Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2014 Offshore Wind Market & Economic Analysis Cover Photo | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Navigant 2014 Offshore Wind Market and Economic Analysis.JPG More...

2

Photo of the Week: Wheat and Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wheat and Wind Wheat and Wind Photo of the Week: Wheat and Wind December 14, 2012 - 2:33pm Addthis From 262 feet in the air, 90 General Electric towers rise over Wheatland County, Montana, generating electricity for portions of the northwest United States. With an installed capacity of 135 MW, the Judith Gap Energy Center is one of the strongest wind farms in Montana. The blades begin spinning when winds reach just eight miles per hour, and at their highest point, tower almost 400 feet above the ground. In this photo, the wind turbines rotate while overlooking Wheatland County's main agricultural product: wheat. | Photo courtesy of Idaho National Laboratory Wind Energy Program. From 262 feet in the air, 90 General Electric towers rise over Wheatland County, Montana, generating electricity for portions of the northwest

3

Water Power For a Clean Energy Future Cover Photo | Department...  

Energy Savers [EERE]

Water Power For a Clean Energy Future Cover Photo Water Power For a Clean Energy Future Cover Photo Water Power For a Clean Energy Future Cover.JPG More Documents & Publications...

4

Photo of the Week: Cold as Ice - Using Titan to Build More Efficient Wind  

Broader source: Energy.gov (indexed) [DOE]

Cold as Ice - Using Titan to Build More Cold as Ice - Using Titan to Build More Efficient Wind Turbines Photo of the Week: Cold as Ice - Using Titan to Build More Efficient Wind Turbines January 10, 2014 - 2:53pm Addthis Wind energy is one of the world's fast-growing energy sources -- and many of the regions that could benefit from wind energy happen to be in cold climates. Since 2005, scientists at GE Global Research have been researching, developing and testing materials in freezing conditions. By developing more efficient materials for wind turbines, researchers can increase turbine efficiency and reduce potential downtime for wind turbines in cold climates. The teams use Oak Ridge National Laboratory's Titan, the world's most powerful supercomputer, to simulate hundreds of water droplets as they freeze, with each droplet containing one million molecules. By simulating and studying how water freezes on a molecular level, scientists are gaining an understanding of how ice forms, which will help them design better, more efficient materials for these colder climates. Pictured here is an illustration of a single water droplet, filled with molecules freezing in slow motion. Learn more about their research here. | Photo/visualization courtesy of M. Matheson, Oak Ridge National Laboratory.

5

Photo of the Week: Argonne's 10 kW Wind Turbine | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week: Argonne's 10 kW Wind Turbine Photo of the Week: Argonne's 10 kW Wind Turbine Photo of the Week: Argonne's 10 kW Wind Turbine November 9, 2012 - 11:57am Addthis At Argonne National Laboratory, the power generated by this 10 kW wind turbine helps scientists and engineers study the interaction of wind energy, electric vehicle charging and grid technology. The turbine is also estimated to offset more than 10 metric tons of greenhouse gas emissions annually. Learn more about renewable energy research at Argonne. | Photo courtesy of Argonne National Laboratory. At Argonne National Laboratory, the power generated by this 10 kW wind turbine helps scientists and engineers study the interaction of wind

6

Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling  

E-Print Network [OSTI]

-i- Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling In Urban Areas........................................................................................................................................... 4 BENEFICIAL USES OF RECYCLED WATER................................................................................................ 5 MOTIVATIONS FOR RECYCLED WATER USE

Lund, Jay R.

7

Photos of One of the World's Largest Wind Farms | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photos of One of the World's Largest Wind Farms Photos of One of the World's Largest Wind Farms Photos of One of the World's Largest Wind Farms February 6, 2013 - 4:20pm Addthis 1 of 5 Image: Caithness Energy 2 of 5 Image: Caithness Energy 3 of 5 Image: Caithness Energy 4 of 5 Image: Caithness Energy 5 of 5 Image: Caithness Energy Arlington, OR Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Panoramic View See a landscape shot of the Shepherds Flat Wind Farm here America's clean energy industry continues to build momentum as Deputy Energy Secretary Daniel Poneman heads to Arlington, Oregon, to visit Shepherds Flat -- the world's largest financed wind farm. Located about 135 miles from Portland, Shepherds Flat generates up to 845 megawatts of wind power everyday -- enough clean electricity to power

8

Photo of the Week: Eye-to-Eye with a Wind Turbine | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Eye-to-Eye with a Wind Turbine Eye-to-Eye with a Wind Turbine Photo of the Week: Eye-to-Eye with a Wind Turbine August 7, 2013 - 10:35am Addthis At the National Renewables Energy Laboratory (NREL), scientists use the Insight Center Collaboration Room to examine and interact with their data. In this simulation, the room is converted into a virtual wind tunnel, allowing scientists to study the complex, turbulent flow fields around wind turbines. Pictured here, NREL Senior Scientist Kenny Gruchalla examines the velocity field surrounding a wind turbine, using a 3-D model projected onto the center's 16-by-8 foot wall. The simulation helps scientists better understand flow patterns, and further, how turbines can better avoid gearbox failures. Learn more about the Insight Center Collaboration Room. | Photo courtesy of Dennis Schroeder, NREL.

9

Microsoft Word - CameraWithBigPhotos_Wray_Wind_021012  

Broader source: Energy.gov (indexed) [DOE]

For For Pre-Approval Review DOE/EA - 1884 Yuma County, Colorado U. S. Department of Energy Western Area Power Administration February 2012 Wray Wind Energy Project Environmental Assessment For Pre-Approval Review DOE/EA - 1884 Yuma County, Colorado U. S. Department of Energy Western Area Power Administration February 2012 THIS PAGE INTENTIONALLY BLANK Table of Contents Wray Wind Energy Project EA for Pre-Approval Review Table of Contents i TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................. 1-1 1.1 BACKGROUND ................................................................................................................................. 1.1-1

10

Photo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

17, 1998 17, 1998 Number 8 Photo by Reidar Hahn Peoples Makes Fermilab's Case at Annual DOE Review Director shares struggle to balance present commitments and high-energy future. By Mike Perricone, Office of Public Affairs Fermilab Director John Peoples told a panel of DOE reviewers and outside experts that preparations for Collider Run II at the Tevatron were consuming most of the Laboratory's resources, leaving little room for work on anything else, including the future of the field. "We face a difficult choice between superb science now and having a lab with a future," he said. The wood-paneled room was still, with overhead slides contrasting budget figures with f INSIDE 3 Annual Review 5 Muon Collider 6 Fermilab's Drivers 8 CP Violation 13 Essay Contest 14 Peña Legacy

11

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: Energy.gov [DOE]

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

12

Flat Water Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Flat Water Wind Farm Flat Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Gestamp Wind North America Developer Flat Water Wind Farm Energy Purchaser Omaha Public Power District Location Richardson County NE Coordinates 40.001077°, -95.955119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.001077,"lon":-95.955119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Sandia National Laboratories: Wind & Water Power Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Program. Events Register by August 11th to receive discounted rate for...

14

WATER POWER SOLAR POWER WIND POWER  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generation YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. 2 The energy in wind can make electricity. We can make energy with moving water....

15

PERFORMANCE MODEL FOR MULTIBLADED WATER-PUMPING WIND-MILLS  

Science Journals Connector (OSTI)

ABSTRACT The steady and the dynamic equilibrium of a multibladed water-pumping wind-mill has been studied under the assumption of a simple model. Good agreement has been found between theoretical and experimental results. KEYWORDS Wind energy; water-pumping wind-mills; wind-mill design; wind-mill test; performance optimization.

R. Pallabazzer

1986-01-01T23:59:59.000Z

16

U.S. Wind Energy Manufacturing & Supply Chain Cover Photo | Department...  

Energy Savers [EERE]

& Publications 2013 Distributed Wind Market Report Cover U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis 2014 Offshore Wind Market & Economic Analysis...

17

Wind Power Today, 2010, Wind and Water Power Program (WWPP) ...  

Office of Environmental Management (EM)

& Publications Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems A...

18

Photo Galleries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Photo Galleries About Energy.gov » News & Blog » Photo Galleries Photo Galleries Gallery Title Topic - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

19

Photo Galleries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News & Blog » Photo Galleries News & Blog » Photo Galleries Photo Galleries Gallery Title Topic - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

20

Photo Galleries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Photo Galleries About Energy.gov » News & Blog » Photo Galleries Photo Galleries Gallery Title Topic - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)  

Broader source: Energy.gov [DOE]

This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

22

First-principles thermodynamic screening approach to photo-catalytic water splitting with co-catalysts  

SciTech Connect (OSTI)

We adapt the computational hydrogen electrode approach to explicitly account for photo-generated charges and use it to computationally screen for viable catalyst/co-catalyst combinations for photo-catalytic water splitting. The hole energy necessary to thermodynamically drive the reaction is employed as descriptor for the screening process. Using this protocol and hybrid-level density-functional theory, we show that water oxidation on bare TiO{sub 2} surfaces is thermodynamically more complex than previously thought. This motivates a screening for suitable co-catalysts for this half-reaction, which we carry out for Au particles down to the non-scalable size regime. We find that almost all small Au clusters studied are better suited for water photo-oxidation than an extended Au(111) surface or bare TiO{sub 2} facets.

Oberhofer, Harald; Reuter, Karsten [Department Chemie, Technische Universitt Mnchen, Lichtenbergstr. 4, D-85747 Garching (Germany)] [Department Chemie, Technische Universitt Mnchen, Lichtenbergstr. 4, D-85747 Garching (Germany)

2013-07-28T23:59:59.000Z

23

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

24

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

25

Wind Power Career Chat, Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

Rackstraw Developer, Rackstraw Consulting LLC 1. How did you become interested in wind energy? I wanted to work in a "green" technology, and I happened to see a job posting to...

26

Hangman Catalysis for Photo- and Photoelectro- Chemical Activation of Water  

SciTech Connect (OSTI)

The focus of this DOE program is solar fuels specifically the chemistry for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) from water and the oxygen reduction reaction (ORR) to water These three reactions are at the heart of renewable energy conversion. The bond-making and bond-breaking chemistry that underpins these transformations is not well understood. We are developing insight into such chemistry by creating a series of ligand constructs that poise an acid-base functionality over a redox active metal platform. These hangman ligands utilize the acid-base functionality to form a secondary coordination sphere that can assist proton movement and facilitate substrate assembly and activation within the molecular cleft. The grant period funding cycle focused on synthesis and reactivity of hangman porphyrins and corroles for HER, OER and ORR.

Nocera, Daniel

2014-04-15T23:59:59.000Z

27

Wind and Water Power Technologies FY'14 Budget At-a-Glance |...  

Energy Savers [EERE]

Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance, a...

28

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office Funding in the United States: MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER...

29

Water Power for a Clean Energy Future (Fact Sheet), Wind and...  

Energy Savers [EERE]

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This...

30

Solar process water heat for the Iris Images Custom Color Photo Lab. Final report  

SciTech Connect (OSTI)

This is the final technical report of the solar facility locted at Iris Images Custom Photo Laboratory in Mill Valley, California. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100/sup 0/F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxiliary back up system is a conventional gas-fired water heater. Freeze protection in this mild climate was originally provided by closed-loop circulation of hot water from the storage tank. Later this was changed to a drain-down system due to a freeze when electrical power failed. This system has been relatively successful with little or no scheduled maintenance. The site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are included.

Not Available

1980-03-01T23:59:59.000Z

31

The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination  

E-Print Network [OSTI]

A wind-powered reverse osmosis membrane (wind-membrane) system without energy storage was tested using synthetic brackish water (2750 and 5500 mg/L NaCl) over a range of simulated wind speeds under both steady-state and ...

Park, Gavin L.; Schfer, Andrea; Richards, Bryce S.

2011-01-01T23:59:59.000Z

32

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...  

Broader source: Energy.gov (indexed) [DOE]

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production...

33

Numerical simulation of solitary wave generation in a wind-water annular tunnel  

Science Journals Connector (OSTI)

We briefly describe laboratory experiments demonstrating wind-water solitary wave generation in a wind-water annular tunnel. A mathematical model of this phenomenon is constructed in the context of a shallow-w...

T. G. Elizarova; M. A. Istomina

2012-11-01T23:59:59.000Z

34

2013 Distributed Wind Market Report Cover | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications U.S. Wind Energy Manufacturing & Supply Chain Cover Photo 2013 Wind Technologies Market Report Cover 2014 Offshore Wind Market & Economic Analysis Cover Photo...

35

Wind Industry Training for Our Military Veterans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans May 31, 2012 - 4:43pm Addthis Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Debbie Schultheis Technical Project Officer, Wind and Water Power Program

36

Wind Industry Training for Our Military Veterans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans May 31, 2012 - 4:43pm Addthis Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Debbie Schultheis Technical Project Officer, Wind and Water Power Program

37

Strengthening Americas Energy Security with Offshore Wind (Fact Sheet) (Revised), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

crane mounted on a barge designed for offshore crane mounted on a barge designed for offshore wind turbine installation lifts a rotor into place. Photo courtesy of © DOTI 2009-alpha ventus Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing. However, realizing these benefits will require overcoming key barriers to the development and deployment of offshore wind technology, including its relatively high cost of energy, technical challenges surrounding installation and

38

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

than 250 groundwater wells to support new treatment and monitoring systems. In this photo, workers from the subcontractor Water Development complete a well at the 200-ZP-1...

39

Wind Energy Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

40

Photo Upload Photo Selection Guide  

E-Print Network [OSTI]

Photo Upload Photo Selection Guide It is important that your photo is suitable for use on your College Card so please ensure that you follow this guidance when selecting a photo to upload. Technical Requirements Photo height: Between 400 and 1280 pixels Photo width: Between 300 and 960

Royal Holloway, University of London

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters  

E-Print Network [OSTI]

Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters Teruo to evaluate the accuracy of offshore wind simulation with the mesoscale model MM5, long-term simulations to simulate offshore wind conditions in the Japanese coastal waters even using a mesoscale model, compared

Heinemann, Detlev

42

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia River Gorge. Photo: C. Bruce Forster  

E-Print Network [OSTI]

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia and wildlife recovery. At a conceptual level, the Act aimed for a power system that would meet energy demands pressure off Columbia River fish and wildlife. For the power system, moving ahead would require modified

43

Goniometric measurement of power scattered from wind driven water surfaces  

Science Journals Connector (OSTI)

A recently constructed 11?ft 3?axis semiautomatic underwater goniometer has made possible precision measurement of acoustic power scattered from the statistically stationary wind driven water surface at Yale. Measurements have been made over 180 of azimuth and at several grazing angles. These measurements have been corrected for beam patterns and pulse shape to give a scattering cross section for the surfaces and geometries studied. The results of these measurements indicate that current mathematical models of the scattering process are not able to predict spatial distribution of scattered power in all cases.

J. G. Zornig

1976-01-01T23:59:59.000Z

44

A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator  

Science Journals Connector (OSTI)

Abstract Three phase induction generators are widely used for single phase operation in wind based micro-generation schemes to cater single phase loads due to various advantages. This paper presents an improved control methodology for self excited three phase induction generator operating in single phase mode. The excitation is controlled through an inverter with Photo-Voltaic (PV) panels providing power to the dc bus. The proposed technique enables the generator for building up voltage from low wind speeds compared to conventional three phase machines. A capacitor connected across load terminals reduces the reactive power supplied by the inverter connected across the other two phases. Gravitational search algorithm (GSA) is used to calculate the switching angles of the inverter under various load and wind speeds for minimum Total Harmonic Distortion (THD) of the generated voltage. The proposed induction generator is aimed to be conveniently used in remote and grid isolated areas as a portable source of electrical power driving single phase loads. Simulations and experiments performed on a 3-phase 1kW, 415V, 50Hz, 1440r/min induction machine validates the proposed concept.

Arunava Chatterjee; Krishna Roy; Debashis Chatterjee

2014-01-01T23:59:59.000Z

45

Photo Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

media Photo Gallery history History Historical photos of LLNL, the Nevada Test Site, early laser systems, and the construction of NIF Laser Laser Beampath NIF's Master Oscillator...

46

Wind and Water Power Program Realignment | Department of Energy  

Office of Environmental Management (EM)

agencies, local communities, and research and development consortia. U.S. Department of Energy Wind Power Program Organization U.S. Department of Energy Wind Power Program...

47

Photo Credit: David Development of a decision  

E-Print Network [OSTI]

Photo Credit: David H. Uthe Development of a decision support model to quantify water use/2004, Water Sustainability Undergraduate Fellowship Program #12;Photo Credit: David H. Uthe Objective, and vegetation water use in riparian areas characteristic of the state of AZ. Photo Credit: Gertrud Konings Photo

Fay, Noah

48

U.S. Department of Energy Wind and Water Power Program Funding...  

Energy Savers [EERE]

the intake maintenance device, minimizing the need for burning debris, and thus reducing air pollution. continued > WIND AND WATER POWER TECHNOLOGIES OFFICE 4 Table 1: FY 2008 -...

49

Wind Effects on the Water in a Narrow Two-Layered Lake  

Science Journals Connector (OSTI)

5 May 1966 research-article Wind Effects on the Water in a Narrow Two-Layered...movement in a long narrow lake subject to wind action during the summer season of thermal...the basin to an instantaneous rise in the wind stress applied tangentially over the surface...

1966-01-01T23:59:59.000Z

50

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

51

Wind and Water Power Technologies FY'14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

1 WIND & WATER POWER TECHNOLOGIES WIND POWER PROGRAM FY14 BUDGET AT-A-GLANCE Wind and Water Power Technologies accelerates U.S. deployment of clean, affordable and reliable domestic wind power through research, development and demonstration. These advanced technology investments directly contribute to the President's goals for the United States to double renewable electricity generation again by 2020 and to achieve 80 percent of its electricity from clean, carbon-free energy sources by 2035 through reducing costs and increasing performance of wind energy systems. Wind power currently provides 3.5 percent of the nation's electricity, and more wind-powered electricity generation capacity was installed in the United States in 2012 than

52

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

World War II Official Building Numbers: B Reactor Area: 100BC Description: In this photo from World War II, B Reactor can be seen between the water towers on the right side of...

53

E-Print Network 3.0 - air-lift water-pumping wind-turbines Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water-pumping wind-turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: air-lift water-pumping wind-turbines Page: << < 1 2 3 4 5 > >> 1 Review...

54

Wind for Schools Project Curriculum Brief (Fact Sheet), Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

Introduction Introduction The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding educa- tion to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institu- tions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more gradu- ate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initia-

55

An Update on the National Offshore Wind Strategy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 11:27am Addthis Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Jose Zayas Jose Zayas Program Manager, Wind and Water Power Program Get the Details on Offshore Wind Take a look at our National Offshore Wind Strategy for information

56

AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES  

E-Print Network [OSTI]

to : , with the air-density, u and w the horizontal and vertical components of the wind speed, u* the friction and the viscous drag at the sea sur- face, we build two new microphysical devices: 1) the wind-speed vertical of the vertical profile of the normalized phase-averaged wind-speed in the air-viscous layer (1mm above water

Paris-Sud XI, Université de

57

Design of stand-alone brackish water desalination wind energy system for Jordan  

SciTech Connect (OSTI)

More than 100 underground water wells drilled in Jordan are known to have brackish water with total desolved solids (TDS) over 1500 ppm but not greater than 4000 ppm. The world standard for potable water limits the TDS count to 500 ppm in addition to being free from live microorganisms or dangerous mineral and organic substances. A reverse osmosis desalination scheme powered by a stand-alone wind energy converter (WEC) is proposed to produce fresh water water from wells located in potentially high-wind sites. The purpose of this study if to present the main design parameters and economic estimates of a wind-assisted RO system using a diesel engine as the baseline energy source and an electric wind turbine for the wind energy source. It is found that brackish water pumping and desalinating using WECs costs 0.67 to 1.16 JD/m[sup 3] (JD = Jordanian Dinar, 1US$ = 0.68 JD), which is less than using conventional diesel engines especially in remote areas. In addition, the wind-reverse osmosis system becomes more economically feasible for higher annual production rates or in good wind regimes.

Habali, S.M.; Saleh, I.A.

1994-06-01T23:59:59.000Z

58

Wind Energy Ordinances (Fact Sheet), Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

With increasing energy demands in the With increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experi- ence with wind energy are now becom- ing involved. Communities with good wind resources are increasingly likely to be approached by entities with plans to develop wind projects. These opportunities can create new revenue in the form of construction jobs and land lease payments. They also create a new responsibility on the part of local governments to regulate wind turbine installations through ordinances. Ordinances, often found within munici- pal codes, provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, con- sumer protection, and building codes.

59

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

60

Blue Ribbon Panel on Development of Wind Turbine Facilities in Coastal Waters  

E-Print Network [OSTI]

Executive Order, creating this Panel and charging it with "identifying and weighing the costs and benefits Jersey has actively encouraged the use of renewable energy including solar and wind power; and WHEREAS as the issues relevant to wind turbines in coastal waters and to New Jersey's energy future are complex

Firestone, Jeremy

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Photos | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photos Photos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial lighting --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Geothermal energy ---Hydropower ---Solar energy ---Wind energy --Fossil fuels ---Coal ----Carbon capture & sequestration ---Oil ---Natural Gas --Hydrogen --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ----Geology & disposal

62

Photos | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photos Photos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial lighting --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Geothermal energy ---Hydropower ---Solar energy ---Wind energy --Fossil fuels ---Coal ----Carbon capture & sequestration ---Oil ---Natural Gas --Hydrogen --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ----Geology & disposal

63

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Broader source: Energy.gov (indexed) [DOE]

Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. Homeowner Andrea Mitchel, with installer Joe Guasti, proudly shows off small wind turbine installed in Oak Hills, CA. | Photo by Karin Sinclair, National Renewable Energy Laboratory.

64

Feasibility of the Application of a Spar-type Wind Turbine at a Moderate Water Depth  

Science Journals Connector (OSTI)

The feasibility of the application of a spar-type wind turbine at a moderate water depth is studied in this paper. In the oil and gas industries, spar-type offshore platforms are widely applied in deep water. The same idea is used in offshore wind technology to present the Hywind concept based on a catenary moored spar in deep water. The draft of the spar limits the application of spar-type wind turbines in shallow water. However, it is possible to design spar-type wind turbines for moderate water depths. The present article studies the feasibility and performance of such a design. A spar-type wind turbine at a moderate water depth called ShortSpar is introduced in the present article. A catenary moored spar-type support structure is applied as a base for the 5-MW NREL land-based turbine. The power performance, structural integrity and dynamic responses of a 5-MW catenary moored spar-type wind turbine in deep water (DeepSpar) have previously been studied. In the present article, the responses of the spar-type wind turbines, ShortSpar and DeepSpar, are compared. The HAWC2 code is used to carry out the coupled aero-hydro-servo-elastic analyses. Different environmental conditions are used to compare the responses. A dynamic link library (DLL) is used to feed the mooring forces at each time step into the HAWC2 code. The force-displacement relationships are obtained from the Simo-Riflex code. The comparison of the responses of ShortSpar and DeepSpar in different load cases indicates the feasibility of implementation of spar-type wind turbine in moderate water depths. The results show that the spar-type wind turbine at a moderate water depth exhibits good performance, and its responses are reasonable compared with those associated with a spar-type wind turbine in deep water. The total mass (the structural mass plus the ballast) of ShortSpar is 35% less than the mass of DeepSpar, while the statistical characteristics of the generated power are almost the same for both spars. This mass reduction for ShortSpar helps to achieve a more cost-effective solution for floating wind turbines at a moderate water depth.

