National Library of Energy BETA

Sample records for windows human interface

  1. T-547: Microsoft Windows Human Interface Device (HID) Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer.

  2. Human-computer interface

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  3. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    SciTech Connect (OSTI)

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  4. Code System for Evaluating Routine Radioactive Effluents from Nuclear Power Plants with Windows Interface.

    Energy Science and Technology Software Center (OSTI)

    2012-12-12

    Version 14 NRCDose is a user-friendly 32-bit PC-based software interface for the LADTAP II, GASPAR II, and XOQDOQ programs which operates under all Microsoft WindowsTM platforms. LADTAP II, GASPAR II, and XOQDOQ are industry standards, originally created for mainframe computers and written using the Fortran programming language. While still utilizing the proven Fortran code modules, NRCDose allows the user to enter and retrieve data through a series of windows dialogs, making the use of themore » program much more user-friendly and efficient than its original design. This graphical interface also allows the user to create sets of data that can be named and retrieved at a later date for review or modification. The NRCDose program is equipped to perform calculations with up to 169 radionuclides, seven organs (bone, liver, total body, thyroid, kidney, lung, and GI-LLI) and four age ranges (infant, child, teenager, and adult). The source of the DCFs (dose conversion factors) in NRCDose is Regulatory Guide 1.109, supplemented with additional dose factors from NUREG-0172. See Abstract for recent modifications.« less

  5. Code System for Evaluating Routine Radioactive Effluents from Nuclear Power Plants with Windows Interface.

    SciTech Connect (OSTI)

    MALAFEEW, VAL

    2012-12-12

    Version 14 NRCDose is a user-friendly 32-bit PC-based software interface for the LADTAP II, GASPAR II, and XOQDOQ programs which operates under all Microsoft WindowsTM platforms. LADTAP II, GASPAR II, and XOQDOQ are industry standards, originally created for mainframe computers and written using the Fortran programming language. While still utilizing the proven Fortran code modules, NRCDose allows the user to enter and retrieve data through a series of windows dialogs, making the use of the program much more user-friendly and efficient than its original design. This graphical interface also allows the user to create sets of data that can be named and retrieved at a later date for review or modification. The NRCDose program is equipped to perform calculations with up to 169 radionuclides, seven organs (bone, liver, total body, thyroid, kidney, lung, and GI-LLI) and four age ranges (infant, child, teenager, and adult). The source of the DCFs (dose conversion factors) in NRCDose is Regulatory Guide 1.109, supplemented with additional dose factors from NUREG-0172. See Abstract for recent modifications.

  6. Human-system Interfaces for Automatic Systems

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins,J.; Fleger, S.; Barnes V.

    2010-11-07

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, our study identified several topics for additional research.

  7. Human Reliability Analysis for Digital Human-Machine Interfaces

    SciTech Connect (OSTI)

    Ronald L. Boring

    2014-06-01

    This paper addresses the fact that existing human reliability analysis (HRA) methods do not provide guidance on digital human-machine interfaces (HMIs). Digital HMIs are becoming ubiquitous in nuclear power operations, whether through control room modernization or new-build control rooms. Legacy analog technologies like instrumentation and control (I&C) systems are costly to support, and vendors no longer develop or support analog technology, which is considered technologically obsolete. Yet, despite the inevitability of digital HMI, no current HRA method provides guidance on how to treat human reliability considerations for digital technologies.

  8. WINDOW-WALL INTERFACE CORRECTION FACTORS: THERMAL MODELING OF INTEGRATED FENESTRATION AND OPAQUE ENVELOPE SYSTEMS FOR IMPROVED PREDICTION OF ENERGY USE

    SciTech Connect (OSTI)

    Bhandari, Mahabir S; Ravi, Dr. Srinivasan

    2012-01-01

    The boundary conditions for thermal modeling of fenestration systems assume an adiabatic condition between the fenestration system installed and the opaque envelope system. This theoretical adiabatic boundary condition may not be appropriate owing to heat transfer at the interfaces, particularly for aluminum- framed windows affixed to metal- framed walls. In such scenarios, the heat transfer at the interface may increase the discrepancy between real world thermal indices and laboratory measured or calculated indices based on NFRC Rating System.This paper discusses the development of window-wall Interface Correction Factors (ICF) to improve energy impacts of building envelope systems

  9. Spring Home Maintenance: Windows, Windows, Windows! | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring Home Maintenance: Windows, Windows, Windows Spring Home Maintenance: Windows, Windows, Windows April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air ...

  10. Code System for Evaluating Routine Radioactive Effluents from Nuclear Power Plants with Windows Interface.

    Energy Science and Technology Software Center (OSTI)

    2012-12-13

    Version 03 NRCDose72 is a software program developed by Chesapeake Nuclear Services that integrates the NRC’s Fortran programs LADTAP II, GASPAR II, and XOQDOQ and provides a user-friendly interface for running the codes on a PC. These codes provide an accepted regulatory basis for assessing doses to the public as required for the licensing assessments for both license renewal and new build nuclear plants. Chesapeake Nuclear Services undertook an effort to update the dose conversionmore » factors (DCFs) used in NRCDose72 to the factors reported in ICRP-72, naming the new program NRCDose72. The original NRCDose72 program is equipped to perform calculations with up to 169 radionuclides, seven organs (bone, liver, total body, thyroid, kidney, lung, and GI-LLI) and four age ranges (infant, child, teenager, and adult). The ICRP-72 methodology contains additional parameters, including dose factors for 25 discrete organs, plus a remainder organ and effective DCF. Also, there are a total of six different age ranges (newborn, 1‑yr. old, 5-yr. old, 10-yr. old, 15-yr. old, and adult). Finally, ICRP-72 contains DCFs for a variety of chemical forms (H-3 as vapor or Organically Bound Tritium, for example) or inhalation classes (F, M or S for nearly all radionuclides). See Abstract for recent modifications.« less

  11. Human-computer interface including haptically controlled interactions

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  12. Human-computer interface incorporating personal and application domains

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2004-04-20

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  13. Human-computer interface incorporating personal and application domains

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  14. Guidance for Human-system Interfaces to Automatic Systems

    SciTech Connect (OSTI)

    O'Hara, J.M.; Higgins, J.; Stephen Fleger; Valerie Barnes

    2010-09-27

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions, including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: Levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration.

  15. Human-System Interfaces (HSIs) in Small Modular Reactors (SMRs)

    SciTech Connect (OSTI)

    Jacques V Hugo

    2014-10-01

    This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclear industry.

  16. Enhancing the human-computer interface of power system applications

    SciTech Connect (OSTI)

    Azevedo, G.P. de; Souza, C.S. de; Feijo, B.

    1995-12-31

    This paper examines a topic of increasing importance: the interpretation of the massive amount of data available to power system engineers. The solutions currently adopted in the presentation of data in graphical interfaces are discussed. It is demonstrated that the representations of electric diagrams can be considerably enhanced through the adequate exploitation of resources available in full-graphics screens and the use of basic concepts from human-factors research. Enhanced representations of electric diagrams are proposed and tested. The objective is to let the user see the behavior of the system, allowing for better interpretation of program data and results and improving user`s productivity.

  17. Enhancing the human-computer interface of power system applications

    SciTech Connect (OSTI)

    Azevedo, G.P. de; Souza, C.S. de; Feijo, B.

    1996-05-01

    This paper examines a topic of increasing importance: the interpretation of the massive amount of data available to power system engineers. The solutions currently adopted in the presentation of data in graphical interfaces are discussed. It is demonstrated that the representations of electric diagrams can be considerably enhanced through the adequate exploitation of resources available in full-graphics screens and the use of basic concepts from human-factors research. Enhanced representations of electric diagrams are proposed and tested. The objective is to let the user ``see`` the behavior of the system, allowing for better interpretation of program data and results and improving user`s productivity.

  18. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control: Use of Microsoft WPF for Microworld and Distributed Control System Development

    SciTech Connect (OSTI)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2014-08-01

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.

  19. Window Attachments

    Energy Savers [EERE]

    ... shades Surface applied film Cellular shade Window quilt Seasonal film kit Louvered blinds Roller shades Solar screens Cellular shades Surface applied films Exterior attachments ...

  20. Window Types

    Broader source: Energy.gov [DOE]

    By combining an energy-efficient frame choice with glazing materials for your climate, you can customize your home's windows and reduce your energy bills.

  1. CAVE WINDOW

    DOE Patents [OSTI]

    Levenson, M.

    1960-10-25

    A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

  2. Code System for Use with Human System Interface Design Review Guidelines.

    Energy Science and Technology Software Center (OSTI)

    2000-05-12

    Version 00 The Human System Interface Design Review Guideline (HSI-DRG) software application supports evaluations conducted using the process described in NUREG-0700 Rev.1 Volume 1. The code supports the design review process by facilitating the selection, evaluation, and analysis of human factors engineering (HFE) guidelines.

  3. Human perceptual deficits as factors in computer interface test and evaluation

    SciTech Connect (OSTI)

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The test and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.

  4. Window shopping

    SciTech Connect (OSTI)

    Best, D.

    1990-03-01

    The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

  5. When soft controls get slippery: User interfaces and human error

    SciTech Connect (OSTI)

    Stubler, W.F.; O`Hara, J.M.

    1998-12-01

    Many types of products and systems that have traditionally featured physical control devices are now being designed with soft controls--input formats appearing on computer-based display devices and operated by a variety of input devices. A review of complex human-machine systems found that soft controls are particularly prone to some types of errors and may affect overall system performance and safety. This paper discusses the application of design approaches for reducing the likelihood of these errors and for enhancing usability, user satisfaction, and system performance and safety.

  6. BERKELEY LAB WINDOW

    SciTech Connect (OSTI)

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen; Mitchell, Robin D.; Kohler, Christian; Vidanovic, Simon V.; Huizenga, Charlie

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the

  7. BERKELEY LAB WINDOW

    Energy Science and Technology Software Center (OSTI)

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records frommore » IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of

  8. High Performance Window Attachments

    Broader source: Energy.gov (indexed) [DOE]

    Statement: * A wide range of residential window attachments are available, but they ... to model wide range of window coverings * Performed window coverings ...

  9. INL Multi-Robot Control Interface

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  10. Feedback-based, muLti-dimensional Interface as a General Human-Computer Tech.

    Energy Science and Technology Software Center (OSTI)

    2002-05-13

    FLIGHT is a 3D human-computer interface and application development software that can be used by both end users and programmers. It is based on advanced feedback and a multi-dimensional nature that more closely resembles real life interactions. The software uses a craft metaphor and allows multimodal feedback for advanced tools and navigation techniques. Overall, FLIGHT is a software that is based on the principle that as the human-computer interface is strengthened through the use ofmore » more intuitive inputs and more effective feedback, the computer itself will be for more valuable. FLIGHT has been used to visualize scientific data sets in 3D graphics at Sandia National Laboratories.« less

  11. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    SciTech Connect (OSTI)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  12. Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins, J.C.

    2010-01-31

    Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation. The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.

  13. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  14. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storm Windows Storm Windows An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of ...

  15. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    SciTech Connect (OSTI)

    R. Fink, D. Hill, J. O'Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  16. A method to select human-system interfaces for nuclear power plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hugo, Jacques Victor; Gertman, David Ira

    2015-10-19

    The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less

  17. A method to select human-system interfaces for nuclear power plants

    SciTech Connect (OSTI)

    Hugo, Jacques Victor; Gertman, David Ira

    2015-10-19

    The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive process for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.

  18. US Army Weapon Systems Human-Computer Interface (WSHCI) style guide, Version 1

    SciTech Connect (OSTI)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.

    1996-09-30

    A stated goal of the U.S. Army has been the standardization of the human computer interfaces (HCIS) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of style guides. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide. This document, the U.S. Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide, represents the first version of that style guide. The purpose of this document is to provide HCI design guidance for RT/NRT Army systems across the weapon systems domains of ground, aviation, missile, and soldier systems. Each domain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their domains.

  19. A vibro-haptic human-machine interface for structural health monitoring

    SciTech Connect (OSTI)

    Mascarenas, David; Plont, Crystal; Brown, Christina; Cowell, Martin; Jameson, N. Jordan; Block, Jessica; Djidjev, Stephanie; Hahn, Heidi A.; Farrar, Charles

    2014-11-01

    The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systems found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.

  20. A vibro-haptic human-machine interface for structural health monitoring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mascarenas, David; Plont, Crystal; Brown, Christina; Cowell, Martin; Jameson, N. Jordan; Block, Jessica; Djidjev, Stephanie; Hahn, Heidi A.; Farrar, Charles

    2014-11-01

    The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less

  1. Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Efficient windows, doors, and skylights can reduce energy bills and improve the comfort of your home.

  2. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

    2009-01-01

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system

  3. Residential Windows and Window Coverings: A Detailed View of...

    Broader source: Energy.gov (indexed) [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households. residentialwindowscoverings.pdf ...

  4. Energy Savings from Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of window combinations with window attachments in typical residential buildings and in varied ... The most common and widely used types of attachments are window coverings ...

  5. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  6. Multi-robot control interface

    DOE Patents [OSTI]

    Bruemmer, David J.; Walton, Miles C.

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  7. Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  8. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  9. Plasma window characterization

    SciTech Connect (OSTI)

    Krasik, Ya. E.; Gleizer, S.; Gurovich, V.; Kronhaus, I.; Hershcovitch, A.; Nozar, P.; Taliani, C.

    2007-03-01

    Parameters of an arc Ar plasma discharge used as a plasma window with a discharge current of {approx}50 A and a voltage of {approx}58 V are presented. It is shown that this arc discharge allows one to decrease the pressure at the low pressure end of the plasma window almost 380 times using relatively low pumping at the low pressure end of the plasma window. Calculations of the plasma parameters and their spatial distribution using a simple wall-stabilized arc model showed a satisfactory agreement with the experimentally obtained data. It is shown that a significant decrease in gas flow through the plasma window occurs due to the increase in plasma viscosity. An improvement of the plasma window ignition and some of its design aspects are described as well.

  10. Windows technology assessment

    SciTech Connect (OSTI)

    Baron, J.J.

    1995-10-01

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  11. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  12. A human engineering and ergonomic evaluation of the security access panel interface

    SciTech Connect (OSTI)

    Hartney, C.; Banks, W.W.

    1995-02-01

    The purpose of this study was to empirically determine which of several security hardware interface designs produced the highest levels of end-user performance and acceptance. The FESSP Security Alarms and Monitoring Systems program area commissioned the authors study as decision support for upgrading the Argus security system`s primary user interface so that Argus equipment will support the new DOE and DoD security access badges. Twenty-two test subjects were repeatedly tested using six remote access panel (RAP) designs. Lawrence Livermore National Laboratory (LLNL) uses one of these interface designs in its security access booths. Along with the RAP B insert-style reader, the authors tested five prototype RAP variants, each with a different style of swipe badge reader, through which a badge is moved or swiped. The authors asked the untrained test subjects to use each RAP while they described how they thought they should respond so that the system would operate correctly in reading the magnetic strip on a security badge. With each RAP variant, subjects were required to make four successful card reads (swipes) in which the card reader correctly read and logged the transaction. After each trial, a subject completed a 10-item interface acceptance evaluation before approaching the next RAP. After interacting with the RAP interfaces (for a total of the six RAP trials), each subject completed a 7-item overview evaluation that compared and ranked the five experimental RAPs, using the original (RAP B) insert style as a standard.

  13. The Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  14. Residential Windows and Window Coverings: A Detailed View of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior SEPTEMBER 2013 Prepared for: Building Technologies Office Office of Energy ...

  15. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  16. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  17. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  18. Windows, Doors, & Skylights

    Broader source: Energy.gov [DOE]

    Windows, doors and skylights affect home aesthetics as well as energy use. Learn how to choose products that allow you to use natural light without raising your heating and cooling costs.

  19. High Performance Window Retrofit

    SciTech Connect (OSTI)

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  20. Windows Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead Performer: Window Covering Manufacturing Association - New York, NY Core Research ... National Laboratory (LBNL) - Berkeley, CA Core Research Support for BTO WindowsEnvelope ...

  1. Storm Windows | Department of Energy

    Office of Environmental Management (EM)

    interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this...

  2. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Windows provide views, daylighting, ventilation, and heat from the sun in the winter. ... Install ENERGY STAR-qualified windows and use curtains and shade to give your air ...

  3. Adaptive Liquid Crystal Windows

    SciTech Connect (OSTI)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft 1ft prototype panels for the worlds first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicrons patented e-Tint technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power

  4. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  5. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  6. Human-system interface design review guideline -- Reviewer`s checklist: Final report. Revision 1, Volume 2

    SciTech Connect (OSTI)

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant`s HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 2 is a complete set of the guidelines contained in Volume 1, Part 2, but in a checklist format that can be used by reviewers to assemble sets of individual guidelines for use in specific design reviews. The checklist provides space for reviewers to enter guidelines evaluations and comments.

