National Library of Energy BETA

Sample records for windows double pane

  1. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  2. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, David K.; Crandall, Richard S.; Deb, Satyendra K.; Stone, Jack L.

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  3. CAVE WINDOW

    DOE Patents [OSTI]

    Levenson, M.

    1960-10-25

    A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

  4. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-12-23

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  5. Window shopping

    SciTech Connect (OSTI)

    Best, D.

    1990-03-01

    The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

  6. Building America Top Innovations 2013 Profile … Window Replacement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Replacement, Rehabilitation, & Repair Guide TOP INNOVATOR: BSC Old single-glazed ... * Modifying the window sash - remove single- pane glass from the sash and replace ...

  7. Department of Energy Announces 14 New Projects for Window Efficiency Technologies

    Broader source: Energy.gov [DOE]

    ARPA-E Awards $31 Million to Develop Innovative Materials that Reduce Heat Loss through Single-Pane Windows

  8. Evaluation of Low-E Storm Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Knox, Jake R.; Widder, Sarah H.

    2014-05-31

    This study examines the performance of exterior and interior low-e storm panels with a controlled whole home experimental design using PNNL's Lab Homes. Summing the estimated annual average heating and cooling savings, the installation of low-e storm panels resulted in approximately 10% annual energy savings. The results of the experiment will be used to determine and validate performance of low-e storm windows over double pane clear glass windows in a whole home setting.

  9. High Performance Window Retrofit

    SciTech Connect (OSTI)

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  10. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Choose high-performance windows that have at least two panes of glass and a low-e coating. Choose a low U-factor for better insulation in colder climates; the U-factor is the...

  11. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  12. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    7 Nonresidential Window Stock and Sales, by Glass Type Existing U.S. Stock Vision Area of New Windows (Million Square Feet) Type (% of buildings) 1995 2001 2003 2005 2007 2009 Single Pane 56 57 48 56 60 48 Insulating Glass (1) 294 415 373 407 476 389 Total 350 472 421 463 536 437 Clear 36% 49% 43% 44% 38% 33% Tinted 40% 24% 17% 15% 11% 10% Reflective 7% 8% 6% 4% 3% 3% Low-e 17% 19% 34% 37% 48% 54% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): (2) 1) Includes double- and

  13. Parity Doubling and the S Parameter Below the Conformal Window

    SciTech Connect (OSTI)

    Appelquist, T; Babich, R; Brower, R C; Cheng, M; Clark, M A; Cohen, S D; Fleming, G T; Kiskis, J; Lin, M F; Neil, E T; Osborn, J C; Rebbi, C; Schaich, D; Vranas, P M

    2011-10-21

    We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with N{sub f} = 2 and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when N{sub f} is increased from 2 to 6, motivating study of these trends as N{sub f} is increased further, toward the critical value for transition from confinement to infrared conformality.

  14. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  15. Multi-pane glass unit having seal with adhesive and hermetic coating layer

    DOE Patents [OSTI]

    Miller, Seth A; Stark, David H; Francis, IV, William H; Puligandla, Viswanadham; Boulos, Edward N; Pernicka, John

    2015-02-10

    A vacuum insulated glass unit (VIGU) comprises a first pane of a transparent material and a second pane of a transparent material. The second pane is spaced apart from the first pane to define a cavity therebetween. At least one of a spacer and an array of stand-off members is disposed between the first and second panes to maintain separation therebetween. A first adhesive layer forms at least a portion of a gas-tight connection between the first pane and the second pane. A highly hermetic coating is disposed over the adhesive layer, where the coating is an inorganic layer.

  16. Laser sealed vacuum insulation window

    DOE Patents [OSTI]

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  17. Laser sealed vacuum insulating window

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  18. Low heat transfer, high strength window materials

    DOE Patents [OSTI]

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  19. Demonstration of the Performance of Highly Insulating (R-5) Windows in a Matched Pair of Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.

    2013-12-05

    Improving the insulation and solar heat gain characteristics of a homes windows has the potential to significantly improve the homes overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high-quality installation will also minimize or reduce air leakage through the building envelope, decreasing infiltration and thus contributing to reduced heat transmission through building envelope. These improvements all contribute to decreasing overall annual home energy use. In addition to improvements in energy efficiency, highly insulating windows can have important impacts on occupant comfort by minimizing or eliminating the cold draft many homeowners experience at or near window surfaces that are at a noticeably cooler than the room air temperature. Energy efficiency measures, such as highly insulating windows, also have the potential to decrease peak energy use in a home, which can lead to measurable peak load decreases for a utility service territory if implemented on a large scale. High-performance windows now feature triple-pane glass, double low-e coatings, and vinyl insulated frames to achieve U-factors as low as 0.2 , as compared to double-pane clear glass windows with a U-factor of 0.67, which are common in existing homes across the United States. The highly insulating windows (as they will be referred to in this document) are now available from several manufacturers and show promise to yield considerable energy savings and thermal comfort improvements in homes.

  20. Windows technology assessment

    SciTech Connect (OSTI)

    Baron, J.J.

    1995-10-01

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  1. Spring Home Maintenance: Windows, Windows, Windows! | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring Home Maintenance: Windows, Windows, Windows Spring Home Maintenance: Windows, Windows, Windows April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air ...

  2. Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units

    DOE Patents [OSTI]

    Bettger, Kenneth J; Stark, David H

    2013-08-20

    A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

  3. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly

  4. Photo of the Week: The First Energy-Efficient Dual-Paned Windows...

    Broader source: Energy.gov (indexed) [DOE]

    Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs Every week, we'll feature our favorite energy-related photo here on Energy.gov, at Facebook.com...

  5. AP and L sees window of opportunity to double revenue via cogeneration

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The sale of cogenerated process steam to industries could allow Arkansas Power and Light to expand its operation from power generation to manufactured energy at double the revenue. Rising oil prices and pending gas deregulation are forcing industrial customers to look for alternative fuel supplies. Utilities must seize the opportunity to sell cogenerated steam before prospective customers decide to generate their own power and steam, although a user survey shows that industry is reluctant to commit the capital at this time. AP and L's system will join combined-cycle cogeneration and coal gasification. Four figures display the data developed during AP and L's continuing feasibility studies. (DCK)

  6. Through a glass, warmly: Argonne nanomaterials can help make windows more

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficient | Argonne National Laboratory Through a glass, warmly: Argonne nanomaterials can help make windows more efficient By Greg Cunningham * May 31, 2016 Tweet EmailPrint A team of researchers at the U.S. Department of Energy's (DOE's) Argonne National Laboratory is using nanomaterials to improve the energy efficiency of existing single-pane windows in commercial and residential buildings. The team was recently awarded a $3.1 million grant from DOE's Advanced Research Projects

  7. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  8. Window Attachments

    Energy Savers [EERE]

    ... shades Surface applied film Cellular shade Window quilt Seasonal film kit Louvered blinds Roller shades Solar screens Cellular shades Surface applied films Exterior attachments ...

  9. Window Types

    Broader source: Energy.gov [DOE]

    By combining an energy-efficient frame choice with glazing materials for your climate, you can customize your home's windows and reduce your energy bills.