Madjid Karimirad; Torgeir Moan

2012-01-01T23:59:59.000Z

65

Photo Gallery  

E-Print Network [OSTI]

Photo Gallery. Pictures by Nicola Garofalo. Luis Caffarelli. Luis Caffarelli. Luis Caffarelli. Yanyan Li. Lei Zhang. Marianne Korten. Luigi Ambrosio. Luigi Ambrosio.

66

Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

Keeping America Competitive: Bringing Down the Cost of Small Wind Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines January 23, 2013 - 2:26pm Addthis Bison standing in front of a 10 kW wind turbine manufactured by Bergey Windpower Company. | Photo by Northwest Seed, NREL. Bison standing in front of a 10 kW wind turbine manufactured by Bergey Windpower Company. | Photo by Northwest Seed, NREL. Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office How can I participate? Interested in a small wind turbine for your home? Here's information to guide you. How do we stay competitive in the global wind energy market? A key component is continued leadership in manufacturing small wind turbines - those rated at 100 kilowatts or less.

67

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VPP Outreach Award photo.JPG Gallery: VPP Program Title: VPP Outreach Award photo VPP Outreach Award photo Name: VPP Outreach Award photo Keywords: Award, Outreach, VPP...

68

Wind Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

69

Wind Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

70

Photo Filler  

Science Journals Connector (OSTI)

Photo filler (July 3, 2008;359:42). The title of the photograph printed on page 42 should have been Hyacinth Macaw rather than Blue Toucan. We regret the error. Photo filler (July 3, 2008;359:42). The title of the photograph printed on page 42 should have been Hyacinth Macaw rather than Blue Toucan. We regret the error.

2008-08-28T23:59:59.000Z

71

Photo Galleries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo Galleries Photo Galleries /_assets/images/sitename_image_placeholder.jpg Photo Galleries High-quality photos speak more than a thousand words about our science and technology, community outreach, collaborations, careers, and much more. Community» The Lab» Careers» Environment» Science & Technology» Collaborations» Events» For Visitors» SCIENCE & TECHNOLOGY IMAGES Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Astronomical simulation in the CAVE - 1 Astronomical simulation in the CAVE - 1 Scientist sees his reflection as he works on the Cibola satellite Scientist sees his reflection as he works on the Cibola satellite "Sniffing" bees trained for security

72

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...  

Energy Savers [EERE]

Department of Energy's Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and...

73

NREL: Wind Research - Get to Know a Wind Energy Expert  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Get to Know a Wind Energy Expert The Evolution of a Wind Expert A professional headshot photo of Maureen Hand Maureen Hand Maureen Hand knows wind. Growing up in Glenrock, Wyoming,...

74

Photo Galleries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

--Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water --Geothermal --Bioenergy -Fossil --Coal ---Carbon Capture &...

75

Photo-oxidation of Water by Molecular Oxygen: Isotope Exchange and Isotope Effects  

Science Journals Connector (OSTI)

In order to detect the reaction, we used water highly enriched with isotopes 17O and 18O, controlling the isotope composition of molecular oxygen before and after reaction. ... stability of heavy-isotope clumps'; slower kinetics of reactions requiring the breakage of bonds between heavy isotopes; the mass dependence of diffusive and thermo-gravitational fractionations; mixing between components that differ from one another in bulk isotopic compn.; biochem. ... Study of oxygen three-isotope behavior during thermal decompn. of naturally occurring carbonates of calcium and magnesium in vacuo revealed that, surprisingly, anomalous isotopic compns. ...

Anatoly L. Buchachenko; Elena O. Dubinina

2011-03-30T23:59:59.000Z

76

Offshore wind project surges ahead in South Carolina | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Offshore wind project surges ahead in South Carolina Offshore wind project surges ahead in South Carolina Offshore wind project surges ahead in South Carolina October 12, 2010 - 10:00am Addthis Researchers pull buoys from waters off South Carolina's coast. The buoys collected wind speed measurements for the past year. | Photo courtesy of the Center for Marine and Wetland Studies Researchers pull buoys from waters off South Carolina's coast. The buoys collected wind speed measurements for the past year. | Photo courtesy of the Center for Marine and Wetland Studies Stephen Graff Former Writer & editor for Energy Empowers, EERE 6 buoys collected wind speeds off South Carolina coast Data collected helps determine possible location for an offshore wind farm DOE funded research for early stage of project In the parking lot of Coastal Carolina University's Center for Marine and

77

Solar Photo Catalytic Hydrogen Production from water using a dual bed photosystem  

SciTech Connect (OSTI)

A body of work was performed in which the feasibility of photocatalytically decomposing water into its constituent elements using a dual bed, or modular photosystem, under solar radiation was investigated. The system envisioned consists of two modules, each consisting of a shallow, flat, sealed container, in which microscopic photocatalytic particles are immobilized. The photocatalysts absorb light, generating free electrons and lattice vacancy holes, which are capable of performing reductive and oxidative chemistry, respectively. The photocatalysts would be chosen as to whether they specifically promote H{sub 2} or O{sub 2} evolution in their respective containers. An aqueous solution containing a redox mediator is pumped between the two chambers in order to transfer electron equivalents from one reaction to the other.

Florida Solar Energy Center

2003-03-30T23:59:59.000Z

78

Mt. Wachusett Community College Makes Huge Investment in Wind Power |  

Broader source: Energy.gov (indexed) [DOE]

Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power March 14, 2011 - 1:14pm Addthis Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office What will this project do? The turbines are expected to provide an annual savings of approximately $700,000 based on the area's current utility rates.

79

NREL: Learning - Student Resources on Wind Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Photo of a girl and a boy standing beneath a large wind turbine. Students can learn about wind energy by visiting a wind farm. The following resources can provide you...

80

Sandia National Laboratories: Wind Energy Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyWind Energy Staff Wind Energy Staff Photo of Jonathan (Jon) Berg Jonathan (Jon) Berg Mechanical Engineer 06121Wind Energy Technologies Jon Berg is an engineer in the Wind...

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Photo filler  

Science Journals Connector (OSTI)

Photo filler (August 8, 2002;347:400). The photograph printed on page 400 should have been credited to Robert B. Cubberley, M.D. rather than Glenn Zachow, M.D. We regret the error. Photo filler (August 8, 2002;347:400). The photograph printed on page 400 should have been credited to Robert B. Cubberley, M.D., rather than Glenn Zachow, M.D. We regret the error.

2002-09-26T23:59:59.000Z

82

Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I)  

E-Print Network [OSTI]

A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference...

Manning, Norman Willis William

2012-06-07T23:59:59.000Z

83

QUANTIFYING ACCELERATED SOIL EROSION THROUGH ECOLOGICAL SITE-BASED ASSESSMENTS OF WIND AND WATER EROSION  

E-Print Network [OSTI]

QUANTIFYING ACCELERATED SOIL EROSION THROUGH ECOLOGICAL SITE- BASED ASSESSMENTS OF WIND AND WATER change and intensification have resulted in accelerated rates of soil erosion in many areas of the world quantification of accelerated soil erosion. Ecological site soil erosion Variation in the simulated erosion rates

84

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo Gallery Newsroom Photo Gallery Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Welcome The Department of Energy's Photo Gallery consists of...

85

U.S. Department of Energy Wind and Water Power Program Funding...  

Energy Savers [EERE]

wind turbines. The Cyber Wind Facility will model the impacts of complex wind and wave dynamics on wind turbine structures and energy performance, enabling developers to...

86

NREL: Wind Research - NREL Analysis Enables BOEM to Hold Its First  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Enables BOEM to Hold Its First Commercial Offshore Lease Sale Analysis Enables BOEM to Hold Its First Commercial Offshore Lease Sale in the United States December 2, 2013 Photo showing three 5-megawatt wind turbines installed above the water at the Alpha Ventus Offshore Wind Farm in Germany. A boat is moving forward to the left of the turbines. REpower 5-megawatt wind turbines at the Alpha Ventus Offshore Wind Farm in Germany demonstrate the possibilities for offshore wind on a grand scale-and now new offshore wind opportunities are coming to the United States. Photo by Gary Norton, NREL 27363 When the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) needed a process to delineate the bureau's proposed offshore Wind Energy Areas (WEAs) into auctionable leasing areas, the agency turned to the National Renewable Energy Laboratory (NREL). Under an

87

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

88

2012 Market Report on Wind Technologies in Distributed Applications  

Wind Powering America (EERE)

1 1 Wind Program 2012 Market Report on Wind Technologies in Distributed Applications Alice Orrell, Pacific Northwest National Laboratory Heather Rhoads-Weaver, eFormative Options, LLC PNNL-SA-97689 2 What is "Distributed Wind"? Distributed wind is used on or near where it is generated and is... Not just small scale; could be any size turbine or array Employed by households, schools, farms, industrial facilities, municipalities Found in all 50 states and Puerto Rico and the U.S. Virgin Islands A large portion of turbines installed in U.S. on a per unit basis And has been used for more than 2,000 years to pump water and grind grain Photo Credit: Tom Rivers/The (Batavia, N.Y.) Daily News Photo Credit: Gamesa 3 Benefits of Distributed Wind

89

Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling  

Science Journals Connector (OSTI)

A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

T Sant; D Buhagiar; R N Farrugia

2014-01-01T23:59:59.000Z

90

Photo Galleries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-Renewables --Solar ---SunShot --Wind --Water --Geothermal --Bioenergy -Fossil --Coal ---Carbon Capture & Sequestration --Oil ---Petroleum Reserves --Natural Gas -Nuclear --Fusion...

91

Wind Energy 101 | Open Energy Information  

Open Energy Info (EERE)

Energy 101 Energy 101 Jump to: navigation, search The 63-MW Dry Lake Wind Power Project in Arizona is the first utility-scale power project. The Salt River Project is purchasing 100% of the power from the Phase I of this project for the next 20 years. Photo from Iberdrola Renewables, NREL 16692 Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.[1] The following links provide more information about wind energy basics.

92

Winning the Future: Chaninik Wind Group Pursues Innovative Solutions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

training in Kwigillingok, AK. Photo from Intelligent Energy Systems, NREL 29205 Wind turbines installed in Kwigillingok, Alaska, as part of the Chaninik Wind Group...

93

Glacial Cooling in the Tropics: Exploring the Roles of Tropospheric Water Vapor, Surface Wind Speed, and Boundary Layer Processes  

Science Journals Connector (OSTI)

This paper is a modeling study of possible roles for tropospheric water vapor, surface wind speed, and boundary layer processes in glacial cooling in the Tropics. The authors divide the Tropics into a region of persistent deep convection and a ...

Richard Seager; Amy C. Clement; Mark A. Cane

2000-07-01T23:59:59.000Z

94

Influence of Bottom Friction on Sea Surface Roughness and Its Impact on Shallow Water Wind Wave Modeling  

Science Journals Connector (OSTI)

Using a selected subset of the measured data obtained in shallow waters near Vindeby, Denmark, during RASEX (Ris AirSea Experiment), the role of bottom friction dissipation in predicting wind waves (not swell) is assessed with a third-...

Hakeem K. Johnson; Henrik Kofoed-Hansen

2000-07-01T23:59:59.000Z

95

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

96

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

97

Fireplace photo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

photo Fireplace photo Photo of a fireplace. Fireplace photo More Documents & Publications .Hearth, Patio & Barbecue Association's Comments on DOE's Regulatory Burden RFI Department...

98

Photo-Targeted Nanoparticles  

Science Journals Connector (OSTI)

Photo-Targeted Nanoparticles ... The photo-dependent inhibition could be eliminated by prior addn. of glutathione or bisulfite to the irradiated soln. ... Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos ...

Tal Dvir; Matthew R. Banghart; Brian P. Timko; Robert Langer; Daniel S. Kohane

2009-11-11T23:59:59.000Z

99

ALS Staff Photo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staff Photo Print On May 14, 2013, members of ALS staff posed for a group photo in front of the dome. A hi-res version can be downloaded here. The last staff photo was taken in...

100

Top 10 Things You Didn't Know About Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know About Wind Top 10 Things You Didn't Know About Wind Top 10 Things You Didn't Know About Wind August 14, 2012 - 9:38am Addthis Photo courtesy of Nordex USA. Photo courtesy of Nordex USA. Liz Hartman Communications Team Lead, Wind and Water Power This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." series. Be sure to check back for more entries soon. 10. Human civilizations have harnessed wind power for thousands of years. Early forms of windmills used wind to crush grain or pump water. Now, modern wind turbines use the wind to create electricity. Learn how here. 9. A wind turbine has as many as 8,000 different components. 8. Wind turbines are big. A wind turbine blade can be up to 150 feet long, and a turbine tower can be over 250 feet tall, almost as tall as the Statue

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Top 10 Things You Didn't Know About Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know About Wind Top 10 Things You Didn't Know About Wind Top 10 Things You Didn't Know About Wind August 14, 2012 - 9:38am Addthis Photo courtesy of Nordex USA. Photo courtesy of Nordex USA. Liz Hartman Communications Team Lead, Wind and Water Power This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." series. Be sure to check back for more entries soon. 10. Human civilizations have harnessed wind power for thousands of years. Early forms of windmills used wind to crush grain or pump water. Now, modern wind turbines use the wind to create electricity. Learn how here. 9. A wind turbine has as many as 8,000 different components. 8. Wind turbines are big. A wind turbine blade can be up to 150 feet long, and a turbine tower can be over 250 feet tall, almost as tall as the Statue

102

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

103

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Before Cocooning N Reactor Before Cocooning U Canyon Aerial U Canyon Aerial Aerial Photo of 200 West Groundwater Treatment Facility Aerial Photo of 200 West Groundwater...

104

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Newsroom > Photo Gallery Newsroom Photo Gallery Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Pretreatment Facility The Pretreatment Facility is...

105

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safe Safety Slips Star Status Together Trips VPP > VPP Program VPP Outreach Award photo VPP Outreach Award photo VPP Committee VPP Committee VPP Celebration VPP Celebration...

106

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility Aerial Photo of 200 West Groundwater Treatment Facility Aerial Photo of 200 West Groundwater...

107

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

200 west aerial arra drilling groundwater hanford treatment well > Well Drilling Aerial Photo of 200 West Groundwater Treatment Facility Aerial Photo of 200 West Groundwater...

108

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visits Hanford Senator Murray Visits Hanford Senator Murray Visits Hanford Aerial Photo of 200 West Groundwater Treatment Facility Aerial Photo of 200 West Groundwater...

109

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Readies for Operation New Groundwater Treatment Facility Readies for Operation Aerial Photo of 200 West Groundwater Treatment Facility Aerial Photo of 200 West Groundwater...

110

BiOI nanosheets decorated TiO2 nanofiber: Tailoring water purification performance of photocatalyst in structural and photo-responsivity aspects  

Science Journals Connector (OSTI)

Abstract Microscopic structure and photo-responsive characters are two important facets that dominate the synthetic performance of photocatalysts in environment remediation. In the present investigation, we report the simultaneous tailoring of these two facets toward improving the water purification performance of TiO2 based photocatalyst. Electrospinning-derived TiO2 nanofibers were decorated with the visible-light responsive BiOI nanosheets via a simple hydrothermal reaction approach, constructing heterostructured composite fibers. The obtained hierarchical TiO2@BiOI fibers demonstrated improved reactivity toward decomposition of Rhodamine B in the visible-light range over the pristine TiO2 nanofibers, meanwhile possessed high recycling convenience. The mechanism for advancement of the photocatalytic reactivity of the TiO2@BiOI fibers was elucidated by analyzing the results of photoluminescence and transient photocurrent response.

Chenxing Liao; Zhijun Ma; Guoping Dong; Jianrong Qiu

2014-01-01T23:59:59.000Z

111

Environmental Wind Projects | Department of Energy  

Energy Savers [EERE]

Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2014....

112

Workforce Development Wind Projects | Department of Energy  

Energy Savers [EERE]

Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from...

113

Environmental Wind Projects | Department of Energy  

Energy Savers [EERE]

Environmental Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to...

114

The King Tide Photo Initiative is an international project which aims to  

E-Print Network [OSTI]

The King Tide Photo Initiative is an international project which aims to document areas flooded: Coastalatlas.net/kingtides 2. CLICK: Take the photos. The most striking photos show water next to something and orientation of your photo. 3. SHARE: Post your photos on OR's King Tide Flickr group. See our website to learn

Tullos, Desiree

115

MICROPOSIT PHOTO RESISTS  

E-Print Network [OSTI]

MICROPOSIT® S1800® SERIES PHOTO RESISTS MICROPOSIT S1800 SERIES PHOTO RESISTS are positive and maintain linewidth control when process- ing on highly reflective substrates. MICROPOSIT S1800 SERIES PHOTO Photoresist: MICROPOSIT ® S1813 ® PHOTO RESIST Coat: 12,300? Softbake: 115°C/60 sec. Hotplate Exposure: Nikon

Kaiser, Todd J.

116

Analysis of off-grid hybrid wind turbine/solar PV water pumping systems  

Science Journals Connector (OSTI)

While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic, wind-electric, diesel powered), few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) and solar photovoltaic (PV) array water pumping systems were analyzed individually and combined as a hybrid system. The objectives were to determine: (1) advantages or disadvantages of using a hybrid system over using a WT or a solar PV array alone; (2) if the WT or solar PV array interfered with the output of the other; and (3) which hybrid system was the most efficient for the location. The WT used in the analysis was rated at 900W alternating current (AC). There were three different solar PV arrays analyzed, and they were rated at 320, 480, and 640W direct current (DC). A rectifier converted the 3-phase variable voltage AC output from the WT to DC before combining it with the solar PV array DC output. The combined renewable energies powered a single helical pump. The independent variable used in the hybrid WT/PV array analysis was in units of W/m2. The peak pump efficiency of the hybrid systems at Bushland, TX occurred for the 900W WT combined with the 640W PV array. The peak pump efficiencies at a 75m pumping depth of the hybrid systems were: 47% (WT/320W PV array), 51% (WT/480W PV array), and 55% (WT/640W PV array). Interference occurred between the WT and the different PV arrays (likely due to voltage mismatch between WT and PV array), but the least interference occurred for the WT/320W PV array. This hybrid system pumped 28% more water during the greatest water demand month than the WT and PV systems would have pumped individually. An additional controller with a buck/boost converter is discussed at end of paper for improvement of the hybrid WT/PV array water pumping system.

Brian D. Vick; Byron A. Neal

2012-01-01T23:59:59.000Z

117

U.S. Department of Energy Wind and Water Power Program Funding...  

Broader source: Energy.gov (indexed) [DOE]

Energy Authority will use modeling and analysis to determine the best performing wind energy systems for Alaska. This project includes upgrading the HOMER wind-diesel-solar...

118

Turbines in U.S. Waters Will Soon Spin Wind into Electricity...  

Energy Savers [EERE]

faced in capturing the offshore wind resource potential. Construction of offshore wind turbines on floating platforms. In 2010, DOI introduced Smart from the Start, an initiative...

119

Photo-oxides of Carcinogenic Hydrocarbons  

Science Journals Connector (OSTI)

... are involved in the biological action of carcinogenic hydrocarbons, we have attempted to isolate the photo-oxides of some of these hydrocarbons. Such ... -oxides of some of these hydrocarbons. Such photo-oxides would naturally be insoluble in water and hence would represent merely one stage in ...

J. W. COOK; R. MARTIN; E. M. F. ROE

1939-06-17T23:59:59.000Z

120

Water: May be the Best Near-Term Benefit and Driver of a Robust Wind Energy Future (Poster)  

SciTech Connect (OSTI)

Water may be the most critical natural resource variable that affects the selection of generation options in the next decade. Extended drought in the western United States and more recently in the Southeast has moved water management and policy to the forefront of the energy options discussions. Recent climate change studies indicate that rising ambient temperatures could increase evapotranspiration by more than 25% to 30% in large regions of the country. Increasing demand for electricity, and especially from homegrown sources, inevitably will increase our thermal fleet, which consumes 400 to 700 gal/MWh for cooling. Recovering the vast oil shale resources in the West (one of the energy options discussed) is water intensive and threatens scarce water supplies. Irrigation for the growing corn ethanol industry requires 1,000 to 2,000 gallons of water for 1 gallon of production. Municipalities continue to grow and drive water demands and emerging constrained market prices upward. As illustrated by the 20% Wind Energy by 2030 analysis, wind offers an important mitigation opportunity: a 4-trillion-gallon water savings. This poster highlights the emerging constrained water situation in the United States and presents the case for wind energy as one of the very few means to ameliorate the emerging water wars in various U.S. regions.

Flowers, L.; Reategui, S.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).  

E-Print Network [OSTI]

development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

Brown, Jason P.

2014-01-01T23:59:59.000Z

122

Wind Energy Resources and Technologies | Department of Energy  

Energy Savers [EERE]

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of...

123

RMOTC - About Us - Photo Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo Gallery We invite you to view RMOTC's Photo Gallery as a slideshow here or in the player below View all of RMOTC's photos on Flickr here...

124

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hour-by-Hour Cost Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Genevieve Saur (PI), Chris Ainscough (Presenter), Kevin Harrison, Todd Ramsden National Renewable Energy Laboratory January 17 th , 2013 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Acknowledgements * This work was made possible by support from the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy (EERE). http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html * NREL would like to thank our DOE Technology Development Managers for this project, Sara Dillich, Eric Miller, Erika Sutherland, and David Peterson. * NREL would also like to acknowledge the indirect

125

Top 9 Things You Didn't Know About Distributed Wind Power | Department...  

Energy Savers [EERE]

Photo courtesy of Northern Power Systems. Mid-Sized Distributed Wind: Two mid-sized wind turbines in operation at Wayne Industrial Sustainability Park in Ontario, New York. | Photo...

126

Wind Research and Development | Department of Energy  

Office of Environmental Management (EM)

Research and Development Wind Research and Development Photo of two multimegawatt wind turbines in a green field, blue sky with clouds in the background. The U.S. Department of...

127

JOURNAL of GEOPHYSICAL RESEARCH, YOLo 90, NO. C3, PAGES 4907-4910, MAY 20, 1985 The Effect of Water Temperature and Synoptic Winds on the  

E-Print Network [OSTI]

Temperature and Synoptic Winds on the Development of Surface Flows Over Narrow, Elongated Water Bodies M surfacetemperature and of the large-scalesynoptic winds on the devel- opment of surfaceflows over the water created by damming of a river). In these locations, a daytime induced breeze, including its interaction

Pielke, Roger A.

128

Wind pump systems  

Science Journals Connector (OSTI)

The application of wind mills for water pumping is of lesser importance ... it is useful to discuss this type of wind energy application in a wind energy book targeted at development and planning...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

129

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VPP VPP Outreach Award photo VPP Outreach Award photo VPP Committee VPP Committee The Five Tenets of VPP The Five Tenets of VPP VPP Coin VPP Coin VPP EMS ISMS LOGO VPP EMS ISMS...

130

Comments on Jacobson et al.'s proposal for a wind, water, and solar energy future for New York State  

Science Journals Connector (OSTI)

Abstract Jacobson et al. (2013) recently published a paper arguing the feasibility of meeting all of the energy demands in New York State with wind, solar, and water resources. In this forum we suggest that the authors do not present sufficient analysis to demonstrate the technical, economic, and social feasibility of their proposed strategy.