  7. Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior

    Broader source: Energy.gov [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

  8. The Effect of Degraded Digital Instrumentation and Control systems on Human-system Interfaces and Operator Performance

    SciTech Connect (OSTI)

    OHara, J.M.; Gunther, B.; Martinez-Guridi, G.; Xing, J.; Barnes, V.

    2010-11-07

    Integrated digital instrumentation and control (I&C) systems in new and advanced nuclear power plants (NPPs) will support operators in monitoring and controlling the plants. Even though digital systems typically are expected to be reliable, their potential for degradation or failure significantly could affect the operators performance and, consequently, jeopardize plant safety. This U.S. Nuclear Regulatory Commission (NRC) research investigated the effects of degraded I&C systems on human performance and on plant operations. The objective was to develop technical basis and guidance for human factors engineering (HFE) reviews addressing the operator's ability to detect and manage degraded digital I&C conditions. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we evaluated the potential effects of selected failure modes of the digital feedwater control system of a currently operating pressurized water reactor (PWR) on human-system interfaces (HSIs) and the operators performance. Our findings indicated that I&C degradations are prevalent in plants employing digital systems, and the overall effects on the plant's behavior can be significant, such as causing a reactor trip or equipment to operate unexpectedly. I&C degradations may affect the HSIs used by operators to monitor and control the plant. For example, deterioration of the sensors can complicate the operators interpretation of displays, and sometimes may mislead them by making it appear that a process disturbance has occurred. We used the findings as the technical basis upon which to develop HFE review guidance.

  9. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    If you have old windows in your home, replacing them with new, energy-efficient windows ... In general, plastics are most economical for people with small budgets or who live in ...

  10. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    LBNL’s has three facilities specifically dedicated to windows: the Optical Properties Laboratory, the Infrared Thermography Laboratory, and the Mobile Window Thermal Test Facility (MoWiTT). These...

  11. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    The Department of Energy funds these three test national lab test facilities to do window and building envelope research.

  12. Proceedings: Graphics interface '86/Vision interface '86

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This book contains papers presented at the Graphics interface conference. The Graphics interface conference is a major forum for the presentation of research in computer graphics and human-computer interaction. Sponsored by the Canadian Man-Computer Communications Society, the conferene draws an international audience with papers presented from France, Great Britain, the United States and Canada. The 1986 meeting was held jointly with Vision Interface '86, sponsored by the Canadian Image Processing and Pattern Recognition Society.

  13. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Window treatments or coverings can reduce heat loss in the winter and heat gain in the ...

  14. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    by adding storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Links ENERGY STAR Residential Windows, Doors and Skylights Product Ratings - ...

  15. Windows and Building Envelope | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 27, 2014 Research and Development Roadmap: Windows and Building Envelope November 26, 2013 Residential Windows and Window Coverings: A Detailed View of the Installed Base ...

  16. Predicting window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.

    1995-07-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining window U-factors, there has been little work to date on using numerical methods to predict condensation potential. It is, perhaps, of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a preliminary step to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and inferior indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building materials, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products, as part of its mandate from the Department of Energy. A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing, to reduce the cost and time required for implementation and increase the flexibility of the rating method. This article outlines the necessary components in the application of numerical methods for evaluating condensation in fenestration products, and describes the status of the development of these methods. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products. Much of the technical discussion in this article can be found in ASHRAE Transactions.

  17. Windows on the axion

    SciTech Connect (OSTI)

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

  18. Energy and Power Evaluation Program for Windows

    Energy Science and Technology Software Center (OSTI)

    2000-06-27

    ENPEP for windows has its origins in the DOS version of the software, however, the Windows release is significantly modified and rather different in structure and capabilities from the older DOS version of ENPEP. ENPEP for Windows provides the user with a graphical interface for designing a comprehensive model of the energy system of a country or region. The BALANCE submodel processes a representative network of all energy production, conversion, transport, distribution, and utilization activitiesmore » in a country (or region) as well as the flows of energy and fuels among these activities. The objective of the model is to simulate energy market and determine energy supply and demand balance over a long-term period of up to 75 years. The environmental aspect is also taken into account by calculating the emissions of various pollutants. In addition to the energy costs, the environmental costs are also calculated by the model. These costs can be used to affect the solution found by the market equilibrium algorithm. The main purpose of the software is to provide analytical capability and tools for the various analyses of energy and environmental systems, as well as for development of long-term energy strategy of a country or region.« less

  19. Turning windows into solar generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning windows into solar generators Turning windows into solar generators A simple filtration process helped Rice University researchers create flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes. August 8, 2016 Turning windows into solar generators UbiQD founder and President Hunter McDaniel shows quantum dots dissolved in a liquid solution that absorbs ultraviolet light and converts the energy into emitted light of different colors. CREDIT: Courtesy of UbiQD

  20. Window Types | Department of Energy

    Office of Environmental Management (EM)

    Tints Heat-absorbing window glazing contains special tints that change the color of the glass. Tinted glass absorbs a large fraction of the incoming solar radiation...

  1. Tips: Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill...

  2. X-Windows Acceleration via NX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly...

  3. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  4. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Choose high-performance windows that have at least two panes of glass and a low-e coating. Choose a low U-factor for better insulation in colder climates; the U-factor is the...

  5. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  6. A window on urban sustainability

    SciTech Connect (OSTI)

    Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  7. Do You Have Windows That Need Replacing?

    Broader source: Energy.gov [DOE]

    Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows?

  8. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. You are accessing a document ...

  9. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. It is well known that the spectrum ...

  10. Atmospheric Pressure Deposition for Electrochromic Windows |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Dynamic Windows ...

  11. Energy-Efficient Windows | Department of Energy

    Office of Environmental Management (EM)

    in your home involves design, selection, and installation. Design Before selecting new windows for your home, determine what types of windows will work best and where to...

  12. Energy Efficient Window Treatments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    You can choose window treatments or coverings not only for decoration but also for saving energy. ... Federal incentives are available for efficient residential windows, doors, or ...

  13. Promising Technology: R-5 Window Replacements

    Broader source: Energy.gov [DOE]

    A significant amount of the energy used to heat and cool commercial buildings is lost through inefficient windows. Incorporating windows into a building that are resistant to heat transfer can significantly reduce the amount of energy that is lost through windows. R-values are an indication of how resistant a window is to heat transfer, and a larger R-value indicates a more insulating window. An R-5 window represents an efficient window, and has a larger R-value than what is required to qualify for ENERGY STAR.

  14. R-5 Highly-Insulating Windows and Low-e Storm Windows Volume Purchase Program

    SciTech Connect (OSTI)

    2009-09-30

    Introduces DOE's Building Technologies fenestration RD&D program, and describes the highly insulated R-5 Windows and Low-e Storm Windows Volume Purchase solicitation.

  15. Windows come to the workstation

    SciTech Connect (OSTI)

    Upton, M.

    1984-04-11

    Those making major buying decisions about software packages face a difficult process. The author looks at specific features, including windows and integrated packages. Everyone aspiring to be anyone in the packaged software business is touting an integrated system. Integrated software means a lot of things to a lot of people, but three hierarchical levels seem to stand out: the data integration level, the command structure level, and the modeless (or seamless) level.

  16. 13 EER Window Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 EER Window Air Conditioner 2014 Building Technologies Office Peer Review Broadway Apartment Building with WACs in NYC Pradeep Bansal, bansalpk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Key Partners: Start date: October 1, 2011 Planned end date: September 30, 2015 Key Milestones: 1. Complete preliminary simulations to predict design point performance; March 31, 2012 2. Testing of Lab Breadboard; September 30 2013 3. Design production ready unit; March 31 2014 Budget:

  17. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

  18. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    SciTech Connect (OSTI)

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  19. Rolling, Rolling, Rolling: Roller Window Shades

    Broader source: Energy.gov [DOE]

    There's a lot of talk these days about installing new energy-efficient windows. Thanks to a Federal tax credit of up to $1,500, window advertisements, both print and radio and TV broadcasting, are aplenty.

  20. Making Smart Windows Smarter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Deputy Assistant Secretary for Renewable Power (Acting) What does this project do? Pleotint, LLC has developed a

  1. Shading, Films and Window Attachments Market Report

    Broader source: Energy.gov [DOE]

    Shading, Films and Window Attachments (SFWA) Market Report, March 13, 2016, from the Consortium for Building Energy Innovation.

  2. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    SciTech Connect (OSTI)

    Gilmore, Walter E.; Stender, Kerith K.

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  3. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current

  4. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  5. New Window Technology Saves Energy and the View | Department...

    Energy Savers [EERE]

    Window Technology Saves Energy and the View New Window Technology Saves Energy and the ... Laboratory are developing innovative new window technology that helps improve ...

  6. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Environmental Management (EM)

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...

  7. Window, Door, and Skylight Products and Services | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Doors, and Skylights ENERGY STAR Learn how to save energy by sealing your home and choosing ENERGY STAR windows, doors, and skylights. Window Selection Tool Efficient Windows...

  8. Expert Meeting Report: Windows Options for New and Existing Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... SHGC U Residential Energy Use (MBTUyr) vs Window Thermal Properties (U, SHGC) Specific windows plotted on ... between the window and added coverings such as storms (interior and ...

  9. Rigid thin windows for vacuum applications

    DOE Patents [OSTI]

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  10. Purged window apparatus utilizing heated purge gas

    DOE Patents [OSTI]

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  11. GenoGraphics for OpenWindows trademark

    SciTech Connect (OSTI)

    Hagstrom, R.; Overbeek, R.; Price, M.; Zawada, D. ); Michaels, G.S.; Taylor, R. . Div. of Computer Research and Technology); Yoshida, Kaoru )

    1992-04-01

    GenoGraphics is a generic utility for constructing and querying one-dimensional linear plots. The outgrowth of a request from Dr. Cassandra Smith for a tool to facilitate her genome mapping research. GenoGraphics development has benefited from a continued collaboration with her. Written in Sun Microsystem's OpenWindows environment and the BTOL toolkit developed at Argonne National Laboratory. GenoGraphics provides an interactive, intuitive, graphical interface. Its features include: viewing multiple maps simultaneously, zooming, and querying by mouse clicking. By expediting plot generation, GenoGraphics gives the scientist more time to analyze data and a novel means for deducing conclusions.

  12. GenoGraphics for OpenWindows{trademark}

    SciTech Connect (OSTI)

    Hagstrom, R.; Overbeek, R.; Price, M.; Zawada, D.; Michaels, G.S.; Taylor, R.; Yoshida, Kaoru

    1992-04-01

    GenoGraphics is a generic utility for constructing and querying one-dimensional linear plots. The outgrowth of a request from Dr. Cassandra Smith for a tool to facilitate her genome mapping research. GenoGraphics development has benefited from a continued collaboration with her. Written in Sun Microsystem`s OpenWindows environment and the BTOL toolkit developed at Argonne National Laboratory. GenoGraphics provides an interactive, intuitive, graphical interface. Its features include: viewing multiple maps simultaneously, zooming, and querying by mouse clicking. By expediting plot generation, GenoGraphics gives the scientist more time to analyze data and a novel means for deducing conclusions.

  13. Low-Cost Solutions for Dynamic Window Material | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Atmospheric Pressure Deposition for Electrochromic Windows Nanolens Window Coatings for Daylighting Advanced Facades, Daylighting, and Complex Fenestration Systems

  14. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    2010-02-26

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.

  15. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  16. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  17. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  18. Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation from Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments.

  19. Laser sealed vacuum insulation window

    DOE Patents [OSTI]

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  20. Laser sealed vacuum insulating window

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  1. Window Daylighting Demo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Facades, Daylighting, and Complex Fenestration Systems High Performance Window Attachments Figure 1: Measurement of performance of ceiling ...

  2. Piezoresponse Force Microscopy: A Window into Electromechanical...

    Office of Scientific and Technical Information (OSTI)

    Behavior at the Nanoscale Citation Details In-Document Search Title: Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale Authors: Bonnell, ...

  3. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings Addthis 1 of 5 An oxygen plasma etcher is ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  4. Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... selective coatings filter out 40% to 70% of the heat normally transmitted through insulated window glass or glazing, while allowing the full amount of light to be transmitted. ...

  5. Window Replacement, Rehabilitation, & Repair Guides - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The guides are available in the Building America Solution Center, an online resource of home construction how-to's. Search for "retrofit windows" and filter for "Guides" under ...

  6. Advances in window technology: 1973-1993

    SciTech Connect (OSTI)

    Arasteh, D.

    1994-12-31

    Until the 1970s, the thermal performance of windows and other fenestration technologies was rarely of interest to manufacturers, designers, and scientists. Since then, however, a significant research and industry effort has focused on better understanding window thermal and optical behavior, how windows influence building energy patterns, and on the development of advanced products. This chapter explains how fenestration technologies can make a positive impact on building energy flows, what physical phenomena govern window heat and light transfer, what new products have been developed, and what new products are currently the subject of international research efforts. 44 refs., 30 figs., 3 tabs.

  7. Energy Efficient Window Treatments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... They offer several advantages: Weather protection Added security No use of interior space No thermal shock to windows if left closed. Exterior shutters must be integrated into your ...

  8. Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fraction of incoming solar radiation through a window, reflective coatings reduce the transmission of solar radiation, and spectrally selective coatings filter out 40% to 70%...

  9. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012...

  10. Thermally insulated window sash construction for a casement window

    SciTech Connect (OSTI)

    Biro, A.J.

    1987-09-01

    A window sash member is described comprising: first and second generally parallel sidewalls; first and second spaced, generally parallel transverse walls connecting the first and second sidewalls, extending between and oriented generally perpendicular to the first and second sidewalls to define a first hollow chamber; a third transverse wall, located without the first hollow chamber adjacent to and generally parallel to the first transverse wall, extending from the first sidewall and terminating short of the second sidewall; a first interior wall extending from the third transverse wall to the first transverse wall and oriented generally parallel to the first sidewall to define a second hollow chamber; a fourth transverse wall, located without the first hollow chamber adjacent to and generally to the second transverse wall, extending from the first sidewall and terminating short of the second sidewall; and a second interior wall extending from the fourth transverse wall to the second transverse wall and oriented generally parallel to the second sidewall to define a third hollow chamber.

  11. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  12. Supersymmetric Dualities beyond the Conformal Window

    SciTech Connect (OSTI)

    Spiridonov, V. P.; Vartanov, G. S.

    2010-08-06

    Using the superconformal (SC) indices techniques, we construct Seiberg type dualities for N=1 supersymmetric field theories outside the conformal windows. These theories are physically distinguished by the presence of chiral superfields with small or negative R charges.

  13. NREL Electrochromic Window Research Wins Award

    SciTech Connect (OSTI)

    2011-01-01

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  14. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings 1 of 5 An oxygen plasma etcher is used to ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  15. NREL Electrochromic Window Research Wins Award

    ScienceCinema (OSTI)

    None

    2013-05-29

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  16. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by ...

  17. Building Technologies Office: Emerging Technologies Windows and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost premium <5ft 2 over standard window or blind installation including the cost of sensor and lighting Reduce lighting energy use by 50% for a 50-ft floor plate 7 Highlight of ...

  18. Science on the Hill: Turning windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: Turning windows into solar panels Turning windows into solar panels Working with quantum dots, researchers achieve a breakthrough in solar-concentrating technology that can turn windows into electric generators. February 7, 2016 solar panel windows The luminescent solar concentrator could turn any window into a daytime power source. Science on the Hill: Turning windows into solar panels Sunlight is abundant, free and for all practical purposes, eternal. Harvesting that light

  19. T-596: 0-Day Windows Network Interception Configuration Vulnerability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 96: 0-Day Windows Network Interception Configuration Vulnerability T-596: 0-Day Windows Network Interception Configuration Vulnerability April 6, 2011 - 5:48am Addthis PROBLEM: 0-Day exploit of IPv4 and IPv6 mechanics and how it applies to Microsoft Windows Operating systems. PLATFORM: Microsoft Operating Systems (OS) Windows Vista, Windows 7, and Windows 2008 Server ABSTRACT: The links below describe a parasitic IPv6 layered over a native IPv4 network. This attack can

  20. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparency: it's not just for windows Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012 Intellus environmental data The same environmental data used by LANL scientists can be viewed by anyone, anytime. Contact Environmental Communications & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The new system contains more than 9 million

  1. Vacuum Insulation for Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacuum Insulation for Windows Vacuum Insulation for Windows Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using

  2. Nanolens Window Coatings for Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1.07 MB) More Documents & Publications Dynamically Responsive Infrared Window Coatings Advanced Facades, Daylighting, and Complex Fenestration Systems Window Daylighting Demo

  3. Building America Top Innovations 2013 Profile … Window Replacement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Replacement, Rehabilitation, & Repair Guide TOP INNOVATOR: BSC Old single-glazed ... * Modifying the window sash - remove single- pane glass from the sash and replace ...

