National Library of Energy BETA

Sample records for windows ground source

  1. Ground Source Solutions | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: NG22 9GW Sector: Buildings Product: UK-based installer of ground source energy systems to domestic and commercial buildings. References: Ground Source...

  2. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  3. Feasibility study of broadband efficient ''water window'' source

    SciTech Connect (OSTI)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-02

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  4. Promising Technology: Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Ground source heat pumps (GSHP) use the constant temperature of the Earth as the heat exchange medium instead of the outside air temperature. During the winter, a GSHP uses the ground as a heat source to provide heating, and during the summer, a GSHP uses the ground as a heat sink to provide cooling. Although more expensive than air-source heat pumps, GSHP’s are much more efficient, especially in cold temperatures.

  5. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    efficient when cooling your home. Not only does this save energy and money, it reduces air pollution. GSHP System Ground source heat pump systems consist of three parts: the...

  6. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt ...

  7. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy: It could turn any window into a daytime power source. August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology

  8. Ground Source Heat Pump System Data Analysis | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground Source Heat Pump System Data Analysis Ground Source Heat Pump System Data Analysis Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer ...

  9. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy: It could turn any window into a daytime power source. "In these devices, a fraction of light transmitted through the window is absorbed by nano-sized particles (semiconductor quantum dots)

  10. Design of an Aluminum Proton Beam Window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Janney, Jim G; McClintock, David A

    2012-01-01

    An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

  11. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    heating andor cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground. Other definitions:Wikipedia Reegle...

  12. Ground Source Heat Pump System Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For example: * Ground loop flow and inout temperatures * Pump powerspeed * Heat pump power or status * Utility billing data (pre- and post- if the project is a retrofit) ...

  13. Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps On Nov. 3, 2011, Dave Peterson, a Project Leader at the National Renewable Energy Laboratory, presented a Webinar about Geothermal/Ground Source Heat Pumps and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: U.S.

  14. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ground Source Heat Pump System Data Analysis CX-001515: Categorical Exclusion Determination Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat ...

  15. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  16. Spring Home Maintenance: Windows, Windows, Windows! | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring Home Maintenance: Windows, Windows, Windows Spring Home Maintenance: Windows, Windows, Windows April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air ...

  17. Building America Case Study: Ground Source Heat Pump Research...

    Energy Savers [EERE]

    Ground Source Heat Pump Research, TaC Studios Residence Atlanta, Georgia PROJECT ... TaC Studios, an Atlanta-based architecture frm, learned these lessons during design and ...

  18. Tennessee: Ground-Source Heat Pump Receives Innovation Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The new Trilogy 40 Q-Mode(tm) series, a highly efficient ground-source heat pump that has the capability of providing all the space heating, cooling, and water heating requirements ...

  19. 'Water window' sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth

    SciTech Connect (OSTI)

    Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Higashiguchi, Takeshi; Otsuka, Takamitsu; Jiang, Weihua; Endo, Akira

    2013-01-28

    Development of laser-produced plasma 'water window' sources poses a major challenge in x-ray research and most effort has focused on line sources for use with zone plate optics. Here, a comparison of carbon and nitrogen line emission with that from both 3d - 4f and 4d - 4f unresolved transition arrays shows that, at power densities available from 'table-top' solid-state lasers, 3d - 4f emission from zirconium plasmas is most intense, and calculations show that in an imaging system based on multilayer mirrors, for reflectance bandwidths >1% has superior performance than either line or broader-band sources. For bandwidths <1%, line sources are preferable.

  20. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  1. High-brightness water-window electron-impact liquid-jet microfocus source

    SciTech Connect (OSTI)

    Skoglund, P.; Lundstroem, U.; Vogt, U.; Hertz, H. M.

    2010-02-22

    We demonstrate stable high-brightness operation of an electron-impact water-jet-anode soft x-ray source. A 30 kV, 7.8 W electron beam is focused onto a 20 mum diameter jet resulting in water-window oxygen line emission at 525 eV/2.36 nm with a brightness of 3.0x10{sup 9} ph/(sxmum{sup 2}xsrxline). Monte Carlo-based modeling shows good quantitative agreement with the experiments. The source has potential to increase the x-ray power and brightness by another 1-2 orders of magnitude and fluid-dynamical jet instabilities is determined to be the most important limiting factor. The source properties make it an attractive alternative for table-top x-ray microscopy.

  2. North Village Ground Source Heat Pump Demonstration Project

    SciTech Connect (OSTI)

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  3. Ground Source Heat Pump Subprogram Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    overview of GTP's Ground Source Heat Pump subprogram was given at GTP's Program Peer Review on May 18, 2010. PDF icon overview_gshp.pdf More Documents & Publications TN Energy Efficient Schools Initiative GSHP Program Large Scale GSHP as Alternative Energy for American Farmers Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System

  4. Monitoring and evaluating ground-source heat pump. Final report

    SciTech Connect (OSTI)

    Stoltz, S.V.; Cade, D.; Mason, G.

    1996-05-01

    This report presents the measured performance of four advanced residential ground-source heat pump (GSHP) systems. The GSHP systems were developed by WaterFurnace International to minimize the need for electric resistance backup heating and featured multiple speed compressors, supplemental water heating, and at most sites, multiple-speed fans. Detailed data collected for a complete year starting in June 1994 shows that the advanced design is capable of maintaining comfort without the use of electric resistance backup heating. In comparison with a conventional air-source heat pump, the advanced-design GSHP reduced peak heating demand by more than 12 kilowatts (kW) per residence and provided energy savings. The report describes the cooling and heating season operation of the systems, including estimated seasonal efficiency, hours of operation, and load profiles for average days and peak days. The electrical energy input, cooling output, and efficiency are presented as a function of return air temperature and ground loop temperature.

  5. Ground-Source Heat Pumps Applied to Federal Facilities - Second Edition

    SciTech Connect (OSTI)

    2001-03-01

    Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition, technology for reducing heating and air-conditioning costs.

  6. Bright, Coherent, Ultrafast Soft X-Ray Harmonics Spanning the Water Window from a Tabletop Light Source

    SciTech Connect (OSTI)

    Chen, M.-C.; Arpin, P.; Popmintchev, T.; Gerrity, M.; Zhang, B.; Seaberg, M.; Popmintchev, D.; Murnane, M. M.; Kapteyn, H. C.

    2010-10-22

    We demonstrate fully phase-matched high harmonic emission spanning the water window spectral region important for nano- and bioimaging and a breadth of materials and molecular dynamics studies. We also generate the broadest bright coherent bandwidth ({approx_equal}300 eV) to date from any light source, small or large, that is consistent with a single subfemtosecond burst. The harmonic photon flux at 0.5 keV is 10{sup 3} higher than demonstrated previously. This work extends bright, spatially coherent, attosecond pulses into the soft x-ray region for the first time.

  7. Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

  8. Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps

    Broader source: Energy.gov [DOE]

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

  9. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect (OSTI)

    Baxter, V. D.; Rice, K.; Murphy, R.; Munk, J.; Ally, Moonis; Shen, Bo; Craddick, William; Hearn, Shawn A.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

  10. Electron-Impact Water-Jet Microfocus Source for Water-Window Microscopy

    SciTech Connect (OSTI)

    Skoglund, P.; Lundstroem, U.; Vogt, U.; Takman, P.; Hertz, H. M.

    2011-09-09

    We demonstrate high-brightness operation of an electron-impact water-jet-anode soft x-ray source with an increased power loading of 15 times compared to our previously published results, with a corresponding increase in {approx}525-eV x-ray intensity of 6.4 times. This has been accomplished by improving the vacuum pumping system and the electron focusing optics, and increasing the liquid-jet velocity. The source now operates up to 120-W e-beam power and at a 525-eV brightness of 3.5x10{sup 9} ph/(sx{mu}m{sup 2}xsrxline). The source concept has potential to increase the x-ray brightness by another order of magnitude by optimizing the e-beam focusing and upgrading the power supply. Currently, spot enlargement with increased power is determined to be the most important limiting factor.

  11. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    SciTech Connect (OSTI)

    Hadley, Donald L.

    2001-03-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  12. EERE Success Story-Tennessee: Ground-Source Heat Pump Receives Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award at AHR Expo | Department of Energy Tennessee: Ground-Source Heat Pump Receives Innovation Award at AHR Expo EERE Success Story-Tennessee: Ground-Source Heat Pump Receives Innovation Award at AHR Expo August 16, 2013 - 12:00am Addthis The new Trilogy 40 Q-Mode(tm) series, a highly efficient ground-source heat pump that has the capability of providing all the space heating, cooling, and water heating requirements for a residential or small commercial building, was recently awarded a 2013

  13. Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Broader source: Energy.gov [DOE]

    Project objective: Create a new modeling decisionŽ tool that will enable ground source heat pump (GSHP) designers and customers to make better design and purchasing decisions.

  14. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, Nick; Poerschke, Andrew

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  15. Capture sunlight with your window

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture sunlight with your window Capture sunlight with your window A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy. August 24, 2015 The luminescent solar concentrator could turn any window into a daytime power source. The luminescent solar concentrator could turn any window into a daytime power source. Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email

  16. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    SciTech Connect (OSTI)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-10-02

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies.

  17. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  18. CAVE WINDOW

    DOE Patents [OSTI]

    Levenson, M.

    1960-10-25

    A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

  19. Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings

    Broader source: Energy.gov [DOE]

    Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- ClimateMaster - Oklahoma City, OK -- Oklahoma State University - Stillwater, OK -- Oklahoma Gas & Electric - Oklahoma City, OK -- International Ground Source Heat Pump Association - Stillwater, OK -- Chinese Academy of Building Research - Beijing, China -- Tongji University - Shanghai, China -- Tianjin University - Tianjin, China -- Chongqin University - Chongqing, China

  20. Ball State University Completes Nation's Largest Ground-Source Geothermal System with Support from Recovery Act

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today congratulated Ball State University for its campus-wide ground-source geothermal system, the nation's largest geothermal heating and cooling system.

  1. Ball State Completes Largest U.S. Ground-Source Geothermal System

    Broader source: Energy.gov [DOE]

    Ball State University has completed its campus-wide ground-source geothermal system, the nation's largest geothermal heating and cooling system, DOE announced on March 20. DOE played a part in the project by providing a $5 million grant through the American Recovery and Reinvestment Act.

  2. Technology Solutions Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia

    SciTech Connect (OSTI)

    2014-09-01

    This case study describes the construction of a new test home that demonstrates current best practices for the mixed-humid climate, including a high performance ground source heat pump for heating and cooling, a building envelope featuring advanced air sealing details and low-density spray foam insulation, and glazing that exceeds ENERGY STAR requirements.

  3. Heat exchanger sizing for vertical closed-loop ground-source heat pumps

    SciTech Connect (OSTI)

    Cane, R.L.D.; Clemes, S.B.; Morrison, A.; Hughes, P.J.

    1995-12-31

    A building energy simulation program has been used in conjunction with a ground heat exchanger sizing algorithm to develop general guidelines on how to size vertical ground heat exchangers for closed-loop ground-source heat pump systems in large buildings. The analysis considered three commercial building types of varying size with different internal loads and heat pump efficiencies. Each building variation was simulated in seven cities, three in the US and four in Canada. The ground heat exchanger sizing algorithm has been previously validated against actual system data. The analysis results showed a strong correlation between heat exchanger length required and annual energy rejected to the ground, if the building was cooling-dominated, or annual energy extracted from the ground, if the building was heating-dominated. The resulting sizing guidelines recommend hour-by-hour energy analysis to determine the energy extracted from and rejected to the building water loop. Using this information the designer will have available easy-to-use, accurate sizing guidelines that should result in more economical installations than those based on previous ``rule of thumb`` guidelines.

  4. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  5. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  6. Window shopping

    SciTech Connect (OSTI)

    Best, D.

    1990-03-01

    The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

  7. Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DCCurcija@lbl.gov Lawrence Berkeley National Laboratory Window Attachments 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 10/1/2013 Planned end date: 9/30/2018 Key Milestones: 1. CGDB Releases (2); 3/31; 9/30/2015 2. Validated simulation methods for priority window attachments; 9/30/2015 Budget: Total DOE $ to date: $1,100k Total future DOE $: $2,100k [estimated] Key Partners: Project Goal: Develop validated simulation models and procedures for

  8. Centroid Position as a Function of Total Counts in a Windowed CMOS Image of a Point Source

    SciTech Connect (OSTI)

    Wurtz, R E; Olivier, S; Riot, V; Hanold, B J; Figer, D F

    2010-05-27

    We obtained 960,200 22-by-22-pixel windowed images of a pinhole spot using the Teledyne H2RG CMOS detector with un-cooled SIDECAR readout. We performed an analysis to determine the precision we might expect in the position error signals to a telescope's guider system. We find that, under non-optimized operating conditions, the error in the computed centroid is strongly dependent on the total counts in the point image only below a certain threshold, approximately 50,000 photo-electrons. The LSST guider camera specification currently requires a 0.04 arcsecond error at 10 Hertz. Given the performance measured here, this specification can be delivered with a single star at 14th to 18th magnitude, depending on the passband.

  9. Finite Volume Based Computer Program for Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Menart, James A.

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

  10. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect (OSTI)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled “Finite Volume Based Computer Program for Ground Source Heat Pump Systems.” The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

  11. Adaptive Liquid Crystal Windows

    SciTech Connect (OSTI)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft 1ft prototype panels for the worlds first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicrons patented e-Tint technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMIs roll-to-roll process, proved by making 1ft 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.

  12. Case study for ARRA-funded ground-source heat pump (GSHP) demonstration at Oakland University

    SciTech Connect (OSTI)

    Im, Piljae; Liu, Xiaobing

    2015-09-01

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a ground-source variable refrigerant flow (GS-VRF) system installed at the Human Health Building at Oakland University in Rochester, Michigan. This case study is based on the analysis of measured performance data, maintenance records, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning as the demonstrated GS-VRF system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GS-VRF system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GS-VRF system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation, improving the operational efficiency, and reducing the installed cost of similar GSHP systems in the future.

  13. Soft X-ray microscopy in the spectral region of 'carbon window' with the use of multilayer optics and a laser-plasma source

    SciTech Connect (OSTI)

    Artyukov, I. A. Vinogradov, A. V.; Bugayev, Ye. A.; Devizenko, A. Yu.; Kondratenko, V. V.; Kasyanov, Yu. S.

    2009-11-15

    This paper reports on the fabrication and testing of multilayer mirrors for X-ray optical systems operating in the 'carbon window' region (at wavelengths from 4.5 to 5.0 nm) and the results of their application in soft X-ray imaging of the internal structure of organic objects. The developed approaches to the fabrication and control of graded Co/C multilayer coatings have made it possible to create an X-ray multimirror system with a maximum known entrance aperture and throughput. The use of the developed high-spatial-resolution X-ray optics can significantly extend the field of practical application of soft X-ray absorption microscopy based on compact laser-plasma sources.

  14. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect (OSTI)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  15. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect (OSTI)

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  16. Contamination source review for Building E7995, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Booher, M.N.; Miller, G.A.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition, of the buildings. The source contamination review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, investigation of potential hazardous materials facilities (HMFs), and review of available records regarding underground storage tanks. This report provides the results of the contamination source review for Building E7995. any of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings, and associated structures or appurtenances, may contribute to environmental concerns at APG.

  17. PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

  18. Focus group discussions among owners and non-owners of ground source heat pumps

    SciTech Connect (OSTI)

    Roberson, B.F.

    1988-07-01

    This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

  19. Contamination source review for Building E1489, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E1489 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the U.S. Army-in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed in 1994-1995. Building E1489 located in J-Field on the Gunpowder Peninsula in APG`s Edgewood Area housed a power generator that supplied electricity to a nearby observation tower. Building E1489 and the generator were abandoned in 1974, demolished by APG personnel and removed from real estate records. A physical inspection and photographic documentation of Building E1489 were completed by ANL staff during November 1994. In 1994, ANL staff conducted geophysical surveys in the immediate vicinity of Building E1489 by using several nonintrusive methods. Survey results suggest the presence of some underground objects near Building E1489, but they do not provide conclusive evidence of the source of geophysical anomalies observed during the survey. No air monitoring was conducted at the site, and no information on underground storage tanks associated with Building E1489 was available.

  20. Science on the Hill: Turning windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning windows into solar panels Science on the Hill: Turning windows into solar panels Working with quantum dots, researchers achieve a breakthrough in solar-concentrating technology that can turn windows into electric generators. February 7, 2016 solar panel windows The luminescent solar concentrator could turn any window into a daytime power source. Science on the Hill: Turning windows into solar panels Sunlight is abundant, free and for all practical purposes, eternal. Harvesting that light

  1. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect (OSTI)

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-09-01

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).

  2. Application analysis of ground source heat pumps in building space conditioning

    SciTech Connect (OSTI)

    Qian, Hua; Wang, Yungang

    2013-07-01

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

  3. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    SciTech Connect (OSTI)

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  4. Update on maintenance and service costs of commercial building ground-source heat pump systems

    SciTech Connect (OSTI)

    Cane, D.; Garnet, J.M.

    2000-07-01

    An earlier paper showed that commercial ground-source heat pump systems have significantly lower service and maintenance costs than alternative HVAC systems. This paper expands on those results by adding 13 more buildings to the original 25 sites and by comparing the results to the latest ASHRAE survey of HVAC maintenance costs. Data from the 38 sites are presented here including total (scheduled and unscheduled) maintenance costs in cents per square foot per year for base cost, in-house, and contractor-provided maintenance. Because some of the new sites had maintenance costs that were much higher than the industry norm, the resulting data are not normally distributed. Analysis (O'Hara Hines 1998) indicated that a log-normal distribution is a better fit; thus, the data are analyzed and presented here as log-normal. The log-mean annual total maintenance costs for the most recent year of the survey ranged from 6.07 cents per square foot to 8.37 cents per square foot for base cost and contractor-provided maintenance, respectively.