Nathaniel Gilbraith; Paulina Jaramillo; Fan Tong; Felipe Faria

2013-01-01T23:59:59.000Z

131

America's Wind Testing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Testing Facilities Wind Testing Facilities America's Wind Testing Facilities Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston 3 of 7 Wind Technology Testing Center - Boston

132

Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power  

Broader source: Energy.gov (indexed) [DOE]

Deepwater Platform Aims to Harness Offshore Wind and Deepwater Platform Aims to Harness Offshore Wind and Wave Power Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power March 28, 2011 - 5:55pm Addthis An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Principle Power, Inc, of Seattle is using $1.4 million in funding from the Department of Energy's Office of Energy Efficiency and Renewable Energy to develop an innovative technology with the potential to generate electricity

133

Photo Uncrop , Brian Curless  

E-Print Network [OSTI]

Photo Uncrop Qi Shan , Brian Curless , Yasutaka Furukawa , Carlos Hernandez , and Steven M. Seitz of extending the field of view of a photo-- an operation we call uncrop. Given a reference photograph Random Field based approach is capable of handling large Internet photo collections with arbitrary

Anderson, Richard

134

First Place Photos 2013 Graduate Student Photo Contest  

E-Print Network [OSTI]

First Place Photos 2013 Graduate Student Photo Contest: Guidelines and Submission Information Grad of the prizes, submissions must include: Photo(s) submitted for consideration on a CD. A printed document listing the names of any individuals, places, etc. included in the photo(s) and a brief description

Thomas, Andrew

135

NREL: Wind Research - Get to Know a Wind Energy Expert  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Get to Know a Wind Energy Expert Former Eagle Scout Leads the Pack in Aerodynamic Research A black and white photo of a young boy, Pat Moriarty, wearing a motorcycle helmet and...

136

NREL: Wind Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo of the non-torque loading system at the National Wind Technology Center. Photo of the non-torque loading system at the National Wind Technology Center. New NWTC Test Facility to Improve Wind Turbines Testing the performance of multimegawatt wind turbine drivetrains Illustration showing mountains, several wind turbines, a power plant, a crane setting up a turbine blade, and two semi-trucks carrying turbine blades. The concept is to show all the pieces and parts of a complete wind energy system and how they work together. NWTC Systems Engineering Initiative Analysis Platform New platform helps analyze and integrate entire wind energy systems Short video featuring Fort Felker, Center Director of the National Wind Technology Center, highlighting the NWTC's dual-axis resonant blade testing capabilities. Images from this video include Fort speaking, the static turbine blade in the testing facility, and flapwise and edgewise testing in action.

137

Caption This! Wind Edition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Caption This! Wind Edition Caption This! Wind Edition Caption This! Wind Edition July 27, 2012 - 4:07pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Caption This! Wind Edition Revealing the best of the bunch from our Caption This! Challenge Storified by Energy Department · Fri, Jul 27 2012 13:37:07 At the end of every week, the Energy.gov team likes to highlight our favorite energy-related photos. We call it our "Photo of the Week" feature (take a look at past editions here). Last Friday, we decided to try something different. On Energy Facebook, we challenged you to think up creative, insightful, and funny captions to describe our Photo of Week post from July 20: Photo of the Week: July 20, 2012 · ENERGY.GOV To give you some background, the photo above was taken at the National Wind

138

Photo of the Week: July 20, 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week: July 20, 2012 Photo of the Week: July 20, 2012 Photo of the Week: July 20, 2012 July 20, 2012 - 1:53pm Addthis Jonathan Wiley and Eric Kuntzelman rappel more than 300 feet off the ground from a 3 megawatt wind turbine at the National Wind Technology Center (NWTC) near Boulder, CO. The Energy Department has made significant investments in wind testing facilities like the NWTC. By supporting the testing and validation of newly developed technologies, we are working to reduce costs for manufacturers, speed deployment of next generation technologies, and promote the growth of American companies. To learn more, check out our blog Blades of Glory: Wind Technology Bringing Us Closer to a Clean Energy Future | Image: Dennis Schroeder

139

Modeling and optimization of hybrid windsolar-powered reverse osmosis water desalination system in Saudi Arabia  

Science Journals Connector (OSTI)

Abstract A hybrid wind/solar powered reverse osmosis desalination system has been modeled and simulated. The results of the simulation have been used to optimize the system for the minimum cost per cubic meter of the desalinated water. The performance of the hybrid wind/solar powered RO system has been analyzed under Dhahran, Saudi Arabia, weather data for a typical year. The performance has been evaluated under a constant RO load of 1kW for 12h/day and 24h/day. The simulation results revealed that the optimum system that powers a 1-kW RO system for 12h/day that yields a minimum levelized cost of energy comprises 2 wind turbines, 40 \\{PVs\\} modules and 6 batteries and the levelized cost of energy of such system is found to be 0.624$/kWh. On the other hand, for a load of 1-kW for 24h/day, the optimum system consists of 6 wind turbines, 66 \\{PVs\\} modules and 16 batteries with a minimum levelized cost of energy 0.672$/kWh. Depending on the salinity of the raw water, the energy consumption for desalination ranges between 8 and 20kWh/m3. This means that the cost of using the proposed optimum hybrid wind/solar system for water desalination will range between $3.693/m3 and $3. 812/m3 which is less than the range reported in the literature.

Esmail M.A. Mokheimer; Ahmet Z. Sahin; Abdullah Al-Sharafi; Ahmad I. Ali

2013-01-01T23:59:59.000Z

140

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Amount Funding Source Project Location The Pennsylvania State University A High Performance Computing "Cyber Wind Facility" for Turbine-Platform- Wake Interactions with the...

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production  

Broader source: Energy.gov [DOE]

Presentation slides from the US DOE Fuel Cell Technologies Office webinar, Wind-to-Hydrogen Cost Modeling and Project Findings, on held January 17, 2013.

142

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Environmental Management (EM)

fixed and portable laboratory teaching systems to teach generation of electricity from solar and wind to students, as well as to the general public; and continued development of...

143

Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials  

Science Journals Connector (OSTI)

Norway has big wind energy resources that are currently marginally capitalized because ... more likely to be developed to satisfy future energy demands [3].

Konrad Meier

2014-07-01T23:59:59.000Z

144

The Photo News Flusher: A Photo-News Clustering Browser  

E-Print Network [OSTI]

The Photo News Flusher: A Photo-News Clustering Browser Tatsuya Iyota and Keiji Yanai Department photo news articles based on both textual features of articles and image features of news photos for a personal news database which is built by accumulating Web photo news articles. The system provides two

Yanai, Keiji

145

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHPRC-0900540.2Attachment1Photo9200-ZP-1installingwellcasing.jpg Gallery: American Recovery and Reinvestment Act Title: Soil & Groundwater Remediation Soil & Groundwater...

146

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

than 250 groundwater wells to support new treatment and monitoring systems. In this photo, Workers from CH2M HILL Plateau Remediation Company subcontractor StillwaterCarpenter...

147

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

resin, columbia river Official Building Numbers: 100-HX Area: 100-H Description: This photo shows a large tank and piping inside the 100-HX groundwater treatment facility. The...

148

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

200 west, pump and treat, groundwater, treatment, facility Area: 200 West Description: Aerial photo of the 200 West Groundwater Treatment Facility under consruction (August 2010)...

149

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HMS, downburst, 222-S, rain, Clouds Description: South towards Rattlesnake Mountain (Photo by John Smith). This picture was taken from 222-S looking South towards Rattlesnake...

150

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7312010Photo7DXextractionwell7-30-10.jpg Gallery: 100DX Groundwater Treatment Facility Title: Building an Extraction Well Building an Extraction Well Name: Building an...

151

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Treatment Facility Area: 200 West Description: Interior view of translucent panels (top of photo) that reduce costs and conserve energy by reducing the need for interior lighting...

152

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pump and treat, groundwater, treatment, facility Area: 200 West Description: Aerial photo of the 200 West Groundwater Treatment Facility under consruction (March 2011),...

153

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

workers are protected and contaminated materials are contained during cleanup. In this photo, extensive document searches and reviews coordinated by Linda Montgomery (left) and...

154

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carried more material per truckload than previous methods. This increased the safety margin by reducing worker handling. This photo shows the last super dump truck being loaded...

155

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

resin, columbia river Official Building Numbers: 100-HX Area: 100-H Description: This photo shows tanks filled with an ion exchange resin inside the 100-HX groundwater treatment...

156

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soil generated by ARRA-funded cleanup projects across the Hanford Site. In this photo, additional containers needed to haul waste are delivered by Rule Steel to the...

157

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toothman (obscured), Michele Gerber (obscured), Lynn Scarlett, and Dave Brockman, pose for a photo at the B Reactor face with the National Historic Landmark designation plaque...

158

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Settlers This historic collection features approximately 200 local area images circa 1894 - 1945. Photos depict the life and times of the early settlers of the White Bluffs area...

159

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHPRC-0900540.2 Attachment1Photo15BCCAdumptrucktraining 1.jpg Gallery: American Recovery and Reinvestment Act Title: BC Control Area Remediation BC Control Area Remediation...

160

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5282010Photo8DXtransferbldginterior.jpg Gallery: 100DX Groundwater Treatment Facility Title: Interior of Treatment Facility Interior of Treatment Facility Name: Interior of...

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Recovery Act funding, contractors are cleaning up dozens of waste sites. In this photo, a Bell 412 helicopter outfitted with radiation detection equipment flies over a large...

162

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHPRC-0900540.2Attachment1Photo3Box29shipment.jpg Gallery: American Recovery and Reinvestment Act Title: Trench Removal Activities Trench Removal Activities Name: Trench...

163

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Keywords: 200 west, pump and treat, groundwater, treatment, facility Area: 200 West Description: This photo shows the 200 West Groundwater Treatment Facility under construction...

164

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18-10Photo.jpg Gallery: American Recovery and Reinvestment Act Title: Subcontract for characterization work issued Subcontract for characterization work issued Name: Subcontract...

165

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1Photo1EDFWasteDisposal.jpg Gallery: ERDF Reaches 14 million Title: Keywords: ERDF, landfill, disposal Description: Workers uses bulldozers and sheepsfoot compactors to spread...

166

VP 100: Illinois Wind Farm Breathes New Life Into Businesses...  

Broader source: Energy.gov (indexed) [DOE]

23, 2010 - 12:46pm Addthis The Streator Cayuga Ridge South Wind Farm has 300 MW capacity of electricity. | Photo courtesy of Greater Livingston County Economic Development...

167

1Design limits and solutions for very large wind turbines Design limits and solutions for very large wind turbines  

E-Print Network [OSTI]

#12;#12;1Design limits and solutions for very large wind turbines UpWind Design limits and solutions for very large wind turbines A 20 MW turbine is feasible March 2011 Supported by: #12;March 20112 Photo:Nordex #12;3Design limits and solutions for very large wind turbines Contents 1. UpWind: Summary

Leu, Tzong-Shyng "Jeremy"

168

Photo-Electric Cells  

Science Journals Connector (OSTI)

... T. for the grounds of his most serious criticism of our volume on Photo-electric Cells reviewed in NATURE of July 19, p. 90. He says that ... reviewed in NATURE of July 19, p. 90. He says that the theory that photo-electrons are the free electrons of the metal is not one which is generally ...

NORMAN R. CAMPBELL; DOROTHY RITCHIE

1930-08-30T23:59:59.000Z

169

Photo-Electric Cells  

Science Journals Connector (OSTI)

... be measured, and its variation studied with variation of the incident light. Again, the photo-electric current may be amplified by valve circuits used outside the cell, or may ... to the infra-red, in which the active substance is oxidised thallium sulphide), barium photo-electric cells, sodium, and selenium cells.

ALLAN FERGUSON

1930-06-21T23:59:59.000Z

170

Wind News and Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind News and Blog Wind News and Blog Wind News and Blog Blog Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 1:35 PM Two state-of-the-art wind turbine drivetrain test facilities are now open for business: the Clemson University Wind Turbine Drivetrain Testing Facility in South Carolina and a National Renewable Energy Laboratory dynamometer at the National Wind Technology Center in Colorado. Read The Full Story Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association

171

Wind Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Report Wind Report Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 8 Things You Didn't Know About Distributed Wind Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Test your energy knowledge by learning interesting facts about distributed wind. Charting the Future of Energy Storage As we continue to incorporate more renewable energy into the grid, technologies that store energy like batteries will be key to providing a continuous flow of clean energy even when the wind isn't blowing and the sun doesn't shine. Wind Industry Soars to New Heights

172

Planning a Small Wind Electric System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Wind Electric System Small Wind Electric System Planning a Small Wind Electric System July 15, 2012 - 4:11pm Addthis Small wind electric systems require planning to determine if there is enough wind, the location is appropriate, if wind systems are allowed, and if the system will be economical. | Photo courtesy of Bergey WindPower. Small wind electric systems require planning to determine if there is enough wind, the location is appropriate, if wind systems are allowed, and if the system will be economical. | Photo courtesy of Bergey WindPower. What are the key facts? Careful planning helps to ensure that your small wind electric system project goes smoothly and is economical at your location. During planning, you will find out if there is enough wind to operate the system, if the location is appropriate, if wind systems are

173

NREL: Sustainable NREL - Water Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Efficiency A photo of water spilling out of a downspout from the roof of a multi-story office building. NREL conserves water in a number of innovative ways. A photo of water...

174

VPP Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hanford Site Voluntary Protection Program > VPP Communications > VPP Photo Gallery Hanford Site Voluntary Protection Program Photo Gallery Email Email Page | Print Print Page |Text...

175

DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...  

Energy Savers [EERE]

Wind Strategy report cover featuring a photo of a receding line of offshore wind turbines in the ocean. The winds of change are blowing for renewable energy policy, and...

176

Wind News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

177

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that once supported two nuclear reactors in the 100 K Area of the Hanford Site. In this photo, a worker directs the crane operator lifting the roof panel off of the 117KE Exhaust...

178

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor was the first reactor built on the Hanford Site, and was also the first full-scale reactor in the world. It took about one year to build B Reactor. This photo is from 1944...

179

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industrial Official Building Numbers: 284 West Area: 200 West Description: In this photo, a support is cut to allow a boiler to fall. Contractor CH2M HILL Plateau Remediation...

180

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

adding new roads to access the facility's disposal cells and scales to weigh incoming trucks loaded with waste. In this photo, installation of a new scale at ERDF nears completion...

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Recovery Act funding, contractors are cleaning up dozens of waste sites. In this photo from October 2009, workers continue to excavate soil from the 100-UPR-K-1 waste site,...

182

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soil generated by ARRA-funded cleanup projects across the Hanford Site. In this photo, lights are installed for a new access road to ERDF and striping of the roadway was...

183

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

more than 250 wells to support groundwater treatment and monitoring systems. In this photo, workers prepare to begin drilling operations for wells at the 100-NR-2 operable unit....

184

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that once supported two nuclear reactors in the 100 K Area of the Hanford Site. In this photo, a crane lifts the roof panel from the 117KE Exhaust Air Filter Building, with the K...

185

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2012 Keywords: N Reactor, cocooning, aerial Area: 100N Description: This is an aerial photo of the N Reactor complex just before work to place the reactor in interim safe...

186

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the soil beneath the former location of the K East Basin in the 100K Area. In this photo from late September, the first bucket of soil from the waste site known as UPR-100-K-1...

187

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reinforced boxes. The waste was retrievably stored in the 1970s and 1980s. In this photo, Teamsters are carefully removing soil from Boxes 5 and 8 by hand in Burial Ground...

188

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

truck, trucks, waste site, BC, BC Control Area Area: BC Control Area Description: This photo shows the BC Control Area of the Hanford Site before remediation began. The area is...

189

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reinforced boxes. The waste was retrievably stored in the 1970s and 1980s. In this photo, a forklift transfers a corroded metal box that is on a platform and wrapped in...

190

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2005 Keywords: N Reactor, cocooning, aerial Area: 100N Description: This is an aerial photo of the N Reactor complex in 2005, before the reactor was placed in interim safe...

191

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

boiler, industrial Official Building Numbers: 284 West Area: 200 West Description: This photo shows boilers that were part of a coal-burning power house, just before they were...

192

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industrial Official Building Numbers: 284 West Area: 200 West Description: In this photo, high-reach units hold a boiler so it won't fall backwards while supports are cut on...

193

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the K East Basin in the 100K Area, known as the UPR-100-K-1 Waste Site. In this photo, an excavator prepares materials for load out. The track hoe will mix the material...

194

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industrial Official Building Numbers: 284 West Area: 200 West Description: In this photo, support beams from a boiler have been cut and removed, and high-reach units will push...

195

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

site H Reactor Hanford High School Hanford Site Historic Historical Building Historical Photo IC ISS Long-Term Stewardship LTS metal debris military Mt. Rainier N Reactor N-Area...

196

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that once supported two nuclear reactors in the 100 K Area of the Hanford Site. In this photo, workers guide a roof panel as it is lifted from an exhaust air filter building. The...

197

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are removing an estimated 180,000 tons of shallow soil contamination. In this photo, an excavator moves soil in a load-out trench near the BC Control Area. The soil will...

198

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Restoration Disposal Facility, workers will be excavating about 1.7 million cubic yards of soil. In this photo, excavation workers are making progress on super cell 9...

199

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

boiler, industrial Official Building Numbers: 284 West Area: 200 West Description: This photo shows a boiler after it has been knocked over by heavy equipment. The debris will be...

200

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industrial Official Building Numbers: 284 West Area: 200 West Description: In this photo, a unit is about to cut a support beam, while a high-reach unit in the background...

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

more than 250 wells to support groundwater treatment and monitoring systems. In this photo, workers begin drilling operations at the 100-NR-2 Operable Unit, where 171 new wells...

202

Skukuza-MISR Photos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Skukuza-MISR Validation Site Photos Skukuza-MISR Validation Site Photos The photos on this site have been generously provided by Mark Helmlinger from the NASA Jet Propulsion Laboratory in Pasadena, California. Additional photos and a journal can be found on the MISR Validation Web Page. The Skukuza Airport The Road to the Tower Warning sign at the Entrance to Kruger Park. When scientists venture out to the tower site they must be accompanied by an Armed Game Guard The tower is powered by these solar collectors A view of the tower A view of the tower A view of the surrounding area from the top of the tower Another view of the Skukuza area Wildlife around the Skukuza Site An Elephant, obviously irritated by the intrusions of the scientists A young Elephant and Mother Impala Warthog Baboons in the road Yellow Hornbill

203

Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative |  

Broader source: Energy.gov (indexed) [DOE]

Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative September 26, 2013 - 5:50pm Addthis Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative A train carrying wind turbine components arrives in Alaska. The components were then transported to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association A train carrying wind turbine components arrives in Alaska. The components were then transported to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association Wind turbine blades are transported up the 10-mile-long, narrow dirt road to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association

204

Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding |  

Broader source: Energy.gov (indexed) [DOE]

Want to Finance a Wind Farm Project in Your Community? Try Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding September 24, 2013 - 10:12am Addthis A wind turbine is installed at the Crow Lake Wind project, just east of Chamberlain, S.D. | Photo Courtesy of East River Electric Power Cooperative A wind turbine is installed at the Crow Lake Wind project, just east of Chamberlain, S.D. | Photo Courtesy of East River Electric Power Cooperative The Crow Lake Wind project is the largest cooperative-owned wind project in the United States. | Photo Courtesy of East River Electric Power Cooperative The Crow Lake Wind project is the largest cooperative-owned wind project in the United States. | Photo Courtesy of East River Electric Power

205

Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding |  

Broader source: Energy.gov (indexed) [DOE]

Want to Finance a Wind Farm Project in Your Community? Try Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding September 24, 2013 - 10:12am Addthis A wind turbine is installed at the Crow Lake Wind project, just east of Chamberlain, S.D. | Photo Courtesy of East River Electric Power Cooperative A wind turbine is installed at the Crow Lake Wind project, just east of Chamberlain, S.D. | Photo Courtesy of East River Electric Power Cooperative The Crow Lake Wind project is the largest cooperative-owned wind project in the United States. | Photo Courtesy of East River Electric Power Cooperative The Crow Lake Wind project is the largest cooperative-owned wind project in the United States. | Photo Courtesy of East River Electric Power

206

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

207

Residential Absorption Heat Pump Water Heater | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Pump Water Heater Residential Absorption Heat Pump Water Heater Photo credit: Oak Ridge National Lab Photo credit: Oak Ridge National Lab Diagram of absorption heat...

208

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

209

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

America's Wind Testing Facilities America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

210

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

211

NREL: Wind Research - Research Staff Biographies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Eduard Muljadi on a soon-to-be-published history of Variable-Speed Operation of Wind Turbines. Photo of Corrie Christol Corrie Christol Administrative Project Manager, National...

212

2013 Wind Week | Department of Energy  

Energy Savers [EERE]

per kilowatt hour. | Photo courtesy of Juhl Energy. 4 of 9 Bigger and Stronger: Wind turbines are soaring to record sizes. The average rotor diameter of turbines installed in...

213

2013 Wind Report | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

per kilowatt hour. | Photo courtesy of Juhl Energy. 4 of 9 Bigger and Stronger: Wind turbines are soaring to record sizes. The average rotor diameter of turbines installed in...

214

BOREAS Photo Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo Gallery Photo Gallery These pages have been created to allow users access to a photo library of the BOREAS research sites. Click the BOREAS web page to access data from the project. Also the BOREAS historical web site provides important background information on the BOREAS project The BOREAS Study Region Northern Study Area Southern Study Area The Northern Study Area (NSA) Location of the NSA within Canada. (click the picture for a link to the NSA website) Map of the BOREAS Northern Study Area Satellite Images of the NSA Satellite image of the NSA (Landsat TM July 25, 1990) Land Cover Classifcation image of the NSA (August 20, 1988) Route 280 The NSA landscape and Highway 391 (looking east), taken from the NSA-UBS tower Typical vehicle Beaver Pond Site Fen Site Old Aspen Site

215

Engines Photo Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engines Photo Archive Engines Photo Archive The following images may be used freely as long as they are accompanied by a statement that they were used "Courtesy of Argonne National Laboratory" (see our disclaimer). To download the high-resolution version of each picture, right-click on the "Download high-resolution image" text beneath the picture and select "Save Link As..." from the resulting pop-up menu. A researcher readies an endoscope to capture diesel emissions images. Diesel Emissions: Readying an endoscope to capture diesel emissions images.Photo courtesy of Argonne National Laboratory. Download high-resolution image. A researcher readies an endoscope to capture diesel emissions images. Diesel Particulates: Argonne's micro-imaging system for diesel particulates. Read story. Download high-resolution image.