  10. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    1 Case Study, The Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio (Education) Building Design Floor Area: Floors: 2 Footprint: 3 Classrooms (1) 1 Conference Room 1 Adminstration Office Auditorium, 100 seats 6 Small Offices Atrium Wastewater Treatment Facility Shell Windows Material: Green Tint Triple Pane Argon Fill Insulating Glass Grey Tint Double Pane Argon Fill Insulating Glass Fenestration(square feet) Window Wall (2) window/wall l Atrium, Triple Pane (3)

  11. EERE Success Story-Energy Efficient Windows to Reach Market Quicker...

    Office of Environmental Management (EM)

    and multiple panes, thin film coatings, and special gas fills between the panes, while selecting for other properties, such as transmittance of visible light and solar heat gain. ...

  12. High Performance Window Attachments

    Broader source: Energy.gov (indexed) [DOE]

    Statement: * A wide range of residential window attachments are available, but they ... to model wide range of window coverings * Performed window coverings ...

  13. Demonstration with Energy and Daylighting Assessment of Sunlight Responsive Thermochromic (SRT) Window Systems

    SciTech Connect (OSTI)

    Broekhuis, Michael; Liposcak, Curtis; Witte, Michael; Henninger, Robert; Zhou, Xiaohui; Petzen, George; Buchanan, Michael; Kumar, Sneh

    2012-03-31

    Pleotint, LLC was able to successfully extrude thermochromic interlayer for use in the fenestration industry. Pleotint has developed a thermochromic sytem that requires two thermochromic colors to make a neutral color when in the tinted state. These two colors were assembled into a single interlayer called a tri-layer prelam by Crown Operations for use in the glass lamination industry. Various locations, orientations, and constructions of thermochromic windows were studied with funds from this contract. Locations included Australia, California, Costa Rica, Indiana, Iowa, Mexico. Installed orientations included vertical and skylight glazing applications. Various constructions included monolithic, double pane, triple pane constructions. A daylighting study was conducted at LinEl Signature. LinEl Signature has a conference room with a sylight roof system that has a west orientation. The existing LinEl Signature conference room had constant tint 40% VLT transparent skylights. Irradiance meters were installed on the interior and exterior sides of a constant tint skylight. After a month and a half of data collection, the irradiance meters were removed and the constant tint skylights were replaced with Pleotint thermochromic skylight windows. The irradiance meters were reinstalled in the same locations and irradiance data was collected. Both data sets were compared. The data showed that there was a linear relationship with exterior and interior irradiance for the existing constant tint skylights. The thermochromic skylights have a non-linear relationship. The thermochromic skylights were able to limit the amount of irradiance that passed through the thermochromic skylight. A second study of the LinEl Signature conference was performed using EnergyPlus to calculate the amount of Illuminance that passed through constant tint skylights as compared to thermochromic skylights. The constant tint skylights transmitted Illuminance is 2.8 times higher than the thermochromic

  14. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  15. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storm Windows Storm Windows An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of ...

  16. Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Efficient windows, doors, and skylights can reduce energy bills and improve the comfort of your home.

  17. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    SciTech Connect (OSTI)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    satisfying constraints such as durability, cost, user acceptance, size limits, and environmental safety concerns. The energy efficient daylighting window will consist of a translucent and resilient aerogel panel sandwiched between glass panes in double glazed windows. Compared to the best windows available today, the double glazed translucent windows with 1/2-inch aerogel inserts will have a U-value of 1.2 W/m{sup 2} K (0.211 BTU/ft{sup 2} h F) without any coating or low conductivity fill gases. These windows will be more effective than the windows with an Energy Star rating of U-2 W/m{sup 2} K and could be made even more efficient by using low-e coated glass glazings and inert gas fills. This report summarizes the work accomplished on Cooperative Agreement DE-FC26-03NT41950. During this project, Aspen Aerogels made transparent and translucent aerogels from TMOS and TEOS. We characterized the transparency of the aerogels, reinforced the transparent aerogels with fibers and prepared large translucent aerogel panels and blankets. We also conducted an initial market study for energy efficient translucent windows. A lab-scale process was developed that could be scaled-up to manufacture blankets of these translucent aerogels. The large blankets prepared were used to fabricate prototype translucent windows and skylights. The primary goal of this project was to develop transparent, resilient, hydrophobic silica aerogels that have low thermal conductivities (R-10/inch) to be used to produce aerogel insulated double-glazing windows with a U value of 0.6 W/m{sup 2}K. To meet this objective we developed a process and equipment to produce blankets of translucent, hydrophobic aerogel. We focused on silica, organically-modified silica aerogels (Ormosils), and fiber reinforced silica aerogels due to the appreciable expertise in silica sol-gel processing available with the personnel at Aspen Aerogels, and also due to the quantity of knowledge available in the scientific literature. The

  18. Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives

    SciTech Connect (OSTI)

    SINTEF Building and Infrastructure; Norwegian University of Science and Technology; Bergh, Sofie Van Den; Hart, Robert; Jelle, Bjrn Petter; Gustavsen, Arild

    2013-01-31

    Insulating glass (IG) units typically consist of multiple glass panes that are sealed and held together structurally along their perimeters. This report describes a study of edge seals in IG units. First, we summarize the components, requirements, and desired properties of edge construction in IG units, based on a survey of the available literature. Second, we review commercially available window edge seals and describe their properties, to provide an easily accessible reference for research and commercial purposes. Finally, based on the literature survey and review of current commercial edge seal systems, we identify research opportunities for future edge seal improvements and solutions.

  19. Residential Windows and Window Coverings: A Detailed View of...

    Broader source: Energy.gov (indexed) [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households. residentialwindowscoverings.pdf ...

  20. New High-Efficiency Window Prototype Result of DOE Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also includes other technology innovations, such as low emissivity (Low E) glass coatings, an unsealed internal plastic triple pane, krypton gas and an insulating frame. This...

  1. Energy Savings from Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of window combinations with window attachments in typical residential buildings and in varied ... The most common and widely used types of attachments are window coverings ...

  2. Technology Advancements to Lower Costs of Electrochromic Window Glazing

    SciTech Connect (OSTI)

    Mark Burdis; Neil Sbar

    2008-07-13

    An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated

  3. Tips: Your Home's Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to you-for example, increased comfort from installing double-paned, efficient windows? ... How much time do you have for maintenance and repairs? A thermal image-taken by a ...

  4. Sales Tax Incentives for Energy-Efficient Manufactured Homes...

    Broader source: Energy.gov (indexed) [DOE]

    storm or double-pane glass windows, insulated or storm doors; and a minimum thermal resistance (R) rating of the insulation of R-11 for walls, R-19 for floors and R-30 for...

  5. Building America Whole-House Solutions for New Homes: Rural Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    homes (60 wo PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV. PDF icon Rural ...