  5. Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

  6. Geothermal(Ground-Source)Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers

    SciTech Connect (OSTI)

    Hughes, Patrick

    2008-12-01

    More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pumps (GHPs), sometimes called ground-source heat pumps, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE's request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in this report along with conclusions and recommendations.

  7. Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.

  8. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    SciTech Connect (OSTI)

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  9. Residential Windows and Window Coverings: A Detailed View of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior Residential Windows and Window Coverings: A Detailed View of the Installed Base ...

  10. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  11. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storm Windows Storm Windows An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of ...

  12. MEASURED SPACE CONDITIONING PERFORMANCE OFA VERTICAL-BORE GROUND SOURCE HEAT PUMP (GSHP) OVER TWELVE MONTHS UNDER SIMULATED OCCUPANCY LOADS

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2014-01-01

    This paper presents monthly performance metrics of a 7.56 kW (2.16 ton) GSHP serving the space conditioning loads of a 251m2 (2700ft2) residential home with a phase change material in its envelope, and a single vertical-bore 94.5m (310 ft) ground loop. The same ground loop also serviced a ground source heat pump water heater. Envelope characteristics are discussed briefly in the context of reducing thermal losses. Data on entering water temperatures, energy extracted from the ground, energy delivered/removed, compressor electricity use, COP, GSHP run times (low and high compressor stages), and the impact of fan and pump energy consumption on efficiency are presented for each month. Both practical as well as research and development issues are discussed. The findings suggest that GSHPs represent a practical technology option to reduce source energy reduction and greenhouse emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 target of generating over 25% of heat consumed in the EU from renewable energy.

  13. Ground-Source Heat Pumps. Overview of Market Status, Barriers to Adoption, and Options for Overcoming Barriers

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Lisle, Heather; Burgos, Javier

    2009-02-03

    February 2009 final report submitted to DOE by Navigant Consulting, Inc. This report summarizes the status of ground-source heat pump (GSHP) technology and market penetration globally, estimates the energy saving potential of GSHPs in the U.S., identifies key market barriers that are inhibiting wider market adoption of GSHPs, and recommends initiatives that can be implemented or facilitated by the DOE to accelerate market adoption.

  14. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  15. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu; Cullin, James; Spitler, Jeffery; Im, Piljae; Fisher, Daniel

    2011-01-01

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  16. High Performance Window Attachments

    Energy Savers [EERE]

    High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but

  17. Tips: Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows Windows can be one of your home's most attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can...

  18. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  19. Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design

    SciTech Connect (OSTI)

    Murphy, Richard W; Rice, C Keith; Baxter, Van D

    2007-05-01

    The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

  20. Window Daylighting Demo

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Scenario comparisons - Rapid analysis of faade options ... WINDOW 6) Strong positive response from early adopters ... and Collaborators Website team: Univ of Minnesota Building ...

  1. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  2. Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  3. Plasma window characterization

    SciTech Connect (OSTI)

    Krasik, Ya. E.; Gleizer, S.; Gurovich, V.; Kronhaus, I.; Hershcovitch, A.; Nozar, P.; Taliani, C.

    2007-03-01

    Parameters of an arc Ar plasma discharge used as a plasma window with a discharge current of {approx}50 A and a voltage of {approx}58 V are presented. It is shown that this arc discharge allows one to decrease the pressure at the low pressure end of the plasma window almost 380 times using relatively low pumping at the low pressure end of the plasma window. Calculations of the plasma parameters and their spatial distribution using a simple wall-stabilized arc model showed a satisfactory agreement with the experimentally obtained data. It is shown that a significant decrease in gas flow through the plasma window occurs due to the increase in plasma viscosity. An improvement of the plasma window ignition and some of its design aspects are described as well.

  4. Windows technology assessment

    SciTech Connect (OSTI)

    Baron, J.J.

    1995-10-01

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  5. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  6. Exergy Analysis of a Two-Stage Ground Source Heat Pump with a Vertical Bore for Residential Space Conditioning under Simulated Occupancy

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-06-26

    This twelve-month field study analyzes the performance of a 7.56W (2.16- ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kWh at summer and winter thermostat set points of 24.4°C and 21.7°C, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources.

  7. Exergy Analysis of a Two-Stage Ground Source Heat Pump with a Vertical Bore for Residential Space Conditioning under Simulated Occupancy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-06-26

    This twelve-month field study analyzes the performance of a 7.56W (2.16- ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kWh at summer and winter thermostat set points of 24.4°C and 21.7°C, respectively. The WA-GSHP shared the same 94.5 m vertical boremore » ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources.« less

  8. Window Daylighting Demo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daylighting Demo Window Daylighting Demo Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review PDF icon commlbldgs20_selkowitz_040413.pdf More Documents & Publications Advanced Facades, Daylighting, and Complex Fenestration Systems High Performance Window Attachments Figure 1: Measurement of performance of ceiling tiles made of new phase change materials in test bed, in naturally ventilated and forced ventilation modes. Source: LBNL. CBERD:

  9. The Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  10. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  11. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  12. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  13. High Performance Window Retrofit

    SciTech Connect (OSTI)

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  14. Storm Windows | Department of Energy

    Office of Environmental Management (EM)

    interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this...

  15. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect (OSTI)

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  16. BERKELEY LAB WINDOW

    Energy Science and Technology Software Center (OSTI)

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records frommore » IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less

  17. BERKELEY LAB WINDOW

    SciTech Connect (OSTI)

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen; Mitchell, Robin D.; Kohler, Christian; Vidanovic, Simon V.; Huizenga, Charlie

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.

  18. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

  19. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-05-27

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.

  20. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-05-27

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures themore » water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.« less

  1. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  2. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  3. Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior

    Broader source: Energy.gov [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

  4. Tips: Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apply sun-control or other reflective films on south-facing windows to reduce solar heat gain. Long-Term Savings Tip Installing high-performance windows will improve your home's ...

  5. Dynamic Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamic Windows Dynamic Windows NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Lead Performer: National Renewable Energy Laboratory - Golden, CO Partners: -- Sage Electrochromics - Faribault, MN -- e-Chromic Technologies, Inc. - Boulder, CO -- Colorado School of Mines - Golden, CO -- Stanford

  6. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Window treatments or coverings can reduce heat loss in the winter and heat gain in the ...

  7. Hydrogeologic Evaluation of a Ground-Source Cooling System at the BSF/CSF on the Battelle Campus: Final Report

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.; Moon, Thomas W.; Newcomer, Darrell R.; DeSmet, Darrell J.; Lindsey, K. A.; Porcello, J. J.

    2010-05-12

    This report documents both the field characterization activities and the numerical modeling effort at the BSF/CSF site to determine the viability of an open-loop ground source heat pump (GSHP). The primary purpose of the integrated field and modeling study was to determine far-field impacts related to a non-consumptive use water right for the well field containing four extraction and four injection wells. In the field, boreholes were logged and used to develop the geologic conceptual model. Hydraulic testing was performed to identify hydraulic properties and determine sustainable pumping rates. Estimates of the Ringold hydraulic conductivity (60-150 m/d) at the BSF/CSF site were consistent with the local and regional hydrogeology as well as estimates previously published by other investigators. Sustainable pumping rates at the extraction wells were variable (100 700 gpm), and confirmed field observations of aquifer heterogeneity. Field data were used to develop a numerical model of the site. Simulations assessed the potential of the well field to impact nearby contaminant plumes, neighboring water rights, and the thermal regime of nearby surface water bodies. Using steady-state flow scenarios in conjunction with particle tracking, a radius of influence of 400600 m was identified around the well field. This distance was considerably shorter than the distance to the closest contaminant plume (~1.2 km northwest to the DOE Horn Rapids Landfill) and the nearest water right holder (~1.2 km southeast to the City of Richland Well Field). Results demonstrated that current trajectories for nearby contaminant plumes will not be impacted by the operation of the GSHP well field. The objective of the energy transport analysis was to identify potential thermal impacts to the Columbia River under likely operational scenarios for the BSF/CSF well field. Estimated pumping rates and injection temperatures were used to simulate heat transport for a range of hydraulic conductivity estimates for the Ringold Formation. Two different operational scenarios were simulated using conservative assumptions, such as the absence of river water intrusion in the near shore groundwater. When seasonal injection of warm and cool water occurred, temperature impacts were insignificant at the Columbia River (< +0.2C), irrespective of the hydraulic conductivity estimate. The second operational scenario simulated continuous heat rejection, a condition anticipated once the BSF/CSF is fully loaded with laboratory and computer equipment. For the continuous heat rejection case, where hourly peak conditions were simulated as month-long peaks, the maximum change in temperature along the shoreline was ~1C. If this were to be interpreted as an absolute change in a static river temperature, it could be considered significant. However, the warmer-than-ambient groundwater flux that would potentially discharge to the Columbia River is very small relative to the flow in the river. For temperatures greater than 17.0C, the flow relative to a low-flow condition in the river is only 0.012%. Moreover, field data has shown that diurnal fluctuations in temperature are as high as 5C along the shoreline.

  8. Predicting window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.

    1995-07-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining window U-factors, there has been little work to date on using numerical methods to predict condensation potential. It is, perhaps, of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a preliminary step to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and inferior indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building materials, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products, as part of its mandate from the Department of Energy. A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing, to reduce the cost and time required for implementation and increase the flexibility of the rating method. This article outlines the necessary components in the application of numerical methods for evaluating condensation in fenestration products, and describes the status of the development of these methods. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products. Much of the technical discussion in this article can be found in ASHRAE Transactions.

  9. Ground-source heat pump bentonite-based grouting research: A review of literature on existing bentonite-based grouting information. Final report

    SciTech Connect (OSTI)

    Remund, C.

    1998-09-01

    Ground source heat pumps (GSHPs), also known as geothermal heat pumps (GHPs), are an attractive high efficiency heating and cooling technology. The ground heat exchangers (GHXs) used with this type of equipment must be adequately sealed to protect the subsurface environment, while also providing good heat transfer. Especially with vertical-bore ground heat exchange systems, the heat exchanger wellbore must be grouted with a material that seals aquifers from contamination, while avoiding voids and maximizing heat transfer capabilities. Numerous types of grout materials are available for sealing the boreholes, the most common being bentonite-based and cement-based grouts. This report summarizes results of an extensive literature review of bentonite-based grout materials, applications, application techniques, and limitations. This literature review was performed as part of work aimed at developing new, better performing bentonite-based grout materials, grouting techniques, and information, especially as related to grout sealing and heat transfer properties. The work also helps better define when one type of grout should be used vs. another. This study has sought to summarize the various standards and practices that exist for the more common types of applications, so that a more logical set of practices, standards, and limitations may be developed specifically for geothermal heat exchanger sealing applications. Applications studied here include: Vertical bores for geothermal heat pump systems; Water well sealing; Abandoned well and borehole sealing; Ground water quality monitoring well sealing; and Waste repository and disposal well (including nuclear waste) sealing.

  10. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  11. Windows on the axion

    SciTech Connect (OSTI)

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

  12. Window Types | Department of Energy

    Office of Environmental Management (EM)

    Tints Heat-absorbing window glazing contains special tints that change the color of the glass. Tinted glass absorbs a large fraction of the incoming solar radiation...

  13. Tips: Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill...

  14. Installing Windows with Foam Sheathing on a Wood-Frame Wall: January 1, 2004 to December 31, 2004

    SciTech Connect (OSTI)

    2005-05-01

    In most wall assemblies, connection details around windows have been the source of problems with water penetration into the building. This report describes how to install a window into a wall with insulating sheathing as an integrated drainage plane.

  15. X-Windows Acceleration via NX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly...

  16. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Choose high-performance windows that have at least two panes of glass and a low-e coating. Choose a low U-factor for better insulation in colder climates; the U-factor is the...

  17. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  18. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  19. Energy Efficient Window Treatments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Window Treatments Energy Efficient Window Treatments The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks You can choose window treatments or coverings not only for decoration but also for saving energy. Some carefully selected window treatments can reduce heat loss in the winter and heat gain in the

  20. A window on urban sustainability

    SciTech Connect (OSTI)

    Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  1. Energy-Efficient Windows | Department of Energy

    Office of Environmental Management (EM)

    in your home involves design, selection, and installation. Design Before selecting new windows for your home, determine what types of windows will work best and where to...

  2. Building Technologies Office: Emerging Technologies Windows and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including the cost of sensor and lighting Reduce ... * Smart shadings * Highly insulated windows * Windows attachment 8 Building Envelope R&D Priorities Technology 2025 ...

  3. Do You Have Windows That Need Replacing?

    Broader source: Energy.gov [DOE]

    Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows?

  4. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. You are accessing a document ...

  5. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. It is well known that the spectrum ...

  6. Jeff Grounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Grounds Jeff Grounds jeffgrounds-sm.jpg Jeff Grounds Facilities Manager JTGrounds@lbl.gov Phone: (510) 486-7197 Mobile: (510) 207-2273 Last edited: 2016-04-29 11:34:57

  7. Pre-shot simulations of far-field ground motion for the Source Physics Experiment (SPE) Explosions at the Climax Stock, Nevada National Security Site: SPE2

    SciTech Connect (OSTI)

    Mellors, R J; Rodgers, A; Walter, W; Ford, S; Xu, H; Matzel, E; Myers, S; Petersson, N A; Sjogreen, B; Hauk, T; Wagoner, J

    2011-10-18

    The Source Physics Experiment (SPE) is planning a 1000 kg (TNT equivalent) shot (SPE2) at the Nevada National Security Site (NNSS) in a granite borehole at a depth (canister centroid) of 45 meters. This shot follows an earlier shot of 100 kg in the same borehole at a depth 60 m. Surrounding the shotpoint is an extensive array of seismic sensors arrayed in 5 radial lines extending out 2 km to the north and east and approximately 10-15 to the south and west. Prior to SPE1, simulations using a finite difference code and a 3D numerical model based on the geologic setting were conducted, which predicted higher amplitudes to the south and east in the alluvium of Yucca Flat along with significant energy on the transverse components caused by scattering within the 3D volume along with some contribution by topographic scattering. Observations from the SPE1 shot largely confirmed these predictions although the ratio of transverse energy relative to the vertical and radial components was in general larger than predicted. A new set of simulations has been conducted for the upcoming SPE2 shot. These include improvements to the velocity model based on SPE1 observations as well as new capabilities added to the simulation code. The most significant is the addition of a new source model within the finite difference code by using the predicted ground velocities from a hydrodynamic code (GEODYN) as driving condition on the boundaries of a cube embedded within WPP which provides a more sophisticated source modeling capability linked directly to source site materials (e.g. granite) and type and size of source. Two sets of SPE2 simulations are conducted, one with a GEODYN source and 3D complex media (no topography node spacing of 5 m) and one with a standard isotropic pre-defined time function (3D complex media with topography, node spacing of 5 m). Results were provided as time series at specific points corresponding to sensor locations for both translational (x,y,z) and rotational components. Estimates of spectral scaling for SPE2 are provided using a modified version of the Mueller-Murphy model. An estimate of expected aftershock probabilities were also provided, based on the methodology of Ford and Walter, [2010].

  8. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    6 2005 Residential Prime Window Stock (Million Households) Double Pane Census Division New England 5.3 Middle Atlantic 15.0 East North Central 17.3 West North Central 7.7 South Atlantic 21.3 East South Central 6.8 West South Central 12.1 Mountain 7.3 Pacific 16.4 United States 109.2 Selected States New York 7.0 Florida 6.7 Texas 7.6 California 12.0 Note(s): Source(s): 1) Respondents were shown pictures of different types of window glass and were asked "Which picture best describes the type

  9. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    7 Nonresidential Window Stock and Sales, by Glass Type Existing U.S. Stock Vision Area of New Windows (Million Square Feet) Type (% of buildings) 1995 2001 2003 2005 2007 2009 Single Pane 56 57 48 56 60 48 Insulating Glass (1) 294 415 373 407 476 389 Total 350 472 421 463 536 437 Clear 36% 49% 43% 44% 38% 33% Tinted 40% 24% 17% 15% 11% 10% Reflective 7% 8% 6% 4% 3% 3% Low-e 17% 19% 34% 37% 48% 54% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): (2) 1) Includes double- and

  10. Apparatus for preventing particle deposition from process streams on optical access windows

    DOE Patents [OSTI]

    Logan, Ronald G.; Grimm, Ulrich

    1993-01-01

    An electrostatic precipitator is disposed inside and around the periphery of the window of a viewing port communicating with a housing through which a particle-laden gas stream is being passed. The precipitator includes a pair of electrodes around the periphery of the window, spaced apart and connected to a unidirectional voltage source. Application of high voltage from the source to the electrodes causes air molecules in the gas stream to become ionized, attaching to solid particles and causing them to be deposited on a collector electrode. This prevents the particles from being deposited on the window and keeps the window clean for viewing and making optical measurements.

  11. Promising Technology: R-5 Window Replacements

    Broader source: Energy.gov [DOE]

    A significant amount of the energy used to heat and cool commercial buildings is lost through inefficient windows. Incorporating windows into a building that are resistant to heat transfer can significantly reduce the amount of energy that is lost through windows. R-values are an indication of how resistant a window is to heat transfer, and a larger R-value indicates a more insulating window. An R-5 window represents an efficient window, and has a larger R-value than what is required to qualify for ENERGY STAR.