  4. Diffraction scattering computed tomography: a window into the...

    Office of Scientific and Technical Information (OSTI)

    tomography: a window into the structures of complex nanomaterials Citation Details In-Document Search Title: Diffraction scattering computed tomography: a window into the ...

  5. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability August...

  6. Pennsylvania: New Series of Windows Has Potential to Save Energy...

    Office of Environmental Management (EM)

    New Series of Windows Has Potential to Save Energy for Commercial Buildings Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings March 6, 2014...

  7. Covered Product Category: Residential Windows, Doors, and Skylights...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition ...

  8. Energy-Efficient Window Treatments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Treatments September 25, 2012 - 9:04am Addthis The awnings on this home shade the windows and generate electricity. | Photo courtesy of iStockphoto...

  9. Windows and Building Envelope Overview - 2015 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Overview - 2015 BTO Peer Review Windows and Building Envelope Overview - 2015 BTO Peer Review Presenter: Bahman Habibzadeh, U.S. Department of Energy ...

  10. Low Cost Nanostructured Smart Window Coatings | Department of...

    Office of Environmental Management (EM)

    Low Cost Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings Addthis 1 of 3 A Heliotrope scientist prepares slot die coater for solution based ...

  11. Windows and Envelope Subprogram Overview - 2016 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Envelope Subprogram Overview - 2016 BTO Peer Review Windows and Envelope Subprogram Overview - 2016 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy ...

  12. Energy Savings from Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fenestration Software Tools Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior Energy Savings from ...

  13. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    . As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  14. Microsoft PowerPoint - Window_Attachments-Webinar-Oct_28_2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... that examined 11 different typical residential window attachments including: - shades - ... window. * Energy-efficient window coverings can reduce heat loss through windows ...

  15. Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research February 17, 2016, Research Highlights Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries Renormalization of solvent HOMO (green lines) and LUMO (red lines) levels due to interactions with Mg (0001) and MgO (001). The shaded region in the center of the figure represents the electrochemical window of a hypothetical 4V magnesium battery Scientific Achievement Interface-induced changes to the stability of

  16. Microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  17. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect (OSTI)

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  18. Energy Performance Ratings for Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Energy performance ratings make it easier to shop for energy-efficient windows, doors, and skylights.

  19. Highly Insulating Residential Windows Using Smart Automated Shading

    Broader source: Energy.gov [DOE]

    Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

  20. Integral window hermetic fiber optic components

    SciTech Connect (OSTI)

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  1. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A.

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  2. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  3. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) ...

  4. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) ...

  5. Window for radiation detectors and the like

    DOE Patents [OSTI]

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  6. Solar optical materials for innovative window design

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-08-01

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  7. Interior and Exterior Low-E Storm Window Installation

    SciTech Connect (OSTI)

    Witters, Sarah

    2014-09-03

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings. A new and improved low-e storm window boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement. A recent whole-home experiment performed by PNNL suggests that attaching low-e storm windows can result in as much energy savings replacing the windows.

  8. The high level programmer and user interface of the NSLS control system

    SciTech Connect (OSTI)

    Tang, Y.N.; Smith, J.D.; Sathe, S.

    1993-07-01

    This paper presents the major components of the high level software in the NSLS upgraded control system. Both programmer and user interfaces are discussed. The use of the high-speed work stations, fast network communications, UNIX system, X-window and Motif have greatly changed and improved these interfaces.

  9. Determining window solar heat gain coefficient

    SciTech Connect (OSTI)

    Harrison, S.J.; Wonderen, S.J. van . Solar Calorimetry Lab.)

    1994-08-01

    The solar heat gain characteristics of fenestration systems impact daytime building energy performance, occupant comfort and utility load demands. A measure of the fraction of available solar energy entering a building interior per unit window area is defined as the solar heat gain coefficient (SHGC). Together with a window's thermal transmittance (U-value), the SHGC is used to compare fenestration products, and it allows for the calculation of energy rating number and annual energy performance. The need to measure and compared advances in window technology has led to the development of experimental and analytical methods for the determination of SHGC performance. Several test facilities currently or previously capable of performing SHGC measurements exist worldwide. Results experimentally determined using these facilities have provided design data for handbook tables, and have been instrumental in the development and validation of predictive analytical methods and computer simulation tools. However, these facilities have operated without a standard test procedure for SHGC performance. Consequently, recent efforts have been focused on developing consensus test procedures for the evaluation of window energy performance.

  10. Predicting Electrochemical Windows of Nitrogen Containing Aromatic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecules - Joint Center for Energy Storage Research October 20, 2014, Research Highlights Predicting Electrochemical Windows of Nitrogen Containing Aromatic Molecules Various nitrogen containing aromatic base molecules and a descriptive relationship derived to predict their reduction potentials is shown. Scientific Achievement A descriptive relationship is derived for computing reduction potentials of quinoxaline derivatives from the orbital energies of the neutral molecules without

  11. Proton storage ring: man/machine interface

    SciTech Connect (OSTI)

    Lander, R.F.; Clout, P.N.

    1985-01-01

    The human interface of the Proton Storage Ring Control System at Los Alamos is described in some detail, together with the software environment in which operator interaction programs are written. Some examples of operator interaction programs are given.

  12. Windows and Envelope Sub-Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Envelope Sub-Program Overview Karma Sawyer, Ph.D. - Technology Manager karma.sawyer@ee.doe.gov Presented by Patrick Phelan 2 BTO's Integrated Approach Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings Codes and Standards * Establish minimum energy use in a

  13. Environmentally Benign Electrolytes With Wide Electrochemical Windows -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Environmentally Benign Electrolytes With Wide Electrochemical Windows DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing SummaryAs mobile electronics continue to evolve, the need for safe, long-lasting rechargeable batteries has grown tremendously. In the search for suitable materials from which to construct high energy density solid state batteries, one of the principal obstacles has

  14. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  15. A Tale of Three Windows: Part 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We live in Colorado, and that means cold winters with hot summers -- so the type of window we choose makes a difference in performance. Energy Savers gives great advice for window ...

  16. My Energy Audit, Part 2: Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    My Energy Audit, Part 2: Windows My Energy Audit, Part 2: Windows July 9, 2012 - 1:48pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Last time I wrote ...

  17. Improving the Energy Efficiency of Existing Windows | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? ...

  18. Energy Performance Ratings for Windows, Doors, and Skylights...

    Energy Savers [EERE]

    The NFRC label can be found on all ENERGY STAR qualified window, door, and skylight ... U-factor is the rate at which a window, door, or skylight conducts non-solar heat flow. ...

  19. Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  20. Purchasing Energy-Efficient Windows | Department of Energy

    Office of Environmental Management (EM)

    Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and ...

  1. Updating the Doors and Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace...

  2. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 ... Executive Report, May 2010, Exhibit D.8 Conventional Residential Window Glass Usage, p. 52

  3. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    1 Residential Prime Window Sales, by Frame Type (Million Units) (1) New Construction 1990 ... for 2000 and 2003; and LBNL, Savings from Energy Efficient Windows, Apr. 1993, p. 6 for ...

  4. Core Research Support for BTO Windows/Envelope Programs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, as a major element of the building envelope, are an important factor in the overall energy use of buildings. Heat transfer through windows accounts for 4 quads of primary ...

  5. New Window Technology Saves Energy and the View | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National...

  6. Numerical prediction of window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.G.

    1995-08-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining windows U-factors (EE 1983; Goss and Curcija 1994; Standaert 1985; CSA 1993a; NFRC 1991), there has been little work to data on using numerical methods to predict condensation potential. It is perhaps of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a precursor to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building material, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products as part of its mandate from the US Department of Energy (DOE). A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing to reduce the cost and time required for implementation and increase the flexibility of the rating method. This paper outlines one of the necessary components in the application of numerical methods for evaluating condensation in fenestration products. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products.

  7. Windows and Building Envelope Overview - 2015 BTO Peer Review | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Building Envelope Overview - 2015 BTO Peer Review Windows and Building Envelope Overview - 2015 BTO Peer Review Presenter: Bahman Habibzadeh, U.S. Department of Energy View the Presentation Windows and Building Envelope Overview - 2015 BTO Peer Review (1.13 MB) More Documents & Publications Window and Envelope Technologies Overview - 2014 BTO Peer Review Windows and Envelope Subprogram Overview - 2016 BTO Peer Review 2014 Building Technologies Office Program Peer Revi

  8. Window, Door, and Skylight Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR®

  9. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  10. New Rating System for Enhancing Window Energy Performance

    Broader source: Energy.gov [DOE]

    Window attachments, such as awnings, shutters, drapes, and solar shades, are often used for cosmetic purposes and to help control the amount of light entering a room. However, many Americans aren't aware that identifying energy conserving window strategies are cost effective in homes and commercial buildings. The Window Covering Manufacturers Association (WCMA) will cost-share Energy Department funding to help consumers realize potential energy savings from window attachments through the creation of a comprehensive energy ratings and certification program.

  11. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  12. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  13. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  14. How Have You Improved the Efficiency of Your Windows? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each

  15. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    SciTech Connect (OSTI)

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; Kleineberg, Ulf

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assisted interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.

  16. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; et al

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  17. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Interface (API) Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems:

  18. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  19. Single level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  20. Bi-level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  1. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  2. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  3. Simulating Complex Window Systems using BSDF Data

    SciTech Connect (OSTI)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  4. Low heat transfer, high strength window materials

    DOE Patents [OSTI]

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  5. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  6. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  7. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  8. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  9. Improved Power Conversion Efficiency of InP Solar Cells Using Organic Window Layers

    SciTech Connect (OSTI)

    Li, N; Lee, K.; Renshaw, C. K.; Xiao, X.; Forrest, Stephen R.

    2011-01-01

    We employ the organic semiconductor 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) as a nanometer thick window layer for p-InP/indium tin oxide (ITO) Schottky barrierdiodesolar cells. The power conversion efficiency is enhanced compared to ITO/InP cells lacking the PTCDA window layer, primarily due to neutralizing InP surface state charges via hole injection from the PTCDA. This leads to an increased ITO/p-InP Schottky barrier height, and hence to an increased open circuit voltage. The power conversion efficiency of the cells increases from 13.2±0.5% for the ITO/InP cell to 15.4±0.4% for the ITO/4 nm PTCDA/p-InP cell under 1 sun, AM1.5G simulated solar illumination. The PTCDA window layer is also shown to contribute to the photocurrent by light absorption followed by exciton dissociation at the organic/inorganic semiconductor interface.

  10. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  11. Covered Product Category: Residential Windows, Doors, and Skylights |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition guidance for residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most

  12. Windows and Building Envelope Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market entry & acceptance of window & building envelope product installation Improve testing & modeling capabilities, including window design tools to enable market adoption Technology pathways & research reports Improve performance & cost of near-term technologies & reduce manufacturing costs Documented low cost infiltration measurement methods Competitively funded projects to model attachments in window software tools Government, standards & industry orgs. & EE

  13. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  14. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, David K.; Crandall, Richard S.; Deb, Satyendra K.; Stone, Jack L.

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  15. 13-Energy Efficiency Ratio Window Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Energy Efficiency Ratio Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Credit: Oak Ridge National Lab Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT DOE Funding: $1,540,000 Cost Share: Provided by CRADA partners Project Term: October 1, 2011 - September 30, 2015 Project Objective This project is designing and developing a high-efficiency 13 energy-efficiecy-ratio (EER) window air

  16. NM company wants to turn your windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM company wants to turn your windows into solar panels NM company wants to turn your windows into solar panels "There's an opportunity to generate electricity and power buildings with their windows" August 1, 2016 The UbiQD Team The UbiQD team celebrates the opening of its new quantum dot manufacturing facility in Los Alamos July 29. Contact Hunter McDaniel UbiQD Email UbiQD LLC, a quantum dot company, says it can turn windows into solar generators. "There's an opportunity to

  17. NREL Solves Residential Window Air Conditioner Performance Limitations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning ...

  18. Energy-Efficient Smart Windows are Lowering Energy Costs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratory are cutting energy cost for American families, businesses, institutions, and governments ...

  19. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Window and Envelope Technologies Overview - 2014 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided...

  20. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  1. Energy-Efficient Smart Windows are Lowering Energy Costs

    Broader source: Energy.gov [DOE]

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratoryare cutting energy cost for American families, businesses, institutions, and governments every year. With...

  2. Highly Insulating Residential Windows Using Smart Automated Shading...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These windows target significant reductions in residential heating as well as cooling energy. Contacts DOE Technology Manager: Karma Sawyer Performer: Steve Selkowitz, Lawrence ...

  3. Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  4. Suntuitive(tm): Sunlight-Responsive Thermochromic Window Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Provides a thermochromic interlayer that can be supplied to laminators and window manufacturers worldwide. Contact Information Curtis Liposcak (608) 216-5373 CurtisL@pleotint.com ...

  5. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, C.M.

    1996-04-16

    A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

  6. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, Clinton M.

    1996-01-01

    A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

  7. Vacuum window glazings for energy-efficient buildings

    SciTech Connect (OSTI)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. ); Soule, D.E. )

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  8. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Envelope Technologies Overview - 2014 BTO Peer Review Window and Envelope Technologies Overview - 2014 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This ...

  9. Interface colloidal robotic manipulator

    DOE Patents [OSTI]

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  10. Thread Pool Interface (TPI)

    Energy Science and Technology Software Center (OSTI)

    2008-04-01

    Thread Pool Interface (TpI) provides a simple interface for running functions written in C or C++ in a thread-parallel mode. Application or library codes may need to perform operations thread-parallel on machines with multicore processors. the TPI library provides a simple mechanism for managing thread activation, deactivation, and thread-parallel execution of application-provided subprograms.

  11. Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

    Broader source: Energy.gov [DOE]

    Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

  12. Electrochromic Window Demonstration- Donna Land Port of Entry

    Broader source: Energy.gov [DOE]

    Donna Project Plan: Electrochrome Window Demonstration Measurement and Verification Report This report details the measurement and verification tools and methods used to evaluate the effectiveness of electrochromic windows at the Donna Land Port of Entry, an international border crossing between the United States and Mexico located in Texas.

  13. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming; Wang, Jin

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  14. Research and Development Roadmap: Windows and Building Envelope

    Broader source: Energy.gov [DOE]

    Windows and building envelope research and development is a high priority for the Building Technologies Office. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  15. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  16. Operator interface for vehicles

    DOE Patents [OSTI]

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  17. TSF Interface Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    A collection of packages of classes for interfacing to sparse and dense matrices, vectors and graphs, and to linear operators. TSF (via TSFCore, TSFCoreUtils and TSFExtended) provides the application programmer interface to any number of solvers, linear algebra libraries and preconditioner packages, providing also a sophisticated technique for combining multiple packages to solve a single problem. TSF provides a collection of abstract base classes that define the interfaces to abstract vector, matrix and linear soeratormore » objects. By using abstract interfaces, users of TSF are not limiting themselves to any one concrete library and can in fact easily combine multiple libraries to solve a single problem.« less

  18. An integrated distributed processing interface for supercomputers and workstations

    SciTech Connect (OSTI)

    Campbell, J.; McGavran, L.

    1989-01-01

    Access to documentation, communication between multiple processes running on heterogeneous computers, and animation of simulations of engineering problems are typically weak in most supercomputer environments. This presentation will describe how we are improving this situation in the Computer Research and Applications group at Los Alamos National Laboratory. We have developed a tool using UNIX filters and a SunView interface that allows users simple access to documentation via mouse driven menus. We have also developed a distributed application that integrated a two point boundary value problem on one of our Cray Supercomputers. It is controlled and displayed graphically by a window interface running on a workstation screen. Our motivation for this research has been to improve the usual typewriter/static interface using language independent controls to show capabilities of the workstation/supercomputer combination. 8 refs.

  19. Performance Application Programming Interface

    Energy Science and Technology Software Center (OSTI)

    2005-10-31

    PAPI is a programming interface designed to provide the tool designer and application engineer with a consistent interface and methodology for use of the performance counter hardware found in most major microprocessors. PAPI enables software engineers to see, in near real time, the relation between software performance and processor events. This release covers the hardware dependent implementation of PAPI version 3 for the IBM BlueGene/L (BG/L) system.