  6. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine

    Broader source: Energy.gov [DOE]

    Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

  7. Evaluation of control strategies for different smart window combinations using computer simulations

    SciTech Connect (OSTI)

    Jonsson, Andreas; Roos, Arne

    2010-01-15

    Several studies have shown that the use of switchable windows could lower the energy consumption of buildings. Since the main function of windows is to provide daylight and visual contact with the external world, high visible transmittance is needed. From an energy perspective it is always best to have the windows in their low-transparent state whenever there are cooling needs, but this is generally not preferable from a daylight and visual contact point of view. Therefore a control system, which can be based on user presence, is needed in connection with switchable windows. In this study the heating and cooling needs of the building, using different control mechanisms were evaluated. This was done for different locations and for different combinations of switchable windows, using electrochromic glazing in combination with either low-e or solar control glazing. Four control mechanisms were investigated; one that only optimizes the window to lower the need for heating and cooling, one that assumes that the office is in use during the daytime, one based on user presence and one limiting the perpendicular component of the incident solar irradiation to avoid glare and too strong daylight. The control mechanisms were compared using computer simulations. A simplified approach based on the balance temperature concept was used instead of performing complete building simulations. The results show that an occupancy-based control system is clearly beneficial and also that the best way to combine the panes in the switchable window differs depending on the balance temperature of the building and on the climate. It is also shown that it can be beneficial to have different window combinations for different orientations. (author)

  8. 2016-2020 Strategic Human Capital Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Chief Human Capital Officer 2016-2020 Strategic Human Capital Plan Cover Photo Description Beyond Double-Pane Windows While the invention of double-pane windows dates back to 1935, a true turning point in the technology came in the 1980s with a collaboration between the Department of Energy, private industry, and Lawrence Berkeley National Lab. Initial research and development by Berkeley Lab and a start-up company, Suntek Research Associates (now called Southwall Technologies), led to the

  9. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3)

  10. Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  11. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  12. Plasma window characterization

    SciTech Connect (OSTI)

    Krasik, Ya. E.; Gleizer, S.; Gurovich, V.; Kronhaus, I.; Hershcovitch, A.; Nozar, P.; Taliani, C.

    2007-03-01

    Parameters of an arc Ar plasma discharge used as a plasma window with a discharge current of {approx}50 A and a voltage of {approx}58 V are presented. It is shown that this arc discharge allows one to decrease the pressure at the low pressure end of the plasma window almost 380 times using relatively low pumping at the low pressure end of the plasma window. Calculations of the plasma parameters and their spatial distribution using a simple wall-stabilized arc model showed a satisfactory agreement with the experimentally obtained data. It is shown that a significant decrease in gas flow through the plasma window occurs due to the increase in plasma viscosity. An improvement of the plasma window ignition and some of its design aspects are described as well.

  13. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  14. The Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  15. Residential Windows and Window Coverings: A Detailed View of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior SEPTEMBER 2013 Prepared for: Building Technologies Office Office of Energy ...

  16. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  17. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  18. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  19. Windows, Doors, & Skylights

    Broader source: Energy.gov [DOE]

    Windows, doors and skylights affect home aesthetics as well as energy use. Learn how to choose products that allow you to use natural light without raising your heating and cooling costs.

  20. Storm Windows | Department of Energy

    Office of Environmental Management (EM)

    interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this...

  1. Windows Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead Performer: Window Covering Manufacturing Association - New York, NY Core Research ... National Laboratory (LBNL) - Berkeley, CA Core Research Support for BTO WindowsEnvelope ...

  2. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Windows provide views, daylighting, ventilation, and heat from the sun in the winter. ... Install ENERGY STAR-qualified windows and use curtains and shade to give your air ...

  3. Adaptive Liquid Crystal Windows

    SciTech Connect (OSTI)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft 1ft prototype panels for the worlds first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicrons patented e-Tint technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power

  4. BERKELEY LAB WINDOW

    SciTech Connect (OSTI)

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen; Mitchell, Robin D.; Kohler, Christian; Vidanovic, Simon V.; Huizenga, Charlie

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the

  5. BERKELEY LAB WINDOW

    Energy Science and Technology Software Center (OSTI)

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records frommore » IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of

  6. Vacuum window glazings for energy-efficient buildings

    SciTech Connect (OSTI)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. ); Soule, D.E. )

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  7. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  8. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  9. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    SciTech Connect (OSTI)

    C.A. Gentile; H.M. Fan; J.W. Hartfield; R.J. Hawryluk; F. Hegeler; P.J. Heitzenroeder; C.H. Jun; L.P. Ku; P.H. LaMarche; M.C. Myers; J.J. Parker; R.F. Parsells; M. Payen; S. Raftopoulos; J.D. Sethian

    2002-11-21

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, <100>, <110> and <111>) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W {center_dot} cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated with 500 nm thin-film silicon nitride (Si{sub 3}N{sub 4}), has been fabricated. The window consists of 81 square panes with a thickness of 0.019 mm {+-} 0.001 mm. Stiffened (orthogonal) sections are 0.065 mm in width and 0.500 mm thick (approximate). Appended drawing (Figure 1) depicts the window configuration. Assessment of silicon (and silicon nitride) material properties and CAD modeling and analysis of the window design suggest that silicon may be a viable solution to inherent parameters and constraints.

  10. Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior

    Broader source: Energy.gov [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

  11. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    If you have old windows in your home, replacing them with new, energy-efficient windows ... In general, plastics are most economical for people with small budgets or who live in ...

  12. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    LBNL’s has three facilities specifically dedicated to windows: the Optical Properties Laboratory, the Infrared Thermography Laboratory, and the Mobile Window Thermal Test Facility (MoWiTT). These...

  13. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    5 Case Study, The Thermal Test Facility, National Renewable Energy Laboratory, Golden, Colorado (Office/Laboratory) Building Design Floor Area: 10,000 SF Floors(1): 2 Aspect Ratio: 1.75 Offices Laboratories Conference Room Mechanical Level Shell Windows Material U-factor SHGC(2) Viewing Windows: Double Pane, Grey Tint, Low-e 0.42 0.44 Clerestory Windows: Double Pane, Clear, Low-e 0.45 0.65 Window Area(SF) North 38 South(3) 1,134 East 56 West 56 Wall/Roof Material Effective R-Value North Wall

  14. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    The Department of Energy funds these three test national lab test facilities to do window and building envelope research.

  15. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Window treatments or coverings can reduce heat loss in the winter and heat gain in the ...

  16. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    by adding storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Links ENERGY STAR Residential Windows, Doors and Skylights Product Ratings - ...

  17. Windows and Building Envelope | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 27, 2014 Research and Development Roadmap: Windows and Building Envelope November 26, 2013 Residential Windows and Window Coverings: A Detailed View of the Installed Base ...

  18. Predicting window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.

    1995-07-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining window U-factors, there has been little work to date on using numerical methods to predict condensation potential. It is, perhaps, of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a preliminary step to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and inferior indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building materials, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products, as part of its mandate from the Department of Energy. A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing, to reduce the cost and time required for implementation and increase the flexibility of the rating method. This article outlines the necessary components in the application of numerical methods for evaluating condensation in fenestration products, and describes the status of the development of these methods. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products. Much of the technical discussion in this article can be found in ASHRAE Transactions.