  12. Windows, Doors, and Skylights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, and Skylights Windows, Doors, and Skylights Choose energy efficient windows to reduce energy bills and improve the comfort of your home. | Photo courtesy of FSEC/IBACOS. Choose energy efficient windows to reduce energy bills and improve the comfort of your home. | Photo courtesy of FSEC/IBACOS. Windows, doors, and skylights-also known as fenestration-are significant components in a home's envelope. Ensuring they are as energy efficient as possible can save energy; reduce heating,

  13. Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Windows Energy-Efficient Windows Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

  14. R-5 Highly-Insulating Windows and Low-e Storm Windows Volume Purchase Program

    SciTech Connect (OSTI)

    2009-09-30

    Introduces DOE's Building Technologies fenestration RD&D program, and describes the highly insulated R-5 Windows and Low-e Storm Windows Volume Purchase solicitation.

  15. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

  16. Windows come to the workstation

    SciTech Connect (OSTI)

    Upton, M.

    1984-04-11

    Those making major buying decisions about software packages face a difficult process. The author looks at specific features, including windows and integrated packages. Everyone aspiring to be anyone in the packaged software business is touting an integrated system. Integrated software means a lot of things to a lot of people, but three hierarchical levels seem to stand out: the data integration level, the command structure level, and the modeless (or seamless) level.

  17. Energy Savings from Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler

  18. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution

    SciTech Connect (OSTI)

    Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.

    2011-03-16

    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

  19. Vacuum Insulation for Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The target is to achieve an R-20 film that can be applied to existing windows. With the life expectancy of installed windows being greater than 30 years, decades and tens of ...

  20. Rolling, Rolling, Rolling: Roller Window Shades

    Broader source: Energy.gov [DOE]

    There's a lot of talk these days about installing new energy-efficient windows. Thanks to a Federal tax credit of up to $1,500, window advertisements, both print and radio and TV broadcasting, are aplenty.

  1. Making Smart Windows Smarter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Deputy Assistant Secretary for Renewable Power (Acting) What does this project do? Pleotint, LLC has developed a

  2. Windows and Building Envelope | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Windows and Building Envelope About the Portfolio Next-generation windows and building envelope technologies have substantial technical potential to reduce energy consumption in buildings. However, to make significant progress toward the program goal, any next-generation technologies must be developed with a specific emphasis on achieving a market-acceptable installed cost to facilitate mass-market adoption. Activities in windows and building envelope will focus on

  3. Window, Door, and Skylight Products and Services | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Doors, and Skylights ENERGY STAR Learn how to save energy by sealing your home and choosing ENERGY STAR windows, doors, and skylights. Window Selection Tool Efficient Windows...

  4. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  5. Research and Development Roadmap: Windows and Building Envelope...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Development Roadmap: Windows and Building Envelope Research and Development Roadmap: Windows and Building Envelope Cover of windows and envelope report, depicting a house, ...

  6. Low-Cost Solutions for Dynamic Window Material | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions for Dynamic Window Material Low-Cost Solutions for Dynamic Window Material ... More Documents & Publications Atmospheric Pressure Deposition for Electrochromic Windows ...

  7. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...

  8. Energy Performance Ratings for Windows, Doors, and Skylights...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights Before you shop for energy-efficient windows, doors, and ...

  9. Purged window apparatus utilizing heated purge gas

    DOE Patents [OSTI]

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  10. Rigid thin windows for vacuum applications

    DOE Patents [OSTI]

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  11. METHOD OF LOCATING GROUNDS

    DOE Patents [OSTI]

    Macleish, K.G.

    1958-02-11

    ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.

  12. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  13. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  14. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  15. Laser sealed vacuum insulating window

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  16. Laser sealed vacuum insulation window

    DOE Patents [OSTI]

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  17. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    2 Residential Storm Window and Door Shipments, by Frame Type (Million Units) Type 1990 2000 2005 2008 1990 2000 2005 2008 1990 2000 2005 2008 Aluminum 10 8 7 N/A 2 4 4 3 12 12 11 N/A Wood 0 0 0 N/A 0 0 0 0 0 0 0 N/A Other (1) 1 2 2 N/A 0 1 2 1 1 4 4 N/A Total (2) 11 11 9 N/A 2 6 6 4 13 16 15 N/A Note(s): Windows Doors Total 1) Other includes metal over wood/foam core or vinyl, etc. 2) Due to rounding, sums may not add up to totals. Source(s): AAMA/NWWDA, Industry Statistical Review and Forecast

  18. Windows, Doors, & Skylights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, & Skylights Windows, Doors, & Skylights Installing storm windows keep your home warm in the winter and cool in the summer while also lowering your energy bills by up to $350 a year. <a href="/node/797126" target="_blank">Start saving today by following a step-by-step guide in our new DIY Savings Project</a>. Installing storm windows keep your home warm in the winter and cool in the summer while also lowering your energy bills by up to $350

  19. Energy-Efficient Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this...

  20. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012...

  1. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Collaborate with industry partners to improve ... value of energy efficiency Codes and Standards * Establish ... cost premium compared to standard IGU: Windows: <8ft 2 ...

  2. Advances in window technology: 1973-1993

    SciTech Connect (OSTI)

    Arasteh, D.

    1994-12-31

    Until the 1970s, the thermal performance of windows and other fenestration technologies was rarely of interest to manufacturers, designers, and scientists. Since then, however, a significant research and industry effort has focused on better understanding window thermal and optical behavior, how windows influence building energy patterns, and on the development of advanced products. This chapter explains how fenestration technologies can make a positive impact on building energy flows, what physical phenomena govern window heat and light transfer, what new products have been developed, and what new products are currently the subject of international research efforts. 44 refs., 30 figs., 3 tabs.

  3. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings Addthis 1 of 5 An oxygen plasma etcher is ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  4. Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fraction of incoming solar radiation through a window, reflective coatings reduce the transmission of solar radiation, and spectrally selective coatings filter out 40% to 70%...

  5. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  6. High Performance Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Window Attachments High Performance Window Attachments Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech20_curcija_040413.pdf More Documents & Publications Fenestration Software Tools Advanced Facades, Daylighting, and Complex Fenestration Systems OpenStudio - 2013 Peer Review

  7. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    1 Residential Prime Window Sales, by Frame Type (Million Units) (1) New Construction 1990 1995 2000 2005 2007 2009 Remodeling/Replacement 1990 1995 2000 2005 2007 2009 Total Construction 1990 1995 2000 2005 2007 2009 Note(s): Source(s): AAMA, Industry Statistical Review and Forecast 1992, 1993 for Note 2; AAMA/NWWDA, Industry Statistical Review and Forecast 1996, 1997, Table 6, p. 6 for 1990; AAMA/WDMA, 2000 AAMA/WDMA Industry Statistical Review and Forecast, Feb. 2001, p. 6 for 1995; 2003

  8. MiniBooNE as realated to "Window's on the Universe"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Windows on the Universe" Ray Stefanski Fermilab Blois 2009 Windows on the Universe June 22, 2009 Outline: Introduction Current Status New Results Expectations Summary June 22, 2009 Blois 2009 Windows on the Universe 2 Introduction                 : nce disappeara : appearance s experiment n oscillatio e e   MiniBooNE   SciBooNE accelerator sources stopped muons @ LANL -> LSND BNB @ FNAL -> MiniBooNE -> SciBooNE NuMI

  9. Purchasing Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in ...

  10. Supersymmetric Dualities beyond the Conformal Window

    SciTech Connect (OSTI)

    Spiridonov, V. P.; Vartanov, G. S.

    2010-08-06

    Using the superconformal (SC) indices techniques, we construct Seiberg type dualities for N=1 supersymmetric field theories outside the conformal windows. These theories are physically distinguished by the presence of chiral superfields with small or negative R charges.

  11. NREL Electrochromic Window Research Wins Award

    SciTech Connect (OSTI)

    2011-01-01

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  12. Window Replacement, Rehabilitation, & Repair Guides - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effec guid-window repair.jpg This Top Innovation describes research by Building Science Corporation to determine that whole-house energy savings of up to 10% can be achieved ...

  13. NREL Electrochromic Window Research Wins Award

    ScienceCinema (OSTI)

    None

    2013-05-29

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  14. T-596: 0-Day Windows Network Interception Configuration Vulnerability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 96: 0-Day Windows Network Interception Configuration Vulnerability T-596: 0-Day Windows Network Interception Configuration Vulnerability April 6, 2011 - 5:48am Addthis PROBLEM: 0-Day exploit of IPv4 and IPv6 mechanics and how it applies to Microsoft Windows Operating systems. PLATFORM: Microsoft Operating Systems (OS) Windows Vista, Windows 7, and Windows 2008 Server ABSTRACT: The links below describe a parasitic IPv6 layered over a native IPv4 network. This attack can

  15. Windows and Building Envelope Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Facilities Windows and Building Envelope Facilities Addthis LBNL&#039;s Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to measure thermal, daylighting, and occupant impacts of advanced window technologies. In this setup, LBNL staff are evaluating a heat recovery/ ventilation unit (left), a switchable electrochromic window (middle), and a

  16. High-Efficiency Window Air Conditioners - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for spot cooling and for installing air conditioning into homes that lack ductwork. However, window air conditioners have low

  17. Windows and Building Envelope Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Windows and Building Envelope » Windows and Building Envelope Facilities Windows and Building Envelope Facilities LBNL&#039;s Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to measure thermal, daylighting, and occupant impacts of advanced window technologies. In this setup, LBNL staff are evaluating a heat recovery/ ventilation unit (left), a

  18. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparency: it's not just for windows Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012 Intellus environmental data The same environmental data used by LANL scientists can be viewed by anyone, anytime. Contact Environmental Communications & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The new system contains more than 9 million

  19. New High-Efficiency Window Prototype Result of DOE Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Quicker with New Tool "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Making Smart Windows Smarter

  20. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability August...

  1. New Window on Primordial Non-Gaussianity (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    New Window on Primordial Non-Gaussianity Citation Details In-Document Search Title: New Window on Primordial Non-Gaussianity Authors: Pajer, Enrico ; Zaldarriaga, Matias ...

  2. Diffraction scattering computed tomography: a window into the...

    Office of Scientific and Technical Information (OSTI)

    tomography: a window into the structures of complex nanomaterials Citation Details In-Document Search Title: Diffraction scattering computed tomography: a window into the ...

  3. Pennsylvania: New Series of Windows Has Potential to Save Energy...

    Office of Environmental Management (EM)

    New Series of Windows Has Potential to Save Energy for Commercial Buildings Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings March 6, 2014...

  4. Energy Savings from Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon energysavingsfromwindowsattachments.pdf More Documents & Publications Fenestration Software Tools Residential Windows and Window Coverings: A Detailed View of the ...

  5. Windows and Building Envelope Overview - 2015 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Overview - 2015 BTO Peer Review Windows and Building Envelope Overview - 2015 BTO Peer Review Presenter: Bahman Habibzadeh, U.S. Department of Energy ...

  6. Energy-Efficient Window Treatments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Treatments September 25, 2012 - 9:04am Addthis The awnings on this home shade the windows and generate electricity. | Photo courtesy of iStockphoto...

  7. Evaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.

    2013-09-26

    In an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is non-consumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHP is a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive use metrics may need to be used for permit applications. For consumptive use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a non-consumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results of this study showed that the analytical techniques with idealized radial flow were generally unsuited because they over predicted the influence of the well system. The numerical techniques yielded more reasonable results because they could account for aquifer heterogeneities and flow boundaries. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories. The capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a non-consumptive GHP assessment.

  8. The Open Host Network Packet Process Correlator for Windows

    Energy Science and Technology Software Center (OSTI)

    2014-06-17

    The Hone sensors are packet-process correlation engines that log the relationships between applications and the communications they are responsible for. Hone sensors are available for a variety of platforms including Linux, Windows, and MacOSX. Hone sensors are designed to help analysts understand the meaning of communications on a deeper level by associating the origin or destination process to the communication. They do this by tracing communications on a per-packet basis, through the kernel of themore » operating system to determine their ultimate source/destination on the monitored machine.« less

  9. Microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  10. Highly Insulating Residential Windows Using Smart Automated Shading

    Broader source: Energy.gov [DOE]

    Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

  11. Nanolens Window Coatings for Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanolens Window Coatings for Daylighting Nanolens Window Coatings for Daylighting Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech18_alvine_040413.pdf More Documents & Publications Dynamically Responsive Infrared Window Coatings Advanced Facades, Daylighting, and Complex Fenestration Systems Window Daylighting Demo

  12. Tips for Daylighting with Windows

    SciTech Connect (OSTI)

    Robinson, Alastair; Selkowitz, Stephen

    2013-10-01

    These guidelines provide an integrated approach to the cost-effective design of perimeter zones in new commercial buildings and existing building retrofits. They function as a quick reference for building designers, through a set of easy steps and rules-of-thumb, emphasizing “how-to” practical details. References are given to more detailed sources of information, should the reader wish to go further. The design method used in this document emphasizes that building decisions should be made within the context of the whole building as a single functioning system rather than as an assembly of distinct parts. This integrated design approach looks at the ramifications of each individual system decision on the whole building. For example, the decision on glazing selection will have an effect on lighting, mechanical systems, and interior design. Therefore, the entire design team should participate and influence this glazing decision—which typically rests with the architect alone. The benefit of an integrated design approach is a greater chance of success towards long-term comfort and sustained energy savings in the building.

  13. Integral window hermetic fiber optic components

    SciTech Connect (OSTI)

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  14. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A.

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  15. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  16. Solar optical materials for innovative window design

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-08-01

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  17. Window for radiation detectors and the like

    DOE Patents [OSTI]

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  18. Windows and Building Envelope Overview - 2015 BTO Peer Review | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Windows and Building Envelope Overview - 2015 BTO Peer Review Windows and Building Envelope Overview - 2015 BTO Peer Review Presenter: Bahman Habibzadeh, U.S. Department of Energy View the Presentation PDF icon Windows and Building Envelope Overview - 2015 BTO Peer Review More Documents & Publications Window and Envelope Technologies Overview - 2014 BTO Peer Review Windows and Envelope Subprogram Overview - 2016 BTO Peer Review 2014 Building Technologies Office Program Peer

  19. Atmospheric Pressure Deposition for Electrochromic Windows | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Atmospheric Pressure Deposition for Electrochromic Windows Atmospheric Pressure Deposition for Electrochromic Windows Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech22_tenent_040413.pdf More Documents & Publications NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Dynamic Windows Low-Cost Solutions for Dynamic Window Material CX-003799:

  20. Interior and Exterior Low-E Storm Window Installation

    SciTech Connect (OSTI)

    Witters, Sarah

    2014-09-03

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings. A new and improved low-e storm window boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement. A recent whole-home experiment performed by PNNL suggests that attaching low-e storm windows can result in as much energy savings replacing the windows.

  1. Research and Development Roadmap: Windows and Building Envelope |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Development Roadmap: Windows and Building Envelope Research and Development Roadmap: Windows and Building Envelope Cover of windows and envelope report, depicting a house, storefront, and multiple office windows. This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the

  2. Neutron source

    DOE Patents [OSTI]

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  3. Determining window solar heat gain coefficient

    SciTech Connect (OSTI)

    Harrison, S.J.; Wonderen, S.J. van . Solar Calorimetry Lab.)

    1994-08-01

    The solar heat gain characteristics of fenestration systems impact daytime building energy performance, occupant comfort and utility load demands. A measure of the fraction of available solar energy entering a building interior per unit window area is defined as the solar heat gain coefficient (SHGC). Together with a window's thermal transmittance (U-value), the SHGC is used to compare fenestration products, and it allows for the calculation of energy rating number and annual energy performance. The need to measure and compared advances in window technology has led to the development of experimental and analytical methods for the determination of SHGC performance. Several test facilities currently or previously capable of performing SHGC measurements exist worldwide. Results experimentally determined using these facilities have provided design data for handbook tables, and have been instrumental in the development and validation of predictive analytical methods and computer simulation tools. However, these facilities have operated without a standard test procedure for SHGC performance. Consequently, recent efforts have been focused on developing consensus test procedures for the evaluation of window energy performance.

  4. Predicting Electrochemical Windows of Nitrogen Containing Aromatic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecules - Joint Center for Energy Storage Research October 20, 2014, Research Highlights Predicting Electrochemical Windows of Nitrogen Containing Aromatic Molecules Various nitrogen containing aromatic base molecules and a descriptive relationship derived to predict their reduction potentials is shown. Scientific Achievement A descriptive relationship is derived for computing reduction potentials of quinoxaline derivatives from the orbital energies of the neutral molecules without

  5. Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior SEPTEMBER 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: D&R International, Ltd. September 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: D&R International, Ltd. 1300 Spring Street, Suite 500 Silver Spring, MD 20910

  6. Israel: A Source of Innovation for GE |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Israel: A Source of Innovation for GE Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Israel: A Source of Innovation for GE Oded Meirav 2014.05.22 Unlike other research organizations within GE Global Research, my team is not tasked with developing technology for GE's businesses. Instead...we hunt! Our job is to identify

  7. Residential Ground-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Project sites must be located in a utility territory that contributes to the Renewable Energy Trust Fund (National Grid, Eversource, Unitil, and municipal light plants that have agreed to pay int...