216

Manhattan Project: Photo Gallery  

Office of Scientific and Technical Information (OSTI)

Leslie Groves and J. Robert Oppenheimer PHOTO GALLERY Leslie Groves and J. Robert Oppenheimer PHOTO GALLERY Resources Additional information is available regarding the following "animated gifs" and other photographs: Alpha Racetrack, Y-12 Berkeley Meeting The "Big House" Blast (Animation) Events Images First Atomic Energy Commissioners Fuller Lodge F Reactor Plutonium Production Complex Hiroshima Images Image Retouching Kasparov, Kamen, and Kheifits Los Alamos Scientists Los Alamos Street Scene "Met Lab" Alumni Nagasaki Images Nixon and the Atomic Pioneers People Images Places Images Potsdam Note "Rad Lab" Staff S-1 Committee San Ildefonso Pueblo Party Science Images Solvay Physics Conference Tech Area Gallery (Large) Tech Area Gallery (Small) Trinity Images Trinity (Color Photograph)

217

Photo of the Week: Fan-tastic | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fan-tastic Fan-tastic Photo of the Week: Fan-tastic August 17, 2012 - 10:30am Addthis In Jonesboro, Arkansas, a Nordex USA employee stands between utility-scale components that will eventually make up a completed wind turbine. Under the Recovery Act, Nordex USA received a tax credit to assist in the creation of the Jonesboro manufacturing facility, which opened in October 2010. | Photo courtesy of Nordex USA. In Jonesboro, Arkansas, a Nordex USA employee stands between utility-scale components that will eventually make up a completed wind turbine. Under the Recovery Act, Nordex USA received a tax credit to assist in the creation of the Jonesboro manufacturing facility, which opened in October 2010. | Photo courtesy of Nordex USA. Sarah Gerrity Sarah Gerrity Multimedia Editor, Office of Public Affairs

218

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

219

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ind power is one of the fastest-growing forms of ind power is one of the fastest-growing forms of new power generation in the United States. Industry growth in 2007 was an astounding 45%. New wind power installations constituted 35% of all new electric power installations. This growth is the result of many drivers, includ- ing increased economic competitiveness and favorable state policies such as Renewable Portfolio Standards. However, new wind power installations provide more than cost-competitive electricity. Wind power brings economic development to rural regions, reduces greenhouse gas production by displacing fossil fuels, and reduces water consumption in the electric power sector. The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers

220

Photos on This Web Site  

Broader source: Energy.gov [DOE]

Most of the geothermal energy photos used on this web site can be obtained from the National Renewable Energy Laboratory's Photographic Information eXchange (PIX). Before using a photo, please read...

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Future of Offshore Wind Energy  

E-Print Network [OSTI]

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

222

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

223

New England Wind Forum: About the New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum The U.S. Department of Energy launched the New England Wind Forum in 2005 to provide a single, comprehensive source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. New England Is Proud to Be the Birthplace of the U.S. Wind Power Industry New England is the birthplace of the U.S. wind industry and home to a number of industry "firsts." New England has relied on the wind from its early days, from powering seafaring commerce to grinding grain in the windmills of Cape Cod - several of which still stand as a testament to the past. Photo of old windmill, Eastham, Cape Cod, MA. Library of Congress, Prints & Photographs Division, Carl Van Vechten Collection, July, 1936. Click on the image to view a larger version.

224

NREL: Renewable Resource Data Center - Wind Resource Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

225

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

226

Top 8 Things You Didn't Know About Distributed Wind | Department of  

Broader source: Energy.gov (indexed) [DOE]

Distributed Wind Distributed Wind Top 8 Things You Didn't Know About Distributed Wind August 9, 2013 - 5:49pm Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Mid-Sized Distributed Wind: Two mid-sized wind turbines in operation at Wayne Industrial Sustainability Park in Ontario, New York. | Photo courtesy of Sustainable Energy Developments, Inc. Mid-Sized Distributed Wind: Two mid-sized wind turbines in operation at Wayne Industrial Sustainability Park in Ontario, New York. | Photo courtesy

227

Photo Galleries | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News & Events Web Articles In the News Upcoming Events Past Events Informational Materials Photo Galleries Photo Galleries Mira installing Mira...

228

Photo Contest Closing date 2013 9 19  

E-Print Network [OSTI]

2013 About Photo Contest Closing date 2013 9 19 Photo Contest Eligibility International) (8MB ) By E-Mail (Maximum size 8MB per photo, up to 2 photos) kisc-koryu@edu.kobe-u.ac.jp 2) CD-R () By Post or submit by hand to KISC Photos (up to 2 photos) burned on a CD-R. Note that your data

Banbara, Mutsunori

229

D-Zero photos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

located at located at the point on the accelerator ring called D0, so is called DZero. The original DZero has been upgraded to give better identification of particles. The upgrade added a better inner tracker and magnet. Usually, you cannot see any of the detector except the muon detector and the surrounding concrete blocks, but these photos show it when it was partially dismantled. Detector during upgrade. Notice the beam pipe in the center of the photo. When the upgrade was finished and the detector was moved back into place, the beam pipe was connected to the rest of the accelerator beam pipe. Three main layers of the detector. Notice the size of the people. One section of the fibers in the "central fiber tracker." The closely placed fibers record the time and place as particles pass through; they "track" the particles.

230

Simulation of one-dimensional evolution of wind waves in a deep water  

Science Journals Connector (OSTI)

A direct wave model based on the one-dimensional nonlinear equations for potential waves is used for simulation of wave field development under the action of energy input dissipation and nonlinear wave-wave interaction. The equations are written in conformal surface-fitted nonstationary coordinate system. New schemes for calculating the input and dissipation of wave energy are implemented. The wind input is calculated on the basis of the parameterization developed through the coupled modeling of waves and turbulent boundary layer. The wave dissipation algorithm introduced to prevent wave breaking instability is based on highly selective smoothing of the wave surface and surface potential. The integration is performed in Fourier domain with the number of modes M = 2048 broad enough to reproduce the energy downshifting. As the initial conditions the wave field is assigned as train of Stokes waves with steepness ak = 0.15 at nondimensional wavenumber k = 512. Under the action of nonlinearity and energy input the spectrum starts to grow. This growth is followed by the downshifting. The total time of integration is equal to 7203 initial wave periods. During this time the energy increased by 1111 times. Peak of the spectrum gradually shifts from wavenumber nondimensional k = 512 down to k = 10. Significant wave height increases 33 times while the peak period increases 51 times. Rates of the peak downshift and wave energy evolution are in good agreement with the JONSWAP formulation.

2014-01-01T23:59:59.000Z

231

Wind in Education | Open Energy Information  

Open Energy Info (EERE)

in Education in Education Jump to: navigation, search Photo from Remy Luerssen Pangle, NREL 18543 U.S. Department of Energy's Wind for Schools Project Launched in 2005, Wind Powering America's Wind for Schools project supported Wind Application Centers at higher education institutions in 11 states. Students assisted in the assessment, design, and installation of small wind systems at host k-12 schools, acting as wind energy consultants. Students also participated in class work and other engineering projects in the wind energy field, preparing them to enter the wind workforce once they graduate. Teacher training and hands-on curricula were implemented at each host school to bring the wind turbine into the classroom through interactive and inter-school wind-related research tasks.[1] Project

232

NREL: Wind Research - Utility Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Grid Integration Utility Grid Integration Photo of a wind farm in Lawton, Oklahoma where NREL researchers studied the impact of wind energy on farming system operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. The integration of wind energy into the electric generation industry's supply mix is one of the issues industry grapples with. The natural variability of the wind resource raises concerns about how wind can be integrated into routine grid operations, particularly with regard to the effects of wind on regulation, load following, scheduling, line voltage,

233

Passport Photo Form 1. Passport Photo Requirements: Your photographs must be  

E-Print Network [OSTI]

Passport Photo Form 1. Passport Photo Requirements: Your photographs must be: · Taken in normal, photo-quality paper · 2 x 2 inches in size · In color · Full face, front view with a plain white or off Photo: 1 photo - $3.00 2 or more photos - $2.00 EACH 3. Number of Photos Requested: 4. Method of Payment

Kostic, Milivoje M.

234

2011 Engineering Student Experience Photo Contest ENTRY FORM One entry form per photo  

E-Print Network [OSTI]

1 2011 Engineering Student Experience Photo Contest ­ ENTRY FORM One entry form per photo Student: _________________________________________________ This photo was taken while I was on: Internship Exchange Student project Other This photo was taken in _______________ (month) of ___________ (year) Photo file title (Photo contest 2011_ LASTNAME_INITIALS_Category_Photo

Barthelat, Francois

235

Two Facilities, One Goal: Advancing America's Wind Industry | Department  

Broader source: Energy.gov (indexed) [DOE]

Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North Charleston, South Carolina will test large, commercial scale turbines. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North

236

Two Facilities, One Goal: Advancing America's Wind Industry | Department  

Broader source: Energy.gov (indexed) [DOE]

Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North Charleston, South Carolina will test large, commercial scale turbines. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North

237

Photo-Fenton Reaction at Near Neutral pH  

Science Journals Connector (OSTI)

Photo-Fenton Reaction at Near Neutral pH ... The importance of the photo-Fenton reaction in contaminant degradation is discussed using measurements of Fe(II), H2O2, and probe oxidation rates in natural and simulated freshwater systems at circum-neutral pH. ... The photo-Fenton reaction, oxidation of photoproduced ferrous iron by hydrogen peroxide, produces reactive oxidants that may be important to degradation of biologically and chemically recalcitrant organic compounds in surface waters at circum-neutral pH. ...

Andrew W. Vermilyea; Bettina M. Voelker

2009-08-10T23:59:59.000Z

238

Photo of the Week: July 28, 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week: July 28, 2012 Photo of the Week: July 28, 2012 Photo of the Week: July 28, 2012 July 27, 2012 - 10:43am Addthis UC Berkeley engineering student Jerome Thai launches one of 100 floating sensors into the Sacramento River. The Sacramento-San Joaquin River Delta’s channel system supports California's agricultural industry and provides drinking water for 22 million Californians. The Floating Sensor Network project is a collaborative effort between the Center for Information Technology Research in the Interest of Society (CITRIS), Berkeley Lab and its National Energy Research Scientific Computing Center (NERSC), and UC Berkeley’s Departments of Civil and Environmental Engineering and Electrical Engineering. The project will collect data to help researchers and scientists better understand how water flows from the Delta to pumping stations and the San Francisco Bay. To learn more, check out the Floating Sensor Network's press release. | Photo by Roy Kaltschmidt.

239

NREL: News Feature - NREL Software Tool a Boon for Wind Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperatures, and other variables alter the air flow and energy production at wind farms. Photo by Dennis Schroeder, NREL Wind energy is blowing away skeptics-it's so close to...

240

Students in Virginia and 10 Other States Learn About Wind Energy...  

Broader source: Energy.gov (indexed) [DOE]

Students in Virginia and 10 Other States Learn About Wind Energy Students in Virginia and 10 Other States Learn About Wind Energy February 21, 2014 - 12:35pm Addthis Photo of small...

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Interface between land and water,shoreline change analyses for erosion/accretion,hazards,planning Derived from coastal survey maps,nautical charts,aerial photos,LIDAR  

E-Print Network [OSTI]

Derived from bathymetry,scientific mesh,one-dimensional hydrological models;measured by sub bottomShorelines Interface between land and water,shoreline change analyses for erosion;national cartographic standards often used Tracks and Cruises Shiptracks during a cruise,tracks of vehicles towed from

Wright, Dawn Jeannine

242

NREL: Wind Research - Controls Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls Analysis Controls Analysis Photo of a man working inside the hub of a large 3-blades turbine. Working in the hub of Controls Advanced Research Turbine (CART) at the National Wind Technology Center (NWTC) Man in wind turbine hub viewed from inside a wind turbine's blade. At the National Wind Technology Center (NWTC), we design, implement, and test advanced wind turbine controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are simulated using specialized modeling software. The resulting advanced controls algorithms are field tested on the NWTC's Controls Advanced Research Turbines (CARTs). NWTC researchers are also studying blade pitch and generator torque, and employing advanced sensors to optimize power capture and reduce wind

243

Wind Program Newsletter: October 2014 Edition (Newsletter)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Program Newsletter, supported by the EERE Wind and Water Power Technologies office, highlights the Wind Program's key activities, events, and funding opportunities.

Not Available

2014-10-01T23:59:59.000Z

244

ENS-1363/99-0017 Wind farm production prediction  

E-Print Network [OSTI]

for Wind- mills, Risø National Laboratory, Denmark Information Service Department Risø 2002 #12ENS-1363/99-0017 Wind farm production prediction ­ the Zephyr model Lars Landberg, Gregor Giebel, Elkraft System, SEAS and E2. Photo: The Kappel wind farm. Courtesy of Flemming Hagensen, Test Station

245

Wind Powering America Podcasts (Postcards), Wind Powering America (WPA), Energy Efficiency & Renewable Energy (EERE)  

Wind Powering America (EERE)

Photo from iStock/ 6495435 Photo from iStock/ 6495435 Wind Powering America Podcasts Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: * Keys to Local Wind Energy Development Success * What to Know about Installing a Wind Energy System on Your Farm * Wind Energy Development Can Revitalize Rural America. Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. DOE/GO-102012-3585 · April 2012 windpoweringamerica.gov/podcasts_agricultural.asp

246

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

247

photo | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video, Images, and Photos News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

248

Photo Galleries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SunShot Grand Challenge SunShot Grand Challenge Inside the Tandem Mirror Experiment Photo of the Week Franklin County Courthouse (Before) Franklin County Courthouse: Before and...

249

Earth Day 2014 Photo Contest  

Office of Environmental Management (EM)

Earth Day 2014 Photo Contest CALLING ALL PHOTOGRAPHERS Professionals, amateurs, and the camera sharp shooter We invite all DOE employees and DOE contractors to share images of...

250

Photo of the Week: 2014  

Broader source: Energy.gov [DOE]

Each week, we highlight some of our favorite energy and science photos from all over the U.S. Check out our favorites!

251

Saving Money in Reno's Wind Tunnels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Saving Money in Reno's Wind Tunnels Saving Money in Reno's Wind Tunnels Saving Money in Reno's Wind Tunnels June 28, 2010 - 5:14pm Addthis Located in one of Reno's natural wind tunnels, City Hall proved to be the perfect location for one of the city's nine new wind turbines. | Photo courtesy of the City of Reno Located in one of Reno's natural wind tunnels, City Hall proved to be the perfect location for one of the city's nine new wind turbines. | Photo courtesy of the City of Reno On the street level in Reno, it may be easy to forget that every time the breeze blows off the Truckee River and past the 17-story City Hall, the town is quietly saving money. But the $11,000 the city is expected to save each year from wind power will be a friendly reminder. Installed in early June, the two 1.5-kilowatt wind

252

Winds Shift for Wisconsin Company | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company July 14, 2010 - 3:53pm Addthis Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Wausaukee Composites to reopen wind turbine parts facility in 2010. 150 jobs expected to be created. Plant will make nacelles for 1.5 MW to 3 MW turbines. A wind turbine parts facility in Cuba City, Wis., is getting another chance

253

Overcoming Challenges in America's Offshore Wind Industry | Department of  

Broader source: Energy.gov (indexed) [DOE]

Overcoming Challenges in America's Offshore Wind Industry Overcoming Challenges in America's Offshore Wind Industry Overcoming Challenges in America's Offshore Wind Industry November 18, 2013 - 4:40pm Addthis Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association Gregory M. Matzat PE; Senior Advisor, Offshore Wind Technologies A year of progress, preparation and promise was the theme connecting two days of panels and presentations last month at the 2013 American Wind

254

Winds Shift for Wisconsin Company | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company July 14, 2010 - 3:53pm Addthis Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Wausaukee Composites to reopen wind turbine parts facility in 2010. 150 jobs expected to be created. Plant will make nacelles for 1.5 MW to 3 MW turbines. A wind turbine parts facility in Cuba City, Wis., is getting another chance

255

Saving Money in Reno's Wind Tunnels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Money in Reno's Wind Tunnels Money in Reno's Wind Tunnels Saving Money in Reno's Wind Tunnels June 28, 2010 - 5:14pm Addthis Located in one of Reno's natural wind tunnels, City Hall proved to be the perfect location for one of the city's nine new wind turbines. | Photo courtesy of the City of Reno Located in one of Reno's natural wind tunnels, City Hall proved to be the perfect location for one of the city's nine new wind turbines. | Photo courtesy of the City of Reno On the street level in Reno, it may be easy to forget that every time the breeze blows off the Truckee River and past the 17-story City Hall, the town is quietly saving money. But the $11,000 the city is expected to save each year from wind power will be a friendly reminder. Installed in early June, the two 1.5-kilowatt wind

256

Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes  

SciTech Connect (OSTI)

The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. Developed a cost model and baseline LCOE Documented Site Conditions within Lake Erie Developed Fabrication, Installation and Foundations Innovative Concept Designs Evaluated LCOE Impact of Innovations Developed Assembly line Rail System for GBF Construction and Staging Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System Developed GBF with Penetration Skirt Developed Integrated GBF with Turbine Tower Developed Turbine, Plant Layout and O&M Strategies The report details lowering LCOE by 22.3% and identified additional strategies that could further lower LCOE when building an utility scale wind farm in the Great Lakes.

Wissemann, Chris [Freshwater Wind I, LLC] [Freshwater Wind I, LLC; White, Stanley M [Stanley White Engineering LLC] [Stanley White Engineering LLC

2014-02-28T23:59:59.000Z

257

Design and implementation of a 6 kW wind powered water heater controller with PI control.  

E-Print Network [OSTI]

??In our quest to use more renewable energy to reduce our dependence on non-renewable fuels man has been harnessing wind, solar and hydro energy for (more)

Lutchman, Ritesh

2005-01-01T23:59:59.000Z

258

Photo tourism: exploring photo collections in 3D Richard Hu Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in  

E-Print Network [OSTI]

Photo tourism: exploring photo collections in 3D Richard Hu Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in 3d. In SIGGRAPH '06: ACM SIGGRAPH 2006 browsing a large unstructured collection of photos of a scene using a 3D interface. The approach is based

Waterloo, University of

259

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

260

New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters  

Broader source: Energy.gov [DOE]

The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects repre

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Photo Walk September 22, 2012 AUTHORIZATION AND RELEASE FORM FOR PHOTO CONTEST  

E-Print Network [OSTI]

Photo Walk September 22, 2012 AUTHORIZATION AND RELEASE FORM FOR PHOTO CONTEST I (name printed, all Photo(s), Artwork and /or other work in any media which I submit as part of my participation in the photo contest related to the Fermilab Photo Walk to be held at Fermilab on September 22, 2012. The use

Quigg, Chris

262

A photo-stable chalcogenide glass  

Science Journals Connector (OSTI)

Photo-darkening and photo-bleaching are well known phenomena in As-Se and Ge-Se chalcogenide glasses, respectively. Consequently, a systematic dependence of photo-induced optical...

Yang, Guang; Jain, Himanshu; Ganjoo, Ashtosh; Zhao, Donghui; Xu, Yinsheng; Zeng, Huidan; Chen, Guorong

2008-01-01T23:59:59.000Z

263

New England Wind Forum: Historic Wind Development in New England: The Age  

Wind Powering America (EERE)

The Age of PURPA Spawns the "Wind Farm" The Age of PURPA Spawns the "Wind Farm" The sustained high cost of conventional fuels together with heightened environmental concerns about air pollution led in 1978 to federal legislation - known as PURPA, the Public Utility Regulatory Policies Act - that encouraged private, non-utility investment in generating power from renewable energy sources. At that time, the first small-scale wind turbines were being sold by domestic manufacturers. Wind Farm at Crotched Mountain, NH, 1978. Photo courtesy of the University of Massachusetts. Click on the photo to view a larger image. Wind Farm at Crotched Mountain, NH, 1978. Photo courtesy of the University of Massachusetts. Crotched Mountain In December 1980, U.S. Windpower installed the world's first wind farm, consisting of 20 wind turbines rated at 30 kilowatts each, on the shoulder of Crotched Mountain in southern New Hampshire. Like many firsts, it was a failure: The developer overestimated the wind resource, and the turbines frequently broke. U.S. Windpower, which later changed its name to Kenetech, subsequently developed wind farms in California, and after experiencing machine failure there too, improved its designs and became the world's largest turbine manufacturer and wind farm developer before succumbing to the weight of aggressive development efforts, serious technical problems with its newest turbines, and a weak U.S. market, ultimately filing for bankruptcy in 1996.

264

Photo of the Week: The Olympus Supercomputer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week: The Olympus Supercomputer Photo of the Week: The Olympus Supercomputer Photo of the Week: The Olympus Supercomputer September 5, 2013 - 2:08pm Addthis Fun fact: Most systems require air conditioning or chilled water to cool super powerful supercomputers, but the Olympus supercomputer at Pacific Northwest National Laboratory is cooled by the location's 65 degree groundwater. Traditional cooling systems could cost up to $61,000 in electricity each year, but this more efficient setup uses 70 percent less energy. PNNL's scientists use the Olympus supercomputer to conduct advanced research in areas such as energy storage and future power grid development. This supercomputer has the ability to compute as fast as about 20,000 typical personal computers combined. | Photo courtesy of PNNL.

265

A Minnesota Blizzard Provides Insight into Utility-Scale Wind...  

Energy Savers [EERE]

Wakes September 12, 2014 - 11:22am Addthis A blurry, black and white photo of wind turbines in a blizzard. Jiarong Hong can hardly wait for Minnesota's harsh winters to...

266

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network [OSTI]

milling, people used wind power to draw water from wells,the climate of a region. Wind has the power to move storm orthe wind into electricity or mechanical power to provide

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

267

UC land grants: A photo history  

E-Print Network [OSTI]

Berkeley UC land grants: A photo history D Early days: 1862UCR/CMP UC land grants: A photo history H. In 1987, UC

Editors, By

2012-01-01T23:59:59.000Z

268

CFC Photo Gallery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CFC Photo Gallery CFC Photo Gallery Addthis 1 of 5 2 of 5 3 of 5 4 of 5 5 of 5 View All Galleries...

269

Geothermal Energy Photos | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Geothermal Energy Photos Geothermal Energy Photos Image of the Week: Energy Department investments are exploring for geothermal power from abundant natural...

270

Schlumberger Office Photos | Open Energy Information  

Open Energy Info (EERE)

Photos Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Schlumberger Office Photos Author Schlumberger Published Publisher Not Provided, 2013 DOI Not...

271

Milwaukee Reaps Benefits of Wind Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Milwaukee Reaps Benefits of Wind Energy Milwaukee Reaps Benefits of Wind Energy Milwaukee Reaps Benefits of Wind Energy February 11, 2013 - 2:28pm Addthis The Port of Milwaukee's wind turbine not only generates power for the Port Administration building, it also serves as a tool to educate the community about wind power. | Photo courtesy of the Port of Milwaukee. The Port of Milwaukee's wind turbine not only generates power for the Port Administration building, it also serves as a tool to educate the community about wind power. | Photo courtesy of the Port of Milwaukee. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What does this project do? The 154-foot wind turbine produces between 109,00 and 152,000 kWh of energy annually -- more than enough energy to power the Port Administration

272

Massachusetts is Winding the Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts is Winding the Future Massachusetts is Winding the Future Massachusetts is Winding the Future May 18, 2011 - 4:48pm Addthis Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? The facility will attract companies to design, manufacture and test their blades in the United States and strengthen America's place as a global leader in wind power technology. Chicago may be known as the Windy City, but as of today, Boston is home to the largest commercial wind blade test facility in the world. After a ribbon cutting ceremony this afternoon, the Wind Technology Testing

273

Milwaukee Reaps Benefits of Wind Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Milwaukee Reaps Benefits of Wind Energy Milwaukee Reaps Benefits of Wind Energy Milwaukee Reaps Benefits of Wind Energy February 11, 2013 - 2:28pm Addthis The Port of Milwaukee's wind turbine not only generates power for the Port Administration building, it also serves as a tool to educate the community about wind power. | Photo courtesy of the Port of Milwaukee. The Port of Milwaukee's wind turbine not only generates power for the Port Administration building, it also serves as a tool to educate the community about wind power. | Photo courtesy of the Port of Milwaukee. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What does this project do? The 154-foot wind turbine produces between 109,00 and 152,000 kWh of energy annually -- more than enough energy to power the Port Administration

274

Massachusetts is Winding the Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

is Winding the Future is Winding the Future Massachusetts is Winding the Future May 18, 2011 - 4:48pm Addthis Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? The facility will attract companies to design, manufacture and test their blades in the United States and strengthen America's place as a global leader in wind power technology. Chicago may be known as the Windy City, but as of today, Boston is home to the largest commercial wind blade test facility in the world. After a ribbon cutting ceremony this afternoon, the Wind Technology Testing

275

Siting Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Siting Wind Energy Siting Wind Energy Jump to: navigation, search Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, Wisconsin. Photo from Ruth Baranowski/NREL, NREL 21207 The following resources provide information about siting wind energy projects. Some are specific to a state or region but may still contain information applicable to other areas. Wind project siting tools, such as calculators and databases, can be found here. Resources American Wind Energy Association. (Updated 2011). Siting, Health, and the Environment. Accessed August 13, 2013. This fact sheet provides an overview of siting myths and facts. Environmental Law Institute. Siting Wind Energy Facilities: What Do Local Elected Officials Need to Know?. Accessed November 29, 2013.