  20. TRANSIMS Interface Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transims TRANSIMS Interface Development TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSIMS Studio (Figure 1) has been developed by TRACC for the TRANSIMS community as part of the TRANSIMS Open Source project. It provides an integrated development environment (IDE) for TRANSIMS by combining a number of components that work seamlessly with each other. The visible part of the IDE is the graphical user interface (GUI) that allows

  1. Multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  2. Effect of window reflections on photonic Doppler velocimetry measurements

    SciTech Connect (OSTI)

    Ao, T.; Dolan, D. H.

    2011-02-15

    Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

  3. A HIGH-POWER L-BAND RF WINDOW

    SciTech Connect (OSTI)

    R. RIMMER; G. KOEHLER; ET AL

    2001-05-01

    This paper discusses the design, fabrication and testing of a high power alumina disk window in WR1500 waveguide at L Band, suitable for use in the NLC damping ring RF cavities at 714 MHz and the LEDA Accelerator at 700 MHz. The design is based on the fabrication methods used for the successful PEP-II cavity windows. Four prototype windows at 700 MHz have been produced by LBNL for testing at LANL. The RF design and simulation using MAFIA, laboratory cold test measurements, fabrication methods and preliminary high power test results are discussed.

  4. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  5. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  6. Fighting with South-Facing Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fighting with South-Facing Windows Fighting with South-Facing Windows June 13, 2011 - 3:20pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, back when it was cold out (and, this being Colorado, that was last month), my south-facing windows were awesome. They let in tons of light and kept the entire place snug and warm. I barely even needed to break out the blankets! But Colorado's weather likes to mess with you, so it recently decided that it was done with

  7. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    3 Nonresidential Window Sales, by Type and Census Region (Million Square Feet of Vision Area) (1) Northeast Midwest South West Total Type 1995 2009 1995 2009 1995 2009 1995 2009 1995 2009 New Construction Commercial Windows (2) 4 15 16 22 21 58 13 25 54 120 Curtain Wall 3 10 6 16 16 41 8 18 33 84 Store Front 7 10 11 16 14 41 11 18 43 85 Total (3) 14 36 33 53 51 140 32 60 130 289 Remodeling/Replacement Commercial Windows (2) 18 12 25 17 46 45 27 19 116 93 Curtain Wall 4 2 6 3 8 7 10 3 28 15 Store

  8. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Christian Kohler, cjkohler@lbl.gov Steve Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Highly insulating Residential Windows Using Smart Automated Shading 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 4/1/2013 Planned end date: 3/31/2016 Key Milestones 1. Window designs meeting FOA targets 9/30/2013 2. Prototype window with integrated sensors, ENERGY STAR level performance 12/31/2013 Budget: Total DOE $ to date: $783k (FY13-FY14)

  9. Company Rehires Unemployed Workers for Energy Efficient Window Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down

  10. Residential Lighting Usage Estimate Tool, v1.0, Windows version...

    Energy Savers [EERE]

    Windows version Residential Lighting Usage Estimate Tool, v1.0, Windows version Windows version of the Residential Lighting Usage Estimate Tool, v1.0. Spreadsheet More Documents &...

  11. Quantitative characterization of arc discharge as vacuum interface

    SciTech Connect (OSTI)

    Huang, S.; Zhu, K.; Lu, Y. R.; Wang, S. Z.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.

    2014-12-19

    An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30mm and 60mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. In this study, electron temperature of the plasma channel measured spectroscopically varied in the range of 7000K to 15000K, increasing with discharge current while decreasing with gas flow rate. The plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30A–70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter, and length, were well explained by viscosity effect and “thermal-block” effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.

  12. High temperature interface superconductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  13. Research and Development Roadmap: Windows and Building Envelope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and ...

  14. High-Efficiency Window Air Conditioners- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

  15. Energy Performance Ratings for Windows, Doors, and Skylights...

    Broader source: Energy.gov (indexed) [DOE]

    the rate of air movement around a window, door, or skylight in the presence of a specific pressure difference across it. It's expressed in units of cubic feet per minute per square...

  16. A Design Guide for Early-Market Electrochromic Windows

    SciTech Connect (OSTI)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

    2006-05-01

    Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

  17. Department of Energy Announces 14 New Projects for Window Efficiency...

    Office of Environmental Management (EM)

    ... The team's thermal barrier is based on liquid crystalline phases of nano-cellulose aerogel that have low-emissivity properties, which will help prevent heat loss through windows. ...

  18. Window Manufacturer Sees Business Surge As Weatherization Supplier...

    Broader source: Energy.gov (indexed) [DOE]

    impact because of weatherization," says Mark Barr, a third-generation owner of 70-year-old family window manufacturing business Harry G. Barr Company, located in Fort Smith, Ark. ...

  19. High-Power Ka-Band Window and Resonant Ring

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  20. New High-Efficiency Window Prototype Result of DOE Partnership...

    Office of Environmental Management (EM)

    December 4, 2006 - 9:34am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a next-generation residential and commercial window prototype. When widely ...

  1. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    2 Residential Storm Window and Door Shipments, by Frame Type (Million Units) Type 1990 2000 2005 2008 1990 2000 2005 2008 1990 2000 2005 2008 Aluminum 10 8 7 NA 2 4 4 3 12 12 11 ...

  2. Multilayered Microelectronic Device Package With An Integral Window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  3. Sealed symmetric multilayered microelectronic device package with integral windows

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.

  4. Repairing Windows & Doors: How To's for the Handy Homeowner

    SciTech Connect (OSTI)

    2006-01-05

    This brochure contains tips for homeowners to repair windows and doors in their home that sustained hurricane damage. This publication is a part of the How To's for the Handy Homeowner Series.

  5. EERE Success Story-Pennsylvania: Window Technology First of Its...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In support of DOE's goal to reduce energy consumption in buildings by 50% by 2030, EERE utilized 1.3 million of Recovery Act funding to support window manufacturer Traco, a ...

  6. Windows and Envelope Subprogram Overview — 2016 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Windows and Envelope Subprogram. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  7. Profile Interface Generator

    Energy Science and Technology Software Center (OSTI)

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allowsmore » semantic instrumentation to live in production codes without interfering with production runs.« less

  8. Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolytes for Lithium Batteries - Joint Center for Energy Storage Research June 6, 2016, Research Highlights Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries The electrochemical stability windows and redox limits of the ionic liquids examined in this work. 1-Alkyl-3-methylimidazolium-based ionic liquids with [PF6]- anion ([CnMIM]+[PF6]-) are the most electrochemically stable ionic liquids among the ones studied in this research.

  9. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  10. Analysis of cavity and window for THz gyrotron

    SciTech Connect (OSTI)

    Alaria, Mukesh Kumar; Mukherjee, P.; Rao, R.R.; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in

    2011-07-01

    In this paper study of cavity and window has been carried out using Ansoft HFSS for Terahertz Gyrotron. Eigen mode analysis of the cavity has been carried out at 1 THz. An idea about the operating modes in the cavity of the Gyrotron and obtained the simulated Eigen frequency and field pattern of the modes. The design of window for 1 THz Gyrotron has also been carried out using HFSS. The simulated results have also been compared with ST microwave studio. (author)

  11. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings 1 of 3 A Heliotrope scientist prepares slot die coater for solution based deposition of electrochromic layer. Image: Heliotrope Technologies 2 of 3 A Heliotrope scientist investigates the coating quality of a slot die deposition of electrochromic layer. Image: Heliotrope Technologies 3 of 3 A Heliotrope scientist investigates the spray coater for a solution based deposition of electrochromic layer. Image:

  12. Separation of High Order Harmonics with Fluoride Windows

    SciTech Connect (OSTI)

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  13. Spurring Market Adoption of Energy Efficient Storm Windows | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Spurring Market Adoption of Energy Efficient Storm Windows Spurring Market Adoption of Energy Efficient Storm Windows June 20, 2016 - 12:53pm Addthis At the Energy Department's Pacific Northwest National Laboratory (PNNL), researchers are using two modular homes to test energy-efficient products and calculate their energy savings. Researchers test new technologies in the Experimental home (pictured above), while the Baseline home (not pictured) serves as a control and doesn’t get

  14. Connecting to the Internet Securely: Windows 2000 CIAC-2321

    SciTech Connect (OSTI)

    Orvis, W; Call, K; Dias, J

    2002-03-12

    As the threat to computer systems increases with the increasing use of computers as a tool in daily business activities, the need to securely configure those systems becomes more important. There are far too many intruders with access to the Internet and the skills and time to spend compromising systems to not spend the time necessary to securely configure a system. Hand-in-hand with the increased need for security are an increased number of items that need to be securely configured. Windows 2000 has about seven hundred security related policy settings, up from seventy two in Windows NT. While Windows 2000 systems are an extension of the Windows NT 4 architecture, there are considerable differences between these two systems, especially in terms of system and security administration. Operational policy, system security, and file security are other areas where Windows 2000 has expanded considerably beyond the domain model of Windows NT 4. The Windows NT 4 Domain model consists of domains of workstations that, with a single login, share resources and are administered together. The database of user settings and credentials resides in the domain server. Domains can trust other domains to expand the sharing of resources between users of multiple domains. On Windows 2000, the domains still exist but multiple domains that share trust are combined into Domain Trees and Domain Forests depending on how the logical namespace is divided. These trees and forests are combined under a new object called Active Directory. Domains themselves are broken down into Organizational Units. As such, there are more levels at which security policies can be set and for which information sharing can be controlled.

  15. Performance of a multifunctional PV/T hybrid solar window

    SciTech Connect (OSTI)

    Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern

    2010-03-15

    A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

  16. Application of Standard Maintenance Windows in PHWR Outage

    SciTech Connect (OSTI)

    Fuming Jiang

    2006-07-01

    The concept of Standard Maintenance Windows has been widely used in the planned outage of light water reactor in the world. However, due to the specific feature of Pressurized Heavy Water Reactor (PHWR), it has not come to a consensus for the PHWR owners to adopt Standard Maintenance Windows for planned outage aiming at the optimization of outage duration. Third Qinshan Nuclear Power Company (TQNPC), with their experience gained in the previous outages and with reference to other PHWR power plants, has identified a set of Standard Maintenance Windows for planned outage. It can be applied to similar PHWR plants and with a few windows that are specific to Qinshan Phase III NPP. The use of these Standard Maintenance Windows in planned outage has been proved to be effective in control shutdown nuclear safety, minimize the unavailability of safety system, improve the efficient utilization of outage duration, and improved the flexibility of outage schedule in the case of emergency issue, which forced the revision of outage schedule. It has also formed a solid foundation for benchmarking. The identification of Standard Maintenance Windows and its application will be discussed with relevant cases for the common improvement of outage duration. (author)

  17. A Homeowners Guide to Window Air Conditioner Installation for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Window air conditioners (ACs) are an inexpensive alternative to central systems, and are ... The study showed that window AC installation resulted in signifcant air ...

  18. X-ray Induced Quasiparticles: New Window on UnconventionalSuperconduc...

    Office of Science (SC) Website

    X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Basic Energy ... X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Creation of ...

  19. MiniBooNE as realated to "Window's on the Universe"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Windows on the Universe" Ray Stefanski Fermilab Blois 2009 Windows on the Universe June 22, 2009 Outline: Introduction Current Status New Results Expectations Summary June 22, ...

  20. T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sessions | Department of Energy 7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions September 27, 2011 - 8:00am Addthis PROBLEM: Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Windows

  1. EERE Success Story-Pennsylvania: New Series of Windows Has Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Series of Windows Has Potential to Save Energy for Commercial Buildings EERE Success Story-Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial ...

  2. Low-E Storms: The Next "Big Thing" in Window Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Low-E Storms: The Next "Big Thing" in Window ... compliance with residential and commercial national ... information about window coverings: http:...

  3. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds

    SciTech Connect (OSTI)

    Chang Chao; Liu Guozhi; Tang Chuanxiang; Chen Changhua; Fang Jinyong

    2011-05-15

    Dielectric window breakdown is a serious challenge in high-power microwave (HPM) transmission and radiation. Breakdown at the vacuum/dielectric interface is triggered by multipactor and finally realized by plasma avalanche in the ambient desorbed or evaporated gas layer above the dielectric. Methods of improving breakdown thresholds are key challenges in HPM systems. First, the main theoretical and experimental progress is reviewed. Next, the mechanisms of multipactor suppression for periodic rectangular and triangular surface profiles by dynamic analysis and particle-in-cell simulations are surveyed. Improved HPM breakdown thresholds are demonstrated by proof-of-principle and multigigawatt experiments. The current theories and experiments of using dc magnetic field to resonantly accelerate electrons to suppress multipactor are also synthesized. These methods of periodic profiles and magnetic field may solve the key issues of HPM vacuum dielectric breakdown.

  4. An RFC 1179 Compatible Remote Print Server for Windows 3.1

    Energy Science and Technology Software Center (OSTI)

    1993-11-09

    Internet RFC 1179 describes the protocol to be used for printing files on a remote printer in a TCP/IP network. The protocol is client/server, meaning that the client initiates the print request, and the server receives the request and performs the actual printing locally. This protocol has been in long use on Unix systems derived from the Berkeley Software Distribution, such as DEC''s Ultrix and Sun''s SunOS. LPD Services implements the server portion of thismore » protocol. It handles both the network communication and conformance with the protocol, and printing using the Microsoft Windows device independent printing interface.« less

  5. Photochemistry at Interfaces

    SciTech Connect (OSTI)

    Eisenthal, Kenneth B

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  6. the EXFOR interface

    Energy Science and Technology Software Center (OSTI)

    2011-03-10

    The x4i package is an interface to the EXFOR nuclear data library. It simplifies retrieval of EXFOR entries and can automatically parse them, allowing one to extract cross-section (and other) data in a simple, plot-able format. x4i also understands and can parse the entire reaction string, allowing one to build a strategy for processing the data

  7. User interface for a tele-operated robotic hand system

    SciTech Connect (OSTI)

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  8. Thyra Abstract Interface Package

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  9. Popeye Project: ROV interfaces

    SciTech Connect (OSTI)

    Scates, C.R.; Hickok, D.D.; Hernandez, D.A.

    1997-04-01

    The Popeye Project in the Gulf of Mexico helped advance the technology and standardization of ROV interfaces for deepwater subsea production systems. Some of the many successful ROV operations during installation and completion were {open_quotes}first-of-it`s-kind{close_quotes} activities-enabled by many technical advances. The use and reliance upon ROV systems for support of deepwater drilling and installation operations significantly increased in the past 10 years. Shell Offshore Inc.`s (SOI) confidence in this increased capability was an important factor in many of the design decisions which characterized the innovative system. Technology advancements, which depended on effective ROV intervention, were implemented with no significant difficulties. These advancements, in particular the flying leads and seabed position methods, are available to the industry for other deepwater subsea systems. In addition, several Popeye ROV interfaces have helped advance the subsea standardization initiative; e.g., hot stabs, torque-tool end effectors, and paint color.

  10. A first-generation prototype dynamic residential window

    SciTech Connect (OSTI)

    Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

    2004-10-26

    We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

  11. Virtual button interface

    DOE Patents [OSTI]

    Jones, Jake S.

    1999-01-01

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  12. Transportation Storage Interface

    Office of Environmental Management (EM)

    of Future Extended Storage and Transportation Transportation-Storage Interface James Rubenstone Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Overview * Changing policy environment * Regulatory framework-current and future * Extended storage and transportation-technical information needs * Next Steps 2 Current Policy Environment * U.S. national policy for disposition of spent

  13. Virtual button interface

    DOE Patents [OSTI]

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  14. Standard interface file handbook

    SciTech Connect (OSTI)

    Shapiro, A.; Huria, H.C. )

    1992-10-01

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  15. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  16. Highly Insulating R-5 Windows Volume Purchase - How Utilities Can Participate Fact Sheet

    SciTech Connect (OSTI)

    2010-03-01

    This fact sheet describes DOEs Windows Volume Purchase, the benefits of highly insulated R-5 windows and low-e storm windows, and the important role that utilities can play in expanding the market for these highly insulated windows.

  17. ARPA-E Announces $30 Million in Funding for Window Efficiency Technologies

    Broader source: Energy.gov [DOE]

    SHIELD Program Seeks Transformational Materials to Retrofit Building Windows for Improved Energy Efficiency

  18. Thermal and Optical Properties of Low-E Storm Windows and Panels

    SciTech Connect (OSTI)

    Culp, Thomas D.; Widder, Sarah H.; Cort, Katherine A.

    2015-07-17

    Installing low-emissivity (low-E) storm windows and panels over existing windows has been identified as a cost-effective new approach for improving the energy efficiency of existing buildings where window replacement is impractical or too expensive. As such, it is desirable to characterize the key energy performance properties of low-E storm windows and panels when installed over different types of existing primary windows. this paper presents the representative U-factors, solar heat gain coefficients (SGHCs) and visible transmittance properties of the combined assemblies of various storm windows and panel types installed over different primary windows.

  19. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  20. Radiation damage in diagnostic window materials for the TFTR

    SciTech Connect (OSTI)

    Primak, W.

    1981-07-01

    The general problem of evaluating diagnostic window materials for the TFTR at the tank wall location is described. Specific evaluations are presented for several materials: vitreous silica, crystal quartz, sapphire, zinc selenide, and several fluorides: lithium fluoride, magnesium fluoride, and calcium fluoride; and seal glasses are discussed. The effects of the neutrons will be minimal. The major problems arise from the high flux of ionizing radiation, mainly the soft x rays which are absorbed near the surface of the materials. Additionally, this large energy deposition causes a significant thermal pulse with attendant thermal stresses. It is thus desirable to protect the windows with cover slips where this is feasible or to reduce the incident radiation by mounting the windows on long pipes. A more detailed summary is given at the end of this report.

  1. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  2. Method of making an integral window hermetic fiber optic component

    DOE Patents [OSTI]

    Dalton, Rick D.; Kramer, Daniel P.; Massey, Richard T.; Waker, Damon A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  3. Method of making an integral window hermetic fiber optic component

    DOE Patents [OSTI]

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.

  4. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  5. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-01-01

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  6. Infrared Emissivity of Tin upon Release of a 25 GPa Shock into a LiF Window

    SciTech Connect (OSTI)

    Turley, W. D., Holtkamp, D. B., Marshall, B. R., Stevens, G. D., Veeser, L. R.

    2011-11-01

    We measured the emissivity of a tin sample at its interface with a lithium-fluoride window upon release of a 25 GPa shock wave from the tin into the window. Measurements were made over four wavelength bands between 1.2 and 5.4 μm. Thermal emission backgrounds from the tin, glue, and lithium fluoride were successfully removed from the reflectance signals. Emissivity changes for the sample, which was initially nearly specular, were small except for the longest wavelength band, where uncertainties were high because of poor signal-to-noise ratio at that wavelength. A thin glue layer, which bonds the sample to the window, was found to heat from reverberations of the shock wave between the tin and the lithium fluoride. At approximately 3.4 μm the thermal emission from the glue was large compared to the tin, allowing a good estimate of the glue temperature from the thermal radiance. The glue appears to remain slightly colder than the tin, thereby minimizing heat conduction into or out of the tin immediately after the shock passage.

  7. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  8. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  9. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    7 Nonresidential Window Stock and Sales, by Glass Type Existing U.S. Stock Vision Area of New Windows (Million Square Feet) Type (% of buildings) 1995 2001 2003 2005 2007 2009 Single Pane 56 57 48 56 60 48 Insulating Glass (1) 294 415 373 407 476 389 Total 350 472 421 463 536 437 Clear 36% 49% 43% 44% 38% 33% Tinted 40% 24% 17% 15% 11% 10% Reflective 7% 8% 6% 4% 3% 3% Low-e 17% 19% 34% 37% 48% 54% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): (2) 1) Includes double- and

  10. Application issues for large-area electrochromic windows incommercial buildings

    SciTech Connect (OSTI)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  11. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly insulating Residential Windows Using Smart Automated Shading 2015 Building Technologies Office Peer Review Robert Hart, rghart@lbl.gov Stephen Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Kevin Gaul, GaulKJ@pella.com Pella Corporation Project Summary Timeline: Start date: 04/01/2013 Planned end date: 03/31/2016 Key Milestones 1. Measured thermal performance of static prototype windows is within 0.03 Btu/hr-ft2F (NFRC tolerance) of design specifications 09/30/2014

  12. High-power RF window and coupler development for the PEP-II B Factory

    SciTech Connect (OSTI)

    Neubauer, M.; Fant, K.; Hodgson, J.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1995-05-01

    We describe the fabrication and testing of the RF windows designed to transmit power to the PEP-II 476 MHz cavities. Design choices to maximize the reliability of the window are discussed. Fabrication technologies for the window are described and finite-element analysis of the assembly process is presented. Conditioning and high-power testing of the window are discussed. Design of the coupler assembly including the integration of the window and other components is reported.

  13. Laparoscopic simulation interface

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2006-04-04

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  14. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Milliron, Delia; Selkowitz, Stephen

    2010-09-01

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  15. Drafty Windows: Is it Better to Insulate or Replace Them?

    Broader source: Energy.gov [DOE]

    I’ve lived in my condominium for several years, and though it naturally stays cooler in the summer (with all west-facing windows) I struggle to keep it warm in the winter without taking out a loan to pay utilities

  16. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Milliron, Delia; Selkowitz, Stephen

    2010-08-05

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  17. Covered Product Category: Residential Windows, Doors, and Skylights

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  18. Window and Envelope Technologies Overview- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Window and Envelope Technologies activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  19. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  20. Multiple network interface core apparatus and method

    DOE Patents [OSTI]

    Underwood, Keith D.; Hemmert, Karl Scott

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  1. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Automotive ...

  2. Computational Spectroscopy of Heterogeneous Interfaces | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N. Brawand, University of Chicago Computational Spectroscopy of Heterogeneous Interfaces ... Year: 2016 Research Domain: Materials Science The interfaces between solids, ...

  3. 2016-2020 Strategic Human Capital Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Chief Human Capital Officer 2016-2020 Strategic Human Capital Plan Cover Photo Description Beyond Double-Pane Windows While the invention of double-pane windows dates back to 1935, a true turning point in the technology came in the 1980s with a collaboration between the Department of Energy, private industry, and Lawrence Berkeley National Lab. Initial research and development by Berkeley Lab and a start-up company, Suntek Research Associates (now called Southwall Technologies), led to the

  4. Interface-assisted molecular spintronics

    SciTech Connect (OSTI)

    Raman, Karthik V.

    2014-09-15

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  5. Human Factors Engineering Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2002-03-04

    HFE-AT is a human factors engineering (HFE) software analysis tool (AT) for human-system interface design of process control systems, and is based primarily on NUREG-0700 guidance.

  6. Beam Fields in an Integrated Cavity, Coupler and Window Configuration

    SciTech Connect (OSTI)

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    In a multi-bunch high current storage ring, beam generated fields couple strongly into the RF cavity coupler structure when beam arrival times are in resonance with cavity fields. In this study the integrated effect of beam fields over several thousand RF periods is simulated for the complete cavity, coupler, window and waveguide system of the PEP-II B-factory storage ring collider. We show that the beam generated fields at frequencies corresponding to several bunch spacings for this case gives rise to high field strength near the ceramic window which could limit the performance of future high current storage rings such as PEP-X or Super B-factories.

  7. Grid Window Tests on an 805-MHz Pillbox Cavity

    SciTech Connect (OSTI)

    Torun, Y.; Moretti, A.

    2015-06-01

    Muon ionization cooling channel designs use pillbox shaped RF cavities for improved power efficiency and fine control over phasing of individual cavities. For minimum scattering of the muon beam, the ends should be made out of a small thickness of high radiation length material. Good electrical and thermal conductivity are required to reduce power dissipation and remove the heat efficiently. Thin curved beryllium windows with TiN coating have been used successfully in the past. We have built an alternative win- dow set consisting of grids of tubes and tested these on a pillbox cavity previously used with both thin Be and thick Cu windows. The cavity was operated with a pair of grids as well as a single grid against a flat endplate.

  8. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, P.R.; Shapira, H.B.

    1979-12-07

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  9. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, Paul R.; Shapira, Hanna B.

    1981-01-01

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  10. Low Cost Near Infrared Selective Plasmonic Smart Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guillermo Garcia, memo@heliotropetech.com Heliotrope Technologies Low Cost Near Infrared Selective Plasmonic Smart Windows 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 5/15/14 Planned end date: 5/15/16 Key Milestones 1. Met device performance milestones by optimizing material composition, Aug 2014 2. Established fabrication protocol for transition to commercial scaled samples, Oct 2014 3. Validated UV sensitivity, variable temperature operation, and cycle

  11. ORGBUG -- A windows-based combinatorial geometry debugger

    SciTech Connect (OSTI)

    Burns, T.J.

    1993-06-01

    ORGBUG is the second half of a two part graphical display and debugging system for combinatorial geometry. The first part of the system consists of a ``view`` generator, CGVIEW. ORGBUG itself is a Microsoft Windows-based application designed to run on a 386 personal computer and to display the ``view`` produced by CGVIEW as an aid to debugging. ORGBUG also includes specific tools to facilitate the identification of geometric features which are inconsistent or in error.

  12. ORGBUG -- A windows-based combinatorial geometry debugger

    SciTech Connect (OSTI)

    Burns, T.J.

    1993-06-01

    ORGBUG is the second half of a two part graphical display and debugging system for combinatorial geometry. The first part of the system consists of a view'' generator, CGVIEW. ORGBUG itself is a Microsoft Windows-based application designed to run on a 386 personal computer and to display the view'' produced by CGVIEW as an aid to debugging. ORGBUG also includes specific tools to facilitate the identification of geometric features which are inconsistent or in error.

  13. Performance prediction using geostatistics and window reservoir simulation

    SciTech Connect (OSTI)

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite. Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.

  14. Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of Americas commercial building space.

  15. EERE Success Story-Performance Validation of Low-e Storm Windows...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation of Low-e Storm Windows Paves Way for Market Acceptance EERE Success Story-Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance September 30, ...

  16. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging ...

  17. EERE Success Story—Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  18. Building America Webinar: Low-E Storms: The Next Big Thing in Window Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Building America webinar presented a new and improved low-e storm window that boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement, on Sept. 9, 2014.

  19. U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in Microsoft Windows, which can be exploited by malicious people to compromise a user's system.

  20. Science on the Hill: Gravitational waves open new window on universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational waves open new window on universe Gravitational waves open new window on universe Viewing the very large and very small workings of what's out there. May 8, 2016 Science on the Hill: Gravitational waves open new window on universe A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. Science on the Hill: Gravitational waves open new window on universe Now that gravitational waves have been found, what can be done with them? Lots, it turns

  1. Department of Energy Announces 14 New Projects for Window Efficiency Technologies

    Broader source: Energy.gov [DOE]

    ARPA-E Awards $31 Million to Develop Innovative Materials that Reduce Heat Loss through Single-Pane Windows

  2. Integrated self-cleaning window assembly for optical transmission in combustion environments

    DOE Patents [OSTI]

    Kass, Michael D [Oak Ridge, TN

    2007-07-24

    An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.

  3. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    SciTech Connect (OSTI)

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities

  4. Nanoparticle Assemblies at Fluid Interfaces

    SciTech Connect (OSTI)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  5. 5 Steps to Making Your Windows More Energy Efficient | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steps to Making Your Windows More Energy Efficient 5 Steps to Making Your Windows More Energy Efficient December 13, 2013 - 4:06pm Addthis Keep your hard-earned dollars from flying out the window by following the <a href="http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/measure_guide_wood_windows.pdf">latest guidelines for window repair, rehabilitation and replacement</a>. | Photo courtesy of the Weatherization Assistance Program Technical

  6. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-12-23

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  7. ALPHA ENHANCEMENT AND THE METALLICITY DISTRIBUTION FUNCTION OF PLAUT'S WINDOW

    SciTech Connect (OSTI)

    Johnson, Christian I.; Michael Rich, R.; Fulbright, Jon P.; Valenti, Elena; McWilliam, Andrew E-mail: rmr@astro.ucla.edu E-mail: evalenti@eso.org

    2011-05-10

    We present Fe, Si, and Ca abundances for 61 giants in Plaut's window (l = -1{sup 0}, b = -8.{sup 0}5) and Fe abundances for an additional 31 giants in a second, nearby field (l = 0{sup 0}, b = -8{sup 0}) derived from high-resolution (R {approx} 25,000) spectra obtained with the Blanco 4 m telescope and Hydra multifiber spectrograph. The median metallicity of red giant branch (RGB) stars in the Plaut's field is {approx}0.4 dex lower than those in Baade's window, and confirms the presence of an iron abundance gradient along the bulge minor axis. The full metallicity range of our (biased) RGB sample spans -1.5 < [Fe/H] < +0.3, which is similar to that found in other bulge fields. We also derive a photometric metallicity distribution function for RGB stars in the (l = -1{sup 0}, b = -8{sup 0}.5) field and find very good agreement with the spectroscopic metallicity distribution. The radial velocity (RV) and dispersion data for the bulge RGB stars are in agreement with previous results of the Bulge Radial Velocity Assay survey, and we find evidence for a decreasing velocity dispersion with increasing [Fe/H]. The [{alpha}/Fe] enhancement in Plaut field stars is nearly identical to that observed in Baade's window, and suggests that an [{alpha}/Fe] gradient does not exist between b = -4{sup 0} and -8{sup 0}. Additionally, a subset of our sample (23 stars) appears to be foreground red clump stars that are very metal rich, exhibit small metallicity and RV dispersions, and are enhanced in {alpha} elements. While these stars likely belong to the Galactic inner disk population, they exhibit [{alpha}/Fe] ratios that are enhanced above the thin and thick disk.

  8. Proton irradiation damage of an annealed Alloy 718 beam window

    SciTech Connect (OSTI)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; Maloy, S. A.

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cut into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.

  9. Proton irradiation damage of an annealed Alloy 718 beam window

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; et al

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cutmore » into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.« less

  10. Graph of Total Number of Oligos Within Windows of a Sequence

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    SEQWIN is user-friendly software which graphs the total number of oligos present in a sequence. The sequence is scanned one window at a time; windows can be overlapping. Each bar on the graph represents a single window down the sequence. The user specifies the sequence of interest and a list of oligos as program input. If the sequence is known, locations of specific structure or sequences can be specified and compared with the bars onmore » a graph. The window size, amount of overlap of the windows, number of windows to be considered, and the starting position of the first window used can be adjusted at the user's discretion.« less

  11. Feasibility study of broadband efficient ''water window'' source

    SciTech Connect (OSTI)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-02

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  12. The Open Host Network Packet Process Correlator for Windows

    Energy Science and Technology Software Center (OSTI)

    2014-06-17

    The Hone sensors are packet-process correlation engines that log the relationships between applications and the communications they are responsible for. Hone sensors are available for a variety of platforms including Linux, Windows, and MacOSX. Hone sensors are designed to help analysts understand the meaning of communications on a deeper level by associating the origin or destination process to the communication. They do this by tracing communications on a per-packet basis, through the kernel of themore » operating system to determine their ultimate source/destination on the monitored machine.« less

  13. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    SciTech Connect (OSTI)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  14. User to net eleven-month payback on window film

    SciTech Connect (OSTI)

    Kennedy, K.

    1985-08-12

    Solar window insulation manufactured by Solar Master Film Corp. will save a Labor Department building $82,000 annually in electricity costs for air conditioning and $58,000 in steam costs. There could be an additional savings of about $1800 after one year because of lower demand charges for electricity. Solar film decreases the U-value of glass, thus lowering the conduction losses of cool air in the summertime and of warm air in the winter. The quality of Solar Master's two-ply insulation and the experience of the firm and bid price were criteria that helped Solar Master get the contract.

  15. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3)

  16. Expert Meeting Report: Windows Options for New and Existing Homes

    SciTech Connect (OSTI)

    Ojczyk, C.; Carmody, J.; Haglund, K.

    2013-05-01

    The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

  17. Expert Meeting Report. Windows Options for New and Existing Homes

    SciTech Connect (OSTI)

    Ojczyck, C.; Carmody, J.; Haglund, K.

    2013-05-01

    The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011, at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

  18. Laser window with annular grooves for thermal isolation

    DOE Patents [OSTI]

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  19. Sandia ATM SONET Interface Logic

    Energy Science and Technology Software Center (OSTI)

    1994-07-21

    SASIL is used to program the EPLD's (Erasable Programmable Logic Devices) and PAL's (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  20. OpenEI Community - interface

    Open Energy Info (EERE)

    at www.bhfs.com BHFS and are starting to develop mock-ups for the new and improved GRR web interface. We are thrilled to have had so much feedback and input from all of...

  1. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    SciTech Connect (OSTI)

    Mousavi, S. A. A. Akbari; Zareie, H. R.

    2011-01-17

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  2. Quantitative characterization of arc discharge as vacuum interface

    SciTech Connect (OSTI)

    Huang, S.; Zhu, K. Lu, Y. R.; Wang, S. Z.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.

    2014-12-15

    An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30 mm and 60 mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. Electron temperature of the plasma channel measured spectroscopically varied in the range of 7000 K to 15 000 K, increasing with discharge current while decreasing with gas flow rate. That plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30 A–70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter, and length, were well explained by viscosity effect and “thermal-block” effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.

  3. Quantitative characterization of arc discharge as vacuum interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, S.; Zhu, K.; Lu, Y. R.; Wang, S. Z.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.