  8. Environmentally Benign Electrolytes With Wide Electrochemical Windows -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Environmentally Benign Electrolytes With Wide Electrochemical Windows DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing SummaryAs mobile electronics continue to evolve, the need for safe, long-lasting rechargeable batteries has grown tremendously. In the search for suitable materials from which to construct high energy density solid state batteries, one of the principal obstacles has

  9. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  10. Energy and Power Evaluation Program for Windows

    Energy Science and Technology Software Center (OSTI)

    2000-06-27

    ENPEP for windows has its origins in the DOS version of the software, however, the Windows release is significantly modified and rather different in structure and capabilities from the older DOS version of ENPEP. ENPEP for Windows provides the user with a graphical interface for designing a comprehensive model of the energy system of a country or region. The BALANCE submodel processes a representative network of all energy production, conversion, transport, distribution, and utilization activitiesmore » in a country (or region) as well as the flows of energy and fuels among these activities. The objective of the model is to simulate energy market and determine energy supply and demand balance over a long-term period of up to 75 years. The environmental aspect is also taken into account by calculating the emissions of various pollutants. In addition to the energy costs, the environmental costs are also calculated by the model. These costs can be used to affect the solution found by the market equilibrium algorithm. The main purpose of the software is to provide analytical capability and tools for the various analyses of energy and environmental systems, as well as for development of long-term energy strategy of a country or region.« less

  11. Numerical prediction of window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.G.

    1995-08-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining windows U-factors (EE 1983; Goss and Curcija 1994; Standaert 1985; CSA 1993a; NFRC 1991), there has been little work to data on using numerical methods to predict condensation potential. It is perhaps of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a precursor to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building material, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products as part of its mandate from the US Department of Energy (DOE). A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing to reduce the cost and time required for implementation and increase the flexibility of the rating method. This paper outlines one of the necessary components in the application of numerical methods for evaluating condensation in fenestration products. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products.

  12. Updating the Doors and Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace...

  13. New Window Technology Saves Energy and the View | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National...

  14. Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  15. Energy Performance Ratings for Windows, Doors, and Skylights...

    Energy Savers [EERE]

    The NFRC label can be found on all ENERGY STAR qualified window, door, and skylight ... U-factor is the rate at which a window, door, or skylight conducts non-solar heat flow. ...

  16. EERE Success Story-Pennsylvania: Window Technology First of Its...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows play a significant role in a building's energy use; in 2010, 2.55 quads of energy were lost through windows-the equivalent of more than 20 billion gallons of gasoline. In ...

  17. My Energy Audit, Part 2: Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    My Energy Audit, Part 2: Windows My Energy Audit, Part 2: Windows July 9, 2012 - 1:48pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Last time I wrote ...

  18. EERE Success Story-Energy-Efficient Smart Windows are Lowering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Smart Windows are Lowering Energy Costs EERE Success Story-Energy-Efficient Smart Windows are Lowering Energy Costs September 9, 2015 - 12:11pm Addthis Low-E ...

  19. Windows and Envelope Subprogram Overview - 2016 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Windows and Envelope Subprogram Overview - 2016 BTO Peer Review Windows and Envelope Subprogram Overview - 2016 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office's Windows and Envelope Subprogram. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. PDF icon 2016 BTO Peer Review Presentation-Windows and

  20. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  1. Window, Door, and Skylight Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR®

  2. Strategic Ground Delivery Services | Department of Energy

    Energy Savers [EERE]

    Ground Delivery Services Strategic Ground Delivery Services PDF icon Use of New Strategically Source Agreement UPS.pdf.pdf More Documents & Publications Minutes from the Print and Mail Managers Exchange Forum Teleconferences Microsoft Word - Rev5functionalaccountabilityimplementationplan..doc Microsoft Word - propertyfallnewsletter.doc

  3. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  4. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  5. Ground water and energy

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  6. Ground difference compensating system

    DOE Patents [OSTI]

    Johnson, Kris W.; Akasam, Sivaprasad

    2005-10-25

    A method of ground level compensation includes measuring a voltage of at least one signal with respect to a primary ground potential and measuring, with respect to the primary ground potential, a voltage level associated with a secondary ground potential. A difference between the voltage level associated with the secondary ground potential and an expected value is calculated. The measured voltage of the at least one signal is adjusted by an amount corresponding to the calculated difference.

  7. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  8. Renewable Energy Opportunities at Yuma Proving Ground, Arizona

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Dixon, Douglas R.

    2010-06-30

    This document provides an overview of renewable resource potential at Yuma Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations.

  9. How Have You Improved the Efficiency of Your Windows? | Department of

    Energy Savers [EERE]

    Energy Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each

  10. Ground-Water Table and Chemical Changes in an Alluvial Aquifer During

    Energy Savers [EERE]

    Ground Source Heat Pump System Data Analysis Ground Source Heat Pump System Data Analysis Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech16_liu_040313.pdf More Documents & Publications Three new/under-utilized ground loop designs being evaluated for their ground loop cost reduction potential<br /> Credit: Oak Ridge National Lab Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings Oak Ridge City Center

  11. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  12. Single level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  13. Bi-level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  14. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 66% 25.2 100% 1990 4.9 14% 12.0 34% 18.7 53% 35.6 100% 1993 2.8 14% 17.2 84% 0.4 2% 20.4 100% 1995 5.5 12% 37.8 85% 1.3 3% 44.5 100% 1999 4.8 8% 55.2 89% 2.0 3% 62.0 100% 2001 3.9 7% 50.9 90% 1.5 3% 56.3 100% 2003 4.7 7% 55.9 89% 2.2 4% 62.8 100% 2005 4.2 6% 63.8 91% 2.5 3% 70.5 100% 2007 2.7 5% 55.0 93% 1.4 2% 59.1 100% 2009 1.6 4% 36.2 93% 1.2 3% 38.9 100% Note(s): 1) IG = insulated glazing. Source(s):

  15. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  16. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  17. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  18. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  19. Low heat transfer, high strength window materials

    DOE Patents [OSTI]

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  20. Simulating Complex Window Systems using BSDF Data

    SciTech Connect (OSTI)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  1. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  2. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  3. Laboratory Performance Testing of Residential Window Mounted Air

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conditioners | Department of Energy Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon testing_residential_ariconditioners_booten_winkler.pdf More Documents & Publications Key Issues High-Efficiency Window Air Conditioners -

  4. Window and Envelope Technologies Overview - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Envelope Technologies Overview - 2014 BTO Peer Review Window and Envelope Technologies Overview - 2014 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Window and Envelope Technologies activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. View the Presentation PDF icon Window and

  5. Windows and Building Envelope Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market entry & acceptance of window & building envelope product installation Improve testing & modeling capabilities, including window design tools to enable market adoption Technology pathways & research reports Improve performance & cost of near-term technologies & reduce manufacturing costs Documented low cost infiltration measurement methods Competitively funded projects to model attachments in window software tools Government, standards & industry orgs. & EE

  6. 13-Energy Efficiency Ratio Window Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Energy Efficiency Ratio Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Credit: Oak Ridge National Lab Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT DOE Funding: $1,540,000 Cost Share: Provided by CRADA partners Project Term: October 1, 2011 - September 30, 2015 Project Objective This project is designing and developing a high-efficiency 13 energy-efficiecy-ratio (EER) window air

  7. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  8. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, David K.; Crandall, Richard S.; Deb, Satyendra K.; Stone, Jack L.

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  9. Covered Product Category: Residential Windows, Doors, and Skylights |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition guidance for residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display

  10. NERSC NX Service - X-Windows Acceleration at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NX NERSC NX Service - X-Windows Acceleration at NERSC Introduction NX is a computer program that handles remote X Window System connections and it provides three benefits for NERSC users: SPEED: NX can greatly improve the performance of X Windows, allowing users with slow, high latency connections (e.g. on cell phone network, traveling in Africa) to use complex X Windows programs (such as rotating a plot in Matlab). SESSION: NX provides sessions that allow a user to disconnect from the session

  11. Energy-Efficient Smart Windows are Lowering Energy Costs

    Broader source: Energy.gov [DOE]

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratoryare cutting energy cost for American families, businesses, institutions, and governments every year. With...

  12. Updating the Doors and Windows | Department of Energy

    Energy Savers [EERE]

    Updating the Doors and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace my windows like Andrea did recently (I've got a lot more of them for one thing), the next best thing is to be sure the existing ones-- which are double-paned, so that's a help-are well sealed. One of my energy audit recommendations was to caulk the window frames inside and out. My handyman friend Rob and

  13. A Tale of Three Windows: Part 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 October 17, 2012 - 12:37pm Addthis Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can’t be opened too far. | Photo courtesy of Andrea Spikes. Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can't be opened too far. | Photo courtesy of Andrea Spikes. Andrea Spikes Former Communicator at DOE's National

  14. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn more Video: Architecture, Engineering, and Construction (AEC) Hackathon PDF icon 2014 BTO Peer Review Presentation - Highly Insulating Residential Windows using Smart ...

  15. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, C.M.

    1996-04-16

    A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

  16. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, Clinton M.

    1996-01-01

    A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

  17. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Window and Envelope Technologies Overview - 2014 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided...

  18. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Window and Envelope Technologies activities. Through robust feedback, the BTO ...

  19. Windows and Envelope Subprogram Overview - 2016 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office's Windows and Envelope Subprogram. Through robust feedback, the BTO Program Peer ...

  20. Energy-Efficient Smart Windows are Lowering Energy Costs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratory are cutting energy cost for American families, businesses, institutions, and governments ...

  1. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  2. Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  3. Suntuitive(tm): Sunlight-Responsive Thermochromic Window Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Provides a thermochromic interlayer that can be supplied to laminators and window manufacturers worldwide. Contact Information Curtis Liposcak (608) 216-5373 CurtisL@pleotint.com ...

  4. RF-driven ion source with a back-streaming electron dump

    DOE Patents [OSTI]

    Kwan, Joe; Ji, Qing

    2014-05-20

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

  5. CROSS-POWER SPECTRUM AND ITS APPLICATION ON WINDOW FUNCTIONS IN THE WILKINSON MICROWAVE ANISOTROPY PROBE DATA

    SciTech Connect (OSTI)

    Chiang, Lung-Yih; Chen, Fei-Fan

    2011-09-10

    The cross-power spectrum is a quadratic estimator between two maps that can provide unbiased estimate of the underlying power spectrum of the correlated signals, which is therefore used for extracting the power spectrum in the Wilkinson Microwave Anisotropy Probe (WMAP) data. In this paper, we discuss the limit of the cross-power spectrum and derive the residual from the uncorrelated signal, which is the source of error in power spectrum extraction. We employ the estimator to extract window functions by crossing pairs of extragalactic point sources. We demonstrate its usefulness in WMAP difference assembly maps where the window functions are measured via Jupiter and then extract the window functions of the five WMAP frequency band maps.

  6. Sliding coherence window technique for hierarchical detection of continuous gravitational waves

    SciTech Connect (OSTI)

    Pletsch, Holger J.

    2011-06-15

    A novel hierarchical search technique is presented for all-sky surveys for continuous gravitational-wave sources, such as rapidly spinning nonaxisymmetric neutron stars. Analyzing yearlong detector data sets over realistic ranges of parameter space using fully coherent matched-filtering is computationally prohibitive. Thus more efficient, so-called hierarchical techniques are essential. Traditionally, the standard hierarchical approach consists of dividing the data into nonoverlapping segments of which each is coherently analyzed, and subsequently the matched-filter outputs from all segments are combined incoherently. The present work proposes to break the data into subsegments shorter than the desired maximum coherence time span (size of the coherence window). Then matched-filter outputs from the different subsegments are efficiently combined by sliding the coherence window in time: Subsegments whose timestamps are closer than coherence window size are combined coherently, otherwise incoherently. Compared to the standard scheme at the same coherence time baseline, data sets longer by about 50-100% would have to be analyzed to achieve the same search sensitivity as with the sliding coherence window approach. Numerical simulations attest to the analytically estimated improvement.

  7. Selected ground-water data for Yucca Mountain Region, Southern Nevada and Eastern California, through December 1997

    SciTech Connect (OSTI)

    La Camera, Richard J.; Locke, Glenn L.; Munson, Rodney H.

    1999-07-30

    Data on ground-water levels, discharges, and withdrawals from a variety of ground-water sources in the study area are reported for calendar year 1997.

  8. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  9. Electrochromic Window Demonstration- Donna Land Port of Entry

    Broader source: Energy.gov [DOE]

    Donna Project Plan: Electrochrome Window Demonstration Measurement and Verification Report This report details the measurement and verification tools and methods used to evaluate the effectiveness of electrochromic windows at the Donna Land Port of Entry, an international border crossing between the United States and Mexico located in Texas.

  10. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming; Wang, Jin

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  11. GE Scientists Source Best Ideas at hackMIT | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Source Best Ideas at hackMIT Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Scientists Source Best Ideas at hackMIT Joseph Salvo 2013.10.03 At MIT they're serious about "hacking" together ideas for innovation, invention, and new businesses. This weekend a team from GE Global Research and GE

  12. Electrical grounding prong socket

    DOE Patents [OSTI]

    Leong, Robert

    1991-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  13. COMPUTER SIMULATIONS OF WAVEGUIDE WINDOW AND COUPLER IRIS FOR PRECISION MATCHING

    SciTech Connect (OSTI)

    Lee, Sung-Woo; Kang, Yoon W; Shin, Ki; Vassioutchenko, Alexandre V

    2011-01-01

    A tapered ridge waveguide iris input coupler and a waveguide ceramic disk windows are used on each of six drift tube linac (DTL) cavities in the Spallation Neutron Source (SNS). The coupler design employs rapidly tapered double ridge waveguide to reduce the cross section down to a smaller low impedance transmission line section that can couple to the DTL tank easily. The impedance matching is done by adjusting the dimensions of the thin slit aperture between the ridges that is the coupling element responsible for the power delivery to the cavity. Since the coupling is sensitive to the dimensional changes of the aperture, it requires careful tuning for precise matching. Accurate RF simulation using latest 3-D EM code is desirable to help the tuning for maintenance and spare manufacturing. Simulations are done for the complete system with the ceramic window and the coupling iris on the cavity to see mutual interaction between the components as a whole.

  14. Multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  15. Measured water heating performance of a vertical-bore water-to-water ground source heat pump (WW-GSHP) for domestic water heating over twelve months under simulated occupancy loads

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2014-01-01

    This paper presents monthly performance metrics of a 5.275 kW (1.5 ton) WW-GSHP providing 227 L day-1 domestic hot water at 49 C. Daily water use is simulated as stipulated in the Building America Research Benchmark Definition capturing the living habits of the average U.S household. The 94.5m vertical-bore ground loop is shared with a separate GSHP for space conditioning the 251m2 residential home. Data on entering water temperatures, energy extracted from the ground, delivered energy, compressor electricity use, COP, WW-GSHP run times, and the impact of fan and pump energy consumption on efficiency are presented for each month. Factors influencing performance metrics are highlighted.

  16. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    3 Nonresidential Window Sales, by Type and Census Region (Million Square Feet of Vision Area) (1) Northeast Midwest South West Total Type 1995 2009 1995 2009 1995 2009 1995 2009 1995 2009 New Construction Commercial Windows (2) 4 15 16 22 21 58 13 25 54 120 Curtain Wall 3 10 6 16 16 41 8 18 33 84 Store Front 7 10 11 16 14 41 11 18 43 85 Total (3) 14 36 33 53 51 140 32 60 130 289 Remodeling/Replacement Commercial Windows (2) 18 12 25 17 46 45 27 19 116 93 Curtain Wall 4 2 6 3 8 7 10 3 28 15 Store

  17. Company Rehires Unemployed Workers for Energy Efficient Window Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down

  18. Window Company Booming from Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Company Booming from Retrofits Window Company Booming from Retrofits October 30, 2009 - 12:09pm Addthis Joshua DeLung Don't try telling John Haddon's family that Friday the 13th is unlucky. They have more reason to believe in divine intervention than luck. After buying Accu-Weld Feb. 13, 2009 - a windows and doors company that laid off 70 employees in 2008 - the business is doing great, thanks to the family's commitment to energy efficiency and the Recovery Act, signed into law just four

  19. Effect of window reflections on photonic Doppler velocimetry measurements

    SciTech Connect (OSTI)

    Ao, T.; Dolan, D. H.

    2011-02-15

    Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

  20. A HIGH-POWER L-BAND RF WINDOW

    SciTech Connect (OSTI)

    R. RIMMER; G. KOEHLER; ET AL

    2001-05-01

    This paper discusses the design, fabrication and testing of a high power alumina disk window in WR1500 waveguide at L Band, suitable for use in the NLC damping ring RF cavities at 714 MHz and the LEDA Accelerator at 700 MHz. The design is based on the fabrication methods used for the successful PEP-II cavity windows. Four prototype windows at 700 MHz have been produced by LBNL for testing at LANL. The RF design and simulation using MAFIA, laboratory cold test measurements, fabrication methods and preliminary high power test results are discussed.

  1. Fighting with South-Facing Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fighting with South-Facing Windows Fighting with South-Facing Windows June 13, 2011 - 3:20pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, back when it was cold out (and, this being Colorado, that was last month), my south-facing windows were awesome. They let in tons of light and kept the entire place snug and warm. I barely even needed to break out the blankets! But Colorado's weather likes to mess with you, so it recently decided that it was done with

  2. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  3. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  4. Residential Lighting Usage Estimate Tool, v1.0, Windows version...

    Energy Savers [EERE]

    Windows version Residential Lighting Usage Estimate Tool, v1.0, Windows version Windows version of the Residential Lighting Usage Estimate Tool, v1.0. Spreadsheet More Documents &...