  19. Windows on the axion

    SciTech Connect (OSTI)

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

  20. Turning windows into solar generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning windows into solar generators Turning windows into solar generators A simple filtration process helped Rice University researchers create flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes. August 8, 2016 Turning windows into solar generators UbiQD founder and President Hunter McDaniel shows quantum dots dissolved in a liquid solution that absorbs ultraviolet light and converts the energy into emitted light of different colors. CREDIT: Courtesy of UbiQD

  1. Window Types | Department of Energy

    Office of Environmental Management (EM)

    Tints Heat-absorbing window glazing contains special tints that change the color of the glass. Tinted glass absorbs a large fraction of the incoming solar radiation...

  2. Tips: Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill...

  3. Table HC15.7 Air-Conditioning Usage Indicators by Four Most...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass......Q N N N Q Proportion of Windows Replaced All......

  4. X-Windows Acceleration via NX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly...

  5. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  6. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  7. A window on urban sustainability

    SciTech Connect (OSTI)

    Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  8. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. You are accessing a document ...

  9. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. It is well known that the spectrum ...

  10. Do You Have Windows That Need Replacing?

    Broader source: Energy.gov [DOE]

    Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows?

  11. Energy-Efficient Windows | Department of Energy

    Office of Environmental Management (EM)

    in your home involves design, selection, and installation. Design Before selecting new windows for your home, determine what types of windows will work best and where to...

  12. Atmospheric Pressure Deposition for Electrochromic Windows |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Dynamic Windows ...

  13. Energy Efficient Window Treatments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    You can choose window treatments or coverings not only for decoration but also for saving energy. ... Federal incentives are available for efficient residential windows, doors, or ...

  14. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    3 Case Study, The Visitor Center at Zion National Park, Utah (Service/Retail/Office) Building Design Vistors Center (1): 8,800 SF Comfort Station (2): 2,756 SF Fee Station: 170 SF Shell Windows Type U-Factor SHGC (3) South/East Glass Double Pane Insulating Glass, Low-e, Aluminum Frames, Thermally Broken 0.44 0.44 North/West Glass Double Pane Insulating Glass, Heat Mirror, Aluminum Frames, Thermally Broken 0.37 0.37 Window/Wall Ratio: 28% Wall/Roof Materials Effective R-Value Trombe Walls:

  15. Promising Technology: R-5 Window Replacements

    Broader source: Energy.gov [DOE]

    A significant amount of the energy used to heat and cool commercial buildings is lost through inefficient windows. Incorporating windows into a building that are resistant to heat transfer can significantly reduce the amount of energy that is lost through windows. R-values are an indication of how resistant a window is to heat transfer, and a larger R-value indicates a more insulating window. An R-5 window represents an efficient window, and has a larger R-value than what is required to qualify for ENERGY STAR.

  16. Attosecond Double-Slit Experiment

    SciTech Connect (OSTI)

    Lindner, F.; Schaetzel, M.G.; Baltuska, A.; Goulielmakis, E.; Walther, H.; Krausz, F.; Milosevic, D.B.; Bauer, D.; Becker, W.; Paulus, G.G.

    2005-07-22

    A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are measured. A situation in which one and the same electron encounters a single and a double slit at the same time is observed. The investigation of the fringes makes possible interferometry on the attosecond time scale. From the number of visible fringes, for example, one derives that the slits are extended over about 500 as.

  17. R-5 Highly-Insulating Windows and Low-e Storm Windows Volume Purchase Program

    SciTech Connect (OSTI)

    2009-09-30

    Introduces DOE's Building Technologies fenestration RD&D program, and describes the highly insulated R-5 Windows and Low-e Storm Windows Volume Purchase solicitation.

  18. Windows come to the workstation

    SciTech Connect (OSTI)

    Upton, M.

    1984-04-11

    Those making major buying decisions about software packages face a difficult process. The author looks at specific features, including windows and integrated packages. Everyone aspiring to be anyone in the packaged software business is touting an integrated system. Integrated software means a lot of things to a lot of people, but three hierarchical levels seem to stand out: the data integration level, the command structure level, and the modeless (or seamless) level.

  19. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

  20. 13 EER Window Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 EER Window Air Conditioner 2014 Building Technologies Office Peer Review Broadway Apartment Building with WACs in NYC Pradeep Bansal, bansalpk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Key Partners: Start date: October 1, 2011 Planned end date: September 30, 2015 Key Milestones: 1. Complete preliminary simulations to predict design point performance; March 31, 2012 2. Testing of Lab Breadboard; September 30 2013 3. Design production ready unit; March 31 2014 Budget:

  1. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    SciTech Connect (OSTI)

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  2. Rolling, Rolling, Rolling: Roller Window Shades

    Broader source: Energy.gov [DOE]

    There's a lot of talk these days about installing new energy-efficient windows. Thanks to a Federal tax credit of up to $1,500, window advertisements, both print and radio and TV broadcasting, are aplenty.

  3. Making Smart Windows Smarter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Deputy Assistant Secretary for Renewable Power (Acting) What does this project do? Pleotint, LLC has developed a

  4. Shading, Films and Window Attachments Market Report

    Broader source: Energy.gov [DOE]

    Shading, Films and Window Attachments (SFWA) Market Report, March 13, 2016, from the Consortium for Building Energy Innovation.

  5. Window, Door, and Skylight Products and Services | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Doors, and Skylights ENERGY STAR Learn how to save energy by sealing your home and choosing ENERGY STAR windows, doors, and skylights. Window Selection Tool Efficient Windows...

  6. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  7. New Window Technology Saves Energy and the View | Department...

    Energy Savers [EERE]

    Window Technology Saves Energy and the View New Window Technology Saves Energy and the ... Laboratory are developing innovative new window technology that helps improve ...

  8. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Environmental Management (EM)

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...

  9. Expert Meeting Report: Windows Options for New and Existing Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... SHGC U Residential Energy Use (MBTUyr) vs Window Thermal Properties (U, SHGC) Specific windows plotted on ... between the window and added coverings such as storms (interior and ...

  10. Rigid thin windows for vacuum applications

    DOE Patents [OSTI]

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  11. Purged window apparatus utilizing heated purge gas

    DOE Patents [OSTI]

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  12. Windows beyond the Standard Model

    SciTech Connect (OSTI)

    Bernabei, R.

    2007-10-12

    DAMA is an observatory for rare processes at the Gran Sasso National Laboratory of the I.N.F.N. (LNGS). Here some arguments will be shortly summarised on the investigation on dark matter (DM) particles by annual modulation signature and on some of the performed searches for double beta decay modes.

  13. New Whole-House Solutions Case Study: Rural Development, Greenfield, Massachusetts

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This builder worked with Consortium for Advanced Residential Buildings to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV

  14. Low-Cost Solutions for Dynamic Window Material | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Atmospheric Pressure Deposition for Electrochromic Windows Nanolens Window Coatings for Daylighting Advanced Facades, Daylighting, and Complex Fenestration Systems

  15. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  16. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  17. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  18. Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation from Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments.

  19. Advances in window technology: 1973-1993

    SciTech Connect (OSTI)

    Arasteh, D.

    1994-12-31

    Until the 1970s, the thermal performance of windows and other fenestration technologies was rarely of interest to manufacturers, designers, and scientists. Since then, however, a significant research and industry effort has focused on better understanding window thermal and optical behavior, how windows influence building energy patterns, and on the development of advanced products. This chapter explains how fenestration technologies can make a positive impact on building energy flows, what physical phenomena govern window heat and light transfer, what new products have been developed, and what new products are currently the subject of international research efforts. 44 refs., 30 figs., 3 tabs.

  20. Energy Efficient Window Treatments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... They offer several advantages: Weather protection Added security No use of interior space No thermal shock to windows if left closed. Exterior shutters must be integrated into your ...

  1. Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fraction of incoming solar radiation through a window, reflective coatings reduce the transmission of solar radiation, and spectrally selective coatings filter out 40% to 70%...

  2. Window Daylighting Demo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Facades, Daylighting, and Complex Fenestration Systems High Performance Window Attachments Figure 1: Measurement of performance of ceiling ...

  3. Piezoresponse Force Microscopy: A Window into Electromechanical...

    Office of Scientific and Technical Information (OSTI)

    Behavior at the Nanoscale Citation Details In-Document Search Title: Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale Authors: Bonnell, ...

  4. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings Addthis 1 of 5 An oxygen plasma etcher is ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  5. Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... selective coatings filter out 40% to 70% of the heat normally transmitted through insulated window glass or glazing, while allowing the full amount of light to be transmitted. ...

  6. Window Replacement, Rehabilitation, & Repair Guides - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The guides are available in the Building America Solution Center, an online resource of home construction how-to's. Search for "retrofit windows" and filter for "Guides" under ...

  7. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012...

  8. Thermally insulated window sash construction for a casement window

    SciTech Connect (OSTI)

    Biro, A.J.

    1987-09-01

    A window sash member is described comprising: first and second generally parallel sidewalls; first and second spaced, generally parallel transverse walls connecting the first and second sidewalls, extending between and oriented generally perpendicular to the first and second sidewalls to define a first hollow chamber; a third transverse wall, located without the first hollow chamber adjacent to and generally parallel to the first transverse wall, extending from the first sidewall and terminating short of the second sidewall; a first interior wall extending from the third transverse wall to the first transverse wall and oriented generally parallel to the first sidewall to define a second hollow chamber; a fourth transverse wall, located without the first hollow chamber adjacent to and generally to the second transverse wall, extending from the first sidewall and terminating short of the second sidewall; and a second interior wall extending from the fourth transverse wall to the second transverse wall and oriented generally parallel to the second sidewall to define a third hollow chamber.

  9. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  10. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings 1 of 5 An oxygen plasma etcher is used to ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  11. NREL Electrochromic Window Research Wins Award

    ScienceCinema (OSTI)

    None

    2013-05-29

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  12. Supersymmetric Dualities beyond the Conformal Window

    SciTech Connect (OSTI)

    Spiridonov, V. P.; Vartanov, G. S.

    2010-08-06

    Using the superconformal (SC) indices techniques, we construct Seiberg type dualities for N=1 supersymmetric field theories outside the conformal windows. These theories are physically distinguished by the presence of chiral superfields with small or negative R charges.

  13. NREL Electrochromic Window Research Wins Award

    SciTech Connect (OSTI)

    2011-01-01

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  14. Building Technologies Office: Emerging Technologies Windows and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost premium <5ft 2 over standard window or blind installation including the cost of sensor and lighting Reduce lighting energy use by 50% for a 50-ft floor plate 7 Highlight of ...

  15. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by ...

  16. Science on the Hill: Turning windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: Turning windows into solar panels Turning windows into solar panels Working with quantum dots, researchers achieve a breakthrough in solar-concentrating technology that can turn windows into electric generators. February 7, 2016 solar panel windows The luminescent solar concentrator could turn any window into a daytime power source. Science on the Hill: Turning windows into solar panels Sunlight is abundant, free and for all practical purposes, eternal. Harvesting that light

  17. T-596: 0-Day Windows Network Interception Configuration Vulnerability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 96: 0-Day Windows Network Interception Configuration Vulnerability T-596: 0-Day Windows Network Interception Configuration Vulnerability April 6, 2011 - 5:48am Addthis PROBLEM: 0-Day exploit of IPv4 and IPv6 mechanics and how it applies to Microsoft Windows Operating systems. PLATFORM: Microsoft Operating Systems (OS) Windows Vista, Windows 7, and Windows 2008 Server ABSTRACT: The links below describe a parasitic IPv6 layered over a native IPv4 network. This attack can

  18. Vacuum Insulation for Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacuum Insulation for Windows Vacuum Insulation for Windows Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using

  19. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparency: it's not just for windows Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012 Intellus environmental data The same environmental data used by LANL scientists can be viewed by anyone, anytime. Contact Environmental Communications & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The new system contains more than 9 million

  20. Diffraction scattering computed tomography: a window into the...

    Office of Scientific and Technical Information (OSTI)

    tomography: a window into the structures of complex nanomaterials Citation Details In-Document Search Title: Diffraction scattering computed tomography: a window into the ...

  1. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability August...

  2. Pennsylvania: New Series of Windows Has Potential to Save Energy...

    Office of Environmental Management (EM)

    New Series of Windows Has Potential to Save Energy for Commercial Buildings Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings March 6, 2014...

  3. Nanolens Window Coatings for Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1.07 MB) More Documents & Publications Dynamically Responsive Infrared Window Coatings Advanced Facades, Daylighting, and Complex Fenestration Systems Window Daylighting Demo

  4. Low Cost Nanostructured Smart Window Coatings | Department of...

    Office of Environmental Management (EM)

    Low Cost Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings Addthis 1 of 3 A Heliotrope scientist prepares slot die coater for solution based ...

  5. Windows and Building Envelope Overview - 2015 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Overview - 2015 BTO Peer Review Windows and Building Envelope Overview - 2015 BTO Peer Review Presenter: Bahman Habibzadeh, U.S. Department of Energy ...

  6. Windows and Envelope Subprogram Overview - 2016 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Envelope Subprogram Overview - 2016 BTO Peer Review Windows and Envelope Subprogram Overview - 2016 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy ...

  7. Covered Product Category: Residential Windows, Doors, and Skylights...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition ...

  8. Energy-Efficient Window Treatments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Treatments September 25, 2012 - 9:04am Addthis The awnings on this home shade the windows and generate electricity. | Photo courtesy of iStockphoto...

  9. Energy Savings from Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fenestration Software Tools Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior Energy Savings from ...

  10. Microsoft PowerPoint - Window_Attachments-Webinar-Oct_28_2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... that examined 11 different typical residential window attachments including: - shades - ... window. * Energy-efficient window coverings can reduce heat loss through windows ...

  11. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect (OSTI)

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  12. Microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  13. Final Report on Work Performed Under Agreement

    SciTech Connect (OSTI)

    2012-04-15

    patent-pending low-e technology, EnerLogic® window film has the best insulating performance of any film product available. The insulating power of EnerLogic® window film gives single-pane windows the annual insulating performance of double-pane windows - and gives double-pane windows the annual insulating performance of triple-pane windows.

