

Roof Coating Procedures and Their Productivity Gains  

E-Print Network [OSTI]

Roof Coating Procedures and their Productivity Gains John Bonaby and Dr. Diane Schaub, University of Florida As building envelope improvements are realized in organizations as ways to insulate businesses from high energy costs, the relative... benefit of the installation of different roof coating technologies and comparable application procedures of these technologies are ambiguous. The focal point of this research is to determine the effective correlation between various commercially...

Bonaby, J.; Schaub, D.

2006-01-01T23:59:59.000Z

493

Company Rehires Unemployed Workers for Energy Efficient Window Project |  

Broader source: Energy.gov (indexed) [DOE]

Company Rehires Unemployed Workers for Energy Efficient Window Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down this year due to the economy," said Pacific Glass President Bernie Thueringer. Thueringer and domestic frame and glass suppliers Efco Corp and Old Castle Glass have seen new business from a Recovery Act funded energy efficiency project in Kitsap County, Washington. "We were excited about this project because we were able to bring five of

494

U-182: Microsoft Windows Includes Some Invalid Certificates | Department of  

Broader source: Energy.gov (indexed) [DOE]

82: Microsoft Windows Includes Some Invalid Certificates 82: Microsoft Windows Includes Some Invalid Certificates U-182: Microsoft Windows Includes Some Invalid Certificates June 4, 2012 - 7:00am Addthis PROBLEM: A vulnerability was reported in Microsoft Windows. A remote user may be able to spoof code signing signatures. PLATFORM: Version(s): XP SP3, 2003 SP2, Vista SP2, 2008 SP2, 7 SP1, 2008 R2 SP1; and prior service packs ABSTRACT: The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself. Reference Links: Security tracker ID 1027114 GENERIC-MAP-NOMATCH Vendor Advisory IMPACT ASSESSMENT: High Discussion: The invalid certificates and their thumbprints are: Microsoft Enforced Licensing Intermediate PCA: 2a 83 e9 02 05 91 a5 5f c6

495

Covered Product Category: Residential Windows, Doors, and Skylights |  

Broader source: Energy.gov (indexed) [DOE]

Covered Product Category: Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights October 7, 2013 - 11:22am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENE