Powered by Deep Web Technologies
Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ground Source Heat Pump Demonstration Projects  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Ground Source Heat Pump Demonstration Projects.

2

Ground Source Heat Pump Subprogram Overview  

Broader source: Energy.gov [DOE]

This overview of GTP's Ground Source Heat Pump subprogram was given at GTP's Program Peer Review on May 18, 2010.

3

North Village Ground Source Heat Pumps  

Broader source: Energy.gov [DOE]

Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

4

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

5

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps (Redirected from Geothermal Heat Pumps) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

6

Feasibility study of broadband efficient ''water window'' source  

SciTech Connect (OSTI)

We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

Higashiguchi, Takeshi; Yugami, Noboru [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012 (Japan); Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Jiang Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Li Bowen; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)

2012-01-02T23:59:59.000Z

7

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

8

Hybrid Ground Source System Analysis and Tool Development | Department...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid Ground Source System Analysis and Tool Development Hybrid Ground Source System Analysis and Tool Development Project objectives: 1. Compile filtered hourly data for three...

9

Federal Energy Management Program: Covered Product Category: Ground-Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground-Source Heat Pumps to someone by E-mail Ground-Source Heat Pumps to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Google Bookmark Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Delicious Rank Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

10

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Broader source: Energy.gov (indexed) [DOE]

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

11

Building Technologies Office: Ground Source Heap Pump Data Mining Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground Source Heap Pump Ground Source Heap Pump Data Mining Research Project to someone by E-mail Share Building Technologies Office: Ground Source Heap Pump Data Mining Research Project on Facebook Tweet about Building Technologies Office: Ground Source Heap Pump Data Mining Research Project on Twitter Bookmark Building Technologies Office: Ground Source Heap Pump Data Mining Research Project on Google Bookmark Building Technologies Office: Ground Source Heap Pump Data Mining Research Project on Delicious Rank Building Technologies Office: Ground Source Heap Pump Data Mining Research Project on Digg Find More places to share Building Technologies Office: Ground Source Heap Pump Data Mining Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities

12

Overcoming Barriers to Ground Source Heat Pumps in California  

E-Print Network [OSTI]

Overcoming Barriers to Ground Source Heat Pumps in California Geothermal Resources Development Account http://www.energy.ca.gov/geothermal/ grda.html May 2011 The Issue Ground source heat pumps can far made little impact in California. Estimates are that adoption of ground source heat pumps

13

Definition: Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search Dictionary.png Ground Source Heat Pumps A Ground Source Heat Pump is a central building heating and/or cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground.[1][2][3] View on Wikipedia Wikipedia Definition A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps

14

Ground-Source Heat Pumps in Cold Climates  

E-Print Network [OSTI]

Ground-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review of the Literature and contributions from individuals and organizations involved in ground-source heat pump installation around Alaska

Wagner, Diane

15

Hybrid Ground Source System Analysis and Tool Development  

Broader source: Energy.gov (indexed) [DOE]

Development Principal Investigator Scott Hackel, Energy Center of Wisconsin Ground Source Heat Pumps Demonstration Projects May 18, 2010 This presentation does not contain any...

16

Building America Case Study: Ground Source Heat Pump Research...  

Energy Savers [EERE]

a home during design and carefully sizing expensive systems such as ground source heat pumps (GSHPs) will result in a closer correlation between modeled and actual energy...

17

EVALUATION AND OPTIMIZATION RESEARCH OF GROUND SOURCE HEAT PUMP.  

E-Print Network [OSTI]

??Nowadays energy efficiency and environmental protection have got particular attention. After the sustainable development theory had been put forward decades ago. Ground source heat pump… (more)

Zhou, Taian

2011-01-01T23:59:59.000Z

18

Trimming of a ground source heat pump system in Saltsjöbaden.  

E-Print Network [OSTI]

?? The real performance of ground source heat pumps systems are not precisely highlighted in most cases, especially when it comes to installations older than… (more)

Garnier, Michel

2014-01-01T23:59:59.000Z

19

Monitoring SERC Technologies —Geothermal/Ground Source Heat Pumps  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

20

Design of an Aluminum Proton Beam Window for the Spallation Neutron Source  

SciTech Connect (OSTI)

An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

Janney, Jim G [ORNL; McClintock, David A [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect (OSTI)

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

22

Ground-Source Heat Pumps Applied to Commercial Buildings  

SciTech Connect (OSTI)

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2006-12-31T23:59:59.000Z

23

Ground Source Heat Pump System Data Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Peer Review Peer Review GSHP System Data Analysis Xiaobing Liu, Ph.D. Oak Ridge National Laboratory liux2@ornl.gov (865-574-2593) 4/3/2013 - GSHP Data Analysis in 1 st phase of U.S.-China CERC-BEE - GSHP ARRA Grantee Data Mining 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: High first cost of ground heat exchangers (GHXs) and lack of knowledge/trust in achievable benefits are major barriers preventing

24

Ground Source Heat Pump System Data Analysis  

Broader source: Energy.gov (indexed) [DOE]

Peer Review Peer Review GSHP System Data Analysis Xiaobing Liu, Ph.D. Oak Ridge National Laboratory liux2@ornl.gov (865-574-2593) 4/3/2013 - GSHP Data Analysis in 1 st phase of U.S.-China CERC-BEE - GSHP ARRA Grantee Data Mining 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: High first cost of ground heat exchangers (GHXs) and lack of knowledge/trust in achievable benefits are major barriers preventing

25

Combined permeable pavement and ground source heat pump systems   

E-Print Network [OSTI]

The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

26

Optimal Design for a Hybrid Ground-Source Heat Pump  

E-Print Network [OSTI]

Although the advantages of ground-source heat pumps over their conventional alternatives make these systems a very attractive choice for air conditioning, not only for residential buildings but increasingly also for institutional and commercial...

Yu, Z.; Yuan, X.; Wang, B.

2006-01-01T23:59:59.000Z

27

'Water window' sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth  

SciTech Connect (OSTI)

Development of laser-produced plasma 'water window' sources poses a major challenge in x-ray research and most effort has focused on line sources for use with zone plate optics. Here, a comparison of carbon and nitrogen line emission with that from both 3d - 4f and 4d - 4f unresolved transition arrays shows that, at power densities available from 'table-top' solid-state lasers, 3d - 4f emission from zirconium plasmas is most intense, and calculations show that in an imaging system based on multilayer mirrors, for reflectance bandwidths >1% has superior performance than either line or broader-band sources. For bandwidths <1%, line sources are preferable.

Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)] [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Higashiguchi, Takeshi; Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan)] [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan)] [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [HiLASE Project, Institute of Physics AS, CR, Na Slovance 2, 18221 Prague 8 (Czech Republic)] [HiLASE Project, Institute of Physics AS, CR, Na Slovance 2, 18221 Prague 8 (Czech Republic)

2013-01-28T23:59:59.000Z

28

Train-the-Trainer As ground source heat  

E-Print Network [OSTI]

for competent installers increases as an integral part of the growing geothermal industry. Regional trainers in their home areas. Courses are taught by industry professionals with expertise ranging from GSHP system design will also receive a copy of the Closed-Loop/ Ground- Source Heat Pump Systems Installation Guide

29

APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO  

E-Print Network [OSTI]

APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. Thesis Approved cannot find enough words to thank my father, H. Ramamoorthy, my mother, R. Devasena, and my brother

30

Marketing Ground Source Heat Pump Advanced Applications that  

E-Print Network [OSTI]

Solar Thermal n Real World Examples Overview #12;n High First Cost n Incompetent Contractor n Operating Wallace President, Energy Environmental Corporation October 9, 2013 #12;Within the United States, what is the fastest growing market with the available capital and need for the benefits of ground source heat pumps

31

Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source  

SciTech Connect (OSTI)

An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

McClintock, David A [ORNL] [ORNL; Janney, Jim G [ORNL] [ORNL; Parish, Chad M [ORNL] [ORNL

2014-01-01T23:59:59.000Z

32

A capital cost comparison of commercial ground-source heat pump systems  

SciTech Connect (OSTI)

The report provides a capital cost comparison of commercial ground source heat pump systems. The study includes groundwater systems, ground-coupled systems and hybrid systems.

Rafferty, K.

1994-06-01T23:59:59.000Z

33

Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground Source Heat Pump Demonstration Projects to someone by E-mail Ground Source Heat Pump Demonstration Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on AddThis.com...

34

Application analysis of ground source heat pumps in building space conditioning  

E-Print Network [OSTI]

temporal variation of the heat pump COP over the three-monthfor ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: A

Qian, Hua

2014-01-01T23:59:59.000Z

35

Experimental investigation on system with combination of ground-source heat pump and solar collector  

Science Journals Connector (OSTI)

This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by ...

Tao Hu ? ?; Jialing Zhu ???; Wei Zhang ? ?

2013-06-01T23:59:59.000Z

36

Radiation damage and lifetime estimation of the proton beam window at the Japan Spallation Neutron Source  

Science Journals Connector (OSTI)

Abstract The proton beam window (PBW) is a component that separates the high-vacuum area of the accelerator from the target area in the Japan Proton Accelerator Research Complex’s Japan Spallation Neutron Source (JSNS). It is important to estimate the damage accumulated from proton beam irradiation to establish a safe lifetime for the window. The PBW is made of an aluminum alloy, which was chosen because of its successful use in the target safety hull of the Swiss Spallation Neutron Source (SINQ). Post-irradiation examination (PIE) performed on SINQ Target 3 after irradiation with a 0.6 GeV proton beam measured the gas production in its aluminum safety hull. To estimate a safe lifetime for the JSNS PBW, we calculated the displacement per atom (DPA) and gas production rate using the Particle and Heavy Ion Transport code System (PHITS) for 0.6- and 3-GeV protons. For the hydrogen gas production rate, PHITS shows good agreement with the SINQ PIE results; however, for the helium production rate, it predicts a 45% lower value than the experimental result of 1125 appm. The calculated result for helium production was normalized to fit the experimental results of SINQ. We conservatively estimate the lifetime of the JSNS PBW using the condition that the hydrogen production rate does not exceed the value measured at SINQ. The lifetime of the PBW corresponds to a proton beam fluence of 1.8 × 1021 cm?2, which is equivalent to an integrated beam power of 8000 MW h with the designed current density of 10 ?A cm?2. The peak density will be reduced to 8.4 ?A cm?2 to suppress cavitation pitting damage in the mercury target vessel. Consequently, the lifetime of the PBW will be 9500 MW h.

Shin-ichiro Meigo; Motoki Ooi; Masahide Harada; Hidetaka Kinoshita; Atushi Akutsu

2014-01-01T23:59:59.000Z

37

Radiation Efficiency of Water-Window Cherenkov Sources Using Atomic Shell Resonances  

Science Journals Connector (OSTI)

We developed simple theory of Cherenkov radiation at atomic resonances in the X-ray water window for L-shells in 5 trans-oxigen elements and proposed K-shell resonance in liquid...

Kaplan, Alexander E; Shkolnikov, Peter L

38

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings  

E-Print Network [OSTI]

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings at Whidbey Island Naval Air and Mt. Olympus BOQ) presently heated by steam from the central steam plant. Ground source heat pump source heat pumps provide both heating and cooling, there would essentially be no cost increase

Oak Ridge National Laboratory

39

Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps  

Broader source: Energy.gov [DOE]

Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

40

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network [OSTI]

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat… (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps  

Broader source: Energy.gov [DOE]

This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

42

Ground Source Integrated Heat Pump (GS-IHP) Development  

SciTech Connect (OSTI)

Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

2013-05-24T23:59:59.000Z

43

Transmission-Line Metamaterial Design of an Embedded Line Source in a Ground Recess.  

E-Print Network [OSTI]

??A transmission-line metamaterial design of a material-embedded electric line source radiating inside a ground recess is investigated. The media embedding the recessed line source are… (more)

EMIROGLU, CAGLAR D

2011-01-01T23:59:59.000Z

44

PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION  

E-Print Network [OSTI]

PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

45

Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in  

E-Print Network [OSTI]

1 Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in Central pump (GSP) for heating, cooling and hot water in a Central Pennsylvania residence (namely, the author, the efficiency gain for the ground-source heat pump compared to electricity is 43% for cooling and 81

Blumsack, Seth

46

192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated  

E-Print Network [OSTI]

192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

Ghajar, Afshin J.

47

Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area  

E-Print Network [OSTI]

The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due...

Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

2006-01-01T23:59:59.000Z

48

Short communication Optimization of hybrid ground coupled and air source heat pump systems  

E-Print Network [OSTI]

Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

Fernández de Córdoba, Pedro

49

Ground Source Heat Pump Data Mining Research Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ground Source Heat Pump Data Mining Ground Source Heat Pump Data Mining Research Project Ground Source Heat Pump Data Mining Research Project The U.S. Department of Energy is currently conducting research into ground source heat pump (GSHP) data mining. This project seeks to build public awareness of GSHP technology through the development of case studies outlining costs and benefits. Project Description This project seeks to produce in-depth case studies on the costs and benefits of American Recovery and Reinvestment Act -funded GSHP demonstration projects, including cross-cutting summaries of lessons learned and best practices for design, installation, and operation. Project Partners Research is being undertaken between the Department of Energy and Oak Ridge National Laboratory. Project Goals

50

Covered Product Category: Ground-Source Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ground-Source Heat Pumps Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps October 7, 2013 - 10:32am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including ground-source heat pumps (GSHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

51

Covered Product Category: Ground-Source Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Covered Product Category: Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps October 7, 2013 - 10:32am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including ground-source heat pumps (GSHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

52

ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps  

E-Print Network [OSTI]

ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption Division Sponsored by EERE Geothermal Technologies Program U.S. Department of Energy #12;Page iii DOCUMENT

Oak Ridge National Laboratory

53

ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps  

E-Print Network [OSTI]

ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption Division Sponsored by EERE Geothermal Technologies Program U.S. Department of Energy #12; Page iii

Oak Ridge National Laboratory

54

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

Hong, Tainzhen

2010-01-01T23:59:59.000Z

55

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network [OSTI]

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

Kavanaugh, S.

1988-01-01T23:59:59.000Z

56

Dispersion modeling of ground-level area sources of particulate  

E-Print Network [OSTI]

The use of dispersion modeling by State Air Pollution hics. Regulatory Agencies (SAPRAS) is increasing. Dispersion modeling provides a quick and efficient means of determining the downwind impact of pollutant release from a source. The SAPRAS...

Fritz, Bradley Keith

2012-06-07T23:59:59.000Z

57

Ball State University Completes Nation's Largest Ground-Source...  

Energy Savers [EERE]

need an all-of-the-above approach to American energy-an approach that uses homegrown and alternative energy sources designed and produced by American workers," said U.S. Energy...

58

Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.  

E-Print Network [OSTI]

??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such… (more)

Blair, Jacob Dale

2014-01-01T23:59:59.000Z

59

Advanced Windows Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

60

Designing, selecting and installing a residential ground-source heat pump system  

SciTech Connect (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Payback Analysis for Ground Source Heat Pump Retrofits Using eQuest Modeling Software  

E-Print Network [OSTI]

There has been much research and analysis done on the performance and potential energy savings related to installing a ground source heat pump (GSHP) system. Much of this research has been dedicated to the new construction industry, and focused on a...

Wahlers, Drake

2011-12-16T23:59:59.000Z

62

Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings  

Broader source: Energy.gov [DOE]

Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- ClimateMaster - Oklahoma City, OK -- Oklahoma State University - Stillwater, OK -- Oklahoma Gas & Electric - Oklahoma City, OK -- International Ground Source Heat Pump Association - Stillwater, OK -- Chinese Academy of Building Research - Beijing, China -- Tongji University - Shanghai, China -- Tianjin University - Tianjin, China -- Chongqin University - Chongqing, China

63

A numerical simulation tool for multilayer grounding analysis integrated in an open-source CAD interface  

E-Print Network [OSTI]

of the challenges of the electrical engineers and designers since the beginning of the large-scale harnessing-source platform 1. Introduction Obtaining the distribution of potential levels of an earthing system has been one of electricity. Thus, the grounded electrode dissipates the electrical currents generated during a fault

Colominas, Ignasi

64

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network [OSTI]

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

65

Ball State University Completes Nation's Largest Ground-Source Geothermal System with Support from Recovery Act  

Broader source: Energy.gov [DOE]

As part of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today congratulated Ball State University for its campus-wide ground-source geothermal system, the nation's largest geothermal heating and cooling system.

66

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect (OSTI)

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

67

Application Analysis of Ground Source Heat Pumps in Building Space Conditioning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application Analysis of Ground Source Heat Application Analysis of Ground Source Heat Pumps in Building Space Conditioning Hua Qian 1,2 , Yungang Wang 2 1 School of Energy and Environment Southeast University Nanjing, 210096, China 2 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA July 2013 The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1) and by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

68

Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition  

Broader source: Energy.gov (indexed) [DOE]

and exterior to the facility, are typically less and exterior to the facility, are typically less than those for conventional systems. Potential Application The technology has been shown to be techni- cally valid and economically attractive in many applications. It is efficient and effective. This Federal Technology Alert reports on the collec- tive experience of heat pump users and evalua- tors and provides application guidance. An estimated 400,000 ground-source heat pumps are operating in the private and public sector, although most of these systems operate in resi- dential applications. A ground-source heat pump system can be applied in virtually any category of climate or building. The large num- ber of installations testifies to the stability of this technology. The reported problems can usually be attributed to faulty design or

69

Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E E N E R G Y M A N A G E M E N T P R O G R A M and exterior to the facility, are typically less than those for conventional systems. Potential Application The technology has been shown to be techni- cally valid and economically attractive in many applications. It is efficient and effective. This Federal Technology Alert reports on the collec- tive experience of heat pump users and evalua- tors and provides application guidance. An estimated 400,000 ground-source heat pumps are operating in the private and public sector, although most of these systems operate in resi- dential applications. A ground-source heat pump system can be applied in virtually any category of climate or building. The large num- ber of installations testifies to the stability of this technology. The reported problems can

70

Window Properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Properties: measurements, simulations and ratings Window Properties: measurements, simulations and ratings Determining the thermal and optical performance of window systems is essential to researchers striving to develop improved products and to window manufacturers who need to demonstrate the energy performance of their products to architects, engineers, builders, and the general public. LBNL is involved in basic research in this field, in developing software and test procedures to analyze and quantify window heat transfer and optics, and in developing standards and rating procedures. Infrared Laboratory experiments provide surface temperature maps of window products. A companion Traversing System measures air velocity and air temperatures near the surface of test specimens. The MoWiTT facility provides accurate measurements of the heat flow through complete window systems subjected to real weather conditions. MoWiTT results have been used to validate the performance of emerging technologies and research prototypes as well as to validate thermal performance models.

71

Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-13-3 Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC Wei Mu Suilin Wang Shuyuan Pan Yongzheng Shi Master Student... the Jurisdiction of Beijing Municipality (BJE10016200511). REFERENCES [1]Rongguang Wang,Yufeng Zhang,Yang,Xiaotong Zheng. Study on Direct Use Of Geothermal Energy For Heating And Its Energy Efficency Effects [J]. ACTA ENERGIAE SOLARIS SINICA, 2002, 23...

Mu, W.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

72

Intermittent experimental study of a vertical ground source heat pump system  

Science Journals Connector (OSTI)

Abstract In this paper, the intermittent experiment of a vertical ground source heat pump (GSHP) system is investigated and the corresponding geo-temperature variations are studied. The performance of the GSHP system under intermittent operation and the comparisons of different intermittent modes are presented in the paper. The parameters of soil backfill material, air temperature and inlet volume flow rate are also investigated. Experimental results suggest that, due to the recovery in ground thermal energy in intermittent time, the heat exchange rate and the operation performance coefficient (COP) of the heat pump increases, and the compressor power decreases in the successive working. But an insufficient soil recovery time leads to a rapid decline of the performance parameters and the soil temperature. The temperature transports faster under large soil thermal conductivity conditions and the soil temperature decreases more quickly and recovers more slowly with larger inlet flow rate and lower weather temperature for different soil thermal diffusivities. Through multiple nonlinear regression analysis, a curve formula can be fitted to predict the soil temperature variations under intermittent operation of the ground source heat pump in winter, Dalian. It can be found that the soil temperature increases at an exponential function with each factor.

Yan Shang; Ming Dong; Sufen Li

2014-01-01T23:59:59.000Z

73

Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada  

Science Journals Connector (OSTI)

This document presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto, Canada, were estimated. TRNSYS, a system simulation software tool, was used to model yearly performance of a conventional GSHP system as well as a proposed hybrid GSHP system. Actual yearly data collected from the site were examined against the simulation results. This study demonstrates that hybrid ground source heat pump system combined with solar thermal collectors is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground heat exchanger (GHX) length. Combining three solar thermal collectors with a total area of 6.81 m2 to a GSHP system will reduce GHX length by 15%. Sensitivity analysis was carried out for different cities of Canada and resulted that Vancouver, with mildest climate compared to other cities, was the best candidate for the proposed solar hybrid GSHP system with a GHX length reduction to solar collector area ratio of 7.64 m/m2. Overall system economic viability was also evaluated using a 20-year life-cycle cost analysis. The analysis showed that there is small economic benefit in comparing to the conventional GSHP system. The net present value of the proposed hybrid system based on the 20-year life-cycle cost analysis was estimated to be in a range of 3.7%–7.6% (or $1500 to $3430 Canadian dollar) lower than the conventional GSHP system depending on the drilling cost.

Farzin M. Rad; Alan S. Fung; Wey H. Leong

2013-01-01T23:59:59.000Z

74

International Workshop on Geomechanics and Energy The Ground as Energy Source and Storage Lausanne, Switzerland, 26-28 November 2013  

E-Print Network [OSTI]

International Workshop on Geomechanics and Energy ­ The Ground as Energy Source and Storage region of Switzerland. #12;International Workshop on Geomechanics and Energy ­ The Ground as Energy and the "Brown Dogger", from a deep geothermal well (depth of 766.67 and 778.30 m) near the village

Candea, George

75

Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump  

E-Print Network [OSTI]

In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

Wang, F.; Zheng, M.; Li, Z.; Lei, B.

2006-01-01T23:59:59.000Z

76

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building  

E-Print Network [OSTI]

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

Zhu, N.

2014-01-01T23:59:59.000Z

77

The citation for this paper is: Spitler, J.D., X. Liu, S.J. Rees, C. Yavuzturk. 2005. Simulation and Optimization of Ground Source Heat  

E-Print Network [OSTI]

are potentially more efficient than conventional air-to-air systems. In practice, ground-source heat pump systems and Optimization of Ground Source Heat Pump Systems. 8th International Energy Agency Heat Pump Conference. Las Vegas. May 30-June 2. 1 #12;SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS J.D. Spitler

78

Advanced Ground Source Heat Pump Technology for Very-Low-Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

loop designs being evaluated for their ground loop cost reduction potential
Credit: Oak Ridge National Lab Three newunder-utilized ground loop designs being evaluated for...

79

Cooling characteristics of ground source heat pump with heat exchange methods  

Science Journals Connector (OSTI)

Abstract The objective of this study is to investigate the influence of the cooling performance for a water-to-water ground source heat pump (GSHP) by using the counter flow and parallel flow methods. The GSHP uses R-410A as a refrigerant, and its main components are a scroll compressor, plate heat exchangers as a condenser, an evaporator, a thermostatic expansion valve, a receiver, and an inverter. Based on our modeling results, the heat transfer rate of the counter flow evaporator is higher than that of the parallel flow evaporator for a heat exchanger length greater than 0.42 m. The evaporator length of the GSHP used in this study was set to over 0.5 m. The performance of the water-to-water GSHP was measured by varying the compressor speed and source-side entering water temperature (EWT). The cooling capacity of the GSHP increased with increased compressor \\{RPMs\\} and source side EWT. Also, using the counter flow method, compared to the parallel flow method, improves the COP by approximately 5.9% for an ISO 13256-2 rated condition.

Ohkyung Kwon; KyungJin Bae; Chasik Park

2014-01-01T23:59:59.000Z

80

PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE  

SciTech Connect (OSTI)

The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

Jiang Zhu; Yong X. Tao

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Occupant Response to Window Control Signaling Systems  

E-Print Network [OSTI]

water,  overhead air distribution  Ground source heat pump, overhead air distribution  Ground source heat pump, air handlers, which are coupled to ground-source heat pumps

Ackerly, Katherine

2012-01-01T23:59:59.000Z

82

Assessment of ground vibration impact from automotive and transit sources on future biotechnology research center using finite element analysis (FEA)  

Science Journals Connector (OSTI)

A new science and biotechnology research center was to be built in a metropolitan industrial area. There was concern that ground vibration from a nearby freeway street traffic and trains on an adjacent railroad would impact vibration sensitive research equipment inside the building. Ground vibration was measured at the project site prior to construction. Finite Element Analysis(FEA) was used to develop a computer simulation of the building structure using the measured ground vibration as input to the FEAmodel. The study determined the building floor vibration due to exterior sources would achieve the project’s criteria for the building structure as designed.

James E. Phillips

2007-01-01T23:59:59.000Z

83

Focus group discussions among owners and non-owners of ground source heat pumps  

SciTech Connect (OSTI)

This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

Roberson, B.F.

1988-07-01T23:59:59.000Z

84

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

85

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Home Maintenance: Windows, Windows, Windows! Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

86

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Repair Existing Windows Repair Existing Windows Lead Paint and Window Replacement: Challenges and Opportunities In older homes, windows are a likely source of lead contamination in homes. Dust from lead paint can create serious health problems, especially in young children. While window replacement can increase lead dust during renovation, it can also permanently eliminate lead hazards by removing lead-painted windows. Download fact sheet» A variety of options exist for improving the energy-efficiency of your existing windows. Before investing in these options, check your windows for potential issues that may call for replacement instead: Moisture and mold between window frame and wall: If water and water vapors are allowed to penetrate around the window frame, the moisture can

87

Scaling and estimation of earthquake ground motion as a function of the earthquake source parameters and distance  

SciTech Connect (OSTI)

In this report we review the various methodologies currently available to predict the near-source ground motion from an earthquake. The limitations of the various approaches are discussed in light of recently developed theory and recorded data. To overcome some of the limitations of available approaches, we develop improved rules for scaling between earthquakes. Ground-motion data obtained from salvo (line source) explosions are also investigated to gain insight into the appropriate form for the attenuation of peak acceleration and peak velocity. The scaling laws are combined with the appropriate attenuation relations and the data from the 1971 San Fernando and 1940 Imperial Valley earthquakes to obtain relations among the key source parameters: dynamic stress drop and equivalent radius of the highly stressed region, distance from the center of energy release, and peak ground acceleration and velocity. These relations are verified by comparing the predicted levels of ground motion to those actually recorded from a number of earthquakes, including the recent 1979 Imperial Valley and Coyote Lake earthquakes. The relations among earthquake magnitude, earthquake source parameters, and peak ground motion are discussed. 83 refs., 37 figs., 9 tabs.

Bernreuter, D.L.

1981-04-01T23:59:59.000Z

88

Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

89

Advancement of Electrochromic Windows  

E-Print Network [OSTI]

Guide for Early-Market Electrochromic Windows. LBNL-59950.Guide for Early-Market Electrochromic Windows Attachment 17:electrochromic prototype windows that were deemed sufficiently mature for market

2006-01-01T23:59:59.000Z

90

Zero Energy Windows  

E-Print Network [OSTI]

Energy Performance of Electrochromic Windows Controlled for2006). Advancement of Electrochromic Windows, CaliforniaSavings Potential of Electrochromic Windows in the U.S.

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

91

Development of design tools for ground-source heat pump piping  

SciTech Connect (OSTI)

High-density polyethylene (HDPE) piping systems with thermal fusion joints have several attractive characteristics when applied to ground-source heat pump (GSHP) systems. However, engineers may not have access to GSHP piping and fitting head loss data or to easy-to-use tools for piping design/pump sizing. Some GSHP systems have been conservatively designed with pumps that are grossly oversized. Systems have been installed in which the pump energy use exceeds heat pump energy. In some cases, engineers completely avoid the use of GSHPs because they are not comfortable with the low level of sophistication and the difficulty of using current GSHP design tools. A project has been undertaken to measure head loss in common GSHP fittings and pipe design and to develop a set of easy-to-use and accurate piping design tools. These tools will not only give designers more confidence but will reduce the cost of GSHPs by reducing oversizing and piping complexity that has been common in some installations. The results of this project are presented in a format similar to the tools currently used by practicing HVAC design engineers. Tables for fitting equivalent lengths and k-factors have been developed. Log-log plots of head loss vs. flow rate and liquid velocity are presented in a format similar to the plots appearing in the 1993 ASHRAE Handbook--Fundamentals. These tables and charts for HDPE piping components complement existing charts and tables for traditional piping systems.

Kavanaugh, S. [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Mechanical Engineering

1998-10-01T23:59:59.000Z

92

Application analysis of ground source heat pumps in building space conditioning  

SciTech Connect (OSTI)

The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

Qian, Hua; Wang, Yungang

2013-07-01T23:59:59.000Z

93

Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers  

SciTech Connect (OSTI)

More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pump systems (GHPs), sometimes called ground-source heat pump or Geo-Exchange systems, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national energy and climate strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE s request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential and other benefits, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in a report along with conclusions and recommendations. This paper summarizes the key information from the report.

Hughes, Patrick [ORNL

2009-01-01T23:59:59.000Z

94

Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools  

SciTech Connect (OSTI)

One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

Scott Hackel; Amanda Pertzborn

2011-06-30T23:59:59.000Z

95

Contamination source review for Building E3162, Edgewood Area, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3162 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, and collection of air samples. The field investigations were performed by ANL during 1994 and 1995. Building E3162 (APG designation) is part of the Medical Research Laboratories Building E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War 2. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment involving chemical warfare agents. Building E3162 was used as a holding and study area for animals involved in non-agent burns. The building was constructed in 1952, placed on inactive status in 1983, and remains unoccupied. Analytical results from these air samples revealed no distinguishable difference in hydrocarbon and chlorinated solvent levels between the two background samples and the sample taken inside Building E3162.

Miller, G.A.; Draugelis, A.K.; Rueda, J.; Zimmerman, R.E.

1995-09-01T23:59:59.000Z

96

Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

1995-09-01T23:59:59.000Z

97

Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.

Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.; Zimmerman, R.E.

1995-09-01T23:59:59.000Z

98

Heating and cooling performance analysis of a ground source heat pump system in Southern Germany  

Science Journals Connector (OSTI)

Abstract This paper examines thermal performance of a ground source heat pump (GSHP) system. The GSHP system was installed in an office building in Nuremberg city of Germany. In order to evaluate system performance the GSHP system has been continuously monitored for 4 years. Heating and cooling performance of the GSHP system is analyzed based on the accumulated data. Major findings of this work include: (1) coefficient of performance (COP) is estimated to be 3.9 for a typical winter day and energy efficiency ratio (EER) is assessed to be 8.0 for a typical summer day. These results indicate that the GSHP system has a higher efficiency for building cooling than building heating. (2) For a long-term period, the seasonal energy efficiency ratio (SEER) of the GSHP system is observed to increase by 8.7% annually, whereas the seasonal COP is decreased by 4.0% over a 4-year period. The heating and cooling performance of the GSHP system migrates in opposite trend is caused by the unevenly distributed heating and cooling load of the building. This phenomenon deserves serious attention in the design of future GSHP systems in order to avoid the reducing of energy efficiency over long-term operation.

Jin Luo; Joachim Rohn; Manfred Bayer; Anna Priess; Lucas Wilkmann; Wei Xiang

2015-01-01T23:59:59.000Z

99

Analysis of Selection of Single or Double U-bend Pipes in a Ground Source Heat Pump System  

E-Print Network [OSTI]

The ground source heat pump (GSHP) system is widely used because of its energy-saving and environmental-friendly characteristics. The buried pipes heat exchangers play an important role in the whole GSHP system design. However, in most cases, single...

Shu, H.; Duanmu, L.; Hua, R.

2006-01-01T23:59:59.000Z

100

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

as other types of air source heat pumps, VRF systems needconventional packaged air source heat pumps. Typical GSHPis basically an air source heat pump), especially when the

Hong, Tainzhen

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CGDB Import Into WINDOW CGDB Import Into WINDOW Updated: 11/14/12 Detailed Instructions for Importing CGDB data into WINDOW These instructions apply to either WINDOW 6 or 7. WINDOW 6 vs WINDOW 7 Because the database structure of WINDOW 6 is different that WINDOW 7, there are different CGDB files to go with each version of WINDOW. There are also different versions of the XML files for each version, because in WINDOW 7 some problems with the files were fixed. Setup of CGDB The CGDB consists of a WINDOW database of records in the Shading Layer, Shade Material Library, and Glass Library, as well as a set of text files for systems that reference BSDF XML files. Database: The installation will put two databases into the "LBNL Shared" directory: (the location will depend on your operating system):

102

Optimization of solar assisted ground source heat pump system for space heating application by Taguchi method and utility concept  

Science Journals Connector (OSTI)

Abstract In the present research, a methodology is proposed to optimize the solar collector area and ground heat exchanger length for achieving higher COP of Solar Assisted Ground Source Heat Pump (SAGSHP) system using Taguchi method and utility concept. Four operating parameters for solar collector and four parameters for ground heat exchanger have been selected with mixed level variation using an L18 (21, 37) orthogonal array. The key parameters such as solar collector area, ground heat exchanger length and COP of the SAGSHP system are optimized to predict the best levels of operating parameters for maximum COP of SAGSHP system. Lower the better concept has been used for the solar collector area and ground heat exchanger length whereas higher the better concept has been employed for the COP of SAGSHP system and the results have been analyzed for the optimum conditions using signal-to-noise (SN) ratio and ANOVA method. Computations were carried out for 18 experimental trial runs by considering 2 ton heating load in winter season. The optimum COP for SAGSHP was estimated to be 4.23 from the utility concept, which is 8.74% higher than the optimum COP predicted by Taguchi optimization. Optimization of solar collector area and ground heat exchanger length by the utility concept has shown only about 2.3% reduction in area and 1.6% reduction in length respectively compared to those values optimized by the Taguchi method.

Vikas Verma; K. Murugesan

2014-01-01T23:59:59.000Z

103

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect (OSTI)

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

104

Learning Windows Ibraheem A. Alhashim  

E-Print Network [OSTI]

. They suggest using a trainable classifier to learn a distance function that improves their fitting procedure. However, they do not implement such classifier and relay on a heuristic derived from their experimentation to ground truth of 744 windows from 40 test images. We will use a subset of the database they used for our

Zhang, Richard "Hao"

105

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect (OSTI)

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

106

Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation  

SciTech Connect (OSTI)

A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

2011-01-01T23:59:59.000Z

107

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(6.3.74 -- February 14, 2012) Release Notes Updated: 02/15/13 If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 6.3.74 Program Changes Window LIbrary: Window Types In previous versions of WINDOW 6.3, there were two different Window Type lists, with conflicting ID numbers, which resulted in the possibility of a Window Library made with one set of Window Types would become corrupted (the wrong Window Types assigned) if the database records were imported into a another database with the different Window Type list. To solve this problem, we have added a database "migration" with this version of WINDOW -- when it opens any older database, it will update the Window Types list to have the choices (and IDs) shown below and then it will also update all the Window Library records to map to the new Window Types based on what the records were set to originally.

108

LBNL Windows & Daylighting Software -- WINDOW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW WINDOW NFRC Certification Version Release Version Beta Version WINDOW 6.3 (For NFRC Certification and modeling Complex Glazing Systems) WINDOW 7.1 For modeling vacuum glazing, deflected glass, vertical venetian blinds and perforated screens WINDOW 7.2 For modeling Cellular Shades, in addition to vacuum glazing, deflected glass, vertical venetian blinds and perforated screens Download WINDOW 6.3 (for NFRC Certification and complex glazing systems) Download WINDOW 7.1 Download WINDOW 7.2 Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) New Features

109

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW 6 and THERM 6 Technical Documentation WINDOW 6 and THERM 6 Technical Documentation Algorithm Documentation WINDOW6 and THERM6 implement the ISO 15099 algorithms: bullet ISO 15099 The algorithms in WINDOW6 and THERM6 follow the procedures presented in ISO 15099: "Thermal performance of windows, doors and shading devices - Detailed calculations." See: http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO+15099%3A2003 In addition to implementing ISO 15099 algorithms in WINDOW6 and THERM6, we have added additional capabilities to WINDOW6. The following reports and papers describe these additional capabilities and/or elaborate on ISO15099. bullet Thermal Algorithm Documentation for THERM6: Conrad 5 & Viewer 5 Technical and Programming Documentation June 20, 2006 bullet Thermal Algorithm Documentation for WINDOW6:

110

Advancement of Electrochromic Windows  

E-Print Network [OSTI]

of a thin-film ceramic electrochromic window: Field studyof a Thin-Film Ceramic Electrochromic Window: Field StudyEC window product characteristics The EC is a thin-film WO3-

2006-01-01T23:59:59.000Z

111

Advancement of Electrochromic Windows  

E-Print Network [OSTI]

Guide for Early-Market Electrochromic Windows. LBNL-59950.Granqvist, C.G. 2000. "Electrochromic Tungsten Oxide Films:the performance of the electrochromic windows. Proceedings

2006-01-01T23:59:59.000Z

112

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Specular Glazing Systems Specular Glazing Systems NFRC THERM 6.3 / WINDOW 6.3 Simulation Manual July 2013: bullet Entire Manual in PDF Format approximate 8 MB Comparison of WINDOW 5 / THERM 5 and WINDOW 6 / THERM 6 Results for Specular Glazing Systems (PDF Format) NFRC WINDOW 6 / THERM 6 Training for Specular Systems (Power Point Presentation, Oct/Nov 2010) Tutorials Complex Glazing Systems bullet WINDOW 6.2 / THERM 6.2 Research Version User Manual (Documents features in WINDOW6 and THERM 6 for modeling complex glazing systems) bullet WINDOW 6.2 / THERM 6.2 Simulation Manual Chapter for Complex Glazing (Draft) This was used for NFRC Simulator training in June 2009, and includes detailed descriptions for modeling venetian blinds between glass and frits. bullet Complex Glazing Summary -- PDF File

113

Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

Hillesheim, M.; Mosey, G.

2014-11-01T23:59:59.000Z

114

Air dispersion modeling of particulate matter from ground-level area sources  

E-Print Network [OSTI]

permit when, in fact, its emissions result in off-property concentrations that would not cause a violation of the National Ambient Air Quality Standard (NAAQS) for PM. To ensure fair and reliable regulation of pollutant sources, dispersion models...

Meister, Michael Todd

2012-06-07T23:59:59.000Z

115

Building Energy Software Tools Directory: Window Heat Gain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Heat Gain Window Heat Gain Window Heat Gain image Calculates the solar heat gain through vertical windows in temperate latitudes. Screen Shots Keywords Solar, window, energy Validation/Testing N/A Expertise Required None. Users Few (new program). Audience Architects, energy analysts. Input Location, window characteristics, ground characteristics. Output Daily/monthly heat gain through window. Computer Platform Web Programming Language JavaScript Strengths Allows default locations/windows/surfaces or custom user data. Incorporates lots of ASHRAE SHGF data that is otherwise burdensome to deal with. Weaknesses Only works for windows facing close to due north, south, east, or west. Doesn't address conductive losses or shading. Contact Company: Sustainable By Design Address: 3631 Bagley Avenue North

116

High Performance Window Attachments  

Broader source: Energy.gov (indexed) [DOE]

High Performance Window High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but they have widely unknown

117

Characterization of ammonia emissions from ground level area sources at central texas dairies  

E-Print Network [OSTI]

) to potentially develop source specific NH3 emission control strategies. The GLAS including open-lots, free-stall barns, separated solids, primary and secondary lagoons and milking parlor were sampled to estimate NH3 emissions. In the first study, assessment...

Mutlu, Atilla

2009-05-15T23:59:59.000Z

118

ANEMOS: A computer code to estimate air concentrations and ground deposition rates for atmospheric nuclides emitted from multiple operating sources  

SciTech Connect (OSTI)

This code estimates concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operating Sources. ANEMOS is one component of an integrated Computerized Radiological Risk Investigation System (CRRIS) developed for the US Environmental Protection Agency (EPA) for use in performing radiological assessments and in developing radiation standards. The concentrations and deposition rates calculated by ANEMOS are used in subsequent portions of the CRRIS for estimating doses and risks to man. The calculations made in ANEMOS are based on the use of a straight-line Gaussian plume atmospheric dispersion model with both dry and wet deposition parameter options. The code will accommodate a ground-level or elevated point and area source or windblown source. Adjustments may be made during the calculations for surface roughness, building wake effects, terrain height, wind speed at the height of release, the variation in plume rise as a function of downwind distance, and the in-growth and decay of daughter products in the plume as it travels downwind. ANEMOS can also accommodate multiple particle sizes and clearance classes, and it may be used to calculate the dose from a finite plume of gamma-ray-emitting radionuclides passing overhead. The output of this code is presented for 16 sectors of a circular grid. ANEMOS can calculate both the sector-average concentrations and deposition rates at a given set of downwind distances in each sector and the average of these quantities over an area within each sector bounded by two successive downwind distances. ANEMOS is designed to be used primarily for continuous, long-term radionuclide releases. This report describes the models used in the code, their computer implementation, the uncertainty associated with their use, and the use of ANEMOS in conjunction with other codes in the CRRIS. A listing of the code is included in Appendix C.

Miller, C.W.; Sjoreen, A.L.; Begovich, C.L.; Hermann, O.W.

1986-11-01T23:59:59.000Z

119

The Efficient Window Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 The Efficient Window Collaborative http://www.efficientwindows.org Energy-efficient windows make up only about 35% of the U.S. residential window market, even though they are cost-effective in approximately 80% or more of all applications. To ensure that efficient windows reach their optimum potential in homes throughout the U.S., the Department of Energy and key players in the U.S. window industry have formed the Efficient Window Collaborative (EWC). The EWC's goal is doubling the market share of efficient windows by 2005. With 31 charter members from the window and glass industries, the EWC is managed jointly by the Washington, D.C.-based Alliance to Save Energy and the Center for Building Science's Windows and Daylighting Group. The EWC serves as a focal point for voluntary

120

Experimental performance analysis of a solar assisted ground source heat pump system under different heating operation modes  

Science Journals Connector (OSTI)

Abstract This paper presents an experimental study on the influence of operation modes on the heating performance of a solar assisted ground source heat pump system (SAGSHPS). Through experiments conducted in January, the characteristics of the SAGSHPS were investigated under different heating operation modes. The results indicate that the solar thermal could be used to accelerate the soil recovery when the heat pump unit is turned off, but the duration of solar use to recharge boreholes should be optimized according to the water temperature in the solar heat storage water tank to avoid unnecessary power consumption of the circulation pump. In addition, the solar heat storage water tank is beneficial for the stable operation of the SAGSHPS. The volumetric flow rate in the water tank has a significant impact on the electricity consumption of the SAGSHPS. From comprehensive analysis of the integral effect of the SAGSHPS under different modes, the mode in which the water tank is connected with the ground heat exchangers (GHES) in series is the recommended mode for the SAGSHPS in the coldest month in Dalian.

Lanhua Dai; Sufen Li; Lin DuanMu; Xiangli Li; Yan Shang; Ming Dong

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

window.xp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New New in Building Energy Efficiency Selecting Windows for Energy Efficiency New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection. S electing the right window for a specific home invariably requires tradeoffs between dif- ferent energy performance features, and with other non-energy issues. An understanding of some basic energy concepts is therefore essential to choosing appropriate windows and skylights. As illustrated on the fol-

122

Mobile Window Thermal Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

123

Microsoft PowerPoint - WINDOW6-ComplexGlazingTypeSummary-ForPresentation.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Christian Kohler, Mike Rubin, Jacob Jonsson Christian Kohler, Mike Rubin, Jacob Jonsson Dariush Arasteh, Robin Mitchell Windows & Daylighting Research Group March 2008 Complex Glazing Summary Complex Glazing Summary Environmental Energy Technologies Division Software Tools Overview Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing Data Base) calculation calculation calculation WINDOW (Whole Window) Environmental Energy Technologies Division WINDOW6 Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing

124

High Performance Windows Volume Purchase: The Windows Volume Purchase RFP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Windows The Windows Volume Purchase RFP to someone by E-mail Share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Facebook Tweet about High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Twitter Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Google Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Delicious Rank High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Digg Find More places to share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on AddThis.com... Home About FAQs Low-E Storm Windows Request for Proposal Contacts For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers

125

Advancement of Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advancement of Electrochromic Windows Advancement of Electrochromic Windows Title Advancement of Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59821 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Date Published 04/2006 Other Numbers CEC-500-2006-052 Keywords commercial buildings, daylight, daylighting controls, Electrochromic windows, energy efficiency, human factors, peak demand, switchable windows, visual comfort Abstract This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it's sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

126

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benefits: Energy & Cost Savings Benefits: Energy & Cost Savings The following information is an example of energy and cost savings for Boston and Phoenix. See the sidebar to the right for information on energy use for generic window products in your city or region. Heating Season Savings U-Factor In climates with a significant heating season, non-energy efficient windows can represent a major source of unwanted heat loss, discomfort, and condensation problems. In recent decades, windows have undergone a technological revolution. It is now possible to have lower heat loss, less air leakage, and warmer window surfaces that improve comfort and minimize condensation. The graphs below illustrate the simulated savings in heating season costs associated with energy efficient windows for a typical

127

Windows and Daylighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office building exterior Office building exterior Windows and Daylighting Windows research is aimed at improving energy efficiency in buildings and homes across the nation. Research includes: New glazing materials Windows simulation software Advanced high-performance fenestration systems Daylighting technologies Measurement of window properties Windows performance in residential and commercial buildings. Contacts Stephen Selkowitz SESelkowitz@lbl.gov (510) 486-5064 Eleanor Lee ESLee@lbl.gov (510) 486-4997 Charlie Curcija DCCurcija@lbl.gov (510) 495-2602 Links Windows and Daylighting Daylighting the New York Times Headquarters Building Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

128

Highly Insulating Windows - Publ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

129

Highly Insulating Window Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

130

Window industry technology roadmap  

SciTech Connect (OSTI)

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

131

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optics 6.0 Optics 6.0 (6.0 -- February 13, 2012) Release Notes Updated: 07/16/12 Program Changes Microsoft Windows 7 / Vista Operating System"Aware" Optics now installs and operates much better under the Microsoft Windows 7 and Vista operating systems. It is no longer necessary to run the "VistaFix" batch file after installing the program. Fixed Bugs If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to OpticsHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. Paths Appear in Tools/Options In the Microsoft Windows 7 / Vista Operating System environments, the program would not display the directory paths in the Tools / Options "File Locations" dialog box. This is now fixed.

132

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cellular / Honeycomb Shades Cellular / Honeycomb Shades Updated 09/30/2013 It is now possible to model cellular / honeycomb shading systems in the Shading System Library and then add them to a glazing system in the Glazing System Library. NOTE: Before attempting to calculate a glazing system with a cellular shade, you must make the following change to the THERM7.ini file, which is located in C:\Users\Public\LBNL\Settings. Close WINDOW7 before making this change. DocPath=C:\Users\Public\LBNL\WINDOW7\debug Shading Layer Library A cellular / honeycomb shade can now be defined in the Shading Layer Library. Defining this type of shading system requires an XML file which contains information about the cell geometry and the material thermal and optical properties. WINDOW can model two different types of cellular shades:

133

Highly Insulating Windows - Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

134

Plasma window characterization  

SciTech Connect (OSTI)

Parameters of an arc Ar plasma discharge used as a plasma window with a discharge current of {approx}50 A and a voltage of {approx}58 V are presented. It is shown that this arc discharge allows one to decrease the pressure at the low pressure end of the plasma window almost 380 times using relatively low pumping at the low pressure end of the plasma window. Calculations of the plasma parameters and their spatial distribution using a simple wall-stabilized arc model showed a satisfactory agreement with the experimentally obtained data. It is shown that a significant decrease in gas flow through the plasma window occurs due to the increase in plasma viscosity. An improvement of the plasma window ignition and some of its design aspects are described as well.

Krasik, Ya. E.; Gleizer, S.; Gurovich, V.; Kronhaus, I.; Hershcovitch, A.; Nozar, P.; Taliani, C. [Physics Department, Technion, 32000 Haifa (Israel); Brookhaven National Laboratory, New York 11973-5000 (United States); Istituto per lo Studio dei Materiali Nanostrutturati, 40 129 Bologna (Italy)

2007-03-01T23:59:59.000Z

135

Window Types | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

136

Window Types | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

137

Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)  

SciTech Connect (OSTI)

As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

Not Available

2014-09-01T23:59:59.000Z

138

Field Evaluation of Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Windows Evaluation of Windows Last Updated: 10/20/2009 Various tools can be used to evaluate windows in the field. Unless a new window still has the NFRC label attached to it, it is nearly impossible to determine by sight what the thermal and optical performance of a window is. These tools can provide information, such as low-e coating, gap width and gas fill, that can be used to approximate the performance of a window. Solar gain and Low-e detector This device can be used to determine if a low-e coating is present in the window, what type of coating it is, and where it is located. The type of low-e coating will indicate the amount of solar gain that is admitted through the coating. Readings can be "low", "medium" or "high". The device will also indicate on which glass surface the low-e coating is in relation to the position of the device. Limitations: Only works on glass of 1/8" (3 mm) or thinner. Cost: around $350 from EDTM.com

139

Tips: Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Windows Windows Tips: Windows June 18, 2012 - 9:43am Addthis Tips: Windows Windows can be one of your home's most attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill by letting heat out. During the summer, your air conditioner must work harder to cool hot air from sunny windows. Install ENERGY STAR®-qualified windows and use curtains and shade to give your air conditioner and energy bill a break. If your home has single-pane windows, consider replacing them with double-pane windows with high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select windows with

140

Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump  

E-Print Network [OSTI]

In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground...

Song, Y.; Yao, Y.; Na, W.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Windows, Doors, & Skylights | Department of Energy  

Energy Savers [EERE]

Logan Architects. Windows affect home aesthetics as well as energy use. Window Types A wood-frame window with insulated window glazing. | Photo courtesy of iStockphoto...