    2014-12-19

    An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30mm and 60mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. In this study, electron temperature of the plasma channel measured spectroscopically varied in the range of 7000K to 15000K, increasing with discharge current while decreasing with gas flow rate. The plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30A–70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter,more » and length, were well explained by viscosity effect and “thermal-block” effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.« less

  4. Enhanced window breakdown dynamics in a nanosecond microwave tail pulse

    SciTech Connect (OSTI)

    Chang, Chao; Zhu, Meng; Li, Shuang; Xie, Jialing; Yan, Kai; Luo, Tongding; Zhu, Xiaoxin; Verboncoeur, John

    2014-06-23

    The mechanisms of nanosecond microwave-driven discharges near a dielectric/vacuum interface were studied by measuring the time- and space-dependent optical emissions and pulse waveforms. The experimental observations indicate multipactor and plasma developing in a thin layer of several millimeters above interface. The emission brightness increases significantly after main pulse, but emission region widens little. The mechanisms are studied by analysis and simulation, revealing intense ionization concentrated in a desorbed high-pressure layer, leading to a bright light layer above surface; the lower-voltage tail after main pulse contributes to heat electron energy tails closer to excitation cross section peaks, resulting in brighter emission.

  5. Electrochromic Window Demonstration at the Donna Land Port of Entry

    SciTech Connect (OSTI)

    Fernandes, Luis L.; Lee, Eleanor S.; Thanachareonkit, Anothai

    2015-05-01

    The U.S. General Services Administration (GSA) Public Buildings Service (PBS) has jurisdiction, custody or control over 105 land ports of entry throughout the United States, 35 of which are located along the southern border. At these facilities, one of the critical functions of windows is to provide border control personnel with direct visual contact with the surrounding environment. This also can be done through surveillance cameras, but the high value that U.S. Customs and Border Protection (CPB) officers place on direct visual contact can be encapsulated in the following statement by a senior officer regarding this project: “nothing replaces line of sight.” In sunny conditions, however, outdoor visibility can be severely compromised by glare, especially when the orb of the sun is in the field of view. This often leads to the deployment of operable shading devices, such as Venetian blinds. While these devices address the glare, they obstruct the view of the surroundings, negating the visual security benefits of the windows.

  6. Affordable Window Insulation with R-10/inch Rating

    SciTech Connect (OSTI)

    Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou; Jong Ho Sonn; George Gould; Wendell Rhine

    2004-10-15

    During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanical properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.

  7. WINDOW 4. 0: Program description. A PC program for analyzing the thermal performance of fenestration products

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  8. Effect of heat treatments and window layer processing on the characteristics of CuInGaSe{sub 2} thin film solar cells

    SciTech Connect (OSTI)

    Ramanathan, K.; Contreras, M.A.; Tuttle, J.R.

    1996-05-01

    Interaction between chemical bath deposited CdS and ZnO window layers are a focus of this paper. Low temperature anneals were used to follow the changes at the interface. Optical absorption spectra show that CdS and ZnO intermix upon annealing. When applied to ZnO/CdS/CuInGaSe{sub 2} thin film solar cells, changes in the short and long wavelength response were observed. The latter is attributed to an increase in the energy gap of the absorber by diffusion of S. The interdiffusion is shown to increase the short wavelength collection, and hence the current density of the devices. Photoluminescence data provides some indication of the quality of the interface.

  9. D-Cycloserine improves functional outcome after traumatic brain injury with wide therapeutic window

    SciTech Connect (OSTI)

    Adeleye, A.; Biegon, A.; Adeleye, A.; Shohami, E.; Nachman, D.; Alexandrovich, A.; Trembovler, V.; Yaka, R.; Shoshan, Y.; Dhawan, J.; Biegon, A.

    2009-12-01

    It has been long thought that hyperactivation of N-methyl-D-aspartate (NMDA) receptors underlies neurological decline after traumatic brain injury. However, all clinical trials with NMDA receptor antagonists failed. Since NMDA receptors are down-regulated from 4 h to 2 weeks after brain injury, activation at 24 h, rather than inhibition, of these receptors, was previously shown to be beneficial in mice. Here, we tested the therapeutic window, dose regimen and mechanism of action of the NMDA receptor partial agonist d-cycloserine (DCS) in traumatic brain injury. Male mice were subjected to trauma using a weight-drop model, and administered 10 mg/kg (i.p.) DCS or vehicle once (8, 16, 24, or 72 h) twice (24 and 48 h) or three times (24, 48 and 72 h). Functional recovery was assessed for up to 60 days, using a Neurological Severity Score that measures neurobehavioral parameters. In all groups in which treatment was begun at 24 or 72 h neurobehavioral function was significantly better than in the vehicle-treated groups. Additional doses, on days 2 and 3 did not further improve recovery. Mice treated at 8 h or 16 h post injury did not differ from the vehicle-treated controls. Co-administration of the NMDA receptor antagonist MK-801 completely blocked the protective effect of DCS given at 24 h. Infarct volume measured by 2,3,5-triphenyltetrazolium chloride staining at 48 h or by cresyl violet at 28 days was not affected by DCS treatment. Since DCS is used clinically for other indications, the present study offers a novel approach for treating human traumatic brain injury with a therapeutic window of at least 24 h.

  10. Nanofluidic interfaces in microfluidic networks

    SciTech Connect (OSTI)

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxide during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.

  11. PinBus Interface Design

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Adgerson, Jewel D.; Sastry, Chellury; Pratt, Richard M.; Pratt, Robert G.

    2009-12-30

    On behalf of the U.S. Department of Energy, PNNL has explored and expanded upon a simple control interface that might have merit for the inexpensive communication of smart grid operational objectives (demand response, for example) to small electric end-use devices and appliances. The approach relies on bi-directional communication via the electrical voltage states of from one to eight shared interconnection pins. The name PinBus has been suggested and adopted for the proposed interface protocol. The protocol is defined through the presentation of state diagrams and the pins functional definitions. Both simulations and laboratory demonstrations are being conducted to demonstrate the elegance and power of the suggested approach. PinBus supports a very high degree of interoperability across its interfaces, allowing innumerable pairings of devices and communication protocols and supporting the practice of practically any smart grid use case.

  12. Nanofluidic interfaces in microfluidic networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  13. Resizing the conformal window: A {beta}-function ansatz

    SciTech Connect (OSTI)

    Antipin, O.; Tuominen, K.

    2010-04-01

    We propose an ansatz for the nonperturbative beta-function of a generic nonsupersymmetric Yang-Mills theory with or without fermions in an arbitrary representation of the gauge group. While our construction is similar to the recently proposed Ryttov-Sannino all-order beta-function, the essential difference is that it allows for the existence of an unstable ultraviolet fixed point in addition to the predicted Banks-Zaks-like infrared stable fixed point. Our beta-function preserves all of the tested features with respect to the nonsupersymmetric Yang-Mills theories. We predict the conformal window identifying the lower end of it as a merger of the infrared and ultraviolet fixed points.

  14. Evacuated Window Glazing Research and Development: A Progress Report

    SciTech Connect (OSTI)

    Benson, D. K.; Tracy, C. E.; Jorgensen, G. J.

    1984-12-01

    This document summarizes progress during a nine-month period of an ongoing, exploratory research talk. The objective of the research is to evaluate the technical feasibility of a highly insulating, evacuated glazing for windows and other building apertures. Research includes engineering design and analysis of the glazing structure, materials development for its components, and the development of fabrication processes that could be used in the practical, mass production of such a glazing system. The targeted design performance goals are 70 percent solar weighted transmittance with less than 0.5 W/m2 K conductance (insulating R value greater than 12 F ft2 h/Btu) with an acceptable view quality.

  15. Vacuum chamber with a supersonic flow aerodynamic window

    DOE Patents [OSTI]

    Hanson, Clark L.

    1982-01-01

    A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  16. Vacuum chamber with a supersonic-flow aerodynamic window

    DOE Patents [OSTI]

    Hanson, C.L.

    1980-10-14

    A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  17. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  18. Question of the Week: What Have You Done to Improve Your Windows? |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy We've been talking a lot on the blog recently about improving and replacing windows to improve energy efficiency. What have you done to improve your windows? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Weatherization Assistance for the Hottest Days Hawaii is a Renewable Energy Lover's Paradise Do You Have Windows That Need Replacing

  19. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOE Patents [OSTI]

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  20. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOE Patents [OSTI]

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  1. High-power testing of PEP-II RF cavity windows

    SciTech Connect (OSTI)

    Neubauer, M.; Allen, M.; Fant, K.; Hill, A.; Hoyt, M.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1996-06-01

    We describe the high power testing of RF cavity windows for the PEP-II B factory. The window is designed for continuous operation at 476 MHz with up to 500 kW throughput and has been tested to full power using a modified PEP Klystron. The windows use an anti-multipactor coating on the vacuum side and the application and processing of this layer is discussed. The high power test configuration, RF processing history and high power performance are described.

  2. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  3. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, Jr., Ronald E.; Johnson, Steve A.

    1994-01-01

    An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

  4. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWindow&oldid680274...

  5. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt ...

  6. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities

    Broader source: Energy.gov [DOE]

    Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system.

  7. Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows...

    Office of Scientific and Technical Information (OSTI)

    Title: Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl Photoactive Biological Systems. Abstract not provided. Authors: Small, Leo J ; Spoerke, Erik David ; ...

  8. Building America Top Innovations 2013 Profile – Window Replacement, Rehabilitation, & Repair Guide

    SciTech Connect (OSTI)

    none,

    2013-09-01

    In this Top Innovation profile, Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  9. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    SciTech Connect (OSTI)

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  10. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy: It could turn any window into a daytime power source. August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology

  11. Savings Project: Install Exterior Storm Windows With Low-E Coating...

    Office of Environmental Management (EM)

    while keeping your home warm in the winter and cool in the summer. | Photo courtesy of Larson Manufacturing Company. Installing storm windows will lower your energy bill while...

  12. A multiple deep attenuation frequency window for harmonic analysis in power systems

    SciTech Connect (OSTI)

    Daponte, P.; Falcomata, G. . Dept. di Elettronica Informatica e Sistemistica); Testa, A. . Dipt. di Ingegneria Elettrica)

    1994-04-01

    A novel window is presented and applied in electrical power system harmonic analysis. The goal of increasing the resolvability of low magnitude non-harmonic tones close in frequency to higher magnitude harmonics and the detectability of very low magnitude high frequency harmonics is pursued. The proposed window is derived from the Tseng window; its spectrum can be modeled in the synthesis stage and it is characterized by a narrow width main lobe and by sidelobes which are very low in correspondence to some specified frequencies. Numerical experiments demonstrate the performances and the usefulness of the new window in resolving periodic distorted waveforms in power systems.

  13. Smarter Smart Windows | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Smarter Smart Windows Basic Energy Sciences (BES) BES Home About Research Facilities Science ... Laboratory, and was supported by the Office of Science, Office of Basic Energy ...

  14. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOE Patents [OSTI]

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  15. T-573: Windows Remote Desktop Client DLL Loading Error Lets Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in Windows Remote Desktop Client. A remote user can cause arbitrary code to be executed on the target user's system.

  16. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy: It could turn any window into a daytime power source. "In these devices, a fraction of light transmitted through the window is absorbed by nano-sized particles (semiconductor quantum dots)

  17. Evaluation of Interior Low-E Storm Windows in the PNNL Lab Homes...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Lab Homes; Storm; Windows; Low-e; ...

  18. Apparatus for preventing particle deposition from process streams on optical access windows

    DOE Patents [OSTI]

    Logan, Ronald G.; Grimm, Ulrich

    1993-01-01

    An electrostatic precipitator is disposed inside and around the periphery of the window of a viewing port communicating with a housing through which a particle-laden gas stream is being passed. The precipitator includes a pair of electrodes around the periphery of the window, spaced apart and connected to a unidirectional voltage source. Application of high voltage from the source to the electrodes causes air molecules in the gas stream to become ionized, attaching to solid particles and causing them to be deposited on a collector electrode. This prevents the particles from being deposited on the window and keeps the window clean for viewing and making optical measurements.

  19. EERE Success Story—Energy-Efficient Smart Windows are Lowering Energy Costs

    Broader source: Energy.gov [DOE]

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratory are cutting energy cost for American families, businesses, institutions, and governments every year. With...

  20. Dead Reckoning Pedometer Graphical User Interface

    Energy Science and Technology Software Center (OSTI)

    2003-04-26

    The Dead Reckoning Pedometer Graphical User Interface (DRP GUI) software is tasked with maturing the technology described in a WSRC patent application. This patent application describes an electronic navigation system that records human foot movements, in three dimensions, for the purpose of determining position, distance, and speed of a walking person. The simiplest form of the apparatus consists of a magnetometer (an instrument that measures magnetic field strength) on one foot and a small permanentmore » magnet on another foot with pressure sensors on each foot. When a person takes a step, the foot will hit the ground and produce a signal on the pressure sensor. This will trigger a reading of the magnetometer so that the relative position of one foot to the other can be calculated. This same process is repeated for each step. The DRP could be very useful for tracking emergency personnel such as firemen, policemen, and paramedics when they travel within a building. Technologies such as global positioning systems to not work within buildings. The goal of the DRP GUI V1.0.0 software is to provide a three-dimensional graphical user interface that will allow WSRC to demonstrate the DRP concepts to potential patent licensees. It is hoped that a partnership will allow WSRC and another company to further develop the DRP technology and software into a commercial product.« less

  1. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  2. Technique for converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces

    DOE Patents [OSTI]

    Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos

    2013-03-05

    A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.

  3. Interface Control Document for the Interface between the Central Solenoid Insert Coil and the Test Facility

    SciTech Connect (OSTI)

    Smirnov, Alexandre; Martovetsky, Nicolai N; Nunoya, Yoshihiko

    2011-06-01

    This document provides the interface definition and interface control between the Central Solenoid Insert Coil and the Central Solenoid Model Coil Test Facility in Japan.

  4. Technology Advancements to Lower Costs of Electrochromic Window Glazing

    SciTech Connect (OSTI)

    Mark Burdis; Neil Sbar

    2008-07-13

    An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated

  5. Optimization of energy window for {sup 90}Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch

    SciTech Connect (OSTI)

    Rong Xing; Ghaly, Michael; Frey, Eric C.

    2013-06-15

    Gaussian distribution; the signal was modeled as a tumor with a Gaussian-distributed activity parameter located randomly with equal probability at one of three positions. The IO test statistics (i.e., likelihood ratios) were estimated using Markov-chain Monte Carlo methods. The authors realistically modeled human anatomy using a digital phantom code, and realistically simulated {sup 90}Y bremsstrahlung SPECT imaging with a clinical SPECT system and typical imaging parameters using a previously validated Monte Carlo bremsstrahlung simulation method. Model-mismatch was included by modeling image formation process in the calculation of IO test statistics using an analytic modeling method previously developed for quantitative {sup 90}Y bremsstrahlung SPECT. To demonstrate the effects of the model-mismatch on the detection task, the authors optimized the energy window both with and without model-mismatch included in the IO. Results: For all the energy windows, the AUC values for the IO-MM were smaller than that for the IO. The optimal windows for the IO-MM and the IO were 80-180 and 60-400 keV, respectively. Conclusions: The authors have demonstrated the degradation of the ideal performance due to model-mismatch and optimized the energy window for {sup 90}Y bremsstrahlung SPECT for detection tasks by accounting for the effects of the model-mismatch. The obtained optimal window was much narrower when taking into account the model-mismatch and similar to that obtained previously for estimation tasks.

  6. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

    SciTech Connect (OSTI)

    Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; ,

    2010-06-07

    A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

  7. Method of fabricating a microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.

  8. Establishment of a Rating Program for Pre- and Post-Fabricated Windows

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Shah, B.; Bloyd, Cary N.

    2011-08-01

    This document was prepared to support the Smart Buildings-Material Testing and Rating Centres (SB-2) activity of the Asia-Pacific Economic Cooperation (APEC) Energy Smart Communities Initiative (ESCI). The ESCI was put forward by APEC Leaders at the 2010 meeting in Japan. APEC is the premier forum for facilitating economic growth, cooperation, trade and investment in the Asia-Pacific region. This document addresses the testing and certification of building products and equipment to support building energy codes, focusing specifically on energy-efficient factory-built windows. It sets forth a proposed structure for an APEC economy to establish a testing, rating, certification, and labeling program for efficient factory-built windows. In the context of this document, efficient windows would be windows made with insulating glass (IG) and an efficient frame assembly. The minimum efficiency metric (or thermal performance) for these windows is not quantified in this document and would generally be established by a governmental agency.

  9. Vibrational spectroscopy of water interfaces

    SciTech Connect (OSTI)

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  10. getnim - NIM's Command Line Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    getnim command getnim - NIM's Command Line Interface This page describes the inquiry-only command called getnim that users can use interactively and in scripts to get their account balances. GETNIM(l) NERSC GETNIM(l) NAME getnim - query the NERSC banking database for remaining allocation, resources and repository information SYNOPSIS getnim [ options ] -Rrname or getnim [ options ] -Rrname { -uuid | -Uuname } or getnim [ options ][ -D ] { -uuid | -Uuname } or getnim [ options ] -Rrname { -l | -L

  11. TOOKUIL: A case study in user interface development for safety code application

    SciTech Connect (OSTI)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.

    1997-07-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.

  12. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface (891.2 KB) More Documents & Publications Gap Analysis to Support Extended Storage of Used Nuclear Fuel Status Update: Extended Storage and Transportation Waste Confidence Activities Related to Storage of Spent Nuclear Fuel

  13. Film bonded fuel cell interface configuration

    DOE Patents [OSTI]

    Kaufman, Arthur; Terry, Peter L.

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  14. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    SciTech Connect (OSTI)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  15. Growing LaAlO{sub 3}/SrTiO{sub 3} interfaces by sputter deposition

    SciTech Connect (OSTI)

    Dildar, I. M.; Neklyudova, M.; Xu, Q.; Zandbergen, H. W.; Harkema, S.; Boltje, D.; Aarts, J.

    2015-06-15

    Sputter deposition of oxide materials in a high-pressure oxygen atmosphere is a well-known technique to produce thin films of perovskite oxides in particular. Also interfaces can be fabricated, which we demonstrated recently by growing LaAlO{sub 3} on SrTiO{sub 3} substrates and showing that the interface showed the same high degree of epitaxy and atomic order as is made by pulsed laser deposition. However, the high pressure sputtering of oxides is not trivial and number of parameters are needed to be optimized for epitaxial growth. Here we elaborate on the earlier work to show that only a relatively small parameter window exists with respect to oxygen pressure, growth temperature, radiofrequency power supply and target to substrate distance. In particular the sensitivity to oxygen pressure makes it more difficult to vary the oxygen stoichiometry at the interface, yielding it insulating rather than conducting.

  16. EERE Success Story—Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQ™ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America’s commercial building space.

  17. Installing Windows with Foam Sheathing on a Wood-Frame Wall: January 1, 2004 to December 31, 2004

    SciTech Connect (OSTI)

    2005-05-01

    In most wall assemblies, connection details around windows have been the source of problems with water penetration into the building. This report describes how to install a window into a wall with insulating sheathing as an integrated drainage plane.

  18. Interface solitons in thermal nonlinear media

    SciTech Connect (OSTI)

    Ma Xuekai; Yang Zhenjun; Lu Daquan; Hu Wei

    2011-05-15

    We demonstrate the existence of fundamental and dipole interface solitons in one-dimensional thermal nonlinear media with a step in linear refractive index. Fundamental interface solitons are found to be always stable and the stability of dipole interface solitons depends on the difference in linear refractive index. The mass center of interface solitons always locates in the side with higher refractive index. The two intensity peaks of dipole interface solitons are unequal except under some specific conditions, which is different from their counterparts in uniform thermal nonlinear media.

  19. Design of an Aluminum Proton Beam Window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Janney, Jim G; McClintock, David A

    2012-01-01

    An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

  20. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications

    SciTech Connect (OSTI)

    Hoffmann, Sabine; Lee, Eleanor S.; Clavero, Cesar

    2013-12-01

    Current thermochromic windows modulate solar transmission primarily within the visible range, resulting in reduced space-conditioning energy use but also reduced daylight, thereby increasing lighting energy use compared to conventional static, near-infrared selective, low-emittance windows. To better understand the energy savings potential of improved thermochromic devices, a hypothetical near-infrared switching thermochromic glazing was defined based on guidelines provided by the material science community. EnergyPlus simulations were conducted on a prototypical large office building and a detailed analysis was performed showing the progression from switching characteristics to net window heat flow and perimeter zone loads and then to perimeter zone heating, ventilation, and air-conditioning (HVAC) and lighting energy use for a mixed hot/cold climate and a hot, humid climate in the US. When a relatively high daylight transmission is maintained when switched (Tsol = 0.10-0.50, Tvis = 0.30-0.60) and if coupled with a low-e inboard glazing layer (e = 0.04), the hypothetical thermochromic window with a low critical switching temperature range (14-20°C) achieved reductions in total site annual energy use of 14.0-21.1 kWh/m2-floor-yr or 12-14%2 for moderate- to large-area windows (WWR≥0.30) in Chicago and 9.8-18.6 kWh/m2-floor-yr or 10-17%3 for WWR≥0.45 in Houston compared to an unshaded spectrally-selective, low-e window (window E1) in south-, east-, and west-facing perimeter zones. If this hypothetical thermochromic window can be offered at costs that are competitive to conventional low-e windows and meet aesthetic requirements defined by the building industry and end users, then the technology is likely to be a viable energy-efficiency option for internal load dominated commercial buildings.

  1. Surface rheology and interface stability.

    SciTech Connect (OSTI)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D.; Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk

  2. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon

    SciTech Connect (OSTI)

    Zhang, Xue Wang, Yong; Fan, Junjie

    2015-02-15

    To suppress the surface multipactor phenomenon and improve the transmitting power of the high-power microwave window, the application of external magnetic fields is theoretically analyzed and simulated. A Monte Carlo algorithm is used to track the secondary electron trajectories and study the multipactor scenario on the surface of a cylinder window. It is confirmed that over-resonant magnetic fields (an external magnetic field whose magnitude is slightly greater than that of a resonant magnetic field) will generate a compensating trajectory and collision, which can suppress the secondary electron avalanche. The optimal value of this external magnetic field that will avoid the multipactor phenomenon on cylinder windows is discussed.

  3. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly

  4. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    SciTech Connect (OSTI)

    YENG,YHOFF,L.

    2003-10-13

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which can complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.

  5. A Homeowners Guide to Window Air Conditioner Installation for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... side of the AC. (Do not remove top and bottom braces; they hold the unit in the window. ... If this is done, work from bottom to top and overlap tape so water will drain ...

  6. Molecular beam epitaxy of SrTiO{sub 3} with a growth window

    SciTech Connect (OSTI)

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-20

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO{sub 3} films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO{sub 3} films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  7. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less

  8. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    SciTech Connect (OSTI)

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wall allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.

  9. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  10. Preliminary Assessment of the Energy-Saving Potential of Electrochromic Windows in Residential Buildings

    SciTech Connect (OSTI)

    Roberts, D. R.

    2009-12-01

    Electrochromic windows provide variable tinting that can help control glare and solar heat gain. We used BEopt software to evaluate their performance in prototypical energy models of a single-family home.

  11. Storm Windows (Even with a Low-E Coating!) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storm Windows (Even with a Low-E Coating) November 11, 2008 - 3:45pm Addthis John Lippert ... Alex is one of the world's experts on green building materials, so I'm always glad to see ...

  12. Savings Project: Install Exterior Storm Windows With Low-E Coating...

    Energy Savers [EERE]

    ... Storm window Tape measure Screwdriver Putty knife Caulk Caulking gun STEP-BY-STEP ... Do not caulk the bottom sill. Hold the caulking gun at a 45-degree angle to the edge of ...

  13. Electrical analysis of wideband and distributed windows using time-dependent field codes

    SciTech Connect (OSTI)

    Shang, C.C.; Caplan, M.; Nickel, H.U.; Thumm, M. |

    1993-09-16

    Windows, which provide the barrier to maintain the vacuum envelope in a microwave tube, are critical components in high-average-power microwave sources, especially at millimeter wavelengths. As RF power levels approach the 100`s of kWs to 1 MW range (CW), the window assembly experiences severe thermal and mechanical stresses. Depending on the source, the bandwidth of the window may be less than 1 GHz for gyrotron oscillators or up to {approximately}20 GHz for the FOM Institute`s fast-tunable, free-electron-maser. The bandwidth requirements give rise to a number of window configurations where the common goal is locally distributed heat dissipation. In order to better understand the transmission and RF properties of these microwave structures, the authors use detailed time-dependent field solvers.

  14. Building America Webinar: Low-E Storms: The Next Big Thing in Window Retrofits

    Broader source: Energy.gov [DOE]

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings.  A new...

  15. Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance

    Broader source: Energy.gov [DOE]

    One recent addition to the arsenal of cost-effective efficiency measures is low-emissivity (low-e) storm windows. A low-e coating or glazing is a thin layer deposited directly on the surface of one...

  16. U-045: Windows Win32k.sys Keyboard Layout Bug Lets Local Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ID: SA46919 IMPACT ASSESSMENT: Low Discussion: A vulnerability has been discovered in Microsoft Windows, which can be exploited by malicious, local users to cause a DoS (Denial...

  17. Bi-level multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A bi-level, multilayered package with an integral window for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that the light-sensitive side is optically accessible through the window. A second chip can be bonded to the backside of the first chip, with the second chip being wirebonded to the second level of the bi-level package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed.

  18. Low-e Storm Windows: Market Assessment and Pathways to Market Transformation

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-06-08

    Field studies sponsored by the U.S. Department of Energy (DOE) have shown that the use of low-e storm windows can lead to significant heating and cooling energy savings in residential homes. This study examines the market for low-e storm windows based on market data, case studies, and recent experience with weatherization deployment programs. It uses information from interviews conducted with DOE researchers and industry partners involved in case studies and early deployment efforts related to low-e storm windows. In addition, this study examines potential barriers to market acceptance, assesses the market and energy savings potential, and identifies opportunities to transform the market for low-e storm windows and overcome market adoption barriers.

  19. EERE Success Story—Energy Efficient Windows to Reach Market Quicker with New Tool

    Broader source: Energy.gov [DOE]

    About 10% of the energy used in U.S. buildings—approximately 4 quads per year—compensates for energy lost through windows. To address this inefficiency, architects, engineers, and home-builders are...

  20. Graphical user interfaces for McCellan Nuclear Radiation Center (MNRC).

    SciTech Connect (OSTI)

    Brown-VanHoozer, S. A.

    1998-08-27

    McClellan's Nuclear Radiation Center (MNRC) control console is in the process of being replaced due to spurious scrams, outdated software, and obsolete parts. The intent of the new control console is to eliminate the existing problems by installing a UNIX-based computer system with industry-standard interface software and incorporating human factors during all stages of the graphical user interface (GUI) development and control console design.

  1. Advanced human-machine interface for collaborative building control

    DOE Patents [OSTI]

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  2. Evaluation of control strategies for different smart window combinations using computer simulations

    SciTech Connect (OSTI)

    Jonsson, Andreas; Roos, Arne

    2010-01-15

    Several studies have shown that the use of switchable windows could lower the energy consumption of buildings. Since the main function of windows is to provide daylight and visual contact with the external world, high visible transmittance is needed. From an energy perspective it is always best to have the windows in their low-transparent state whenever there are cooling needs, but this is generally not preferable from a daylight and visual contact point of view. Therefore a control system, which can be based on user presence, is needed in connection with switchable windows. In this study the heating and cooling needs of the building, using different control mechanisms were evaluated. This was done for different locations and for different combinations of switchable windows, using electrochromic glazing in combination with either low-e or solar control glazing. Four control mechanisms were investigated; one that only optimizes the window to lower the need for heating and cooling, one that assumes that the office is in use during the daytime, one based on user presence and one limiting the perpendicular component of the incident solar irradiation to avoid glare and too strong daylight. The control mechanisms were compared using computer simulations. A simplified approach based on the balance temperature concept was used instead of performing complete building simulations. The results show that an occupancy-based control system is clearly beneficial and also that the best way to combine the panes in the switchable window differs depending on the balance temperature of the building and on the climate. It is also shown that it can be beneficial to have different window combinations for different orientations. (author)

  3. Demonstration of the Performance of Highly Insulating (R-5) Windows in a Matched Pair of Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.

    2013-12-05

    Improving the insulation and solar heat gain characteristics of a homes windows has the potential to significantly improve the homes overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high-quality installation will also minimize or reduce air leakage through the building envelope, decreasing infiltration and thus contributing to reduced heat transmission through building envelope. These improvements all contribute to decreasing overall annual home energy use. In addition to improvements in energy efficiency, highly insulating windows can have important impacts on occupant comfort by minimizing or eliminating the cold draft many homeowners experience at or near window surfaces that are at a noticeably cooler than the room air temperature. Energy efficiency measures, such as highly insulating windows, also have the potential to decrease peak energy use in a home, which can lead to measurable peak load decreases for a utility service territory if implemented on a large scale. High-performance windows now feature triple-pane glass, double low-e coatings, and vinyl insulated frames to achieve U-factors as low as 0.2 , as compared to double-pane clear glass windows with a U-factor of 0.67, which are common in existing homes across the United States. The highly insulating windows (as they will be referred to in this document) are now available from several manufacturers and show promise to yield considerable energy savings and thermal comfort improvements in homes.

  4. Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermal Break with Simplified Manufacturing for R7 Commercial Windows Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Image courtesy of Alcoa and BTO Peer Review. Image courtesy of Alcoa and BTO Peer Review. Lead Performer: Alcoa - Pittsburgh, PA DOE Funding: $1,123,838 Cost Share: $280,960 Project Term: October 2014 - September 2016 Funding Opportunity: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014

  5. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    SciTech Connect (OSTI)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  6. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    SciTech Connect (OSTI)

    Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian; Arasteh P.E., Dariush; Uvslokk, Sivert; Talev, Goce; Petter Jelle Ph.D., Bjorn

    2010-06-17

    While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulations according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.

  7. Through a glass, warmly: Argonne nanomaterials can help make windows more

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficient | Argonne National Laboratory Through a glass, warmly: Argonne nanomaterials can help make windows more efficient By Greg Cunningham * May 31, 2016 Tweet EmailPrint A team of researchers at the U.S. Department of Energy's (DOE's) Argonne National Laboratory is using nanomaterials to improve the energy efficiency of existing single-pane windows in commercial and residential buildings. The team was recently awarded a $3.1 million grant from DOE's Advanced Research Projects

  8. Evaluation of Low-E Storm Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Knox, Jake R.; Widder, Sarah H.

    2014-05-31

    This study examines the performance of exterior and interior low-e storm panels with a controlled whole home experimental design using PNNL's Lab Homes. Summing the estimated annual average heating and cooling savings, the installation of low-e storm panels resulted in approximately 10% annual energy savings. The results of the experiment will be used to determine and validate performance of low-e storm windows over double pane clear glass windows in a whole home setting.

  9. Night-time naturally ventilated offices: Statistical simulations of window-use patterns from field monitoring

    SciTech Connect (OSTI)

    Yun, Geun Young; Steemers, Koen

    2010-07-15

    This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models of window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)

  10. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy

    SciTech Connect (OSTI)

    Pepin, Eric W.; Wu Huanmei; Shirato, Hiroki

    2011-04-15

    Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each of several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.

  11. Apparatus and method for in-situ cleaning of resist outgassing windows

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Haney, Steven J.

    2001-01-01

    An apparatus and method for in-situ cleaning of resist outgassing windows. The apparatus includes a chamber located in a structure, with the chamber having an outgassing window to be cleaned positioned in alignment with a slot in the chamber, whereby radiation energy passes through the window, the chamber, and the slot onto a resist-coated wafer mounted in the structure. The chamber is connected to a gas supply and the structure is connected to a vacuum pump. Within the chamber are two cylindrical sector electrodes and a filament is electrically connected to one sector electrode and a power supply. In a first cleaning method the sector electrodes are maintained at the same voltage, the filament is unheated, the chamber is filled with argon (Ar) gas under pressure, and the window is maintained at a zero voltage, whereby Ar ions are accelerated onto the window surface, sputtering away carbon deposits that build up as a result of resist outgassing. A second cleaning method is similar except oxygen gas (O.sub.2) is admitted to the chamber instead of Ar. These two methods can be carried out during lithographic operation. A third method, carried out during a maintenance period, involves admitting CO.sub.2 into the chamber, heating the filament to a point of thermionic emission, the sector electrodes are at different voltages, excited CO.sub.2 gas molecules are created which impact the carbon contamination on the window, and gasify it, producing CO gaseous products that are pumped away.

  12. NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS

    SciTech Connect (OSTI)

    Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

    2003-10-01

    A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

  13. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  14. Defining window-boundaries for genomic analyses using smoothing spline techniques

    SciTech Connect (OSTI)

    Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; Gianola, Daniel; de Leon, Natalia

    2015-04-17

    High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the data and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.

  15. Defining window-boundaries for genomic analyses using smoothing spline techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; Gianola, Daniel; de Leon, Natalia

    2015-04-17

    High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the datamore » and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.« less

  16. Development of output user interface software to support analysis

    SciTech Connect (OSTI)

    Wahanani, Nursinta Adi Natsir, Khairina Hartini, Entin

    2014-09-30

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this software 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.

  17. Conduction at a ferroelectric interface

    SciTech Connect (OSTI)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung -Geun; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  18. Conduction at a ferroelectric interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung -Geun; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, inmore » one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  19. Conduction at a ferroelectric interface

    SciTech Connect (OSTI)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung-Guen; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  20. Flexible feature interface for multimedia sources

    DOE Patents [OSTI]

    Coffland, Douglas R.

    2009-06-09

    A flexible feature interface for multimedia sources system that includes a single interface for the addition of features and functions to multimedia sources and for accessing those features and functions from remote hosts. The interface utilizes the export statement: export "C" D11Export void FunctionName(int argc, char ** argv,char * result, SecureSession *ctrl) or the binary equivalent of the export statement.

  1. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Teng, H. Henry PI, The George Washington University PI, The George...

  2. Theoretical and experimental studies of electrified interfaces...

    Office of Scientific and Technical Information (OSTI)

    increased understanding of electrolyteelectrode interfaces, including the electric ... of ion distributions, solvents, and electrode surfaces and therefore cannot be used in ...

  3. NETL Research: Energy and Water Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Energy Interface Water and energy are inextricably linked. Because thermoelectric generation and fossil fuel extraction can impact water resources, it is critically...

  4. NanoBio Interfaces | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interfaces Group develops and utilizes hybrid nanomaterials that are not found in nature but that are inspired by nature's principles. Natural systems adopt a large degree of...

  5. NETL Research: Energy and Water Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Energy Interface Water and energy are inextricably linked. Because thermoelectric generation and fossil fuel extraction can impact water resources, it is critically ...

  6. Computational Design of Interfaces for Photovoltaics | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Design of Interfaces for Photovoltaics PI Name: Noa Marom PI Email: nmarom@tulane.edu Institution: Tulane University Allocation Program: ALCC Allocation Hours at...

  7. Nanobio Interfaces Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanobio Interfaces Capabilities Synthesis Synthesis of metal oxide, semiconducting, metallic, and magnetic nanoparticles Self-assembly of monodisperse nanoparticles into two- and...

  8. Application Programming Interface | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    web interface, without compromising the security or anonymity of the database. The API enables the sharing of content and data between applications, meaning that third party web ...

  9. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    SciTech Connect (OSTI)

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blueher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  10. Structural modifications due to interface chemistry at metal-nitride interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less

  11. Structural modifications due to interface chemistry at metal-nitride interfaces

    SciTech Connect (OSTI)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.

  12. Package-interface thermal switch

    SciTech Connect (OSTI)

    Hyman, N.L.

    1995-05-24

    The package-interface thermal switch (PITS) is an active temperature control device for modulating the flow of thermal energy from satellite equipment, such as electronic modules or batteries, to the satellite mounting deck which serves as a heat sink. PITS comprises a mounting bolt made of a shaped memory alloy (SMA) actuating bolt and a non-metallic rod with a helical spring surrounding it forming a mounting bolt for a satellite equipment package. At least four mounting bolts are used for installing the equipment package and are preloaded to a predetermined stress representing the desired thermal conductance between the heat sink and the package. The SMA actuating bolt is in thermal contact with the component or package and expands or contracts as the result of changing package temperature and the helical return spring forces against the SMA actuating bolt portion of the PITS, increasing (hot-on`1 condition) or decreasing (cold-off condition) the pressure of the package against the mounting deck. As the PITS changes its total length, the thermal conductance between the two objects is increased or decreased. Thus thermal conductance changes as a direct function of package temperature, resulting in active temperature control. The simple design of the PITS reduces the cost and weight of the thermal control subsystem in satellites and its high reliability eliminates the requirement for thermal design verification testing.

  13. Visual Interface for Materials Simulations

    Energy Science and Technology Software Center (OSTI)

    2004-08-01

    VIMES (Visual Inteface for Materials Simulations) is a graphical user interface (GUI) for pre- and post-processing alomistic materials science calculations. The code includes tools for building and visualizing simple crystals, supercells, and surfaces, as well as tools for managing and modifying the input to Sandia materials simulations codes such as Quest (Peter Schultz, SNL 9235) and Towhee (Marcus Martin, SNL 9235). It is often useful to have a graphical interlace to construct input for materialsmore » simulations codes and to analyze the output of these programs. VIMES has been designed not only to build and visualize different materials systems, but also to allow several Sandia codes to be easier to use and analyze. Furthermore. VIMES has been designed to be reasonably easy to extend to new materials programs. We anticipate that users of Sandia materials simulations codes will use VIMCS to simplify the submission and analysis of these simulations. VIMES uses standard OpenGL graphics (as implemented in the Python programming language) to display the molecules. The algorithms used to rotate, zoom, and pan molecules are all standard applications using the OpenGL libraries. VIMES uses the Marching Cubes algorithm for isosurfacing 3D data such as molecular orbitals or electron densities around the molecules.« less

  14. Visual Interface for Materials Simulations

    SciTech Connect (OSTI)

    2004-08-01

    VIMES (Visual Inteface for Materials Simulations) is a graphical user interface (GUI) for pre- and post-processing alomistic materials science calculations. The code includes tools for building and visualizing simple crystals, supercells, and surfaces, as well as tools for managing and modifying the input to Sandia materials simulations codes such as Quest (Peter Schultz, SNL 9235) and Towhee (Marcus Martin, SNL 9235). It is often useful to have a graphical interlace to construct input for materials simulations codes and to analyze the output of these programs. VIMES has been designed not only to build and visualize different materials systems, but also to allow several Sandia codes to be easier to use and analyze. Furthermore. VIMES has been designed to be reasonably easy to extend to new materials programs. We anticipate that users of Sandia materials simulations codes will use VIMCS to simplify the submission and analysis of these simulations. VIMES uses standard OpenGL graphics (as implemented in the Python programming language) to display the molecules. The algorithms used to rotate, zoom, and pan molecules are all standard applications using the OpenGL libraries. VIMES uses the Marching Cubes algorithm for isosurfacing 3D data such as molecular orbitals or electron densities around the molecules.

  15. Savings from energy efficient windows: Current and future savings from new fenestration technologies in the residential market

    SciTech Connect (OSTI)

    Frost, K.; Arasteh, D.; Eto, J.

    1993-04-01

    Heating and cooling energy lost through windows in the residential sector (estimated at two-thirds of the energy lost through windows in all sectors) currently accounts for 3 percent (or 2.8 quads) of total US energy use, costing over $26 billion annually in energy bills. Installation of energy-efficient windows is acting to reduce the amount of energy lost per unit window area. Installation of more energy efficient windows since 1970 has resulted in an annual savings of approximately 0.6 quads. If all windows utilized existing cost effective energy conserving technologies, then residential window energy losses would amount to less than 0.8 quads, directly saving $18 billion per year in avoided energy costs. The nationwide installation of windows that are now being developed could actually turn this energy loss into a net energy gain. Considering only natural replacement of windows and new construction, appropriate fenestration policies could help realize this potential by reducing annual residential window energy losses to 2.2 quids by the year 2012, despite a growing housing stock.

  16. WINDOW 4.0: Program description. A PC program for analyzing the thermal performance of fenestration products

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  17. Characterization of Energy Savings and Thermal Comfort Improvements Derived from Using Interior Storm Windows

    SciTech Connect (OSTI)

    Knox, Jake R.; Widder, Sarah H.

    2013-09-30

    This field study of a single historic home in Seattle, WA documents the performance of Indow Windows’s interior storm window inserts. Energy use and the temperature profile of the house were monitored before and after the installation of the window inserts and changes in the two recorded metrics were examined. Using the defined analysis approach, it was determined that the interior storm windows produced a 22% reduction of the HVAC energy bill and had an undetermined effect on the thermal comfort in the house. Although there was no measurable changes in the thermal comfort of the house, the occupant noted the house to be “warmer in the winter and cooler in the summer” and that the “temperatures are more even (throughout the house).” The interior storm windows were found to be not cost effective, largely due to the retrofits completed on its heating system. However, if the economic analysis was conducted based on the old heating system, a 72% efficient oil fired furnace, the Indow Windows proved to be economical and had a simple payback period of 9.0 years.

  18. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    SciTech Connect (OSTI)

    Luo, Tianhuan; Li, D.; Virostek, S.; Palmer, R.; Stratakis, Diktys; Bowring, D.

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  19. Numerical simulation study on fluid dynamics of plasma window using argon

    SciTech Connect (OSTI)

    Huang, S.; Zhu, K.; Shi, B. L.; Lu, Y. R.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.; Wei, G. D.

    2013-07-15

    In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic model has been developed to investigate the arc and flow field of plasma window, which is used as a windowless vacuum sealing device. The gas inlet, arc creation-developing and plasma expansion segments are all incorporated together in the integral model. An axis-symmetry cathode structure (hollow cathode) is used in the model. Current distribution of the arc is presented and discussed. The temperature, velocity, and pressure field are presented to show the physical mechanisms for the high pressure gap within the plasma window. Flow acceleration and viscosity effect are concluded as the main reasons for the pressure drop. The result for the pressure distribution in the cylindrical tube section has a good agreement with the analytical model. The validation for the sealing ability of plasma window is verified.

  20. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    SciTech Connect (OSTI)

    Tsoupas, N.; Hahn, H.; Meng, W.; Severance, Michael; McMahan, Brandon

    2014-08-26

    The high intensity proton bunches (~2.5x1011 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite’s temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those of a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.

  1. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect (OSTI)

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  2. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  3. An Experimental and Analytical Evaluation of Wall And Window Retrofit Configurations: Supporting the Residential Retrofit Best Practices Guide

    SciTech Connect (OSTI)

    Stovall, Therese K; Petrie, Thomas; Kosny, Jan; Childs, Phillip W; Atchley, Jerald Allen; Hulvey, Kimberly D

    2007-11-01

    A Retrofit Best Practices Guide was developed to encourage homeowners to consider energy conservation issues whenever they modify their siding or windows. In support of this guide, an experimental program was implemented to measure the performance of a number of possible wall siding and window retrofit configurations. Both thermal and air-leakage measurements were made for a 2.4 x 2.4 m (8 x 8 ft) wall section with and without a 0.9 x 1.2 m (3 x 4 ft) window. The windows tested were previously well-characterized at a dedicated window test facility. A computer model was also used to provide information for the Best Practices Guide. The experimental data for walls and windows were used in conjunction with this model to estimate the total annual energy savings for several typical houses in a number of different locations.

  4. Berkeley Lab Scientists Developing Paint-on Coating for Energy Efficient Windows

    Broader source: Energy.gov [DOE]

    It’s estimated that 10 percent of all the energy used in buildings in the U.S. can be attributed to window performance, costing building owners about $50 billion annually, yet the high cost of replacing windows or retrofitting them with an energy efficient coating is a major deterrent. U.S. Dept. of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) researchers are seeking to address this problem with creative chemistry—a polymer heat-reflective coating that can be painted on at one-tenth the cost.

  5. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  6. High-power RF window design for the PEP-II B Factory

    SciTech Connect (OSTI)

    Neubauer, M.; Hodgson, J.; Ng, C.; Schwarz, H.; Skarpaas, K.; Kroll, N. |; Rimmer, R.

    1994-06-01

    We describe the design of RF windows to transmit up to 500 kW CW to the PEP-II 476 MHz cavities. RF analysis of the windows using high-frequency simulation codes are described. These provide information about the power loss distribution in the ceramic and tim matching properties of the structure. Finite-element analyses of the resulting temperature distribution and thermal stresses are presented. Fabrication methods including a proposed scheme to compensate for thermal expansion s are discussed and hardware tests to validate this approach are described. The effects of surface coatings (intentional and otherwise) and the application of air cooling are considered.

  7. Text-Alternative Version of Building America Webinar: Low-e Storms: The Next "Big Thing" in Window Retrofits

    Broader source: Energy.gov [DOE]

    Low-e Storms:  The Next “Big Thing” in Window RetrofitsOfficial Webinar Transcript (September 9, 2014)

  8. From corrosion to batteries: Electrochemical interface studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr ...

  9. Theoretical and experimental studies of electrified interfaces...

    Office of Scientific and Technical Information (OSTI)

    of the interface, and the incorporation of this understanding into quantitative models. ... DOE Contract Number: DE-AC04-94AL85000 Resource Type: Technical Report Research Org: ...

  10. National Wind Technology Center Controllable Grid Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface 2 NWTC Test Site Siemens 2.3 MW Alstom 3 MW ... of 11 MW of variable renewable generation currently at the ... * Multi-megawatt energy storage testing ...

  11. Ultrafast electron transfer at organic semiconductor interfaces...

    Office of Scientific and Technical Information (OSTI)

    copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. ...

  12. 5.0 INTERFACE OF REGULATORY AUTHORITIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-1 5.0 INTERFACE OF REGULATORY AUTHORITIES 5.1 REGULATORY PROGRAMS The RCRA, CERCLA, and State Dangerous Waste Program overlap in many areas. In general, CERCLA was created by...

  13. Film bonded fuel cell interface configuration

    DOE Patents [OSTI]

    Kaufman, Arthur; Terry, Peter L.

    1989-01-01

    The present invention relates to improved elements for use in fuel cell stacks, and more particularly, to a stack having a corrosion-resistant, electrally conductive, fluid-impervious interface member therein.

  14. Surface and interface modification science and technology.

    SciTech Connect (OSTI)

    Park, J.-H.

    1999-07-19

    Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.

  15. Human factors challenges for advanced process control

    SciTech Connect (OSTI)

    Stubler, W.F.; O`Hara, J..M.

    1996-08-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls.

  16. Sliding coherence window technique for hierarchical detection of continuous gravitational waves

    SciTech Connect (OSTI)

    Pletsch, Holger J.

    2011-06-15

    A novel hierarchical search technique is presented for all-sky surveys for continuous gravitational-wave sources, such as rapidly spinning nonaxisymmetric neutron stars. Analyzing yearlong detector data sets over realistic ranges of parameter space using fully coherent matched-filtering is computationally prohibitive. Thus more efficient, so-called hierarchical techniques are essential. Traditionally, the standard hierarchical approach consists of dividing the data into nonoverlapping segments of which each is coherently analyzed, and subsequently the matched-filter outputs from all segments are combined incoherently. The present work proposes to break the data into subsegments shorter than the desired maximum coherence time span (size of the coherence window). Then matched-filter outputs from the different subsegments are efficiently combined by sliding the coherence window in time: Subsegments whose timestamps are closer than coherence window size are combined coherently, otherwise incoherently. Compared to the standard scheme at the same coherence time baseline, data sets longer by about 50-100% would have to be analyzed to achieve the same search sensitivity as with the sliding coherence window approach. Numerical simulations attest to the analytically estimated improvement.

  17. Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost

    Broader source: Energy.gov [DOE]

    Say what you want about the joys of Jack Frost nipping at your nose, but when it comes to winter wonderlands, I like mine outdoors. Etching icy messages on the insides of my windows is not exactly cozy. Therefore, I'm thankful for technology that provides an efficient and effective barrier from inclement weather.

  18. Plan averaging for multicriteria navigation of sliding window IMRT and VMAT

    SciTech Connect (OSTI)

    Craft, David Papp, Dávid; Unkelbach, Jan

    2014-02-15

    Purpose: To describe a method for combining sliding window plans [intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)] for use in treatment plan averaging, which is needed for Pareto surface navigation based multicriteria treatment planning. Methods: The authors show that by taking an appropriately defined average of leaf trajectories of sliding window plans, the authors obtain a sliding window plan whose fluence map is the exact average of the fluence maps corresponding to the initial plans. In the case of static-beam IMRT, this also implies that the dose distribution of the averaged plan is the exact dosimetric average of the initial plans. In VMAT delivery, the dose distribution of the averaged plan is a close approximation of the dosimetric average of the initial plans. Results: The authors demonstrate the method on three Pareto optimal VMAT plans created for a demanding paraspinal case, where the tumor surrounds the spinal cord. The results show that the leaf averaged plans yield dose distributions that approximate the dosimetric averages of the precomputed Pareto optimal plans well. Conclusions: The proposed method enables the navigation of deliverable Pareto optimal plans directly, i.e., interactive multicriteria exploration of deliverable sliding window IMRT and VMAT plans, eliminating the need for a sequencing step after navigation and hence the dose degradation that is caused by such a sequencing step.

  19. T-601: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities were reported in the Windows Kernel. A local user can obtain elevated privileges on the target system. A local user can trigger a use-after free or null pointer dereference to execute arbitrary commands on the target system with kernel level privileges.

  20. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    DOE Patents [OSTI]

    Holland, Stephen Edward

    2000-02-15

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.