276

Wind Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 6, 2013 August 6, 2013 Our latest Infographic highlights key findings from the 2012 Wind Technologies Market Report. | Infographic by Sarah Gerrity. America's Wind Industry Reaches Record Highs Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry. August 5, 2013 Wind Industry Soars to New Heights Watch the video as Jose Zayas, Director of the Wind and Water Power Technologies Office, highlights the latest wind industry trends in the 2012 Wind Technologies Market Report. August 16, 2012 Wind Energy In America: Supporting Our Manufacturers Profiling success stories of the American wind industry. August 14, 2012 A Banner Year for the U.S. Wind Industry

277

Definition: Wind power | Open Energy Information  

Open Energy Info (EERE)

Wind power Wind power Jump to: navigation, search Dictionary.png Wind power The amount of power available to a wind turbine depends on: air density, wind speed and the swept area of the rotor. While the power is proportional to air density and swept area, it varies with the cube of wind speed, so small changes in wind speed can have a relatively large impact on wind power.[1] View on Wikipedia Wikipedia Definition Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships. Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. Offshore wind is steadier and stronger than on land, and offshore farms

278

#CleanTechNow: Your Best Clean Energy Photos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

#CleanTechNow: Your Best Clean Energy Photos #CleanTechNow: Your Best Clean Energy Photos #CleanTechNow: Your Best Clean Energy Photos September 27, 2013 - 12:45pm Addthis Marissa Newhall Marissa Newhall Managing Editor, Energy.gov Learn More: Follow @energy on Instagram to check out more great photos and videos about energy technology. Read an Energy Department report about the recent advances of wind, solar panels, electric vehicles and LED lighting in the consumer marketplace. Check out Secretary Moniz's blog post about the importance of smart policies and investments in clean energy technology. #CleanTechNow: Your Best Clean Energy Photos When it comes to clean energy, the future is already here -- and during our #CleanTechNow feature, you showed us how it's already playing a role in your daily lives. Below, check out highlights from #CleanTechNow and our

279

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shimkus Tanks Farms and WTP Tour Congressman Norm Dicks' Hanford Tour D Area Field Remediation Deep Vadose Zone Deep Vadoze Zone Initiative Demolishing K East Water Structures...

280

New England Wind Forum: Historic Wind Development in New England: More New  

Wind Powering America (EERE)

More New England Wind Farms More New England Wind Farms Since Crotched Mountain, six additional wind farms have been installed to date in New England. The performance of New England wind farms has generally mirrored the performance of wind farms elsewhere, i.e., a slow start followed by rapid improvement. Original wind farm on Equinox Mountain, circa 1982. Photo courtesy of Endless Energy Corporation. Click on the image to view a larger version. Original wind farm on Equinox Mountain, circa 1982. Equinox Mountain, VT The four WTG turbines installed in 1981 and 1982 at Equinox Mountain, VT, comprised one of the first wind farm installations in the United States. These early turbines, which suffered mechanical issues (including blade throws), were subsequently removed, but Equinox Mountain continued to receive attention as a wind power site (see below).

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind Energy Benefits (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Not Available

2015-01-01T23:59:59.000Z

282

Solar and Wind Easements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Easements Solar and Wind Easements Solar and Wind Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Montana Program Type Solar/Wind Access Policy Provider Montana Department of Environmental Quality Montana's solar and wind easement provisions allow property owners to create solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Solar easements should be negotiated with neighboring property owners. Montana's solar easement law was enacted in 1979; the wind easement law was originally enacted in 1983.

283

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Broader source: Energy.gov (indexed) [DOE]

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

284

wind | OpenEI  

Open Energy Info (EERE)

wind wind Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

285

Rhode Island to Build First Offshore Wind Farm | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm March 15, 2010 - 6:38pm Addthis Rhode Island’s first offshore wind farm will be built in Block Island. | File photo Rhode Island's first offshore wind farm will be built in Block Island. | File photo Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island's first offshore wind farm. Powerful ocean winds lie right off Block Island's south shore. That's the benefit of offshore wind farms - they can take advantage of the harder, stronger winds found a few miles off the coast Deepwater Wind LLC is leading the effort with plans to construct up to eight wind turbines three miles off of Block Island's shore.

286

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

287

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

288

Geotagged Photo Recognition using Corresponding Aerial Photos with Multiple Kernel Learning  

E-Print Network [OSTI]

Geotagged Photo Recognition using Corresponding Aerial Photos with Multiple Kernel Learning Keita for geotagged photos, we have already proposed ex- ploiting aerial photos around geotag places as addi- tional image features for visual recognition of geo- tagged photos. In the previous work, to fuse two kinds

Yanai, Keiji

289

MODELING PHOTO COMPOSITION AND ITS APPLICATION TO PHOTO RE-ARRANGEMENT  

E-Print Network [OSTI]

MODELING PHOTO COMPOSITION AND ITS APPLICATION TO PHOTO RE-ARRANGEMENT Jaesik Park, Joon-Young Lee a learning based photo composition model and its application on photo re-arrangement. In contrast to previ- ous approaches which evaluate quality of photo composition using the rule of thirds or the golden

Kim, Dae-Shik

290

From Photo Networks to Social Networks, Creation and Use of a Social Network Derived with Photos  

E-Print Network [OSTI]

From Photo Networks to Social Networks, Creation and Use of a Social Network Derived with Photos and photos have received plenty of attention in the digital age. In this paper, we show how social photos that reveals social attributes. From this photo network, a social network is extracted that can help to build

Boyer, Edmond

291

Vermont Wind Measurement Company Still Strong | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems Joshua DeLung NRG Systems, of Hinesburg, Vt., has made products to help its customers measure and understand the potential of wind energy since 1982. Now, because of additional opportunities the Recovery Act has created for renewable energy companies, small businesses such as NRG Systems are poised to grow with the increased demand for proven wind measurement and turbine control equipment. NRG Systems' customers are primarily developers, utilities and research

292

Vermont Wind Measurement Company Still Strong | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems Joshua DeLung NRG Systems, of Hinesburg, Vt., has made products to help its customers measure and understand the potential of wind energy since 1982. Now, because of additional opportunities the Recovery Act has created for renewable energy companies, small businesses such as NRG Systems are poised to grow with the increased demand for proven wind measurement and turbine control equipment. NRG Systems' customers are primarily developers, utilities and research

293

Wind Power Reliability: Breaking Down a Barrier | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Power Reliability: Breaking Down a Barrier Wind Power Reliability: Breaking Down a Barrier Wind Power Reliability: Breaking Down a Barrier June 25, 2010 - 12:16pm Addthis EnerNex Corporation is developing documentation and validating generic wind turbine and plant models that test reliability. | File photo EnerNex Corporation is developing documentation and validating generic wind turbine and plant models that test reliability. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE The steady increase of wind power on the grid presents new challenges for power system operators charged with making sure the grid stays up and running. "We need to ensure that we are going down a path that will lead to better reliability [with wind power]," said Bob Zavadil, an executive vice

294

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

295

Wind Energy Ordinances | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ordinances Wind Energy Ordinances Jump to: navigation, search Photo from First Wind, NREL 17545 Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues

296

Wind Energy Myths | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Myths Wind Energy Myths Jump to: navigation, search Glacier Wind Project is located 10 miles west of Shelby, Montana, 2 miles south of Ethridge, in Glacier and Toole Counties, and is the largest wind farm in Montana. This project is comprised of 71 machines in phase 1 and 69 machines in phase 2 for a total of 140 Acciona AW-1500, capable of producing 210 MW at full capacity. Photo from Todd Spink, NREL 16521 U.S. Department of Energy. (July 10, 2011). Myths and Benefits of Wind Energy Wind Powering America hosted this webinar featuring speakers Ian Baring-Gould (National Renewable Energy Laboratory), Ed DeMeo, and Ben Hoen (Lawrence Berkeley National Laboratory). References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Myths&oldid=700129"

297

Acoustic enhancement for photo detecting devices  

DOE Patents [OSTI]

Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

2013-02-19T23:59:59.000Z

298

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

299

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

Wind Powering America (EERE)

5 - January 2010 5 - January 2010 Two 600-kW wind turbines were installed on Deer Island in August 2009 next to the wastewater treatment facility's anaerobic digesters. Due to their proximity to Logan Airport, these generators were installed on unusually short 32-meter towers. WIND AND HYDROPOWER TECHNOLOGIES PROGRAM continued on page 2 > Kathryn Craddock, Sustainable Energy Advantage, LLC/PIX16710 Wind Projects Sprout Throughout New England NEWF is pleased to provide you with its fifth edition of the electronic NEWF newsletter. This newsletter provides updates on a broad range of project proposals and policy initiatives across New England during the funding hiatus...consider it a "catch-up" double issue. In past newsletters, we've relied on wind farm photo-simulations, photos of early construction

300

Examining the feasibility of converting New York States all-purpose energy infrastructure to one using wind, water, and sunlight  

Science Journals Connector (OSTI)

This study analyzes a plan to convert New York State's (NYS's) all-purpose (for electricity, transportation, heating/cooling, and industry) energy infrastructure to one derived entirely from wind, water, and sunlight (WWS) generating electricity and electrolytic hydrogen. Under the plan, NYS's 2030 all-purpose end-use power would be provided by 10% onshore wind (4020 5-MW turbines), 40% offshore wind (12,700 5-MW turbines), 10% concentrated solar (387 100-MW plants), 10% solar-PV plants (828 50-MW plants), 6% residential rooftop PV (?5 million 5-kW systems), 12% commercial/government rooftop PV (?500,000 100-kW systems), 5% geothermal (36 100-MW plants), 0.5% wave (1910 0.75-MW devices), 1% tidal (2600 1-MW turbines), and 5.5% hydroelectric (6.6 1300-MW plants, of which 89% exist). The conversion would reduce NYS's end-use power demand ?37% and stabilize energy prices since fuel costs would be zero. It would create more jobs than lost because nearly all NYS energy would now be produced in-state. NYS air pollution mortality and its costs would decline by ?4000 (12007600) deaths/yr, and $33 (1076) billion/yr (3% of 2010 NYS GDP), respectively, alone repaying the 271GW installed power needed within ?17 years, before accounting for electricity sales. NYS's own emission decreases would reduce 2050 U.S. climate costs by ?$3.2 billion/yr.

Mark Z. Jacobson; Robert W. Howarth; Mark A. Delucchi; Stan R. Scobie; Jannette M. Barth; Michael J. Dvorak; Megan Klevze; Hind Katkhuda; Brian Miranda; Navid A. Chowdhury; Rick Jones; Larsen Plano; Anthony R. Ingraffea

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Program Contacts and Organization | Department of Energy  

Energy Savers [EERE]

Program Contacts and Organization Wind Program Contacts and Organization The Wind and Water Power Technologies Office within the U.S. Department of Energy's (DOE's) Office of...

302

Wind Integration, Transmission, and Resource Assessment and Characterization Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Programs Wind Integration, Transmission, and Resource Assessment and Characterization Projects from FY 2006 to FY 2014.

303

Wind Program Newsletter: First Quarter 2012 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Turbines in U.S. Waters Will Soon Spin Wind into Electricity DOE releases Offshore Demonstration Project Solicitation The U.S. Department of Energy Wind Program is...

304

2013 Wind Technologies Market Report Cover | Department of Energy  

Office of Environmental Management (EM)

Market Report Cover 2013 Wind Technologies Market Report Cover 2013 Wind Technologies Market Report Cover.JPG More Documents & Publications NOWEGIS Report Cover 2014 Water...

305

Wind Integration, Transmission, and Resource Assessment and Characterization Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Technologies Offices Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to 2014.

306

Wind Issues in Solar Thermal Performance Ratings: Preprint  

SciTech Connect (OSTI)

We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

Burch, J.; Casey, R.

2009-04-01T23:59:59.000Z

307

The Photo-Voltaic Effect  

Science Journals Connector (OSTI)

The Schottky-Mott theory of the barrier layer rectification is extended with respect to the action of light absorbed in the barrier layer. The essential physical assumptions to be used are as follows: (a) The barrier layer is a boundary layer of a semiconductor with a reduced density of mobile charges (either electrons or "holes"); (b) both positive and negative mobile charges are released by light; (c) the recombination within the barrier layer is negligible; and, (d) the electrons and "holes" have the same properties whether released by light or by thermal agitation. Thus an "equation of state" connecting photo-voltage, photo-current, light intensity, wave-length, external resistance, etc., is derived. Among others the regularities of short circuit current, open circuit voltage, photo-characteristic, dark characteristic (barrier layer rectification), power output, and spectral distribution of the quantum yield are involved.

K. Lehovec

1948-08-15T23:59:59.000Z

308

Energy 101: Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

309

NREL: Wind Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff Here you will find contact information for NREL's research and support staff at the National Wind Technology Center. To learn more about us and our expertise, view our organizational charts and read the staff's biographies. Below is a listing of the research and support staff at the National Wind Technology Center. View organizational charts. Lab Program Manager, Wind and Water Power Program Brian Smith Program Integration, Wind and Water Power Program Elise DeGeorge Albert LiVecchi Dana Scholbrock Teresa Thadison Director, National Wind Technology Center Fort Felker, Center Director Laura Davis Kim Domenico Deputy Center Director, National Wind Technology Center Jim Green, Acting Research Fellow Bob Thresher Chief Engineer Paul Veers Wind Technology Research and Development

310

Photo tourism: exploring photo collections in 3D  

Science Journals Connector (OSTI)

We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each ... Keywords: image-based modeling, image-based rendering, photo browsing, structure from motion

Noah Snavely; Steven M. Seitz; Richard Szeliski

2006-07-01T23:59:59.000Z

311

Song of the Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Song of the Wind Song of the Wind Nature Bulletin No. 318-A October 26, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation SONG OF THE WIND The wind is simply air in motion. Air has substance like wood or water, it has pressure, it can acquire heat and hold a temperature, and it can travel from place to place.... The air which affects our lives is a layer seven or eight miles thick, called the troposphere, which is next to the earth. This air has pressure (14.7 pounds per square inch at sea level) and when various factors, one of which is temperature, cause changes in this pressure, the air starts moving. We cannot see it. We can hear it. The song of the wind is the most wonderful music on earth, and at times the most terrifying in its angry moments.

312

Photo of the Week: Identifying and Protecting Alaskan Fishery Habitats |  

Broader source: Energy.gov (indexed) [DOE]

Identifying and Protecting Alaskan Fishery Identifying and Protecting Alaskan Fishery Habitats Photo of the Week: Identifying and Protecting Alaskan Fishery Habitats September 27, 2013 - 3:08pm Addthis This aerial photo shows open water and floating ice on ponds, lakes and river channels in the Sagavanirktok River Delta in Alaska’s North Slope. PNNL scientists employed satellite technology to understand the impacts of oil development activities on the environment. Using satellite radar to “see” through the ice, scientists detected critical fish overwintering habitats by identifying where ice was grounded and where it was floating. Utilizing this information on critical habitats, fishery managers can suggest locations for energy development activities that increase the sustainability of fishery resources and minimize environmental impacts. Research was funded by the U.S. Department of the Interior. | Photo courtesy of Pacific Northwest National Laboratory.

313

Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

314

Garnet Wind | Open Energy Information  

Open Energy Info (EERE)

Garnet Wind Garnet Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water Developer Azusa Light & Water Energy Purchaser Azusa Light & Water Location Palm Springs CA Coordinates 33.918267°, -116.701076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.918267,"lon":-116.701076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Photo of the Week: Converting Solar Energy into Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Converting Solar Energy into Fuel Converting Solar Energy into Fuel Photo of the Week: Converting Solar Energy into Fuel May 9, 2013 - 1:13pm Addthis In this photo, Brookhaven scientist Dmitry Polyansky examines a vial containing a specialized catalyst designed to help convert solar energy into fuel. Producing clean-burning hydrogen fuel from just sunlight and water requires custom-built catalysts for water oxidation -- the part of the water-splitting process that generates oxygen atoms. A tiny amount of the solid catalyst, developed in collaboration with the University of Houston, dissolves and turns the water that lovely shade of blue. | Photo courtesy of Brookhaven National Laboratory. In this photo, Brookhaven scientist Dmitry Polyansky examines a vial containing a specialized catalyst designed to help convert solar energy

316

Directional Spectra of Wind-Generated Waves  

Science Journals Connector (OSTI)

...H. Hui From observations of wind and of water surface elevation...the directional spectrum of wind-generated waves on deep water...inversely proportional to the fourth power of the frequency , with the...clearly dependent on the ratio of wind speed to peak wave speed...

1985-01-01T23:59:59.000Z

317

Gallery of Historic Photos | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gallery of Historic Photos Gallery of Historic Photos Ed Westcott Manhattan Project official photographer. All photos in our History section are by Ed Westcott, the government's...

318

THE 2014 ETHICS STORYTELLING PHOTO CONTEST ENTRY FORM First name: ____________________________________________  

E-Print Network [OSTI]

THE 2014 ETHICS STORYTELLING PHOTO CONTEST ENTRY FORM First name --------------------------------------------------------------------------------------------------------------------- PHOTO INFORMATION Title of the Photograph:____________________________________________________________ How did you hear about the Ethics Storytelling Photo Contest? (check all

Rock, Chris

319

Restoration Monitoring-A Simple Photo Monitoring Method | Department...  

Energy Savers [EERE]

Restoration Monitoring-A Simple Photo Monitoring Method Restoration Monitoring-A Simple Photo Monitoring Method Restoration Monitoring-A Simple Photo Monitoring Method Restoration...

320

Photo double ionization of ethylene and acetylene near threshold  

E-Print Network [OSTI]

Photo double ionization of ethylene and acetylene nearcomplete measurements of the photo double ionization ofkinetic energy of the photo electrons and the nuclear

Gaire, B.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Photo of the Week: Satellite View of Sandy at Night | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week: Satellite View of Sandy at Night Photo of the Week: Satellite View of Sandy at Night Photo of the Week: Satellite View of Sandy at Night November 2, 2012 - 10:21am Addthis On Monday, October 29, 2012, Hurricane Sandy made landfall 5 miles south of Atlantic City, New Jersey, with maximum sustained winds near 80 mph. This satellite image was taken 16 to 18 hours before Sandy's landfall on the New Jersey coast, using the Visible Infrared Imaging Radiometer Suite on NASA's Suomi National Polar-orbiting Partnership satellite. The Department of Energy, in partnership with the Federal Emergency Management Administration (FEMA) and other federal agencies, is working around the clock to support the states and utilities that have been impacted by Sandy. Learn more about federal efforts to support utility power restoration. | Photo courtesy of CIMSS/University Wisconsin-Madison/NASA/NOAA.

322

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

323

Wind Project Permitting | Open Energy Information  

Open Energy Info (EERE)

Project Permitting Project Permitting Jump to: navigation, search Invenergy is the developer of the 129-MW Forward Wind Energy Center project near Fond du Lac, Wisconsin, that came online in 2008. Photo by Ruth Baranowski, NREL 16412 As with other energy facility permitting processes, the goal of the wind project permitting process is to reach decisions that are timely, minimize challenges, and ensure compliance with laws and regulations that provide for necessary environmental protection.[1] Resources National Wind Coordinating Committee. (2002). Permitting of Wind Energy Facilities. Accessed August 28, 2013. This handbook is written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public.

324

2014 Wind Program Peer Review Report Cover | Department of Energy  

Office of Environmental Management (EM)

2014 Wind Program Peer Review Report Cover 2014 Wind Program Peer Review Report Cover 2014 Wind Program Peer Review Report.JPG More Documents & Publications 2014 Water Power Peer...

325

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers [EERE]

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

326

OREM Photo Gallery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OREM Photo Gallery OREM Photo Gallery Addthis ETTP (Before) 1 of 6 ETTP (Before) ETTP spans approximately 2,200 acres, and before we initiated cleanup, the site contained more than...

327

VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy | Department  

Broader source: Energy.gov (indexed) [DOE]

VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy October 5, 2010 - 10:00am Addthis Brevini Wind is building a 127,000-square foot state-of-the-art factory in Muncie, Ind.| Photo courtesy of Brevini Wind Brevini Wind is building a 127,000-square foot state-of-the-art factory in Muncie, Ind.| Photo courtesy of Brevini Wind Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Brevini Wind awarded $12.8 million tax credit to build wind gear box plant Company will tap into manufacturing workforce, creating 450 jobs in next two years Faced with a recession and an auto industry that ran out gas, many manufacturing towns in the Rust Belt have reinvented themselves. Some found

328

WINDExchange Wind Energy Benefits Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs. Learn more about the pros and cons of wind energy.

329

Landowners and Wind Energy Development | Open Energy Information  

Open Energy Info (EERE)

Landowners and Wind Energy Development Landowners and Wind Energy Development Jump to: navigation, search Photo from Cielo Wind Power Corporation, NREL 10558 Many people will benefit from the clean air and economic growth brought about by wind power development, but farmers and other rural landowners may benefit the most. The best wind resources tend to be located in rural areas and on farmland in the Great Plains states. Wind power can provide a new cash crop for farmers and ranchers. Large wind turbines use only about one quarter-acre of land, including access roads, so farmers can continue to plant crops and graze livestock right up to the base of the turbines. One of the easiest and most attractive ways for farmers and other landowners to benefit from wind power is to allow wind developers to

330

NREL: News Feature - NREL Thinks Big at Wind Technology Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thinks Big at Wind Technology Center Thinks Big at Wind Technology Center March 22, 2012 An aerial photograph of the National Wind Technology Center site shows three large wind turbines with other smaller wind turbines in the background. Mountains are in the background of the photo behind the site. Enlarge image The most noticeable change at the NWTC in recent years is the addition of multi-megawatt wind turbines used for a wide variety of R&D activities in collaboration with industry partners. Credit: Dennis Schroeder The Front Range environment at the National Wind Technology Center (NWTC) is harsh. The winds - the very reason the NWTC is there - have little mercy. The frigid cold of winter gives way to the baking sun of summer. Yet in the midst of this difficult landscape, the future of wind energy grows

331

Wind Energy Economic Development and Impacts | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Economic Development and Impacts Wind Energy Economic Development and Impacts Jump to: navigation, search Wind turbine blades wind their way by train through Denver. Photo by Dennis Schroeder, NREL 20894 Meeting 20% of the nation's electricity demand with wind energy will lead to benefits to rural landowners and towns, the manufacturing sector, and infrastructure across America.[1] The following provide more information about wind energy and economic development: Resources European Wind Energy Association. Economic Benefits of Wind This page outlines the economic benefits of wind energy in Europe. National Renewable Energy Laboratory. (March 2013). Economic Development from New Generation and Transmission in Wyoming and Colorado. Accessed November 29, 2013. This fact sheet summarizes a recent analysis, commissioned by the Wyoming

332

New England Wind Forum: Historic Wind Development in New England: Grandpa's  

Wind Powering America (EERE)

Grandpa's Knob Grandpa's Knob Wind Turbine on Grandpa's Knob, VT. Photo courtesy of Rutland Herald. Wind Turbine on Grandpa's Knob, VT. Photo courtesy of Rutland Herald. The first large-scale electricity-producing windmill (the world's largest at the time) was installed in 1941 at Grandpa's Knob, on the border of Castleton and West Rutland, VT, to take advantage of New England's strong wind energy regime. Several companies collaborated on the turbine: S. Morgan Smith of Pennsylvania financed the project; Palmer C. Putnam executed the design; and General Electric, the American Bridge Co., the Budd Co. and Wellman Engineering also participated. Among the electric companies declaring interest in the project was Central Vermont Public Service, whose president believed wind power to be the wave of the future.