142

Subject Responses to Electrochromic Windows  

E-Print Network [OSTI]

Visual quality assessment of electrochromic and conventionalissues for large-area electrochromic windows in commercialOffice worker preferences of electrochromic windows: a pilot

Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

2006-01-01T23:59:59.000Z

143

CH7 Windows Introduction  

E-Print Network [OSTI]

4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe Windows NT 4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe

Collette. Sébastien

144

Zero Energy Windows  

E-Print Network [OSTI]

estimates of the U-factor and SHGC for today’s installedtoday's window stock U-factor and SHGC properties used thosepoint. U-factor and SHGC estimates vary by prototypical

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

145

Seeing Windows Through  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Seeing Windows Through A profusion of gases, glazings, and gap sizes are among the factors that confound efforts to measure the energy performance of a window or skylight. The increasing variety of efficiency-enhancing options for windows and their frames poses a formidable challenge to builders, utilities, code officials, and consumers. Fortunately, a new system for accurately rating and labeling these products promises to help demystify them and to foster nationwide improvements in energy efficiency. NFRC is Born Window trade groups have historically organized around specific materials or components (such as glass or frames), and energy has rarely been their focal point. This changed in 1989 with the formation of the National Fenestration Rating Council. One impetus behind the industry's

146

Window Daylighting Demo  

Broader source: Energy.gov (indexed) [DOE]

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

147

Window Daylighting Demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

148

Purchasing Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and can make even the smallest room seem bright and spacious. Operable windows let fresh air in and stale air out. Windows that are properly selected, well designed and constructed, and properly installed can make a world of difference to a home, helping it to be warm and cozy in the winter, and cool and comfortable in the summer. Yet windows have traditionally been the weak spot in the home's building envelope-that part of the house connected to the outdoors. They can be one of the leading sources of drafts, heat loss (or unwanted heat gain in

149

Purchasing Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and can make even the smallest room seem bright and spacious. Operable windows let fresh air in and stale air out. Windows that are properly selected, well designed and constructed, and properly installed can make a world of difference to a home, helping it to be warm and cozy in the winter, and cool and comfortable in the summer. Yet windows have traditionally been the weak spot in the home's building envelope-that part of the house connected to the outdoors. They can be one of the leading sources of drafts, heat loss (or unwanted heat gain in

150

High Performance Window Retrofit  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

Shrestha, Som S [ORNL] [ORNL; Hun, Diana E [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2013-12-01T23:59:59.000Z

151

Storm Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

152

Storm Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

153

Hydrogeologic Evaluation of a Ground-Source Cooling System at the BSF/CSF on the Battelle Campus: Final Report  

SciTech Connect (OSTI)

This report documents both the field characterization activities and the numerical modeling effort at the BSF/CSF site to determine the viability of an open-loop ground source heat pump (GSHP). The primary purpose of the integrated field and modeling study was to determine far-field impacts related to a non-consumptive use water right for the well field containing four extraction and four injection wells. In the field, boreholes were logged and used to develop the geologic conceptual model. Hydraulic testing was performed to identify hydraulic properties and determine sustainable pumping rates. Estimates of the Ringold hydraulic conductivity (60-150 m/d) at the BSF/CSF site were consistent with the local and regional hydrogeology as well as estimates previously published by other investigators. Sustainable pumping rates at the extraction wells were variable (100 – 700 gpm), and confirmed field observations of aquifer heterogeneity. Field data were used to develop a numerical model of the site. Simulations assessed the potential of the well field to impact nearby contaminant plumes, neighboring water rights, and the thermal regime of nearby surface water bodies. Using steady-state flow scenarios in conjunction with particle tracking, a radius of influence of 400–600 m was identified around the well field. This distance was considerably shorter than the distance to the closest contaminant plume (~1.2 km northwest to the DOE Horn Rapids Landfill) and the nearest water right holder (~1.2 km southeast to the City of Richland Well Field). Results demonstrated that current trajectories for nearby contaminant plumes will not be impacted by the operation of the GSHP well field. The objective of the energy transport analysis was to identify potential thermal impacts to the Columbia River under likely operational scenarios for the BSF/CSF well field. Estimated pumping rates and injection temperatures were used to simulate heat transport for a range of hydraulic conductivity estimates for the Ringold Formation. Two different operational scenarios were simulated using conservative assumptions, such as the absence of river water intrusion in the near shore groundwater. When seasonal injection of warm and cool water occurred, temperature impacts were insignificant at the Columbia River (< +0.2ºC), irrespective of the hydraulic conductivity estimate. The second operational scenario simulated continuous heat rejection, a condition anticipated once the BSF/CSF is fully loaded with laboratory and computer equipment. For the continuous heat rejection case, where hourly peak conditions were simulated as month-long peaks, the maximum change in temperature along the shoreline was ~1ºC. If this were to be interpreted as an absolute change in a static river temperature, it could be considered significant. However, the warmer-than-ambient groundwater flux that would potentially discharge to the Columbia River is very small relative to the flow in the river. For temperatures greater than 17.0ºC, the flow relative to a low-flow condition in the river is only 0.012%. Moreover, field data has shown that diurnal fluctuations in temperature are as high as 5ºC along the shoreline.

Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.; Moon, Thomas W.; Newcomer, Darrell R.; DeSmet, Darrell J.; Lindsey, K. A.; Porcello, J. J.

2010-05-12T23:59:59.000Z

154

International Workshop on Geomechanics and Energy The Ground as Energy Source and Storage Lausanne, Switzerland, 26-28 November 2013  

E-Print Network [OSTI]

in the ground from other technologies, such as solar panels, will lead to higher temperature variations. Soils and downwards when it contracts. The entity of this effect on the behaviour of the foundation depends that the material contracts upon heating in NC conditions and a significant part of this deformation is irreversible

Candea, George

155

Highly Insulating Windows - Fram  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

156

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

157

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacuum Glazing Modeling Vacuum Glazing Modeling It is now possible to model vacuum glazing in WINDOW 7. The first step is to define a new vacuum "gap" in the "Gap Library" (formerly the Gas Library). Then that vacuum gap is used in a glazing system to calculate the thermal characteristics of the glazing system with a vacuum gap. Gap Library The Gas Library has been renamed the Gap Library. To define a vacuum gap, check the "Vacuum" checkbox (this is only available for single gases, not gas mixtures). When this box is checked, new input variables will appear, including the vacuum pressure, the specific heat ratio and molecular weight of the vacuum gas. It is also necessary to define a pillar system for the vacuum gap. Pillar Definition Double click the double arrow to the right of the Pillar Definition pulldown to define a new pillar system. Define the shape and dimensions of the pillar system.

158

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 (7.2.29 -- December 29 2013) Release Notes Updated: 12/29/13 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.29 (December 29, 2013) Program Changes Glazing System Shading System Details For shading system in a Glazing System Library construction, the emittances, conductance and TIR are not displayed, as they are only available after a calculation has been completed. Perforated Screens An input value for "Effective Openness Factor" has been added to the Shading Layer Library for perforated screens. At a future date, we will update the program to calculate this value automatically.

159

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deflection Modeling Deflection Modeling It is now possible to model the effects of glass deflection in WINDOW 7. Glazing System Library The Glazing System Library is where the deflection modeling input values are entered. When the "Model Deflection" box is checked, a Deflection input box appears. When the Glazing System is calculated, two rows of results, one for the undeflected state and one for the deflected state, appear for Center of Glass Results, Temperature Data and Angular data. In addition, a Deflection tab appears, which shows the deflection of each glass layer and the resulting gap width for each gap. Glazing System Deflect Input There are two options for defining the deflection in a glazing system, by choosing from the "Input" pulldown list:

160

Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior  

Broader source: Energy.gov [DOE]

Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advancement of Electrochromic Windows  

E-Print Network [OSTI]

heat gain coefficient (SHGC) range of 0.42–0.09. Findingslow-e windows (Tv=0.42, SHGC=0.22) to serve as a referencewall for glare (Tv =0.05, SHGC=0.09) reduced average daily

2006-01-01T23:59:59.000Z

162

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome to the Efficient Windows Collaborative Welcome to the Efficient Windows Collaborative YOUR GATEWAY TO INFORMATION ON HOW TO CHOOSE ENERGY-EFFICIENT RESIDENTIAL WINDOWS 101 Efficient Windows Collaborative (EWC) members have made a commitment to manufacture and promote energy-efficient windows. This site provides unbiased information on the benefits of energy-efficient windows, descriptions of how they work, and recommendations for their selection and use. Selecting Windows for New Construction Window Selection Tool Selection Process Design Guidance Installation Selecting Replacement Windows Window Selection Tool Assessing Replacement Options Selection Process Design Guidance Installation Understanding Windows Benefits of Energy Efficient Windows Design Considerations How to Measure Performance Window Technologies

163

Ground source heat pumps for heating: Parametric energy analysis of a vapor compression cycle utilizing an economizer arrangement  

Science Journals Connector (OSTI)

Reductions in fossil fuel use and increases in system efficiency are required to make space heating more environmentally benign. Ground loop heat pumps offer a heating option that is more environmentally benign than conventional methods. Past studies of these heat pumps have usually focused on basic system arrangements, but new advanced systems are being developed. Here, energy analyses are reported for an advanced heat pump arrangement comprised of a vapor compression cycle with an economizer. A parametric analysis is performed to identify and quantify the influence of condenser pressure, evaporator pressure, intermediate pressure, degree of subcooling at the condenser outlet and degree of super heating at the evaporator outlet on system performance and ground loop requirements. The results show that, of the operating conditions investigated, condenser pressure has the greatest effect on the coefficient of performance (COP). The effect on COP of the other parameters, ranked from highest to lowest, are evaporator pressure, degree of subcooling, intermediate pressure and degree of superheating within this study.

S.J. Self; B.V. Reddy; M.A. Rosen

2013-01-01T23:59:59.000Z

164

Influence of site conditions on near-source high-frequency ground motion: case studies from earthquakes in Imperial Valley, CA. , Coalinga, CA. , and Miramichi, Canada  

SciTech Connect (OSTI)

In this thesis, three recent earthquake datasets are analyzed in which local recording-site geology strongly modifies near-source ground motion in the 1-30 Hz band. Site effects in this frequency band complicate seismic-source observations, such as estimation of earthquake source parameters and high-frequency discrimination between earthquakes and explosions, and seismic-hazard predictions for components of large engineering systems. The goals of this work are to examine the details of site amplification, and, in the process, to assess how site effects might be quantified and incorporated into seismology and engineering practice. The Imperial Valley study is motivated by a remarkable 1.7 g peak vertical-component acceleration recorded at station 6 of the El Centro accelerograph array during the 15 October 1979 Imperial Valley, Ca., earthquake. Analysis of geotechnical data suggests a plausible amplification mechanism: P-wave resonance related to water saturation in shallow sediments at station 6. The Coalinga dataset consists of seismograms from 26 aftershocks of the 2 May 1983 Coalinga, Ca., earthquake. Average horizontal-component ground motion is amplified on alluvium at downtown Coalinga relative to nearby rock by a factor of 3-4 at frequencies up to 5-15 Hz. Amplification apparently trades off with attenuation on alluvium at high frequencies. The Miramichi dataset consists of seismograms from 40 aftershocks of the 9 January 1982 Miramichi, New Brunswick, Canada, earthquake. Source-parameter measurements are influenced by strong site effects at frequencies greater than 15Hz, due to resonance in shallow layers of glacial till over bedrock.

Mueller, C.S.

1987-01-01T23:59:59.000Z

165

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Release Notes Release Notes Updated: 11/07/11 History of COMFEN 3.1 Releases New Features Glazed Wall Assembly In addition to modeling individual windows, COMFEN now has the capability of modeling "Glazed Wall Assemblies" which allow you to specify the number of horizontal and vertical framing members, as well as their spacing, and the program automatically generates the facade. Click here for more details. Material Library COMFEN now has a Material Library, which can be used in the Wall Construction and Spandrel Libraries. See the User Manual for more details. Wall Library COMFEN now has a Wall Library which can be used to build up layers from the Material Library to define a wall. See the User Manual for more details. Spandrel Library COMFEN now has a Spandrel Library which can be used to build up layers from the Material Library to define a spandrel, including glass and glazing systems as the outer-most layers. See the User Manual for more details.

166

Energy Savings from Window Attachments  

Broader source: Energy.gov [DOE]

This study presents energy-modeling results for a large number of window combinations with window attachments in typical residential buildings and in varied climates throughout the United States.

167

The Window Strategy with Options  

E-Print Network [OSTI]

The window strategy is one of several marketing strategies using futures and options to establish a floor price and allow for upside price potential. It also reduces option premium costs. This publication discusses how the window strategy works...

McCorkle, Dean; Amosson, Stephen H.; Fausett, Marvin

1999-06-23T23:59:59.000Z

168

Nanolens Window Coatings for Daylighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

169

Nanolens Window Coatings for Daylighting  

Broader source: Energy.gov (indexed) [DOE]

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

170

Windows Bitmap .bmp or .dib  

E-Print Network [OSTI]

platforms' GDI subsystem, where the specific format used is the Windows and OS/2 bitmap file format, usually

Gribaudo, Marco

171

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network [OSTI]

these windows incorporating hear mirror films are staticS. , "Thin Film Coatings for Energy Efficient Windows", LBLglazed windows with single and double plastic film inserts

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

172

AN ENERGY EFFICIENT WINDOW SYSTEM FINAL REPORT.  

E-Print Network [OSTI]

for a variety of glass window films and so provides thetesting metallized mylar window films. They involve exposingconsumers to install window film products. The rigid sheet

Authors, Various

2011-01-01T23:59:59.000Z

173

Performance Criteria for Residential Zero Energy Windows  

E-Print Network [OSTI]

neutral energy impact of windows (energy consumption of buildingneutral energy impact of windows (energy consumption of buildingneutral energy impact of windows (energy consumption of building

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

174

A Review of Electrochromic Window Performance Factors  

E-Print Network [OSTI]

ratio of 0.30. The electrochromic windows were controlled toProceedings. A Review of Electrochromic Window Performanceand economic benefits of electrochromic smart windows,"

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

175

Windows, Doors, & Skylights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Windows, Doors, & Skylights Windows, Doors, & Skylights Windows, Doors, & Skylights Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Energy-efficient windows, doors, and skylights-also known as fenestration-can help lower a home's heating, cooling, and lighting costs. Learn about the energy performance ratings to consider when selecting windows, doors, and skylights, and how to maximize their energy efficiency in your home. Featured Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto

176

21 - Life cycle assessment (LCA) of windows and window materials  

Science Journals Connector (OSTI)

Abstract: Windows are a significant component in sustainable buildings in both the impacts caused by their material life cycles and by their influence on the performance of a building over its service life. Life cycle assessment (LCA) studies have compared the impacts of different framing materials with mixed results. LCA has also been used to estimate the environmental payback of higher manufacturing impacts from producing better performing windows. Future sustainable window selection should make use of standardized LCA data for windows and utilize advanced technologies to optimize window performance.

J. Salazar

2014-01-01T23:59:59.000Z

177

Windows Forensic Analysis DVD Toolkit  

Science Journals Connector (OSTI)

The only book available on the market that addresses and discusses in-depth forensic analysis of Windows systems. Windows Forensic Analysis DVD Toolkit takes the reader to a whole new, undiscovered level of forensic analysis for Windows systems, providing ... Keywords: Computer Science, Security

Harlan Carvey

2007-04-01T23:59:59.000Z

178

Power Line Calculator for Windows[trademark  

SciTech Connect (OSTI)

The Power Line Calculator (PLC) for Windows [trademark], version 1.0, is a program that describes the electrical characteristics of a transmission or distribution system given user-defined input. This input may consist of a combination of operating currents and phases, symmetric components, power factor, and real or reactive power. The program also allows the user to designate whether currents are present on the system neutral or in the ground. The PLC assumes that any value entered by the user remains fixed (e.g., phase current, power factor), and for underdetermined systems, basic default assumptions are incorporated: the power factor is held at or near 1.0, the net phase current is kept at or near zero, and the phase conductor currents are kept balanced. The program operates through a graphical user interface provided by Microsoft[reg sign] Windows [trademark] (version 3.1 or higher required), and the output is available in both tabular and graphic formats.

Silva, J.M. (Enertech Consultants, Campbell, CA (United States))

1992-12-01T23:59:59.000Z

179

Atmospheric Pressure Deposition for Electrochromic Windows |...  

Broader source: Energy.gov (indexed) [DOE]

Atmospheric Pressure Deposition for Electrochromic Windows Atmospheric Pressure Deposition for Electrochromic Windows Emerging Technologies Project for the 2013 Building...

180

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools Tools Looking for windows for a new home? Use the Window Selection Tool to compare annual energy performance for windows in new construction. Window Selection Tool Looking for replacement windows? Use the Window Selection Tool to compare annual energy performance for replacement windows. Window Selection Tool Window Selection Tool Use the Window Selection Tool for new or replacement windows to compare the annual energy performance of different window types and design conditions for a typical house. Find manufacturers who offer windows and skylights within the generic results shown. Learn more about manufacturers' specific product options. Use the Window Selection Tool to: Compare how various window or skylight types affect estimated energy cost for a typical house in your location.

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

WINDOW 5 Glass Library Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW 6 or 7 Glass Library Update WINDOW 6 or 7 Glass Library Update Last update:12/09/13 07:26 PM Automatic IGDB Update Feature in WINDOW 6 and 7 The latest versions of WINDOW 6 and 7 have an automatic IGDB database update function in the Glass Library. When you first open the program, it checks to see if there is an IGDB version later than what you already have installed, and will notify you if there is an update. Then you can download and install the IGDB database, and click on the Update IGDB button in the Glass Library in order to start the automatic update. For older versions of WINDOW 6 and 7 without the automatic IGDB update function bullet How to Check the Current WINDOW5 IGDB Version bullet Updating the Glass Library bullet Problem Updating the Glass Library bullet Discontinued Records or Reused NFRC IDs

182

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selection Process for Replacement Windows Selection Process for Replacement Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Assess Your Existing Windows Assess whether your windows should be repaired, retrofitted, or replaced. While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Download Window Energy Efficiency Checklist for assistance. Window Replacement

183

Substation grounding.  

E-Print Network [OSTI]

??Designing a proper substation grounding system is quite complicating. Many parameters affect its design. In order for a grounding design to be safe, it needs… (more)

Baleva, Inna

2012-01-01T23:59:59.000Z

184

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Replacement Windows for Existing Homes Homes Replacement Windows for Existing Homes Homes Window Selection Tool Use the Window Selection Tool for existing homes (replacement windows) to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Assessing Options This section provides guidance the options available to improve the performance of your existing windows or to replace them. You can assess whether to repair, retrofit or replace your existing windows. Window Selection Process This section provides step-by-step guidance on the window selection process for replacement windows including issues of code, energy, durability, and installation.

185

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

1 1 Residential Prime Window Sales, by Frame Type (Million Units) (1) New Construction 1990 1995 2000 2005 2007 2009 Remodeling/Replacement 1990 1995 2000 2005 2007 2009 Total Construction 1990 1995 2000 2005 2007 2009 Note(s): Source(s): AAMA, Industry Statistical Review and Forecast 1992, 1993 for Note 2; AAMA/NWWDA, Industry Statistical Review and Forecast 1996, 1997, Table 6, p. 6 for 1990; AAMA/WDMA, 2000 AAMA/WDMA Industry Statistical Review and Forecast, Feb. 2001, p. 6 for 1995; 2003 AAMA/WDMA Industry Statistical Review and Forecast, June 2004, p. 6 for 2000 and 2003; and LBNL, Savings from Energy Efficient Windows, Apr. 1993, p. 6 for window life span; AAMA/WDMA, Study of U.S. Market For Windows, Doors, and Skylights, Apr. 2006, p. 41 for 2005; AAMA/WDMA, U.S. Industry Statistical Review and

186

A window on urban sustainability  

SciTech Connect (OSTI)

Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

Stigt, Rien van, E-mail: rien.vanstigt@hu.nl [Research Center for Technology and Innovation, Utrecht University of Applied Sciences, P.O. Box 182, 3500 AD Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands); Spit, Tejo J.M., E-mail: T.J.M.Spit@uu.nl [Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands)

2013-09-15T23:59:59.000Z

187

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Last Updated: 12/29/2013 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2 (7.2.29) (12/29/2013) Release Notes -- Please read these before running this version ! This version contains these new modeling features Honeycomb shades Dynamic Glazing (Thermochromic and Electrochromic) This version is compatible with THERM 7.1 Please send us emails as you find issues in the program -- that is the only way that we can make it more robust. We hope to iterate versions fairly quickly in the next month or so to get the bugs ironed out. Radiance for WINDOW 7 Get a copy of Radiance for WINDOW 7.2 Must be used with WINDOW 7.0.59 or later

188

LBNL Windows & Daylighting Software -- WINDOW5: Knowledge Base  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6.3 Knowledge Base 6.3 Knowledge Base Tip - use the Find function in your browser to search this page Last update:11/04/13 01:16 PM Download WINDOW 6.3 Send feedback via email to WindowHelp@lbl.gov. Also as bugs and comments are submitted by testers, the will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN BUGS ** Operating Systems -- Microsoft Windows 7 and Vista ** Environmental Conditions -- Kimura convection model not working Locked Files with Install/De-install Environmental Conditions -- Fixed Combined Coefficient Bug Installation Problems Error Message during Calc due to decimal point of "," Minimum computer requirements Importing THERM file into WINDOW generates "Unnamed file has a bad format" error message

189

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.0 7.0 Last Updated: 05/20/2013 EN 673 / ISO 10077 Using WINDOW 7 and THERM 7 for EN 673 / ISO 10077 Calculations If you are interested in using WINDOW and THERM for EN 673 / ISO 10077 calculations, we have added that option to WINDOW 7. The calculation is not fully automated in the program yet, so there are many steps and a spreadsheet for the final calculation. We are interested in feedback (email WINDOWHelp@lbl.gov) about the process and the results from anyone who tests this feature. CAUTION: Do not model shading systems with the EN 673 thermal model. The program will produce results but they will most likely not be correct. Download this zip file (EN673.zip) which contains the following: Description of how to use WINDOW 6 and THERM 6 for the EN 673 / ISO 10077 calculations (PDF file)

190

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storm Windows Storm Windows Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by adding interior or exterior storm panels. Storm Window Panels exit disclaimer Storm windows can reduce the air leakage and improve the insulating value of existing windows. They can be installed on the interior or exterior side of windows, and can be mounted permanently or for seasonal use. Interior storm windows can be more easily installed and removed for ventilation or cleaning. Storm windows can reduce air leakage. However, it is important that humid

191

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Control Window Film Solar Control Window Film Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by applying a film. High-Reflectivity Window Films exit disclaimer International Window Film Association For more information on window film, check the Window Film Information Center exit disclaimer . Solar control window film reduces solar heat gain by reflection and absorption. As they also block solar heat gain in winter months, these films are ideal for cooling-dominated climates. Window films can be tinted

192

Electron gun with cylindrical window  

SciTech Connect (OSTI)

This paper describes a three-electrode electron gun with a foil window in the form of a cylinder 300 mm in diameter and 200 mm high. With an accelerating voltage of 140 kV in the pulse mode (10 usec at 2 Hz) with grid modulation, the current extracted from the foil is 5.5 A. The ratio of the window area to the mass of the gun (23.7 cm/sup 2//kg) is greater by a factor of 3-5 than that of similar guns with flat windows.

Grigorev, Y.V.; Stepanov, A.V.

1986-01-01T23:59:59.000Z

193

High-Efficiency Window Air Conditioners - Building America Top...  

Broader source: Energy.gov (indexed) [DOE]

Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive,...

194

Advanced array techniques for unattended ground sensor applications  

SciTech Connect (OSTI)

Sensor arrays offer opportunities to beam form, and time-frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16-element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on the floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window.(Source 11)). The transient event of a diesel generator turning on, including a few seconds before the turn-on time and a few seconds after the generator reaches steady-state conditions. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 16 3-component, high-frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

Followill, F.E.; Wolford, J.K.; Candy, J.V.

1997-05-06T23:59:59.000Z

195

Windows and Building Envelope | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and market challenges in the windows and building envelope sector. Image: National Renewable Energy Laboratory Read more Insulation and Window Projects Named as Top Energy...

196

Apparatus for preventing particle deposition from process streams on optical access windows  

DOE Patents [OSTI]

An electrostatic precipitator is disposed inside and around the periphery of the window of a viewing port communicating with a housing through which a particle-laden gas stream is being passed. The precipitator includes a pair of electrodes around the periphery of the window, spaced apart and connected to a unidirectional voltage source. Application of high voltage from the source to the electrodes causes air molecules in the gas stream to become ionized, attaching to solid particles and causing them to be deposited on a collector electrode. This prevents the particles from being deposited on the window and keeps the window clean for viewing and making optical measurements.

Logan, Ronald G. (Fredericksburg, VA); Grimm, Ulrich (Morgantown, WV)

1993-01-01T23:59:59.000Z

197

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network [OSTI]

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

198

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect (OSTI)

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

199

Ground Motion Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2nd Advanced ICFA Beam Dynamics Workshop 2nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators November 6 - 9, 2000 SLAC Coordinators: Andrei Seryi & Tor Raubenheimer Proceedings Updated June 26, 2001 Agenda and Presentations Workshop photos Summaries Useful links Poster Goals Introduction to the problems Structure Registration Registered participants Committees Location, Accommodations and Travel Workshop on Ground Motion in Future Accelerators A workshop was held at SLAC that was devoted to ground motion and its effects on future accelerators. Ground motion and vibration can be a limiting effect in synchrotron light sources, hadron circular colliders, and electron/positron linear colliders. Over the last several years, there has been significant progress in the understanding of the ground motion and its effects, however, there are

200

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies: Operator Types Window Technologies: Operator Types Window Sash Operation When you select a window, there are numerous operating types to consider. Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. In addition, the window market includes fixed windows, storm windows, sliding and swinging patio doors, skylights and roof windows, and window systems that can be added to a house to create bay or bow windows, miniature greenhouses, or full sun rooms. Looking for information on skylights? More information on skylights, light tubes, and their installation can be found here. Casement Casement windows are hinged at the sides. Hinged windows such as casements generally have lower air leakage rates than sliding windows from the same manufacturer because the sash closes by pressing against the frame. Casement windows project outward, providing significantly better ventilation than sliders of equal size. Because the sash protrudes from the plane of the wall, it can be controlled to catch passing breezes, but screens must be placed on the interior side. Virtually the entire casement window area can be opened, while sliders are limited to less than half of the window area. Casement

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution  

SciTech Connect (OSTI)

Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.

2011-03-16T23:59:59.000Z

202

CMU-ITC-86-045 , Windowing  

E-Print Network [OSTI]

on window-manager style graphics systems using the Tek termi- nals, inspired by some film Alan Kay showedCMU-ITC-86-045 , Windowing Systems , Implementations #12;#12;Window System Implementations Denver ABSTRACT Notes for a course given at the 1986 Winter Usenix meeting in Denver, CO. It covers window systems

203

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Windows Understanding Windows Benefits of Energy Efficient Windows The purpose for windows is to provide natural light, natural ventilation, and views to the outside. The benefits of high performance windows allows for Energy & Cost Savings, Improved Comfort, Less Condensation, Increased Light & View, Reduced Fading, and Lower HVAC Costs. Benefits of Energy Efficient Windows Design Considerations Windows are a complex and interesting element in residential design. New window products and technologies have changed the performance of windows in a radical way. Issues such as climate, orientation, shading, and window area all effect the energy performance, but human factor issues such as access to fresh air, daylight, and natural views impact the comfort of a home.

204

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: Air Leakage (AL) Measuring Performance: Air Leakage (AL) Is my window leaking air? The Air Leakage (AL) rating pertains to leakage through the window assembly itself. Air infiltration can also occur around the frame of the window due to poor installation or poor maintenance of existing window systems. Make sure windows are properly installed and maintained (caulking and weatherstripping). Cold glass can create uncomfortable drafts as air next to the window is cooled and drops to the floor. This is not a result of air leaking through or around the window assembly but from a convective loop created when next to a window is cooled and drops to the floor. This air movement can be avoided by installing high-performance windows. Heat loss and gain occur by infiltration through cracks in the window

205

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

6 6 2005 Residential Prime Window Stock (Million Households) Double Pane Census Division New England 5.3 Middle Atlantic 15.0 East North Central 17.3 West North Central 7.7 South Atlantic 21.3 East South Central 6.8 West South Central 12.1 Mountain 7.3 Pacific 16.4 United States 109.2 Selected States New York 7.0 Florida 6.7 Texas 7.6 California 12.0 Note(s): Source(s): 1) Respondents were shown pictures of different types of window glass and were asked "Which picture best describes the type of glass in the windows of your home/apartment?" 2) An additional 1.3 million households not counted here use other types of windows such as triple-pane windows. EIA, 2005 Residential Energy Consumption Survey, Tables HC 11.5, HC 12.5, HC 13.5, HC 14.5, and HC 15.5, April 2008. 5.1 2.5

206

Energy Savings from Window Attachments  

Broader source: Energy.gov (indexed) [DOE]

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

207

Energy Savings from Window Attachments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

208

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benefits of Efficient Windows Benefits of Efficient Windows Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation Energy & Cost Savings Energy efficient windows can substantially reduce the costs associated with heating and cooling. This section on Energy & Cost Savings illustrates these savings in both heating and cooling climates. Energy Savings Lower HVAC Costs High-performance windows not only provide reduced annual heating and cooling bills, they also reduce the peak heating and cooling loads. This section on Lower HVAC Cost illustrates how the use of high performance windows can help in reducing HVAC equipment sizing.

209

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessing Window Replacement Options Assessing Window Replacement Options What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Performance Standards Energy Rating Programs Building America Program Documents Measure Guideline: Energy-Efficient Window Performance and Selection exit disclaimer Measure Guideline: Wood Window Repair, Rehabilitation, and Replacement exit disclaimer Whether you would like to improve the energy performance of your existing windows or replace them with new energy-efficient windows, several options are available. An energy audit can help you identify good strategies for more efficient windows and a more efficient house. Whichever energy efficiency measures you consider, the federal government as well as state, local, and utility programs may offer financing help or weatherization assistance.

210

3.4 Timeline Zoomable Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.1 Zoomable and Scrollable Up: 3. Graphical User Interface .1 Zoomable and Scrollable Up: 3. Graphical User Interface Previous: 3.3 Legend Window Contents 3.4 Timeline Zoomable Window Figure 3.10: Initial display of the Timeline window of a 514 MB 16-process slog2 file with default preview resolution. Image timeline_popup Most of the advanced features in the SLOG-2 viewer are provided through a zoomable window. Jumpshot-4 has two zoomable windows: Timeline and Histogram. Figure 3.10 is the initial display of the Timeline window of a half-gigabyte 16-timeline slog2 file. The zoomable window consists of several concealable and removable components. In the center of the window is the zoomable and scrollable canvas. For the Timeline window, the center canvas is called the timeline canvas. Directly on top of the zoomable

211

Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

212

Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

213

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windows for New Construction Windows for New Construction Window Selection Tool Use the Window Selection Tool for new construction to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Window Selection Process This section provides step-by-step guidance on the window selection process for new construction windows including issues of code, energy, durability, and installation. Design Guidance This section provides Design Guides that examine the energy use impacts of new windows for homes in hot, mixed and cold climates. They show the the impact of orientation, window area, and shading. The energy use has been calculated for various window design variations including 5 orientations (equal, north, east, south, and west), 3 glazing areas, 20 glazing types, and 5 shading conditions.

214

Ground heat exchanger design for direct geothermal energy systems .  

E-Print Network [OSTI]

??Direct geothermal energy systems use the ground to heat and cool buildings. Ground-source heat pump (GSHP) systems are the most widespread form of direct geothermal… (more)

COLLS, STUART

2013-01-01T23:59:59.000Z

215

High Performance Windows Volume Purchase: Information Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Information Resources to someone by E-mail Share High Performance Windows Volume Purchase: Information Resources on Facebook Tweet about High Performance Windows Volume Purchase: Information Resources on Twitter Bookmark High Performance Windows Volume Purchase: Information Resources on Google Bookmark High Performance Windows Volume Purchase: Information Resources on Delicious Rank High Performance Windows Volume Purchase: Information Resources on Digg Find More places to share High Performance Windows Volume Purchase: Information Resources on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Information Resources Numerous publications will be available to help educate buyers, product

216

LBNL Window & Daylighting Software -- RESFEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SYSTEM REQUIREMENTS GET A COPY DOCUMENTATION KNOWLEDGE BASE Overview Today's energy-efficient windows can dramatically lower the heating and cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick the most efficient window for a residence. Product information typically offers window properties: U-factors or R-values, Solar Heat Gain Coefficients or Shading Coefficients, and air leakage rates. However, the relative importance of these properties depends on site- and building-specific conditions. Furthermore, these properties are based on static evaluation conditions that are very different from the real situation a window will be used in.

217

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(6.3.9) (6.3.9) October 2010 Last Updated: 11/07/2010 Complex Glazing Features for WINDOW6 The Research Version of WINDOW 6 has the following modeling capabilities: Shading Layer Library: A Shading Layer Library has been added to define shading systems, such as venetian blinds and diffusing layers, which can then be added as layers in the Glazing System Library. Shade Material Library: A Shading Material Library has been added to define materials to be used in the Shading Layer Library. Properties defined in this library include shade material reflectance and absorptance (in the solar, visible and IR wavelengths ranges), as well as the conductivity of the material. Glazing System Library In the “Layers” section of the Glazing System definition, it is now possible to specify either a glass layer or a shading layer. The shading system is chosen from the Shading Layer Library.

218

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

5 5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 66% 25.2 100% 1990 4.9 14% 12.0 34% 18.7 53% 35.6 100% 1993 2.8 14% 17.2 84% 0.4 2% 20.4 100% 1995 5.5 12% 37.8 85% 1.3 3% 44.5 100% 1999 4.8 8% 55.2 89% 2.0 3% 62.0 100% 2001 3.9 7% 50.9 90% 1.5 3% 56.3 100% 2003 4.7 7% 55.9 89% 2.2 4% 62.8 100% 2005 4.2 6% 63.8 91% 2.5 3% 70.5 100% 2007 2.7 5% 55.0 93% 1.4 2% 59.1 100% 2009 1.6 4% 36.2 93% 1.2 3% 38.9 100% Note(s): 1) IG = insulated glazing. Source(s): Double Pane Single Pane Sealed IG (1) Other Total AAMA/NWWDA, Study of the U.S. Market for Windows and Doors, 1996, Table 22, p.49; AAMA/WDMA, Study of U.S. and Canadian Market for Windows and Doors, Apr. 2000, Exhibit E.7, p. 55; AAMA/WDMA, Study of the Market for U.S. Doors, Windows and Skylights, Apr. 2004, Exhibit D.4, p. 46; AAMA/WDMA, Study of U.S. Market for Windows, Doors, and Skylights, Apr. 2006, Exhibit D.8 Conventional Window Glass Usage, p. 50; AAMA/WDMA, Study of U.S.

219

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sash Replacement Sash Replacement DIY Network: How to Install a Window Sash Replacement Kit The DIY Network experts show you how to remove the window sash from an old double-hung window and install a new energy-saving sash replacement kit: How to Install a Window Sash Replacement Kit exit disclaimer . Sash replacement may be an alternative to a full window replacement or an insert window into an existing frame. The physical condition of the existing window must be good-there should be no moisture or air leakage. An energy auditor or replacement contractor may help you determine if a sash replacement is a viable option based on your homes window and wall conditions. Many manufacturers offer replacement sash kits, which include jamb liners to ensure good operability and fit. This option allows for relatively easy

220

IT Administrator's Guide to Using Windows Vista  

E-Print Network [OSTI]

IT Administrator's Guide to Using Windows Vista® for Sustainable IT Success Published: February Administrator's Guide to Using Windows Vista for Sustainable IT Success Contents Executive Summary ................................................................................................ 3 Sustainable IT Goals

Narasayya, Vivek

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Simulating Complex Window Systems using BSDF Data  

E-Print Network [OSTI]

Daylighting, Design tools and methods INTRODUCTION Simulations enable designers and engineers to evaluate and select the best available window solutions

Konstantoglou, Maria

2011-01-01T23:59:59.000Z

222

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network [OSTI]

Guide for Early-Market Electrochromic Windows. CaliforniaGuide for Early-Market Electrochromic Windows. CaliforniaGUIDE FOR EARLY-MARKET ELECTROCHROMIC WINDOWS Prepared For:

2006-01-01T23:59:59.000Z

223

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network [OSTI]

Office worker preferences of electrochromic windows: a pilotDetails for an Electrochromic Window Wall Attached arethe performance of the electrochromic windows. Proceedings

2006-01-01T23:59:59.000Z

224

Stanek Windows | Open Energy Information  

Open Energy Info (EERE)

Stanek Windows Stanek Windows Jump to: navigation, search Name Stanek Windows Address 4565 Willow Parkway Place Cuyahoga Heights, Ohio Zip 44125 Sector Buildings, Efficiency Product Consulting; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution;Trainining and education Phone number 216-341-7700 Website http://www.stanekwindows.com Coordinates 41.435755°, -81.650183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.435755,"lon":-81.650183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

3 3 Nonresidential Window Sales, by Type and Census Region (Million Square Feet of Vision Area) (1) Northeast Midwest South West Total Type 1995 2009 1995 2009 1995 2009 1995 2009 1995 2009 New Construction Commercial Windows (2) 4 15 16 22 21 58 13 25 54 120 Curtain Wall 3 10 6 16 16 41 8 18 33 84 Store Front 7 10 11 16 14 41 11 18 43 85 Total (3) 14 36 33 53 51 140 32 60 130 289 Remodeling/Replacement Commercial Windows (2) 18 12 25 17 46 45 27 19 116 93 Curtain Wall 4 2 6 3 8 7 10 3 28 15 Store Front 12 5 18 8 24 20 22 9 76 41 Total (3) 34 18 49 27 78 72 59 31 220 148 Total Commercial Windows (2) 22 27 41 40 67 103 40 45 170 213 Curtain Wall 7 12 12 18 24 48 18 21 61 99 Store Front 19 15 29 23 38 61 33 26 119 125 Total (3) 48 54 82 80 129 211 91 91 350 437 Note(s): Source(s): 1) Usage is a good indication of sales. 2) Formerly referred to as Architectural. Includes both shop-fabricated (true architectural) and site-

226

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

7 7 Nonresidential Window Stock and Sales, by Glass Type Existing U.S. Stock Vision Area of New Windows (Million Square Feet) Type (% of buildings) 1995 2001 2003 2005 2007 2009 Single Pane 56 57 48 56 60 48 Insulating Glass (1) 294 415 373 407 476 389 Total 350 472 421 463 536 437 Clear 36% 49% 43% 44% 38% 33% Tinted 40% 24% 17% 15% 11% 10% Reflective 7% 8% 6% 4% 3% 3% Low-e 17% 19% 34% 37% 48% 54% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): (2) 1) Includes double- and triple-pane sealed units and stock glazing with storm windows. 2) Included as part of the Tinted category. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006, Table B1 for stock data; AAMA/NWWDA, 1996 Study of the U.S. Market for Windows and Doors, Table 27, p. 60 for 1995 usage values; 2003 AAMA/WDMA Study of the U.S. Market

227

Graphene Synthesis by Thermal Cracker Enhanced Gas Source Molecular Beam Epitaxy and Its Applications in Flash Memory  

E-Print Network [OSTI]

windows at the source/drain areas, where the insulator filmof as-grown films. A narrow growth time window was found forthe HfO 2 thin film. However the small memory window of the

Zhan, Ning

2011-01-01T23:59:59.000Z

228

Rigid thin windows for vacuum applications  

DOE Patents [OSTI]

A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

Meyer, Glenn Allyn (Danville, CA); Ciarlo, Dino R. (Livermore, CA); Myers, Booth Richard (Livermore, CA); Chen, Hao-Lin (Lafayette, CA); Wakalopulos, George (Pacific Palisades, CA)

1999-01-01T23:59:59.000Z

229

High Performance Windows Volume Purchase: Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts to Contacts to someone by E-mail Share High Performance Windows Volume Purchase: Contacts on Facebook Tweet about High Performance Windows Volume Purchase: Contacts on Twitter Bookmark High Performance Windows Volume Purchase: Contacts on Google Bookmark High Performance Windows Volume Purchase: Contacts on Delicious Rank High Performance Windows Volume Purchase: Contacts on Digg Find More places to share High Performance Windows Volume Purchase: Contacts on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Contacts Web site and High Performance Windows Volume Purchase Program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about

230

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ensure Proper Installation of New Windows Ensure Proper Installation of New Windows Information Regarding Lead-based Hazards Comprehensive information about lead paint exit disclaimer by U.S. EPA Literature ASTM E 2112, "Standard Practice for Installation of Exterior Windows, Doors and Skylights." www.astm.org exit disclaimer Water Management Guide, Joseph W. Lstiburek, Energy & Environmental Building Association. www.eeba.org exit disclaimer Proper installation is necessary for optimal window performance, to ensure an airtight fit and avoid water leakage. Always follow manufacturers installation guidelines and use trained professionals for window installation. The Importance of Quality Window Installation Quite simply, windows are only as good as their installation. Proper installation will:

231

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selection Process for New Windows Selection Process for New Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Meet the Energy Code and Look for the ENERGY STAR® Windows must meet the locally applicable energy code requirements. Windows that are ENERGY STAR qualified typically meet or exceed energy code requirements. A home's climate and location determine the relative importance of heating and cooling energy use, the applicable building energy code requirements, and the qualification criteria for ENERGY STAR windows. ENERGY STAR

232

Making Smart Windows Smarter | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smart Windows Smarter Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Program Director, Building Technologies Office What does this project do? Pleotint, LLC has developed a specialized glass film that uses the energy generated by the sun to limit excess heat and light from coming into homes and buildings. When you look out the window, you might notice whether the sun is shining, a nice view of the outdoors or an interesting cloud passing by. What most people probably don't notice is that traditional windows waste about 30

233

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Standards Performance Standards Even the expert eye cannot easily tell an efficient window from a conventional window. That is why energy ratings, endorsement programs and consumer incentives play an important role in creating awareness for window energy efficiency among consumers, builders, architects and performance standard programs. Learn about NFRC certification and labeling Learn about ENERGY STAR® for windows, doors and skylights High Performance Windows and Low-E Storm Windows Volume Purchase Program Utility and State Incentives for energy efficiency improvements Building Codes Most locations have building energy codes that mandate minimum performance levels for windows, doors, and skylights. The builder, contractor or homeowner must adhere to the code requirements, which typically cover

234

Building America Top Innovations 2013 Profile … Window Replacement, Rehabilitation, & Repair Guide  

Broader source: Energy.gov (indexed) [DOE]

are also discussed. are also discussed. Water infiltration is dealt with at considerable length because windows are one of the likeliest components in the building structure for water entry and because water intrusion and resultant damage may have gone on unnoticed for some time as water can enter the wall cavity through and around the window assembly. Suggestions for investigating sources of water intrusion are provided. The condition of the decorative trim around the window can be an indication of water damage but deterioration of the trim is typically an aesthetic problem not a performance problem. However, if the window sill is damaged, it should be replaced because it is the means by which water will drain out away from the house or, incorrectly, into the wall. Damaged or deteriorating window sashes, frames, or casings

235

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Guidance for Replacement Windows Design Guidance for Replacement Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

236

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Considerations for Window Performance Considerations for Window Performance Advanced window technologies can have a major effect on comfort and on the annual energy performance of a house. However, there is a broader and possibly more significant impact of the recent revolution in window performance. Because the new glazing technologies provide highly effective insulating value and solar protection, there are important implications for how a house is designed. There is a long-established set of window design guidelines and assumptions intended to reduce heating and cooling energy use. These are based, in part, on the historical assumption that windows were the weak link in the building envelope. These assumptions frequently created limitations on design freedom or generated conflicts with other performance requirements,

237

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The High Performance Windows Volume Purchase (WVP) Program The High Performance Windows Volume Purchase (WVP) Program The U.S. Department of Energy's Building Technologies Program (BTP) is coordinating a volume purchase program intended to overcome cost and awareness barriers to the wider adoption of highly-insulating windows and low-E storm windows. These products include windows meeting a number of specifications including a U-factor of 0.22 or less as well as storm windows with low-emissivity glass. Buyer groups with a potential interest in purchasing these products in volume will learn about their availability and cost through the program's product listings. Over 50 manufacturers proposed products for the first round of these listings, for which submittals were due by February 19, 2010. DOE does not purchase any products through this project, nor does DOE

238

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidance on Window Durability Guidance on Window Durability There is no simple rating or absolute guarantee of the durability of a window. You may want to study the design and workmanship of the window and rely on recommendations from others who have used similar products. The advice of experienced architects and builders can be helpful. As with other products, warranties can be an indicator of the reliability of the window and its manufacturer. Durability may vary with location; for example, some materials are degraded by salt near the ocean. These aspects of window durability deserve special attention: frame and sashes; insulating glass seals; weatherstripping; and local requirements for structural integrity. Frame and Sashes Although design and workmanship may be the most important factors

239

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financing & Incentives Financing & Incentives Financing or incentive programs may be available to you if: You intend to replace old windows with high-performance, energy efficient windows. You plan to build a new home with windows that keep energy costs low and provide for a comfortable interior. If you are looking for utility programs within your state that can help you finance such an investment in efficient windows, download an overview of utility and state programs. Incentives and Rebates for Energy-Efficient Windows Offered through Utility and State Programs Utility and State Incentives We have provided an overview of utility and state programs that can help you as a resident, building owner, or builder to finance improvements in window energy efficiency. Download an overview of utility and state

240

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: ENERGY STAR® Windows Measuring Performance: ENERGY STAR® Windows Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. View the criteria for windows for the ENERGY STAR Most Efficient Program. Energy Star Most Efficient Program The Department of Energy (DOE) and the Environmental Protection Agency (EPA) have developed an ENERGY STAR exit disclaimer designation for products meeting certain energy performance criteria. Windows that have the ENERGY STAR designation will be labeled showing the zones in which it is qualified. Since energy efficient performance of windows, doors, and skylights varies by climate, product recommendations are given for four U.S. climate zones. For making comparisons among ENERGY STAR products, use the NFRC label or

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fresh Air Fresh Air Windows provide the primary means to control air flow in most homes. People open windows to provide fresh air, ventilate odors and smoke, dissipate heat and moisture, and create air movement on hot days. While exhaust fans and central air systems can mechanically ventilate a room, opening a room to the outdoors is perceived as more direct and natural. Guidelines for Providing Fresh Air Place operable windows in all rooms to give occupants opportunity for fresh air. Provide cross-ventilation by placing window openings on opposite walls in line with the prevailing winds. Use casement windows to direct and control ventilation. Use operable skylights or roof windows to enhance ventilation. Use landscape elements to direct breezes. In order to ensure that all residences have access to the healthful aspects

242

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Guidance for New Windows Design Guidance for New Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

243

Building Energy Software Tools Directory: Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Window WINDOW screenshot. Calculates thermal performance of fenestration products; heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). Screen Shots Keywords fenestration, thermal performance, solar optical characteristics, windows, glazing Validation/Testing N/A Expertise Required Some knowledge about windows. Users 2000+ in the U.S. and abroad. Audience Manufacturers, engineers, architects, researchers, sales personnel. Input Interactive program: user-provided data files for frames (from the THERM program) and glazing layers (from the Optics program) optional. Output Reports for the total window can be saved to disk or printed; files can be generated to be used as input to the DOE-2 and EnergyPlus programs;

244

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance Measuring Performance What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation U-factor The rate of heat loss is indicated in terms of the U-factor (U-value) of a window assembly. This section on U-factor describes what a U-factor is and it's importance in the heat loss through a window assembly. U-factor Solar Heat Gain Coefficient (SHGC) The SHGC is the fraction of incident solar radiation admitted through a window, both directly transmitted and absorbed and subsequently released inward. This section on Solar Heat Gain Coefficient describes what a SHGC is and it's importance in the amount of heat gain through a window assembly.

245

List of Windows Incentives | Open Energy Information  

Open Energy Info (EERE)

Windows Incentives Windows Incentives Jump to: navigation, search The following contains the list of 604 Windows Incentives. CSV (rows 1-500) CSV (rows 501-604) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

246

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network [OSTI]

Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

247

A Review of Electrochromic Window Performance Factors  

E-Print Network [OSTI]

influence the market acceptance of electrochromic windowsfor the eventual market success of electrochromic windows inearly niche market might consist of adding an electrochromic

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

248

Performance tests of large thin vacuum windows  

SciTech Connect (OSTI)

Tests of thin composition vacuum windows of the type used for the Tagger in Hall B at the Thomas Jefferson National Accelerator Facility are described. Three different tests have been performed. These include: (1) measurement of the deformation and durability of a window under long term (>8 years) almost continuous vacuum load, (2) measurement of the deformation as a function of flexing of the window as it is cycled between vacuum and atmosphere, and (3) measurement of the relative diffusion rate of gas through a variety of thin window membranes.

Hall Crannell

2011-02-01T23:59:59.000Z

249

High Performance Windows Volume Purchase: About the High Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program to someone by E-mail Share High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Facebook Tweet about High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Twitter Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Google Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Delicious Rank High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Digg Find More places to share High Performance Windows Volume Purchase:

250

BT::Electrochromic Windows Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spacer spacer spacer spacer Resources spacer Industry Contacts | CA Utility Contacts | R&D Organizations | Technical Reports | References | Acknowledgements | Project Team spacer Industry Contacts As of 2006, SAGE Electrochromics, Inc. is the only manufacturer in the U.S. selling electrochromic-coated glass units for building applications: Lou Podbelski SAGE Electrochromics, Inc. One Sage Way Faribault, MN 55021 (507) 331-4935 http://www.sage-ec.com/ SAGE's first market entry was to provide electrochromic coated glass to Velux for their switchable electrochromic skylight product line: electric venting skylights, fixed skylights, and fixed curb-mounted skylights in various rectangular sizes. They now market to a variety of window and curtain wall suppliers; contact SAGE for current supplier information.

251

Laser sealed vacuum insulating window  

DOE Patents [OSTI]

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, D.K.; Tracy, C.E.

1985-08-19T23:59:59.000Z

252

Laser sealed vacuum insulation window  

DOE Patents [OSTI]

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1987-01-01T23:59:59.000Z

253

Windows Registry Forensics: Advanced Digital Forensic Analysis of the Windows Registry  

Science Journals Connector (OSTI)

Harlan Carvey brings readers an advanced book on Windows Registry. The first book of its kind EVER -- Windows Registry Forensics provides the background of the Registry to help develop an understanding of the binary structure of Registry hive files. ...

Harlan Carvey

2011-02-01T23:59:59.000Z

254

EPA Final Ground Water Rule  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Safety and Environment Office of Nuclear Safety and Environment Nuclear Safety and Environment Information Brief HS-20-IB-2007-02 (March 2007) EPA Final Ground Water Rule Safe Drinking Water Act: National Primary Drinking Water Regulations Ground Water Rule - 40 CFR Parts 9, 141 and 142 Final Rule: 71 FR 65574 Effective Date: January 8, 2007 1 RULE SYNOPSIS On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach

255

Evaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System  

SciTech Connect (OSTI)

In an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is non-consumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHP is a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive use metrics may need to be used for permit applications. For consumptive use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a non-consumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results of this study showed that the analytical techniques with idealized radial flow were generally unsuited because they over predicted the influence of the well system. The numerical techniques yielded more reasonable results because they could account for aquifer heterogeneities and flow boundaries. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories. The capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a non-consumptive GHP assessment.

Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.

2013-09-26T23:59:59.000Z

256

Windows Mobile LiveSD Forensics  

Science Journals Connector (OSTI)

More and more often, smartphones are relevant targets of civil and criminal investigations. Currently, there are several tools available to acquire forensic evidence from smartphones. Unfortunately, most of these tools require to connect the smartphone ... Keywords: Data acquisition, Mobile device forensics, PocketPC forensics, Window CE forensics, Windows Mobile Forensics

EyüP S. Canlar; Mauro Conti; Bruno Crispo; Roberto Di Pietro

2013-03-01T23:59:59.000Z

257

Vector Network Analyzer Techniques to measure WR340 Waveguide Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows T. L. Smith ASD / RF Group Advanced Photon Source Argonne National Laboratory June 26, 2002 Table of Contents 1) Introduction 2) Objective 3) Full Two-Port Calibration 4) TRL (Thru-Reflect-Line) 5) TRL / WR340 Waveguide Window Measurement 6) Conclusions 7) References 1. Introduction In its fundamental form, network analysis involves the measurement of incident, reflected, and transmitted waves that travel along transmission lines. Measuring both magnitude and phase of components is important for several reasons. First, both measurements are required to fully characterize a linear network and ensure distortion- free transmission. To design effective matching networks, complex impedances must be

258

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies Window Technologies Operator Types Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. This section on Operator Types describes how these typical windows work. Operator Types Glazing Types Traditionally, windows have been made from clear glass, but advanced technologies have significantly improved the thermal performance of glass. This section on Glazing Types describes some of these technologies. Glazing Types Gas Fills Gas fills improve the thermal performance of insulating glazing units by reducing the conductance of the air space between the layers. This section on Gas Fills describes the thermal performance benefits of adding gas to an IGU.

259

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior Shading Exterior Shading Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by various additions to an existing window. Awnings exit disclaimer Blinds exit disclaimer Draperies exit disclaimer Overhangs exit disclaimer Shades exit disclaimer Shutters exit disclaimer Awnings in Residential Buildings Study showing that awnings have advantages that contribute to more sustainable buildings. Download Awnings in Residential Buildings exit disclaimer The most effective way of reducing solar heat gain is to block the sun's

260

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheets & Publications: Books Fact Sheets & Publications: Books Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Residential Windows: A Guide to New Technology and Energy Performance, 3rd Edition John Carmody, Stephen Selkowitz, Dariush Arasteh and Lisa Heschong Residential Windows The Department of Energy's Windows and Glazing Research Program supported the development of this book. Support was provided

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduced Condensation Reduced Condensation Condensation High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. High-performance windows create warmer interior glass surfaces, reducing frost and condensation. High-performance windows with warm edge technology and insulating frames have such a warm interior surface that condensation on any interior surfaces is significantly reduced under all conditions. Condensation occurs when the interior surface temperature of the glass drops below either the dewpoint or frost point. A window's frame and/or glazing system can contribute to the possibility of condensation if they are poor performers for a specific climate. High-performance windows create warmer interior glass surfaces, reducing condensation and frost.

262

LBNL Window & Daylighting Software -- COMFEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Beta 5 Beta (5.0.05 -- January 1, 2013) Last Updated: 01/01/2013 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

263

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamic Windows Dynamic Windows Technologies, such as electrochromics, are now available for the residential market. The skylight on the left is switched to the "on" position-reducing glare and solar heat gain. The skylight on the right is switched to the "off" position. Photo: Velux-America and SAGE Electrochromics. The emerging concept for the window of the future is more as a multifunctional "appliance-in-the-wall" rather than simply a static piece of coated glass. These systems include switchable windows and shading systems that have variable optical and thermal properties that can be changed in response to climate and occupant preferences. By actively managing lighting and cooling, smart windows could reduce peak electric loads, increase daylighting benefits throughout the United States, improve

264

X-Windows Acceleration via NX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Windows Acceleration via NX X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly improve the speed of X-Windows applications running at NERSC. See Using NX. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 August 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011 January 2011 September 2010 Last edited: 2013-04-02 15:13:27

265

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower HVAC Costs Lower HVAC Costs HVAC sizing tools Several computation procedures exist for proper sizing of HVAC equipment. The most prominent ones, which are also recommended by the ENERGY STAR Homes program, are ACCA Manual J exit disclaimer and the ASHRAE Handbook of Fundamentals. Factors to be considered: The energy performance of the windows themselves must be considered in load calculations. NFRC-certified window performance values significantly increase the accuracy of these calculations. Window orientation and overhangs must be taken into account. Overhangs are an important factor influencing solar gains through windows. Where internal shades and blinds will be actively used, these should also be accounted for in load calculations. High-performance windows not only provide reduced annual heating and

266

LBNL Window & Daylighting Software -- COMFEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Last Updated: 10/04/2012 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

267

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

268

Building Technologies Office: Windows, Skylights, and Doors Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windows, Skylights, and Windows, Skylights, and Doors Research to someone by E-mail Share Building Technologies Office: Windows, Skylights, and Doors Research on Facebook Tweet about Building Technologies Office: Windows, Skylights, and Doors Research on Twitter Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Google Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Delicious Rank Building Technologies Office: Windows, Skylights, and Doors Research on Digg Find More places to share Building Technologies Office: Windows, Skylights, and Doors Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

269

Window annual energy rating systems: What they tell us about residential window design and selection  

SciTech Connect (OSTI)

Residential window annual energy rating systems have been developed in Canada and the US. These systems combine window properties of solar heat gain coefficient, U-factor, and air-infiltration into a single number representative of the energy performance for each of the heating season and the cooling season. These systems provide a simple means for designers to select the best energy performing window for low-rise residential buildings over the heating and cooling seasons. The two systems, which rank windows in the same order, give different information on optimum window design and selection than just a simple U-factor comparison. These systems show the importance of a high window SHGC in cold climates and a low SHGC in hot climates. The impact of window air infiltration is surprisingly small relative to the solar heat gain and heat conduction losses.

Carpenter, S.C.; McGowan, A.G.; Miller, S.R. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

270

Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed  

E-Print Network [OSTI]

lifetime prediction of electrochromic windows for buildingsenergy performance of electrochromic windows. ” Proceedingsin the Proceedings. Electrochromic Windows for Commercial

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

2000-01-01T23:59:59.000Z

271

Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort  

E-Print Network [OSTI]

Energy Performance of Electrochromic Windows Controlled forenergy performance of electrochromic windows. Proceedingssignal for daylight (electrochromic window, no overhang).

Fernandes, Luis

2014-01-01T23:59:59.000Z

272

Window Manufacturer Sees Business Surge As Weatherization Supplier...  

Broader source: Energy.gov (indexed) [DOE]

of the aluminum windows they're replacing - the U-value is the measure of the rate of heat loss or gain through a window. The lower the U-value, the better a window's...

273

Building America Top Innovations 2013 Profile … Window Replacement, Rehabilitation, & Repair Guide  

Broader source: Energy.gov (indexed) [DOE]

such as working on scaffolding are also discussed. such as working on scaffolding are also discussed. Water infiltration is dealt with at considerable length because windows are one of the likeliest components in the building structure for water entry and because water intrusion and resultant damage may have gone on unnoticed for some time as water can enter the wall cavity through and around the window assembly. Suggestions for investigating sources of water intrusion are provided. The condition of the decorative trim around the window can be an indication of water damage but deterioration of the trim is typically an aesthetic problem not a performance problem. However, if the window sill is damaged, it should be replaced because it is the means by which water will drain out away from the house or,

274

Low-Cost Solutions for Dynamic Window Material | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Solutions for Dynamic Window Material Low-Cost Solutions for Dynamic Window Material Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer...

275

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

Hong, Tianzhen

2014-01-01T23:59:59.000Z

276

13-Energy Efficiency Ratio Window Air Conditioner | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT...

277

Effects of Overhangs on the Performance of Electrochromic Windows  

E-Print Network [OSTI]

issues for large-area electrochromic windows in commercialenergy performance of electrochromic windows controlled forwindows.lbl.gov/comm_perf/Electrochromic/ Winkelmann, F.C. ,

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

278

Windows and Building Envelope Facilities | Department of Energy  

Office of Environmental Management (EM)

Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to...

279

Highly Insulating Residential Windows Using Smart Automated Shading...  

Office of Environmental Management (EM)

Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window...

280

Building Technologies Office: Energy-Efficient Window Air Conditioner  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy-Efficient Window Energy-Efficient Window Air Conditioner Ratings Research Project to someone by E-mail Share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Facebook Tweet about Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Twitter Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Google Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Delicious Rank Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Digg Find More places to share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

What is the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is the Efficient Windows Collaborative? What is the Efficient Windows Collaborative? The EWC is a coalition of window, door, skylight, and component manufacturers, research organizations, federal, state and local government agencies, and others interested in expanding the market for high-efficiency fenestration products. Its goals are to double the current market penetration of efficient window technologies, and to make NFRC labeling a near-universal practice in U.S. markets. The Alliance to Save Energy has the lead coordination and management role. Using its active involvement with the energy efficiency industry and its experience in promoting energy efficient products, the Alliance is committed to working with the fenestration industry to make the Collaborative an effective force in the marketplace.

282

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: Visible Transmittance (VT) Measuring Performance: Visible Transmittance (VT) How to maximize daylight? Historically, only clear glass was used to maximize the amount of light entering through a window. Especially in cooling-dominated climate, this desirable daylight also came with undesirable solar heat gain. With the advancement of high-performance glazing systems, it is possible for low-E coatings to reject the solar heat gain while allowing the visible light to pass through the glass. The type of low-E coating that is appropriate for your specific house depends on location, orientation, window area, and shading strategies. The visible transmittance (VT) is an optical property that indicates the fraction of visible light transmitted through the window. This is separate from the Solar Heat Gain Coefficient (SHGC), since many modern windows

283

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheets & Publications Fact Sheets & Publications Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer State Fact Sheets for New and Existing Construction The EWC State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state.

284

Introduction to Windows Phone Application Development  

Science Journals Connector (OSTI)

This chapter introduces Windows Phone, including its device hardware characteristics and software development tools. After this introduction, you will learn how to create simple applications and how to deploy ...

Fabio Claudio Ferracchiati; Emanuele Garofalo

2011-01-01T23:59:59.000Z

285

NREL Electrochromic Window Research Wins Award  

ScienceCinema (OSTI)

Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

None

2013-05-29T23:59:59.000Z

286

Occupant Response to Window Control Signaling Systems  

E-Print Network [OSTI]

my window it will waste energy.  Even so I open the windowthe windown wouldn’t waste energy. ” MS Thesis, Dept. ofthe potential for energy waste and balancing issues.  

Ackerly, Katherine

2012-01-01T23:59:59.000Z

287

Windows Public Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Windows Public Tools Windows Public Tools Windows Public Tools Windows TOOL DESCRIPTION KarlBridge The KarlBridge package by Doug Karl. A program that runs on a PC with two Ethernet boards, turning the PC into a sophisticated, high-level, packet-filtering bridge. It can filter packets based on any specified protocol, including IP, XNS, DECNET, LAT, IPX, AppleTalk, etc. FakeDOS FakeDoS is a PC password system that, when executed from the AUTOEXEC.BAT file, will present the user with an apparently normal DOS prompt on bootup. However, the system is actually waiting for the correct password to be typed in. LOCK'M-UP The LogTime program logs the current time into a file, maintaining the last 170 entries stored. This can be useful when placed in AUTOEXEC.BAT as a method of tracking the use of a computer.

288

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. The U.S. EPA will add qualifying models to the ENERGY STAR Most Efficient 2013 product list for windows from January 1, 2013 through December 31, 2013. The following products are not eligible for Most Efficient recognition in 2013: Windows for commercial buildings Doors Skylights Tubular Daylighting Devices Energy Star Most Efficient Program Energy Star Zones The ENERGY STAR Most Efficient designation recognizes the most efficient products among those that qualify for the ENERGY STAR. These exceptional products represent the leading edge in energy efficient products for a given year. Criteria Windows must be ENERGY STAR qualified consistent with applicable ENERGY

289

Energy-Efficient Window Treatments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Window Treatments Energy-Efficient Window Treatments Energy-Efficient Window Treatments September 25, 2012 - 9:04am Addthis The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks What does this mean for me? Window treatments can reduce energy use in your home, and are less expensive than purchasing new, energy-efficient windows. In addition to saving energy, window treatments can be aesthetic additions to your home. You can choose window treatments or coverings not only for decoration but also for saving energy. Some carefully selected window treatments can reduce heat loss in the winter and heat gain in the summer. Window

290

Energy-Efficient Window Treatments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Treatments Window Treatments Energy-Efficient Window Treatments September 25, 2012 - 9:04am Addthis The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks The awnings on this home shade the windows and generate electricity. | Photo courtesy of ©iStockphoto/jhorrocks What does this mean for me? Window treatments can reduce energy use in your home, and are less expensive than purchasing new, energy-efficient windows. In addition to saving energy, window treatments can be aesthetic additions to your home. You can choose window treatments or coverings not only for decoration but also for saving energy. Some carefully selected window treatments can reduce heat loss in the winter and heat gain in the summer. Window

291

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network [OSTI]

across vertical fluid layers, Journal of Heat Transfer.fluid dynamics and conduction simulations of heat transferheat transfer through such window frames, we need, ideally, to simulate fluid

Gustavsen, Arild

2009-01-01T23:59:59.000Z

292

Transforming the market for residential windows: design considerations for DOE's Efficient Window Collaborative  

SciTech Connect (OSTI)

Market adoption of recent, commercially available technological advances that improve the energy performance of windows will lead to immediate economic and energy savings benefits to the nation. This paper is a scoping study intended to inform the design of a major DOE initiative to accelerate market adoption of these windows in the residential sector. We describe the structure of the US residential window market and the interests of the various market players. We then briefly review five recent market transformation initiatives. Finally, we summarize our findings in a list of considerations we believe will be important for the DOE's initiative to transform the US residential window market.

Eto, J.; Arasteh, D.; Selkowitz, S.

1998-08-01T23:59:59.000Z

293

Case study of underground pipe ground coupled heat pump system  

Science Journals Connector (OSTI)

Aiming to give some advices on the ground coupled heat pump system design in Sichuan Province, China, a typical ground source heat pump (GSHP) system in Sichuan Province was tested in a whole operational year,...

Min Zheng ??; Bai-yi Li ???; Zheng-yong Qiao ???

2012-03-01T23:59:59.000Z

294

Highly Insulating Residential Windows Using Smart Automated Shading  

Broader source: Energy.gov [DOE]

Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

295

Time-slide window join over data streams  

Science Journals Connector (OSTI)

The join is an important operator in processing data streams. To produce outputs continuously over unbounded data streams, sliding windows are generally used to limit the scope of the join at a certain time. In the existing join algorithms, only a simple ... Keywords: Data streams, symmetric hash join, time-slide windows, window join, windowing structure

Hyeon Gyu Kim, Yoo Hyun Park, Yang Hyun Cho, Myoung Ho Kim

2014-10-01T23:59:59.000Z

296

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

electrochromic windows were technically successful, but it will take a number of years for significant market

Hong, Tianzhen

2014-01-01T23:59:59.000Z

297

A scalable and tiling multi-monitor aware window manager  

Science Journals Connector (OSTI)

The design of a prototypical scalable and tiling multi-monitor aware window manager is described that may overcome some of the layout management problems encountered with tiling window managers. The system also features a novel approach to monitor configuration ... Keywords: distal access, monitor configuration, multiple monitors, window management, window manager

Joona Antero Laukkanen

2011-05-01T23:59:59.000Z

298

New and Underutilized Technology: Smart Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smart Windows Smart Windows New and Underutilized Technology: Smart Windows October 8, 2013 - 2:55pm Addthis The following information outlines key deployment considerations for smart windows within the Federal sector. Benefits Smart windows are made of electrochromic glass, which uses electrical energy to transition between clear and darkened state to control light and heat gain. Darkened glass transmits less light and reduces heat gain, especially in dual-pane windows. Application Smart windows are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to smart window implementation. Ranking Criteria

299

New and Underutilized Technology: Window Films | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Films Window Films New and Underutilized Technology: Window Films October 8, 2013 - 2:50pm Addthis The following information outlines key deployment considerations for window films within the Federal sector. Benefits Window films are a spectrally-selective film used to decrease heat gain through a window. Application Window films are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to window film implementation. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are ranked 0-5 with 0 representing the lowest ranking and 5 representing the highest ranking. The weighted score is ranked 0-100 with 0 representing the

300

3.5 Histogram Zoomable Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5.1 Summary States Up: 3. Graphical User Interface Previous: 3.4.4 5.1 Summary States Up: 3. Graphical User Interface Previous: 3.4.4 Row Adjustment Panel Contents 3.5 Histogram Zoomable Window Figure 3.23: Histogram window of the whole duration shown in Figure 3.10. Image histogram_state_all_cumu_excl The Histogram window is created by clicking the statistics button located in the middle of Duration Info Box, shown in Figure 3.19. In Figure 3.23, the Histogram window is created for the whole duration of the timeline canvas in Figure 3.10, that is, the same duration as the complete slog2 file. In general, the total duration of the histogram canvas is the same as the duration marked by the Duration Info Box, so that the Histogram window functions like a graphical display of statistical summary of the duration of interest. For instance, it is obvious from Figure 3.23 that the yellow

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

8 8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3) Triple-Glazed (2) with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas (3) Note(s): Source(s): The Efficient Windows Collaborative (http://www.efficientwindows.org) 0.14 0.33 0.56 1) Spectrally selective. 2) Includes double glazing with suspended film. 3) Center of glass properties, does not include frame or installation

302

A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs  

E-Print Network [OSTI]

Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over...

Do, S. L.; Haberl, J. S.

303

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membership List Membership List Manufacturers | Suppliers | Affiliates Manufacturers Accent Accent Windows exit disclaimer 14175 East 2nd Avenue Denver, CO 80239 AccurateDorwin Accurate Dorwin exit disclaimer 1535 Seel Avenue Winnipeg, Manitoba Canada, R3T 1C6 1-888-982-4640 Alpine Alpine Windows exit disclaimer 3773 State Road Cuyahoga Falls, OH 44223 Alside ALSIDE, Inc. exit disclaimer 3773 State Road Cuyahoga Falls, OH 44223 American Exteriors American Exteriors, LLC exit disclaimer 1169 W. Littleton Blvd. Littleton, CO 80120 Amerimax Amerimax Windows & Doors exit disclaimer 3950 Medford Drive Loveland, CO 80538 Andersen Andersen Corporation exit disclaimer 100 N. 4th Avenue Bayport, MN 55003 Charter Member Associated Materials Associated Materials, Inc. exit disclaimer 3773 State Road

304

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-E Coatings Low-E Coatings Low-E Center-of-glass values of double pane units with and without low-E coatings. When heat or light energy is absorbed by glass, it is either convected away by moving air or reradiated by the glass surface. The ability of a material to radiate energy is called its emissivity. All materials, including windows, emit (or radiate) heat in the form of long-wave, far-infrared energy depending on their temperature. This emission of radiant heat is one of the important components of heat transfer for a window. Thus reducing the window's emittance can greatly improve its insulating properties. Standard clear glass has an emittance of 0.84 over the long-wave portion of the spectrum, meaning that it emits 84% of the energy possible for an object at its temperature. It also means that 84% of the long-wave

305

LBNL Windows & Daylighting Software -- THERM Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THERM Tutorials THERM Tutorials bullet Creating THERM Sample File (Flash Video) (A 17 minute video which will open in your browser) specification document to accompany the Tutorial (PDF file) bullet Creating a Steel Stud Wall in THERM (Flash Video) Windows Media Player: WMV QuickTime: MOV bullet U-factor tags explanation (Flash Video) Windows Media Player WMV QuickTime: MOV bullet DXF Underlay - False Die Mold Method (Flash Video) Windows Media Player WMV QuickTime: MOV bullet The Calc Manager in THERM has been made into a multi-threaded process which allows it to take advantage of multi-core processors. See this video for more information about this enhancement. QuickTime:MOV bullet Displaying Surface Condensation Potential in THERM 7 QuickTime:MOV bullet Viewing R-values instead of U-factors in THERM 7

306

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the EWC About the EWC Who are the EWC members? The EWC is made up of manufacturers, suppliers, and affiliates to the window industry Manufacturers: producers of whole fenestration products such as windows, doors and skylights. Suppliers: producers and suppliers of components such as glazing, lineals, spacers, and other components of the fenestration product. Affiliates: non-manufacturing interested parties such as trade associations, utilities, consultants, and government agencies. View the entire EWC membership list» For more information about EWC membership contact: Jacob Johnston (ewc@ase.org) Alliance to Save Energy 1850 M Street, NW, Suite 600 Washington, DC 20036 phone: 202-530-4343 fax: 202-331-9588 www.ase.org exit disclaimer The EWC is a coalition of window, door, skylight, and component

307

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glass Glass Vacuum-insulated Glass Vacuum-insulated glazing units are made up of 2 panes of glass with a very small air space. The air space contains spacers which help maintain the separation between the panes. Most of the emerging glass technologies are available or nearly on the market. These include insulation-filled and evacuated glazings to improve heat transfer by lowering U-factors. Evacuated Windows The most thermally efficient gas fill would be no gas at all-a vacuum. The window industry is pursuing the development of vacuum-insulated glass (VIG) for use in window units in which the space between the panes is evacuated. If the vacuum pressure is low enough, there would be no conductive or convective heat exchange between the panes of glass, thus lowering the U-factor. A vacuum glazing must have a good low-E coating to

308

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Comfort Improved Comfort Comfort High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. During cold weather, exterior temperatures drive interior glass surface temperatures down below the room air temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior glass surface temperature is 52˚F or less, it is most likely that there will be discomfort. During warm weather, solar radiation can cause discomfort. Just as people turn up the heat to compensate for cold windows in cold weather, they may use

309

Apparatus for insulating windows and the like  

DOE Patents [OSTI]

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

Mitchell, R.A.

1984-06-19T23:59:59.000Z

310

Apparatus for insulating windows and the like  

DOE Patents [OSTI]

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

1984-01-01T23:59:59.000Z

311

Field Evaluation of Low-E Storm Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Evaluation of Low-E Storm Windows Field Evaluation of Low-E Storm Windows Title Field Evaluation of Low-E Storm Windows Publication Type Conference Paper LBNL Report Number LBNL-1940E Year of Publication 2007 Authors S. Craig Drumheller, Christian Kohler, and Stefanie Minen Conference Name Thermal Performance of the Exterior Envelopes of Whole Buildings X International Conference Volume 277 Date Published 12/2007 Conference Location Clearwater Beach, FL Abstract A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homes had traditional clear glass. Overall heating load reduction due to the storm windows was 13% with the clear glass and 21% with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years for the low-e storm windows.

312

The LOFT Ground Segment  

E-Print Network [OSTI]

LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We...

Bozzo, E; Argan, A; Barret, D; Binko, P; Brandt, S; Cavazzuti, E; Courvoisier, T; Herder, J W den; Feroci, M; Ferrigno, C; Giommi, P; Götz, D; Guy, L; Hernanz, M; Zand, J J M in't; Klochkov, D; Kuulkers, E; Motch, C; Lumb, D; Papitto, A; Pittori, C; Rohlfs, R; Santangelo, A; Schmid, C; Schwope, A D; Smith, P J; Webb, N A; Wilms, J; Zane, S

2014-01-01T23:59:59.000Z

313

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

314

ZeroEnergyWindow_1031.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Background and Performance Objective Background and Performance Objective Zero Energy Window Prototype HIGH PERFORMANCE WINDOW OF THE FUTURE T of 0.35 - 0.5 BTU/h-ft 2 -F to levels of 0.1 - 0.15 BTU/h-ft 2 -F. At the same time, the strategy for optimal control of solar gain varies with season and climate in the U.S. Rather than argue over a high or low solar heat gain coefficient (SHGC), the year-round, all-climate solution is a variable SHGC that can

315

Ground water and energy  

SciTech Connect (OSTI)

This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

Not Available

1980-11-01T23:59:59.000Z

316

Rolling, Rolling, Rolling: Roller Window Shades | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rolling, Rolling, Rolling: Roller Window Shades Rolling, Rolling, Rolling: Roller Window Shades Rolling, Rolling, Rolling: Roller Window Shades March 15, 2010 - 11:42am Addthis John Lippert There's a lot of talk these days about installing new energy-efficient windows. Thanks to a Federal tax credit of up to $1,500, window advertisements, both print and radio and TV broadcasting, are aplenty. I don't want to knock energy-efficient windows. There are some great window products available. Some even rival the overall performance of walls, that is, if you account for the heat energy that enters the home via sunshine, depending on the climate and orientation. What I would like to talk about here are window shades. My wife and I bought our house 19 years ago. We are only the 2nd owners. The house has double-pane wooden windows made by a major well-known manufacturer. No

317

Building Technologies Office: High Performance Windows Volume Purchase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

318

Rolling, Rolling, Rolling: Roller Window Shades | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rolling, Rolling, Rolling: Roller Window Shades Rolling, Rolling, Rolling: Roller Window Shades Rolling, Rolling, Rolling: Roller Window Shades March 15, 2010 - 11:42am Addthis John Lippert There's a lot of talk these days about installing new energy-efficient windows. Thanks to a Federal tax credit of up to $1,500, window advertisements, both print and radio and TV broadcasting, are aplenty. I don't want to knock energy-efficient windows. There are some great window products available. Some even rival the overall performance of walls, that is, if you account for the heat energy that enters the home via sunshine, depending on the climate and orientation. What I would like to talk about here are window shades. My wife and I bought our house 19 years ago. We are only the 2nd owners. The house has double-pane wooden windows made by a major well-known manufacturer. No

319

Simulating Complex Window Systems using BSDF Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complex Window Systems using BSDF Data Complex Window Systems using BSDF Data Title Simulating Complex Window Systems using BSDF Data Publication Type Conference Paper LBNL Report Number LBNL-4416E Year of Publication 2009 Authors Lee, Eleanor S., Jacob C. Jonsson, and Maria Konstantoglou Call Number LBNL-4416E Abstract Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

320

The Current T2K Beam Window  

E-Print Network [OSTI]

Downstream Helium velocity 5 m/s Heat transfer coefficient 150 W/m2K #12;Helium flow grooves He in He out at KEK (via Oak Ridge via PSI). #12;Assembled Window #12;Remote Handling #12;Remote handling Monitor Chamber (Canada) Target Station (Japan) #12;Remote installation #12;Stress analysis and upgrade potential

McDonald, Kirk

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Performance Criteria for Residential Zero Energy Windows  

E-Print Network [OSTI]

e window energy rovide o ws p wind SHGC U=0.84 Btu/(hr-ft^2-F) [4.77 W/(m^2-K)], SHGC=0.64 - 124.3 MBtu [131.2 GJ] -hr-ft^2-F) [2.78 W/(m^2-K)], SHGC=0.56 - 106.2 MBtu [ 112.0

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

322

Determining window solar heat gain coefficient  

SciTech Connect (OSTI)

The solar heat gain characteristics of fenestration systems impact daytime building energy performance, occupant comfort and utility load demands. A measure of the fraction of available solar energy entering a building interior per unit window area is defined as the solar heat gain coefficient (SHGC). Together with a window's thermal transmittance (U-value), the SHGC is used to compare fenestration products, and it allows for the calculation of energy rating number and annual energy performance. The need to measure and compared advances in window technology has led to the development of experimental and analytical methods for the determination of SHGC performance. Several test facilities currently or previously capable of performing SHGC measurements exist worldwide. Results experimentally determined using these facilities have provided design data for handbook tables, and have been instrumental in the development and validation of predictive analytical methods and computer simulation tools. However, these facilities have operated without a standard test procedure for SHGC performance. Consequently, recent efforts have been focused on developing consensus test procedures for the evaluation of window energy performance.

Harrison, S.J.; Wonderen, S.J. van (Queen's Univ., Kingston, Ontario (Canada). Solar Calorimetry Lab.)

1994-08-01T23:59:59.000Z

323

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System Non-Convergence System Non-Convergence Last update:05/19/08 05:03 PM There are some circumstances where WINDOW 5 will give the following error message: This error can occur either in the Window or Glazing System calculation, but it is actually an error that occurs when the program tries to calculate the glazing system thermal properties -- it occurs in the Window Library because the program recalculates the center-of-glass U-value based on the window height. It will happen in rare circumstances because of a problem with the discontinuity in correlations that calculate convective heat transfer in glazing cavities. The solution is to change either the glazing system height or width. In general, the most practical solution is to change the glazing system height rather than the width..

324

RF-driven ion source with a back-streaming electron dump  

SciTech Connect (OSTI)

A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

Kwan, Joe; Ji, Qing

2014-05-20T23:59:59.000Z

325

Energy Performance Ratings for Windows, Doors, and Skylights | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights June 18, 2012 - 9:35am Addthis Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. What does this mean for me? Energy performance ratings make it easier for you to purchase the window most appropriate for your home's climate and orientation. Using energy performance ratings, you can fine-tune window placement in your home. You can use the energy performance ratings of windows, doors, and skylights

326

Seeing Windows Through : Technologies : From the Lab to the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seeing Windows Through Seeing Windows Through From the Lab to the Marketplace Ten Years Later, Energy Efficient Technologies from Research at the Lawrence Berkeley National Laboratory Berkeley Lab logo (left) with six rows of gray dots transitioning to a line art drawing of a cityscape and residential houses. Seeing Windows Through Energy lost through residential and commercial windows costs U.S. consumers about $40 billion a year. Berkeley Lab pioneered the commercialization of "low-emissivity" windows and labeling systems, which reduce the energy lost through normal, double-glazed windows by 35%. Thanks to Berkeley Lab's close collaboration with window manufacturers, these advanced windows have a greater than 50- percent marketshare and save American consumers billions

327

Updating the Doors and Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Updating the Doors and Windows Updating the Doors and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace my windows like Andrea did recently (I've got a lot more of them for one thing), the next best thing is to be sure the existing ones-- which are double-paned, so that's a help-are well sealed. One of my energy audit recommendations was to caulk the window frames inside and out. My handyman friend Rob and his brother got the outside of the windows caulked (hmm, I have to ask him about the basement windows -- it's kind of tucked away under the entry deck over the dog door.) He said that it looked like some of the edges (the tops of the second floor windows especially) hadn't ever been done and the ones that had, had highly

328

MoWiTT:Mobile Window Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

329

Improving the Energy Efficiency of Existing Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? There are several solutions to energy inefficient windows whether you're starting from scratch or simply making upgrades. But, soft! What light through yonder window breaks? It is the east, and Juliet is the sun. - William Shakespeare, Romeo and Juliet No one would dispute the undeniable beauty of soft, dappled light shining through a window in the early morning. Unless, of course, you happen to be one of the many Americans whose windows are letting in more than just light. Poorly fitted or sealed windows can be a major frustration during the winter months, letting in cold drafts that blur the lines between

330

A Tale of Three Windows: Part 1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Tale of Three Windows: Part 1 A Tale of Three Windows: Part 1 A Tale of Three Windows: Part 1 August 1, 2012 - 12:37pm Addthis The original windows in Andrea's home. | Photo courtesy of Andrea Spikes. The original windows in Andrea's home. | Photo courtesy of Andrea Spikes. Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I will admit right up front that, despite the fact that our aluminum windows are more than 20 years old, and are obviously inefficient, we never bothered to replace them simply because we didn't want to shell out the bucks. We've lived with these windows (two standard windows plus a patio door) for nearly ten years, and have simply used insulating blinds and curtains, plus the old standby heat-shrink plastic, to keep the winter cold and summer heat at bay. Those methods are certainly budget-friendly,

331

Modeling Windows in Energy Plus with Simple Performance Indices  

E-Print Network [OSTI]

that window U-factors include the interior and exterior filmwindows however, Steps 1 and 5 which use interior filmthese film coefficients to a resistance for the solid window

Arasteh, Dariush

2010-01-01T23:59:59.000Z

332

Pennsylvania: Window Technology First of Its Kind for Commercial Buildings  

Broader source: Energy.gov [DOE]

The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

333

Atmospheric Condensation Potential of Windows in Hot, Humid Climates  

E-Print Network [OSTI]

frequent atmospheric condensation on external surfaces of windows when their surface temperature drops below the dew point temperature of the hot humid air. To date, external surface condensation on windows has been given relatively much less importance...

El Diasty, R.; Budaiwi, I.

334

Window, Door, and Skylight Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services June 18, 2012 - 8:33am Addthis Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR® Information on ENERGY STAR performance ratings for windows, doors, and skylights. Product Ratings National Fenestration Rating Council Find energy performance ratings and manufacturers of windows, doors, and skylights. Residential Windows, Doors, and Skylights

335

Energy Performance Ratings for Windows, Doors, and Skylights | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights Energy Performance Ratings for Windows, Doors, and Skylights June 18, 2012 - 9:35am Addthis Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. Before you shop for energy-efficient windows, doors, and skylights, learn about energy performance ratings. | Photo courtesy of iStockphoto.com/JamesBrey. What does this mean for me? Energy performance ratings make it easier for you to purchase the window most appropriate for your home's climate and orientation. Using energy performance ratings, you can fine-tune window placement in your home. You can use the energy performance ratings of windows, doors, and skylights

336

Improving the Energy Efficiency of Existing Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? There are several solutions to energy inefficient windows whether you're starting from scratch or simply making upgrades. But, soft! What light through yonder window breaks? It is the east, and Juliet is the sun. - William Shakespeare, Romeo and Juliet No one would dispute the undeniable beauty of soft, dappled light shining through a window in the early morning. Unless, of course, you happen to be one of the many Americans whose windows are letting in more than just light. Poorly fitted or sealed windows can be a major frustration during the winter months, letting in cold drafts that blur the lines between

337

Ground Vibration Measurement  

Science Journals Connector (OSTI)

Measurement of ground vibration is important for checking of amplitudes of ... confirmation of efficiency of control measures of ground vibration. The properties of measuring instruments used can affect the resul...

Dr. Milutin Srbulov

2010-01-01T23:59:59.000Z

338

Thermally induced wave-front distortions in laser windows  

SciTech Connect (OSTI)

A simple analytical expression is given for wave-front distortions and birefringence due to heating in laser windows. (AIP)

Greninger, C.E.

1986-08-01T23:59:59.000Z

339

Window and Envelope Technologies Overview - 2014 BTO Peer Review...  

Energy Savers [EERE]

Research and Development Roadmap: Windows and Building Envelope Research & Development Roadmap: Emerging Water Heating Technologies Research & Development Roadmap: Emerging HVAC...

340

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

TI Reflective Solar Control Film on Windows Gains AcceptancelReflective Solar Control Film on Windows Gains Acceptance",optical window shutter, the cholesteric liquid crystal film

Viswanathan, R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Impact of Overhang Design on the Performance of Electrochromic Windows  

E-Print Network [OSTI]

Issues for Large-area Electrochromic Windows in CommercialAnalysis of Prototype Electrochromic Windows”, ASHRAEon the Performance of Electrochromic Windows Asilhan Tavil

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

342

The energy-savings potential of electrochromic windows in the US commercial buildings sector  

E-Print Network [OSTI]

Alone Photovoltaic-Powered Electrochromic Smart Window.Subject responses to electrochromic windows. To be publishedAnalysis of Prototype Electrochromic Windows, ASHRAE

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-01-01T23:59:59.000Z

343

End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application  

E-Print Network [OSTI]

2006. Advancement of electrochromic windows: Final report.User Impacts of Automated Electrochromic Windows in a Pilotenergy performance of electrochromic windows controlled for

Lee, Eleanor S.

2014-01-01T23:59:59.000Z

344

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Glazing Single Glazing Single-Glazed, Clear Glass This figure illustrates the performance of a typical single-glazed unit with clear glass. Relative to all other glazing options, single-glazed with clear glass allows the highest transfer of energy (i.e. heat loss or heat gain depending on local climate conditions) while permitting the highest daylight transmission. Single Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. Whole Window Properties - Single-Glazed, Clear Glass Metal Frame Non-metal Frame Metal Frame Metal Frame with Thermal Break Non-metal Frame Non-metal Frame, Thermally Improved

345

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Links Government, Research, and Educational Organizations Alliance to Save Energy ewc@ase.org www.ase.org exit disclaimer Building Codes Assistance Project (BCAP) www.bcap-energy.org exit disclaimer BCAP's Online Code Environment & Advocacy Network (OCEAN) energycodesocean.org exit disclaimer Center for Sustainable Building Research csbr@umn.edu www.csbr.umn.edu exit disclaimer ENERGY STAR Windows Program www.energystar.gov exit disclaimer Florida Solar Energy Center (FSEC) www.fsec.ucf.edu exit disclaimer Lawrence Berkeley National Laboratory (LBNL) windows.lbl.gov exit disclaimer National Fenestration Rating Council (NFRC) info@nfrc.org www.nfrc.org exit disclaimer National Renewable Energy Laboratory Center for Buildings and Thermal Energy Systems (NREL) www.nrel.gov exit disclaimer

346

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Triple Low-E Glazing Triple Low-E Glazing Triple-Glazed, High-solar-gain Low-E Glass This figure illustrates the performance of a window with a very low heat loss rate (low U-factor). In this case there are three glazing layers and two low-E coatings, ½" argon gas or ¼" krypton gas fill between glazings, and low-conductance edge spacers. The middle glazing layer can be glass or suspended plastic film. Some windows use four glazing layers (two glass layers and two suspended plastic films). This product is suited for buildings located in very cold climates. Both Low-E coatings in this product have high solar heat and visible light transmittance, which is ideal for passive solar design. The use of three layers, however, results in lower solar heat gain relative to double glazing with high-solar-gain Low-E.

347

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheets & Publications: State Fact Sheets Fact Sheets & Publications: State Fact Sheets The EWC >State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state. State New Construction Existing Construction (replacement) Alaska Anchorage, Fairbanks Alaska.pdf Alaska.pdf Alabama Birmingham, Mobile Alabama.pdf Alabama.pdf Arkansas Little Rock Arkansas.pdf Arkansas.pdf Arizona Phoenix, Flagstaff, Tucson Arizona.pdf Arizona.pdf California Arcata, Bakersfield, Daggett, Fresno, Los Angeles Red Bluff, Sacramento, San Diego, San Francisco California.pdf California.pdf

348

Vacuum Glazing; A Thermally Insulating Window Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

349

LBNL Windows & Daylighting Software -- THERM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THERM 5.2 (older version) THERM 5.2 (older version) Download New Features Knowledge Base (Check here first if you are experiencing a problem with the software) Documentation Two-Dimensional Building Heat-Transfer Modeling THERM is a state-of-the-art, Microsoft Windows™-based computer program developed at Lawrence Berkeley National Laboratory (LBNL) for use by building component manufacturers, engineers, educators, students, architects, and others interested in heat transfer. Using THERM, you can model two-dimensional heat-transfer effects in building components such as windows, walls, foundations, roofs, and doors; appliances; and other products where thermal bridges are of concern. THERM's heat-transfer analysis allows you to evaluate a product’s energy efficiency and local temperature patterns, which may relate directly to problems with

350

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Caulking and Weatherstripping Caulking and Weatherstripping DOE's Energy Savers Air sealing is one of the most significant energy efficiency improvements you can make to your home. Air sealing will not just reduce energy costs; it will also improve your home's comfort and durability. Caulking exit disclaimer Weatherstripping exit disclaimer Financing & Incentives DOE Weatherization Assistance Program exit disclaimer Find Federal Tax Credits for Energy Efficiency exit disclaimer Air leakage can occur around the window frame and through the cracks within the window assembly, particularly along operable sashes. Caulking and weatherstripping can reduce air leakage through these pathways. According to the U.S. Department of Energy exit disclaimer , the costs of properly applied caulking and weather stripping can usually be recovered in energy

351

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies: Glazing Types Window Technologies: Glazing Types Glazing Improvements There are three fundamental approaches to improving the energy performance of glazing products (two or more of these approaches may be combined). The first approach is to alter the glazing material itself by changing its chemical composition or physical characteristics. An example of this is tinted glazing. The second approach is to apply a coating to the glazing material surface. Reflective coatings and films were developed to reduce heat gain and glare, and more recently, low-emittance coatings have been developed to improve both heating and cooling season performance. The third approach is to assemble various layers of glazing and control the properties of the spaces between the layers. These strategies include the use of two or more panes or films,

352

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies: Low Conductance Spacers Window Technologies: Low Conductance Spacers Spacers The lites of glass in an insulating unit must be held apart at the appropriate distance by spacers. In addition to keeping the glass lites separated, the spacer system must serve a number of functions: accommodate stress induced by thermal expansion and pressure differences; provide a moisture barrier that prevents passage of water or water vapor that would fog the unit; provide a gas-tight seal that prevents the loss of any special low-conductance gas in the air space; create an insulating barrier that reduces the formation of interior condensation at the edge. Spacers The standard solution for insulating glass units (IGUs) is the use of metal spacers and sealants. These spacers, typically aluminum, also

353

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary Glossary A B C D E F G H I J K L M N O P R S T U V W A AAMA. American Architectural Manufacturers Association. A national trade association that establishes voluntary standards for the window, door, storefront, curtain wall, and skylight industries. Absorptance. The ratio of radiant energy absorbed to total incident radiant energy in a glazing system. Acrylic. A thermoplastic with good weather resistance, shatter resistance, and optical clarity, used for glazing. Aerogel. A microporous, transparent silicate foam used as a glazing cavity fill material, offering possible U-values below 0.10 BTU/(h-sq ft-°F) or 0.56 W/(sq m-°C). Air infiltration. The amount of air leaking in and out of a building through cracks in walls, windows and doors.

354

Water Window Ptychographic Imaging with Characterized Coherent X-rays  

E-Print Network [OSTI]

We report on a ptychographical coherent diffractive imaging experiment in the water window with focused soft X-rays at $500~\\mathrm{eV}$. An X-ray beam with high degree of coherence was selected for ptychography at the P04 beamline of the PETRA III synchrotron radiation source. We measured the beam coherence with the newly developed non-redundant array method. A pinhole $2.6~\\mathrm{\\mu m}$ in size selected the coherent part of the beam and was used for ptychographic measurements of a lithographically manufactured test sample and fossil diatom. The achieved resolution was $53~\\mathrm{nm}$ for the test sample and only limited by the size of the detector. The diatom was imaged at a resolution better than $90~\\mathrm{nm}$.

Rose, Max; Dzhigaev, Dmitry; Gorobtsov, Oleg; Senkbeil, Tobias; von Gundlach, Andreas; Gorniak, Thomas; Shabalin, Anatoly; Viefhaus, Jens; Rosenhahn, Axel; Vartanyants, Ivan

2015-01-01T23:59:59.000Z

355

Aneka Cloud Application Platform and Its Integration with Windows Azure  

E-Print Network [OSTI]

into hybrid Clouds, but also to redesign the existing IT infrastructure in order to optimize the usage such as Amazon EC2, Windows Azure and GoGrid. In this chapter, we will present Aneka platform and its integration with one of the public Cloud infrastructures, Windows Azure, which enables the usage of Windows Azure

Melbourne, University of

356

End User Impacts of Automated Electrochromic Windows in a Pilot  

E-Print Network [OSTI]

LBNL-6027E End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application E Electrochromic Windows in a Pilot Retrofit Application Eleanor S. Lee1 Abstract , Erin S. Claybaugh Building Independence Avenue, S.W., Washington, DC 20585 USA Automated electrochromic (EC) windows, advanced thermally

357

Energy performance of a dual airflow window under different climates  

Science Journals Connector (OSTI)

Ventilated windows have shown great potential in conserving energy in buildings and provide fresh air to improve indoor air quality. This paper reports our effort to use EnergyPlus to simulate the energy performance of a dual airflow window under different climates. Our investigation first developed a network model to account for the two-dimensional heat transfer in the window system and implemented it in EnergyPlus. The two-dimensional assumption and the modified EnergyPlus program were validated by the measured temperatures of the window and the energy demand of a test cell with the window under actual weather conditions. Then EnergyPlus was applied to analyze energy performance of a small apartment installed with the dual airflow windows in five different climate zones in China. The energy used by the apartment with blinds windows and low-e windows was also calculated for comparison. The dual airflow window can reduce heating energy of the apartment, especially in cold climate. The cooling energy reduction by the window was less important than that by shading solar radiation. The dual airflow window is recommended for colder climate. If improving air quality is a major consideration for a building, the window can be used in any climate.

Jingshu Wei; Jianing Zhao; Qingyan Chen

2010-01-01T23:59:59.000Z

358

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-E Glazing Low-E Glazing Double-Glazed, High-solar-gain Low-E Glass This figure illustrates the characteristics of a typical double-glazed window with a high-solar gain low-E glass with argon gas fill. These windows are designed to reduce heat loss but admit solar gain. High-solar-gain low-E glass products are best suited for buildings located in heating-dominated climates and are the product of choice for passive solar design projects. High-solar-gain low-E glass is often made with pyrolytic low-E coatings, although sputtered high-solar-gain low-E is also available. Double HSG Low-E Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

359

Phenomenological Excavation: Searching For The Irreducible Ground Of Conscious Experience  

E-Print Network [OSTI]

PHENOMENOLOGICAL EXCAVATION: SEARCHING FOR THE IRREDUCIBLE GROUND OF CONSCIOUS EXPERIENCE BY James Alan Tuedio "It seemed to him (that) he was looking in through a lighted window at a life which he had always known, but which he could never... reduces beyond the world of private meaning to what Husserl terms in his later period "living in- tentionality." 5 In the performance of phenomenological reduction, everything "falls away" from consideration save the "transcendental I." This "I," as we...

Tuedio, James Alan

360

Developing Low-Conductance Window Frames: Capabilities and Limitations of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Limitations of Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Title Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Publication Type Journal Article LBNL Report Number LBNL-1022E Year of Publication 2008 Authors Gustavsen, Arlid, Dariush K. Arasteh, Bjørn Petter Jelle, Dragan C. Curcija, and Christian Kohler Journal Journal of Building Physics Volume 32 Pagination 131-153 Call Number LBNL-1022E Abstract While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames.

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Performance Windows Volume Purchase: For Light Commercial Buyers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Light For Light Commercial Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Light Commercial Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Light Commercial Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Google Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Delicious Rank High Performance Windows Volume Purchase: For Light Commercial Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Light Commercial Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Light Commercial Buyers Significant energy savings from low-E window technology are possible in the

362

T-596: 0-Day Windows Network Interception Configuration Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

6: 0-Day Windows Network Interception Configuration 6: 0-Day Windows Network Interception Configuration Vulnerability T-596: 0-Day Windows Network Interception Configuration Vulnerability April 6, 2011 - 5:48am Addthis PROBLEM: 0-Day exploit of IPv4 and IPv6 mechanics and how it applies to Microsoft Windows Operating systems. PLATFORM: Microsoft Operating Systems (OS) Windows Vista, Windows 7, and Windows 2008 Server ABSTRACT: The links below describe a parasitic IPv6 layered over a native IPv4 network. This attack can be used to stage potential man-in-the-middle (MITM) attacks on IPv4 traffic. Please see the "Other Links" section below, as it provides an external URL reference. reference LINKS: InfoSec Institute - SLAAC Attack Cisco Threat Comparison and Best-Practice White Paper IMPACT ASSESSMENT: High

363

Do You Have Windows That Need Replacing? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Do You Have Windows That Need Replacing? Do You Have Windows That Need Replacing? Do You Have Windows That Need Replacing? August 3, 2012 - 2:11pm Addthis This week, Andrea shared the first part of her two-part story about how she replaced her more than 20-year-old windows with new, energy-efficient ones. Replacing old windows can be a great way to reduce the amount of warm and cool air (depending on the season) is leaking right out of your home. This week, we're wondering: Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows? You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles

364

My Energy Audit, Part 2: Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

My Energy Audit, Part 2: Windows My Energy Audit, Part 2: Windows My Energy Audit, Part 2: Windows July 9, 2012 - 1:48pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Last time I wrote about the heating portion of my energy audit -- now for some other items that were checked. The auditor checked some of the windows, which are double-paned, and showed me cracks between the window frame and the house that should be caulked. She recommended caulking both the inside and outside. That's easy enough for me to do -- at least the inside -- so I got some clear caulking and some gadgets to ensure a smooth finish from the home improvement store (I LOVE gadgets). I'm planning to start with the downstairs windows to perfect my technique, and at one window a week, hopefully I'll be finished

365

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System Debugging Information System Debugging Information Last update:08/07/03 12:07 PM To help us determine the problem you are having running or installing our software, please supply us with the information below: Program version (go to the Help menu, About choice) or name of installation file (such as WINDOW5Setup.exe with file date and size) Operating System (ie, MS Windows XP, 2000, 98, etc) DLL Info (see below) System Info (see below) To determine what DLLs are installed on a computer, do the following: Download the program called Dependency Walker, which is a free download from: http://www.dependencywalker.com/ What you download (select the first option, which is for Windows 2000, XP, etc) will be a zip file. Unzip the contents of that file into a new directory (called whatever you want, such as DependencyWalker).

366

T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption  

Broader source: Energy.gov (indexed) [DOE]

7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users 7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions September 27, 2011 - 8:00am Addthis PROBLEM: Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Windows Server 2003 with SP2 for Itanium-based Systems Windows Vista Service Pack 2 Windows Vista x64 Edition Service Pack 2 Windows Server 2008 for 32-bit Systems Service Pack 2 Windows Server 2008 for x64-based Systems Service Pack 2 Windows Server 2008 for Itanium-based Systems Service Pack 2 Windows 7 for 32-bit Systems and Windows 7 for 32-bit Systems Service Pack

367

T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption  

Broader source: Energy.gov (indexed) [DOE]

7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users 7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions September 27, 2011 - 8:00am Addthis PROBLEM: Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Windows Server 2003 with SP2 for Itanium-based Systems Windows Vista Service Pack 2 Windows Vista x64 Edition Service Pack 2 Windows Server 2008 for 32-bit Systems Service Pack 2 Windows Server 2008 for x64-based Systems Service Pack 2 Windows Server 2008 for Itanium-based Systems Service Pack 2 Windows 7 for 32-bit Systems and Windows 7 for 32-bit Systems Service Pack

368

T-601: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges  

Broader source: Energy.gov (indexed) [DOE]

01: Windows Kernel win32k.sys Lets Local Users Gain Elevated 01: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges T-601: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges April 13, 2011 - 5:12am Addthis PROBLEM: Windows Kernel win32k.sys Lets Local Users Gain Elevated Privileges PLATFORM: Windows XP Service Pack 3, Windows XP Professional x64 Edition Service Pack 2, Windows Server 2003 Service Pack 2, Windows Server 2003 x64 Edition Service Pack 2, Windows Server 2003 with SP2 for Itanium-based Systems, Windows Vista Service Pack 1 and Windows Vista Service Pack 2, Windows Vista x64 Edition Service Pack 1 and Windows Vista x64 Edition Service Pack 2, Windows Server 2008 for 32-bit Systems and Windows Server 2008 for 32-bit Systems Service Pack 2*, Windows Server 2008 for x64-based Systems

369

U-032: Microsoft Security Bulletin Windows TCP/IP MS11-083 - Critical |  

Broader source: Energy.gov (indexed) [DOE]

32: Microsoft Security Bulletin Windows TCP/IP MS11-083 - 32: Microsoft Security Bulletin Windows TCP/IP MS11-083 - Critical U-032: Microsoft Security Bulletin Windows TCP/IP MS11-083 - Critical November 9, 2011 - 1:00pm Addthis PROBLEM: Microsoft Security Bulletin Windows TCP/IP MS11-083 - Critical. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Active Directory Windows Server 2003 with SP2 for Itanium-based Systems Windows Vista Service Pack 2 Windows Vista x64 Edition Service Pack 2 Windows Server 2008 for 32-bit Systems Service Pack 2 Windows Server 2008 for x64-based Systems Service Pack 2 Windows 7 for 32-bit Systems Windows 7 for 32-bit Systems Service Pack 1 Windows 7 for x64-based Systems

370

Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort  

E-Print Network [OSTI]

absorptive electrochromic (EC) windows tested were market-electrochromic windows that were deemed sufficiently mature for market

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

2005-01-01T23:59:59.000Z

371

Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort  

E-Print Network [OSTI]

Subject responses to electrochromic windows. Submitted toin a full-scale electrochromic window testbed. Technicaloptimization of electrochromic operations for occupant

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

2005-01-01T23:59:59.000Z

372

Atmospheric Pressure Deposition for Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

373

Atmospheric Pressure Deposition for Electrochromic Windows  

Broader source: Energy.gov (indexed) [DOE]

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

374

Methods for extension of ground shipment windows through a supplier collaboration initiative  

E-Print Network [OSTI]

Amazon.com is a leading retailer and UPS is the leading package delivery company in the world. Amazon spends hundreds of millions of dollars each year shipping products to customers via parcel carriers such as UPS. Arguably, ...

Wible, David Barry

2011-01-01T23:59:59.000Z

375

Substation grounding optimization.  