  5. ARPA-E Announces $30 Million in Funding for Window Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to retrofit existing single-pane windows. "At ARPA-E, we invest in technology ... materials to insulate existing windows in cases where window replacement isn't feasible." ...

  6. Renewable Energy Opportunties at Dugway Proving Ground, Utah

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Horner, Jacob A.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Nesse, Ronald J.; Dixon, Douglas R.

    2010-05-31

    This document provides an overview of renewable resource potential at Dugway Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and ground source heat pumps (GSHPs). The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment.

  7. A Design Guide for Early-Market Electrochromic Windows

    SciTech Connect (OSTI)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

    2006-05-01

    Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

  8. Energy Performance Ratings for Windows, Doors, and Skylights...

    Broader source: Energy.gov (indexed) [DOE]

    the rate of air movement around a window, door, or skylight in the presence of a specific pressure difference across it. It's expressed in units of cubic feet per minute per square...

  9. Thermal and Lorentz Force Analysis of Beryllium Windows for the...

    Office of Scientific and Technical Information (OSTI)

    Title: Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel Reduction of the 6-dimensional phase-space of a muon beam by several orders ...

  10. Improving the Energy Efficiency of Existing Windows | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... material encased inside a wooden or metal frame that seals tightly against the ... windows, on the other hand, are typically composed of a thin but durable sheet of plastic. ...

  11. Multilayered Microelectronic Device Package With An Integral Window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  12. Repairing Windows & Doors: How To's for the Handy Homeowner

    SciTech Connect (OSTI)

    2006-01-05

    This brochure contains tips for homeowners to repair windows and doors in their home that sustained hurricane damage. This publication is a part of the How To's for the Handy Homeowner Series.

  13. Sealed symmetric multilayered microelectronic device package with integral windows

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.

  14. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings Addthis 1 of 3 A Heliotrope scientist prepares slot die coater for solution based deposition of electrochromic layer. Image: Heliotrope Technologies 2 of 3 A Heliotrope scientist investigates the coating quality of a slot die deposition of electrochromic layer. Image: Heliotrope Technologies 3 of 3 A Heliotrope scientist investigates the spray coater for a solution based deposition of electrochromic

  15. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of windows in buildings similar to the typical buildings. (author)

  16. Analysis of cavity and window for THz gyrotron

    SciTech Connect (OSTI)

    Alaria, Mukesh Kumar; Mukherjee, P.; Rao, R.R.; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in

    2011-07-01

    In this paper study of cavity and window has been carried out using Ansoft HFSS for Terahertz Gyrotron. Eigen mode analysis of the cavity has been carried out at 1 THz. An idea about the operating modes in the cavity of the Gyrotron and obtained the simulated Eigen frequency and field pattern of the modes. The design of window for 1 THz Gyrotron has also been carried out using HFSS. The simulated results have also been compared with ST microwave studio. (author)

  17. Turning Windows into Solar Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows into Solar Panels Turning Windows into Solar Panels March 7, 2016 - 3:23pm Addthis UV light shines through a sample of transparent material containing quantum dots, tiny nanoparticles that can be used to harness solar energy for electricity. | Photo courtesy of LANL. UV light shines through a sample of transparent material containing quantum dots, tiny nanoparticles that can be used to harness solar energy for electricity. | Photo courtesy of LANL. Victor Klimov Los Alamos National

  18. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings 1 of 3 A Heliotrope scientist prepares slot die coater for solution based deposition of electrochromic layer. Image: Heliotrope Technologies 2 of 3 A Heliotrope scientist investigates the coating quality of a slot die deposition of electrochromic layer. Image: Heliotrope Technologies 3 of 3 A Heliotrope scientist investigates the spray coater for a solution based deposition of electrochromic layer. Image:

  19. Radiometer Calibration and Characterization (RCC) User's Manual: Windows

    Office of Scientific and Technical Information (OSTI)

    Version 4.0 (Technical Report) | SciTech Connect Technical Report: Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0 Citation Details In-Document Search Title: Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0 The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of

  20. Separation of High Order Harmonics with Fluoride Windows

    SciTech Connect (OSTI)

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  1. Performance of a multifunctional PV/T hybrid solar window

    SciTech Connect (OSTI)

    Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern

    2010-03-15

    A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

  2. Application of Standard Maintenance Windows in PHWR Outage

    SciTech Connect (OSTI)

    Fuming Jiang [Third Qinshan Nuclear Power Company, Ltd. (China)

    2006-07-01

    The concept of Standard Maintenance Windows has been widely used in the planned outage of light water reactor in the world. However, due to the specific feature of Pressurized Heavy Water Reactor (PHWR), it has not come to a consensus for the PHWR owners to adopt Standard Maintenance Windows for planned outage aiming at the optimization of outage duration. Third Qinshan Nuclear Power Company (TQNPC), with their experience gained in the previous outages and with reference to other PHWR power plants, has identified a set of Standard Maintenance Windows for planned outage. It can be applied to similar PHWR plants and with a few windows that are specific to Qinshan Phase III NPP. The use of these Standard Maintenance Windows in planned outage has been proved to be effective in control shutdown nuclear safety, minimize the unavailability of safety system, improve the efficient utilization of outage duration, and improved the flexibility of outage schedule in the case of emergency issue, which forced the revision of outage schedule. It has also formed a solid foundation for benchmarking. The identification of Standard Maintenance Windows and its application will be discussed with relevant cases for the common improvement of outage duration. (author)

  3. T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sessions | Department of Energy 7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions September 27, 2011 - 8:00am Addthis PROBLEM: Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Windows

  4. Microsoft PowerPoint - Window_Attachments-Webinar-Oct_28_2015...

    Energy Savers [EERE]

    Building America Energy Savings from Window Attachments: Please Mind the Gap Moderator: ... an economist with PNNL and team lead of Building America's Window Attachments Program. Ms. ...

  5. EERE Success Story-Pennsylvania: New Series of Windows Has Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Series of Windows Has Potential to Save Energy for Commercial Buildings EERE Success Story-Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial ...

  6. A Homeowners Guide to Window Air Conditioner Installation for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Window air conditioners (ACs) are an inexpensive alternative to central systems, and are ... The study showed that window AC installation resulted in signifcant air ...

  7. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect (OSTI)

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 2040 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, ?2 to ?4 kV, and 0 kV, respectively. The total ion beam current of 3040 mA is recorded on Faraday cup at 40 keV of beam energy at 6001000 W of microwave power, 8001000 G axial magnetic field and (1.23.9) 10{sup ?3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  8. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  9. DC source assemblies

    DOE Patents [OSTI]

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  10. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect (OSTI)

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  11. A first-generation prototype dynamic residential window

    SciTech Connect (OSTI)

    Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

    2004-10-26

    We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

  12. Highly Insulating R-5 Windows Volume Purchase - How Utilities Can Participate Fact Sheet

    SciTech Connect (OSTI)

    2010-03-01

    This fact sheet describes DOEs Windows Volume Purchase, the benefits of highly insulated R-5 windows and low-e storm windows, and the important role that utilities can play in expanding the market for these highly insulated windows.

  13. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  14. Programmatic Environmental Impact Statement for Ground Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground ...

  15. Radiation damage in diagnostic window materials for the TFTR

    SciTech Connect (OSTI)

    Primak, W.

    1981-07-01

    The general problem of evaluating diagnostic window materials for the TFTR at the tank wall location is described. Specific evaluations are presented for several materials: vitreous silica, crystal quartz, sapphire, zinc selenide, and several fluorides: lithium fluoride, magnesium fluoride, and calcium fluoride; and seal glasses are discussed. The effects of the neutrons will be minimal. The major problems arise from the high flux of ionizing radiation, mainly the soft x rays which are absorbed near the surface of the materials. Additionally, this large energy deposition causes a significant thermal pulse with attendant thermal stresses. It is thus desirable to protect the windows with cover slips where this is feasible or to reduce the incident radiation by mounting the windows on long pipes. A more detailed summary is given at the end of this report.

  16. Method of making an integral window hermetic fiber optic component

    DOE Patents [OSTI]

    Dalton, Rick D.; Kramer, Daniel P.; Massey, Richard T.; Waker, Damon A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  17. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  18. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-01-01

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  19. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  20. Method of making an integral window hermetic fiber optic component

    DOE Patents [OSTI]

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.

  1. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  2. Thermal and Optical Properties of Low-E Storm Windows and Panels

    SciTech Connect (OSTI)

    Culp, Thomas D.; Widder, Sarah H.; Cort, Katherine A.

    2015-07-17

    Installing low-emissivity (low-E) storm windows and panels over existing windows has been identified as a cost-effective new approach for improving the energy efficiency of existing buildings where window replacement is impractical or too expensive. As such, it is desirable to characterize the key energy performance properties of low-E storm windows and panels when installed over different types of existing primary windows. this paper presents the representative U-factors, solar heat gain coefficients (SGHCs) and visible transmittance properties of the combined assemblies of various storm windows and panel types installed over different primary windows.

  3. Application issues for large-area electrochromic windows incommercial buildings

    SciTech Connect (OSTI)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT) displays. However, window and architectural design as well as electrochromic control options are suggested as methods to broaden the applicability of electrochromics for commercial buildings. Without further modification, its applicability is expected to be limited during cold winter periods due to its slow switching speed.

  4. Highly insulating Residential Windows Using Smart Automated Shading

    Energy Savers [EERE]

    Highly insulating Residential Windows Using Smart Automated Shading 2015 Building Technologies Office Peer Review Robert Hart, rghart@lbl.gov Stephen Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Kevin Gaul, GaulKJ@pella.com Pella Corporation Project Summary Timeline: Start date: 04/01/2013 Planned end date: 03/31/2016 Key Milestones 1. Measured thermal performance of static prototype windows is within 0.03 Btu/hr-ft2F (NFRC tolerance) of design specifications 09/30/2014

  5. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  6. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  7. High-power RF window and coupler development for the PEP-II B Factory

    SciTech Connect (OSTI)

    Neubauer, M.; Fant, K.; Hodgson, J.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1995-05-01

    We describe the fabrication and testing of the RF windows designed to transmit power to the PEP-II 476 MHz cavities. Design choices to maximize the reliability of the window are discussed. Fabrication technologies for the window are described and finite-element analysis of the assembly process is presented. Conditioning and high-power testing of the window are discussed. Design of the coupler assembly including the integration of the window and other components is reported.

  8. Building America Top Innovations 2013 Profile … Window Replacement, Rehabilitation, & Repair Guide

    Energy Savers [EERE]

    Window Replacement, Rehabilitation, & Repair Guide TOP INNOVATOR: BSC Old single-glazed windows have such low thermal resistance that their effect on the overall thermal resistance of the walls can be staggering. Building America recommends several ways to improve the performance of existing windows at varying price points. Owners of older homes who want to improve their homes' efficiency often conclude that window replacement is a necessary first step. They are right that windows can be a

  9. NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    013 Denver West Parkway Golden, CO 80401 303-275-3000 | www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Comprehensive performance tests lead to enhanced modeling capability and affordable methods to increase energy efficiency. Window air conditioners

  10. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; et al

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  11. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    SciTech Connect (OSTI)

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; Kleineberg, Ulf

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assisted interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.

  12. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Milliron, Delia; Selkowitz, Stephen

    2010-08-05

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  13. Covered Product Category: Residential Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  14. Drafty Windows: Is it Better to Insulate or Replace Them?

    Broader source: Energy.gov [DOE]

    I’ve lived in my condominium for several years, and though it naturally stays cooler in the summer (with all west-facing windows) I struggle to keep it warm in the winter without taking out a loan to pay utilities

  15. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  16. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Milliron, Delia; Selkowitz, Stephen

    2010-09-01

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  17. T-547: Microsoft Windows Human Interface Device (HID) Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer.

  18. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  19. Beam Fields in an Integrated Cavity, Coupler and Window Configuration

    SciTech Connect (OSTI)

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    In a multi-bunch high current storage ring, beam generated fields couple strongly into the RF cavity coupler structure when beam arrival times are in resonance with cavity fields. In this study the integrated effect of beam fields over several thousand RF periods is simulated for the complete cavity, coupler, window and waveguide system of the PEP-II B-factory storage ring collider. We show that the beam generated fields at frequencies corresponding to several bunch spacings for this case gives rise to high field strength near the ceramic window which could limit the performance of future high current storage rings such as PEP-X or Super B-factories.

  20. Grid Window Tests on an 805-MHz Pillbox Cavity

    SciTech Connect (OSTI)

    Torun, Y.; Moretti, A.

    2015-06-01

    Muon ionization cooling channel designs use pillbox shaped RF cavities for improved power efficiency and fine control over phasing of individual cavities. For minimum scattering of the muon beam, the ends should be made out of a small thickness of high radiation length material. Good electrical and thermal conductivity are required to reduce power dissipation and remove the heat efficiently. Thin curved beryllium windows with TiN coating have been used successfully in the past. We have built an alternative win- dow set consisting of grids of tubes and tested these on a pillbox cavity previously used with both thin Be and thick Cu windows. The cavity was operated with a pair of grids as well as a single grid against a flat endplate.

  1. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, P.R.; Shapira, H.B.

    1979-12-07

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  2. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, Paul R.; Shapira, Hanna B.

    1981-01-01

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  3. Performance prediction using geostatistics and window reservoir simulation

    SciTech Connect (OSTI)

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite. Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.

  4. X-ray Induced Quasiparticles: New Window on Unconventional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconductivity | U.S. DOE Office of Science (SC) X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594

  5. ORGBUG -- A windows-based combinatorial geometry debugger

    SciTech Connect (OSTI)

    Burns, T.J.

    1993-06-01

    ORGBUG is the second half of a two part graphical display and debugging system for combinatorial geometry. The first part of the system consists of a ``view`` generator, CGVIEW. ORGBUG itself is a Microsoft Windows-based application designed to run on a 386 personal computer and to display the ``view`` produced by CGVIEW as an aid to debugging. ORGBUG also includes specific tools to facilitate the identification of geometric features which are inconsistent or in error.

  6. ORGBUG -- A windows-based combinatorial geometry debugger

    SciTech Connect (OSTI)

    Burns, T.J.

    1993-06-01

    ORGBUG is the second half of a two part graphical display and debugging system for combinatorial geometry. The first part of the system consists of a view'' generator, CGVIEW. ORGBUG itself is a Microsoft Windows-based application designed to run on a 386 personal computer and to display the view'' produced by CGVIEW as an aid to debugging. ORGBUG also includes specific tools to facilitate the identification of geometric features which are inconsistent or in error.

  7. Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of Americas commercial building space.

  8. EERE Success Story-Performance Validation of Low-e Storm Windows...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Installing a low-e storm window over a low performing window can reduce a home's heating ... us the confidence to pursue a technology proving project pilot program in our district. ...

  9. Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows...

    Office of Scientific and Technical Information (OSTI)

    Thin Film Windows toControl Photoactive Biological Systems. Citation Details In-Document Search Title: Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl ...

  10. How Do You Use Daylighting While Reducing Excess Heat from Windows...

    Office of Environmental Management (EM)

    Use Daylighting While Reducing Excess Heat from Windows? How Do You Use Daylighting While Reducing Excess Heat from Windows? June 16, 2011 - 7:30am Addthis On Monday, Elizabeth ...

  11. New Window Technology Saves Energy and the View | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve

  12. EERE Success Story-Pennsylvania: New Series of Windows Has Potential to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Save Energy for Commercial Buildings | Department of Energy New Series of Windows Has Potential to Save Energy for Commercial Buildings EERE Success Story-Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings March 6, 2014 - 4:10pm Addthis The project is being administered by BTO's Emerging Technologies Program. It is the first R-5 window series for the commercial buildings sector that also surpasses the highly-efficient requirements for R-5 windows. The

  13. Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frost | Department of Energy Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost January 17, 2012 - 4:25pm Addthis The frost patterns on your window might be pretty, but they're not helping you save any energy. Energy efficient windows provide an effective barrier from inclement weather. | Photo courtesy of <a

  14. Department of Energy Announces 14 New Projects for Window Efficiency Technologies

    Broader source: Energy.gov [DOE]

    ARPA-E Awards $31 Million to Develop Innovative Materials that Reduce Heat Loss through Single-Pane Windows

  15. U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in Microsoft Windows, which can be exploited by malicious people to compromise a user's system.

  16. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NPR: Particles From The Edge Of Space Shine A Light On Fukushima NPR: Particles From The Edge Of Space Shine A Light On Fukushima August, 30 2015 - It's one of the greatest, and ...

  17. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    SciTech Connect (OSTI)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while satisfying constraints such as durability, cost, user acceptance, size limits, and environmental safety concerns. The energy efficient daylighting window will consist of a translucent and resilient aerogel panel sandwiched between glass panes in double glazed windows. Compared to the best windows available today, the double glazed translucent windows with 1/2-inch aerogel inserts will have a U-value of 1.2 W/m{sup 2} K (0.211 BTU/ft{sup 2} h F) without any coating or low conductivity fill gases. These windows will be more effective than the windows with an Energy Star rating of U-2 W/m{sup 2} K and could be made even more efficient by using low-e coated glass glazings and inert gas fills. This report summarizes the work accomplished on Cooperative Agreement DE-FC26-03NT41950. During this project, Aspen Aerogels made transparent and translucent aerogels from TMOS and TEOS. We characterized the transparency of the aerogels, reinforced the transparent aerogels with fibers and prepared large translucent aerogel panels and blankets. We also conducted an initial market study for energy efficient translucent windows. A lab-scale process was developed that could be scaled-up to manufacture blankets of these translucent aerogels. The large blankets prepared were used to fabricate prototype translucent windows and skylights. The primary goal of this project was to develop transparent, resilient, hydrophobic silica aerogels that have low thermal conductivities (R-10/inch) to be used to produce aerogel insulated double-glazing windows with a U value of 0.6 W/m{sup 2}K. To meet this objective we developed a process and equipment to produce blankets of translucent, hydrophobic aerogel. We focused on silica, organically-modified silica aerogels (Ormosils), and fiber reinforced silica aerogels due to the appreciable expertise in silica sol-gel processing available with the personnel at Aspen Aerogels, and also due to the quantity of knowledge available in the scientific literature. The project was conducted in three budget periods, herein called BP1, BP2 and BP3.