333

Energy 101: Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

334

Personal Photo Album Summarization Pinaki Sinha  

E-Print Network [OSTI]

Personal Photo Album Summarization Pinaki Sinha Department of Computer Science University of California Irvine, CA jain@ics.uci.edu ABSTRACT Photo album summarization is the process of selecting a sub- set of photos from a larger collection which best preserves the information in the entire set

Reif, Rafael

335

Photo cathode laser timing response measurements  

E-Print Network [OSTI]

Photo cathode laser timing response measurements F. Löhl, H. Schlarb, E. Vogel, W. Koprek, V on the gun phase 2.) Arrival time change of photo injector laser pulses #12;Florian Löhl FLASH Seminar, June 19th, 2007 photo injector laser ~ 1.3 GHz vector modulator DAC I Q DOOCS Courtesy of I. Will #12

336

Can Photo-Evaporation Trigger Planetesimal Formation?  

E-Print Network [OSTI]

Can Photo-Evaporation Trigger Planetesimal Formation? Henry Throop John Bally SWRI Univ.Colorado / CASA DPS 12-Oct-2004 #12;Orion Nebula Photo-evaporation by extr 4 O/B stars, UV-bright, 105 solar luminosities 2000 solar-type stars with disks Photo-evaporation (PE) by external O/B stars removes disks on 105

Throop, Henry

337

AERIAL PHOTO INTERPRETATION NATIONAL INVENTORY OF LANDSCAPES  

E-Print Network [OSTI]

MANUAL FOR AERIAL PHOTO INTERPRETATION IN THE NATIONAL INVENTORY OF LANDSCAPES IN SWEDEN NILS YEAR for aerial photo interpretation 1 www-nils.slu.se SLU, Department of Forest Resource Management and Geomatics. 901 83 Umeå, Sweden #12;NILS ­ manual for aerial photo interpretation 2 Table of contents 1 About NILS

338

Photo-Galvano-Mechanical Phenomena in Nanotubes  

E-Print Network [OSTI]

Photo-Galvano-Mechanical Phenomena in Nanotubes Petr KraI\\ E. J. Mele2 , David Tomanek3 and Moshe elec- trical "ballistic current". The photo-currents can be generated even in centrosym- metric be also generated in semiconductor nanotubes or in higher bands of metallic nanotubes [2]. The photo

339

TimeVariable Photo-Evaporation of  

E-Print Network [OSTI]

TimeVariable Photo-Evaporation of Protoplanetary Disks Henry Throop (SwRI) John Bally (U. Colorado) #12;Takeaway: Photo-evaporation alters the disk structure in essentially unpredictable ways, because for disks formed at the same time in the same cluster. #12;30 Doradus: 100+ O/B stars Photo

Throop, Henry

340

Last updated October 2011 Cover Photo Contest  

E-Print Network [OSTI]

Last updated October 2011 Cover Photo Contest Guidelines 1. Open only to UCSD undergraduate submissions are allowed. 5. Submissions must be accompanied by a signed Photo Release Form (available at: http) with each submission. This information will be used for the photo credit in the inside of the front cover. 7

Hampton, Randy

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photo-Arbuzov rearrangements of benzyl phosphites  

Science Journals Connector (OSTI)

Photo-Arbuzov rearrangements of benzyl phosphites ... Effect of Amino Substituents on the Stereochemical Outcome of the Photo-Arbuzov Rearrangements of 1-Arylethyl Phosphorodiamidites ... Effect of Amino Substituents on the Stereochemical Outcome of the Photo-Arbuzov Rearrangements of 1-Arylethyl Phosphorodiamidites ...

Jan. Omelanzcuk; Alan E. Sopchik; Sueg Geun. Lee; Kunihiko. Akutagawa; S. Matthew. Cairns; Wesley G. Bentrude

1988-09-01T23:59:59.000Z

342

Dissertation Stories Photo Competition New Deadline  

E-Print Network [OSTI]

Dissertation Stories RESEARCH ACADEMY LEIPZIG CALL FOR WORKS Photo Competition ­ New Deadline Since doctoral candidates of the University of Leipzig to participate in a photo competition titled and images? The idea is to set up a permanent photo exhibition in the Research Academy's new premises

Schüler, Axel

343

Photo Retro-DielsAlder Reactions  

Science Journals Connector (OSTI)

Photo Retro-DielsAlder Reactions ... Photo-retro-DielsAlder (PrDA) reactions of a variety of DielsAlder (DA) adducts were studied. ... In fact, photo-rDA (PrDA) reactions have been sparsely reported in literature. ...

Valentine K. Johns; Zheng Shi; Wei Dang; Matthew D. McInnis; Yuxiang Weng; Yi Liao

2011-06-14T23:59:59.000Z

344

Note on RF Photo-Cathode Gun  

E-Print Network [OSTI]

E.R. Gray and P.M. Giles, "Photo-cathodes in AcceleratorProceedings Note on RF Photo-Cathode Gun K. -J. Kim August106 LBL-29538 Note on RF Photo-Cathode G un Kwang-Je Kim

Kim, Kwang-Je

2010-01-01T23:59:59.000Z

345

THE CHIMAERID Photo by Kara Korab  

E-Print Network [OSTI]

" Brittany Szabo 5 "Landscape" Photo Brittany Szabo 6 "Mother" Photo Brittany Szabo 7 "Seal" Photo Brittany "Mother" #12;8 Brittany Szabo "Seal" #12;9 Brittany Szabo #12;10 JourneyTowardsBefore The ocean climbed in our presence And indistinct voices warm the air There's no harm in what we can't see Ambiguous

Spence, Harlan Ernest

346

Jointly Aligning and Segmenting Multiple Web Photo Streams for the Inference of Collective Photo Storylines  

E-Print Network [OSTI]

Jointly Aligning and Segmenting Multiple Web Photo Streams for the Inference of Collective Photo,epxing}@cs.cmu.edu Abstract With an explosion of popularity of online photo sharing, we can trivially collect a huge number of photo streams for any interesting topics such as scuba diving as an outdoor recreational activity class

Xing, Eric P.

347

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

348

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

349

Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight  

Science Journals Connector (OSTI)

Abstract Jacobson et al. (2013, hereinafter J13), presented the technical and economic feasibility of converting New York States' all-purpose energy infrastructure (electricity, transportation, heating/cooling, industry) to one powered by wind, water, and sunlight (WWS) producing electricity and electrolytic hydrogen. Gilbraith et al. (2013) question several aspects of our approach. Unfortunately, Gilbraith et al. inaccurately portray what we stated and referenced and ignore many recent supporting studies. They also refer to previous misplaced critiques of our earlier global WWS study but fail to reference the responses to those critiques, Delucchi and Jacobson (2011b) and Jacobson and Delucchi (2013). We fully stand by the conclusions of both the previous and present studies.

Mark Z. Jacobson; Robert W. Howarth; Mark A. Delucchi; Stan R. Scobie; Jannette M. Barth; Michael J. Dvorak; Megan Klevze; Hind Katkhuda; Brian Miranda; Navid A. Chowdhury; Rick Jones; Larsen Plano; Anthony R. Ingraffea

2013-01-01T23:59:59.000Z

350

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

351

Chinook winds.  

Science Journals Connector (OSTI)

...of south-easterly winds, which blow over the...Ocean, from which the winds come, can at this season...freezing-point. The wind well known in the Alps as the foehn is another example of...result is complicated by local details; regions of...

George M. Dawson

1886-01-08T23:59:59.000Z

352

Argonne Tribology Laboratory Photo Tour  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Photo Tour Laboratory Photo Tour Engineers use Argonne's Tribology Laboratory to conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels and fuel/lubricant additives) for use in aggressive environments. The Lab's "toolbox" includes the following: Nanoindenter Nanoindenter This Hysitron brand surface characterization tool is used to obtain accurate elastic modulus and hardness measurements of thin-film and bulk materials on the nanometer and micrometer level. In this method a diamond stylus is pressed against the sample surface and the force and distance is measured. The modulus is related to the slope of the force/distance unloading curve, and the hardness is related to the projected angle of contact and applied load. In addition, the tool can be used to obtain high-resolution topographic images of the sample surface. Download high resolution image.

353

Spacesuits optional for 'water bears'  

Science Journals Connector (OSTI)

... a lichen, or maybe a photosynthesizing bacteria." STEVE GSCHMEISSNER / SCIENCE PHOTO LIBRARY The humble water bear has gone where no animal has gone before. STEVE GSCHMEISSNER / SCIENCE ...

Heidi Ledford

2008-09-08T23:59:59.000Z

354

A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.  

SciTech Connect (OSTI)

This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

Bull, Diana L; Fowler, Matthew; Goupee, Andrew

2014-08-01T23:59:59.000Z

355

Penetration of buoyancy driven current due to a wind forced river plume  

E-Print Network [OSTI]

is proportional to freshwater input and inversely proportional to upwelling wind stress strength. Strong wind more quickly prevents fresh waters penetration. Under upwelling favorable winds, the plume is advected offshore by Ekman transport as well as upcoast...

Baek, Seong-Ho

2009-05-15T23:59:59.000Z

356

An Experimental Enquiry concerning the Natural Powers of Water and Wind to Turn Mills, and Other Machines, Depending on a Circular Motion. By Mr. J. Smeaton, F. R. S.  

Science Journals Connector (OSTI)

1759-1760 research-article An Experimental Enquiry concerning the Natural Powers of Water and Wind to Turn Mills, and Other Machines, Depending on a Circular Motion. By Mr. J. Smeaton, F. R. S. J. Smeaton The Royal Society is collaborating...

1759-01-01T23:59:59.000Z

357

Wind Blog  

Broader source: Energy.gov (indexed) [DOE]

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

358

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

359

Photo of the Week: July 28, 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

28, 2012 28, 2012 Photo of the Week: July 28, 2012 July 27, 2012 - 10:43am Addthis UC Berkeley engineering student Jerome Thai launches one of 100 floating sensors into the Sacramento River. The Sacramento-San Joaquin River Delta’s channel system supports California's agricultural industry and provides drinking water for 22 million Californians. The Floating Sensor Network project is a collaborative effort between the Center for Information Technology Research in the Interest of Society (CITRIS), Berkeley Lab and its National Energy Research Scientific Computing Center (NERSC), and UC Berkeley’s Departments of Civil and Environmental Engineering and Electrical Engineering. The project will collect data to help researchers and scientists better understand how water flows from the Delta to pumping stations and the San Francisco Bay. To learn more, check out the Floating Sensor Network's press release. | Photo by Roy Kaltschmidt.

360

Michigan Wind Maufacturer Teams with College on Training | Department of  

Broader source: Energy.gov (indexed) [DOE]

Michigan Wind Maufacturer Teams with College on Training Michigan Wind Maufacturer Teams with College on Training Michigan Wind Maufacturer Teams with College on Training July 6, 2010 - 11:14am Addthis Tom Bos is one of nine employees hired at wind turbine blade manufacturer Energetx Composites from the first class of students to graduate from Grand Rapids Community College's composites technician course. | Photo courtesy Energetx Tom Bos is one of nine employees hired at wind turbine blade manufacturer Energetx Composites from the first class of students to graduate from Grand Rapids Community College's composites technician course. | Photo courtesy Energetx Joshua DeLung Tom Bos has found a new profession. Bos was laid off after 20 years in a small company office environment. He spent 14 months looking for a job, before seeing an ad in the local paper

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Retooling Michigan: 'Wheels' to Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Retooling Michigan: 'Wheels' to Wind Retooling Michigan: 'Wheels' to Wind Retooling Michigan: 'Wheels' to Wind July 21, 2010 - 10:12am Addthis This part from the inside of a wind turbine might someday generate clean, renewable energy. | Photo courtesy Merrill Technologies Group This part from the inside of a wind turbine might someday generate clean, renewable energy. | Photo courtesy Merrill Technologies Group Joshua DeLung "Traditionally, we made automotive products," says Scott McKay, General Manager for Merrill Technologies Group in Saginaw, Mich. "After several ups and downs in that industry, we've opened our eyes to finding ways to diversify our line of products, and one of those areas is in making renewable energy materials." Merrill is using $3 million awarded through the U.S. Department of

362

Wildlife and Wind Energy | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wildlife and Wind Energy Jump to: navigation, search Sage grouse sitting in grassland. Photo from LuRay Parker, NREL 17429 Birds and bats are occasionally killed in collisions with wind turbines. Like any form of development, wind projects can also negatively impact wildlife by altering habitat. However, although the wind industry receives a lot of attention for avian impacts, research shows that nuclear and fossil-fueled plants have a greater impact. The Avian and Wildlife Costs of Fossil Fuels and Nuclear Power report quantifies those impacts. The study estimates that wind farms are responsible for roughly 0.27 avian fatalities

363

NREL: Wind Research - Environmental Impacts Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Impacts Research Environmental Impacts Research Photo of a Greater Prairie-Chicken. Credit: James Shroyer. NREL is a partner in the Grassland Shrub Steppe Species Collaborative, a multi-year effort to study wind turbines in prairie chicken habitat. The Wind Program at NREL works to resolve environmental issues that may hinder acceptance of wind energy technologies. The program accomplishes this through activities that address the potential effects of wind development on wildlife and identifies corresponding mitigation strategies. As part of this effort, the program supports the work of the National Wind Coordinating Collaborative (NWCC) Wildlife Workgroup, which is focused on collaborative approaches for understanding and evaluating species- and habitat-specific impacts, mitigation tools, risk assessment, and nocturnal

364

NREL: Wind Research - Utility Grid Integration Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Grid Integration Assessment Utility Grid Integration Assessment Photo of large power transmission towers set against a sunset. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources such as wind. For wind energy to play a larger role in supplying the nation's energy needs, integrating wind energy into the power grid of the United States is an important challenge to address. NREL's transmission grid integration staff collaborates with utility industry partners and provides data, analysis, and techniques to increase utility understanding of integration issues and confidence in the reliability of new wind turbines. For more information, contact Brian Parsons at 303-384-6958. Printable Version Wind Research Home Capabilities

365

Bassett Mechanical Explores Mid-size Wind Market | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bassett Mechanical Explores Mid-size Wind Market Bassett Mechanical Explores Mid-size Wind Market Bassett Mechanical Explores Mid-size Wind Market May 7, 2010 - 10:07am Addthis Bassett employees work on embedment (anchor) rings for the wind turbine foundations. Bassett just received a 48C tax credit to invest in capital equipment for wind turbine tower manufacturing.| Photo courtesy Bassett Mechanical Bassett employees work on embedment (anchor) rings for the wind turbine foundations. Bassett just received a 48C tax credit to invest in capital equipment for wind turbine tower manufacturing.| Photo courtesy Bassett Mechanical Lindsay Gsell About five years ago, Wisconsin's Bassett Mechanical began branching into renewable energy. The nearly 75-year-old company started producing components used to anchor the towers of wind turbines to their foundations.

366

Water and Energy Interactions  

E-Print Network [OSTI]

birds, the overall water requirements are minimal and exist only for washing the blades of wind turbines

McMahon, James E.

2013-01-01T23:59:59.000Z

367

Student Competition Prepares the Next Generation of Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

Competition Prepares the Next Generation of Wind Energy Competition Prepares the Next Generation of Wind Energy Entrepreneurs Student Competition Prepares the Next Generation of Wind Energy Entrepreneurs April 11, 2013 - 11:32am Addthis The Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. Here, JMU student Greg Miller demonstrates how the blades of a wind turbine work as part the Wind for Schools project. | Photo courtesy of the Virginia Center for Wind Energy. The Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. Here, JMU student Greg Miller demonstrates how the

368

Stakeholder Engagement and Outreach: Funding School Wind Projects  

Wind Powering America (EERE)

Funding School Wind Projects Funding School Wind Projects Securing funding for school wind installations can be challenging in today's economy. Although the DOE's Wind for Schools project ended on September 30, 2013, the following examples of methods used to fund Wind for Schools projects may be applicable for funding other wind turbine installations at schools. Photo of children in front of a school. PIX17945 Nebraska Attorney General Jon Bruning presented a $16,000 check for the Wind for Schools project at the Pleasanton High School on September 15, 2010. Pleasanton is one of several Nebraska schools receiving money from a SEP environmental grant fund funded by fines from polluters. Federal Funds In addition to funding provided by the U.S. Department of Energy, many Wind for Schools projects have received federal grants. The United States

369

Student Competition Prepares the Next Generation of Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

Student Competition Prepares the Next Generation of Wind Energy Student Competition Prepares the Next Generation of Wind Energy Entrepreneurs Student Competition Prepares the Next Generation of Wind Energy Entrepreneurs April 11, 2013 - 11:32am Addthis The Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. Here, JMU student Greg Miller demonstrates how the blades of a wind turbine work as part the Wind for Schools project. | Photo courtesy of the Virginia Center for Wind Energy. The Collegiate Wind Competition is one of several Energy Department-supported programs aiming to inspire the next generation of clean energy leaders. Here, JMU student Greg Miller demonstrates how the

370

Definition: Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity.[1][2] View on Wikipedia Wikipedia Definition A wind turbine is a device that converts kinetic energy from the wind, also called wind energy, into mechanical energy in a process known as wind power. If the mechanical energy is used to produce electricity, the device may be called a wind turbine or wind power plant. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a windmill or wind pump. Similarly, it may be referred to as a wind charger when used for charging batteries. The result of over a millennium of windmill development and modern engineering,

371

Low-level wind maxima over the western Gulf of Mexico and their role in water vapor advection  

E-Print Network [OSTI]

pressure gradient favorable for the maintenance of a LLJ over the western Gulf. The LLT along the South Texas coast contributed to large northward fluxes of water vapor. The western coast of the Gulf of Mexico accounted for 12% more water vapor... stations 33 8 As in Figure 7 except the NGM and radiosonde observation from along the eastern Gulf coast are being compared 34 9 As in Figure 7 except the NGM and radiosonde observations from along the western Gulf coast are being compared 36 10...

Engel, Gregory Thomas

2012-06-07T23:59:59.000Z

372

Offshore Wind Research (Fact Sheet)  

SciTech Connect (OSTI)

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

373

PPPL's Christopher Cane Has Winning Photo In Art of Science Competition |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPPL's Christopher Cane Has Winning Photo In Art of Science Competition PPPL's Christopher Cane Has Winning Photo In Art of Science Competition By Jeanne Jackson DeVoe May 20, 2013 Tweet Widget Facebook Like Google Plus One PPPL Webmaster Chris Cane and Paul Csogi, former Webmaster for the Lewis Center for the Arts, came up with this design depicting their two websites. PPPL's website is at the top left. (Photo by Photo courtesy of Art of Science ) PPPL Webmaster Chris Cane and Paul Csogi, former Webmaster for the Lewis Center for the Arts, came up with this design depicting their two websites. PPPL's website is at the top left. Gallery: PPPL Webmaster Chris Cane with his winning design. (Photo by (Photo courtesy of Chris Cane). ) PPPL Webmaster Chris Cane with his winning design. Martin Jucker, of the Program in Atmospheric and Oceanic Sciences, won first place in the Art of Science Competition for his image, "East-West, West-East," depicting wind moving around the globe in two different directions.

374

Wind Program News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

farms, and ranches. October 23, 2013 New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters The Energy...

375

Sandia National Laboratories: wind turbine blade materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

376

Sandia National Laboratories: wind turbine blade reliability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

377

Sandia National Laboratories: Wind Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

first phase of a project to explore the feasibility of large-scale vertical-axis wind turbines (VAWTs) for deep-water offshore locations. The results of this conceptual study...

378

Neutrino nuclear response and photo nuclear reaction  

E-Print Network [OSTI]

Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measuring the cross sections of the photo nuclear reactions, and the spin and parity of the state are studied by measuring angular correlations of particles emitted from the photo nuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV electrons are very useful. Nuclear responses studied by photo nuclear reactions are used to evaluate neutrino/weak nuclear responses, i.e. nuclear beta and double beta matrix elements and neutrino nuclear interactions, and to verify theoretical calculations for them.

H. Ejiri; A. I. Titov; M. Boswell; A. Young

2013-11-10T23:59:59.000Z

379

Photo-switchable membrane and method  

DOE Patents [OSTI]

Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16.times.-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior.

Marshall, Kenneth L; Glowacki, Eric

2013-05-07T23:59:59.000Z

380

Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

382

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

383

2014 Earth Day Photo Contest Winners  

Office of Environmental Management (EM)

2014 Earth Day Photo Contest Winners COMMUNITY: "Edison Home" by Gary Hartman SUSTAINABILITY: "Oak Alley" by Wade Sickinger ALTERNATIVE ENERGY: "Windmill Ablaze at Sunset" by Leroy...

384

Transmission/Photo Gallery | Open Energy Information  

Open Energy Info (EERE)

Colorado transmission 2.jpg Bird diverters.jpg Transmission insulators.jpg Retrieved from "http:en.openei.orgwindex.php?titleTransmissionPhotoGallery&oldid687595...

385

Photo-Electrons and Negative Ions  

Science Journals Connector (OSTI)

2 December 1931 research-article Photo-Electrons and Negative Ions E. M. Wellish The Royal Society is collaborating with JSTOR to digitize, preserve, and extend...

1931-01-01T23:59:59.000Z

386

Photo-effects in iodine single crystals  

E-Print Network [OSTI]

Effects 29 29 29 34 34 4D CHAPTER V. DISCUSSIGN A. Dark EMF Values B. photo EMP Spectral Response D. Tenperature Dependence 42 42 44 45 APPENDIX A . Tabulation of Driginal Experlnsntal Data B. Changes in Dark end I hoto EMP... with Tenperature 50 58 54 REFKRENCES LIST OP TABLES Table Effects of various gaseous amhients on dark and photo emf values Page 31 II Effects of cooling on dark and photo emf values 33 vi LIST OF PIGVRES Figure Possible photo-transitions in sn...

Rieves, John Michael

2012-06-07T23:59:59.000Z

387

Photo-Chemical Researches. Part II. Phenomena of Photo-Chemical Induction  

Science Journals Connector (OSTI)

1 January 1857 research-article Photo-Chemical Researches. Part II. Phenomena of Photo-Chemical Induction Professor Bunsen Henry Enfield Roscoe The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Philosophical...

1857-01-01T23:59:59.000Z

388

Photo-Chemical Researches. -- Part II. Phenomena of Photo-Chemical Induction.  