E-Print Network [OSTI]

??Substation grounding is a critical part of the overall electric power system. It is designed to not only provide a path to dissipate electric currents… (more)

Balev, Vadim

2014-01-01T23:59:59.000Z

376

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 3, is a users manual and an installation and validation manual for the computer program SGSYS (Substation Grounding SYStem Analysis Program). This program analyzes the substation ground field given the total electric current injected into the ground field and the design of the grounding system. Standard outputs of the program are (1) total ground resistance, (2) step voltage, (3) touch voltage, (4) voltages on a grid of points, (5) voltage profile along straight lines, (6) transfer voltages, (7) ground potential rise, (8) body currents, (9) step voltage profile along straight lines, and (10) touch voltage profile along straight lines. This program can be utilized in an interactive or batch mode. In the interactive mode, the user defines the grounding system geometry, soil parameters, and output requests interactively, with the use of a user friendly conversational program. The users manual describes data requirements and data preparation procedures. An appendix provides forms which facilitate data collection procedures. The installation and validation manual describes the computer files which make up the program SGSYS and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

377

Future Advanced Windows for Zero-Energy Homes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Advanced Windows for Zero-Energy Homes Future Advanced Windows for Zero-Energy Homes Title Future Advanced Windows for Zero-Energy Homes Publication Type Conference Paper LBNL Report Number LBNL-51913 Year of Publication 2002 Authors Apte, Joshua S., Dariush K. Arasteh, and Yu Joe Huang Conference Name ASHRAE Transactions Volume 109, pt 2 Date Published 06/2003 Conference Location Kansas City, MO Call Number LBNL-51913 Abstract Over the past 15 years, low-emissivity and other technological improvements have significantly improved the energy efficiency of windows sold in the United States. However, as interest increases in the concept of zero-energy homes-buildings that do not consume any nonrenewable or net energy from the utility grid-even today's highest-performance window products will not be sufficient. This simulation study compares today's typical residential windows, today's most efficient residential windows, and several options for advanced window technologies, including products with improved fixed or static properties and products with dynamic solar heat gain properties. Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Windows with dynamic solar heat gain properties are found to offer significant potential in reducing energy use and peak demands in northern and central climates, while windows with very low (static) solar heat gain properties offer the most potential in southern climates.

378

U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

28: Microsoft Windows win32k.sys TrueType Font Parsing 28: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability November 7, 2011 - 8:15am Addthis PROBLEM: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability. PLATFORM: Microsoft Windows 7 Microsoft Windows Server 2003 Datacenter Edition Microsoft Windows Server 2003 Enterprise Edition Microsoft Windows Server 2003 Standard Edition Microsoft Windows Server 2003 Web Edition Microsoft Windows Server 2008 Microsoft Windows Storage Server 2003 Microsoft Windows Vista Microsoft Windows XP Home Edition Microsoft Windows XP Professional ABSTRACT: A vulnerability has been reported in Microsoft Windows, which can be exploited by malicious people to compromise a user's system. reference LINKS:

379

Windows Retrofit Description and Photos Appendix E -Windows Retrofit Description and Photos  

E-Print Network [OSTI]

and roller to provide a water-tight seal to the drainage plane, as depicted in Figure E.3. #12;E.2 Figure E.2 was used to seal window in place. Reinstalled strip on inside and outside. Figure E.4. Peel-and-Stick Membrane Applied with Heat Gun, Roller, and Caulker at Seams for Air-Tight Installation Figure E.5

380

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. It can be used to compute transient ground potential rise due to lightning or switching, and the ground impedance (i.e. resistance and reactance) at specified frequencies. This report, Volume 4, is a users manual and an installation and validation manual for the computer program TGRND (Transient GRouNDing System Analysis Program). This program computes transient ground potential rise resulting from lightning, switching, or other transient electric currents injected to a grounding system. The program also computes the impedance (i.e. resistance and reactance) of a grounding system as a function of frequency. This program can be utilized in an interactive or batch mode. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program TGRND and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sliding coherence window technique for hierarchical detection of continuous gravitational waves  

SciTech Connect (OSTI)

A novel hierarchical search technique is presented for all-sky surveys for continuous gravitational-wave sources, such as rapidly spinning nonaxisymmetric neutron stars. Analyzing yearlong detector data sets over realistic ranges of parameter space using fully coherent matched-filtering is computationally prohibitive. Thus more efficient, so-called hierarchical techniques are essential. Traditionally, the standard hierarchical approach consists of dividing the data into nonoverlapping segments of which each is coherently analyzed, and subsequently the matched-filter outputs from all segments are combined incoherently. The present work proposes to break the data into subsegments shorter than the desired maximum coherence time span (size of the coherence window). Then matched-filter outputs from the different subsegments are efficiently combined by sliding the coherence window in time: Subsegments whose timestamps are closer than coherence window size are combined coherently, otherwise incoherently. Compared to the standard scheme at the same coherence time baseline, data sets longer by about 50-100% would have to be analyzed to achieve the same search sensitivity as with the sliding coherence window approach. Numerical simulations attest to the analytically estimated improvement.

Pletsch, Holger J. [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany)

2011-06-15T23:59:59.000Z

382

Fighting with South-Facing Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fighting with South-Facing Windows Fighting with South-Facing Windows Fighting with South-Facing Windows June 13, 2011 - 3:20pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, back when it was cold out (and, this being Colorado, that was last month), my south-facing windows were awesome. They let in tons of light and kept the entire place snug and warm. I barely even needed to break out the blankets! But Colorado's weather likes to mess with you, so it recently decided that it was done with the 50s and jumped right into the 90s. And those lovely south-facing windows that kept my house so warm in the winter are still keeping my house warm. Unsurprisingly, I appreciated this somewhat less. So when I checked out the Energy Savers Tips page for Windows I was not

383

High Performance Windows Volume Purchase: For Residential Buyers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buyers to someone by E-mail Residential Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Residential Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Residential Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Google Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Delicious Rank High Performance Windows Volume Purchase: For Residential Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Residential Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Residential Buyers Both home owners and buyers can take advantage of the energy savings from

384

High Performance Windows Volume Purchase: Presentations for Past Events and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations for Past Events and Webinars to someone by E-mail Share High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Facebook Tweet about High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Twitter Bookmark High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Google Bookmark High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Delicious Rank High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Digg Find More places to share High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers

385

Measure Guideline: Energy-Efficient Window Performance and Selection  

SciTech Connect (OSTI)

This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

Carmody, J.; Haglund, K.

2012-11-01T23:59:59.000Z

386

A Design Guide for Early-Market Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early-Market Electrochromic Windows Early-Market Electrochromic Windows Title A Design Guide for Early-Market Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59950 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Call Number LBNL-59950 Abstract Switchable variable-tint electrochromic windows preserve the view out while modulating transmitted light, glare, and solar heat gains and can reduce energy use and peak demand. To provide designers objective information on the risks and benefits of this technology, this study offers data from simulations, laboratory tests, and a 2.5-year field test of prototype large-area electrochromic windows evaluated under outdoor sun and sky conditions. The study characterized the prototypes in terms of transmittance range, coloring uniformity, switching speed, and control accuracy. It also integrated the windows with a daylighting control system and then used sensors and algorithms to balance energy efficiency and visual comfort, demonstrating the importance of intelligent design and control strategies to provide the best performance. Compared to an efficient low-e window with the same daylighting control system, the electrochromic window showed annual peak cooling load reductions from control of solar heat gains of 19-26% and lighting energy use savings of 48-67% when controlled for visual comfort. Subjects strongly preferred the electrochromic window over the reference window, with preferences related to perceived reductions in glare, reflections on the computer monitor, and window luminance. The EC windows provide provided the benefit of greater access to view year-round. Though not definitive, findings can be of great value to building professionals.

387

Sugar Land Facility Lighting and Window Tinting Upgrades  

E-Print Network [OSTI]

comparative analysis of tinted windows to those that are not tinted. NEEC evaluated the cost effectiveness of applying an energy control film to existing windows. The energy control film selected for comparison had a Solar Energy Rejection Factor of 77... (Fenestration Analysis by Computer of Thennal Systems) Energy Analysis Program to evaluate the cost effectiveness of applying a energy control film to existing windows. Data inputted into this program was based on the location of the facility, the amount...

Mesenbrink, C.

388

Stand-alone photovoltaic (PV) powered electrochromic window  

DOE Patents [OSTI]

A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

Benson, David K. (Golden, CO); Crandall, Richard S. (Boulder, CO); Deb, Satyendra K. (Boulder, CO); Stone, Jack L. (Lakewood, CO)

1995-01-01T23:59:59.000Z

389

Stand-alone photovoltaic (PV) powered electrochromic window  

DOE Patents [OSTI]

A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

1995-01-24T23:59:59.000Z

390

Impacts of Operating Hardware on Window Thermal Performance  

E-Print Network [OSTI]

and Renewable Energy, Office of Building Technology,Building Technologies Program of the U.S. Department ofproject ”Improved Window Technologies for Energy Efficient

Hart, Robert

2014-01-01T23:59:59.000Z

391

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network [OSTI]

of a thin-film ceramic electrochromic window: Field studywindows in a bleached state (left) or colored state (right). Electrochromic coatings (EC) are switchable thin-film

2006-01-01T23:59:59.000Z

392

Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation  

Broader source: Energy.gov [DOE]

Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

393

A Smart Window for Solar Energy Co-utilization  

Science Journals Connector (OSTI)

Aiming at thermal comfort and integrated to the building envelope, a low-emissivity, double-glazed window is presented, with adjustable blinds and spectrally selective heat reflection,...

Horowitz, Flavio; de Azambuja, Giovane; Pereira, Marcelo B

394

Highly Insulating Windows Volume Purchase Program Final Report  

SciTech Connect (OSTI)

This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

2013-02-01T23:59:59.000Z

395

Windows and Building Envelope Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of building energy performance and human factors (comfort, indoor environmental quality (IEQ), occupant satisfaction and acceptance of technologies) for emerging window...

396

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weatherization Assistance Weatherization Assistance The Weatherization Assistance Program (WAP) offers assistance to eligible families suffering from high energy bills due to drafty windows, uninsulated and leaky attics or other inefficiencies. Although WAP is a federal government program, the eligibility criteria differ by state and the weatherization services themselves are performed by local agencies. Who is eligible? Eligibility for weatherization services depends on income. If you receive Supplemental Security Income or Aid to Families with Dependent Children, you are automatically eligible. In other cases, states give preference to: People over 60 years of age Families with one or more members with a disability Families with children (in most states). For more information on eligibility, check out the Weatherization

397

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operator Types-Skylights Operator Types-Skylights Choosing Skylights for Your Home Check the pitch roof and determine what skylight product would work best (deck-mounted, curb-mounted, pan-flashed). Determine what type of skylight operation is wanted (electric venting, manual venting, fixed). Identify the ceiling and roof style for optimal size and configuration of the skylight shaft (flat ceiling, cathedral ceiling, sloped wall, flat or sloped roof) Select the glazing type (high-performance, tempered, laminated, impact, snow load). Select screen accessories if wanted (solar blinds, blackout blinds, Venetian blinds, roller shades). Select manual or electric controls to operate operable skylights and accessories. Roof windows have become increasingly popular as homeowners and designers

398

LBNL Windows & Daylighting Software -- THERM Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Components Components THERM has three basic components: Graphic User Interface: a graphic user interface that allows you to draw a cross section of the product or component for which you are performing thermal calculations. Heat Transfer Analysis: a heat-transfer analysis component that includes: an automatic mesh generator to create the elements for the finite-element analysis, a finite-element solver, an optional error estimator and adaptive mesh generator, and an optional view-factor radiation model. Results: a results displayer. Graphic User Interface THERM has standard graphic capabilities associated with the Microsoft Windows™ operating system. For example, THERM allows you to use: Both mouse and cursor operations; Standard editing features, such as Cut, Copy, Paste, Select All, and Delete;

399

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For more information about the National Green Building Standard, see For more information about the National Green Building Standard, see information from the NAHB Research Center www.nahbrc.com exit disclaimer . The National Green Building Standard Certification exit disclaimer provides third-party proof for product performance claims. The Green Scoring Tool exit disclaimer allows the scoring of a project to the Standard and includes support materials such as how to verify, intent, how to implement, resources, and green approved products. National Green Building Standard(tm) The National Green Building Standard provides recognition for sustainable and energy-saving building practices, including the use of energy-efficient windows, in all types of residential construction. This standard has been developed for by a consensus committee assembled by the National

400

Managing coherence via put/get windows  

DOE Patents [OSTI]

A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Hoenicke, Dirk (Ossining, NY); Ohmacht, Martin (Yorktown Heights, NY)

2012-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glazing Glazing Double-Glazed, Clear Glass This figure illustrates the performance of a typical double-glazed unit with two lites of clear glass. The inner and outer layers of glass are both clear and separated by an air gap. Double glazing, compared to single glazing, cuts heat loss in half due to the insulating air space between the glass layers. In addition to reducing the heat flow, a double-glazed unit with clear glass will allow the transmission of high visible light and high solar heat gain. Double Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

402

Managing coherence via put/get windows  

DOE Patents [OSTI]

A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Hoenicke, Dirk (Ossining, NY); Ohmacht, Martin (Yorktown Heights, NY)

2011-01-11T23:59:59.000Z

403

ILC Positron source simualtion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(DOE Review 2007) (DOE Review 2007) Wanming Liu, Haitao Wang, Sergey Antipov, Wei Gai, Kwang-Je Kim HEP, ANL 04/27/2007 Where we are making contribution * Undulator radiation modeling * Adiabatic Matching Device modeling * Keep alive source simulation * Thermal dynamic study on windows * Eddy current simulation * Laser compton scheme positron production simulation for KEK/CLIC Where we are making contributions Outline Undulator and e+ yield OMD/AMD modeling and designing Thermal dynamic of target chamber window Energy deposition profile of target Collaboration with KEK/CLIC Comparison of positron yield from different undulators High K Devices Low K Devices BCD UK I UK II UK III Cornell I Cornell II Cornell III Period (mm) 10.0 11.5 11.0 10.5 10.0 12.0 7 0.3 0.46 28 ~0.54 Yield(Low Pol, 500m drift) ~2.13

404

Market Transformation Efforts for Residential Energy Efficient Windows: An  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Transformation Efforts for Residential Energy Efficient Windows: An Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Title Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Publication Type Report LBNL Report Number LBNL-46620 Year of Publication 2000 Authors Ward, Alecia, Margaret Suozzo, and Joseph H. Eto Date Published 01/2000 Publisher LBNL Abstract With the burst of recent initiatives to accelerate adoption of energy-efficient fenestration technologies in the marketplace, an update on window market transformation efforts is needed. Because of the impact of glazing on total home energy performance, the residential window market has received increasing attention over the past two years. National programs such as the ENERGY STAR Windows program, the Efficient Windows Collaborative, and regional initiatives such as the California Windows Initiative and the Northwest Collaborative have begun to move markets toward higher-efficiency windows. The results have included increasing sales of efficient products, stocking of more efficient/ENERGY STAR qualifying products, and price reductions of high-efficiency product, all of which secure dramatic energy savings at a national level. This paper takes stock of publicly supported national and regional transformation efforts for residential windows underway in the U.S. In particular, it documents ways in which National Fenestration Rating Council certification, Efficient Windows Collaborative education, and ENERGY STAR marketing, are working together to change window markets across the United States. Although it is too early to quantify the national-level impacts changes of these efforts, the authors offer a preliminary qualitative evaluation of efficient window promotion efforts to gain insight into the broader impacts that these and other future activities will achieve. Finally, the paper summarizes how other federally-funded building industry initiatives that emphasize "whole house" performance can complement these window technology-specific and component-specific initiatives. Demonstration houses from the Building America, ENERGY STAR Homes, and PATH projects all contribute to the success of windows-specific initiatives.

405

Audio Source Separation using Sparse Representations  

E-Print Network [OSTI]

Audio Source Separation using Sparse Representations Andrew Nesbit1 , Maria G. Jafari1 , Emmanuel ABSTRACT We address the problem of audio source separation, namely, the recovery of audio signals from related to the windowing methods used in the MPEG audio coding framework. In considering the anechoic

Plumbley, Mark

406

Effects of Overhangs on the Performance of Electrochromic Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of Overhangs on the Performance of Electrochromic Windows Effects of Overhangs on the Performance of Electrochromic Windows Title Effects of Overhangs on the Performance of Electrochromic Windows Publication Type Journal Article LBNL Report Number LBNL-61137 Year of Publication 2006 Authors Tavil, Aslihan, and Eleanor S. Lee Journal Architectural Science Review Call Number LBNL-61137 Abstract In this study, various facade designs with overhangs combined with electrochromic (EC) window control strategies were modeled for a typical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) for south-facing private offices were computed and compared to determine which combinations of fa?ade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort.

407

Avalanches through windows: Multiscale visualization in magnetic thin films  

E-Print Network [OSTI]

Avalanches through windows: Multiscale visualization in magnetic thin films Alessandro Magni, Cornell University, Ithaca, NY 14853-2501 Abstract--The dynamics of domain walls motion in thin films dynamics, but are strongly dependent on the size of the windows chosen. Here we investigate how to properly

Sethna, James P.

408

SUITABILITY OF MAGNESIUM OXIDE AS A VISAR WINDOW  

SciTech Connect (OSTI)

Impedance matching of a velocity interferometer for any reflector (VISAR) window to a material under study helps simplify a shock experiment by effectively allowing one to measure an in situ particle velocity. The shock impedance of magnesium oxide (MgO) falls roughly midway between those of sapphire and LiF, two of the most frequently used VISAR window materials. A series of symmetric impact experiments was performed to characterize the suitability of single crystal, (100) oriented magnesium oxide as a VISAR window material. These experiments yielded good results and show the viability of MgO as a VISAR window up to 23 GPa. Results were used to determine window correction factors and, subsequently, to estimate the pressure induced change in index of refraction. In many of the shots in this work we exceeded the Hugoniot elastic limit (HEL) of MgO, and both elastic and plastic waves are evident in the velocity profiles. The presence of both waves within the VISAR window complicates the typical VISAR window correction analysis. Preliminary analysis of the elastic and plastic contributions to the window correction is presented.

G. D. Stevens; L. R. Veeser; P. A. Rigg; R. S. Hixson

2005-01-01T23:59:59.000Z

409

Research and Development Roadmap: Windows and Building Envelope  

Broader source: Energy.gov [DOE]

Windows and building envelope research and development is a high priority for the Building Technologies Office. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

410

Violating privacy through walls by passive monitoring of radio windows  

Science Journals Connector (OSTI)

We investigate the ability of an attacker to passively use an otherwise secure wireless network to detect moving people through walls. We call this attack on privacy of people a "monitoring radio windows" (MRW) attack. We design and implement the MRW ... Keywords: line crossing, radio window, signal strength, wifi

Arijit Banerjee; Dustin Maas; Maurizio Bocca; Neal Patwari; Sneha Kasera

2014-07-01T23:59:59.000Z

411

A First-Generation Prototype Dynamic Residential Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A First-Generation Prototype Dynamic Residential Window A First-Generation Prototype Dynamic Residential Window Title A First-Generation Prototype Dynamic Residential Window Publication Type Report LBNL Report Number LBNL-56075 Year of Publication 2004 Authors Kohler, Christian, Howdy Goudey, and Dariush K. Arasteh Call Number LBNL-56075 Abstract We present the concept for a smart highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available off-the-shelf components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The units predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

412

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 2, is a users manual and an installation and validation manual for the computer program SMECC (Substation Maximum Earth Current Computation Program). This program analyzes the electric current distribution among grounded structures inside and outside a substation for different fault conditions. The fault conditions are automatically selected by the program, or they may be specified by the user, or both. The fault condition resulting in maximum substation earth current is identified and reported. Data requirements for this program are: ground impedance, transformer data, transmission line data, transmission line grounding impedances, etc. The program provides four types of standard outputs: (1) a report of voltages and current flow in the unfaulted system, (2) a brief report of the maximum ground potential rise (worst fault condition), (3) a summary report of all fault conditions which have been analyzed by the program, and (4) a detailed report of voltages and current flow for a selected set of fault conditions.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

413

Determining the Solar Optical Properties of Windows with Shading Devices-  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determining the Solar Optical Properties of Windows with Shading Devices- Determining the Solar Optical Properties of Windows with Shading Devices- New Measurement and Modeling Techniques Speaker(s): Nathan Kotey Date: October 5, 2009 - 12:00pm Location: 90-3122 The global interest to reduce energy use in buildings has focussed new efforts to more aggressively reduce energy used by all major building components, such as window systems. Although good progress has been made in reducing heat loss, the contribution of windows to heat gain, peak cooling loads and cooling energy consumption is increasingly viewed globally as a problem. While glass coatings provide some control, shading devices on windows have the potential to do an even better job to reduce peak cooling load and annual energy consumption because there are more design parameters

414

T-547: Microsoft Windows Human Interface Device (HID) Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

547: Microsoft Windows Human Interface Device (HID) Vulnerability 547: Microsoft Windows Human Interface Device (HID) Vulnerability T-547: Microsoft Windows Human Interface Device (HID) Vulnerability February 1, 2011 - 3:20am Addthis PROBLEM Microsoft Windows Human Interface Device (HID) Vulnerability. PLATFORM: Microsoft 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer. reference LINKS: Security Lab: Reference CVE-2011-0638 CVE Details: Reference CVE-2011-0638 Mitre Reference: CVE-2011-0638

415

Building Technologies Office: Windows, Skylights, and Doors Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windows, Skylights, and Doors Research Windows, Skylights, and Doors Research The Emerging Technology team conducts research into technologies related to windows, skylights, and doors. These technologies can decrease energy demands, save money, and improve occupant thermal comfort. By working with industry partners, researchers, and other stakeholders, the U.S. Department of Energy also seeks to improve the availability of these products in the market. Research in windows, skylights, and doors includes: Daylighting and Shading Photo of a wall of windows with shades built over them to block out the noon sun. Daylighting and shading technologies alter the way that natural light affects a building, either by allowing more of it in (to light a room) or by preventing it from coming in. These technologies are important in that they allow building operators and managers to lower a building's lighting energy needs, as well as reducing the energy used in heating, ventilation, and air conditioning (HVAC) systems.

416

Window Company Booming from Retrofits | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Company Booming from Retrofits Window Company Booming from Retrofits Window Company Booming from Retrofits October 30, 2009 - 12:09pm Addthis Joshua DeLung Don't try telling John Haddon's family that Friday the 13th is unlucky. They have more reason to believe in divine intervention than luck. After buying Accu-Weld Feb. 13, 2009 - a windows and doors company that laid off 70 employees in 2008 - the business is doing great, thanks to the family's commitment to energy efficiency and the Recovery Act, signed into law just four days later. John didn't know much about the Recovery Act then, but now he's convinced the stimulus has dramatically improved profits. "The Recovery Act coming on board shortly after we purchased the company has been a boost to our business and window makers in general," John says

417

Low-Cost Solutions for Dynamic Window Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

418

Window Company Booming from Retrofits | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Company Booming from Retrofits Window Company Booming from Retrofits Window Company Booming from Retrofits October 30, 2009 - 12:09pm Addthis Joshua DeLung Don't try telling John Haddon's family that Friday the 13th is unlucky. They have more reason to believe in divine intervention than luck. After buying Accu-Weld Feb. 13, 2009 - a windows and doors company that laid off 70 employees in 2008 - the business is doing great, thanks to the family's commitment to energy efficiency and the Recovery Act, signed into law just four days later. John didn't know much about the Recovery Act then, but now he's convinced the stimulus has dramatically improved profits. "The Recovery Act coming on board shortly after we purchased the company has been a boost to our business and window makers in general," John says

419

Low-Cost Solutions for Dynamic Window Material  

Broader source: Energy.gov (indexed) [DOE]

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

420

Natural Remediation Potential of Arsenic-Contaminated Ground Water  

Science Journals Connector (OSTI)

Migration of leachate from a municipal landfill in Saco, Maine has resulted in arsenic concentrations in ground water as high as 647 ?g/L.... Laboratory experimental data indicate the primary source of arsenic to...

Kenneth G. Stollenwerk; John A. Colman

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Create Shortcut for Java Applications on Windows You can create an icon on Windows Desktop, so that the end-  

E-Print Network [OSTI]

Create Shortcut for Java Applications on Windows You can create an icon on Windows Desktop, soMortgage on the desktop to run the ComputeMortgage application. 6. (Optional) You can set a custom icon for the application by clicking the Change Icon button in the ComputeMortgage Properties dialog box shown in Figure 4

Liang, Y. Daniel

422

Win32API InterceptorWin32API Interceptor Monitoring Windows API callsMonitoring Windows API calls  

E-Print Network [OSTI]

Win32API InterceptorWin32API Interceptor Monitoring Windows API callsMonitoring Windows API calls using the Detours technology, that was developed by Microsoft researchers. #12;Win32API InterceptorWin32API Interceptor ­­ ArchitectureArchitecture Win32API Interceptor (MS Access Data Base) Dll

Segall, Adrian

423

LBNL Window & Daylighting Software -- CGDB  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The LBNL WINDOW and THERM simulation programs (versions 6 and higher) have the capability to model "complex glazing systems" which include woven shades, venetian blinds, fritted glass, and other systems that can be characterized by BSDF (Bi-Directional Scattering Distribution Function) files. To support the modeling of these complex systems, it is necessary to characterize the optical and thermal properties of the materials and the systems being modeled. The Complex Glazing Database (CGDB) contains the data needed to model various manufacturers' systems. LBNL is still developing the measuring and submittal procedures so that manufacturers can submit measured data for review and inclusion in future CGDB releases. When these procedures are complete, it is hoped that manufacturers will measure and submit data for their products to LBNL for inclusion in the CGDB. In a similar process to the IGDB (International Glazing Database) it is envisioned that the CGDB will be released multiple times per year as new materials and systems are measured and added to the database.

424

Dynamics of window glass fracture in explosions  

SciTech Connect (OSTI)

An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

Beauchamp, E.K.; Matalucci, R.V.