  14. Energy Performance Ratings for Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Energy performance ratings make it easier to shop for energy-efficient windows, doors, and skylights.

  15. Highly Insulating Residential Windows Using Smart Automated Shading

    Broader source: Energy.gov [DOE]

    Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

  16. Integral window hermetic fiber optic components

    SciTech Connect (OSTI)

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  17. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  18. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A.

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  19. Window for radiation detectors and the like

    DOE Patents [OSTI]

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  20. Solar optical materials for innovative window design

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-08-01

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  1. Interior and Exterior Low-E Storm Window Installation

    SciTech Connect (OSTI)

    Witters, Sarah

    2014-09-03

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings. A new and improved low-e storm window boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement. A recent whole-home experiment performed by PNNL suggests that attaching low-e storm windows can result in as much energy savings replacing the windows.

  2. Predicting Electrochemical Windows of Nitrogen Containing Aromatic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecules - Joint Center for Energy Storage Research October 20, 2014, Research Highlights Predicting Electrochemical Windows of Nitrogen Containing Aromatic Molecules Various nitrogen containing aromatic base molecules and a descriptive relationship derived to predict their reduction potentials is shown. Scientific Achievement A descriptive relationship is derived for computing reduction potentials of quinoxaline derivatives from the orbital energies of the neutral molecules without

  3. Determining window solar heat gain coefficient

    SciTech Connect (OSTI)

    Harrison, S.J.; Wonderen, S.J. van . Solar Calorimetry Lab.)

    1994-08-01

    The solar heat gain characteristics of fenestration systems impact daytime building energy performance, occupant comfort and utility load demands. A measure of the fraction of available solar energy entering a building interior per unit window area is defined as the solar heat gain coefficient (SHGC). Together with a window's thermal transmittance (U-value), the SHGC is used to compare fenestration products, and it allows for the calculation of energy rating number and annual energy performance. The need to measure and compared advances in window technology has led to the development of experimental and analytical methods for the determination of SHGC performance. Several test facilities currently or previously capable of performing SHGC measurements exist worldwide. Results experimentally determined using these facilities have provided design data for handbook tables, and have been instrumental in the development and validation of predictive analytical methods and computer simulation tools. However, these facilities have operated without a standard test procedure for SHGC performance. Consequently, recent efforts have been focused on developing consensus test procedures for the evaluation of window energy performance.

  4. Windows and Envelope Sub-Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Envelope Sub-Program Overview Karma Sawyer, Ph.D. - Technology Manager karma.sawyer@ee.doe.gov Presented by Patrick Phelan 2 BTO's Integrated Approach Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings Codes and Standards * Establish minimum energy use in a

  5. Environmentally Benign Electrolytes With Wide Electrochemical Windows -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Environmentally Benign Electrolytes With Wide Electrochemical Windows DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing SummaryAs mobile electronics continue to evolve, the need for safe, long-lasting rechargeable batteries has grown tremendously. In the search for suitable materials from which to construct high energy density solid state batteries, one of the principal obstacles has

  6. Energy Performance Ratings for Windows, Doors, and Skylights...

    Energy Savers [EERE]

    The NFRC label can be found on all ENERGY STAR qualified window, door, and skylight ... U-factor is the rate at which a window, door, or skylight conducts non-solar heat flow. ...

  7. Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  8. A Tale of Three Windows: Part 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We live in Colorado, and that means cold winters with hot summers -- so the type of window we choose makes a difference in performance. Energy Savers gives great advice for window ...

  9. My Energy Audit, Part 2: Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    My Energy Audit, Part 2: Windows My Energy Audit, Part 2: Windows July 9, 2012 - 1:48pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Last time I wrote ...

  10. Improving the Energy Efficiency of Existing Windows | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? ...

  11. Core Research Support for BTO Windows/Envelope Programs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, as a major element of the building envelope, are an important factor in the overall energy use of buildings. Heat transfer through windows accounts for 4 quads of primary ...

  12. New Window Technology Saves Energy and the View | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National...

  13. Updating the Doors and Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace...

  14. Purchasing Energy-Efficient Windows | Department of Energy

    Office of Environmental Management (EM)

    Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and ...

  15. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 ... Executive Report, May 2010, Exhibit D.8 Conventional Residential Window Glass Usage, p. 52

  16. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    1 Residential Prime Window Sales, by Frame Type (Million Units) (1) New Construction 1990 ... for 2000 and 2003; and LBNL, Savings from Energy Efficient Windows, Apr. 1993, p. 6 for ...

  17. Numerical prediction of window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.G.

    1995-08-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining windows U-factors (EE 1983; Goss and Curcija 1994; Standaert 1985; CSA 1993a; NFRC 1991), there has been little work to data on using numerical methods to predict condensation potential. It is perhaps of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a precursor to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building material, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products as part of its mandate from the US Department of Energy (DOE). A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing to reduce the cost and time required for implementation and increase the flexibility of the rating method. This paper outlines one of the necessary components in the application of numerical methods for evaluating condensation in fenestration products. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products.

  18. Energy and Power Evaluation Program for Windows

    Energy Science and Technology Software Center (OSTI)

    2000-06-27

    ENPEP for windows has its origins in the DOS version of the software, however, the Windows release is significantly modified and rather different in structure and capabilities from the older DOS version of ENPEP. ENPEP for Windows provides the user with a graphical interface for designing a comprehensive model of the energy system of a country or region. The BALANCE submodel processes a representative network of all energy production, conversion, transport, distribution, and utilization activitiesmore » in a country (or region) as well as the flows of energy and fuels among these activities. The objective of the model is to simulate energy market and determine energy supply and demand balance over a long-term period of up to 75 years. The environmental aspect is also taken into account by calculating the emissions of various pollutants. In addition to the energy costs, the environmental costs are also calculated by the model. These costs can be used to affect the solution found by the market equilibrium algorithm. The main purpose of the software is to provide analytical capability and tools for the various analyses of energy and environmental systems, as well as for development of long-term energy strategy of a country or region.« less

  19. COMPUTER SIMULATIONS OF WAVEGUIDE WINDOW AND COUPLER IRIS FOR PRECISION MATCHING

    SciTech Connect (OSTI)

    Lee, Sung-Woo; Kang, Yoon W; Shin, Ki; Vassioutchenko, Alexandre V

    2011-01-01

    A tapered ridge waveguide iris input coupler and a waveguide ceramic disk windows are used on each of six drift tube linac (DTL) cavities in the Spallation Neutron Source (SNS). The coupler design employs rapidly tapered double ridge waveguide to reduce the cross section down to a smaller low impedance transmission line section that can couple to the DTL tank easily. The impedance matching is done by adjusting the dimensions of the thin slit aperture between the ridges that is the coupling element responsible for the power delivery to the cavity. Since the coupling is sensitive to the dimensional changes of the aperture, it requires careful tuning for precise matching. Accurate RF simulation using latest 3-D EM code is desirable to help the tuning for maintenance and spare manufacturing. Simulations are done for the complete system with the ceramic window and the coupling iris on the cavity to see mutual interaction between the components as a whole.