  18. Integrated self-cleaning window assembly for optical transmission in combustion environments

    DOE Patents [OSTI]

    Kass, Michael D [Oak Ridge, TN

    2007-07-24

    An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.

  19. Category:Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Magnetics page? For detailed information on Ground...

  20. Grounded Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Grounded Renewable Energy Jump to: navigation, search Name: Grounded Renewable Energy Place: Carbondale, Colorado Zip: 81623 Sector: Renewable Energy, Solar Product: Grounded...

  1. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  2. WIPP Opportunities - Procurement - Sources Sought

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement Sources Sought This page displays a listing Sources Sought. If you are interested in submitting an outline, please contact the cognizant buyer to find out more. Please respond by e-mail to the buyer and include: Close date Buyer's name Your name or name of contact E-mail address and/or phone number Type of business All outlines must be received on or before the listed closing date. _________________________________________ Sources Sought Under Ground Ventilation System Contractor

  3. DISCOVERY OF A SIGNIFICANT MAGNETIC CATACLYSMIC VARIABLE POPULATION IN THE LIMITING WINDOW

    SciTech Connect (OSTI)

    Hong, JaeSub; Grindlay, Jonathan E.; Servillat, Mathieu; Zhao Ping; Van den Berg, Maureen

    2012-02-20

    We have discovered 10 periodic X-ray sources from the 1 Ms Chandra ACIS observation of the Limiting Window (LW), a low-extinction region (A{sub V} {approx} 3.9) at 1.{sup 0}4 south of the Galactic center. The observed periods ({approx}1.3-3.4 hr) and the X-ray luminosities (10{sup 31.8-32.9} erg s{sup -1} at 8 kpc) of the 10 periodic sources, combined with the lack of bright optical counterparts and thus high X-ray-to-optical flux ratios, suggest that they are likely accreting binaries, in particular, magnetic cataclysmic variables (MCVs). All of them exhibit a relatively hard X-ray spectrum ({Gamma} < 2 for a power-law model), and relatively high extinction observed in the X-ray spectra of at least five sources indicates some intrinsic absorption in the system, which is also a typical sign of MCVs. On close inspection, the period distribution of these sources resembles those of polars, whereas the relatively hard spectra suggest that they could be intermediate polars (IPs). These puzzling properties can be explained by unusual polars with buried magnetic fields or a rare sub-class of MCVs, nearly synchronous MCVs. These unusual MCVs may provide important clues in the evolutionary path of MCVs from IPs to polars. The completeness simulation indicates that {approx}>40% of the hard X-ray sources in the LW are periodic. Therefore, this discovery provides a first direct evidence of a large MCV population in the bulge and further supports the current view that MCVs constitute the majority of low-luminosity hard X-ray sources ({approx}10{sup 30-33} erg s{sup -1}) in the bulge.

  4. Building America Webinar: Low-E Storms: The Next Big Thing in Window

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofits | Department of Energy Low-E Storms: The Next Big Thing in Window Retrofits Building America Webinar: Low-E Storms: The Next Big Thing in Window Retrofits This Building America webinar presented a new and improved low-e storm window that boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement, on Sept. 9, 2014. Thomas Culp, Birch Point Consulting, LLC, discussed the development of low-e storm windows and examples of success

  5. 5 Steps to Making Your Windows More Energy Efficient | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steps to Making Your Windows More Energy Efficient 5 Steps to Making Your Windows More Energy Efficient December 13, 2013 - 4:06pm Addthis Keep your hard-earned dollars from flying out the window by following the <a href="http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/measure_guide_wood_windows.pdf">latest guidelines for window repair, rehabilitation and replacement</a>. | Photo courtesy of the Weatherization Assistance Program Technical

  6. Storm Windows (Even with a Low-E Coating!) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storm Windows (Even with a Low-E Coating!) Storm Windows (Even with a Low-E Coating!) November 11, 2008 - 3:45pm Addthis John Lippert Earlier I wrote about purchasing energy-efficient windows. Jen followed up with an excellent blog on improving your existing windows, which mentioned low-e films. One fairly well-kept secret-low-emissivity (low-e) storm windows-lies somewhere between these two options. They aren't the simple, low-cost, do-it-yourself option that Jen spoke of. But they are a less

  7. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-12-23

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  8. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-21

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  9. ALPHA ENHANCEMENT AND THE METALLICITY DISTRIBUTION FUNCTION OF PLAUT'S WINDOW

    SciTech Connect (OSTI)

    Johnson, Christian I.; Michael Rich, R.; Fulbright, Jon P.; Valenti, Elena; McWilliam, Andrew E-mail: rmr@astro.ucla.edu E-mail: evalenti@eso.org

    2011-05-10

    We present Fe, Si, and Ca abundances for 61 giants in Plaut's window (l = -1{sup 0}, b = -8.{sup 0}5) and Fe abundances for an additional 31 giants in a second, nearby field (l = 0{sup 0}, b = -8{sup 0}) derived from high-resolution (R {approx} 25,000) spectra obtained with the Blanco 4 m telescope and Hydra multifiber spectrograph. The median metallicity of red giant branch (RGB) stars in the Plaut's field is {approx}0.4 dex lower than those in Baade's window, and confirms the presence of an iron abundance gradient along the bulge minor axis. The full metallicity range of our (biased) RGB sample spans -1.5 < [Fe/H] < +0.3, which is similar to that found in other bulge fields. We also derive a photometric metallicity distribution function for RGB stars in the (l = -1{sup 0}, b = -8{sup 0}.5) field and find very good agreement with the spectroscopic metallicity distribution. The radial velocity (RV) and dispersion data for the bulge RGB stars are in agreement with previous results of the Bulge Radial Velocity Assay survey, and we find evidence for a decreasing velocity dispersion with increasing [Fe/H]. The [{alpha}/Fe] enhancement in Plaut field stars is nearly identical to that observed in Baade's window, and suggests that an [{alpha}/Fe] gradient does not exist between b = -4{sup 0} and -8{sup 0}. Additionally, a subset of our sample (23 stars) appears to be foreground red clump stars that are very metal rich, exhibit small metallicity and RV dispersions, and are enhanced in {alpha} elements. While these stars likely belong to the Galactic inner disk population, they exhibit [{alpha}/Fe] ratios that are enhanced above the thin and thick disk.

  10. Proton irradiation damage of an annealed Alloy 718 beam window

    SciTech Connect (OSTI)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; Maloy, S. A.

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cut into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.

  11. Proton irradiation damage of an annealed Alloy 718 beam window

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; et al

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cutmore » into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.« less

  12. Graph of Total Number of Oligos Within Windows of a Sequence

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    SEQWIN is user-friendly software which graphs the total number of oligos present in a sequence. The sequence is scanned one window at a time; windows can be overlapping. Each bar on the graph represents a single window down the sequence. The user specifies the sequence of interest and a list of oligos as program input. If the sequence is known, locations of specific structure or sequences can be specified and compared with the bars onmore » a graph. The window size, amount of overlap of the windows, number of windows to be considered, and the starting position of the first window used can be adjusted at the user's discretion.« less

  13. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3)

  14. Expert Meeting Report. Windows Options for New and Existing Homes

    SciTech Connect (OSTI)

    Ojczyck, C.; Carmody, J.; Haglund, K.

    2013-05-01

    The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011, at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

  15. Expert Meeting Report: Windows Options for New and Existing Homes

    SciTech Connect (OSTI)

    Ojczyk, C.; Carmody, J.; Haglund, K.

    2013-05-01

    The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

  16. Hole Blocking, Electron Transporting and Window Layer for Optimized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Culn(1-x)GaxSe2 Solar Cells - Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Advanced Materials Advanced Materials Find More Like This Return to Search Hole Blocking, Electron Transporting and Window Layer for Optimized Culn(1-x)GaxSe2 Solar Cells Brookhaven National Laboratory Contact BNL About This Technology <br type="_moz" /> A schematic illustration of an exemplary embodiment of the disclosed CIGS based solar cell, with a quasi-2-dimensional electron

  17. GenoGraphics for OpenWindows trademark

    SciTech Connect (OSTI)

    Hagstrom, R.; Overbeek, R.; Price, M.; Zawada, D. ); Michaels, G.S.; Taylor, R. . Div. of Computer Research and Technology); Yoshida, Kaoru )

    1992-04-01

    GenoGraphics is a generic utility for constructing and querying one-dimensional linear plots. The outgrowth of a request from Dr. Cassandra Smith for a tool to facilitate her genome mapping research. GenoGraphics development has benefited from a continued collaboration with her. Written in Sun Microsystem's OpenWindows environment and the BTOL toolkit developed at Argonne National Laboratory. GenoGraphics provides an interactive, intuitive, graphical interface. Its features include: viewing multiple maps simultaneously, zooming, and querying by mouse clicking. By expediting plot generation, GenoGraphics gives the scientist more time to analyze data and a novel means for deducing conclusions.

  18. GenoGraphics for OpenWindows{trademark}

    SciTech Connect (OSTI)

    Hagstrom, R.; Overbeek, R.; Price, M.; Zawada, D.; Michaels, G.S.; Taylor, R.; Yoshida, Kaoru

    1992-04-01

    GenoGraphics is a generic utility for constructing and querying one-dimensional linear plots. The outgrowth of a request from Dr. Cassandra Smith for a tool to facilitate her genome mapping research. GenoGraphics development has benefited from a continued collaboration with her. Written in Sun Microsystem`s OpenWindows environment and the BTOL toolkit developed at Argonne National Laboratory. GenoGraphics provides an interactive, intuitive, graphical interface. Its features include: viewing multiple maps simultaneously, zooming, and querying by mouse clicking. By expediting plot generation, GenoGraphics gives the scientist more time to analyze data and a novel means for deducing conclusions.

  19. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    SciTech Connect (OSTI)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  20. Laser window with annular grooves for thermal isolation

    DOE Patents [OSTI]

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  1. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a least-cost design tool (OptGSHP) that will enable GSHP developers to analyze system cost and performance in a variety of building applications to support both design, operational and purchase decisions. Integrate groundwater flow and heat transport into OptGSHP. Demonstrate the usefulness of OptGSHP and the significance of a systems approach to the design of GSHP systems.

  2. Data Analysis from Ground Source Heat Pump Demonstration Projects

    Broader source: Energy.gov [DOE]

    Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- CDH Energy - Cazenovia, NY -- University of Tennessee - Knoxville, TN -- Cedarville Schools - Cedarville, AR (ARRA grantee) -- Flathead Electric Cooperative - Kalispell, MT (ARRA grantee) -- University at Albany - Albany, NY (ARRA grantee) -- City of Raleigh, NC (ARRA grantee) -- Montana Tech (ARRA grantee) -- Oakland University - Rochester, MI (ARRA grantee)

  3. Ball State University Completes Nation's Largest Ground-Source...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and serves as a model for other major facilities and universities across the nation. The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE)...

  4. National Certification Standard for Ground Source Heat Pump Personnel

    SciTech Connect (OSTI)

    Kelly, John

    2013-07-31

    The National Certification Standard for the Geothermal Heat Pump Industry adds to the understanding of the barriers to rapid growth of the geothermal heat pump (GHP) industry by bringing together for the first time an analysis of the roles and responsibilities of each of the individual job tasks involved in the design and installation of GHP systems. The standard addresses applicable qualifications for all primary personnel involved in the design, installation, commissioning, operation and maintenance of GHP systems, including their knowledge, skills and abilities. The resulting standard serves as a foundation for subsequent development of curriculum, training and certification programs, which are not included in the scope of this project, but are briefly addressed in the standard to describe ways in which the standard developed in this project may form a foundation to support further progress in accomplishing those other efforts. Follow-on efforts may use the standard developed in this project to improve the technical effectiveness and economic feasibility of curriculum development and training programs for GHP industry personnel, by providing a more complete and objective assessment of the individual job tasks necessary for successful implementation of GHP systems. When incorporated into future certification programs for GHP personnel, the standard will facilitate increased consumer confidence in GHP technology, reduce the potential for improperly installed GHP systems, and assure GHP system quality and performance, all of which benefit the public through improved energy efficiency and mitigated environmental impacts of the heating and cooling of homes and businesses.

  5. Ground Source Heat Pump Demonstration Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Our extensive, reliable power grid has fueled the nation's growth since the early 1900s. Access to electricity is such a fundamental enabler for the economy that the National Academy of Engineering named "electrification" the greatest engineering achievement of the 20th century. However, the grid we have today does not have the attributes necessary to meet the demands of the 21st century and beyond. Through its Grid Modernization Initiative (GMI) and this Grid Modernization Multi-Year

  6. Research and Development Roadmap. Geothermal (Ground-Source) Heat Pumps

    SciTech Connect (OSTI)

    Goetzler, William; Guernsey, Matt; Kar, Rahul

    2012-10-01

    Roadmap identifying potential activities and technical innovations that may enable substantial improvements in residential and commercial Geothermal Heat Pumps (GHP) installed cost and/or efficiency.

  7. Hybrid Ground Source System Analysis and Tool Development

    Broader source: Energy.gov [DOE]

    Project objectives: 1. Compile filtered hourly data for three monitored hybrid installations. 2.Validate existing HyGCHP model. 3.Refine and enhance the HyGCHP model (usability / capability). 4. Demonstrate impact of actual hybrid installations. 5. Report lessons learned and impacts of HyGSHPs to design/engineering community.

  8. List of Siding Incentives | Open Energy Information

    Open Energy Info (EERE)

    Windows Biodiesel Daylighting Ethanol Geothermal Electric Ground Source Heat Pumps Methanol Photovoltaics Renewable Fuels Small Hydroelectric Solar Thermal Electric Solar...

  9. List of Compressed air Incentives | Open Energy Information

    Open Energy Info (EERE)

    Windows Biodiesel Daylighting Ethanol Geothermal Electric Ground Source Heat Pumps Methanol Photovoltaics Renewable Fuels Small Hydroelectric Solar Thermal Electric Solar...

  10. List of Agricultural Equipment Incentives | Open Energy Information

    Open Energy Info (EERE)

    Windows Biodiesel Daylighting Ethanol Geothermal Electric Ground Source Heat Pumps Methanol Photovoltaics Renewable Fuels Small Hydroelectric Solar Thermal Electric Solar...

  11. Local Loan Program | Open Energy Information

    Open Energy Info (EERE)

    Windows Biodiesel Daylighting Ethanol Geothermal Electric Ground Source Heat Pumps Methanol Photovoltaics Renewable Fuels Small Hydroelectric Solar Thermal Electric Solar...

  12. GPG Green Proving Ground Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GSA Green Proving Ground Program Technology Overview of Federal Technology Demonstration ... SET THE PACE Efficiency results from innovation and policy Executive Order 13693, 2015 ...

  13. Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (25) Areas (19) Regions (0) NEPA(1) Exploration...

  14. 5-MW Dynamometer Ground Breaking

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) National Renewable Energy Laboratory in Golden, Colorado, broke ground for a new 5-MW dynamometer test facility.

  15. Electrochromic Window Demonstration at the Donna Land Port of Entry

    SciTech Connect (OSTI)

    Fernandes, Luis L.; Lee, Eleanor S.; Thanachareonkit, Anothai

    2015-05-01

    The U.S. General Services Administration (GSA) Public Buildings Service (PBS) has jurisdiction, custody or control over 105 land ports of entry throughout the United States, 35 of which are located along the southern border. At these facilities, one of the critical functions of windows is to provide border control personnel with direct visual contact with the surrounding environment. This also can be done through surveillance cameras, but the high value that U.S. Customs and Border Protection (CPB) officers place on direct visual contact can be encapsulated in the following statement by a senior officer regarding this project: “nothing replaces line of sight.” In sunny conditions, however, outdoor visibility can be severely compromised by glare, especially when the orb of the sun is in the field of view. This often leads to the deployment of operable shading devices, such as Venetian blinds. While these devices address the glare, they obstruct the view of the surroundings, negating the visual security benefits of the windows.

  16. Affordable Window Insulation with R-10/inch Rating

    SciTech Connect (OSTI)

    Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou; Jong Ho Sonn; George Gould; Wendell Rhine

    2004-10-15

    During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanical properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.

  17. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  18. Coal mine ground control. 3rd ed.

    SciTech Connect (OSTI)

    Peng, S.S.

    2008-09-15

    The third edition not only completely revises and updates the original subject areas, but also is broadened to include a number of new topics such as high horizontal stresses, computer modeling, and highwall stability. The subject areas covered in this book define the current field of coal mine ground control, except for the recently emerging topic of mine seals and some conventional subjects such as coal/rock cutting and impoundment dams. It contains 1,134 references from all published sources, and archived since 1876.

  19. WINDOW 4. 0: Program description. A PC program for analyzing the thermal performance of fenestration products

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  20. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  1. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (OSTI)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  2. Resizing the conformal window: A {beta}-function ansatz

    SciTech Connect (OSTI)

    Antipin, O.; Tuominen, K.

    2010-04-01

    We propose an ansatz for the nonperturbative beta-function of a generic nonsupersymmetric Yang-Mills theory with or without fermions in an arbitrary representation of the gauge group. While our construction is similar to the recently proposed Ryttov-Sannino all-order beta-function, the essential difference is that it allows for the existence of an unstable ultraviolet fixed point in addition to the predicted Banks-Zaks-like infrared stable fixed point. Our beta-function preserves all of the tested features with respect to the nonsupersymmetric Yang-Mills theories. We predict the conformal window identifying the lower end of it as a merger of the infrared and ultraviolet fixed points.

  3. Vacuum chamber with a supersonic flow aerodynamic window

    DOE Patents [OSTI]

    Hanson, Clark L.

    1982-01-01

    A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  4. Vacuum chamber with a supersonic-flow aerodynamic window

    DOE Patents [OSTI]

    Hanson, C.L.

    1980-10-14

    A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  5. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    SciTech Connect (OSTI)

    Chakravarty, U.; Rao, B. S.; Arora, V.; Upadhyay, A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Mukherjee, C.; Gupta, P. D.

    2013-07-29

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  6. High-power testing of PEP-II RF cavity windows

    SciTech Connect (OSTI)

    Neubauer, M.; Allen, M.; Fant, K.; Hill, A.; Hoyt, M.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1996-06-01

    We describe the high power testing of RF cavity windows for the PEP-II B factory. The window is designed for continuous operation at 476 MHz with up to 500 kW throughput and has been tested to full power using a modified PEP Klystron. The windows use an anti-multipactor coating on the vacuum side and the application and processing of this layer is discussed. The high power test configuration, RF processing history and high power performance are described.

  7. Building America Expert Meeting: Windows Options for New and Existing Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Windows Options for New and Existing Homes Building America Expert Meeting: Windows Options for New and Existing Homes The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley

  8. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOE Patents [OSTI]

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  9. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOE Patents [OSTI]

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  10. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWindow&oldid680274...

  11. T-573: Windows Remote Desktop Client DLL Loading Error Lets Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in Windows Remote Desktop Client. A remote user can cause arbitrary code to be executed on the target user's system.

  12. EERE Success Story-Energy-Efficient Smart Windows are Lowering Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs | Department of Energy Energy-Efficient Smart Windows are Lowering Energy Costs EERE Success Story-Energy-Efficient Smart Windows are Lowering Energy Costs September 9, 2015 - 12:11pm Addthis Low-E windows – featuring an energy-saving technology developed at Berkeley National Laboratory– are now found in 80% of homes and 50% of buildings in the United States. Low-E windows - featuring an energy-saving technology developed at Berkeley National Laboratory- are now found in 80%

  13. EERE Success Story-Pennsylvania: Window Technology First of Its Kind for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings | Department of Energy Window Technology First of Its Kind for Commercial Buildings EERE Success Story-Pennsylvania: Window Technology First of Its Kind for Commercial Buildings November 8, 2013 - 12:00am Addthis Windows play a significant role in a building's energy use; in 2010, 2.55 quads of energy were lost through windows-the equivalent of more than 20 billion gallons of gasoline. In support of DOE's goal to reduce energy consumption in buildings by 50% by 2030,

  14. EERE Success Story-Performance Validation of Low-e Storm Windows Paves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Way for Market Acceptance | Department of Energy Validation of Low-e Storm Windows Paves Way for Market Acceptance EERE Success Story-Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance September 30, 2015 - 12:34pm Addthis A historic home with low-e storm windows. Image: QUANTA Technologies, Inc. A historic home with low-e storm windows. Image: QUANTA Technologies, Inc. One recent addition to the arsenal of cost-effective efficiency measures is low-emissivity

  15. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities

    Broader source: Energy.gov [DOE]

    Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system.

  16. Savings Project: Install Exterior Storm Windows With Low-E Coating...

    Office of Environmental Management (EM)

    while keeping your home warm in the winter and cool in the summer. | Photo courtesy of Larson Manufacturing Company. Installing storm windows will lower your energy bill while...

  17. Evaluation of Interior Low-E Storm Windows in the PNNL Lab Homes...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Lab Homes; Storm; Windows; Low-e; ...

  18. T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T-727:Microsoft Windows SSLTLS Protocol Flaw Lets Remote Users Decryption Sessions ... U-033: Microsoft Security Bulletin Summary for November 2011 T-706: Microsoft Fraudulent ...

  19. Performance Validation of Low-e Storm Windows Paves Way for Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Conventional storm window improves efficiency with additional air-sealing and an insulating "dead air space." Low-e coating further improves overall performance by increasing the ...

  20. Building America Top Innovations 2013 Profile – Window Replacement, Rehabilitation, & Repair Guide

    SciTech Connect (OSTI)

    none,

    2013-09-01

    In this Top Innovation profile, Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  1. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    SciTech Connect (OSTI)

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  2. A multiple deep attenuation frequency window for harmonic analysis in power systems

    SciTech Connect (OSTI)

    Daponte, P.; Falcomata, G. . Dept. di Elettronica Informatica e Sistemistica); Testa, A. . Dipt. di Ingegneria Elettrica)

    1994-04-01

    A novel window is presented and applied in electrical power system harmonic analysis. The goal of increasing the resolvability of low magnitude non-harmonic tones close in frequency to higher magnitude harmonics and the detectability of very low magnitude high frequency harmonics is pursued. The proposed window is derived from the Tseng window; its spectrum can be modeled in the synthesis stage and it is characterized by a narrow width main lobe and by sidelobes which are very low in correspondence to some specified frequencies. Numerical experiments demonstrate the performances and the usefulness of the new window in resolving periodic distorted waveforms in power systems.

  3. Savings Project: Install Exterior Storm Windows With Low-E Coating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Larson Manufacturing Company. Installing storm windows will lower your energy bill while keeping your home warm in the winter and cool in the summer. | Photo courtesy of Larson ...

  4. Smarter Smart Windows | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Smarter Smart Windows Basic Energy Sciences (BES) BES Home About Research Facilities Science ... Laboratory, and was supported by the Office of Science, Office of Basic Energy ...

  5. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOE Patents [OSTI]

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  6. Ground-water in Texas

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1985-01-01

    Amount 61% of the water used by Texans is ground-water. Some areas, both municipal and rural, depend entirely on ground-water. In many areas long term withdrawal is lowering the water levels, causing surface land subsidence, salt-water encroachment, and reducing future reservoir availability. The increasing probability of seepage from radioactive and toxic wastes, herbicide residues, septic systems, and oilfield brines is threatening dangerous contamination of fresh ground-water reservoirs. The Texas Department of Water Resources, the Texas Department of Health, State and private colleges and universities, the US Geological Survey, the Environmental Protection Agency, various underground water districts, among others, are cooperating with concerned hydrologists in a concentrated program to increase the efficiency of ground-water use and development, preserve the aquifer reservoirs, and decrease the pollution potential. 88 references.

  7. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  8. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  9. HIGH VOLTAGE ION SOURCE

    DOE Patents [OSTI]

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  10. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  11. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

    SciTech Connect (OSTI)

    Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; ,

    2010-06-07

    A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

  12. Establishment of a Rating Program for Pre- and Post-Fabricated Windows

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Shah, B.; Bloyd, Cary N.

    2011-08-01

    This document was prepared to support the Smart Buildings-Material Testing and Rating Centres (SB-2) activity of the Asia-Pacific Economic Cooperation (APEC) Energy Smart Communities Initiative (ESCI). The ESCI was put forward by APEC Leaders at the 2010 meeting in Japan. APEC is the premier forum for facilitating economic growth, cooperation, trade and investment in the Asia-Pacific region. This document addresses the testing and certification of building products and equipment to support building energy codes, focusing specifically on energy-efficient factory-built windows. It sets forth a proposed structure for an APEC economy to establish a testing, rating, certification, and labeling program for efficient factory-built windows. In the context of this document, efficient windows would be windows made with insulating glass (IG) and an efficient frame assembly. The minimum efficiency metric (or thermal performance) for these windows is not quantified in this document and would generally be established by a governmental agency.

  13. Method of fabricating a microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.

  14. A narrow window of Rabi frequency for competition between electromagnetically induced transparency and Raman absorption

    SciTech Connect (OSTI)

    Chang, Ray-Yuan; Fang, Wei-Chia; Lee, Ming-Tsung; He, Zong-Syun; Ke, Bai-Cian; Lee, Yi-Chi; Tsai, Chin-Chun

    2010-01-15

    This investigation clarifies the transition phenomenon between the electromagnetically induced transparency (EIT) and Raman absorption in a ladder-type system of Doppler-broadened cesium vapor. A competition window of this transition was found to be as narrow as 2 MHz defined by the probe Rabi frequency. For a weak probe, the spectrum of EIT associated with quantum interference suggests that the effect of the Doppler velocity on the spectrum is negligible. When the Rabi frequency of the probe becomes comparable with the effective decay rate, an electromagnetically induced absorption (EIA) dip emerges at the center of the power broadened EIT peak. While the Rabi frequency of the probe exceeds the effective decay rate, decoherence that is generated by the intensified probe field occurs and Raman absorption dominates the interaction process, yielding a pure absorption spectrum; the Doppler velocity plays an important role in the interaction. A theory that is based on density matrix simulation, with or without the Doppler effect, can qualitatively fit the experimental data. In this work, the coherence of atom-photon interactions is created or destroyed using the probe Rabi frequency as a decoherence source.

  15. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    SciTech Connect (OSTI)

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, Dave; Dexter, Matthew; MacMahon, Dave; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Patricia J.; Manley, Jason; Walbrugh, William P.; Stefan, Irina I.

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  16. Oil & Gas Tech Center Breaks Ground in Oklahoma | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) ...

  17. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    SciTech Connect (OSTI)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.

  18. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  19. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  20. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  1. Development of mine explosion ground truth smart sensors

    SciTech Connect (OSTI)

    Taylor, Steven R.; Harben, Phillip E.; Jarpe, Steve; Harris, David B.

    2015-09-14

    Accurate seismo-acoustic source location is one of the fundamental aspects of nuclear explosion monitoring. Critical to improved location is the compilation of ground truth data sets for which origin time and location are accurately known. Substantial effort by the National Laboratories and other seismic monitoring groups have been undertaken to acquire and develop ground truth catalogs that form the basis of location efforts (e.g. Sweeney, 1998; Bergmann et al., 2009; Waldhauser and Richards, 2004). In particular, more GT1 (Ground Truth 1 km) events are required to improve three-dimensional velocity models that are currently under development. Mine seismicity can form the basis of accurate ground truth datasets. Although the location of mining explosions can often be accurately determined using array methods (e.g. Harris, 1991) and from overhead observations (e.g. MacCarthy et al., 2008), accurate origin time estimation can be difficult. Occasionally, mine operators will share shot time, location, explosion size and even shot configuration, but this is rarely done, especially in foreign countries. Additionally, shot times provided by mine operators are often inaccurate. An inexpensive, ground truth event detector that could be mailed to a contact, placed in close proximity (< 5 km) to mining regions or earthquake aftershock regions that automatically transmits back ground-truth parameters, would greatly aid in development of ground truth datasets that could be used to improve nuclear explosion monitoring capabilities. We are developing an inexpensive, compact, lightweight smart sensor unit (or units) that could be used in the development of ground truth datasets for the purpose of improving nuclear explosion monitoring capabilities. The units must be easy to deploy, be able to operate autonomously for a significant period of time (> 6 months) and inexpensive enough to be discarded after useful operations have expired (although this may not be part of our business plan). Key parameters to be automatically determined are event origin time (within 0.1 sec), location (within 1 km) and size (within 0.3 magnitude units) without any human intervention. The key parameter ground truth information from explosions greater than magnitude 2.5 will be transmitted to a recording and transmitting site. Because we have identified a limited bandwidth, inexpensive two-way satellite communication (ORBCOMM), we have devised the concept of an accompanying Ground-Truth Processing Center that would enable calibration and ground-truth accuracy to improve over the duration of a deployment.

  2. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications

    SciTech Connect (OSTI)

    Hoffmann, Sabine; Lee, Eleanor S.; Clavero, Cesar

    2013-12-01

    Current thermochromic windows modulate solar transmission primarily within the visible range, resulting in reduced space-conditioning energy use but also reduced daylight, thereby increasing lighting energy use compared to conventional static, near-infrared selective, low-emittance windows. To better understand the energy savings potential of improved thermochromic devices, a hypothetical near-infrared switching thermochromic glazing was defined based on guidelines provided by the material science community. EnergyPlus simulations were conducted on a prototypical large office building and a detailed analysis was performed showing the progression from switching characteristics to net window heat flow and perimeter zone loads and then to perimeter zone heating, ventilation, and air-conditioning (HVAC) and lighting energy use for a mixed hot/cold climate and a hot, humid climate in the US. When a relatively high daylight transmission is maintained when switched (Tsol = 0.10-0.50, Tvis = 0.30-0.60) and if coupled with a low-e inboard glazing layer (e = 0.04), the hypothetical thermochromic window with a low critical switching temperature range (14-20°C) achieved reductions in total site annual energy use of 14.0-21.1 kWh/m2-floor-yr or 12-14%2 for moderate- to large-area windows (WWR≥0.30) in Chicago and 9.8-18.6 kWh/m2-floor-yr or 10-17%3 for WWR≥0.45 in Houston compared to an unshaded spectrally-selective, low-e window (window E1) in south-, east-, and west-facing perimeter zones. If this hypothetical thermochromic window can be offered at costs that are competitive to conventional low-e windows and meet aesthetic requirements defined by the building industry and end users, then the technology is likely to be a viable energy-efficiency option for internal load dominated commercial buildings.

  3. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    4 Insulating Glass Historical Penetration, by Sector (Percent of New Sales) (1) Sector 1985 1990 1995 2000 2005 2009 Residential 73% 86% 89% 92% 94% 95% Nonresidential 63% 80% 84% 86% 88% 89% Note(s): 1) Usage is a good indication of sales. Includes double- and triple-pane sealed units. Source(s): Ducker Research, Industry Statistical Review and Forecast 1992-1993 for 1985; AAMA/Ducker Research, Industry Statistical Review and Forecast 1993 for 1990; AAMA/WDMA, 2000 AAMA/WDMA Industry

  4. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built Lab Homes located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The baseline Lab Home B was retrofitted with standard double-pane clear aluminum-frame slider windows and patio doors, while the experimental Lab Home A was retrofitted with Jeld-Wen triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% 1.53% for the heating season and 18.4 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly insulating windows have important impacts on peak load, occupant comfort, and condensation potential, which are not captured in the energy savings calculation. More consistent and uniform interior temperature distributions suggest that highly insulated windows, as part of a high performance building envelope, may enable more centralized duct design and downsized HVAC systems. Shorter, more centralized duct systems and smaller HVAC systems to yield additional cost savings, making highly insulating windows more cost effective as part of a package of new construction or retrofit measures which achieve significant reductions in home energy use.

  5. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon

    SciTech Connect (OSTI)

    Zhang, Xue Wang, Yong; Fan, Junjie

    2015-02-15

    To suppress the surface multipactor phenomenon and improve the transmitting power of the high-power microwave window, the application of external magnetic fields is theoretically analyzed and simulated. A Monte Carlo algorithm is used to track the secondary electron trajectories and study the multipactor scenario on the surface of a cylinder window. It is confirmed that over-resonant magnetic fields (an external magnetic field whose magnitude is slightly greater than that of a resonant magnetic field) will generate a compensating trajectory and collision, which can suppress the secondary electron avalanche. The optimal value of this external magnetic field that will avoid the multipactor phenomenon on cylinder windows is discussed.

  6. Investigation of Ground-Fault Protection Devices for Photovoltaic Power Systems Applications

    SciTech Connect (OSTI)

    BOWER,WARD I.; WILES,JOHN

    2000-10-03

    Photovoltaic (PV) power systems, like other electrical systems, may be subject to unexpected ground faults. Installed PV systems always have invisible elements other than those indicated by their electrical schematics. Stray inductance, capacitance and resistance are distributed throughout the system. Leakage currents associated with the PV modules, the interconnected array, wires, surge protection devices and conduit add up and can become large enough to look like a ground-fault. PV systems are frequently connected to other sources of power or energy storage such as batteries, standby generators, and the utility grid. This complex arrangement of distributed power and energy sources, distributed impedance and proximity to other sources of power requires sensing of ground faults and proper reaction by the ground-fault protection devices. The different dc grounding requirements (country to country) often add more confusion to the situation. This paper discusses the ground-fault issues associated with both the dc and ac side of PV systems and presents test results and operational impacts of backfeeding commercially available ac ground-fault protection devices under various modes of operation. Further, the measured effects of backfeeding the tripped ground-fault devices for periods of time comparable to anti-islanding allowances for utility interconnection of PV inverters in the United States are reported.

  7. Ground control for highwall mining

    SciTech Connect (OSTI)

    Zipf, R.K.; Mark, C.

    2007-09-15

    Perhaps the greatest risk to both equipment and personnel associated with highwall mining is from ground control. The two most significant ground control hazards are rock falls from highwall and equipment entrapment underground. In the central Appalachians, where the majority of highwall mining occurs in the USA, hillseams (or mountain cracks) are the most prominent structure that affects highwall stability. The article discusses measures to minimise the risk of failure associated with hillstreams. A 'stuck' or trapped highwall miner, and the ensuring retrieval or recovery operation, can be extremely disruptive to the highwall mining process. Most entrapment, are due to roof falls in the hole. The options for recovery are surface retrieval, surface excavation or underground recovery. Proper pillar design is essential to maintain highwall stability and prevent entrapments. NIOSH has developed the Analysis of Retreat Mining Pillar stability-Highwall Mining (ARMPS-HWM) computer program to help mine planners with this process. 10 figs.

  8. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  9. Inverter Ground Fault Overvoltage Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverter Ground Fault Overvoltage Testing Andy Hoke, Austin Nelson, and Sudipta Chakraborty National Renewable Energy Laboratory Justin Chebahtah, Trudie Wang, and Michael McCarty SolarCity Corporation Technical Report NREL/TP-5D00-64173 August 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  10. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detectors coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  11. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  12. Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance

    Broader source: Energy.gov [DOE]

    One recent addition to the arsenal of cost-effective efficiency measures is low-emissivity (low-e) storm windows. A low-e coating or glazing is a thin layer deposited directly on the surface of one...

  13. U-045: Windows Win32k.sys Keyboard Layout Bug Lets Local Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ID: SA46919 IMPACT ASSESSMENT: Low Discussion: A vulnerability has been discovered in Microsoft Windows, which can be exploited by malicious, local users to cause a DoS (Denial...

  14. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    SciTech Connect (OSTI)

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wall allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.

  15. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less

  16. Low-e Storm Windows: Market Assessment and Pathways to Market Transformation

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-06-08

    Field studies sponsored by the U.S. Department of Energy (DOE) have shown that the use of low-e storm windows can lead to significant heating and cooling energy savings in residential homes. This study examines the market for low-e storm windows based on market data, case studies, and recent experience with weatherization deployment programs. It uses information from interviews conducted with DOE researchers and industry partners involved in case studies and early deployment efforts related to low-e storm windows. In addition, this study examines potential barriers to market acceptance, assesses the market and energy savings potential, and identifies opportunities to transform the market for low-e storm windows and overcome market adoption barriers.

  17. Preliminary Assessment of the Energy-Saving Potential of Electrochromic Windows in Residential Buildings

    SciTech Connect (OSTI)

    Roberts, D. R.

    2009-12-01

    Electrochromic windows provide variable tinting that can help control glare and solar heat gain. We used BEopt software to evaluate their performance in prototypical energy models of a single-family home.

  18. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  19. Bi-level multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A bi-level, multilayered package with an integral window for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that the light-sensitive side is optically accessible through the window. A second chip can be bonded to the backside of the first chip, with the second chip being wirebonded to the second level of the bi-level package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed.

  20. Building America Webinar: Low-E Storms: The Next Big Thing in Window Retrofits

    Broader source: Energy.gov [DOE]

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings.  A new...

  1. EERE Success Story-Energy Efficient Windows to Reach Market Quicker with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Tool | Department of Energy Energy Efficient Windows to Reach Market Quicker with New Tool EERE Success Story-Energy Efficient Windows to Reach Market Quicker with New Tool March 31, 2016 - 11:36am Addthis PPG Industries’ online tool, Construct, allows users to quickly build a virtual Insulated Glass Unit (IGU) and calculate its thermal and optical properties. Image credit: PPG Industries. PPG Industries' online tool, Construct, allows users to quickly build a virtual Insulated

  2. Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl

    Office of Scientific and Technical Information (OSTI)

    Photoactive Biological Systems. (Conference) | SciTech Connect Conference: Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl Photoactive Biological Systems. Citation Details In-Document Search Title: Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl Photoactive Biological Systems. Abstract not provided. Authors: Small, Leo J ; Spoerke, Erik David ; Wheeler, David Roger ; Wolf, Steven ; Vandelinder, Virginia Starke ; Bachand, George David ;

  3. Evaluation of control strategies for different smart window combinations using computer simulations

    SciTech Connect (OSTI)

    Jonsson, Andreas; Roos, Arne

    2010-01-15

    Several studies have shown that the use of switchable windows could lower the energy consumption of buildings. Since the main function of windows is to provide daylight and visual contact with the external world, high visible transmittance is needed. From an energy perspective it is always best to have the windows in their low-transparent state whenever there are cooling needs, but this is generally not preferable from a daylight and visual contact point of view. Therefore a control system, which can be based on user presence, is needed in connection with switchable windows. In this study the heating and cooling needs of the building, using different control mechanisms were evaluated. This was done for different locations and for different combinations of switchable windows, using electrochromic glazing in combination with either low-e or solar control glazing. Four control mechanisms were investigated; one that only optimizes the window to lower the need for heating and cooling, one that assumes that the office is in use during the daytime, one based on user presence and one limiting the perpendicular component of the incident solar irradiation to avoid glare and too strong daylight. The control mechanisms were compared using computer simulations. A simplified approach based on the balance temperature concept was used instead of performing complete building simulations. The results show that an occupancy-based control system is clearly beneficial and also that the best way to combine the panes in the switchable window differs depending on the balance temperature of the building and on the climate. It is also shown that it can be beneficial to have different window combinations for different orientations. (author)

  4. Demonstration of the Performance of Highly Insulating (R-5) Windows in a Matched Pair of Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.

    2013-12-05

    Improving the insulation and solar heat gain characteristics of a homes windows has the potential to significantly improve the homes overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high-quality installation will also minimize or reduce air leakage through the building envelope, decreasing infiltration and thus contributing to reduced heat transmission through building envelope. These improvements all contribute to decreasing overall annual home energy use. In addition to improvements in energy efficiency, highly insulating windows can have important impacts on occupant comfort by minimizing or eliminating the cold draft many homeowners experience at or near window surfaces that are at a noticeably cooler than the room air temperature. Energy efficiency measures, such as highly insulating windows, also have the potential to decrease peak energy use in a home, which can lead to measurable peak load decreases for a utility service territory if implemented on a large scale. High-performance windows now feature triple-pane glass, double low-e coatings, and vinyl insulated frames to achieve U-factors as low as 0.2 , as compared to double-pane clear glass windows with a U-factor of 0.67, which are common in existing homes across the United States. The highly insulating windows (as they will be referred to in this document) are now available from several manufacturers and show promise to yield considerable energy savings and thermal comfort improvements in homes.

  5. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    SciTech Connect (OSTI)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  6. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    SciTech Connect (OSTI)

    Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian; Arasteh P.E., Dariush; Uvslokk, Sivert; Talev, Goce; Petter Jelle Ph.D., Bjorn

    2010-06-17

    While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulations according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.

  7. Evaluation of Low-E Storm Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Knox, Jake R.; Widder, Sarah H.

    2014-05-31

    This study examines the performance of exterior and interior low-e storm panels with a controlled whole home experimental design using PNNL's Lab Homes. Summing the estimated annual average heating and cooling savings, the installation of low-e storm panels resulted in approximately 10% annual energy savings. The results of the experiment will be used to determine and validate performance of low-e storm windows over double pane clear glass windows in a whole home setting.

  8. Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Lead Performer: Alcoa - Pittsburgh, PA DOE Funding: $1,123,838 Cost Share: $280,960 Project Term: October 2014 - September 2016 Funding Opportunity: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Project Objective Alcoa proposes to develop a novel sandwich-type foam

  9. LANL breaks ground on key sediment control project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment control project LANL breaks ground on key sediment control project Called "grade-control" structures, the approximately $2 million features are up to eight feet high and made of rocks packed tightly into wire enclosures. November 5, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  10. Night-time naturally ventilated offices: Statistical simulations of window-use patterns from field monitoring

    SciTech Connect (OSTI)

    Yun, Geun Young; Steemers, Koen

    2010-07-15

    This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models of window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)

  11. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy

    SciTech Connect (OSTI)

    Pepin, Eric W.; Wu Huanmei; Shirato, Hiroki

    2011-04-15

    Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each of several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.

  12. NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS

    SciTech Connect (OSTI)

    Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

    2003-10-01

    A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

  13. Defining window-boundaries for genomic analyses using smoothing spline techniques

    SciTech Connect (OSTI)

    Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; Gianola, Daniel; de Leon, Natalia

    2015-04-17

    High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the data and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.

  14. Apparatus and method for in-situ cleaning of resist outgassing windows

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Haney, Steven J.

    2001-01-01

    An apparatus and method for in-situ cleaning of resist outgassing windows. The apparatus includes a chamber located in a structure, with the chamber having an outgassing window to be cleaned positioned in alignment with a slot in the chamber, whereby radiation energy passes through the window, the chamber, and the slot onto a resist-coated wafer mounted in the structure. The chamber is connected to a gas supply and the structure is connected to a vacuum pump. Within the chamber are two cylindrical sector electrodes and a filament is electrically connected to one sector electrode and a power supply. In a first cleaning method the sector electrodes are maintained at the same voltage, the filament is unheated, the chamber is filled with argon (Ar) gas under pressure, and the window is maintained at a zero voltage, whereby Ar ions are accelerated onto the window surface, sputtering away carbon deposits that build up as a result of resist outgassing. A second cleaning method is similar except oxygen gas (O.sub.2) is admitted to the chamber instead of Ar. These two methods can be carried out during lithographic operation. A third method, carried out during a maintenance period, involves admitting CO.sub.2 into the chamber, heating the filament to a point of thermionic emission, the sector electrodes are at different voltages, excited CO.sub.2 gas molecules are created which impact the carbon contamination on the window, and gasify it, producing CO gaseous products that are pumped away.

  15. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  16. Defining window-boundaries for genomic analyses using smoothing spline techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; Gianola, Daniel; de Leon, Natalia

    2015-04-17

    High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the datamore » and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.« less

  17. Ground Magnetics (Nannini, 1986) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration...

  18. Ground Control Progress Continues at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 4, 2015 Ground Control Progress Continues at WIPP Underground Operations Personnel at the Waste Isolation Pilot Plant (WIPP) have made significant progress since resuming ground control operations just over a year ago. Ground control is necessary to ensure a safe environment for employees working 2,150 feet below the surface in the WIPP underground. Ground control includes, but is not limited to, installation of steel bolts of various lengths into the roof and walls of the mine. These

  19. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. PDF icon Tritium Ground Water Issues More Documents & Publications Managing Uncertainty and Demonstrating Compliance EA-1356: Final Environmental Assessment SRS FTF Section 3116 Basis for Determination

  20. ION SOURCE

    DOE Patents [OSTI]

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  1. NEUTRON SOURCE

    DOE Patents [OSTI]

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  2. Infrared source test

    SciTech Connect (OSTI)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  3. Savings from energy efficient windows: Current and future savings from new fenestration technologies in the residential market

    SciTech Connect (OSTI)

    Frost, K.; Arasteh, D.; Eto, J.

    1993-04-01

    Heating and cooling energy lost through windows in the residential sector (estimated at two-thirds of the energy lost through windows in all sectors) currently accounts for 3 percent (or 2.8 quads) of total US energy use, costing over $26 billion annually in energy bills. Installation of energy-efficient windows is acting to reduce the amount of energy lost per unit window area. Installation of more energy efficient windows since 1970 has resulted in an annual savings of approximately 0.6 quads. If all windows utilized existing cost effective energy conserving technologies, then residential window energy losses would amount to less than 0.8 quads, directly saving $18 billion per year in avoided energy costs. The nationwide installation of windows that are now being developed could actually turn this energy loss into a net energy gain. Considering only natural replacement of windows and new construction, appropriate fenestration policies could help realize this potential by reducing annual residential window energy losses to 2.2 quids by the year 2012, despite a growing housing stock.

  4. WINDOW 4.0: Program description. A PC program for analyzing the thermal performance of fenestration products

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  5. Characterization of Energy Savings and Thermal Comfort Improvements Derived from Using Interior Storm Windows

    SciTech Connect (OSTI)

    Knox, Jake R.; Widder, Sarah H.

    2013-09-30

    This field study of a single historic home in Seattle, WA documents the performance of Indow Windows’s interior storm window inserts. Energy use and the temperature profile of the house were monitored before and after the installation of the window inserts and changes in the two recorded metrics were examined. Using the defined analysis approach, it was determined that the interior storm windows produced a 22% reduction of the HVAC energy bill and had an undetermined effect on the thermal comfort in the house. Although there was no measurable changes in the thermal comfort of the house, the occupant noted the house to be “warmer in the winter and cooler in the summer” and that the “temperatures are more even (throughout the house).” The interior storm windows were found to be not cost effective, largely due to the retrofits completed on its heating system. However, if the economic analysis was conducted based on the old heating system, a 72% efficient oil fired furnace, the Indow Windows proved to be economical and had a simple payback period of 9.0 years.

  6. ION SOURCE

    DOE Patents [OSTI]

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  7. ION SOURCE

    DOE Patents [OSTI]

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  8. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    SciTech Connect (OSTI)

    Luo, Tianhuan; Li, D.; Virostek, S.; Palmer, R.; Stratakis, Diktys; Bowring, D.

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  9. Numerical simulation study on fluid dynamics of plasma window using argon

    SciTech Connect (OSTI)

    Huang, S.; Zhu, K.; Shi, B. L.; Lu, Y. R.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.; Wei, G. D.

    2013-07-15

    In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic model has been developed to investigate the arc and flow field of plasma window, which is used as a windowless vacuum sealing device. The gas inlet, arc creation-developing and plasma expansion segments are all incorporated together in the integral model. An axis-symmetry cathode structure (hollow cathode) is used in the model. Current distribution of the arc is presented and discussed. The temperature, velocity, and pressure field are presented to show the physical mechanisms for the high pressure gap within the plasma window. Flow acceleration and viscosity effect are concluded as the main reasons for the pressure drop. The result for the pressure distribution in the cylindrical tube section has a good agreement with the analytical model. The validation for the sealing ability of plasma window is verified.

  10. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    SciTech Connect (OSTI)

    Tsoupas, N.; Hahn, H.; Meng, W.; Severance, Michael; McMahan, Brandon

    2014-08-26

    The high intensity proton bunches (~2.5x1011 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite’s temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those of a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.

  11. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  12. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect (OSTI)

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  13. An Experimental and Analytical Evaluation of Wall And Window Retrofit Configurations: Supporting the Residential Retrofit Best Practices Guide

    SciTech Connect (OSTI)

    Stovall, Therese K; Petrie, Thomas; Kosny, Jan; Childs, Phillip W; Atchley, Jerald Allen; Hulvey, Kimberly D

    2007-11-01

    A Retrofit Best Practices Guide was developed to encourage homeowners to consider energy conservation issues whenever they modify their siding or windows. In support of this guide, an experimental program was implemented to measure the performance of a number of possible wall siding and window retrofit configurations. Both thermal and air-leakage measurements were made for a 2.4 x 2.4 m (8 x 8 ft) wall section with and without a 0.9 x 1.2 m (3 x 4 ft) window. The windows tested were previously well-characterized at a dedicated window test facility. A computer model was also used to provide information for the Best Practices Guide. The experimental data for walls and windows were used in conjunction with this model to estimate the total annual energy savings for several typical houses in a number of different locations.

  14. High-power RF window design for the PEP-II B Factory

    SciTech Connect (OSTI)

    Neubauer, M.; Hodgson, J.; Ng, C.; Schwarz, H.; Skarpaas, K.; Kroll, N. |; Rimmer, R.

    1994-06-01

    We describe the design of RF windows to transmit up to 500 kW CW to the PEP-II 476 MHz cavities. RF analysis of the windows using high-frequency simulation codes are described. These provide information about the power loss distribution in the ceramic and tim matching properties of the structure. Finite-element analyses of the resulting temperature distribution and thermal stresses are presented. Fabrication methods including a proposed scheme to compensate for thermal expansion s are discussed and hardware tests to validate this approach are described. The effects of surface coatings (intentional and otherwise) and the application of air cooling are considered.

  15. Accessing a growth window for SrVO3 thin films (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Accessing a growth window for SrVO3 thin films Citation Details In-Document Search This content will become publicly available on October 6, 2016 Title: Accessing a growth window for SrVO3 thin films Authors: Brahlek, Matthew [1] ; Zhang, Lei [1] Search SciTech Connect for author "Zhang, Lei" Search SciTech Connect for ORCID "0000000215598469" Search orcid.org for ORCID "0000000215598469" ; Eaton, Craig [1] ; Zhang, Hai-Tian [1] Search SciTech Connect

  16. Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Weatherstrip Double-Hung (or Sash) Windows Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows Addthis Project Level Easy Energy Savings 5 - 10% Time to Complete 1 hour Overall Cost $5 - $10 Look for air leaks in these common places in your home. | Photo courtesy of U.S. EPA. Look for air leaks in these common places in your home. | Photo courtesy of U.S. EPA. You can use weatherstripping in your home to seal air leaks around movable joints, such as

  17. Berkeley Lab Scientists Developing Paint-on Coating for Energy Efficient Windows

    Broader source: Energy.gov [DOE]

    It’s estimated that 10 percent of all the energy used in buildings in the U.S. can be attributed to window performance, costing building owners about $50 billion annually, yet the high cost of replacing windows or retrofitting them with an energy efficient coating is a major deterrent. U.S. Dept. of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) researchers are seeking to address this problem with creative chemistry—a polymer heat-reflective coating that can be painted on at one-tenth the cost.

  18. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  19. Text-Alternative Version of Building America Webinar: Low-e Storms: The Next "Big Thing" in Window Retrofits

    Broader source: Energy.gov [DOE]

    Low-e Storms:  The Next “Big Thing” in Window RetrofitsOfficial Webinar Transcript (September 9, 2014)

  20. Potential partnerships and funding from a variety of sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Proposal windows: 915 & 216 Decision, Risk and Management Sciences Proposal windows: 815 & 116 Cultural Anthropology Program - Doctoral Dissertation Research...