1998-05-01T23:59:59.000Z

425

A Tale of Three Windows: Part 2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 October 17, 2012 - 12:37pm Addthis Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can’t be opened too far. | Photo courtesy of Andrea Spikes. Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can't be opened too far. | Photo courtesy of Andrea Spikes. Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory What does this mean for me? Energy-efficient windows can help reduce glare and heat from the sun during warm weather and condensation and cool air during cold weather. In August, I told you about the saga of our aging windows and how we finally decided to replace them all. Working with a local contractor whom a

426

A Tale of Three Windows: Part 2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 A Tale of Three Windows: Part 2 October 17, 2012 - 12:37pm Addthis Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can’t be opened too far. | Photo courtesy of Andrea Spikes. Look at this gorgeous, energy-efficient, double-hung window! I requested the little locks on the side so they can't be opened too far. | Photo courtesy of Andrea Spikes. Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory What does this mean for me? Energy-efficient windows can help reduce glare and heat from the sun during warm weather and condensation and cool air during cold weather. In August, I told you about the saga of our aging windows and how we finally decided to replace them all. Working with a local contractor whom a

427

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

428

Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed  

E-Print Network [OSTI]

of a microstructured prismatic window film in deep open plandaylight- redirecting window film in a full-scale officedaylight- redirecting window film in a full-scale office

Thanachareonkit, Anothai

2014-01-01T23:59:59.000Z

429

Experimental evaluation of the in-plane seismic behavior of store-front window systems  

E-Print Network [OSTI]

was conducted. The window film (WF) series included 5’x5’damage states. When the window film is attached using theThe safety aspects of window film were very evident during

Eva, Charles Almond

2009-01-01T23:59:59.000Z

430

ENERGY EFFICIENT WINDOWS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Replacing window glass with a thin plastic film coated to beof windows can be improved with the use of thin-film coat-windows, the coating can be deposited directly on glass or on plastic films

Berman, S.

2013-01-01T23:59:59.000Z

431

Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames  

E-Print Network [OSTI]

windows are often called passive -house wind ows, as windowse window frames, like passive-house windows. In this p aperare supposed to satisfy the Passive house requirements of

Gustavsen Ph.D., Arild

2010-01-01T23:59:59.000Z

432

Microsoft Word - CX-TroutdaleWindowReplacement_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Eric Weekley Project Manager - NWM-4 Proposed Action: Replace existing steel windows at the Troutdale Substation control house PP&A Project No.: PP&A-1699 Budget Information: Work Order No. 242796 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities and custodial services for buildings, structures, ... Location: Bonneville Power Administration's (BPA) Troutdale Substation located in Troutdale, Oregon Proposed by: BPA Description of the Proposed Action: BPA proposes to replace the deteriorating existing steel windows at the Troutdale Substation control house with new, in-kind steel windows.

433

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

434

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

435

Effect of window reflections on photonic Doppler velocimetry measurements  

SciTech Connect (OSTI)

Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

Ao, T.; Dolan, D. H. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2011-02-15T23:59:59.000Z

436

Radcalc for Windows validation and benchmark study  

SciTech Connect (OSTI)

Radcalc for Windows, version 2.01 (Radcalc), is a software program developed by Waste Management Federal Services, Inc., Northwest Operations for the US Department of Energy. It is used to generate selected transportation and packaging data necessary for the shipment of radioactive waste materials. Among its applications are the classification of waste per US Department of Transportation regulations, the calculation of heat and daughter products generated as a result of radioactive decay, and the calculation of the radiolytic production of hydrogen gas. The Radcalc program has been extensively tested and validated by comparison of each Radcalc algorithm to hand calculations. An opportunity to benchmark Radcalc hydrogen gas generation calculations to experimental data arose when the Rocky Flats Environmental Technology Site (REFETS) residue stabilization program collected hydrogen gas generation data to determine compliance with requirements for shipment of waste in the TRUPACT-II. Previously, Radcalc had been benchmarked to residue/waste drums tested at RFETS containing contaminated solid inorganic materials in plastic bags. In this paper Radcalc is compared with data collected for contaminated solid organic waste. The contamination is predominantly due to plutonium and americium isotopes. The information provided by RFETS includes decay heat, hydrogen gas generation rates, calculated hydrogen G{sub eff} values (molecules of hydrogen formed per 100-eV decay heat energy released), and waste material. Radcalc cases are run using RFETS G{sub eff} values, TRUPACT-II G values, and dose-dependent G values. Work on calculating the radiolytic production of hydrogen gas and related increase in package pressure has also been performed at the Savannah River Site (SRS) in support of efforts to ship nuclear materials in the 9975 package. The calculations made at SRS are contained in an Excel spreadsheet. The SRS model has been compared with experimental data collected at SRS and at Los Alamos National Laboratory.

McFadden, J.G.; Knepp, J.R.

1999-07-01T23:59:59.000Z

437

E-Print Network 3.0 - artificial ground freezing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat exchangers... investigated bridge deck deicing systems that utilize a ground source heat pump system to provide heating... : TRNSYS and HVACSIM+. Component models of the...

438

E-Print Network 3.0 - alkaline ground waters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water from the Lake Calumet... , and ground ... Source: Bethke, Craig - Department of Geology, University of Illinois at Urbana-Champaign Collection: Environmental Sciences and...

439

Substation grounding programs  

SciTech Connect (OSTI)

The five volume report comprises the user manual, installation, and validation manual and an applications guide for the SGA (Substation Grounding Analysis) software package. SGA consists of four computer programs: (1) SOMIP, (2) SMECC, (3) SGSYS, and (4) TGRND. The first three programs provide a comprehensive analysis tool for the design of substation grounding systems to meet safety standards. The fourth program, TGRND, provides a state of the art analysis tool for computing transient ground potential rise and ground system impedance. This part of the report, Volume 1, is a users manual and an installation and validation manual for the computer program SOMIP (SOil Measurement Interpretation Program). This program computes the best estimate of the parameters of a two layer soil model from usual soil resistivity measurements. Four pin or three pin soil measurements can be accommodated. In addition, it provides error bounds on the soil parameters for a given confidence level. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program SOMIP and provides two test cases for validation purposes. 4 refs.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering)

1992-05-01T23:59:59.000Z

440

T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users...  

Office of Environmental Management (EM)

727:Microsoft Windows SSLTLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSLTLS Protocol Flaw Lets Remote Users Decryption Sessions September 27,...

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

E-Print Network [OSTI]

through vacuum and electrochromic vacuum glazed windows,technologies, such as an electrochromic vacuum glazedof rebate depth on an electrochromic vacuum glazed window.

Gustavsen, Arild

2008-01-01T23:59:59.000Z

442

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

candidat~ window materials for high-energy lasers( l3), Fordiscussed. high energy state development of materials forpotential window materials for high-energy lasers. It also

Viswanathan, R.

2011-01-01T23:59:59.000Z

443

Company Rehires Unemployed Workers for Energy Efficient Window Project |  

Broader source: Energy.gov (indexed) [DOE]

Company Rehires Unemployed Workers for Energy Efficient Window Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down this year due to the economy," said Pacific Glass President Bernie Thueringer. Thueringer and domestic frame and glass suppliers Efco Corp and Old Castle Glass have seen new business from a Recovery Act funded energy efficiency project in Kitsap County, Washington. "We were excited about this project because we were able to bring five of

444

U-182: Microsoft Windows Includes Some Invalid Certificates | Department of  

Broader source: Energy.gov (indexed) [DOE]

82: Microsoft Windows Includes Some Invalid Certificates 82: Microsoft Windows Includes Some Invalid Certificates U-182: Microsoft Windows Includes Some Invalid Certificates June 4, 2012 - 7:00am Addthis PROBLEM: A vulnerability was reported in Microsoft Windows. A remote user may be able to spoof code signing signatures. PLATFORM: Version(s): XP SP3, 2003 SP2, Vista SP2, 2008 SP2, 7 SP1, 2008 R2 SP1; and prior service packs ABSTRACT: The operating system includes some invalid intermediate certificates. The vulnerability is due to the certificate authorities and not the operating system itself. Reference Links: Security tracker ID 1027114 GENERIC-MAP-NOMATCH Vendor Advisory IMPACT ASSESSMENT: High Discussion: The invalid certificates and their thumbprints are: Microsoft Enforced Licensing Intermediate PCA: 2a 83 e9 02 05 91 a5 5f c6

445

Covered Product Category: Residential Windows, Doors, and Skylights |  

Broader source: Energy.gov (indexed) [DOE]

Covered Product Category: Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights October 7, 2013 - 11:22am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR.

446

Expert Meeting Report: Windows Options for New and Existing Homes |  

Broader source: Energy.gov (indexed) [DOE]

Windows Options for New and Existing Homes Windows Options for New and Existing Homes Expert Meeting Report: Windows Options for New and Existing Homes The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and

447

Company Rehires Unemployed Workers for Energy Efficient Window Project |  

Broader source: Energy.gov (indexed) [DOE]

Company Rehires Unemployed Workers for Energy Efficient Window Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down this year due to the economy," said Pacific Glass President Bernie Thueringer. Thueringer and domestic frame and glass suppliers Efco Corp and Old Castle Glass have seen new business from a Recovery Act funded energy efficiency project in Kitsap County, Washington. "We were excited about this project because we were able to bring five of

448

High-Efficiency Window Air Conditioners- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

449

Highly Insulating Residential Windows Using Smart Automated Shading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and in a networked configuration. Project Impact LBNL is aiming toward a mature market cost increment of 12ft2 of window. LBNL will also work with code officials to...

450

Switchable window based on electrochromic polymers Chunye Xu,a)  

E-Print Network [OSTI]

Switchable window based on electrochromic polymers Chunye Xu,a) Lu Liu, Susan E. Legenski, Dai Ning March 2004) A large contrast ratio (> 60%) and rapid switching (0.3­1 s) electrochromic (EC) polymer

Taya, Minoru

451

Introduction to the Windows Application Programmer’s Interface (API)  

Science Journals Connector (OSTI)

Application software developers need to be able to interface with the operating system in order to provide their applications with capabilities such as sophisticated graphics and communications. Microsoft Windows...

Mary Romero Sweeney

2001-01-01T23:59:59.000Z

452

Performance Testing of Window Installation and Flashing Details  

E-Print Network [OSTI]

Protection of interface at windows and other penetrations from rainwater intrusion is a primary need of building structures. This is especially true when the building is in a high weather exposure location or in a climate in which the ability...

Weston, T. A.; Herrin, J.

2002-01-01T23:59:59.000Z

453

NREL Improves Window Heat Transfer Calculations (Fact Sheet)...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of algorithm discrepancies helps to promote market confidence in EnergyPlus and DOE-2. Heat loss through windows represents a significant amount of the overall energy use in...

454

Balancing comfort: occupants' control of window blinds in private offices  

E-Print Network [OSTI]

and solar heat gain coefficient (SHGC), should be similar (VT = 0.4-0.7; SHGC = 3.4.5 Window blind usage survey AHeat Gain Coefficients (SHGC) of various fenestration system

Inkarojrit, Vorpat

2005-01-01T23:59:59.000Z

455

Analysis of a Fabric/Desiccant Window Cavity Dehumidifier  

E-Print Network [OSTI]

This paper presents the results of an exploratory study of a fabric/desiccant window cavity dehumidifier system for possible use in commercial buildings. The objective was to evaluate fabrics commonly used in buildings, and system concepts...

Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

1994-01-01T23:59:59.000Z

456

Covered Product Category: Residential Windows, Doors, and Skylights |  

Broader source: Energy.gov (indexed) [DOE]

Residential Windows, Doors, and Skylights Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights October 7, 2013 - 11:22am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

457

Polarized photon facilities - windows to new physics  

SciTech Connect (OSTI)

The status of new and proposed sources of intermediate-energy polarized photons is reviewed. The N {r_arrow} {delta} transition is discussed as an example of new physics that can be addressed at these facilities through precision measurements of polarization observables.

Sandorfi, A.M.

1995-12-31T23:59:59.000Z

458

New and Underutilized Technology: High R-Value Windows | Department of  

Broader source: Energy.gov (indexed) [DOE]

High R-Value Windows High R-Value Windows New and Underutilized Technology: High R-Value Windows October 8, 2013 - 2:47pm Addthis The following information outlines key deployment considerations for high R-value windows within the Federal sector. Benefits High R-value windows are highly insulated windows rated at triple pane, R5 or greater (U value 0.22 and lower). Application High R-value windows are appropriate for deployment within most building categories. These windows should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment High R-value windows are available within the Federal sector and should be considered in building design, renovation, or during window replacement projects. The U.S. Department of Energy (DOE) has a volume purchasing program in

459

Above-ground biomass and structure of 260 African tropical forests  

Science Journals Connector (OSTI)

...and source are credited. Above-ground biomass and structure of 260 African tropical...and future . We report above-ground biomass (AGB), basal area, stem density and...Comparative studies of the above-ground biomass (AGB) of tropical forests exist for...

2013-01-01T23:59:59.000Z

460

Monitored Energy Performance of Electrochromic Windows Controlled for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitored Energy Performance of Electrochromic Windows Controlled for Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort Title Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort Publication Type Conference Paper LBNL Report Number LBNL-58912 Year of Publication 2005 Authors Lee, Eleanor S., Dennis L. DiBartolomeo, Joseph H. Klems, Mehry Yazdanian, and Stephen E. Selkowitz Conference Name 2006 ASHRAE Annual Meeting Date Published 06/2006 Conference Location Quebec City, Canada Call Number LBNL-58912 Abstract A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirements are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10-15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0-3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44-11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ground Squirrels and Gophers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Squirrels and Gophers Squirrels and Gophers Nature Bulletin No. 224-A April 2, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation GROUND SQUIRRELS AND GOPHERS On sunny summer days, a dusty-colored animal with yellowish and brown stripes, about the size of a small rat, often may be noticed creeping through the grass of prairies, pastures, golf courses or lawns. Watch him. He pauses every few feet to sit up, look and listen for a moment. Nervous and timid, he crouches low at every distant sound or passing shadow. Startle him and he scurries away, and then may suddenly halt and freeze, bolt upright, as stiff and straight as a stake driven in the ground. If approached, he gives a loud shrill trilling whistle and, with a flip of his tail, pops out of sight. Watch that spot closely and, in less than a minute, a snaky head appears. Be quiet. He has many enemies above ground and he also has a lot of curiosity. Presently he sits up upon his haunches again.

462

Ground Water Recovery and Treatment  

Science Journals Connector (OSTI)

Until the environmental revolution, the only ground water that was routinely treated to remove contamination was the impacted ground water that was extracted for beneficial use. With ... the recognition that cont...

Tie Li Ph.D.; Raaj U. Patel P.G.; David K. Ramsden Ph.D.…

2003-01-01T23:59:59.000Z

463

Matlab for PhD students Basics 1 WS 2010/11 Matlab windows  

E-Print Network [OSTI]

Matlab for PhD students ­ Basics 1 ­ WS 2010/11 Matlab windows The matlab desktop can be edited and brought back with the "Desktop" menu, the windows can be docked and undocked from the main Matlab window -> Default · Command window o Issues commands to Matlab for processing o >> means that Matlab is ready

Kretzberg, Jutta

464

Daylighting control performance of a thin-film ceramic electrochromic window: field study results  

E-Print Network [OSTI]

1 Daylighting control performance of a thin-film ceramic electrochromic window: field study results-film electrochromic (EC) windows were initiated at the new full-scale Window Systems testbed facility at the Lawrence of this emerging technology. Keywords: Building energy-efficiency; Electrochromic windows; Daylighting; Control

465

A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps  

E-Print Network [OSTI]

A modified analytical model is presented which discretizes the ground-coupled heat exchanger of a ground-coupled heat pump and utilized a separate cylindrical source solution for each element. First law expressions are utilized for each element...

Dobson, M. K.; O'Neal, D. L.; Aldred, W.

1994-01-01T23:59:59.000Z

466

5 Steps to Making Your Windows More Energy Efficient | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Steps to Making Your Windows More Energy Efficient Steps to Making Your Windows More Energy Efficient 5 Steps to Making Your Windows More Energy Efficient December 13, 2013 - 4:06pm Addthis Keep your hard-earned dollars from flying out the window by following the latest guidelines for window repair, rehabilitation and replacement. | Photo courtesy of the Weatherization Assistance Program Technical Assistance Center. Keep your hard-earned dollars from flying out the window by following the latest guidelines for window repair, rehabilitation and replacement. | Photo courtesy of the Weatherization Assistance Program Technical Assistance Center. Eric Werling Building America Program Coordinator, Building Technologies Office

467

How Have You Improved the Efficiency of Your Windows? | Department of  

Broader source: Energy.gov (indexed) [DOE]

How Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects.

468

How Have You Improved the Efficiency of Your Windows? | Department of  

Broader source: Energy.gov (indexed) [DOE]

Have You Improved the Efficiency of Your Windows? Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Improved the Efficiency of Your Windows?

469

Energy Performance Analysis of Electrochromic Windows in New York  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Performance Analysis of Electrochromic Windows in New York Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings Title Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings Publication Type Report LBNL Report Number LBNL-50096 Year of Publication 2002 Authors Lee, Eleanor S., L. Zhou, Mehry Yazdanian, Vorapat Inkarojrit, Jonathan L. Slack, Michael D. Rubin, and Stephen E. Selkowitz Call Number LBNL-50096 Abstract A DOE-2.1E energy simulation analysis of a switchable electrochromic (EC) glazing with daylighting controls has been conducted for prototypical office buildings in New York (NY). The modeling included four types of office buildings: old and New vintages and large (10,405 m2, 112,000 ft2) and small (502m2, 5400 ft2) buildings. Five commercially available, base case windows with and without interior shades were modeled. Window area varied from 0 to 60% of the exterior floor-to-floor wall area. The electric lighting had either no controls or continuous daylighting controls. The prototypes were modeled in New York City or Buffalo.

470

Vertical Concentric Tube Ground Couoled Heat Exchangers V. C. Mei and S. K. Fischer*  

E-Print Network [OSTI]

of the air. Ground water is a better heat source/sink for heat pump application (due to its superior thermal to extract heat from or reject heat to the environment. The majority of heat pumps use ambient air as the heat source and sink for a heat pump. Extensive research on horizontal ground coupled heat pump systems

Oak Ridge National Laboratory

471

Dynamic Windowing Algorithm for the Fast and Accurate Determination of Luminescence Lifetimes  

Science Journals Connector (OSTI)

Dynamic Windowing Algorithm for the Fast and Accurate Determination of Luminescence Lifetimes ... The window size is initially set to a small value so that a maximum window change is only used for increases in window width. ... From the simulated response profile (Figure 6), all of the methods appear to be very accurate at low oxygen concentrations: that is when the windows are able to cover most of the decay. ...

Bradley B. Collier; Michael J. McShane

2012-04-17T23:59:59.000Z

472

EPA Final Ground Water Rule Available Online, 3/07 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 EPA Final Ground Water Rule Available Online, 3/07 On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach to focus on ground water systems that are susceptible to fecal contamination, and requires ground water systems that are at risk of fecal contamination to take corrective action. A minor correction to the final Rule was published on November 21, 2006 (71 FR 67427). The GWR applies to all PWSs2 that use ground water

473

Modeling Windows in Energy Plus with Simple Performance Indices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Windows in Energy Plus with Simple Performance Indices Modeling Windows in Energy Plus with Simple Performance Indices Title Modeling Windows in Energy Plus with Simple Performance Indices Publication Type Report LBNL Report Number LBNL-2804E Year of Publication 2009 Authors Arasteh, Dariush K., Christian Kohler, and Brent T. Griffith Date Published 10/2009 Call Number LBNL-2804E Abstract The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: performance metrics measurement system requirements data acquisition and archiving data visualization and reporting The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance.

474

How to buy energy-efficient residential windows  

SciTech Connect (OSTI)

Section 161 of the Energy Policy Act of 1992 (EPACT) encourages energy-efficient federal procurement. Executive Order 12902 and FAR section 23.704 direct agencies to purchase products in the upper 25% of energy efficiency. Agencies that use these guidelines to buy efficient products can realize substantial operating cost savings and help prevent pollution. As the world`s largest consumer, the federal government can help pull the entire US market towards greater energy efficiency, while saving taxpayer dollars. The General Services Administration (GSA) will soon include residential windows in its Federal Supply Schedule 56-IV(A), ``Construction and Building Materials.`` When contracting for residential windows, specify NFRC-rated SHGC and U-factor values that meet this Efficiency Recommendation for your geographic region. When buying commercially, look for windows with the EPA/DOE ENERGY STAR{reg_sign} label, all of which meet this Recommendation.

NONE

1998-07-01T23:59:59.000Z

475

Building Energy Software Tools Directory: Ground Loop Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground Loop Design Ground Loop Design Ground Loop Design logo Ground Loop Design is a versatile ground source heat pump system design program that helps the trained geothermal HVAC designer/engineer size equipment, determine the correct lengths of bore or pipe required for commercial projects, optimize the piping configuration for balanced flow and optimal heat transfer, and calculate the annual and lifetime energy/operating/emissions costs associated with the design. The modular program enhances design productivity and permits flexibility in the designing process and customization based on designer preferences. It also has an English/metric conversion engine and is available in many languages, providing applicability to the widest range of equipment and customers. Screen Shots

476

Integrated windows-based control system for an electron microscope  

SciTech Connect (OSTI)

A Windows application has been developed for management and operation of beam instruments such as electron or ion microscopes. It provides a facility that allows an operator to manage a complicated instrument with minimal effort, primarily under mouse control. The hardware control components used on similar instruments (e.g., the scanning transmission electron microscopes in our lab), such as toggles, buttons, and potentiometers for adjustments on various scales, are all replaced by the controls of the Windows application and are addressable on a single screen. The new controls in this program (via adjustable software settings) offer speed of response and smooth operation providing tailored control of various instrument parameters. Along with the controls offering single parameter adjustment, a two-dimensional control was developed that allows two parameters to be coupled and addressed simultaneously. This capability provides convenience for such tasks as finding the beam'' and directing it to a location of interest on the specimen. Using an icon-based display, this Windows application provides better integrated and more robust information for monitoring instrument status than the indicators and meters of the traditional instrument controls. As a Windows application, this program is naturally able to share the resources of the Windows system and is thus able to link to many other applications such as our image acquisition and processing programs. Computer control provides automatic protection and instant diagnostics for the experimental instrument. This Windows application is fully functional and is in daily use to control a new type of electron microscope developed in our lab.

Ruan, S. (The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States)); Kapp, O.H. (The Department of Radiology and The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States))

1994-12-01T23:59:59.000Z

477

Optimized ECR plasma apparatus with varied microwave window thickness  

DOE Patents [OSTI]

The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

Berry, L.A.

1995-11-14T23:59:59.000Z

478

Ground potential rise monitor  

DOE Patents [OSTI]

A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

2012-04-03T23:59:59.000Z

479

U-267: RSA® Authentication Agent 7.1 for Microsoft Windows® and RSA®  

Broader source: Energy.gov (indexed) [DOE]

7: RSA® Authentication Agent 7.1 for Microsoft Windows® and 7: RSA® Authentication Agent 7.1 for Microsoft Windows® and RSA® Authentication Client 3.5 Access Control Vulnerability U-267: RSA® Authentication Agent 7.1 for Microsoft Windows® and RSA® Authentication Client 3.5 Access Control Vulnerability September 25, 2012 - 6:00am Addthis PROBLEM: RSA® Authentication Agent 7.1 for Microsoft Windows® and RSA® Authentication Client 3.5 Access Control Vulnerability PLATFORM: Product: RSA Authentication Agent for Microsoft Windows version 7.1 Platforms: Windows XP and Windows 2003 Product: RSA Authentication Client 3.5 Platforms: Windows XP and Windows 2003 ABSTRACT: RSA Authentication Agent Lets Remote Authenticated Users Bypass an Authentication Step reference LINKS: SecurityTracker Alert ID: 1027559 Bugtraq ID: 55662

480

Soil mechanics: breaking ground  

Science Journals Connector (OSTI)

...capable of teaching us several unexplained...critical breakage energy E c) in addition...describes the energy consumption due to breakage...granular materials, energy may be lost from...element from other sources that relate to...parameter can enable us to account for...

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "windows ground source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thermal and Structural Analysis of Targets and Windows  

E-Print Network [OSTI]

Thermal and Structural Analysis of Targets and Windows Materials, Irradiation Data and Fracture) = EDD/Cp Applied Thermal Stress Pa CTE*E*DeltaT Thermal Resistance Rts=UTS/(CTE*E *DeltaT) Thermal Shock 1147 1.16E+09 0.984 7445 Candidate Materials - Young's Modulus, UTS, Delta T, Thermal Stress

McDonald, Kirk

482

Dell recommends Windows 7. Students get the best price  

E-Print Network [OSTI]

Dell recommends Windows® 7. Students get the best price on consumer PCs from Dell* If you find a better price on your day of purchase, contact a Dell University specialist and we will beat that price come in small packages. DellTM XPSTM 14z Dell University Price$ 99999 ® 7 Home Premium VV Get

Almor, Amit

483

Window and Envelope Technologies Overview- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Window and Envelope Technologies activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

484

Windows on Computer Science Department of Computer and Information Science  

E-Print Network [OSTI]

1 CSCI 120 Windows on Computer Science Department of Computer and Information Science IUPUI What is Computer Science? Is Computer Science the study of computers (Building computers, and writing computer programs) ? Computer Science is no more about computers than astronomy is about telescopes, or biology

Fang, Shiaofen

485

Covered Product Category: Residential Windows, Doors, and Skylights  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

486

Internet Explorer 7 on Windows Vista: Obtaining MIT Certificates  

E-Print Network [OSTI]

: A separate certificate password is not necessary for IE7 on Vista; the certificate is protected by your web services at MIT with IE7 on Windows Vista, three types of MIT web certificates are needed: · MIT servers · MIT Client Certificate, needed in IE7 on Vista to generate the personal certificate · MIT

Barton, Paul I.

487

Laboratory Performance Testing of Residential Window Air Conditioners  

SciTech Connect (OSTI)

Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

2013-03-01T23:59:59.000Z

488

Validation of the Window Model of the Modelica Buildings Library  

E-Print Network [OSTI]

LBNL-5735E Validation of the Window Model of the Modelica Buildings Library Thierry Stephane of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University

489

Lighting energy savings potential of split-pane electrochromic windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lighting energy savings potential of split-pane electrochromic windows Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort Title Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort Publication Type Journal Article LBNL Report Number LBNL-6152E Year of Publication 2013 Authors Fernandes, Luis L., Eleanor S. Lee, and Gregory J. Ward Journal Energy and Buildings Volume 61 Pagination 8-20 Abstract A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62% and 53%, respectively without and with overhang)lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48% and 37%, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.