  20. The conformal window of deformed conformal field theories in the planar limit

    SciTech Connect (OSTI)

    Vecchi, Luca

    2010-08-15

    We discuss in the planar approximation the effect of double-trace deformations on conformal field theories. We show that this large class of models posses a conformal window describing a nontrivial flow between two fixed points of the renormalization group and reveal the presence of a resonance which we associate to the remnant of a dilaton pole. As the conformal window shrinks to zero measure, the theory undergoes a conformal phase transition separating a symmetric from a nonsymmetric phase. The recently conjectured strongly coupled branch of nonsupersymmetric, non-Abelian gauge theories with a large number of flavors is analyzed in light of these results, and a model for the strong branch is proposed. Some phenomenological implications in the context of unparticle physics are also emphasized.

  1. Windows and Building Envelope Overview - 2015 BTO Peer Review | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Building Envelope Overview - 2015 BTO Peer Review Windows and Building Envelope Overview - 2015 BTO Peer Review Presenter: Bahman Habibzadeh, U.S. Department of Energy View the Presentation Windows and Building Envelope Overview - 2015 BTO Peer Review (1.13 MB) More Documents & Publications Window and Envelope Technologies Overview - 2014 BTO Peer Review Windows and Envelope Subprogram Overview - 2016 BTO Peer Review 2014 Building Technologies Office Program Peer Revi

  2. Window, Door, and Skylight Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR®

  3. New Rating System for Enhancing Window Energy Performance

    Broader source: Energy.gov [DOE]

    Window attachments, such as awnings, shutters, drapes, and solar shades, are often used for cosmetic purposes and to help control the amount of light entering a room. However, many Americans aren't aware that identifying energy conserving window strategies are cost effective in homes and commercial buildings. The Window Covering Manufacturers Association (WCMA) will cost-share Energy Department funding to help consumers realize potential energy savings from window attachments through the creation of a comprehensive energy ratings and certification program.

  4. A double-double/double-single computation package

    Energy Science and Technology Software Center (OSTI)

    2004-12-01

    The DDFUNIDSFUN software permits a new or existing Fortran-90 program to utilize double-double precision (approx. 31 digits) or double-single precision (approx. 14 digits) arithmetic. Double-double precision is required by a rapidly expandirtg body of scientific computations in physics and mathematics, for which the conventional 64-bit IEEE computer arithmetic (about 16 decimal digit accuracy) is not sufficient. Double-single precision permits users of systems that do not have hardware 64-bit IEEE arithmetic (such as some game systems)more » to perform arithmetic at a precision nearly as high as that of systems that do. Both packages run significantly faster Than using multiple precision or arbitrary precision software for this purpose. The package includes an extensive set of low-level routines to perform high-precision arithmetic, including routines to calculate various algebraic and transcendental functions, such as square roots, sin, ccc, exp, log and others. In addition, the package includes high-level translation facilities, so that Fortran programs can utilize these facilities by making only a few changes to conventional Fortran programs. In most cases, the only changes that are required are to change the type statements of variables that one wishes to be treated as multiple precision, plus a few other minor changes. The DDFUN package is similar in functionality to the double-double part of the GD package, which was previously written at LBNL. However, the DDFUN package is written exclusively in Fortran-90, thus avoidIng difficulties that some users experience when using GD, which includes both Fortran-90 and C++ code.« less

  5. Chromosome doubling method

    DOE Patents [OSTI]

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  6. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  7. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  8. DOE Zero Energy Ready Home Case Study: Transformations, Inc., Custom House, Devens, Massachusetts

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This single-family home features a superinsulated shell with 12-inch double walls filled with open cell spray foam, as well as R-5 triple-pane windows. The 18.33 kW photovoltaic system can produce all the electricity the home can use in a year with enough left over to power an electric car for 30,000 miles.These features helped the builder to win a 2013 Housing Innovation Award in the custom home category.

  9. DOE Zero Energy Ready Home Case Study: Transformations Inc., Custom House, Devens, MA

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Devens, MA, that scored HERS 34 without PV or HERS -21 with PV. This 3,168-square-foot custom home has R-46 double-stud walls, a vented attic with R-67 blown cellulose, plus R-10 rigid XPS under the slab, R-20 closed-cell spray foam on basement walls, triple-pane windows, and mini-split ductless heat pumps.

  10. DOE Zero Energy Ready Home Case Study: Transformation Inc., Production House, Devens, MA

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Devens, MA, that scored HERS 35 without PV or HERS -37 with PV. This 2,508-square-foot custom home has R-46 double-stud walls with open-cell spray foam, a vented attic with R-67 blown cellulose, plus R-10 rigid XPS under the slab, R-20 closed-cell spray foam on basement walls, triple-pane windows, and one mini-split ductless heat pump.

  11. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, WA, Systems Home

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 34 without PV. This 2,000-square-foot system home has R-45 double-stud walls, an unvented flat roof with 2 inches of spray foam plus 18 inches blown cellulose, R-42 XPS under slab, triple-pane windows, and a ductless mini-split heat pump.

  12. Building America Whole-House Solutions for New Homes: Rural Development,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc., Greenfield, Massachusetts | Department of Energy Rural Development, Inc., Greenfield, Massachusetts Building America Whole-House Solutions for New Homes: Rural Development, Inc., Greenfield, Massachusetts Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV. Rural

  13. Double Flash | Open Energy Information

    Open Energy Info (EERE)

    Double Flash Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDoubleFlash&oldid599606...

  14. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  15. How Have You Improved the Efficiency of Your Windows? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each

  16. Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows...

    Office of Environmental Management (EM)

    energy at home. | Graphic by the Energy Department. Updated Energy Saver Guide Helps You Save Energy and Money at Home Energy saving DIY projects improve home energy-efficiency...

  17. Savings Project: How to Weatherstrip Double-Hung (or Sash) Windows...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Updated Energy Saver Guide Helps You Save Energy and Money at Home Energy saving DIY projects improve home energy-efficiency and save you money. | Photos courtesy of ...

  18. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  19. Single level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  20. Bi-level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  1. Simulating Complex Window Systems using BSDF Data

    SciTech Connect (OSTI)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  2. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  3. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  4. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  5. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  6. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  7. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  8. Covered Product Category: Residential Windows, Doors, and Skylights |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition guidance for residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most

  9. Windows and Building Envelope Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market entry & acceptance of window & building envelope product installation Improve testing & modeling capabilities, including window design tools to enable market adoption Technology pathways & research reports Improve performance & cost of near-term technologies & reduce manufacturing costs Documented low cost infiltration measurement methods Competitively funded projects to model attachments in window software tools Government, standards & industry orgs. & EE

  10. 13-Energy Efficiency Ratio Window Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Energy Efficiency Ratio Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Credit: Oak Ridge National Lab Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT DOE Funding: $1,540,000 Cost Share: Provided by CRADA partners Project Term: October 1, 2011 - September 30, 2015 Project Objective This project is designing and developing a high-efficiency 13 energy-efficiecy-ratio (EER) window air

  11. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Window and Envelope Technologies Overview - 2014 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided...

  12. NM company wants to turn your windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM company wants to turn your windows into solar panels NM company wants to turn your windows into solar panels "There's an opportunity to generate electricity and power buildings with their windows" August 1, 2016 The UbiQD Team The UbiQD team celebrates the opening of its new quantum dot manufacturing facility in Los Alamos July 29. Contact Hunter McDaniel UbiQD Email UbiQD LLC, a quantum dot company, says it can turn windows into solar generators. "There's an opportunity to

  13. NREL Solves Residential Window Air Conditioner Performance Limitations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning ...

  14. Energy-Efficient Smart Windows are Lowering Energy Costs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratory are cutting energy cost for American families, businesses, institutions, and governments ...

  15. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, C.M.

    1996-04-16

    A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

  16. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, Clinton M.

    1996-01-01

    A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

  17. Energy-Efficient Smart Windows are Lowering Energy Costs

    Broader source: Energy.gov [DOE]

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratoryare cutting energy cost for American families, businesses, institutions, and governments every year. With...

  18. Suntuitive(tm): Sunlight-Responsive Thermochromic Window Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Provides a thermochromic interlayer that can be supplied to laminators and window manufacturers worldwide. Contact Information Curtis Liposcak (608) 216-5373 CurtisL@pleotint.com ...

  19. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Envelope Technologies Overview - 2014 BTO Peer Review Window and Envelope Technologies Overview - 2014 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This ...

  20. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  1. Highly Insulating Residential Windows Using Smart Automated Shading...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These windows target significant reductions in residential heating as well as cooling energy. Contacts DOE Technology Manager: Karma Sawyer Performer: Steve Selkowitz, Lawrence ...

  2. Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  3. Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

    Broader source: Energy.gov [DOE]

    Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

  4. Electrochromic Window Demonstration- Donna Land Port of Entry

    Broader source: Energy.gov [DOE]

    Donna Project Plan: Electrochrome Window Demonstration Measurement and Verification Report This report details the measurement and verification tools and methods used to evaluate the effectiveness of electrochromic windows at the Donna Land Port of Entry, an international border crossing between the United States and Mexico located in Texas.

  5. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming; Wang, Jin

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  6. Research and Development Roadmap: Windows and Building Envelope

    Broader source: Energy.gov [DOE]

    Windows and building envelope research and development is a high priority for the Building Technologies Office. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  7. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  8. Building America Whole-House Solutions for Existing Homes: Conway...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and ...

  9. Seattle City Light - Multi-Family Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    for common area lighting and weatherization measures including the installation of dual-pane windows and increased insulation, although insulation-only jobs are not eligible...

  10. Multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  11. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  12. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  13. Fighting with South-Facing Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fighting with South-Facing Windows Fighting with South-Facing Windows June 13, 2011 - 3:20pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, back when it was cold out (and, this being Colorado, that was last month), my south-facing windows were awesome. They let in tons of light and kept the entire place snug and warm. I barely even needed to break out the blankets! But Colorado's weather likes to mess with you, so it recently decided that it was done with

  14. Effect of window reflections on photonic Doppler velocimetry measurements

    SciTech Connect (OSTI)

    Ao, T.; Dolan, D. H.

    2011-02-15

    Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

  15. A HIGH-POWER L-BAND RF WINDOW

    SciTech Connect (OSTI)

    R. RIMMER; G. KOEHLER; ET AL

    2001-05-01

    This paper discusses the design, fabrication and testing of a high power alumina disk window in WR1500 waveguide at L Band, suitable for use in the NLC damping ring RF cavities at 714 MHz and the LEDA Accelerator at 700 MHz. The design is based on the fabrication methods used for the successful PEP-II cavity windows. Four prototype windows at 700 MHz have been produced by LBNL for testing at LANL. The RF design and simulation using MAFIA, laboratory cold test measurements, fabrication methods and preliminary high power test results are discussed.

  16. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Christian Kohler, cjkohler@lbl.gov Steve Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Highly insulating Residential Windows Using Smart Automated Shading 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 4/1/2013 Planned end date: 3/31/2016 Key Milestones 1. Window designs meeting FOA targets 9/30/2013 2. Prototype window with integrated sensors, ENERGY STAR level performance 12/31/2013 Budget: Total DOE $ to date: $783k (FY13-FY14)

  17. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    3 Nonresidential Window Sales, by Type and Census Region (Million Square Feet of Vision Area) (1) Northeast Midwest South West Total Type 1995 2009 1995 2009 1995 2009 1995 2009 1995 2009 New Construction Commercial Windows (2) 4 15 16 22 21 58 13 25 54 120 Curtain Wall 3 10 6 16 16 41 8 18 33 84 Store Front 7 10 11 16 14 41 11 18 43 85 Total (3) 14 36 33 53 51 140 32 60 130 289 Remodeling/Replacement Commercial Windows (2) 18 12 25 17 46 45 27 19 116 93 Curtain Wall 4 2 6 3 8 7 10 3 28 15 Store

  18. Company Rehires Unemployed Workers for Energy Efficient Window Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down

  19. Residential Lighting Usage Estimate Tool, v1.0, Windows version...

    Energy Savers [EERE]

    Windows version Residential Lighting Usage Estimate Tool, v1.0, Windows version Windows version of the Residential Lighting Usage Estimate Tool, v1.0. Spreadsheet More Documents &...

  20. Repairing Windows & Doors: How To's for the Handy Homeowner

    SciTech Connect (OSTI)

    2006-01-05

    This brochure contains tips for homeowners to repair windows and doors in their home that sustained hurricane damage. This publication is a part of the How To's for the Handy Homeowner Series.

  1. Department of Energy Announces 14 New Projects for Window Efficiency...

    Office of Environmental Management (EM)

    ... The team's thermal barrier is based on liquid crystalline phases of nano-cellulose aerogel that have low-emissivity properties, which will help prevent heat loss through windows. ...

  2. EERE Success Story-Pennsylvania: Window Technology First of Its...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In support of DOE's goal to reduce energy consumption in buildings by 50% by 2030, EERE utilized 1.3 million of Recovery Act funding to support window manufacturer Traco, a ...

  3. Research and Development Roadmap: Windows and Building Envelope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and ...

  4. High-Efficiency Window Air Conditioners- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

  5. Energy Performance Ratings for Windows, Doors, and Skylights...

    Broader source: Energy.gov (indexed) [DOE]

    the rate of air movement around a window, door, or skylight in the presence of a specific pressure difference across it. It's expressed in units of cubic feet per minute per square...

  6. A Design Guide for Early-Market Electrochromic Windows

    SciTech Connect (OSTI)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

    2006-05-01

    Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

  7. Multilayered Microelectronic Device Package With An Integral Window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  8. Sealed symmetric multilayered microelectronic device package with integral windows

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.

  9. High-Power Ka-Band Window and Resonant Ring

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  10. Window Manufacturer Sees Business Surge As Weatherization Supplier...

    Broader source: Energy.gov (indexed) [DOE]

    impact because of weatherization," says Mark Barr, a third-generation owner of 70-year-old family window manufacturing business Harry G. Barr Company, located in Fort Smith, Ark. ...