Science Journals Connector (OSTI)

1856-1857 research-article Photo-Chemical Researches. -- Part II. Phenomena of Photo-Chemical Induction. Prof. Bunsen Henry Enfield Roscoe The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1856-01-01T23:59:59.000Z

389

Wind News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News News Wind News RSS October 23, 2013 New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012. August 13, 2013 Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Supports Obama Administration Goal to Power Federal Agencies with 20 Percent Clean Energy by 2020 August 6, 2013 Reports Show Record High U.S. Wind Energy Production and Manufacturing The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the

390

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

391

Stakeholder Engagement and Outreach: What Is Wind Power?  

Wind Powering America (EERE)

What Is Wind Power? What Is Wind Power? A three-bladed wind turbine with the internal components visible. Six turbines in a row are electrically connected to the power grid. Wind Power Animation This aerial view of a wind turbine plant shows how a group of wind turbines can make electricity for the utility grid. The electricity is sent through transmission and distribution lines to homes, businesses, schools, and so on. View the wind turbine animation to see how a wind turbine works or take a look inside. Wind power or wind energy describes the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water), or

392

FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON  

SciTech Connect (OSTI)

Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

393

Success Stories (Postcard), Wind Powering America (WPA), Energy Efficiency & Renewable Energy (EERE)  

Wind Powering America (EERE)

Success Stories Success Stories Wind Powering America's Virginia Wind for Schools team welcomed the state's first school turbine at Northumberland Middle/High School. Photo from Remy Luerssen, NREL/PIX 18543 A team sets the SMART Foundation in place before the concrete pour for the Wind for Schools project installation at Eudora High School in Eudora, Kansas. Photo from Kansas State University, NREL/PIX 19692 Wind Powering America's success story series highlights efforts that are contributing to the continued success of wind energy deployment in the United States. Previous stories include Wind for Schools projects, Wind Powering America events, and project financing case studies. Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste.

394

Could Your Home Benefit from a Small Wind Electric System? | Department of  

Broader source: Energy.gov (indexed) [DOE]

Could Your Home Benefit from a Small Wind Electric System? Could Your Home Benefit from a Small Wind Electric System? Could Your Home Benefit from a Small Wind Electric System? August 8, 2013 - 2:31pm Addthis A small wind electric system can be a clean, affordable way to power your home. | Photo courtesy of Thomas Fleckenstein, NREL 26476 A small wind electric system can be a clean, affordable way to power your home. | Photo courtesy of Thomas Fleckenstein, NREL 26476 Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? Check out these resources to figure out whether a small wind electric system is the right choice for you. Small residential wind turbines have been around for decades, and in recent years they have become a more affordable option due to tax credits and

395

A New Small Wind Center for James Madison University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A New Small Wind Center for James Madison University A New Small Wind Center for James Madison University A New Small Wind Center for James Madison University November 15, 2010 - 1:00pm Addthis James Madison University received an $800,000 grant through the State Energy Program to build a small wind testing and training facility. Construction is expected to be completed by the end of summer 2011. The university's existing 1 kW wind turbine is pictured above. | Photo courtesy of Remy Luerssen/JMU James Madison University received an $800,000 grant through the State Energy Program to build a small wind testing and training facility. Construction is expected to be completed by the end of summer 2011. The university's existing 1 kW wind turbine is pictured above. | Photo courtesy of Remy Luerssen/JMU Stephen Graff

396

A New Small Wind Center for James Madison University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A New Small Wind Center for James Madison University A New Small Wind Center for James Madison University A New Small Wind Center for James Madison University November 15, 2010 - 1:00pm Addthis James Madison University received an $800,000 grant through the State Energy Program to build a small wind testing and training facility. Construction is expected to be completed by the end of summer 2011. The university's existing 1 kW wind turbine is pictured above. | Photo courtesy of Remy Luerssen/JMU James Madison University received an $800,000 grant through the State Energy Program to build a small wind testing and training facility. Construction is expected to be completed by the end of summer 2011. The university's existing 1 kW wind turbine is pictured above. | Photo courtesy of Remy Luerssen/JMU Stephen Graff

397

Novel Use of Water Soluble "Aquapour" As A Temporary Spacer During Coil Winding For The NSTX-U Centerstack  

SciTech Connect (OSTI)

A major facility upgrade to the National Spherical Torus eXperiment (NSTX-U) is currently underway at Princeton Plasma Physics Laboratory (PPPL). A key component of NSTX-U is the fabrication of a new, higher field centerstack (CS). In order to simultaneously provide robust joints between the inner and outer legs of the Toroidal Field Coils (TF) and minimize radial build, the NSTX-U CS design requires that the Ohmic Heating solenoid (OH) be wound directly on the inner TF bundle. To protect the OH against thermal expansion stress during scenarios where the inner TF bundle is hot but the OH is relatively cool, the completed CS will have a 0.100 inch annular gap between the outer diameter of the TF bundle and the inner diameter of the OH solenoid. "Aquapour", a proprietary material produced by the Advanced Ceramics Manufacturing Company will be used during manufacture to produce this gap. After the TF bundle is vacuum pressure impregnated and cured, a cylindrical "clam shell" mold will be assembled around it, and a slurry of powdered Aquapour and water will be pumped into the annular space between the mold and TF bundle. Subsequent baking will turn the Aquapour solid, and a protective layer of wet lay-up fiberglass and resin will be added. The OH solenoid will be wound directly on this wet lay-up shell. After vacuum pressure impregnation of the OH, the water soluble Aquapour will be washed away, leaving the required radial clearance between the TF and OH. This paper will describe prototyping and testing of this process, and plans for use on the actual CS fabrication.

Mardenfeld, Michael

2013-07-01T23:59:59.000Z

398

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

399

Modeling the World from Internet Photo Collections  

Science Journals Connector (OSTI)

There are billions of photographs on the Internet, comprising the largest and most diverse photo collection ever assembled. How can computer vision researchers exploit this imagery? This paper explores this question from the standpoint of 3D scene modeling ... Keywords: 3D navigation, 3D scene analysis, Internet imagery, Photo browsers, Structure from motion

Noah Snavely; Steven M. Seitz; Richard Szeliski

2008-11-01T23:59:59.000Z

400

Range Monitoring with Photo-points  

E-Print Network [OSTI]

Photo-points provide a way for owners/managers to monitor rangeland health with a minimum of time and expense. This publication explains when, where and how often to photograph rangeland points, how to set up a photo point, and how to interpret...

McGinty, Allan; White, Larry D.

1998-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Offshore Wind Power USA  

Broader source: Energy.gov [DOE]

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

402

Solar and Wind Powering Wyoming Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

403

Solar and Wind Powering Wyoming Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

404

Timken Producing Parts for Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Timken Producing Parts for Wind Turbines Timken Producing Parts for Wind Turbines Timken Producing Parts for Wind Turbines June 28, 2010 - 3:38pm Addthis Some of Timken’s bearings are so large that a small car could conceivably drive through the center. | Photo courtesy of The Timken Company Some of Timken's bearings are so large that a small car could conceivably drive through the center. | Photo courtesy of The Timken Company Lindsay Gsell The Timken Company - which will be 111-years-old this year - has a long tradition of investing in new technologies. After assessing their business in recent years, the Ohio-based, global manufacturer saw a market opportunity and decided to invest in a new manufacturing capability: producing the massive bearings for large wind turbines. "Timken has the tenacity to continue to invest into the trough of the

405

Photo Galleries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy...

406

Wind Energy Community Acceptance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy Community Acceptance Jump to: navigation, search In 2012 in Lamar, Colorado, Bob Emick (center, back to camera and Greg Emich (right in cowboy hat) talk about the 98 1.5-megawatt wind turbines on their ranch. Photo by Dennis Schroeder, NREL 21768 The following resources address community acceptance topics. Baring-Gould, I. (June 5, 2012). Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts. National Renewable Energy Laboratory. Accessed August 14, 2013. This presentation offers background information on social acceptance issues, results of surveys conducted by the New England Wind Forum at a

407

Wind Workforce Development | Open Energy Information  

Open Energy Info (EERE)

Workforce Development Workforce Development Jump to: navigation, search Photo from Casey Joyce, RMT Inc., NREL 24542 If the wind industry and nation wish to capitalize on industry growth, reversing current educational trends away from science, engineering, and technical skills must be achieved.[1] The following resources explore this topic. Resources Baring-Gould, I.; Kelly, M. (2010). Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry. National Renewable Energy Laboratory. Accessed August 26, 2013. This poster provides an overview of the educational infrastructure and expected industry needs through a discussion of the activities to train workers while addressing issues for each of the education sectors, leading to the development of an educational infrastructure to support wind

408

Wind Project Siting Tools | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Project Siting Tools Jump to: navigation, search Photo from Alstom 2010, NREL 18207 The following tools are helpful for anyone planning a wind project. Resources Cadmus Group. (2012). Distributed Wind Site Analysis Tool. Accessed March 29, 2013. The Distributed Wind Site Analysis Tool is an online tool for conducting detailed site assessments for single-turbine projects, from residential to community scale. Eastern Interconnection States' Planning Council. (2013). EISPC EZ Mapping Tool. Accessed August 13, 2013. This free online mapping tool helps to identify potential clean energy

409

High voltage photo switch package module  

DOE Patents [OSTI]

A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

2014-02-18T23:59:59.000Z

410

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [Wind park which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

411

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

412

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

413

NREL: Wind Research - Structural Testing Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structural Testing Laboratory Structural Testing Laboratory Photo of NREL's Wind Research User Facility. Shown in front are several test bays that protect proprietary information while companies disassemble turbines to analyze, test, and modify individual components. NREL's Structural Testing Laboratory includes office space for industry researchers, houses experimental laboratories, computer facilities, space for assembling turbines, components, and blades for testing. Credit: Patrick Corkery. NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components and turbines for atmospheric testing. The facility also houses two blade stands equipped with overhead cranes and

414

Photo-induced Valence Tautomerism in Co Complexes  

Science Journals Connector (OSTI)

Photo-induced Valence Tautomerism in Co Complexes ... His research interests include the development of photomagnets and phototunable photonic crystals and the design of supramolecules exhibiting photo-bistability. ... Photo-induced Valence Tautomerism in Mononuclear Compounds ...

Osamu Sato; Aili Cui; Ryotaro Matsuda; Jun Tao; Shinya Hayami

2007-04-11T23:59:59.000Z

415

PHOTO OPTION CURRICULUM (FOR STUDENTS ENTERING FALL, 2011 OR LATER)  

E-Print Network [OSTI]

PHOTO OPTION CURRICULUM (FOR STUDENTS ENTERING FALL, 2011 OR LATER) NOTE ON REVERSE. GATE REQUIREMENTS FOR PHOTO OPTION: FILM 100IH ­ Introduction to Film)..................................................................3 PHOTO OPTION REQUIREMENTS (GATE REQUIRED FOR MOST COURSES): PHOT 255

Dyer, Bill

416

Photo Gallery | ANSER Center | Argonne-Northwestern National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo Gallery Home > News & Events > Photo Gallery 2014 2013 2012 2011 ANSER 2014 Solar Fuels SymposiumPhotos from the 2014 ANSER Solar Fuels Symposium, held May 22-23 at...

417

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network [OSTI]

offshore wind farms were in operation around Europe, in the coastal waters of Denmark, Ireland, Netherlands, Sweden, the United Kingdom, Germany,

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

418

Photo of the Week: The Daya Bay Antineutrino Detector | Department of  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week: The Daya Bay Antineutrino Detector Photo of the Week: The Daya Bay Antineutrino Detector Photo of the Week: The Daya Bay Antineutrino Detector September 7, 2012 - 3:07pm Addthis While they might look like drops of water or soap bubbles, these colorful figures are actually photomultiplier tubes that line the walls of the Daya Bay neutrino detector. Neutrinos and antineutrinos are neutral particles produced in nuclear beta decay when neutrons turn into protons. This experiment aims to measure the final unknown mixing angle that describes how neutrinos oscillate. The tubes are designed to amplify and record the faint flashes of light that signify an antineutrino interaction. Lawrence Berkeley and Brookhaven National Labs and a number of physicists at U.S. universities played leading roles in the Daya Bay experiment, from designing the detectors all the way through to analyzing the data gathered. | Photo by Roy Kaltschmidt, LBNL.

419

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

420

HEXOSHumidity Exchange Over the Sea A Program for Research on Water-Vapor and Droplet Fluxes from Sea of Air at Moderate to High Wind Speeds  

Science Journals Connector (OSTI)

HEXOS is an international program for the study of evaporation and spray-droplet flux from sea to air. The program includes measurements in the field at moderate-to-high wind speeds, wind-tunnel studies, instrument development, boundary-layer ...

Kristina B. Katsaros; Stuart D. Smith; Wiebe A. Oost

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Study on Fault Analysis of Wind Power (DFIG) in Distribution Systems Based on the PSCAD/EMTDC  

Science Journals Connector (OSTI)

Korean government (Ministry of Knowledge Economy) has estimated that the rate of wind power (WP) in the new energy sources will be occupied by 37% in 2020 and 42% in 2030, and also green energies such as photo...

Jintaek Jeon; Joonho Son; Munseok Lee; Munkbaht

2011-01-01T23:59:59.000Z

422

New England Wind Forum: Historic Wind Development in New England: The 70's  

Wind Powering America (EERE)

The 70's OPEC Oil Embargo Sparks Renewed Interest The 70's OPEC Oil Embargo Sparks Renewed Interest In 1973, when the United States met 94% of its energy requirements from nonrenewable sources, OPEC's oil embargo had a dramatic impact. Supply disruptions and a four-fold price increase caused an increased interest in renewable (i.e., sun-driven) resources. As one response, the Department of Energy and private companies began to develop the forerunners of today's modern wind turbines. WF-1 Wind Turbine at University of Massachusetts, 1976. Photo courtesy of the University of Massachusetts. WF-1 Wind Turbine at University of Massachusetts, 1976. Photo courtesy of the University of Massachusetts. UMass Wind Furnace WF-1 The mid 1970s saw the design, construction and installation of a 25-kW wind turbine at the University of Massachusetts at Amherst. According to the University's Renewable Energy Research Lab, this turbine, known as WF-1, was at the time of its completion the largest existing wind turbine in the United States and for a short time, one of the two or three largest operating turbines in the world. It has now been decommissioned and is currently being prepared for storage and transportation to the Smithsonian Institution.

423

University Information Technology Services UITS Photo Policy September 16, 2010 Rev 1 UITS Photo and Bio Policy  

E-Print Network [OSTI]

University Information Technology Services · UITS Photo Policy · September 16, 2010 · Rev 1 UITS Photo and Bio Policy University Information Technology Services developed a set of requirements and recommendations regarding employee photos and bios. Internal View

Watkins, Joseph C.

424

Photo of the Week: Rocky Flats Wildlife Refuge | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Competition. | Photo courtesy of Oak Ridge National Laboratory. Photo of the Week: I, Robot Olympics Solar Junction, in partnership with NREL, has developed solar cells that...

425

Photo of the Week: July 13, 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Competition. | Photo courtesy of Oak Ridge National Laboratory. Photo of the Week: I, Robot Olympics Solar Junction, in partnership with NREL, has developed solar cells that...

426

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Institute of Photo Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name: Institute of Photo-Electronic Thin Film Devices and Technology...

427

Photo-Polarography with a Flash-Lamp  

Science Journals Connector (OSTI)

... PHOTO-POLAROGRAPHY, originating from the synthesis of ... -POLAROGRAPHY, originating from the synthesis of photo-chemistry and polarography, records photokinetic-currents caused by ...

H. BERG; H. SCHWEISS

1961-09-23T23:59:59.000Z

428

2012 Wind Technologies Market Report Summary  

Wind Powering America (EERE)

Efficiency & Renewable Energy eere.energy.gov Efficiency & Renewable Energy eere.energy.gov 1 Program Name or Ancillary Text eere.energy.gov WIND AND WATER POWER PROGRAM 1 2012 Wind Technologies Market Report Summary Ryan Wiser, Ph.D. Lawrence Berkeley National Laboratory WPA All-States Summit May 8, 2013 WIND AND WATER POWER PROGRAM 2 2012 Wind Technologies Market Report Purpose, Scope, and Data: * Publicly available annual report summarizing key trends in the U.S. wind power market, with a focus on 2012 * Scope primarily includes wind turbines over 100 kW in size * Separate DOE-funded annual reports on distributed and offshore wind * Data sources include AWEA, EIA, FERC, SEC, etc. (see full report) Report Authors: * Primary authors: Ryan Wiser and Mark Bolinger, Berkeley Lab * Contributions from others at Berkeley Lab, Exeter Associates, NREL

429

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33GW up from 2GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbineslow level noise sources interfering with restoration? EjaPedersen andKerstin PerssonWaye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece GeorgeCaralis, YiannisPerivolaris, KonstantinosRados andArthourosZervos Large-eddy simulation of spectral coherence in a wind turbine wake AJimenez, ACrespo, EMigoya andJGarcia How to improve the estimation of

Jakob Mann; Jens Nrkr Srensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

430

Photo-electric Conduction in Selenium  

Science Journals Connector (OSTI)

Variation with light intensity of the photo-current in selenium.A selenium cell is described which gives a photo-current of 10 ma. for a difference of potential of 100 volts and an illumination of 100 foot-candles. The sensitiveness ratio between the currents under light and dark conditions is 100. The characteristics of the cell are very constant. The experimental results establish the existence of a linear relation between the square of the photo-current and the light intensity. It is pointed out that this result substantiates the conclusion that the photo-conduction in selenium is due to a photo-electric liberation of electrons rather than to an allotropic change from an insulating to a conducting form of selenium.Effect of temperature on the photo-conductivity of selenium.Under dark conditions the current through a cell immersed in liquid air dropped in 15 sec. to 35 percent of its value at room temperature, and in 10 min. to 0.000046 percent. When the same cell was illuminated with 100 foot-candles and immersed in liquid air, the current increased for 8 min. to about 1.8 times its value at room temperature and then decreased until after 3 hours its value was 82 percent of its value at room temperature. It is concluded that the mechanism of the current conduction under dark conditions is entirely different from that of the photo-conduction.

R. J. Piersol

1927-11-01T23:59:59.000Z

431

Photo-Alignment Behavior of Mesoporous Silica Thin Films Synthesized on a Photo-Cross-Linkable Polymer Film  

Science Journals Connector (OSTI)

Photo-Alignment Behavior of Mesoporous Silica Thin Films Synthesized on a Photo-Cross-Linkable Polymer Film ... Photo-aligning and micropatterning techniques for mesochannels of a silica thin film using a photo-cross-linkable polymer film with a cinnamoyl group are proposed. ... We propose herein a new photo-aligning and micropatterning technique for mesochannels of a silica thin film using a photo-cross-linkable polymer film with a cinnamoyl group. ...

Haruhiko Fukumoto; Shusaku Nagano; Nobuhiro Kawatsuki; Takahiro Seki

2006-02-11T23:59:59.000Z

432

Sandia National Laboratories: Water Power Personnel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PowerWater Power Personnel Water Power Personnel Photo of Diana Bull Diana Bull Engineering Sciences R&D 06122Water Power Technologies Diana Bull is a technical staff member in the...

433

Modeling photo-detectors in quantum optics  

E-Print Network [OSTI]

Photo-detection plays a fundamental role in experimental quantum optics and is of particular importance in the emerging field of linear optics quantum computing. Present theoretical treatment of photo-detectors is highly idealized and fails to consider many important physical effects. We present a physically motivated model for photo-detectors which accommodates for the effects of finite resolution, bandwidth and efficiency, as well as dark-counts and dead-time. We apply our model to two simple well known applications, which illustrates the significance of these characteristics.

Peter P. Rohde; Timothy C. Ralph

2005-11-10T23:59:59.000Z

434

North Dakota Company Wins Praise for Wind Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of megawatts of power to the grid and putting hundreds of people to work. Take two of Basin Electric Power Cooperative's PraireWinds projects, for example. The 80 wind turbines scattered across the plains in Minot, N.D., are generating enough energy to power about 35,000 homes a year.

435

Small Wind Electric Systems: A Guide for the American Corn Growers Association  

Wind Powering America (EERE)

Guide Produced for the Guide Produced for the American Corn Growers Foundation Small Wind Electric Systems Small Wind Electric Systems U.S. Department of Energy Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program Small Wind Electric Systems Cover photo: This AOC 15/50 wind turbine on a farm in Clarion, Iowa, saves the Clarion-Goldfield Community School about $9,000 per year on electrical purchase and provides a part of the school's science curriculum. Photo credit - Robert Olson/PIX11649 A national survey of corn producers conducted by the American Corn Growers Foundation (ACGF) found a strong majority level of support among farmers on a range of important wind energy issues. The survey, conducted by Robinson and Muenster Associates, Inc. of Sioux Falls, South Dakota during

436

North Dakota Company Wins Praise for Wind Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of megawatts of power to the grid and putting hundreds of people to work. Take two of Basin Electric Power Cooperative's PraireWinds projects, for example. The 80 wind turbines scattered across the plains in Minot, N.D., are generating enough energy to power about 35,000 homes a year.

437

VP 100: New Facility in Boston to Test Large-Scale Wind Blades | Department  

Broader source: Energy.gov (indexed) [DOE]

VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades July 23, 2010 - 1:19pm Addthis Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Stephen Graff Former Writer & editor for Energy Empowers, EERE America's first-of-its-kind wind blade testing facility - capable of testing a blade as long as a football field - almost never was. Because of funding woes, the Massachusetts Clean Energy Center (MassCEC),

438

Look to the Right, Kids: Five Solar/Wind Hybrids | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Look to the Right, Kids: Five Solar/Wind Hybrids Look to the Right, Kids: Five Solar/Wind Hybrids Look to the Right, Kids: Five Solar/Wind Hybrids September 1, 2010 - 2:16pm Addthis Genoa Township, Mich., installed five wind/solar hybrid units that will supply up to 20 percent of the township hall’s electrical needs. | Photo Courtesy of Genoa Township Genoa Township, Mich., installed five wind/solar hybrid units that will supply up to 20 percent of the township hall's electrical needs. | Photo Courtesy of Genoa Township Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Genoa Township in Michigan uses Recovery Act funds to deploy wind-solar units. Five units to supply up to 20% of township hall's electricity. The highly visible Michigan-manufactured units were installed along

439

Wisconsin Start-up Taps into Wind Supply Chain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Start-up Taps into Wind Supply Chain Start-up Taps into Wind Supply Chain Wisconsin Start-up Taps into Wind Supply Chain August 10, 2010 - 2:00pm Addthis Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Renewegy received $525,000 Recovery Act loan to start wind turbine business Business hired 16 people and projects at least three more by end of

440

NREL: News Feature - Giant Wind Turbine Test Takes a Heavyweight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Giant Wind Turbine Test Takes a Heavyweight Giant Wind Turbine Test Takes a Heavyweight May 17, 2010 Photo of Samsung's 90-ton drive train connected to NREL's 2.5-megawatt dynamometer in a high-ceiling metal building. The drive train is a cylindrical shape, but several attachments give it the look of a giant Lego contraption. Enlarge image A coupling of giants: Samsung's 2.5-megawatt wind turbine drive train meets the National Wind Technology Center's 2.5-megawatt dynamometer. Samsung's drive train weighs 90 tons and is the brains behind its 2.5-megawatt wind turbine that can supply electricity to 1,800 homes. Credit: Rob Wallen In a coupling of giants recently, the 2.5-megawatt dynamometer at the U.S. Department of Energy's National Renewable Energy Laboratory blasted 12.6 million inch pounds of torque at Samsung's 185,000-pound wind turbine drive

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Careers in the Wind Industry | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Careers in the Wind Industry Jump to: navigation, search Two engineers working in the nacelle of a Siemens offshore wind turbine. Photo from Siemens AG, NREL 19687 Resources American Wind Energy Association. Careers in Wind. Accessed August 29, 2013. This page connects wind energy companies to people seeking jobs in the wind energy industry. Environmental Entrepreneurs. (August 2013). Clean Energy Works for Us: 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report. Accessed August 30, 2013 Environmental Entrepreneurs (e2) is a national community of business

442

Wind Drift Compensation, Flyways, and Conservation of Diurnal, Migrant Neotropical Lepidoptera  

Science Journals Connector (OSTI)

22 October 1996 research-article Wind Drift Compensation, Flyways, and Conservation...off-course. Migrating birds are capable of wind drift compensation over water, but no...track directions, ambient windspeeds and wind directions, we quantified within-individual...

1996-01-01T23:59:59.000Z

443

Section 4 - Wind  

Science Journals Connector (OSTI)

The exploitation of wind power for useful energy is both a practice dating back to ancient times and a key component of todays effort to substitute renewable energy sources for fossil fuels. Use of wind energy has progressed historically through three stages. First came the use of wind for propulsion of water craft via sails. Then the windmill came into use in agriculture, originally to grind grain and then later to drain water from fields or raise it from a well. Finally (much later) came the use of wind to power turbines to generate electricity. The two historic uses of wind power, sailing ships and windmills, are both still in existence today, though on a lesser scale than in the past. The earliest use of the sail is thought to have occurred more than 5,000 years ago on the Nile River and in the Mediterranean Sea. A major advance in sailing came in the era of the Roman Empire, as early as the 2nd century A.D., with the appearance on the Mediterranean of the lateen (triangular) sail, which was capable of taking the wind on either side and thus could sail into the wind, as opposed to the earlier square sail which could only sail with the wind. This technology is believed to have originated with Arab sailors on the Red Sea about 200 years earlier. The use of multiple triangular sails, in combination with square sails, led to the Age of Sail, during which sailing vessels were employed for global exploration, international trade, and naval warfare. The ultimate in wind-powered ships were the clipper ships of the mid 19th century, famous for their high speed, elegant design, and graceful appearance. Ironically, the finest clipper ships appeared just as the Age of Sail was in its twilight years, having been overtaken by the development of the steam-powered ship. The classic European windmill first appeared in the Middle Ages, probably in the 12th century. A written record of one in England dates from the 1180s. The common type was the tower mill, which was developed shortly afterward. It became known as the Dutch windmill because it was ubiquitous in that country, and even today it is a popular symbol of the Dutch nation. The windmill influenced the topography of the Netherlands in that it was widely used to provide the power to reclaim submerged land. The windmill also was reported in China at about the same time it emerged in Europe, though it may have developed even earlier. In the United States the so-called American farm or American-style windmill became a familiar sight from the middle of the 19th century onward, especially in the developing Western region. It was used to provide power to raise well water and to run farm machinery. New technology enabled it to turn its wheel to adjust to changing wind direction, and also to restrict the wheel speed so that the blades would not be destroyed during storms. The use of steel rather than wood as the blade material was a later refinement. This type of windmill eventually spread far beyond the U.S. borders to be used globally. The beginnings of the use of wind power to generate electricity came in the late 1880s and early 1890s, through the work of Charles Brush in the U.S. and Poul la Cour in Denmark. Brush modified a windmill to operate a DC generator, creating what is considered to be the first wind power plant. The experiments of la Cour with wind turbines laid the foundation for modern wind energy technology. In the 1920s the U.S. wind pioneer Marcellus Jacobs developed the first commercial propeller-type rotor for a wind turbine. Companies such as his Jacobs Wind continued on the path established by Brush of modifying existing windmills to provide power to drive DC generators, especially for use by farms that were not on the electrical grid prior to the coming of widespread rural electrification. Another major development of the 1920s was the vertical axis wind turbine (VAWT), which was patented by the French engineer Georges J. M. Darrieus. This new type of wind turbine had a distinctive eggbeateror skipping rope design, in contrast with the horizontal a

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

444

NREL: Wind Research - Wind Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

445

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

446

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

447

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

448

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

449

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

450

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

451

WINDExchange: Learn About Wind  

Wind Powering America (EERE)

Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner...

452

NETL: Gasification Systems Video, Images & Photos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video, Images, Photos Video, Images, Photos Gasification Systems Reference Shelf - Video, Images & Photos The following was established to show a variety of Gasification Technologies: Gasfication powerplant photo Gasification: A Cornerstone Technology (Mar 2008) Movie Icon Windows Media Video (WMV-26MB) [ view | download ] NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants. Proposed APS Advanced Hydrogasification Process Proposed APS Advanced Hydrogasification Process* TRDU and Hot-Gas Vessel in the EERC Gasification Tower Transport reactor development unit

453

Photo-Disintegration of the Deuteron  

Science Journals Connector (OSTI)

A study of the photo-disintegration of the deuteron using a cloud chamber as a detector has been made for gamma-ray energies of 6.14 and 7.00 Mev from the F(p,?)O16* reaction. By observing the number of photo-disintegration protons and the number of electron pairs formed in the gas (CD4) of the cloud chamber, the ratio of the photo-disintegration cross section to the pair cross section is obtained. Assuming a calculated value for the pair cross section these data yield ?[D(?,p)n]=25.7(14percent P . E.)10-28 cm2 at an average gamma-ray energy of 6.55 Mev.A plot of the angular distribution of the photo-disintegration protons agrees, within statistical limits, with sin2?, though there may be a slight asymmetry in the forward direction.

J. A. Phillips; J. S. Lawson; Jr.; P. Gerald Kruger

1950-11-01T23:59:59.000Z

454

Event-centric Twitter photo summarization  

E-Print Network [OSTI]

We develop a novel algorithm based on spectral geometry that summarize a photo collection into a small subset that represents the collection well. While the definition for a good summarization might not be unique, we focus ...

Wen, Chung-Lin, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

455

Photo-responsive liquid crystal block copolymers/  

E-Print Network [OSTI]

Photo-responsive liquid crystal polymers (LCP) which contain azobenzene moieties have gained interest for their ability to change properties by merely irradiating them with the correct wavelength of light in the appropriate ...

Petr, Michael Thomas

2012-01-01T23:59:59.000Z

456

Photo-electric Control in Industry  

Science Journals Connector (OSTI)

... made in standard sets called photo-electric relays, containing an amplifier circuit and a small contactor capable of making or breaking 15 amperes. An obvious application of this unit is ...

1937-11-27T23:59:59.000Z

457

Photo of the Week | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week Photo of the Week Photo of the Week Addthis Inside the Tandem Mirror Experiment 1 of 28 Inside the Tandem Mirror Experiment This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at both ends of a central magnetic tube. Very hot and dense plasmas inside each mirror enhanced the confinement of another plasma inside the central tube, where the bulk of the fusion would occur. Image: Lawrence Livermore National Laboratory Date taken: 2012-12-28 12:00 Rocky Flats Wildlife Refuge 2 of 28 Rocky Flats Wildlife Refuge The Rocky Flats Plant was first established in 1951 as a nuclear weapons manufacturing facility. Today, almost 4,000 acres make up the Rocky Flats

458

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

459

Environmental impact of wind energy  

Science Journals Connector (OSTI)

Since the beginning of industrialization, energy consumption has increased far more rapidly than the number of people on the planet. It is known that the consumption of energy is amazingly high and the fossil based resources may not be able to provide energy for the whole world as these resources will be used up in the near future. Hence, renewable energy expected to play an important role in handling the demand of the energy required along with environmental pollution prevention. The impacts of the wind energy on the environment are important to be studied before any wind firm construction or a decision is made. Although many countries showing great interest towards renewable or green energy generation, negative perception of wind energy is increasingly evident that may prevent the installation of the wind energy in some countries. This paper compiled latest literatures in terms of thesis (MS and PhD), journal articles, conference proceedings, reports, books, and web materials about the environmental impacts of wind energy. This paper also includes the comparative study of wind energy, problems, solutions and suggestion as a result of the implementation of wind turbine. Positive and negative impacts of wind energy have been broadly explained as well. It has been found that this source of energy will reduce environmental pollution and water consumption. However, it has noise pollution, visual interference and negative impacts on wildlife.

R. Saidur; N.A. Rahim; M.R. Islam; K.H. Solangi

2011-01-01T23:59:59.000Z

460

Treatment of effluents from wool dyeing process by photo-Fenton at solar pilot plant  

Science Journals Connector (OSTI)

Abstract The decolourization and mineralization of simulated wastewaters from wool dyeing tanks were investigated by Fenton and photo-Fenton processes. Yellow, red and blue dyebaths with azo-type and anthraquinone dyes and additives were selected as colored effluents. Photo-Fenton reaction was much more efficient than the respective dark reaction under identical experimental conditions. The effect of H2O2 and Fe(II) dosage and fractional or initial addition of these reagents on the photo-mineralization processes were studied and the optimal conditions found. Experiments at a pilot plant based on compound parabolic collectors (CPCs) confirmed that, under optimal conditions, 100% of color removal was obtained requiring low accumulated energy. No toxic effects on marine bacteria Vibrio fischeri were observed at the end of photo-Fenton treatment for all studied effluents. High concentrations of sodium acetate are used as additive in the wool dying process. HPLC and TOC analysis of the effluents after photo-Fenton process confirmed that the remaining organic carbon is due to the presence of acetates. The obtained results showed the feasibility of photo-Fenton process to achieve suitable water qualities for internal reuse.

M.J. Hernndez-Rodrguez; C. Fernndez-Rodrguez; J.M. Doa-Rodrguez; O.M. Gonzlez-Daz; D. Zerbani; J. Prez Pea

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Photo-Electric Ionization of Caesium Vapor  

Science Journals Connector (OSTI)

Measurement of photo-electric ionization in gases.The current from a filament, normally limited by space change, is increased by the presence of positive ions. As shown by Kingdon this effect may be greatly magnified if a small cathode is practically enclosed by the anode so that the ions are imprisoned. This method was used for the detection of photo-electric ionization. Besides possessing extreme sensitivity it is unaffected by photo-electric emission from the electrodes.Photo-electric effect in caesium vapor.The change in thermionic current with the unresolved radiation from a mercury arc was measured as functions of the applied voltage, filament temperature, and vapor pressure. Then the photo-electric effect as a function of wave-length was studied using a monochromatic illuminator to disperse light from the arc or a Mazda lamp. The ionization per unit flux was found to increase with increasing wave-length to a sharp maximum at the limit 1s=3184A of the principal series, as is required by the Bohr theory. For longer wave-lengths the ionization decreased to about 10 percent at 3400A. Photo-excitation. The simple theory does not admit of ionization by wave-lengths greater than 3184A but the data are in qualitative agreement with the hypothesis that such radiation produces excited atoms which upon collision with other atoms acquire sufficient additional energy to become ionized. Hence, unlike an x-ray limit, the photo-ionization effect for a valence electron is not sharply discontinuous at the true threshold for direct ionization.Photo-ionization photometer and intensitometer. A tube of the type described, with suitable gases for the range of wave-length involved, may be used as a photometer or may be calibrated to measure intensity of radiation directly.

Paul D. Foote and F. L. Mohler

1925-08-01T23:59:59.000Z

462

Excise Tax Exemption for Solar- or Wind-Powered Systems  

Broader source: Energy.gov [DOE]

Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

463

Lateral and Axial Capacity of Monopiles for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Offshore wind has enormous worldwide potential to generate increasing ... are considered to be viable in supporting larger offshore wind turbines in shallow to medium depth waters. In ... of axial and lateral loa...

Aliasger Haiderali; Ulas Cilingir; Gopal Madabhushi

2013-09-01T23:59:59.000Z

464

Wind, water and geothermal energy  

Science Journals Connector (OSTI)

The term renewable energies refers to those sources of energy that are inexhaustible when seen from a human perspective. They are derived from ongoing environmental processes and made available for technical...

Ulrik Neupert

2009-01-01T23:59:59.000Z

465

Personal Photo Enhancement Using Example Images Microsoft Research  

E-Print Network [OSTI]

12 Personal Photo Enhancement Using Example Images NEEL JOSHI Microsoft Research WOJCIECH MATUSIK describe a framework for improving the quality of personal photos by using a person's favorite photographs "good" and "bad" photos such that properties of the good examples can be used to correct a bad photo

Jaffe, Jules

466

Photo Khipu: Organizing a Public Record of Social Transaction  

E-Print Network [OSTI]

Photo Khipu: Organizing a Public Record of Social Transaction Abstract Traditional photo albums are important not only for storing and organizing photographs but also for their ability to display photos in an aesthetically pleasing manner. A beautiful photo album augments the browsing experience for individual

Karahalios, Karrie G.

467

Face Photo Retrieval by Sketch Example Hamed Kiani Galoogahi  

E-Print Network [OSTI]

Face Photo Retrieval by Sketch Example Hamed Kiani Galoogahi School of Computing National University of Singapore Singapore, 117417 tsim@comp.nus.edu.sg ABSTRACT Face photo-sketch matching has of matching face photo and sketch is difference of visual characteristics between face photo and sketch which

Sim, Terence

468

Flux: Enhancing Photo Organization through Interaction and Automation  

E-Print Network [OSTI]

Flux: Enhancing Photo Organization through Interaction and Automation Dominikus Baur, Otmar for digital photo collections, we pro- vide methods for organizing and sharing photos in a convenient manner of scalabil- ity, which is especially relevant for a real-world sized photo collection is tackled

469

Robust Photo Retrieval Using World Semantics Hugo Liu*, Henry Lieberman*  

E-Print Network [OSTI]

Robust Photo Retrieval Using World Semantics Hugo Liu*, Henry Lieberman* * MIT Media Laboratory Photos annotated with textual keywords can be thought of as resembling documents, and querying for photos motivated rather than conceptually motivated. In our photo domain, we propose a mechanism for robust

Lieberman, Henry

470

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

471

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

472

NREL: Wind Research - International Wind Resource Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were...

473

ORISE: DOE EERE National Geothermal Student Competition photo gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Office of Energy Efficiency and Renewable Energy National Geothermal Student Competition photo gallery Check out images of the winners of the 2010-2011 National Geothermal Student Competition. Eleven teams were selected and each team received $10,000 to conduct their assessment of the Rio Grande Rift. Photos courtesy of the National Renewable Energy Laboratory (NREL). National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo

474

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

475

WINDExchange: Wind Economic Development  

Wind Powering America (EERE)

help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. Wind Energy Finance Online Calculator Wind Energy Finance developed...

476

Exploiting Wind Versus Coal  

Science Journals Connector (OSTI)

...be offset with turbine mass production...of installed turbines, more than the...Denmark have wind parks offshore, where winds...of installed turbines, more than the...Denmark have wind parks offshore, where winds...

Mark Z. Jacobson; Gilbert M. Masters

2001-08-24T23:59:59.000Z

477

Photo Gallery Photo 1. Adult female watching her nest cavity as we checked its contents with a micro  

E-Print Network [OSTI]

Photo Gallery Photo 1. Adult female watching her nest cavity as we checked its contents DESERT All photographs by Aaron D. Flesch 446 Bulletin of the Ecological Society of America #12;Photo Gallery Photo 2. Nest site located in a giant saguaro cactus (Carnegiea gigantea) near the western edge

Montana, University of

478

NREL: Wind Research - Wind Energy Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

479

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

480

New England Wind Forum: Historic Wind Development in New England  

Wind Powering America (EERE)

First Large Scale Windmill First Large Scale Windmill 1970s OPEC Oil Embargo Sparks Renewed Interest Age of PURPA Spawns the Wind Farm An Industry in Transition More New England Wind Farms Modern Wind Turbines History Wrap Up State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Historic Wind Development in New England Wind has been an important energy source for centuries. In the United States, mechanical windmills provided as much as 25% of all non-transportation energy by the end of the 1800s. New England has relied on the wind from its early days, from powering seafaring commerce to grinding grain in the windmills of Cape Cod, several of which still stand. Some 6 million windmills across the nation were used for small-scale generation of electricity from the 1920s until the 1950s, when the U.S. government's rural electrification programs successfully reached remote areas. By the early 1970s, the number of windmills operating in the U.S. had dwindled to 150,000 - used mostly for watering livestock in remote areas of the western United States - although their widespread use continued elsewhere in the world.

Note: This page contains sample records for the topic "wind water photo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar and Wind Rights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Wind Rights and Wind Rights Solar and Wind Rights < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Wisconsin Program Type Solar/Wind Access Policy Provider Public Service Commission of Wisconsin Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use restrictions, and system owner rights to unobstructed access to resources. Wisconsin permitting rules and model policy for small wind can be found [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI16R&re=1&ee=1

482

Wind Opportunities for Idaho State Lands  

Wind Powering America (EERE)

and Local Initiatives Group and Local Initiatives Group National Renewable Energy Laboratory Terri Walters Carol Tombari 303-275-3005 303-275-3821 terri_walters@nrel.gov carol_tombari@nrel.gov Wind Opportunities For Idaho State Lands March 3, 2004 Wind Overview Wind Overview * Technology * Resources * Markets and Drivers * Economic Development Opportunities * Wind Powering America U.S. Electricity Fuel Mix U.S. Electricity Fuel Mix Coal 51.8% Nuclear 19.8% Hydro 7.2% Petroleum 2.9% Gas 16.1% Other/Renewables 2.2% Sizes and Applications Sizes and Applications Small (≤10 kW) * Homes * Farms * Remote Applications (e.g. water pumping, telecom sites, icemaking) Intermediate (10-100 kW) * Village Power * Hybrid Systems * Distributed Power Large (660 kW - 2+MW) * Central Station Wind Farms * Distributed Power Growth of Wind Energy Capacity Growth of Wind Energy Capacity

483

The Great Plains Wind Power Test Facility  

SciTech Connect (OSTI)

This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

Schroeder, John

2014-01-31T23:59:59.000Z

484

NREL: Wind Research - Small Wind Turbine Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

485

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

486

Isolating Effects of Water Table Dynamics, Terrain, and Soil Moisture Heterogeneity on the Atmospheric Boundary Layer Using Coupled Models  

E-Print Network [OSTI]

depth (PBLD), (b) vertical wind speed (w), (c) latent heatdepth (PBLD), (b) vertical wind speed (w), (c) latent heatdepth (PBLD) and (b) vertical wind speed (w) versus water

Rihani, Jehan

2010-01-01T23:59:59.000Z

487

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report  

SciTech Connect (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1982-08-01T23:59:59.000Z

488

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report  

SciTech Connect (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1983-03-01T23:59:59.000Z

489

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect (OSTI)

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigans Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: Siting, permitting, and deploying an offshore floating MET facility; Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; Investigation of technology best suited for wireless data transmission from distant offshore structures; Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; Identifying the presence or absence of bird and bat species near wind assessment facilities; Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

490

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind |  

Broader source: Energy.gov (indexed) [DOE]

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind December 21, 2011 - 11:26am Addthis These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid Waste Management Authority. These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid

491

Two Texas Wind Energy Leaders Win 2011 Public Power Award | Department of  

Broader source: Energy.gov (indexed) [DOE]

Two Texas Wind Energy Leaders Win 2011 Public Power Award Two Texas Wind Energy Leaders Win 2011 Public Power Award Two Texas Wind Energy Leaders Win 2011 Public Power Award June 28, 2011 - 5:27pm Addthis 2011 Public Power Award trophies | Photo Courtesy of the American Public Power Association 2011 Public Power Award trophies | Photo Courtesy of the American Public Power Association Randy Manion Director of Renewable Energy, Western Area Power Administration With their successful and creative use of wind power, Texas' CPS Energy and Denton Municipal Electric beat out 15 other nominees to win the 2011 Public Power Award last week. CPS Energy, based in San Antonio, Texas, provides 10 percent of its total energy through its voluntary Windtricity program -- and expects to increase this to 20 percent by 2020. And Denton Municipal Electric of Denton, Texas, purchased enough wind power

492

Wind Energy Resources for Teachers | Open Energy Information  

Open Energy Info (EERE)

Resources for Teachers Resources for Teachers Jump to: navigation, search Photo from the South Dakota Wind Applications Center, NREL 18283 The following links lead to curricula and classroom resources for teachers who want to incorporate wind energy into their lesson plans. 4-H Group Wind Curriculum Developed The Power of the Wind, which consists of one Youth Guide and one Facilitator's Guide. The activities involve young people in the engineering design process as they learn about the wind and its uses. The site also offers videos. Boise State University Compiled a list of resources for educators, including lesson plans created using the Idaho State and Common Core Standards. California Energy Commission Developed a set of educational materials called "Energy Quest" that

493

Mid-Size Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Mid-Size Wind Turbines Jump to: navigation, search A Vergnet GEV MP C 275-kW turbine at the Sandywoods Community, Rhode island. Photo from Stefan Dominioni/Vergnet S.A., NREL 26490. The U.S. Department of Energy defines mid-size wind turbines as 101 kilowatts to 1 megawatt.[1] Resources Kwartin, R.; Wolfrum, A.; Granfield, K.; Kagel, A.; Appleton, A. (2008). An Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind. National Renewable Energy Laboratory. Accessed September 27, 2013. National Renewable Energy Laboratory. Midsize Wind Turbine Research. Accessed September 27, 2013. This webpage discusses efforts to develop and commercialize mid-size wind turbines in the United States. References

494

Coastal Ohio Wind Project  

SciTech Connect (OSTI)

The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

2014-04-04T23:59:59.000Z

495

Using Physical Memorabilia as Opportunities to Move into Collocated Digital Photo Sharing  

E-Print Network [OSTI]

- 1 - Using Physical Memorabilia as Opportunities to Move into Collocated Digital Photo Sharing.neustaedter@kodak.com ________________________________________________________________________ The uptake of digital photos vs. print photos has altered the practice of photo sharing. Print photos photos. People easily share digital photos outside the home, e.g., to family and friends by email gift

Greenberg, Saul

496

Argonne TTRDC - Transportation Images - Tesla Photo Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing the Tesla Photo Gallery Testing the Tesla Photo Gallery Argonne transportation engineers evaluated an all-electric Tesla Roadster at the Advanced Powertrain Research Facility's new two-wheel drive dynamometer laboratory in April, 2010. Read story. The following images may be used freely as long as they are accompanied by a statement that they were used "Courtesy of Argonne National Laboratory" (see our disclaimer). To download the high-resolution version of each picture, right-click on the "Download high-resolution image" text beneath the picture and select "Save Link As..." from the resulting pop-up menu. tesla testing Mike Duoba, chief engineer at Argonne's Advanced Powertrain Research Facility, looks on as Geoff Amann, senior technician, completes a driving cycle with the all-electric Tesla Roadster at the Lab's two-wheel dynamometer laboratory. Read story. Download hi-res photo.

497

Photo-Auger ionization of lithiumlike ions  

Science Journals Connector (OSTI)

The photo-Auger ionization process is a higher-order contribution to the direct photoelectric effect in which photoexcitation of an inner-shell electron is followed by the emission of an Auger electron. The frequency-integrated photo-Auger ionization cross section for ions of the lithium isoelectronic sequence is calculated in the isolated resonance approximation. The effects of transitions into all accessible intermediate states are explicitly included. Results are compared with the frequency-integrated direct photoionization cross section. The relative contribution of the photo-Auger effect for three-electron ions is a maximum in the Ne(7 +) region, where it is of order 70% of the direct process.

K. J. LaGattuta and Yukap Hahn

1982-01-01T23:59:59.000Z

498

NREL: Wind Research - Site Wind Resource Characteristics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

499

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

500

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...